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ABSTRACT

The paper arises from the experience of Applied Stochastic Models in Business and Industry which has seen, over the years, more
and more contributions related to Machine Learning rather than to what was intended as a stochastic model. The very notion
of a stochastic model (e.g., a Gaussian process or a Dynamic Linear Model) can be subject to change: What is a Deep Neural
Network if not a stochastic model? The paper presents the views, supported by examples, of distinguished researchers in the field
of business and industrial statistics. They are discussing not only whether there is a future for traditional stochastic models in the
era of Machine Learning and Artificial Intelligence, but also how these fields can interact and gain new life for their development.

1 | Introduction

The paper comes from the idea of one of the authors who has
been Editor-in-Chief of Applied Stochastic Models in Business and
Industry for 17 years. Based on his experience in the journal and
his participation in conferences, he observed what is nowadays
evident to everyone: Machine Learning methods have proved
to be very effective in many fields (like prediction and classifi-
cation) which were traditionally covered by Statistics. This fact
triggered the question which gives the title to this contribution:
Is there a future for stochastic modeling in business and indus-
try in the era of Machine Learning and Artificial Intelligence?
This is a question that does not imply a simple yes/no answer,
but requires deep thinking and discussion, pointing out differ-
ences, common aspects, interactions, and new opportunities,

as well as the pros and cons of those approaches. The goal of
this paper is to promote a common reflection about all those
aspects, in particular when applied to business and industrial
problems. Many leading researchers in the field were contacted
and most of them enthusiastically agreed to contribute. What
you can read now is the result of a collective work involving
more than 20 researchers, with different expertise. It is not like
a traditional paper where a new model is presented, with a
discussion about its property and a possible illustration of its util-
ity in addressing a real problem. Here we have contributions that
address the initial question from different points of view. Group-
ing them under some common themes was not possible, so the
paper is organized into sections corresponding to each contrib-
utor (sometimes two of them jointly), presented in alphabetical
order.
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2 | David Banks

I feel like a chatbot. The editor’s prompt was Will stochastic pro-
cesses continue to be relevant to business and industry? And now I
get to make up an answer, or possibly even hallucinate.

As Yogi Berra is said to have said, Prediction is difficult, especially
about the future. My guess is that stochastic processes will remain
important, but that mathematical stochastic process modeling
will become less so. Although my response emphasizes business
and industry, some of my examples and discussion speak to more
general applications.

21 | Why?

Currently, we regularly use Gaussian processes [1], treed Gaus-
sian processes [2], and Gaussian process regression [1] to describe
all sorts of phenomena. An early application was for estimating
the amount of gold ore in South African mines, a methodology
now known as kriging [3]. We use conditional autoregressive
process models for syndromic surveillance [4], Poisson flow
models for Internet traffic [5], and heavy-tailed random fields
for mapping regions of neural activation [6]. Time series models
are ubiquitous and have been built out in many directions, as
have spatial process models and spatio-temporal processes |7, 8].
Self-exciting Hawkes processes are used in finance [9], neural
connections [10], and in tracking political blog activity [11].
There are many other mathematically defined processes with
corresponding application areas.

But the world is changing. In some fields, the amount of data
that is available has exploded. Applied Stochastic Models in
Business and Industry (ASMBI) recently had a special issue on
autonomous vehicles. If, as several of those ASMBI articles sug-
gested, we shall someday have all vehicles on the road being net-
worked and autonomous, then there will be an ocean of travel
data. We will not need differential equation models for traffic flow
[12, 13]; we shall have the empirical process in great detail. In that
regime, the need for process modeling is much less, although the
stochastic process itself remains important.

Given large quantities of data, the nature of process modeling
itself will probably change. For example, if we have data on flows
of networked vehicles, what we are observing is actually the
superposition of observations from multiple and perhaps simpler
data generation mechanisms [14, 15]. Specifically, some of the
traffic corresponds to daily commutes, with peak volumes in the
early morning and late afternoon. But another component of the
traffic corresponds to long-haul trucking and is well described by
flows on a distribution tree, perhaps with travel timed to avoid
rush hour congestion. A third component is produced by school
buses, a fourth by weekend travel, a fifth by holiday travel, and so
forth. An analyst might use simple stochastic models to describe
each component, and then attempt to decompose the complex
empirical process into its constituent parts.

Similar situations arise in many other applications. In
high-energy particle physics, the search for the Higgs boson
entailed analysis of five petabytes of time-stamped data [16].
Those data are an accumulation of collision events and decays,

many of which correspond to known laws of physics, and the
goal is the discovery of anomalous behavior. As before, one has
a superposition of results from many distinct data generation
mechanisms, some of which are well understood, some which
are partially understood, and some of which may represent new
physics.

In the context of business, I see great potential for statistics in
computational advertising, and I hope that more statisticians will
get involved. Computational advertising is a complex economic
ecology and a transformational driver in modern e-commerce.
It includes click-through prediction [17], recommender systems
[18], causal inference [19], and experimental design [20], among
many other statistical subfields. The stochastic process perspec-
tive informs several aspects of its development.

One way that stochastic processes arise is in contract fulfill-
ment for showing online advertisements. When a user visits a
website (e.g., cnn.com), it triggers a complex sequence of activ-
ity lasting less than ten milliseconds. There is a virtual auction
among demand-side platforms that must decide (1) whether to
bid on showing an ad to the user, (2) which ad to show, and (3)
how much to bid. Typically, the demand-side platform knows
quite a lot about the user: Gender, approximate age, approximate
income, marital status, location, and previous purchase history.

A demand-side platform contracts with clients to show the
clients’ ads to a certain number of people with specified char-
acteristics before a certain date. For example, McDonald’s might
contract to have 200,000 hamburger ads shown to males between
the ages of 16 and 35 in southern California before January 1,
2025. Similarly, Wendy’s might contract to have its ad shown to
400,000 people in California between the ages of 15 and 40 before
November 30, 2024. Obviously, sometimes the same person could
be used to fulfill either of the contracts and then the demand-side
platform must decide which ad should be shown.

If a demand-side platform does not completely fulfill the con-
tract, then it must return some portion of the client’s money, and
the amount depends upon how near to the target the platform
has come. Third parties are routinely used to ensure that ads are
being displayed to people that match the contract specifications
(of course, there is noise—sometimes my wife uses my laptop).
This leads to an interesting optimization problem, and one aspect
of that problem is the uncertain future. The demand-side plat-
form does not know what contracts it will write next month, nor
does it know who is going to log in to one of the websites upon
which it can bid for eyeballs.

I do not know if any of the demand-side platforms are using
dynamic programming for stochastic optimization [21]. It is
unlikely —calculating a Gittins index would be hard, and the
underlying stochastic process is surely non-stationary. But, the
stochastic process perspective may inform the heuristics that
managers of demand-side platforms need to use to ensure eco-
nomic viability.

Agent-based models are used in many different disciplines, and
although I do not have direct knowledge of their degree of pen-
etration in industry, there is much academic discussion about
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such applications [22]. They can be tools for logistics and sup-
ply chain management [23], they can inform various aspects of
insurance [24], and they can, in principle, describe manufactur-
ing processes [25, 26]. However, in many applications, they can be
computationally cumbersome, requiring a lot of memory and/or
a lot of time.

In such cases, one standard workaround is to use an emulator.
Emulators are (usually) Gaussian process approximations to the
agent-based model. Sometimes they offer fast and practical solu-
tions that are sufficiently faithful to the agent-based model to
provide useful guidance [27]. Remarkably, emulators can give
posterior distributions over the discrepancy function, which indi-
cates for which regions of the input space the emulator does a
poor job of matching the agent-based model.

2.2 | Conclusion

My guess is that stochastic processes will continue to be impor-
tant in business and industry, but that attention will shift from
closed-form expressions and theory towards computation. In
commercial competition, better predictive accuracy and better
fit are comparative advantages. I think companies will be happy
to give up mathematical elegance in exchange for slightly better
performance.

Nonetheless, the theory may have persistent value as the starting
point for building computation-based processes. That theoretical
insight can help the company statistician to flag which features
of the new processes are most important to the firm’s financial
future. Statisticians and probabilists have built an extraordinarily
broad and flexible intellectual toolkit, but the real world will gen-
erally still be too complex to be fully described by such models.

I must end with an apology. Usually, I deplore people who relent-
lessly cite themselves. This paper sins grievously in that regard.
My excuse is that this exercise seemed more like an op-ed piece
than the usual ASMBI article, and so I responded to the prompt
using ideas that have been in my head for a while. I beg your
indulgence.

3 | William S. Cleveland and Nicholas I. Fisher

Why will Human Intelligence continue to prevail in Data
Science?

The spark that creates Life has yet to be purposefully created in
a laboratory. This spark is intrinsic to being able to ascend all of
the following steps:

1. Create or gather data.

2. Turn data into information.

3. Transform information into knowledge.

4. Apply knowledge with wisdom!.

Artificial intelligence (hereafter Al) is totally dependent on the
quality of what it can find on the Web relating to Items (1-3). For

many problems, this brings enormous advantages compared with
a group of data scientists applying Human Intelligence (hereafter
HI) to the same problems. However, there are, and will continue
to be, problems where HI will prevail, not least because of the
spark that provides us access to Item (4).

HI brings to stochastic modeling some qualities that are essential
to good work: Scepticism, Doubt, Suspicion, ... all of which add
up to a form of Statistical Wisdom in both solving a problem and
assessing whether a good job has actually been done. We illustrate
this with two incredibly contrasting examples, one relating to
massive data sets and development at the leading edge of research
where little methodology is available, and the other involving
very small data sets and very localized inference where, again,
there is little specific or at least inferable information available.

We preface these examples by making two general assertions
about Al that are a consequence of the qualities that it lacks.

« Al s limited in its ability to separate the good from the bad,
in terms of the resources it uses to carry out its “reasoning”.
These resources may include resources generated by Al and
derived from unsound resources or algorithms.

» Al is susceptible to how a question is posed.

Of course, data scientists also face the same challenges. However,
Statistical Wisdom provides a reasonable measure of protection
in this regard.

Example 3.1. The data of the Internet are the traffic trans-
mitted. Deep data analysis requires deep knowledge of Internet
technology and stochastic process modeling. The Internet is a
complex system of links and routers. An example process is the
transport of a “file” from one “host”, a computer, to another host,
establishing a “connection”. The file is broken up into “packets”,
no more than 1500 bytes each. This is the “payload”. Each packet
also carries 40 bytes of transmission information, the “headers”,
such as the IP addresses of the source and the destination hosts of
the connection. Traffic Modeling (TM) is critical for Traffic Engi-
neering (TE). TM enables TE simulations to find optimal path-
ways, the “Edges” of the Internet consist of connections by people
at home, businesses, schools, etc., with connections to Internet
service providers who enable entry to the Internet. The user tech-
nology is a part of the Internet of Things (Iot) with host hardware
devices, and interface software for building, sending, and receiv-
ing connections. The many entering connections occur randomly,
payload sizes are random, and the packets of connections merge
randomly. This is why Internet transport is a “stochastic process”.
Interestingly, traffic engineers refer to the merging of packets as
“statistical multiplexing”. Further along the pathways, merged
streams merge with one another, and the traffic becomes the
Internet “Core” with rates substantially larger. Routers are much
more powerful. The stochastic properties of the Core differ from
those of the Edges. Technically, that is, mathematically, Traffic
overall is Long-Range-Dependent (LRT). Edge traffic is still burst-
ing. This makes Edge router design much more complex - and
therefore more costly - than if traffic were smooth. In the core,
technically (mathematically) the traffic is still LRD, but the ratio
of the traffic rate standard deviation over the mean declines, so
the traffic gets smoother in the Core. Burstiness declines. Core
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Routers there are very costly since they have much more to man-
age, but with much more smoothness, traffic engineering is much
easier, and cost goes down. When this was discovered, many traf-
fic “experts” disagreed very strongly, but as time went on, statis-
tical traffic diagnostics showed the smoothness was truth?. See
[28] for more details.

Model validation was critical to confirm the accuracy of the
model. It was carried out by analyzing live packet traces in
both directions from gateway links in Auckland in New Zealand,
Leipzig in Germany, and Bell Labs in Murray Hill, New Jersey,
USA. Arrival time traces of 715,665,213 packets were collected.
The collected segments were large enough to be informative, but
not so large that the rate was non-stationary.

The processes to study the internet and carry out model build-
ing for traffic engineering require knowledge of the internet and
of stochastic model building and very importantly, experience in
using this knowledge. AI technology consists of algorithms, but
there is no apparent need for foundational algorithms either for
stochastic processes or for the Internet, which has protocols that
run the system. There are tools for detecting protocol violations
but calling them algorithms is probably an overstatement. For
Internet random processes there is far too much Internet subject
matter involved in applying Statistics for model building to the
point of being able to carry out simulations for Internet processes,
and for discovery of ways to improve Internet performance, for AT
processes to analyze and model and improve the Internet.

