

Contents

List of Figures iii

1 Introduction 2

1.1 Motivation . 3
1.2 Goal . 3

2 Scientific Background 4

2.1 Iterative Enhancement . 4
2.2 Learning Analytics . 4

2.2.1 Tasks and Purpose . 4
2.2.2 LA in a XR Context . 5

2.3 Experience API . 6
2.4 UI and UX Design . 7

3 Related Work 8

3.1 OmiLAXR Ecosystem . 8
3.1.1 xAPI Definitions Registry . 8
3.1.2 xAPI4Unity . 9
3.1.3 The Researcher Companion Panel 9
3.1.4 OmiLAXR Framework . 9

3.2 LiMoxAPI . 10
3.2.1 Technical Stack . 11
3.2.2 Frontend Components . 11

4 First Requirements and User Evaluation 14

4.1 Reviving Requirements . 14
4.2 Evaluation . 15

4.2.1 The Setting . 15
4.2.2 The Study . 16
4.2.3 The Results . 16

5 Implementation 19

5.1 Download and Reset Button . 19
5.2 Helpful Explanations for an improved UX 20
5.3 Pulse Monitor . 20

5.3.1 X-Axis Labeling . 20
5.3.2 History Log . 21
5.3.3 Additional Statement Type Graphs 21

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers i

Contents

5.4 Logging Console . 22
5.5 Filter Enhancements . 23

5.5.1 Simplified Filter Rule Definition . 23
5.5.2 Analysis of Single Filters . 23
5.5.3 RegEx . 24
5.5.4 Filter Logic . 25

6 Final Evaluation 28

6.1 The Evaluation . 28
6.1.1 Pulse Monitor . 28
6.1.2 Info Component . 29
6.1.3 Filter Component . 29
6.1.4 Logging Console . 30
6.1.5 Button Improvements . 30

6.2 Overall Results . 30

7 Future Work 31

7.1 Enhancing Existing Features . 31
7.2 Changes in LiMoxAPI’s Architecture . 32

7.2.1 Integration of the YetAnalytics SQL LRS 32
7.2.2 Developing a Plugin System . 32
7.2.3 Creating a REST-API . 33

8 Conclusion 34

Appendix 35

A Bibliography 36

B User Evaluation Script 39

Glossary 42

Acronyms 43

ii Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

List of Figures

2.1 LA life cycle adapted from [KE15]. 5
2.2 Screenshot of a possible xAPI statement consisting of an actor, verb and

object . 7

3.1 Workflow of the OmiLAXR Ecosystem, taken from [Gö24] 9
3.2 Concept Architecture of LiMoxAPI adapted from [TSL24] 10
3.3 Internal Architecture of LiMoxAPI adapted from [TSL24] 12
3.4 Login-View of LiMoxAPI taken from [TSL24] 13
3.5 Dashboard-View of LiMoxAPI taken from [TSL24] 13

5.1 Example of the downloaded Login Credentials stored in JSON format . . 19
5.2 The new Reset Dialog Formulation . 20
5.3 The History Log of the Pulse Monitor . 21
5.4 The final Dashboard-View of LiMoxAPI . 22
5.5 The Filter Settings Dialog with the added DropdownMenu, RegEx Search

and Filter Logic . 23
5.6 The Filtered Statements Log of Single Filters 24
5.7 Add Filter Logic Dialog . 25
5.8 Simple Filter Logic Example . 27

7.1 Possible Docker Architecture . 33

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers iii

Abstract

When creating complex learning environments, most Learning Analytics (LA) devel-
opers have the same problems and limitations in their work:
The testing process of their learning platforms is tedious and time-consuming, due to
complex Learning Record Store (LRS) infrastructures and connection issues, thus the
verification of the generation of their learning data cannot be guaranteed [GHS24].
To mitigate these problems, the live monitoring tool LiMoxAPI [TSL24] (Live Monitor-
ing of xAPI Statements) has been developed for VR developers which runs locally on
the computer and periodically fetches incoming statements from a specified LRS.
It is a part of the OmiLAXR Ecosystem which is provided by the RWTH research group
Learning Technologies [HEGS22].
LiMoxAPI initially formed a solid base for verifying the generation of learning data,
however when taking a closer look, it was obvious that LiMoxAPI provided a lot of
potential for further improvements.
The application was stiff, did not provide any interplay between the components and
was vastly unintuitive for the user.
This thesis enhanced the usability and data integrity of LiMoxAPI and widened the
accessibility of the application for all LA developers instead of just focusing on VR
development.
This was achieved by first retrieving new requirements for LiMoxAPI by conducting
a user evaluation with two participants from different LA application fields in the be-
ginning of the project.
A second evaluation has been conducted at the end of the project to present the final
results as well as to gain additional feedback.
The achieved results are an improvement of LiMoxAPI’s functionality.
This was done by implementing features that lead to a better interplay between the
components and providing enhanced options for the user to interact with the applica-
tion.
A special focus lay on the filter component which now allows the user to perform
more complex actions with their generated xAPI statements due to the provision of
filter logic, the enablement of regular expressions (RegEx) and the option to reset and
log the filtered statements individually for each filter.
Additionally, an improved user experience was achieved due to making the appli-
cation more intuitive. Therefore, the different components have been restructured,
additional explanatory texts have been added and proper feedback is provided to the
user.
LiMoxAPI is now accessible to a wider range of users and allows an enhanced way to
monitor and verify the generation of learning data.

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 1

Chapter 1 Introduction

Learning Analytics (LA) is a broad and interdisciplinary research field which enables
the analysis and improvement of learning processes as well as the representation of
learning data using learning environments [Sie12]. Researchers try to identify suc-
cessful learning patterns as well as to detect misconceptions. Subsequent to that,
they can introduce improvements for better learning progress [GTE+17].
This analyzed learning data is generated using learning platforms. But how can we
verify the correctness of that data?
Learning data uses a specific syntax following the experience API (xAPI) specifica-
tion. These xAPI Statements are stored in a Learning Record Store (LRS), waiting to
be analyzed by researchers or educators [VRL15].
In order to test if the correct data was generated or to test if xAPI statements have
been generated at all, LA developers usually have to keep a stable connection to a
LRS and manually refresh the database in order to see if new statements have ar-
rived. This has shown to be time-consuming and effortful [GHS24].
This is why LiMoxAPI has been introduced being a former Bachelor Thesis of G.
Thiesen [TSL24]. It is a live monitoring tool which fetches learning data from a local
LRS and monitors the fetched statements in a dashboard.
Originally, LiMoxAPI was developed for LA developers from a Virtual Reality (VR)
domain and became a part of the OmiLAXR Ecosystem [GHS24] provided by the re-
search group Learning Technologies [HEGS22].
The end result of the thesis was a solid prototype for VR developers, but it turned out
to be quite stiff while lacking interaction options for the user and complex features.
How could the usability of LiMoxAPI be improved while making it accessible to a
wider range of users without being limited to VR development? This is one of the
main research questions of this thesis.
The thesis is structured as follows: After introducing the reader to the problem defi-
nition and motivation of this project, the required scientific background is provided,
defining the research field of LA and the xAPI specification as well as looking at user
interface and user experience design concepts.
Subsequent to that, related work of this thesis is presented, regarding the OmiLAXR
Ecosystem and the initial development of LiMoxAPI. The next chapter intensively
looks at the initial state of LiMoxAPI, defines first requirements for the enhancement
of the application and presents a user evaluation that has been conducted.
Subsequently, the following chapter describes the implementation process of the
ideas that were retrieved from the user evaluation in detail.
Then, a final user evaluation was held and summarized the opinions of the partici-
pants after seeing the final version of LiMoxAPI.

2 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

1.1. Motivation

This paper ends with an outlook on possible future work and a final conclusion about
the outcome of the project.

1.1 Motivation
LiMoxAPI has been developed to provide a proper live monitoring tool for VR de-
velopers. Back then, developers of VR learning environments had to keep a stable
connection to Learning Locker (LL) when trying to test their environments.
Nevertheless, LL is a LRS which has a complex infrastructure thus a stable and con-
tinuous connection cannot be guaranteed. These complaints have been retrieved from
a user study of the research group [GHS24].
Developers were in need of a simple and lightweight analysis tool for the verification
of their learning data. With LiMoxAPI, a first prototype could be achieved.
LiMoxAPI provides a small dashboard with a pulse monitor which graphically displays
the amount of incoming statements per fetch from the LRS, but it also has the feature
to log the incoming statements and provides a counter for specified filters.
These components form a solid base, nonetheless, there is still a lot of room for im-
provement.
The single components are quite unintuitive and do not provide possibilities for a lot
of interaction with the user. There is no interplay between the different features and
everything is quite encapsulated.
Thus, LiMoxAPI is in need of a more intuitive user interface, more complex features
as well as an improved interplay between the components in order to ensure an en-
hanced user experience and data integrity for LA developers.

1.2 Goal
LiMoxAPI provides a lot of room for improvement. Therefore, the aim of this project
is to enhance the functionality of the application by implementing additional required
features and by ensuring a better user experience for LA developers.
It needs a better interplay between its single components, such that developers have
a greater chance to analyze and verify the generation of their learning data in form of
xAPI statements.
Further scientific background will be given in the chapter Scientific Background.
Although originally being developed for VR developers, the application should be ex-
panded and made accessible to a wider range of users such that LA developers from
all fields are able to interact with it, without being limited to the use of the OmiLAXR
Ecosystem.
The required features will be extracted via user evaluations with participants from
different application fields of LA in order to gain a widened perspective about the
analysis and usage of learning data.

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 3

Chapter 2 Scientific Background

This section specifies the scientific background of this thesis. It will describe the
followed software development approach, the concept of Learning Analytics, the Ex-
perience API specification as well as Learning Record Stores.
Apart from that, user interface- and user experience- design goals and principles will
be defined which have been followed while enhancing LiMoxAPI.

2.1 Iterative Enhancement
The software development approach Iterative Enhancement by Basil et al. [BT75] will
serve as an orientation for the implementation process of the project.
Iterative Enhancement describes a top-down, stepwise refinement approach to soft-
ware development [CV97] and starts with a simple implementation of a chosen sub-
project.
The developer creates a project control list which contains all the tasks needed to
achieve the final implementation.
In each iterative step, a new task is chosen from the list. After its completion, the task
gets removed and the process of choosing a new task restarts. At any time, the devel-
oper can make extensions as well as design modifications in their implementation.
The core idea of this approach is to always have a running version of the project.
There are iterative enhancements made on existing versions until the full system is
implemented [BT75].

2.2 Learning Analytics
Siemens et al. [Sie12] describe LA as “the measurement, collection, analysis and re-
porting of data about learners and their contexts, for purposes of understanding and
optimizing learning and the environments in which it occurs”.
In order to understand what this means in detail, the following subsections provide
information about the task and purpose of LA as well as looking at a specific LA ap-
plication field which led to the development of the OmiLAXR Ecosystem [HEGS22].

2.2.1 Tasks and Purpose

The term LA is lacking a universal definition but generally refers to the process
of extracting valuable insights from collected learning data and developing cor-
responding methods and tools to achieve an enhancement in the learning experi-
ence [Clo13, CDST12].

4 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

2.3. Experience API

But there was no optimal way to include the use of LA in XR learning environments.
This is a focus of the research group Learning Technologies which developed the Omi-
LAXR Ecosystem [HEGS22].
This Ecosystem contains multiple different components which facilitate the usage and
integration of LA in VR contexts.
Due to the fact that LiMoxAPI is an extension of the OmiLAXR Ecosystem, the appli-
cation was originally developed for VR-developers. Yet, also developers from other LA
application fields have shown great interest in the concept of LiMoxAPI.
Therefore, this project strives to make LiMoxAPI accessible for LA developers in gen-
eral without requiring an application field of XR.