Example 3.2. Processes for measuring and managing rela-
tionships are ubiquitous throughout business and industry, in
order to maintain market share, ensure staff retention, improve
safety performance, and so on. These surveys are critically
dependent on being able to capture high-quality satisfaction data
from survey-satiated groups, so the survey processes need to be
able to work well with short, carefully constructed survey instru-
ments that furnish actionable data from small but representative
surveys (e.g., [29]). Such instruments tend to capture both qual-
itative and quantitative data, the numbers providing the basis
for improvement priorities, and the comments insight into what,
specifically, needs to be fixed. It is this latter aspect that calls
for HI, rather than AI. Many workplaces have workforces from
a wide variety of cultural and linguistic backgrounds let alone
levels of literacy, so constructing a bespoke survey instrument
from focus groups is itself a challenge as is looking for root and
systemic causes in the small numbers of (often semi-literate)
comments. And, of course, enterprises keep this sort of material
confidential, so there are no vast resources of comparable studies
elsewhere to feed into the AT maw and churn out actions.

4 | Marcos Escobar-Anel

Interactions among humans, between humans and the environ-
ment, together with changes in human behavior due to evolving
cultures and technological advances, will continue to increase the
complexity of phenomena in the field of social sciences.

A simple example motivated by finance but easily extrapolable
to other areas is the evolution of stock prices in the last 60 years.
The price of a share is not only dictated by rational economic

forces but is also a by-product of human individual and collective
behavior, our desires, passion, wishes, and mistakes; all this is
summarized on a single number at any given time. This means
the modeling of stocks has had to adapt/evolve from a quite
robust and straightforward Gaussian-based model in the ’60s too,
for example, the inclusion of jumps in the *70s with Levy models
(e.g., [30]), random local volatility as detected in the *70 and ’80s
(i.e., GARCH, and constant elasticity of volatility (CEV) models,
e.g., [31, 32]), stochastic volatility in the "90s (e.g., [33]), motivat-
ing the emergence of the volatility index (VIX) by the Chicago
Board Options Exchange (CBOE). Advanced models, combin-
ing these features and more, continue to emerge, for example,
[34-37]. Nonetheless, new features, like stochastic volatility of
volatility and stochastic skewness on prices, as captured by the
relatively new indexes VVIX and SKEW respectively (CBOE), are
yet to be tamed. This is just for single assets; multi-asset modeling
is even richer. It, therefore, stands to reason that the increase in
complexity will only continue, requiring more advanced models
to explain the dynamics of single and multiple stocks adequately.

It is in this ever-increasing complex environment where the new
field of Machine Learning (ML) and the immense potential of
Artificial Intelligence (AI) have emerged, ideally as prospective
saviors to help humans tame reality. Would this mean the end of
stochastic modeling?

At first sight, we have gone through this before. Interestingly,
the development of new mathematical/scientific disciplines, for
example, algebra, calculus, probability, differential equations,
time series, and stochastic calculus, has not only created topics
arguably more complex and abstract than their predecessors but
has never made predecessors obsolete. On the contrary, it has
breathed new life into its predecessors, widening interpretations
and connections and enriching our toolbox to explain reality
as a consequence. Even more encouraging is that, despite the
increasing complexity of every new discipline, more humans
than ever dare to study and understand it, as evidenced by the
steady increase in PhD graduates worldwide. This means we
continue to show capacity as a species to meet the challenges.

On the other hand, at a deeper level and depending on our
risk-aversion levels, the emergence of ML/AI is so revolutionary
that it might look like a change point in the dynamics of our sci-
entific evolution. This resonates with a common pitfall in careless
modeling, that is, we should not blindly use the past to explain the
future, assumptions should be checked periodically, and models
should be updated. Could AI be so disruptive that it would render
models obsolete?

In my opinion, the answer is no for two reasons. First, the
increasing complexity described above is mainly human-made,
irrational to some extent, and fed by the widening spectrum of
our individual needs and diversity. It is in the study of humans
where the answers are found, and fortunately, we have an obvious
advantage. Secondly, a model, a formula, like a painting, is the
human way to understand and explain ourselves and the world.
We have a genetic need to satisfy our curiosity and to understand
reality; we do not like imposed solutions. So, we will always need
to translate phenomena (either created by the universe, by us, or
by a machine) to a level we can understand and share, and it is
in this context where stochastic models will always appear.
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5 | Paolo Giudici and Emanuela Raffinetti

Machine Learning models are boosting Artificial Intelligence
(AI) applications in all human activities, particularly in domains
such as finance, health care, and automotive. AI applications
have improved in general products and services, in terms of
costs, user experience, and inclusion. Moreover, their use in
finance gave rise to the diffusion of financial technologies (fin-
tech), resulting in an improvement of the payment processes,
asset management, lending, and insurance services.

This is mainly due to their advantage, in terms of predictive
accuracy, with respect to “classic” statistical learning models.
However, although complex Machine Learning models may
reach high predictive performance, their predictions are not
explainable, and have an intrinsic black-box nature: Input data
are transformed through complex processes without effective
control and monitoring of the risks arising from potential
biases in forecasting. This is a problem in regulated industries,
as authorities aimed at monitoring the risks arising from the
application of AT methods may not validate them. For example,
the application of AT to finance may lead to automated decisions
that can classify a company at risk of default, without explain-
ing the underlying rationale and, therefore, limiting possible
intervention actions in case of wrong predictions.

Furthermore, they may not be robust, they may use private data,
or data that are not representative, thereby generating bias and
unfairness.

Indeed, differently from ordinary computer software and its
applications, AI not only converts inputs into outputs, but can
also change the surrounding environment, with the risk of creat-
ing harm to individuals, organizations, and countries. This is the
reason why authorities, regulators, and standard bodies around
the world have begun to monitor the risks arising from the adop-
tion of AI methods.

For example, the European Union has introduced the AI Act,
which puts forward a number of key compliance requirements
to Al in terms of security, accuracy, fairness, and explainability,
compulsory for high-risk applications [38].

The above developments require, to be practically implemented,
the availability of a set of statistical metrics that can actually mea-
sure whether Al applications are compliant or the probability that
they are not compliant, along with the expected harm if they are
not so.

This requires research, particularly in the field of stochastic mod-
eling, aimed at developing a consistent set of metrics that can
estimate the probability distribution of AT harms, to be employed
in AI risk management models.

The main compliance requirements for AI established by the
international regulations and standards [38-41] can be summa-
rized in four main principles, which are measurable, and not only
auditable.

The first principle is related to the performance of AI sys-
tems: Accuracy, especially predictive, but also in terms of the
“authenticity” of the Al-generated context.

The second principle is sustainability, related to the robustness
and resilience of Al systems to extreme events, for example envi-
ronmental, or to cyberattacks that may violate their security and
integrity.

The third principle is fairness, related to the impact of AI systems
on the external environment and particularly on human rights.

The fourth principle is explainability, which refers to human-AI
interaction, and requires the output from AI systems to be trans-
parent, accountable, and interpretable.

Together, the four principles make the acronym S.A.F.E. An
example of a set of consistent statistical metrics to assess the
S.A.F.E.ty of Machine Learning models is contained in [42],
which extends [43]. The paper [42] provides a model agnos-
tic approach to assess S.A.F.E. machine learning, valid for all
AT applications, independently on the underlying field domain,
data, and models, along with a Python software implementation:
The safeaipackage, which allows full reproducibility of the
proposed model.

The metrics proposed in the paper are consistent with each other,
according to a common mathematical framework: The Lorenz
curve (see, e.g., [44]). The Lorenz curve is a well-known robust
statistical tool, which has been employed, along with the related
Gini index (see [45]) to measure income and wealth inequal-
ities. It thus appears as a natural methodology on which to
build an integrated set of trustworthy AI measurement metrics,
which allows their integration into a unified decision-theoretic
framework.

An important advantage of the S.A.F.E. model contained in [42]
is that all four proposed metrics are based on the same notion of
variability, derived from the Lorenz curve. They can therefore be
similarly normalized to [0, 1] and integrated into a single measure
that can assess the trustworthiness of any Al application.

On the other hand, a possible weakness of the model is that it
does not yet fully take into account model uncertainty. It does
so within the testing procedure which allows, by means of the
developed jackknife procedure, to decide whether a certain value
of a metric is significantly higher than a certain threshold. This
may be useful to estimate whether an Al application is compliant
with regulations and standards, but may not be sufficient to assess
its risks, in terms of probability and expected impact.

Further research should be pursued, to improve the model and/or
provide alternative modelizations that can help assess the uncer-
tainty surrounding the S.A.F.E. metrics and, more generally,
quantify the uncertainty of Machine Learning models.

6 | Roger W. Hoerl and Dennis K.J. Lin

6.1 | Introduction

Data science, especially its most recent manifestation empha-
sizing artificial intelligence (AI), is clearly one of the hottest,
if not the hottest, of technical fields today. This has led many
computer scientists to view statistics as an “old technology”, no
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longer useful in a big data era. Perhaps more concerning, many
within the statistics community appear to be focusing their teach-
ing and research more on machine learning, coding, and cloud
computing than on traditional statistical strengths, such as ran-
domized experiments, applied probability, process control, and
uncertainty quantification. Al clearly provides exciting new capa-
bilities, as anyone who has used ChaptGPT can testify. We argue,
however, that in a big data era, statistical foundations are not only
still relevant, but in fact even more critical than they used to be.
This is because AI's weaknesses tend to be statistics’ strengths,
and without incorporating statistical principles AI can be quite
dangerous. One obvious example is the Boeing 737 Max tragedy,
in which faulty sensor data fed into an automated flight control
system led to the deaths of 346 people [46].

To be clear, we are “bullish” on AI, and feel that it has signifi-
cantly contributed to society already. Our main point, rather, is
that AT will be most successful when it integrates core statistical
principles, as well as domain knowledge. This implies that data
science and Al development teams need to be technically diverse,
and include people well-trained in traditional statistics. Similarly,
while it behooves statisticians to stay up with the times, and know
as much about machine learning and Al as possible, we suggest
that this should be accomplished without sacrificing expertise in
core statistical principles, which only those well-trained in statis-
tics can provide.

6.2 | Data (AI) Scientists and Statisticians

Much of the dialogue between Al researchers, data scientists, and
statisticians seems to be competitive. That is, “our group is better
than your group”. From roughly 2015 until 2020, data scientist
was the “hottest” job title. Now, it seems to have been surpassed
by AI researchers or Al scientists. This competition over who
is “hottest” overlooks the obvious fact that different skills are
needed to succeed in any data activity in practice. As an anal-
ogy, a basketball team of all point guards is not likely to perform
well, nor is a football (soccer) team made up of all goalies. Suc-
ceeding in medicine, sports analytics, science and engineering, or
political polling, for example, requires diverse teams, rather than
teams that are “an inch wide and a mile deep.” Technical diver-
sity seems to be a grossly overlooked and undervalued form of
diversity.

Those working in Al and machine learning (which we will abbre-
viate as “Al scientists” for simplicity) and more traditional statis-
ticians actually need each other. We suggest that statisticians have
much to learn from AI scientists, including the following:

« Al scientists have been much more successful in commu-
nicating their value to senior management. For example,
senior leaders are much more likely to value “deep learning”
than a “hierarchical generalized linear model.” Statisticians
might write this off as “marketing,” but it is undeniable that
without leadership support there is little data analysts can
accomplish.

Skills in data acquisition, transmission, storage, and retrieval
are critical to extracting information from massive data
sets. While statisticians are studying these topics more now,

they are generally part of the core training of computer
scientists.

« Similarly, computer scientists as a group will always be more
proficient in computation and coding, especially in optimiz-
ing code for computational speed.

« Al scientists understand that there are problems for which
causal reasoning and interpretable models are not required.
Many problems require interpretable models, but in some
cases, being able to accurately predict is sufficient. Empiri-
cism has its place.

‘We also feel that statisticians have much to offer to Al scientists:

« From the literature, it is clear that many Al scientists are not
well grounded on core statistical principles, perhaps viewing
them as outdated or no longer relevant. We refer to principles
such as the distinction between a sample and a population,
the concept of inference—which is not the same as the Al
concept of generalizability, potential sources of bias in data
and models, the superiority of data from randomized exper-
iments versus observational data, the need for holistic eval-
uation of models beyond prediction accuracy out of sample,
and the criticality of incorporating sound domain knowledge
in models. All of these concepts are even more relevant in a
big data era.

« As pointed out by Li [47], many statisticians have extensive
consulting experience interacting with clients to discuss the
problem in question, data that would be needed to solve it,
what would constitute a successful solution, and so on. Most
Al scientists work in organizations separated from the oper-
ations where the model might actually be deployed, hence
they often do not understand the real problem in need of
solution [48]. Statisticians learned long ago that the stated
problem often turns out not to be the real problem in need
of a solution.