2.3 Experience API
In order to achieve improvements in education, different tools are needed to retrieve
the learning data. This can be done via the Experience API (xAPI) specification1.
xAPI is a specification that describes how data is captured, stored and re-
trieved [VRL15]. It is organized in JSON data format and defines statements which
represent the learning events of a Learning Management System (LMS) [BKP+16].
Each statement requires three different properties, being actor, verb and object and
it composes sentences like “User1 (actor) clicked (verb) button (object)”.
A concrete example statement is displayed in Figure 2.2.
The actor refers to the person who initiated the event being the learner, the verb
captures the action or predicate of the statement, and the object can represent an
activity, agent, group, or another statement. [VRL15].
A statement can be extended with a context, activity or result field for more extensive
usage in which the context field provides additional information about the learning
scenario specifics, the activity field contains detailed information about the target ac-
tivity and the result field can be specified for a measured outcome [SLMOH+17].
This vocabulary can be defined and stored in central registries2.
Registries serve as shared repositories, allowing other users to access previously cre-
ated definitions [Väk23].
Definitions are stored in JSON format because this format strikes a balance between
human readability and computer efficiency.
In order to store the produced statements, some kind of database is needed. xAPI
uses a LRS which stores the statements in sequential order [SLMOH+17].
The xAPI standard3 defines an LRS as "a server (i.e. system capable of receiving and
processing web requests) that is responsible for receiving, storing and providing ac-
cess to Learning Records"4. A LRS is able to share the statements received with other
LRSs and it can either exist on its own or inside a LMS [VRL15].

1 https://xapi.com/overview/, accessed: February 2025
2 https://xapi.com/registry/, accessed: February 2025
3 xapi-base-standard-documentation, accessed: February 2025
4 https://xapi.com/learning-record-store/, accessed: February 2025

6 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

2.4. UI and UX Design

Figure 2.2: Screenshot of a possible xAPI statement consisting of an actor, verb and object

2.4 UI and UX Design
Although User Interface (UI) Design and User Experience (UX) Design are two sepa-
rate concepts, they both play a crucial role in the development of digital products. UI
design as well as UX design directly impacts how users engage with an application
and affects their user experience [Ham23].
UI design makes up all visual components and interactive elements of an application.
Developers have to figure out a specific layout, a color scheme, buttons and other
visual elements that construct the user interface. It aims to produce an intuitive and
user-friendly interface which is easy to navigate and interact with [RSS21].
However, UX design rather refers to the whole user experience while using the appli-
cation. Therefore, developers try to create an enjoyable user flow while meeting the
needs and expectations of the user [LRV+08, MHH18].
In order to fulfill these expectations, there are different key concepts to follow while
developing a digital product:
For UI design, it is important to focus on the simplicity, consistency and visibility of
an application while providing feedback to the user, e.g. a success-notification after a
user has successfully logged in.
UX design, on the other hand, focuses on the user’s goals and motivations for using
a digital product and thus concentrates on the usability, accessibility, efficiency and
clarity of an application [Ham23].
Following these principles and by focusing on stakeholder-centered design [For18],
the UI of LiMoxAPI has been restructured and adjusted in order to achieve an overall
better user experience and usability. This also sets the path for a more facilitated way
of data validation.

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 7

Chapter 3 Related Work

This section presents the OmiLAXR Ecosystem which was developed by the re-
search group Learning Technologies [HEGS22] as well as the Live Monitoring Tool
LiMoxAPI [TSL24] which was developed to support VR developers with verifying the
generation of learning data.

3.1 OmiLAXR Ecosystem
The research group Learning Technologies has developed an ecosystem that enables
multiple stakeholders to work with VR learning environments [HEGS22]. It enables
integrating the xAPI specification into educational VR applications [GHS24] and con-
tains multiple components for different stakeholders:
OmiLAXR stands for “Open and modular integration of Learning Analytics in eXtended
Reality” and aims to provide a simple integration of LA in XR environments for devel-
opers.
It also enables teachers and other educators to make use of LA by attempting to follow
their student’s learning process whereas researchers strive to analyze the generated
learning data that is stored in a LRS [Sie12]. Its components are presented in the
following subsections.

3.1.1 xAPI Definitions Registry

The xAPI Definitions Registry stores VR specific definitions in JSON format. There was
a seed vocabulary created by the research group which was based on a questionnaire,
containing around 500 definitions [HEGS22].
The registry is versioned using a git repository. In order to enable more stakeholders
to participate in the usage of the definitions, there also exists an xAPI Definitions
Frontend which can be used by researchers and educators, but also for VR developers
to search for specific definitions in the xAPI Definitions Registry or to suggest new
ones.
A LA dashboard gives educators and investigators an insight into the learning process
of their students and facilitates the decision-making process for learning activity and
data analysis of stakeholders by visualizing the data [VODC+20].
Here, this xAPI Definitions Frontend is a first entry point when working with xAPI
Definitions in which the definitions are also accessible via the corresponding URIs
(Uniform Resource Identifier), making them easily accessible and recognizable.
The statements are presented in a more readable way for humans and therefore users
are not required to have a computer science background in order to use the platform.

8 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

3.1. OmiLAXR Ecosystem

Figure 3.1: Workflow of the OmiLAXR Ecosystem, taken from [Gö24]

3.1.2 xAPI4Unity

Concrete xAPI statements have to be implemented for each specific learning scenario.
This is done by VR developers which collaborate with different stakeholders.
xAPI4Unity1 serves as a support for developers by converting xAPI definitions from
the xAPI Registry into C# classes [HEGS22]. This ensures a simpler synchronization
of xAPI definitions.

3.1.3 The Researcher Companion Panel

The Researcher Companion Panel (ReCoPa) is a web tool which provides functionality
to control the xAPI tracking settings and therefore enables stakeholders to work with
the generated learning data. There is a constant live connection to a VR learning
scenario, allowing users to select tracked variables for learning analytics or to store
the information in a LRS [HEGS22].

3.1.4 OmiLAXR Framework

The OmiLAXR Framework2 developed by [GHS24] was implemented to enable the in-
tegration of VR-specific statements into a VR environment, which have been defined
with the development of the xAPI Definitions Registry [HEGS22].
The framework contains the XR Adapters System which supports the integration of
third-party libraries by using the "Plug-and-Play" principle.