Statisticians generally have experience with problem
“triage,” that is determining what type of problem one
is facing, so that an appropriate approach can be tailored. Is
it a predicting problem, an estimation problem, a problem
requiring validation of scientific hypotheses, or something
else? Too often, AI scientists have been trained to view
every problem as a prediction problem, a limitation only
exacerbated by the proliferation of data competitions. While
this has “simplified” the task of model evaluation, we argue
that it has resulted in over-simplification of this critical task.

o A rich underlying theory is needed to provide a basis for
inference or generalizability for AI [49]. That is, in order to
have confidence that a model will work well on new data,
there must be some scientific basis for confidence. If we do
not understand why a model works, we obviously will not
understand its limitations, and when it will not work. Statis-
ticians understand this and have developed a deep underly-
ing theory for sampling, inference, experimental design, and
so on. This theory provides a much richer basis for inference
than performing out-of-sample predictions on a single test
set, which is typically taken from the same original data as
the training set.
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6.3 | Types of Intelligence

In order to dig deeper into the relationship between statistics
and Al, we see the need to consider three types of intelligence
(AL BI, and SI). Typically, AI employs a large number of inputs
(training data), super-efficient computer power/memory, and
smart algorithms to perform various tasks “intelligently,” such
as driving a car or evaluating a loan application. Of course, Al is
by definition “artificial,” implying that there is “natural” intelli-
gence. We use the term Biological Intelligence (BI) to refer to the
natural intelligence innate in humans, and other living creatures.
BI combines instinct with proper Soulware [50], and little—even
no—input data to achieve its performance. By “soulware” Kuo
refers to cultural, cognitive, and behavioral patterns that may
differ significantly between people groups. We name a third type
of intelligence Statistical Intelligence (SI), by which we refer to
employing sample data, statistical inference/models with solid
theoretical foundations, and BI to solve problems more com-
plicated than can be solved with BI alone. We view SI as being
on a continuum between AI and BI, in that ideally it combines
domain knowledge with empiricism. We argue that SI can serve
as a bridge between AI, which is objective and powerful, but
also lacking in domain knowledge and “common sense,” and
BI, which provides what AI lacks, but is of course subjective and
highly variable from person to person.

These types of intelligence relay on different types of data. Al
requires digitized data, for example when converting images to
pixels. More and more subjects are being digitized, hence we
anticipate that this will result in AT becoming more extensively
applied, and more powerful. SI, on the other hand, requires
that this digitized data be structured to some degree. Ana-
lyzing unstructured data remains a challenge to most statisti-
cians. Much of the “data” utilized by BI is unknown to us,
such as something we feel but can’t articulate (“I just have
a bad feeling about that person.”). We refer to this as “soft”
data in the sense that it cannot be measured, at least not as
of yet.

We further argue that “learning” is broader than “learning from
data.” There are many important components of learning. In
BI, one often learns from direct observation, without any quan-
tification. For example, lion cubs learn to hunt by watching
mature adults in the pride hunt. Humans frequently learn from
subtle signals, such as body language, tone of voice, or even
lack of conversation. While one can define “data” quite broadly,
minimizing such differences, it is still true that AI, BI, and
SI require fundamentally different types of data. AI requires
digitalized data, not necessarily structured, SI requires struc-
tured data, while BI can effectively utilize “soft data,” includ-
ing “data” that we do not know how to quantify or digitize.
For example, most of us have experienced someone “saying
the right thing” to us, but clearly sensing that the speaker is
not being sincere. Historically, detection of such subtle signals
was often referred to as “intuition,” because people were not
able to precisely explain exactly how they detected the lack of
sincerity.

6.4 | Four Critical Considerations
for Intelligence

We want to consider four specific issues that we feel are particu-
larly relevant in the integration of Al, SI, and BI: Samples versus
populations; statistical Inference; interpolation versus extrapola-
tion; and domain knowledge.

In our experience, Al researchers too often assume that an
extremely large sample can be considered the population. How-
ever, the goal for almost all real problems is to consider the entire
population, for example, to evaluate future loan applications not
yet received. SI can add significant value here, showing how a
thorough study of the sample can reveal the properties of the pop-
ulation. The key idea behind such an approach, to be discussed
below, is the assumption that the population of interest is well
represented by the sample. Sample size matters but is not critical;
data quality is more important than data quantity.

Consider two simplistic examples—soup tasting and cake tast-
ing. For soup tasting, one does not need to drink the entire pot of
the soup to learn if the soup tastes good or not. In fact, if one stirs
the entire pot and takes one spoon to taste, one can quickly eval-
uate the quality of the soup. In this case, the sample size is one
and it is sufficient. On the other hand, for tasting a multi-layer
cake, one spoon from the top layer is clearly not sufficient.
However, even if you take thousands of samples at the top layer
this will not be sufficient either. What is needed from the sample
is “representation,” a vertical slice of cake in this case. As we
discuss below, the “right data” are what we need, not necessarily
“big data.” Ronald Fisher discovered over a century ago that a
small amount of the right data is usually more useful than a large
amount of the wrong data. This principle is still true today.

Statistical inference, part of SI, involves uncertainty, typically
in at least three forms—point estimates, interval estimates
(confidence intervals), and hypothesis testing. In other words,
SI provides more than a point estimate, but also its variation
or uncertainty. This uncertainty quantification helps people
know how far off from the “truth” the point estimate might be.
Al is very powerful in providing point estimates, but struggles
to provide the uncertainty of its estimates. In other words, Al
does not know what it does not know, and thus AI will always
provide an answer “confidently,” whether the answer is accurate
or not. Application of the concepts of statistical significance and
especially equivalence testing are somewhat new to Al, and in
our view, lacking such important concepts is unfortunate.

When two objects are to be compared, SI will test the hypothesis
H, : 6 =0, for example, where § is the “true” difference in the
population, while AI will typically perform a direct comparison.
For example, a tourist visiting China saw a beautiful piece of
ancient art at Xi’An. He asked the owner how old the artwork
was. The owner replied that it was 5,003 years old. The tourist
was puzzled by the exactness of the answer, and asked “How do
you know it is exactly 5,003 years old?” The owner replied “Well,
three years ago, a university professor dated it at 5,000 years old,
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so it must be 5,003 years old now”. It is unlikely that a statistician
would accept this argument, but an Al system might.

While this example may seem trivial, similar situations occur in
the determination of “winners” of data competitions. The win-
ning participant may, hypothetically, produce a mean absolute
error (MAE) in predicting the hold-out set of 0.3245638, while
several other participants produce MAEs of 0.3245639. Is the win-
ner’s model really “best”? Would an equivalence test suggest that
the winner’s solution should be considered different than those
of the runner-ups? We argue that Al needs to implement such SI
and BI considerations into future systems.

When publishing research, statisticians, like mathematicians,
aim to show that their conclusions are correct in all cases, or at
least under a wide set of reasonable assumptions. That is, they
will typically make an argument that their results can be applied
beyond any actual data they have analyzed in the paper. We con-
sider this a form of extrapolation - looking beyond the current
data. On the hand, it is much more common in AI publications
to demonstrate that one’s model or prediction system works very
well for a given set of data, that is, under very special conditions.
In our view this is a form of interpolation - looking within the
current data. Note that the lack of distinction between the sample
and the population of interest naturally leads to such a viewpoint.
In other words, answers from Al tend to be very good, but they
provide no guarantee, or even confidence, that they will func-
tion well when “outside the box.” This relates to our previous
discussion of needing a “basis for inference.” As one example,
an Al system to transcribe handwritten English script into digital
form may work quite well, but this provides no evidence that the
same system will work well with handwritten Mandarin script.

By “domain knowledge” we mean everything that is currently
known about a given phenomenon under study. Such knowl-
edge may or may not be properly documented, and even if docu-
mented, it may or may not be digitized. For example, experienced
operators may be able to detect a “weird” noise coming from a
noisy manufacturing process that they have never heard before.
They may, however, be unable to easily train a new operator as to
which noises are “weird,” and need to be investigated, and which
are not. Domain knowledge is obviously associated with BI.

It has been recognized for some time that AI lacks “common
sense,” that is, basic domain knowledge, frequently resulting in
“dumb” errors. We recall the embarrassing but humorous case of
Amazon’s automated pricing algorithm that suggested an intro-
ductory biology textbook should sell for $24 million [51]. Obvi-
ously, any child with even a modicum of BI would have known
that this was a ridiculous price. BI can augment Al to help ensure
that such blunders are avoided, hopefully when they involve
more serious issues, such as airplane flight management systems
or medical treatment. Even if not originally trained to do so, prac-
ticing statisticians learned long ago that integration of BI is criti-
cal to proper data analysis.

6.5 |
Data

Data Quality: Data Are Right Versus Right

Data quality has long been recognized as critical to the validity
of any empirical analysis, whether it be in traditional statistics,

machine learning, or an Al system. In our view, however, most
data quality evaluations have focused almost exclusively on the
question of whether the data are right or not. That is, are there
errors, blunders, outliers, missing value codes of —999 or perhaps
0, and so on?

Ensuring that the data are right is of course an important con-
cern, and bad data are unfortunately ubiquitous. This is why
most depictions of the model-building process in AI incorporate
a “data cleaning” step. However, we ask if it makes sense to tol-
erate sloppy data collection, assuming that the bad data will later
be filtered out? How do we know if the unusual data are actually
“bad” data, versus unusual but accurate? That is, how do we avoid
“throwing the baby out with the bath water?” Would it not make
more sense to focus efforts on improving our data collection pro-
cesses to avoid bad data in the first place? This is basic process
control, a historical part of SI. Modern technologies, such as sen-
sors, RFID, or auto-camera, allow efficient means of accurate data
collection. Of course, technology does not guarantee data accu-
racy. Therefore, any sensors utilized must have evaluation and
calibration systems to ensure accuracy. No one wants another 737
Max catastrophe.

Admitting that the “data are right” question is important, we
argue that the question of whether these are the right data to
address the current problem is even more critical, but often over-
looked. The growth of data competitions has exacerbated this
problem, since in such competitions the data are generally pro-
vided as a “given,” and the sole objective is to fit the provided
data as closely as possible. Rarely is the original practical problem
clearly defined, nor is there an opportunity to discuss what data
might be most appropriate for that specific problem. In other
words, the “right data” question is not even considered.

We argue that many of the well-publicized AI failures, such as
the Amazon facial recognition system that matched pictures of
twenty-eight known criminals to members of the US Congress,
are the result of not using the right data to train the system
[52]. While this particular blunder might seem funny at first,
almost all of the mismatches involved African-American and His-
panic members of Congress. In this case, the training data did
not include sufficient people of color, an oversight some have
attributed to the lack of diversity at Amazon.

As noted by Li [53], the data that are readily available are rarely
the most appropriate data, that is, the right data, to address a
specific question or problem. This realization led Ronald Fisher,
among others, to the development of the field of experimental
design, as noted previously. Since Fisher published The Design
of Experiments [ 54], statisticians have been studying, researching,
and practicing the principles of experimental design to obtain the
right data for a well-defined problem. This thinking is a critical
advantage of ST and one that we feel statisticians have not empha-
sized sufficiently. Even in cases where designed experiments are
not feasible, the principles of obtaining the right data for a partic-
ular problem are still relevant.

There are, of course, many aspects of the right data, all of which
should be documented in a complete data pedigree [55], to be
evaluated relative to the problem at hand. We highlight just a few
criteria here:
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Specific relevancy: The data should be the most relevant data
possible to the specific problem at hand. For example, data
on the spread of COVID in children in Australia are rele-
vant to addressing COVID, but would not be the right data
to address the spread of COVID among the elderly in the US.

« Completeness: The data set should include all relevant vari-
ables and observations, minimizing any “dark data” [56] or
“ghost data” [57], that is, lurking variables or relevant data
that are hidden from the analyst. To consider this criterion,
the problem in need of a solution, the population of interest,
and the potential future use of any models generated must
be defined and clarified.

« Freedom from bias: Many types of biases can be hidden in
data; some intentional, some unintentional.

« Timeliness: As an obvious example, financial and economic
modeling are dependent on the timeframe of the data collec-
tion, relative to the potential use of models in the future.

Interestingly, when obtaining data from data.gov, Kag-
gle.com, the UC Irvine machine learning depository, or simi-
lar online sites, a full data pedigree that would allow evaluation
versus these criteria is rarely provided. It is virtually impossible
in most cases to determine if the data provided are, in fact, the
right data.

We feel strongly that for both the “data are right” and the “right
data” questions, SI has significant value to add.

6.6 | Summary

While AI has much to contribute to society, it is clear that to
date, the hype has exceeded the tangible successes. Further, the
discussions between Al researchers, data scientists, and statisti-
cians have too often been pejorative and competitive. We argue
that with greater cooperation across disciplines, the future of Al
can greatly exceed its current state. An important step is to recog-
nize that AT becomes much “smarter” when it incorporates other
types of intelligence, such as SI and BI. Along the same lines,
statisticians need to make a clearer case as to why they deserve
a “seat at the table” in AI development. Key points to empha-
size include the importance of focusing on the right data rather
than big data, and the benefits of a more holistic evaluation of
models, beyond train/test splits. While it is in the best interests of
statisticians to learn as much about machine learning and AI as
possible, we repeat that this should be accomplished without sac-
rificing expertise in core statistical principles, which only those
well-trained in statistics can provide.

7 | RonS. Kenett

Before presenting comments on the topic under discussion, I
would like to recognize the contribution of Applied Stochastic
Models in Business and Industry (ASMBI) to the scientific body of
knowledge on applied stochastic models in business and industry.
In their seminal book, Efron and Hastie discuss the development
of statistics since the 19th century using a simplex with nodes on
Application, Mathematics and Computations [58], page 448. The

path started on the Application corner in the 1900s, moved to the
Mathematics corner in the 1950s, and then shifted to the Com-
putation side with a crossroad in 1995 splitting into two paths,
one leading back to Applications. ASMBI helped the movement
towards that fork where stochastics are considered in the context
of business and industrial applications.