1 https://gitlab.com/learntech-rwth/omilaxr-ecosystem/xapi-4-unity, accessed: February 2025
2 https://omilaxr.dev/, accessed: February 2025

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 9

3.2. LiMoxAPI

3.2.1 Technical Stack

LiMoxAPI was developed using the Tauri Framework4 and can be divided into two
logical parts: a backend and a frontend.
The backend is implemented in Rust5 which uses the Tauri ecosystem of libraries and
periodically fetches the generated xAPI statements every 300 milliseconds from the
connected LRS until the application is closed [TSL24].
Here, this LRS is the Yet Analytics SQL LRS6 which has to get started in parallel
to LiMoxAPI. A pre configured version of this LRS is available in addition to the
LiMoxAPI binary file.
The fetched statements are processed and formatted in the backend. The formatted
data can then be used for the different components in the frontend which will be de-
scribed in detail in the subsequent section.
In the frontend, the retrieved data gets visualized which is implemented in plain
HTML, CSS and JavaScript with the additional usage of the Vue.js Framework7.
Each feature is implemented as a single component and handles the received data
from the backend individually. The frontend listens to new incoming data from the
backend and triggers according update functions ensuring synchronization between
the backend and the frontend.
An illustration of the data flow in LiMoxAPI can also be seen in Figure 3.38.
Both application layers are able to communicate via an event system channel: Tauri
uses asynchronous message passing for the Inter-Process Communication (IPC) being
Events9 and Commands10.
Events can be sent by both sides and are one-way messages which do not require
responses. Commands, however, allow the frontend to call Rust functions in the back-
end.
This is done by sending a request which triggers an invoke handler to call the actual
function. The request as well as the response is transformed into JSON format allow-
ing to call functions of another programming language.

3.2.2 Frontend Components

The application’s core functionalities make up four components being the Statement

Pulse Monitor, the Info Component, the Logging Console and the Filter Component.
The Login View and the Dashboard View of the application are shown in Figure 3.4
and Figure 3.5 respectively.
The Pulse Monitor can be seen on the top left of the Dashboard View and graphically
displays how many statements are arriving at the connected LRS per second.
On its right side, the Info Component sums up basic information for the user. It shows
the timestamp of the latest incoming statement, the total number of statements that
have been monitored so far and at last it displays the amount of actors involved in the

4 https://v2.tauri.app/start/, accessed: February 2025
5 https://doc.rust-lang.org/book/, accessed: February 2025
6 https://github.com/yetanalytics/lrsql, accessed: February 2025
7 https://vuejs.org/guide/introduction.html, accessed: February 2025
8 This figure uses resources from https://www.flaticon.com/
9 https://v1.tauri.app/v1/guides/features/events/, accessed: February 2025

10 https://v1.tauri.app/v1/guides/features/command/, accessed: February 2025

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 11

3.2. LiMoxAPI

Figure 3.4: Login-View of LiMoxAPI taken from [TSL24]

Figure 3.5: Dashboard-View of LiMoxAPI taken from [TSL24]

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 13

Chapter 4 First Requirements and
User Evaluation

This thesis tries to answer the question, how the verification of the generation of
learning data in LA environments can be even better ensured by developing graphi-
cal as well as logical improvements for LiMoxAPI.
Therefore, this chapter defines first requirements of the application and describes
their implementation as well as illustrating a conducted user evaluation by regarding
the setting, the study and its results. This evaluation was conducted to widen the
perspective on the analysis of xAPI statements in order to retrieve additional require-
ments for the monitoring tool.

4.1 Reviving Requirements
In the prior bachelor thesis [TSL24], a final user evaluation was conducted in order
to present the current state of the final application.
This evaluation has shown that LiMoxAPI provides a high-quality performance with
the ability to process up to ten incoming statements per second which is more than
sufficient when monitoring learning environments.
The participants of the study were overall content with the outcome of the applica-
tion, still some additional requirements were defined.
One mention was that LiMoxAPI needed a better interplay between its different com-
ponents. One way to ensure this is by connecting the filter component and the logging
console:
The user should be able to only log filtered statements in the logging console and
switch between the two different logging states via a checkbox which is displayed in
the log.
On the other hand, the user should also be able to directly select filters from the log-
ging console which should be applied as filters.
This is realized via checkboxes which are located next to each logged statement.
When a user selects a statement, a function is called in the backend which retrieves
the corresponding values to the actor, verb and object path of the statement. Next, a
new filter is created which includes these three filter rules.
Another requirement that was pointed out was that the user had no possibility to
restart the current monitoring session. This led to the development of a reset button
which resets all filter counters to zero, empties the log, deletes the current graph in
the pulse monitor and sets the given information in the info component to zero.
In addition, a pop up dialog was added which asks the user to specify which filters he

14 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

4.2. Evaluation

wants to keep.
This way the user can decide if he either wants to keep the filters that he manually
created via the filter component or if all filters should be kept, including the selected
filters from the logging console.
An aspect which was not reported in the prior project was that the scroll functionality
in the logging console was buggy.
This was adjusted such that the logging console automatically scrolls downwards
when new statements arrive until the user scrolls up. When this happens, the scrolling
stops and only restarts when the user scrolls down again.
Other improvements for the user experience were achieved by adjusting LiMoxAPI
with a more coherent structure: All buttons have the same positioning, color and
hover effect and the overall application now has a responsive styling.
Lastly, some useful error notifications have been added which inform the user about
incorrect actions guaranteeing an improved data integrity.
The listed filter items are shaking and displaying an error message, whenever the
user selects a statement as a filter which already exists in the filter list.
The same behavior appears when a user tries to only log filtered statements, although
no filters have been specified.
Thus, the user knows when he is taking incorrect actions and therefore gets a clearer
understanding of the whole application.

4.2 Evaluation
After having implemented the first requirements as defined above, a user evaluation
was conducted in order to discuss the current state of LiMoxAPI and to define addi-
tional needed features.
For this sort of project, it is rather difficult to find participants for user studies be-
cause they are time-consuming and potential participants have to actively work in a
field with a clear reference to LA.
G. Thiesen [TSL24], who has initially worked on LiMoxAPI, conducted an evaluation
with two VR developers who were both using the OmiLAXR Ecosystem.
For this study, two developers from different LA application fields could be found
to participate which is very fortunate because neither of them uses the OmiLAXR
Ecosystem.
The aim for the evaluation was to get an insight into LA outside of VR development
and gain another perspective on LiMoxAPI, which could luckily be achieved.