The advances in analytics under headings of artificial intel-
ligence (AI), machine learning (ML), or deep learning (DL)
have changed the approach to data analysis. Part of this change
followed the big data, sensor technology, and computational
capabilities advances. Kenett and Francq [59] review this evo-
lution and propose checklists to assess applied statistics studies.
This range of approaches puts varying roles to model-based prob-
ability methods and empirical data-driven model assessment.
In general, the complementary role of statistics, stochastics, and
Al deserves much discussion.? In assessing model performance,
one often uses cross-validation. Kenett et al. [60] discuss the
importance of accounting for the data generation process. They
propose an approach labeled befitting cross-validation (BCV) to
ensure that the validation approach is appropriate and permits
to generalize of the model findings.

BCV is particularly important in time series [61]. In the industrial
context, the data generation process is complex and describable
[62]. For examples of cybermanufacturing and digital twins see
[63, 64]. This presents a contrast between big data from contexts
such as social media to examples with physics-based models and
engineering considerations. It circumvents the role of stochastics.

We see a future in stochastic modeling in business and industry,
in combination with AI, ML, and DL methods. This brings up
the need to achieve an appropriate balance in specific situations.
A methodology for assessing the right balance between purely
data-driven empirical methods, physics-based models, and prob-
abilistic stochastic models requires further development. This is
necessary for the effective and robust achievement of data-driven
knowledge.

Another challenge associated with this forking path is to provide
the skills and experience necessary for professionals to meet this
balance. This requires substantial revisions in educational curric-
ula where statistics and data science method need to be merged
with physics and engineering. Part of this needs an emphasis
on software delivery platforms such as R, Python, JMP, and
MINITAB; see [64-66].

Finally, a topic of growing interest in industry and engineering
is the role of digital twins. This digital platform that accompa-
nies a physical system provides enhanced monitoring, diagnostic,
prognostic, and optimization capabilities. Such digital twins pro-
vide new opportunities for applied stochastics. Some references
are [67-69].

8 | WaiKeung Liand Philip L.H. Yu

Would stochastic modeling (SM) still be useful with the impres-
sive performance of machine learning (ML) methods? We think
that the answer lies in what questions you want to answer and
what sort of datasets you have. If your question is predicting the
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occurrence of a future event, which may be the future conditional
mean of a stochastic process and you have a large dataset with
many variables then ML methods may be a first choice. However,
in many investigations predictions may not be the only objective
and one would like to have more understanding of the underly-
ing data-generating process. It is true that all models may be only
approximations at best but a good one should be able to give us
insight into why the data are behaving in a certain way. In such
cases, classical stochastic modeling may provide more insights
into the data-generating mechanism, especially if the number of
observations is larger than the number of variables [70, 71]. Even
in the context of doing point predictions of future time series the
knowledge of the underlying probability model can provide many
insights into the interpretation cum quality of the prediction [72].
Considered a three-component mixture autoregressive model for
the first difference y, of the IBM stock price data from 1961 to 1962
with 369 observations [73]. From the modeling result (example 1
in [72]), one-step ahead predictive distributions for the IBM data
can be obtained easily. It was observed that the predictive dis-
tributions for different time points in the dataset would exhibit
distinct bimodality when the volatility of y, is high. In contrast,
unimodality was observed when the market was less volatile. In
other words, the market would have higher chances of a sharp
increase or decrease when volatility was high. In such a case a
point forecast of the future time series would not be informative
but knowledge of bimodality about the predictive distribution
and the fitted mixture model would be useful to the investigator
and risk manager.

Furthermore, in many applications, interest may not be in the
future estimate but in a set of estimates. In such cases, a stochas-
tic model would easily lend itself to provide the set of estimates
which may be in the form of an interval. Indeed, if a Bayesian
approach is adopted various predictive or tolerance intervals may
be obtained under different coverage criteria. Please refer to the
work by [74] for a classical and thorough discussion on statistical
prediction.

There is no doubt about the usefulness and potential of ML meth-
ods. However, traditional stochastic modeling would provide an
alternative even complementary view of the data that may be
beneficial to the investigators. In this connection [75], compares
forecast performances of the two approaches and finds that ML
methods do not differ dramatically from the stochastic, while
none of the methods under comparison dominates the other.
From a scientific point of view, both tools would be valuable to
an investigator who would like to seek a better understanding of
his/her problem.

9 | Jean-Michel Poggi

As an applied statistician in academia, I would like to highlight,
within the specific domain of time series forecasting in industry,
two common challenges where machine learning (ML) methods
are particularly promising, and one where stochastic modeling
remains valuable, especially from an applied point of view.

9.1 | Sequential Learning

Sequential aggregation of individual predictions explores the
principles of aggregating a group of experts and methods for
weighting and integrating these “experts” (see [76] and [77]). The
challenge is to predict y,, given past values up to the moment :
Y1 ---»¥,_1, using K experts whose only known information con-
sists of their immediate predictions of y, and the history of their
predictions. The idea is to optimally combine the predictions by
adjusting the weights at each step based on instantaneous losses
(e.g., quadratic). Observations and forecasts are made sequen-
tially, without any stochastic modeling. The theoretical goal is to
forecast almost as accurately as the best expert, but this expert is
an oracle, since it remains unidentified in real-time and can only
be determined at the end of the period (at time T').

Theoretical guarantees exist for several methods. Approaches
such as EWA (Exponential Weighted Average) result in a convex
combination of experts, ideal for mixing unbiased experts. Tech-
niques that optimize a global criterion based on the history of
measurements and expert predictions at each step, such as RR
(Ridge Regression type criterion), become particularly relevant
when the set of experts includes biased ones by relaxing the con-
vexity constraint.

As a result, sequential prediction allows multiple models con-
structed under very different assumptions to be mixed in a unified
and agnostic manner, as it does not require prior knowledge of
how each expert internally generates predictions.

9.1.1 | Agnostic Combination of Heterogeneous
Forecasts

The first example deals with heterogeneous experts to predict the
concentration for the next day. In [78] a dataset from April 2013
to March 2014, is considered, giving the measures in the mon-
itoring station of Normandy of the daily average concentration
of PM10 and the corresponding forecasts of the day for the day
after coming from 10 different prediction models. These models
comprise 6 statistical models developed regionally by national air
quality associations, 3 numerical models at varying spatial res-
olutions from meteorological agencies, and 1 classical baseline
model known as the persistence model. Even if we had some
information on the design ingredients for some of these mod-
els, we could not take this into account to combine the forecasts

properly.

Sequential prediction allows several models based on very dif-
ferent assumptions to be mixed in a unified approach, and sec-
ondly, it does not require any prior knowledge of the inter-
nal way in which each expert generates predictions. It is there-
fore particularly relevant for combining the outputs of mod-
els of different types (statistical models and physical-chemical
deterministic models). The sequential prediction strategy signif-
icantly improves the performance of the best expert, both in
terms of errors and alerts, and, for the non-convex weighting
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strategy, achieves the “unbiasedness” of the observed-predicted
scatterplot, which is extremely difficult to obtain with classical
methods.

In this example, we have a given set of experts corresponding to
the outputs of different models and sequential aggregation pro-
vides an agnostic way to optimally combine them.

9.1.2 | Multiscale Selection for Disaggregated
Forecasting

The second example is different and illustrates another aspect
related to the flexibility of ML models. Indeed, the strategy starts
with the generation of a large number of models, the experts,
and sequential aggregation is used to select the appropriate ones
and automatically reject the others. In the context of bottom-up
forecasting of electricity demand (see [79]), starting from the
consumption of individual customers, the problem is to fore-
cast the aggregate demand for the next day. The challenge is
to disaggregate the global signal in order to improve the fore-
casts. The idea is to find a hierarchical clustering that generates
groups of customers at different scales, predicts the demand of
the different groups, and combines them to get the best aggregate
forecast.

A solution involving the sequential aggregation of multiscale ran-
dom forest-based experts is provided in [80]. It considers N indi-
vidual customers and the problem is to disaggregate the global
signal to improve the forecast of global demand. The bottom-up
forecasting strategy consists of grouping individuals into clusters,
fitting forecasting models to each cluster, and aggregating the
forecasts to predict the total. The intuition is that the population
could be divided into sub-populations with different consump-
tion habits, requiring different models.

The approach is to build experts using random forests trained on
some subsets of customers, then normalize their predictions and
aggregate them using a convex expert aggregation algorithm to
predict system load. This leads to the automatic generation of a
large number of models from clusters at different scales using
random forests, a flexible non-parametric method introduced by
Breiman [81] that allows exogenous variables to be easily consid-
ered with only a small number of hyper-parameters to be tuned.
The final step is to combine these different model outputs to pro-
duce a forecast of aggregate demand at time .

Applying these ideas to the well-known Irish public dataset, the
new aggregation method is compared with two strategies for
building subsets of customers: Hierarchical clustering based on
survey data and/or load characteristics, and the baseline: Ran-
dom clustering strategy. We find that disaggregation leads to a
large gain (but no more than random) of about 25% in terms of
error.

Random forests provide useful predictors for all aggregation
scales, but also many irrelevant ones and crucial additional gains
are obtained thanks to the sequential combination of group
predictors.

9.1.3 | Finite Mixture of Regression Models
for Forecasting

On the contrary, I would like to highlight a situation where
stochastic modeling is still valuable, also from an applied perspec-
tive. The context of [82] deals with the massive amount of data
on individual electricity consumption provided by new metering
technologies and smart grids, for load profiling and load model-
ing at different scales of the electricity network.

A methodology based on a mixture of high-dimensional regres-
sion models is used to perform clustering of individual customers.
The theoretical framework is a finite mixture of regression
models to account for forecasting (the model selection step is
theoretically justified in [83]) combined with the partitioning of
the electrical signal into successive curves to consider it as func-
tional data. Focusing on the discovery of clusters corresponding
to different regression models, which could then be used directly
for profiling, but can also be useful for forecasting purposes,
the method is able to extract nice features from individual
consumption data with little information (2 days of individual
consumption) and no other prior.

The statistical approach allows a deeper analysis of the use of
the internal objects of the method from a practical perspective,
focusing not only on the results of the method but also on the
by-products of the method, providing visualization tools to under-
stand the estimates and facilitating interpretation.

10 | Marco Seabra Reis

10.1 | Introduction

The recent advances in Artificial Intelligence & Machine Learn-
ing (AI/ML) technology in the fields of image & video analysis
and natural language processing (NLP) have generated a plethora
of methods and tools, spiking the interest of the research commu-
nity to explore their application outside these domains, namely in
the process industry, which includes the chemical, food, biotech-
nological, semiconductor, and pharmaceutical sectors, among
others. This boost in analytical diversity has also increased the
difficulty of finding the best approach to apply in each situation,
as well as fully understanding the multiple underlying rationales
for applying each one of them. Moreover, there is a certain sub-
liminal message currently being passed that, sooner or later, mod-
ern/future AI methods will make classic statistical/ML methods
outdated. Therefore, a shadow of doubt is cast about the focus
given in the future to statistical and probabilistic foundations of
data analysis during the initial training of future professionals,
which may be reduced to accommodate the new AI methods.

Science evolves, and so does the way it is taught and applied. Data
analysis, in its broadest scope, is not an exception. The diversity
of areas interested in knowledge induction from all forms of data
is growing tremendously. More room should be given to learn
about the analytical methodologies available, but also when each
one of them is likely to bring value to the analysis and generate
information with higher quality [84, 85]. Therefore, in this short
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contribution, I will address different application scenarios from
the Process Industry and present the analytical solutions that
generate more information or meet more effectively their goals.

10.2 | Application Scenarios From the Process
Industry

10.2.1 | Quality by Design (Qbd)

The capability of designing new products or processes with a
high degree of confidence that they meet the target specifications
is a valuable resource for companies. Its importance and support-
ing methods have been developed by Juran and others [86] and
gained renewed attention and interest in the period of 2004-2008
with the publication of the ICH-Q8 guidelines and the FDA’s PAT
initiative in the scope of the highly regulated pharmaceutical
sector. Such guidelines put forward the concept of Design Space,
as the multidimensional combination and interaction of input
variables (e.g., material attributes) and process parameters that
have been demonstrated to provide assurance of quality [87]. The
Design Space is obtained after a risk assessment process where
the potential aspects with impact on Critical Quality Attributes
are identified and put to test, usually through a suitable Design
of Experiments (DOE) methodology. The data available in these
studies is scarce, but highly valuable, as well as all the pharma-
ceutical and engineering knowledge. Classical DOE methods,
regression modeling, and ANOVA analysis are among the ana-
lytical approaches most often adopted in QbD. The scarcity of
data and the interpretative limitations of Deep AI methods make
them not so suited for this activity, even though applications have
been found for fast screening of drugs and molecular discovery
[88, 89]. The use of historical data, especially for legacy products,
is also a possibility usually referred to as retrospective Quality
by Design, rQbD [90]. Furthermore, DOE methodologies have
been developed to handle new scenarios of QbD, such as copying
with multivariate responses [91, 92] and profiles/functional
responses [93], under a frequentist or Bayesian setting [94, 95].
Some AI/ML-driven approaches have also been suggested to be
applied for designing experiments, such as Bayesian Optimiza-
tion, Derivative Free Optimization, or Reinforcement Learning.
However, they tend to be less efficient when the number of
experiments to run is low, finding applications in fields where
budget restrictions are not so strong and assumptions about the
convexity of the surface response are harder to make (or it is
likely that the response surface has a complex shape), such as in
the analysis of computer experiments or robotics [96-99].

10.2.2 | Process Improvement by Variance Reduction

Process improvement by variance reduction is a common chal-
lenge across the industry. It involves exploring all potential
sources for injecting variance into the system, assessing their
impact, and developing mitigating solutions. This process typ-
ically has several stages, including analyzing measurement
systems, collecting data from different sources, suggesting new
sensors and data collecting systems, discussing intermediate
results with plant personnel, etc. Solutions may address the
removal of special causes (using statistical process monitoring
methods), a reduction of common causes (e.g., using feedback

process control), or both. In any case, the solution is not obtained
by submitting data to a modern AI method and, in a single pass,
obtaining the final outcome. Rather, it results from an interactive
data collection and analysis process, using mostly classical meth-
ods (rational sampling, variance components, regression analy-
sis, control charts, etc.), where the next step is decided depending
on the results obtained in the previous, until a suitable solution
is found. For example, the author’s team developed a variance
reduction solution for a major cork producer, following a system-
atic analysis process with multiple data analysis/experimentation
cycles. In the end, EWMA control charts were developed for mon-
itoring the innovations (incorporating the IMA behavior for the
disturbances), as well as to know the current estimate of the aver-
age level of the quality variable (cork stopper density) and the cur-
rent machine variation. The average level was then used to adjust
the process by feedback control, using a discrete control with inte-
gral action designed for optimally compensating a process with
an IMA disturbance. The pilot implementation of this monitoring
& feedback control strategy in the process for one month led to an
estimated decrease in the process variation (standard deviation)
from 45.4% to 67.7% in one type of raw material and from 47.3% to
54.3% in another type of raw material. Noting that this industrial
unit produces roughly 4,5 million cork stoppers per day, it is
possible to have a sense of the impact this reduction can have on
the quality of the process and business bottom-line results.

10.2.3 | Monitoring Large-Scale Assembling
Processes

Even when data abounds, variance management and reduction
may not be possible via modern AI tools. One reason is that,
despite all the data collected, common cause variation may not
be fully represented there, especially if some variation com-
ponents only change over larger time horizons (e.g., lot-to-lot
variation). One such case is reported in [100], regarding a Sur-
face Mount Technology (SMT) production line of Bosch Car
Multimedia, where more than 17 thousand product variables are
simultaneously monitored. The information available from the
earlier dozens of lots is not sufficient to develop control limits
for future operation, given the underrepresentation of certain
“normal” operational zones. However, the project team has
deep knowledge of the process and the factors inducing such
long-term variations. Such knowledge, including the plausible
statistical distribution of certain variation sources, was translated
into a Digital Twin of the process, which was used to realistically
emulate long-term variation, which finally allowed to establish
multivariate control limits that remain valid across future lots.
This solution relied on deep knowledge, rather than deep learn-
ing from a high volume of data available, to make up for the
underrepresented process variation. For more on this case study,
see [101, 102]. In summary, it is often the case in Process Indus-
try that the amount of data is not paralleled by the information
needed to address the analytical goal. Here, the information was
not sufficient to delimit the normal operation conditions, for
which expert knowledge was used. Another aspect where Al
frameworks face difficulties in process monitoring applications
regards fault diagnosis — the process of delimiting or even finding
the root cause of the abnormality, once a detection takes place.
This requires cause-effect reasoning, which is not embedded in
current Al models. In this regard, classical approaches can be
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integrated with process knowledge (as described above, or in
[103]) or even causal discovery and inference, providing more
effective solutions to this stage of analysis [104-108].

10.2.4 | Inferential Models From Process Data
(Process Soft Sensors)

The development of predictive models for relevant end-product
quality properties from data contained in large process histo-
rians, databases or data lakes, is an area where the number of
deep AI/ML applications found in the literature is increasing.
Such quality properties tend to be available less frequently due
to the nature of the associated measurement systems, which
are usually obtained offline, with significant delays, involving
complex, expensive, and time-consuming experimental pro-
tocols [109-111]. Given their importance, such variables are
often the target for process supervision, monitoring, control, and
optimization, for which more frequent estimates are required.
Soft sensors are inferential models developed to achieve this
goal, bringing other associated benefits, such as a reduction
of the inspection overhead, improvements in the consistency
of the final product quality, and in process efficiency, among
others [109, 112-115]. As they are based on process data, they
are also referred to process soft sensors. Many such models have
been developed for continuous [116-118] and batch processes
[119-124]. Applications include the prediction of compositions
from the outgoing streams in distillation columns [125], the
prediction of the Research Octane Number (RON) in indus-
trial catalytic reforming units [116, 126], the estimation of the
product’s quality in batch polymerization processes [127], the
estimation of cement properties [128]; and the prediction of NO,
and CO, emissions in industrial boilers [129] and commercial
ships [130]. Despite the large number of applications, certain
features of industrial data are, however, sometimes overlooked
and should be kept in mind when developing process soft sen-
sors, as they limit the range of applications of these models and
provide clues on the type of predictive frameworks to use. The
following list summarizes some relevant ones, according to our
experience:

« Data collected span narrow operational regions. Processes
are designed to operate around set points (or trajectories
in the case of batch processes), with minimum varia-
tion. Therefore, the dynamic excitation is small, and the
information available for effectively learning the relevant
relationships is scarce. This limits the quality of the models
estimated. Additionally, some variables remain “silent”, that
is, not frequently manipulated, and their influence cannot
be assessed or reliably inferred.

» The narrow operational regions have another consequence.
According to the Taylor series expansion, even when the
process is non-linear, the linear part dominates in the neigh-
borhood of the reference point, namely of the process set
point. Therefore, it is often the case that linear methods
perform as well, or even better than the non-linear ones
(especially those methods that handle well features like
collinearity, sparsity, and uncertainty [111, 131-135]), and
is not expected that deep Al models bring much added-value
in such low-excitation, information-poor settings.

» As data is collected in a passive way (observational data),
process soft sensors are, in general, acausal, and therefore
should not be used for process control and optimization, but
only for prediction of the target variables under normal oper-
ating conditions. This misuse of process soft sensors is some-
times seen or implied in applications and should be avoided.

« Certain process features, such as long-term degradation pat-
terns, are known to exist and must be addressed during the
modeling stage. One may argue that with enough data, deep
learning methods can apply to their feature extraction capa-
bilities and be able to figure out the long-term degradation
trend and include it tacitly in a deep model. For instance, in
a different context, the deep convolutional neural network
VGG-16 was able to successfully classify objects from 1,000
categories using a training dataset composed of 1.3 million
images (it won the ImageNet Large-Scale Visual Recogni-
tion Challenge, ILSVRC). This approximately 1000:1 ratio
for a number of instances, class, could be translated, with
the due adaptation, to roughly 1,000 degradation patterns
being necessary for achieving a similar performance. How-
ever, if each degradation cycle runs for 2 years, as happens
with catalyst deactivation in certain industrial chemical pro-
cesses, this would require approximately 2,000 years of unin-
terrupted operation data. This is obviously impossible, but
using expert knowledge and engineering principles, together
with stochastic modeling, a solution can still be found.

10.2.5 | Image-Based Classification

Among the areas of application of modern AI where major
achievements have been reported, one can find those related to
image analysis and classification. These areas are also among the
first successful applications of deep learning methods, just before
the emergence of the generative large natural language process-
ing models that have been attracting much attention recently.
Deep learning models are composed of millions of adjustable
parameters, requiring equally large databases for their learning
with diverse instances spanning all relevant aspects to the pre-
diction task. This richness of the training dataset is crucial for
estimating the huge number of parameters of the network (a sta-
ble learning method is also very important and has motivated the
development of a variety of stochastic gradient descent methods).
From what was stated in the previous paragraphs, it is not likely
that process data, including images, can be collected in such large
amounts and variety, for adopting a deep learning neural net-
work in a classification problem. However, image classification
problems may benefit from information extracted elsewhere if
it can be assumed that it contains relevant information. We call
this property, knowledge transferability. Using a human analogy,
humans learn to identify persons, animals, surrounding objects,
etc., and are able to transfer such knowledge to identify shapes,
classes, and even functions of objects they have never seen or
worked with. In the same way, it often happens that artificial
neural network models developed to perform certain image clas-
sification tasks can be useful to address others, if the knowledge
gathered earlier is updated and relevant for the new activity. One
example from the process industry can be found in [136], where a
pre-trained deep learning model, with more than 130M of param-
eters was adapted (through transfer learning) to a different task,
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using only 2,961 images for training and 1777 for validation, and
improved the prediction performance under independence test-
ing conditions (the test set was composed of 1,185 images). This
was only possible because of the plausibility of transferability con-
ditions, which makes the effective training sample size much
larger than the available image set when a pre-trained network
can be used.

10.3 | Discussion and Conclusions

From the situations described above, spanning different
application scenarios in the process industry, some guidelines
can be extracted (whose validity is not claimed to be universal) on
the use of classical data-driven methods versus modern AI/ML
approaches, which can be summarized as follows:

Use stochastic modeling and classical data-driven approaches
when/for:

 Quality by Design activities;

« Complex process improvement problems (with multiple
stages with conditional decisions);

« An intense and iterative interaction with the process is nec-
essary to develop the solution;

» Unstructured variation is an important part of the problem
definition, analysis, and solution strategy;

« Exploiting tacit/expert knowledge is required or recom-
mended;

« Data sets available are small and regard different aspects of
the problem;

« Data have low operational variation;
« Presence of long-term degradation behavior;

« Transferability conditions are not met.
Use deep Al approaches when/for:

« Simple, well-defined, repetitive problems;
« Closed solution spaces (even though they can be large);

« Unstructured variation is not an important part of the
problem definition, analysis, and solution strategy;

+ Analysis tasks can be defined a priori and programmed;

» No interaction with the process is required. All the relevant
information lies in the collected data;

« Data sets available are large and rich (representative of the
different aspects of the problem);

 There are no major non-stationary components.

« Transferability conditions are met.

11 | Fabrizio Ruggeri

I grew up in a scientific world where I was used to thinking
about the properties of the system I was interested in and then

looking for an appropriate model among the many developed
in literature and using it, with possible adaptations. Years ago,
I was interested in modeling gas escapes in a city network with
the aim of suggesting a replacement policy starting from the
pipelines most subject to gas escapes. These pipelines differ in
many ways, such as materials and installation conditions. We
considered the gas escapes as rare (and countable) events, and
we thought of using a Poisson process to model them. The first
issue was about the aging of the pipelines: The experts told us
that the cast iron pipelines were not subject to corrosion, while
steel ones were. We translated such information into homoge-
neous (HPP) and non-homogeneous (NHPP) Poisson processes,
respectively. (see [137] and [138] respectively). We faced many
practical problems, typical in a statistical analysis. We had to deal
with bad quality data since six gas escapes, out of 30 in 6 years,
occurred in different parts of the city and were recorded in a 24 h
period in which nothing significant, such as an earthquake, had
occurred. We considered whether there were differences between
steel pipelines installed in different years, since we had to split
them by the installation time (we chose years), and their age at
escape matters more than calendar time. We had to model the gas
escapes considering different cases, thinking if they had the same,
completely different, or similar behavior. We translated that, in
a Bayesian framework, in performing a unique analysis with a
common parameter for all the years, a separate analysis with
different parameters for all years, or a hierarchical model with
different parameters coming from the same distribution, respec-
tively. To get a better model, we had even to resort to Bayesian
non-parametric, namely Gamma processes as conjugate prior for
the mean value function of a Poisson process [139]. We also had
to propose a new intensity function for an NHPP [140] when fore-
casting the reliability of train doors before warrant expiration to
help the transportation company decide if the doors were reli-
able as stipulated in the contract with the manufacturer. We had
to deal with seasonality and different time scales (calendar and
kilometers traveled). In both examples, gas escapes and the fail-
ure of train doors, we built models that were “explaining” what
was going on. I am confident that, without “traditional” stochas-
tic models like those in the cited papers, someone could train a
Deep Neural Network which will make, for example, predictions
on future failures of the train doors. But what about the explain-
ability of the results and our conclusions, which led us to identify
the worst combination of installation conditions citecagno and
the effect of different causes on the failure of train doors [141]?
Here, we have a limited number of data and parameters, so it
might be difficult to think of reliable training and testing data (but
this might be the biased opinion of a statistician!)

These are the thoughts, combined with my experience as
Editor-in-Chief of ASMBI for 17 years and participant in many
conferences in business and industrial statistics, which led me to
ask many researchers the question which is the title of this paper.

I am a mathematical statistician and as such I love working on
“traditional” stochastic processes [142] as well as more funda-
mental aspects, such as Bayesian robustness, but I think it is
appropriate for statisticians to take up the challenge and see if
cooperation between our field and Machine Learning and Arti-
ficial Intelligence can be fruitful. This is already happening, not
only because many people work at the interface of those fields,
but also because it is not always clear when one begins and the
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other ends! I am making some comments on possible and actual
collaboration, which are part of my recent or planned research.
The first one concerns the choice of priors in a Bayesian frame-
work. Everyone who has tried to get a prior from experts is aware
of the shortcomings of the process [143], sometimes related to the
use of questionable methods, such as the Analytic Hierarchy Pro-
cess [144] that uses qualitative judgments to obtain probabilities,
asin [137].