4.2.1 The Setting

The user evaluation took place in an online meeting and was conducted in two sepa-
rate sessions such that each participant was interviewed alone.
By dividing the participants, it was ensured to get to know their research fields more
intensely and to get their unbiased opinions and suggestions for the application.
Before the evaluation started, they had installed a binary of LiMoxAPI on their com-
puter and had connected it to the provided pre configured YetAnalytics SQL LRS.
The evaluation lasted around 90 minutes and followed the cooperative evaluation ap-
proach [Hol93].

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 15

4.2. Evaluation

It started with a short motivation of the application, followed by five different exer-
cises the participants had to solve by using LiMoxAPI. Each exercise confronted them
with one component or the interaction between multiple components.
After the five exercises, possible additional features were portrayed and discussed.
The following subsections will contain a description of the tasks as well as the results
of the study.

4.2.2 The Study

The participants were given the following tasks:

1. Look at the different components. What do you think each of them does?

2. Create a filter which counts how often the user uses a mouse and only log these
filtered statements to the logging console.

3. Display one of the logged statements in full JSON format.

4. Restart the monitoring session, select a statement as a filter from the logging
console and count how often this statement does not occur. Whenever this hap-
pens, play Sound 3.

5. Experiment with some filters from the logging console and then try to reset the
monitoring session. How would you evaluate the reset button functionality?

Subsequent to each task, a small discussion was held including the following ques-
tions:

• What was unintuitive about the task?

• What was difficult or unclear?

• How could this specific feature be improved for a better user experience?

• Which functionality do you miss in this component/in LiMoxAPI in general?

After these five exercises, the participants have gotten to know the application quite
well and had used every existing feature so far.
Subsequent to the tasks, new considerations for potential features were presented
and discussed with each participant.

4.2.3 The Results

During the study, the participants mostly showed the same behavior and reacted
equally to the given tasks. Therefore they also reached the same problems and came
up with similar enhancement ideas.
Both participants liked the layout of the whole dashboard as well as the idea of each
component. It was easy for them to understand the basic functionality of the logging
console, and they had no problem adjusting the settings of a given filter.
In addition, they agreed that the feature of only logging filtered statements was very
important as well as the reset functionality of a monitoring session.
Still, some issues could be retrieved which will be presented in the next section.

16 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

4.2. Evaluation

Defined Problems

For both participants it was unclear in which time unit the pulse monitor displayed the
graph of incoming statements and what exact numbers the facts in the info component
referred to.
Additionally, they stressed that the pulse monitor showed too few data points and
should provide an option to display a graph within the range of multiple minutes.
When looking at the filter component, it was mentioned that "Filter" was an unfitting
and confusing name. Moreover, the creation of a filter was unintuitive and it was
difficult to discover how to properly define filter rules.
Although both participants stated to like the basic functionality of the filter, both of
them wished to have more complex features.
In the logging console, the checkboxes to select statements as a filter were mistaken
as bullet points. Apart from that, the display of the full xAPI statement in JSON
format was not found on their own. They had to be actively guided to click on a
logged statement in order to show the full LRS entry.
At last, the participants had problems to understand the dialog in the reset button
which asks to keep the given filters. Both of them commented that the formualtion
and definition of different filters was unclear and the user would not understand what
he was asked for.
The subsequent sections contain the outcome of the discussion at the end of the study
as well as the final retrieved requirements.

Final Discussion

Subsequent to the tasks, new considerations for potential features were presented
and discussed with each participant.
It turned out that the filter component was quite useful and important, therefore it
was a high priority to increase the complexity of the filter functionality:
Both participants stressed that the enablement of RegEx in the value field of a filter
rule was highly demanded.
Apart from that, the filter should allow a higher complexity between different filter
rules by allowing complex filter logic between them. Possible operations should be
AND, OR, XOR and NOT.
Apart from filter extensions, the idea of a download button was presented. This down-
load button should download the given login credentials from the used LRS such that
users could store the credentials for multiple LRS’s locally on their computer. Both
participants agreed that this feature would be useful.

The Idea of Creating a Plugin System

Another idea of this thesis, next to the focus on UX enhancement, was to provide a
plugin system in LiMoxAPI such that users would be able to implement their own fea-
tures for their own specific use case.
This could have made LiMoxAPI accessible to a wider range of users due to the ability
of customizing the application.
Instead, the user evaluation has shown that a plugin system would rather decrease
the willingness of using LiMoxAPI. In order to be able to use the plugin system, users

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 17

4.2. Evaluation

would have to learn the Rust programming language which would have been a great
burden. Rust is quite difficult in the beginning of the learning process, thus it would
be too much of an effort to make use of the plugin system.
The participants argued that this feature would rather be used for research purposes
when conducting user studies for their learning environments instead of the develop-
ment process of their applications.
Therefore, this thesis rather focused on enhancing the already existing features in the
UI and on enhancing the overall user experience.

Retrieved Requirements

After seeing the problems and discussions that arose during the user evaluation, this
section will present the requirements which could be retrieved from the outcome of
the study.
In order to provide a better understanding of the pulse monitor component, an x-axis
labeling has to be added. Currently, the pulse monitor requests the number of new
incoming statements from the backend every 300 milliseconds.
Instead, it should request the new amount every 250 milliseconds but only label every
fourth data point which corresponds to every second. This provides a clear time unit
to the user and makes the whole component more comprehensible.
In order to enable the user to look at older values of the displayed graph, a history
log should be implemented which holds the number of incoming statements from the
last fifteen minutes in a table.
The displayed facts of the info component have also been confusing without a given
context. Here, an additional explanatory text should be displayed when clicking on
an according icon.
Regarding the filter, the component should be renamed into "Statements Counter"
because the filter is completely independent from the other components and rather
counts the occurrence of specific statements than interfering with the other features.
Apart from that, an explanatory text as well as a dropdown menu in the path field of
a filter rule should be provided in order to guide the user through the creation of a
filter.
In addition, the filter needs more complex features like a search for RegEx values
and an option to provide a filter logic for the given filter rules. In order to be able to
analyze single filters, a reset button should be provided in each filter item in order to
reset the statements counter of a specific filter.
Moving on to the logging console, a whole restructuring is needed.
The log has to be displayed as a table instead of a list. When the checkboxes are dis-
played in a seperate column, they will be recognized as checkboxes and not as bullet
points.
In order to show the user the option to click on a logged statement, statements should
get highlighted and the cursor of the mouse should change to a hand-icon when hov-
ering over a logged item which implies that the statement is clickable.
Apart from that, the reset button needs a clearer formulation and more consistent
definitions of the different filters.
And lastly, a download button has to be implemented in the Login View of LiMoxAPI
with which a user can download the entered credentials of the connected LRS.