Problems in the Big Data era involve so many parameters that
it is impossible for a human to derive appropriate priors on
all of them. However, a Bayesian approach is still used, with
non-informative priors, for several reasons, such as the relative
ease of making predictions. My research question here is whether
it is possible (positive opinion, at least after proper training of the
algorithms) and useful (very uncertain about it!) to try to obtain
prior distributions using, for example, ChatGPT. The move
away from “traditional” stochastic models is sometimes moti-
vated by the greatly increased complexity of the problems being
addressed which involve a huge number of parameters. Compu-
tational methods have been developed, and deep neural networks
are just one example among many. I wonder whether it is not
possible to consider, in some situations, (dynamic) Bayesian
networks (BNs) that can split a complex problem into a simpler,
but not simple, one, preserving the interpretability of the results.
There are many computational challenges, also due to the need
to propagate the acquired evidence, but there are some works
that try to reduce this burden. Clustering has been proposed as
a method to improve computational efficiency and/or improve
model learning. One of the main motivating contexts for BN
cluster mapping is complex systems, characterized by multiple
interacting components and by emergent and complex behavior
under uncertainty [145]. In a recent paper [146], we propose a
new algorithm, DCMAP, that also exploits the notion of layers,
that is, nodes that have the same maximum distance from the
BN leaves. The algorithm, given an arbitrarily defined positive
cost function (based on the number and type of operations),
iteratively and rapidly finds near-optimal, hence optimal, cluster
mappings. DCMP is applied in a case study based on a DBN of
a seagrass ecosystem [147]. Seagrass ecosystems are a critical
primary habitat for fish and many endangered species such as
the dugong and green turtle, impacted by human activities such
as dredging and interactions between biological, ecological, and
environmental factors. The complexity of the system is also due
to its inhomogeneity, caused by the switch between loss and
recovery regimes. As a result, the DBN itself is complex and
computationally intensive and inference is unfeasible within
an MCMC framework. DCMAP was applied at 25 nodes, when
considering only one time epoch and 50 nodes when considering
two epochs, showing a clear improvement over previously used
methods. Open questions concern the scalability of methods like
this and the possible range of applications.

The final comments concern Adversarial Risk Analysis (ARA),
a relatively new field that overcomes the practical limitations
of game-theoretic approaches that require shared knowledge of
preferences and beliefs (utilities and probabilities, respectively)
by the agents involved (see [148] for more details on ARA). Here
I focus my discussion on classifiers and their protection from
attackers (STS and IJAR). Recently, an increasing number of pro-
cesses are being automated using classification algorithms [149].

They need to be robust and protected from possible attacks in
order to trust key operations based on their output. Security
can be an issue in classification due to the presence of adver-
saries ready to modify the data to gain an advantage, influencing
training and operations. These are aspects considered within the
emerging field of Adversarial Machine Learning (AML) [150].
I refer to [151] and [152] for an in-depth explanation of the
approach, but here Iwould like to mention that this is an example
of integrating ML and statistical approaches, namely Bayesian.
The Bayesian decision-theoretic approach is used to model beliefs
and preferences, considering both the defender and the attacker
as maximizers of expected utility. The defender knows his/her
utility and probability, but makes assumptions about those of the
attacker as random utilities and random probabilities. By find-
ing the optimal decision of the attacker for each realization of
the random utilities and probabilities, the defender can find the
distribution of optimal attacks and use it to find his/her optimal
decision.

I apologize for the many self-citations, but my contribution is
mainly based on my own research and how the new “era” is influ-
encing my work.

12 | Gilbert Saporta

If by stochastic modeling we are referring to generative models as
described by L. Breiman [153], I am more from the “data-driven”
culture where models are based on data. But which models are
we talking about? As George Box (1987) wrote: Essentially, all
models are wrong, but some are useful; there is no true model. For
a long time, we were content with explicit models that could be
represented by equations or rules, within the reach of anyone
with a sufficiently high academic level. The models became
more complex, and statistical learning theory validated the idea
that we could predict without understanding [154]. According
to L. Bottou [155], V. Vapnik [156] stated that Better models
are sometimes obtained by deliberately avoiding to reproduce
the true mechanisms. After all, we can use a car or a television
without knowing its inner workings. There have been numerous
successes in many areas of business and industrial statistics,
such as fraud detection and purchasing recommendations. The
famous economist H. Varian (also chief economist at Google)
encouraged his fellow econometricians to take an interest in
Machine Learning methods [157].

Let’s take a classic example: Credit scoring. Logistic regression is
considered by some to be a stochastic model because it produces
individual or collective probabilities of default. But this is an
abuse of the term, as it is very difficult to define a generative
model of default. It is therefore an empirical approach. If this
method has become the industry standard, it is thanks to the sim-
plicity of its formulation, which also makes it possible to comply
with regulatory requirements, in Europe at least. Numerous
attempts to use more complex models have not led to significant
progress [158].

The last two decades have seen both the deluge of data (Big Data)
and the development of black-box models using thousands, if
not millions, of parameters and highly sophisticated non-linear
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architectures (Deep Learning). We even forget that Vapnik’s
theory of learning was a modern theory of parsimony!

The success of advanced Machine Learning methods in areas
such as image and face recognition is spectacular, although there
are a few shortcomings in terms of robustness, where the modi-
fication of a single pixel can dramatically change the prediction
[159], but the intelligibility of the models was hardly questioned
until recently.

The emergence of whistleblowing literature [160] motivated by
unethical applications in automatic decisions concerning indi-
viduals, such as recruitment assistance, predictive justice and
facial recognition, changed the situation.

On the one hand, there are attempts to make the algorithms
explainable: This is the XAI, with methods that seek to open
the black box, as it were, with new measures of variable impor-
tance, or the use of surrogate models to explain a decision using
trees or local linear models. On the other hand, some researchers
like Cynthia Rudin [161] are calling for black boxes to be aban-
doned in favor of simple models. It should be noted that works on
features importance in ML, with Shapley measures for example,
have renewed the classic problems [162] which already showed
that even simple models are not so easy to interpret.

As well as being transparent, algorithms need to be fair and
non-discriminatory when applied to human groups. Algorithmic
fairness is a major area of development in computer science [163],
but one in which statisticians are not yet very involved.

Transparency or explicability is not enough: If a model is not
causal, which is in line with a definition of stochastic model-
ing, and is based solely on correlations, it can lead to erroneous
conclusions. Big names in Machine Learning such as L. Bottou
already quoted and B. Scholkopf [164] have established links with
J.Pearl’s theory of causality.

To conclude, I do not see any antagonism between statistical
modeling and Machine Learning, which in some respects is its
21st-century version, just as the emergence of computer science
led to the development of multivariate statistics in the second
half of the 20th century. Machine Learning has enriched the
statistician’s toolbox and, above all, has provided him with the
fundamental concept of generalization and the need to go beyond
simply fitting a model on the basis of training data alone. As early
as 1941, Paul Horst et al. [165] wrote that the usefulness of a pre-
diction procedure is not established when it is found to predict ade-
quately on the original sample; the necessary next step must be its
application to at least a second group. Only if it predicts adequately
on subsequent samples can the value of the procedure be regarded
as established, but his lesson had been lost for a long time!

For their part, statisticians can provide Machine Learning prac-
titioners with their knowledge of biases, their sense of data
(missing, aberrant, etc.), and their culture to avoid reinventing
techniques such as categorical data encoding [166] or principal
component analysis! But statisticians must not be afraid to enter
this new field, otherwise, they will be marginalized.

13 | Piercesare Secchi

Let me begin my contribution with two quotations. The first one
is from Chris Anderson [167]:

We can stop looking for models. We can analyze the
data without hypotheses about what it might show.
We can throw the numbers into the biggest comput-
ing clusters the world has ever seen and let statistical
algorithms find patterns where science cannot.

In the same Wired’s article, Anderson attributes to Peter Norvig,
a well-known American computer scientist who was director
of research at Google, the revision of George Box’s famous
aphorism— “all models are wrong, but some are useful” —into:
“All models are wrong, and increasingly you can succeed with-
out them”. Peter Norvig [168] disavowed it, but the quote remains
indicative of a mainstream belief.

In fact, Anderson focuses on prediction and finds his captivat-
ing conclusions on the observation that good predictions could
be generated by algorithmic black boxes trained on massive
amounts of data, those black boxes that today we consider the
products of Machine Learning and Artificial Intelligence. My sec-
ond quotation is from Carlo Rovelli [169], translated from Italian
by me; it reminds us that a scientific model does not have as sole
purpose that of making predictions:

The goal of science is not to make predictions. It is also
offering an image of reality, a conceptual framework
for thinking about things. This ambition has made sci-
entific thinking effective. If the goal of science were
only predictions, Copernicus would not have discov-
ered anything compared to Ptolemy: His astronomical
predictions were no better than Ptolemy’s. But Coper-
nicus found a key to rethink everything and under-
stand better.*

In [170] we pointed out that a model is not a magic box; rather, it
serves as a powerful tool that enhances the capabilities of human
knowledge. Its true value lies in its capacity to increase and refine
our understanding of complex systems. This expansion occurs
when the model represents the interactions and dependencies
among the variable entities identified by stakeholders and data
scientists as essential for describing the system under inves-
tigation. By effectively capturing these relationships, a model
becomes a conduit for informed decision-making. It empow-
ers stakeholders to make sense of intricate data landscapes by
allowing them to manipulate independent input variables and
observe their effects on the system’s behavior. Furthermore,
a model offers a platform for experimentation and scenario
analysis, enabling stakeholders to simulate various conditions
and explore potential outcomes. A model, that conforms to the
data for representing a phenomenon in which variability is a
constitutive element, must be open to quantifying uncertainty.
This uncertainty arises from the variability of the observed phe-
nomenon, from the imprecision of the formal and computational
representation, from the error in predictions, and from the effects
of actions taken based on plausible scenarios. In essence, a model
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serves as a tool for understanding complex systems, facilitating
decision-making, and exploring potential outcomes under differ-
ent conditions. It embodies a balance, driven by data but ruled by
the data scientist, between simplification and fidelity to reality,
while acknowledging and quantifying the inherent uncertainty
in the represented phenomenon.

Traditionally in Statistics, the model represents in an idealized
mathematical form the data generating process. However, I will
here argue that when dealing with complex data we should
expand the notion of the model to include also the problem of
data representation. Hence I will take the side with the data mod-
eling culture [153] when it comes to representing the atoms of the
statistical analysis, although sympathizing with the algorithmic
modeling culture when it comes to their analysis, especially when
the analysis is conducted in mathematical spaces distant from the
standard finite-dimensional Euclidean ones, the realm of clas-
sical multivariate Statistics. To uphold my position, I'll leverage
different personal experiences in real-world data analysis, where
I contend that statistical data modeling lato sensu holds greater
relevance than machine learning algorithms aimed solely at pro-
ducing accurate predictions.

The emergence of new digital devices and systems capable of
gathering data with fine temporal and spatial granularity—for
example, medical imaging, mobile devices generating every
few time instants data tracking individual positions, remote
sensing data for environmental monitoring, automatic people
counting data recovered by systems installed on vehicles of
public transportation networks, 3D meshes obtained by x-ray
computed tomography in additive manufacturing, data from
sensors recording displacements and accelerations of large civil
infrastructures, digital administrative data recorded by public
administrations, ... —has created a demand for innovative data
analytics models and algorithms beyond those traditionally
developed in multivariate Statistics. Object Oriented Data Analy-
sis (OODA), introduced by Wang and Marron [171] (see also the
recent book by Marron and Dryden [172]), is a branch of Statistics
specializing in the interdisciplinary analysis of complex data. It
is my belief that at the core of OODA is the modeling problem of
representation wherein each raw datum—an object like a curve,
an image, a network—is transformed through a reduction by
sufficiency into an atom embedded in a mathematical space. This
space must be suitable for the representation of the information
carried by each datum and deemed relevant for the application,
and must have enough mathematical structure to allow for the
statistical analysis aimed at the understanding of the data’s
relevant variability. I am here referring to a notion of sufficiency
that does not immediately fit the traditional Fisherian definition
derived from a preceding assumption on the statistical model
generating the data. Indeed, this reduction by sufficiency is not
an agnostic process, but it is strongly driven by a prior knowledge
of the phenomenon under study, explicitly or implicitly informed
by a model founded on science (physics, chemistry, economics,
medicine...) or on experience, which is however impractical to
capture as a formal probabilistic model generating the data.

The Aneurisk65° data set [173] stands for a paradigmatic
example. The AneuRisk Project, supported by Fondazione
Politecnico di Milano and Siemens Medical Solutions Italia, was
devoted to the study of cerebral aneurysms, investigating the role

of vessel morphology on aneurysms pathogenesis, via the effects
that the morphology has on the blood fluid dynamics within
the vessel. The AneuRisk65 data set collects 65 bivariate smooth
functions providing, as a function of the arc length of the vessel
centerline, the local radius and the curvature of the internal
carotid artery of 65 subjects; these are the atoms providing the
sufficient representation for the statistical analysis. In fact, the
original raw data were 65 collections of 100 B/W Xray-scans
taken from 100 different angular perspectives of each subject
head. For each subject, a B/W 3D-array was obtained; in this
representation, the gray level of each voxel was related to the
amount of flowing blood in that part of the head. Then, vessel
surfaces were identified together with their centerlines [174];
finally smooth radius and curvature functions were estimated
[175, 176] for all vessels, generating the final representation of
the original raw data. This final representation was considered
sufficient for the statistical analysis, because the theory of fluid
dynamics in curved vessels posits that they are governed locally
by a parameter known as the Dean number. This number is
calculated based on factors related to the physical properties
of the blood, such as viscosity, density, and velocity, as well
as factors concerning the vessel’s geometry, and in particular
the local radius and curvature. This example illustrates how a
Physics-based model drives each and every step of the complex
pipeline which generates the representation of the atoms of the
statistical analysis. Moreover, when exploring the variability
of these functional data one is immediately confronted with
the problem of their alignment, that is decoupling their phase
variability—which, for this specific study, is ancillary—from
their amplitude variability. A further reduction by sufficiency
could indeed be reached with the tools of algebraic topology
by representing these functions as merge trees [177]. A merge
tree representation is in fact invariant under homeomorphic
re-parametrizations of the arc length argument of the radius and
curvature functions, thus allowing for a statistical analysis that is
indifferent to their misalignment. Merge trees can be embedded
in a metric space; non-parametric algorithms for supervised clas-
sification, even those developed by Machine Learning, can then
be used for the construction of an accurate classifier of patients.

Analogous problems of representation emerge in additive manu-
facturing (AM), a new industrial production method that makes
available novel types of complex shapes that go beyond tradition-
ally manufactured geometries and 2.5D free-form surfaces. New
challenges must be faced to characterize, model, and monitor the
variability of such complex shapes. In [178] we analyzed the devi-
ations between a set of measured shapes generated by polymer
fused deposition modeling (FDM) and their nominal model. Tra-
ditionally the reconstructed geometry of an AM object is obtained
via an x-ray computed tomography which generates a 3D mesh.
This is compared with the nominal geometry of the object rep-
resented by the 3D mesh of the originating model. Since there
is no one-to-one correspondence between the points in the two
meshes, the deviations of points in the reconstructed geometry
from the nominal do not coincide with the deviations of points
in the nominal geometry from the reconstructed one. Hence, as
a first step in reduction by sufficiency, we introduced two direc-
tional deviation maps, defined consistently with the Hausdorff
distance between the reconstructed mesh and the nominal one.
As a second step of reduction by sufficiency, we summarized
these two deviation maps by means of the probability density
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functions (PDFs) of their logarithms. Indeed, we were driven to
this reduction by the prior experiential knowledge that anoma-
lies in FDM are often generated by a local excess of material or by
a local lack of it; hence the right tail of the PDF of the deviation
map of the reconstructed geometry from the nominal might iden-
tify large anomalous deviations likely generated by a localized
excess of material, while the right tail of the PDF of the deviation
map of the nominal geometry from the reconstructed might high-
light anomalies generated by a lack of material, for example, the
absence of a strut in a trabecular geometry. Therefore, each raw
datum —the 3D reconstructed mesh capturing the shape of the
manufactured object—is now represented by a couple of PDFs
summarizing the distribution of its local deviations from its nom-
inal model. These PDFs are then embedded in a Bayes Hilbert
space [179] where a further dimensional reduction can be car-
ried out by means of Simplicial Functional Principal Component
Analysis [180]. Profile monitoring of geometrical discrepancies
can then be carried out based on Hotelling 7% and Q statistics of
the principal components scores [181].

When spatial dependence is the significant issue, Object Ori-
ented Spatial Statistics (02S2), as outlined in [182], offers a
conceptual framework to address the novel challenges brought
about by the geo-data revolution, leveraging a potent combina-
tion of geometric and topological approaches for the analysis. The
main problem is here that of understanding spatial dependence
through a model that allows for interpretability and also for pre-
diction, for instance in sites where the stochastic field generating
the data has not been observed. For example, in [183] we used
0282 ideas to spatially predict the probability density function of
dissolved oxygen in water—treated as an atomic datum embed-
ded in a Bayes Hilbert space [179]—in each site of the Chesa-
peake Bay, the largest, most productive and biologically diverse
estuary in North America, handling both the data and the domain
complexity. In this case study, stationarity of the stochastic spatial
field generating the distributional data is not a viable assumption,
and yet through the localization of the Kriging model, suitably
extended for the prediction of constrained functional data, we can
estimate in each location of the Bay the probability that dissolved
oxygen is below any given threshold, thus allowing for the identi-
fication of Dead Zones. Moreover, by extending the Kriging model
to treat covariance data—which belong to the Riemannian man-
ifold of positive definite matrices, a metric space without a vec-
torial structure—and by localizing it, in [184] we described the
spatial dependence and variability of the covariance structure
between surface temperature and dissolved oxygen, thus offer-
ing a first interpretable insight on the spatial variability of the
joint distribution of these two important environmental descrip-
tors. Spatially localizing the Kriging model takes care of the com-
plexity of the spatial domain, characterized by the presence of
holes and non-convexities, and also allows for the linearization
of the manifold data. When the target variable is a real number,
a different approach for dealing with the complexities of textured
domains is that offered by Spatial Regression with Partial Dif-
ferential Equation (SR-PDE), whose roots are in [185, 186]. This
approach considers semiparametric regression models for spa-
tial smoothing which implicitly capture the spatial dependence
of the field generating the data by controlling the regularity of
a deterministic term in the model which accounts for the spa-
tial effects. The regression model is estimated by minimizing a

penalized sum-of-squares-error where the penalization embod-
ies prior knowledge of the phenomenon; for instance, it might
penalize the misfit with respect to the solution of a set of differen-
tial equations which are believed to govern the system generating
the data, atleast in an ideal situation [187]. Furthermore, SR-PDE
has the capability to adhere to particular conditions set at the
boundaries of the spatial domain, a crucial aspect in numerous
applications for acquiring significant estimates.

The personal experiences mentioned earlier were driven by
real-world data analysis challenges relevant to industry or sci-
ence. These challenges were addressed using a model-driven
approach, although the model may not always capture the
stochastic process behind the data generation. Nonetheless, these
analyses provide a depiction of the phenomenon being studied
that allows for interpretation and informed decision-making.

14 | Rituparna Sen

At this time, when machine learning(ML) and artificial intelli-
gence have become very popular, it is necessary to introspect and
answer this question. There is an obvious need to justify the con-
tinuation of pushing research in stochastic modeling. As a side
effect, we expect to identify areas where machine learning meth-
ods need to be developed, if possible.

The main advantage of ML methods is in prediction tasks. This is
most common in regression, clustering, classification, and time
series or spatial forecasting settings. The set-up is that we have
several examples to learn from and then we need to predict for
other test cases. While this is a very important and common
problem, stochastic analysis has a much broader scope. We dis-
cuss this in what follows.

Stochastic modeling starts with data collection. According to
Ronald Fisher, the founder of modern statistics, “To call in the
statistician after the experiment is done may be no more than ask-
ing him to perform a postmortem examination: He may be able to
say what the experiment died of.” [188] This statement remains
true even today. The principles of randomization, replication, and
blocking need to be taken into account for any designed experi-
ment. For sample surveys, it is extremely important to ensure that
common sources of bias, like selection, response, non-response,
etc, donot creep in. Given the particular scenario, stochastic mod-
eling provides us with a guiding principle on data collection for
the most efficient utilization of resources geared towards answer-
ing the business and industry question at hand.

The set-up of statistical inference is somewhat different from pre-
diction, see [189] for elaboration on this. For practical purposes in
business and industry, the goal is often to predict. Even in those
cases several limitations and discrepancies exist, as explained in
[190]. But in a lot of situations, where randomness appears natu-
rally, stochastic modeling is essential to understand a process and
its dynamics.

Statistical inference consists of estimation and hypothesis test-
ing. Some estimation problems remain challenging even today,
in areas like high-dimensional or functional data, particularly
when data are observed with noise and with missingness. In
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high-frequency finance, estimation of even variances and covari-
ances remain challenging due to microstructure noise and asyn-
chronicity. A recent work in this area is [191]. It is necessary to
estimate these quantities for risk management and optimization
of investment portfolios.

Similarly, in the hypothesis testing situation, there is a need
for stochastic modeling. A natural question to ask is whether
there has been a shift in the returns and volatilities of stock
prices due to covid lockdown. One has data on returns pre and
post-lock-down. The stochastic modeling way of comparing these
will be to assume that these returns are random samples from two
populations, and subsequently to compare the population means
or variances. Without such a structure, it is unclear how the two
groups of numbers can be compared and how to conclude if the
difference between them is large enough to indicate a shift or not.
An interesting recent paper on hypothesis testing is [192]. Here
we are interested in testing if there is a trend in the distribution
of recurrence times and not predicting individual recurrences, so
stochastic modeling is unavoidable.

Even in the regression set-up, in several areas, it remains impor-
tant to estimate the parameters in the population and not predict
individual observations. The interpretation of the regression
slope f is essential in many applications. For example, how
macroeconomic variables like GDP and interest rates affect the
corporate probability of default. This is an important quantity
for regulatory purposes as it measures how much risk a bank
is taking overall. A machine learning algorithm will be useful
in identifying which customers are more liable to default. But
when the interest is in the overall probability of default, which
is a population parameter, concepts of population and stochastic
modeling naturally need to be taken into account.

Next, we focus on the area of estimation of a probability dis-
tribution. This could be density estimation, survival function
estimation, or estimation of quantiles. Each of these has impor-
tant practical applications. Quantile estimation is an important
problem in financial risk management, see [193] for an interest-
ing recent application. Stochastic analysis is inherent in these
areas as the basic premise is built on the existence of a probability
distribution. The whole topic of survival analysis has been devel-
oped to handle censored and truncated observations efficiently.
Without stochastic modeling, such topics will remain completely
out of reach.

15 | Ansgar Steland

The recent years have seen an unprecedented uprise of machine
learning and artificial intelligence not even been foreseen by lead-
ing computer scientists like Geoffrey Hinton, who laid impor-
tant foundations for the current approach behind large language
models.

The question arises as to what role stochastic modeling and
statistical analysis can play in an era of Al tools and Al agents.
One can distinguish between specialized machine learning
approaches competing with stochastic methods, for example,
prediction using deep neural networks versus parametric
or non-parametric regression models employing statistical

methods, and AT systems, which automatically plan, design, and
model a statistical problem, and then analyze real data on the fly,
versus traditional computer-aided and Al-supported modeling
and analysis done by a trained human analyst.

15.1 | The Role of Statistics, Probability,
and Modeling in AI

In [194] alarge author collective provided an extensive discussion
of the history of machine learning and its interplay with statis-
tics, of the notions of weak and strong artificial intelligence, and
of the role of statistics. Although written in the pre-GPT3 era and
thus almost exclusively dealing with the first question, the main
findings and conclusions still hold. Essentially, it is argued that
statistics has contributed a lot to the development of ML and AI
and is still doing so. Indeed, recognizing the importance of formu-
lating the problem of learning from data as the problem to infer
the underlying data-generating process from a random sample or
time series was and is fundamental for a deeper understanding
of machine learning methods. In [194] it is further argued that
statistics provides a more advanced and complete general frame-
work for data analysis and is highly relevant for any AI devel-
opment. Al applications often neglect issues such as data quality,
evaluation of uncertainty, interpretability, causality, model stabil-
ity, and reproducibility, or issues such as confounding. Although
these issues are also discussed in the ML community, sometimes
from a different perspective and using other notions, there is a
well-established expertise in statistics about theoretical questions
and practical solutions. This is so despite the widely accepted
fact that there are various areas where machine learning methods
are state of the art. This certainly applies to problems genuinely
dealing with large-scale data such as image classification, which
require enormous computational resources and are therefore
almost exclusively researched by computer scientists. However,
for other tasks where small to moderately large samples are suffi-
cient, the situation can be different. For example, in an extensive
study [195], compared 179 classifiers over 121 (non-large-scale)
data sets from the UCI machine learning classification database.
It was found that parallel random forest, a method mainly devel-
oped by the statistician Leo Breiman, see [81], performs best, fol-
lowed by support vector machines, both outperforming extreme
learning networks (i.e., networks with random weights of the
hidden layers, thus optimizing only the output layer by ridge
regression) and multi-layer perceptrons. However, when it comes
to problems where no training data is available at the design
phase or where relatively small amounts of data need to be ana-
lyzed, stochastic modeling and statistics still shine. Contrary, typ-
ically, ML methods are non-superior in such settings, as they are
designed for large-scale data. There is also an increasing num-
ber of applications, such as embedded systems, small devices for
the Internet of things, wearables, or implanted medical devices,
which can only access very limited computational power. To pro-
vide them with AI capabilities that learn from the device’s input
obtained by its sensors, they either need to communicate with AT
servers that carry the computational load, which requires reliable
and fast wireless networking, or they need to rely on AI methods
with extremely low computational costs. For the latter approach,
one may employ randomized neural networks (such as extreme
learning networks or echo-state neural networks [196]). Extreme
learning networks do not train coefficients of hidden layers but
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select them randomly. They are strongly related to regularized
regression such as ridge regression, and therefore can be trained
with extremely low computational costs. Echo-state networks are
more complex and belong to the class of recursive networks, but
using random weights for hidden layers they also substantially
reduce the computational load for training. A third option is clas-
sical approaches using stochastic models and statistical estima-
tion techniques. Here, one should avoid numerical algorithms
to compute maximum likelihood estimators and instead rely on
Le Cam’s one-step estimation procedure [197], for instance, or
use computationally less demanding methods such as moment
estimators. Required distributions can be approximated by simu-
lation and bootstrap approaches which are often appealing from
a computational viewpoint, if applied to estimators given in
closed form. To limit the training time, that is, estimating the
model, all these approaches can be combined with computation-
ally efficient statistical methods to assess uncertainty, such as
fixed-length confidence intervals to determine required sample
sizes, see the discussion in [198] and the references given there.