18 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

Chapter 5 Implementation

As seen in the previous chapter, LiMoxAPI is in need of a better UI design and brings
a high potential to provide more complex features which enhance the interactivity
between the components and the user. These changes also imply that users will have
better options for verifying and monitoring their statements. In addition, the en-
hanced user feedback and an overall improved clarity of the application ensures a
better data integrity for the user.
This section describes the concrete implementation of the different features which
followed from the evaluation.

5.1 Download and Reset Button
In order to allow the user an easier way of managing their login credentials for
different LRSs, a download button was added to the login view of the application. It
is located right next to the login field. By clicking on it, the browser of the computer
opens and the user can specify a path where the credentials.json file should be stored.
The credentials.json file looks like the following and contains the current host, port,
username and password of the used LRS:

Figure 5.1: Example of the downloaded Login Credentials stored in JSON format

In addition, the reset pop up dialog was adjusted by clearly defining the different
kinds of filters that can be created in LiMoxAPI:
There are the selected filters which are filters that have been selected via a checkbox
in the logging console, and there are the custom filters which refer to filters that a
user has created manually in the statements counter component.
The pop up dialog in the reset button now gives the options to either keep all selected
filters, keep all custom filters or keep all existing filters as well as keeping none of
them. The resulting dialog is displayed below.

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 19

5.2. Helpful Explanations for an improved UX

Figure 5.2: The new Reset Dialog Formulation

5.2 Helpful Explanations for an improved UX
The study has shown that it is tremendously important to provide helpful explanations
and feedback to the user in order to achieve an enjoyable usage of the application.
Therefore, different explanatory texts have been added to almost every component
which can be accessed via clicking on a question mark icon.
One of these icons was added into the filter settings dialog being located next to a
filter rule. It contains instructions on how to create a filter rule by showing in which
way the different paths should be provided.
Additionally, a question mark icon was added to the info component which provides
clear definitions for the displayed information.
Apart from that, the pulse monitor also contains additional explanations on how often
the statements are fetched from the LRS and on the range as well as the interpretation
of the displayed graph.

5.3 Pulse Monitor
The question mark icon was not the only thing which was added to the pulse monitor.
Two adjustments have been made, being the x-axis labeling of the chart as well as
adding a history log of the past 15 minutes. These two features will be described in
the following subsections.

5.3.1 X-Axis Labeling

It has been criticized multiple times that the whole component was quite ambiguous
and the chart with the graph definitely needed an x-axis labeling to ensure that users
would be able to interpret it correctly.
The chart displays a graph which is updated every 250 milliseconds, but only every
fourth data point is being labeled such that the x-axis is displayed in seconds. The
overall range of the portrayed graph amounts to 10 seconds.
Whenever the monitoring session is reset, the x-axis restarts at zero.

20 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

5.3. Pulse Monitor

5.3.2 History Log

The history log can be accessed via the log-icon next to the help-icon which displays
further explanations. It is displayed as a table with two columns.
On the left, there is the amount of time in the format min:sec and the right column
displays the amount of statements that arrived at that time.
After 3600 entries which correspond to 15 minutes (15 · 60 · 4 = 3600), all prior entries
get removed from the table. This is done due to performance measures.
In general, the ApexCharts library is not fully suitable for this kind of chart. When
dealing with large datasets, especially in real-time scenarios like LiMoxAPI, Apex-
Charts often struggles with performance, which can cause laggy interactions and
slow rendering times.
Displaying new data every 250 milliseconds, causes a high overhead which is also
why the x-axis only labels every fourth data point.

Figure 5.3: The History Log of the Pulse Monitor

5.3.3 Additional Statement Type Graphs

One participant of the evaluation also demanded a feature which would enable the
user to display the amount of different statement types in the pulse monitor.
This participant defines different statement types via the fields object.definition.type
and verb.id which can be provided in xAPI-statements.
Nevertheless, the implementation of this feature has shown to be quite tedious be-
cause the field object.definition.type has no uniform structure in his statements. De-
pending on each object type, this field provides different constructions.

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 21

5.4. Logging Console

Apart from that, the performance issues in the ApexCharts chart make it almost im-
possible to enable the user a sophisticated second graph-view for his analysis.
This is why the implementation of this feature was aborted.

5.4 Logging Console
Looking at the logging console, the highest priority was to portray the given features
more obvious to the user. That included the checkboxes next to each logged item
with which one can select a statement as a filter as well as the ability to click on a
statement to display it in full JSON format.
This was achieved by restructuring the logging console from a list to a table with two
columns. The column on the left now says “Select as Filter” containing all check-
boxes whereas the column on the right has the header “Statements Log” containing
the logged statements as its items.
In addition, the cursor of the mouse now changes to a hand-icon when hovering over
the logged statements. The statement which is hovered over, also gets highlighted,
telling the user that this item is clickable.
When hovering over a checkbox, the tooltip ”Select Statement as Filter” gets dis-
played. There has also been the discussion if tooltips should be added to the logged
statements, displaying a text that implies that the user can display the full statement
with a click.
In the end, the idea got canceled because the tooltips could have been disturbing
to the user depending on the amount of statements being logged, especially when
scrolling through the log in general.
The overall resulting dashboard looks like this:

Figure 5.4: The final Dashboard-View of LiMoxAPI

22 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

5.5. Filter Enhancements

5.5 Filter Enhancements
The improvements in the different components already had a great impact on the
overall usability of LiMoxAPI, but the highest focus by far lay on the filter component.
Multiple suggestions could be extracted from the evaluations and both participants
showed great interest in this feature.