15.2 | Stochastic Modeling in ML/AI

Although various state-of-the-art AI/ML approaches do not rely
on explicit stochastic modeling, this is not the rule. Indeed,
many ML problems can greatly benefit from stochastic modeling
expertise and require results from probability and statistics for
their improvement. For example, in industrial quality control,
when setting up inspection processes, manually selecting key
characteristics requires substantial resources and effort. In [199],
an auto-encoding neural network was used to learn such fea-
tures from training data. In order to select a small number of
features, including the case of grouped features, a tailor-made
algorithm was developed with specific regularization terms.
Correlated features are identified and evaluated by means of
a risk analysis. Here, auto-encoders with one hidden layer are
trained for each combination of two features as input. Then, the
similarity of weights can be used to define how dependent the
features are. The overall analysis includes pre-processing, design
of net parameters, and specification of the dependence measure.
It combines machine learning as well as human expertise from
statistics and engineering, see [199] for details and references
to related literature. A second insightful example is a recent
improvement of active learning [200]. Active learning is a highly
relevant learning problem in industry. It deals with the automa-
tized sequential exploration of a sample space to identify the safe
region where a system can optimally operate. It aims at reducing
the number of labeled examples needed to achieve a certain
accuracy by selecting the most informative safe examples from
a large unlabeled dataset and determining their labels from a
costly additional experiment. When it comes to dynamic systems,
for example, when a robot explores an environment, exploration
takes place along trajectories instead of single points, and then
the whole trajectory needs to be safe. Gaussian processes (GPs)
are an attractive approach to model the sequential data collection
mechanism x;,Xx,, ... as well as the prediction uncertainty at
a new point x*. It is natural to select x* as a minimizer of the
predictive variance under the constraint that x* is unsafe with
probability at most « € (0,1). The latter problem boils down
to a tail event of the supremum of a GP. Instead of relying on
brute-force Monte Carlo simulations of the whole GP, one can

draw on the Borel-TIS inequality, which only requires estimating
median and supremal variance. For these two crucial quantities,
one may draw on sequential statistics to construct an adaptive
Monte-Carlo procedure that outperforms pure Monte Carlo. It
turns out that the combination of stochastic modeling and results
from statistical theory and probability theory allows to produce
a state of a art ML method. Best results are achieved, if machine
learning, statistics, and probability go hand in hand.

For applications in business and industry, it seems to be cru-
cial to have access to models, methods, and tools from stochas-
tic modeling and statistical inference as well as access to ML/AI
methods, in order to be able to experiment with all of them and
select the approach which works best for the problem at hand.
Personal communication with an Al startup developing quality
control software addressing classical questions studied in Statis-
tical Quality Control and Statistical Process Control revealed that
under the hood a whole bunch of ML methods is compared and
the best performing one is used to generate signals. ML meth-
ods are usually defined in terms of an ultra-high-dimensional
parametric model, which is fitted to the training data by explicit
(drop-out, penalties) or implicit (early stopping) regularization.
Since they scale well with large numbers of input variables and
massive training data, they often have an edge compared to
stochastic modeling for large data sets. However, as discussed
above, this requires good data quality and often careful prepro-
cessing of data. Data quality and clarifying what the data is rep-
resentative of all is crucial to relating findings and conclusions
drawn from the data to the real world. Manually defining the
right input variables and the right data transformations is more
important than one might think even for ML methods. Indeed,
even the best training algorithms are far from being able to learn
this automatically in a satisfactory manner. This becomes clear
from the fact that neural networks with convolutional layers for
image classification are formally special cases of fully-connected
feedforward neural networks, but it is pointless to hope that a
learning algorithm will output a fitted network with input lay-
ers coming close to convolutional layers. But it also applies to
more or less low-dimensional problems such as regression prob-
lems with a handful of regressors. Although (shallow or deep)
neural networks implicitly compute non-linear transformations
of the input variables, practical experience shows that often the
performance can be substantially improved, when feeding the net
with the specific transformations (such as logs, polynomials, dif-
ferences, or percentages instead of levels) suggested by domain
knowledge and/or previous analyses, instead of trying to learn
them implicitly.

15.3 | Llnsand AI Agents

Concerning the second question posed at the beginning, the
subsequent discussion will ignore the fundamental question of
whether or not AI systems can exhibit human-like intelligence
and are on par with the human mind, or whether AGI and super-
intelligence are possible. These questions are beyond the scope of
this contribution. Further, any answer needs to predict to some
extent the future development of A, and thus may fail. But let us
try to make an educated guess. The rapid progress of LLNs and
their fine-tuning to specific domains and tasks allows to set up
of interacting AI agents to generate, check, and curate output. It
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seems that software development is the field where this approach
is most advanced and already provides convincing results at the
time of writing. Here one agent outputs source code based on a
user prompt, and a further specialized agent interacting with the
user performs code checking and outputs directives for source
code revisions, in order to eliminate errors and improve the pro-
gram. It is clear that the concept of several Al agents, that interact
with each other and with the user to solve certain problems, will
become widespread and has a substantial potential for better and
less error-prone Al. LLNs are trained from massive internet data
which contains huge amounts of source code in many program-
ming languages. This is certainly the reason for their capabilities
in generating computer programs. Probability, theoretical statis-
tics, and large parts of applied statistics and stochastic modeling
are exact sciences and follow relatively simple grammar. At least,
they can be put into a formal language following simple grammar.
Therefore, one can expect that future AI systems have capabili-
ties in these areas that are comparable to their skills in software
development, thus going beyond the already remarkable func-
tionality of Open AI’s Code Interpreter. It is likely that future AI
systems substantially simplify the development and application
of stochastic models and statistical analyses and provide access
to a large amount of knowledge. This might have devastating
effects on the job market for graduates, since then only a few
experts are needed to supervise the AI. However, that develop-
ment will be probably relatively slow. Firstly, compared to soft-
ware, there is less data available for the training of a statistics
agent. Second, whereas software is written in a formal language,
this does not strictly apply to scientific papers and books that form
the training corpus. Third, although not completely transparent,
state-of-the-art AI systems use lots of manual input from human
experts. When it comes to a domain such as statistics, this needs
well-trained experts which are not available on a large scale, and
itis questionable whether providers will invest here. Thus, as long
as human input is needed, the capabilities in such fields will sub-
stantially lag behind areas such as programming.® Perhaps, Al
systems capable of producing valid stochastic models, methods
for their analysis, and derivations of their properties will result as
a side product of efforts to create AI systems that can solve sci-
entific research questions addressing hot topics such as finding
cancer treatments, understanding the human brain or finding the
grand unified theory of physics.

Nevertheless, it is an open question, whether future AI sys-
tems will be smart enough to produce valid novel scientific
results going beyond correct and nice sounding science prosa,
and whether they will be superior to humans in identifying
and resolving challenging problems arising in modeling and
analyzing real-world data. Examples of the latter are causality
(vs. association), confounders and colliders, bias, and multiple
testing. For example, in order to identify causality, controlled
experiments, and randomization are the methods of choice,
and available data and data obtained from observational studies
often suffer from confounders (variables affecting response and
regressor) and colliders (variables affected by response and
regressor), which lead to distorted estimates of causal effects.
Generally, blind analysis of available data collections may lead
to severe biases which quickly result in discrimination and
harm to people. Last but not least, extensive testing requires
appropriate multiple-testing corrections to avoid irreproducible
large-scale false-positive results and pseudo-significant patterns

in data. Ubiquitous issues are Simpson’s paradox, the fact that
a given pattern appears in a random sequence with probability
one, or the problem that important notions such as fairness in
automated decision systems cannot be uniquely defined and lead
to different, inconsistent decisions. For example, should one look
at the true and false positive rates or at the positive and negative
predictive values? And should one balance the former or the lat-
ter between groups? Or should one equalize the odds? Questions
such as these do not disappear by using an ML method regarded
as state of the art in terms of a criterion such as predictive power.
In practice, one needs to consider these issues and decide what to
do and one has to take responsibility for it. Statistics still provides
a more complete and accessible framework, and combining sta-
tistical thinking and expertise with machine learning might be
the way to go. And if future AI systems produce human-like solu-
tions and make choices on their own, it is important that their
generated solutions and choices are transparent and verifiable
by humans, and that humans remain control over the Al system.

16 | Zhanpan Zhang

Stochastic modeling, and more broadly statistical modeling,
will continue to play an important role in various aspects of
problem-solving. Simply put, problem-solving is a process rather
than a single step, involving multiple components structured
in a specific way. In the era of big data, the contribution of
machine learning techniques has become increasingly signifi-
cant, especially when dealing with complex systems. However,
statistical modeling remains a powerful tool for problem for-
mulation and solution development, and machine learning can
yield more insightful outcomes when it is integrated into the
problem-solving process alongside other critical components
such as stochastic modeling.

One such application is the inverse design problem, which aims
to identify input values that produce desired outputs. Due to the
many-to-one relationships between inputs and outputs that are
commonly embedded in the data, the inverse design problem
has long been a challenge in natural science and engineering
areas. Recently, several deep learning-based methods [201] have
been developed which tackle the problem in a more direct way.
One of these methods is a conditional invertible neural network
(cINN) [202, 203]. Essentially, the effectiveness of cINN bene-
fits from both mathematical and statistical principles. First, cINN
is a generative probabilistic model that stochastically generates
posterior samples of inputs given specified outputs. Second, the
network architecture of cINN is carefully designed to enable the
computation of Jacobian determinants. Furthermore, it is criti-
cal to effectively select a subset of posterior samples of inputs for
the follow-up validation study, which may incorporate user con-
straints and potentially involve an optimization process.

There are certainly applications where stochastic and statis-
tical modeling is preferred and more suitable. In contrast to
deterministic modeling, which many machine learning methods
employ, a key advantage of statistical modeling is its ability to
quantify uncertainty. This quantification is crucial for enhancing
model reliability and supporting decision-making in real-world
applications. In addition, statistical models generally offer better
explainability compared to black-box machine learning methods.
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A thorough understanding of model behavior enhances trans-
parency and builds trust in high-risk domains such as healthcare
and finance. Often, sample size is another important factor in
determining the selection of appropriate modeling approaches. It
is well known that machine learning, particularly deep learning
methods, requires a large amount of data to achieve satisfactory
performance. When physical simulation is computationally slow
and/or experimental data collection is costly, practitioners will
need to explore alternative approaches. For example, Bayesian
networks [204] can be an effective method for addressing inverse
design problems and time-dependent dynamic issues.

It is worth noting that both the statistical modeling and machine
learning communities are rapidly evolving. Therefore, a good
practice for problem-solving is to leverage multiple approaches
and assess their performance and usability. Integrating insights
from multiple approaches addresses the problem from different
perspectives, thereby guiding users toward a clear path for con-
tinuous improvement.

17 | Final Discussion

Actually, these are not conclusions since the hope of the authors
is to stimulate a debate with sound contributions using many
possible channels, especially those offered by the International
Society for Business and Industrial Statistics (ISBIS), of which
Applied Stochastic Models in Business and Industry (ASMBI) is
the official journal. The former Editor-in-Chief of ASMBI would
like to thank all those who contributed to this collective work.
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Endnotes

1 We interpret Wisdom as skill in applying Knowledge in the presence of
uncertainty.

2 A very successful traffic modeling has facets: A Multifractal Fractional
Sum-Difference model (MFSD) is a monotone transformation of a Gaus-
sian Fractional Sum-Difference model GFSD. The GFSD is the sum of
two independent components: A moving sum of length 2 of discrete frac-
tional Gaussian noise (fGn), and white noise. Internet traffic interarrival
times are very well modeled by an MFSD in which the marginal distri-
bution is Weibull.

3 For a blog and report on this see https://errorstatistics.com/2024/07/11/
guest-post-ron-kenett-whats-happening-in-statistical-practice-since-the
-abandon-statistical-significance-call-5-years-ago/ and https://www.ne
aman.org.il/en/a-tripartite-view-on-the-role-of-ai-in-modern-analytics.

4Lobiettivo della scienza non & fare predizioni. E’ anche offrire
un’immagine della realtd, un quadro concettuale per pensare le cose.
Questa ambizione ha reso efficace il pensiero scientifico. Se l'obiettivo
della scienza fossero solo le predizioni, Copernico non avrebbe scop-
erto nulla rispetto a Tolomeo: Le sue previsioni astronomiche non erano
migliori di quelle di Tolomeo. Ma Copernico ha trovato una chiave per
ripensare tutto e comprendere meglio.

5 Available at https://statistics.mox.polimi.it/aneurisk/.

¢ Although this could be a historical remark at the time of reading, at the
time of writing, Microsoft’s Bing copilot does not even correctly repro-
duce the definition of a probability measure.
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