5.5.1 Simplified Filter Rule Definition

The evaluation has shown that the creation of a filter, especially the definition of a
filter rule, has been extremely complicated. It was vastly unclear what was expected
in the path field in a filter rule.
The added help-icon already gives instructions on how to create different rules but
in addition to that, a dropdown menu has been added to the path field displaying
example paths to filter. By clicking on the path field, frequent example paths are
presented and the user can either choose between the provided paths or enter their
own.

Figure 5.5: The Filter Settings Dialog with the added Dropdown Menu, RegEx Search and Filter

Logic

5.5.2 Analysis of Single Filters

Due to the simplified filter rule definition and the provided instructions about the
filter functionality, the user already gains a better comprehension about the overall
component.
Apart from that, the user should also be able to look at different filters more closely
and therefore have the ability the analyze the specified filters more individually.
In order to achieve this, a log-icon was added to each filter containing a list of all the
statements which have been filtered by this filter.
Although the logging console already provides the feature to only log filtered state-
ments, users now get an insight into the filtered statements separately and thus can

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 23

5.5. Filter Enhancements

tell which statement counters get incremented by which statements.
For the purpose of having more control over each filter, users now also have the abil-
ity to reset the statements counter of a specific filter via a reset button in each filter
item.
These two features enhance the analysis ability of a user and therefore supply a bet-
ter way of monitoring the generation of learning data.
An example of the filtered statements log for the filter pressed && !mouse is displayed
below.

Figure 5.6: The Filtered Statements Log of Single Filters

5.5.3 RegEx

When creating a filter rule, defining the value field can be rather tedious. If a user
wants to filter a specific verb-id, the filter rule could look like this:
Path: verb.id
Value: https://xapi.elearn.rwth-aachen.de/definitions/seriousGames/verbs/ended

As one can see, the provided ids can get quite long and it is exhausting to always copy
them into the filter settings dialog.

24 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

5.5. Filter Enhancements

Thus, the dialog now includes a checkbox which says "RegEx Search" providing a way
to enter RegEx expressions in the Value fields.
RegEx is short for Regular Expression and it is a pattern which describes a set of
strings that matches the pattern. In other words, a RegEx accepts a certain set of
strings and always rejects the rest [Fri06].
So in the example above, the user could also enter ended into the Value field and it
would match the correct pattern.
There are also more complex options to use this feature but the given example por-
trays the most frequent use case.

5.5.4 Filter Logic

The highest demand in the filter component was the ability to combine different filter
rules with complex logic. By default, filter rules are always connected via AND oper-
ations and the aim was to also enable the operations OR, NOT and XOR.
In the evaluation, there have been broad discussions on how this could be realized.
One idea was to add a dropdown menu between each filter rule such that the user
can select an AND, OR or XOR operation between the rules. But then it would have
been difficult to realize filters with more than two filter rules, because the user had
no possibility to place parentheses in between. Moreover, it would not be possible to
realize the NOT operation.
Instead, every filter rule now receives a unique rule_id which is displayed to the left
of each filter rule. The user can then use the corresponding ids to specify a filter logic
by clicking the button "Add Filter Logic" which opens a dialog with an input field.
An example could look like this:
If a user wants to filter how often the actor has either pressed (rule_id123) themouse

(rule_id456) or clicked (rule_id789) the mouse (rule_id456), the corresponding filter
logic would be (rule_id123 && rule_id456) || (rule_id789 && rule_id456).
The resulting dialog to define filter logic looks like this:

Figure 5.7: Add Filter Logic Dialog

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 25

5.5. Filter Enhancements

Frontend Checks

The specified expression is displayed in the filter settings dialog, thus the user is al-
ways aware of their provided logic.
When a filter expression is entered in the input field and the user presses the “Apply”
button, the frontend performs an initial check and makes sure that the provided ex-
pression is valid. It checks whether the provided rule_ids exist as well as checking if
only valid characters were used, being “&”, “|”, “xor” and “!”.
At last, it checks if the amount of used parentheses is balanced, thus if the amount of
opening parentheses equals the amount of closing parentheses.
If any of these checks fails, an according error gets printed to the UI, otherwise the
filter logic gets applied and the backend gets called with the provided expression and
the corresponding filter_id.

Backend Handling of Filter Logic

In the backend, there is a global FILTER_EXPRESSIONS_MAP which stores filter_ids
with their corresponding filter expression as a string.
When the backend is called with a filter_id and a logical expression, it checks if the
filter_id already exists in the map and either updates the expression, inserts an new
entry or deletes it.
The function which is responsible for updating the filter counters contains an if condi-
tion which checks if a filter logic exists for the given filter. Depending on the outcome,
either the usual function filter_statements or the new function filter_statements_-

with_logic gets called.
The new function starts with parsing the given expression string such that each oper-
ator and rule_id gets separated and stored in an array.
The string “(rule_id123 && rule_id456)” would now become [“(“, “rule_id123”, “&&”,
“rule_id456”, “)”].
After that, for each filter rule it is computed, whether the provided path contains the
specified filter value in each statement.
The boolean result for each statement is stored in the rule_result array. After filtering
all statements with a filter rule, the rule_id as well as the rule_result array are stored
in the rule_results map.
At the end, the map contains every existing rule_id with the corresponding boolean
results from each statement. Next, these results get applied on the parsed expres-
sion:
Therefore, the helper function evaluate_expression is called for every index of the
incoming statements. In this function, two different stacks are created being the op-

erator_stack and the bool_stack.
The function loops through every parsed token and sorts the operator symbols, being
||, &&, xor and !, into the operator_stack. Whenever it identifies a rule_id, it looks up
the rule result for the current statements index and pushes it onto the bool_stack.
When reaching an opening parenthesis, nothing happens. But when reaching a clos-
ing parenthesis, the helper function apply_operator is called with the two current
stacks.
At that time, the operator_stack contains all operators which occured in one pair of
parentheses, thus they can be evaluated in one step. The bool_stack on the other

26 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

Chapter 6 Final Evaluation

At the beginning of this project, two researchers have been invited to take part in
a user evaluation of LiMoxAPI. In this evaluation, the participants got to know the
application quite well due to actively solving different tasks in the application.
As a result, the researchers gave their opinions about LiMoxAPI and suggested addi-
tional features and further improvements.
After the implementation of their suggestions, a second evaluation was conducted
with the same participants. This time, the study was held as a group session instead
of single meetings and the participants did not have to engage with LiMoxAPI them-
selves but rather followed a presentation of the final application and its new features.
The results of the evaluation is presented in the subsequent sections:

6.1 The Evaluation
Just as in the first user evaluation, each component was portrayed and discussed
individually without looking at the whole application at first.
For every component, the results from the first evaluation were presented followed by
a description of how the suggestions got implemented, leading to a live presentation
of the improved component in LiMoxAPI.
That way, the participants also learned about the concerns and comments of the other
person during the first evaluation and could then immediately see the implementation
of the suggested features and improvements.
During the evaluation, the participants could offer suggestions and ask questions at
any time.

6.1.1 Pulse Monitor

The study started with the pulse monitor. The added features were the labels on the
x-axis for every second, as well as the history log which portrays the amount of state-
ments that arrived each second for the last 15 minutes.
The one thing that was not implemented after the evaluation was the second monitor
view, which graphically portrays the number of different statement types arriving per
second. This is due to the fact that the definition of different statement types does
not follow a clear structure and the view would only be adaptable for the statements
of this specific participant. Other users probably do not organize their statements in
this way, therefore this feature would not find a broad application.
Both participants found the x-axis labeling really useful and necessary for a sophisti-
cated analysis. The same goes for the history log. Although both of them said it would

28 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

6.1. The Evaluation

be even nicer to expand the history for a greater amount of time, this is quite hard to
realize with the current use of the ApexCharts library. When expanding the history
log, one would forfeit the current performance of the pulse monitor and thus forfeit
the performance of the overall application.
Another comment on the history log was that it would be nice to portray the log as
a histogram instead of a table. This could give the user a simplified overview of the
overall monitoring process.

6.1.2 Info Component

After regarding the pulse monitor, the evaluation focused on the info component. The
only change in the info component was the added help-icon which displays additional
information about the provided data. Both participants complimented the additional
explanations and agreed that these help-icons highly contribute to an improved user
experience and increased the comprehension of the user while using LiMoxAPI.
In general, multiple tooltips have been added to the icons in the application, which
made a big difference in the UX as well. Both participants were vastly fond of that.

6.1.3 Filter Component

Subsequent to the info component, the evaluation went on to the filter. This compo-
nent had by far the biggest changes, including the additional reset button for each
statement counter, the simplified way to create filter rules due to the provided drop-
down field with example paths, the enablement of RegEx search, the option to provide
complex filter logic as well as the log of statements which were filtered by that spe-
cific filter.
The participants quite liked the new features and especially found the log of the fil-
tered statements useful.
This feature did not evolve from the first user evaluation but rather became an idea
during the implementation process while testing the new improvements. There was
no option for users to specifically look at statements from a particular filter which can
be particularly useful when complex logic is provided.
This is how the idea for this feature was created and both participants vastly agreed
on this opinion.
Again, they stressed the importance of the provided explanations via the help icon of
the component and were quite content with the outcome of the filter functionality.
Nevertheless, one thing both of them noted was the fact that the rule_ids which are
needed for the provision of logical expressions are too long and would be exhausting
to use. Right now, the ids get uniquely created and represent the timestamps of their
creation.
Their suggestion was to use a pseudonym generator, because random names would
be easier to remember than using a combination of multiple digits.
Moreover, one participant commented that the implementation of a saving and import-
ing feature for the filters would be useful as well. With this possibility, users would be
able to reload their old filters from prior monitoring sessions and could reuse them
and their eventually provided logic saving a lot of time.

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 29

6.2. Overall Results

6.1.4 Logging Console

Next, the evaluation looked at the logging console. There, the only massive change
was the display of the log. Prior, it has been a list leading to the fact that the check-
boxes were mistaken as bullet points instead of selectable checkboxes.
Now, the logging console is displayed as a table in which the checkboxes are displayed
in a separate column being easier to recognize by the user.
Apart from that, the logged statements get highlighted when hovering over them, im-
plying that these items are clickable. With this improvement, the user now sees that
there is another feature that appears when clicking on one of the statements.
Both participants appreciated the changes and agreed that the implementation was a
satisfactory outcome.

6.1.5 Button Improvements

The behavior of the reset button has been rather unclear during the first evaluation.
When trying to reset a monitoring session, a dialog pops up asking the user which
filters he wants to keep, but this was formulated in a difficult way.
After reformulating this text, both participants agreed that the different types of fil-
ters are now defined in a clear and structured way and are therefore comprehensible
for the user.
Apart from that, a download button has been added to the login view of LiMoxAPI pro-
viding the possibility of downloading the login credentials of the used LRS. This has
also been received as a useful feature, although one of the participants noted that an
import feature should also be provided in order to reload the downloaded credentials
back into the application.

6.2 Overall Results
In general, both participants seemed quite content with the implementation of their
suggestions from the user evaluation. This study has shown that there is a great
interest in LiMoxAPI, not only coming from VR developers which use the OmiLAXR
Ecosystem, but also from LA developers from other fields.
Conducting an evaluation with participants from different application fields has led
to a broader perspective on the analysis of xAPI statements and therefore made a
massive difference in the enhancement of LiMoxAPI as well as confirming the profit
of the application in the support of a developers’ verification process of learning data.
There is still some potential in LiMoxAPI which will be further discussed in the chapter
Future Work, but the applied changes already achieve a better user experience as well
as a better chance of verifying and analyzing xAPI statements.
The overall application provides a simpler usage due to additional explanatory texts
and user feedback at the occurrence of errors. Due to the created interplay of the
different components and the enhanced filter complexity, the user gains an improved
data integrity and thus the ability of a more sophisticated analysis.
Sometimes, it is a difficult trade off between enhancing the usability and data integrity
in LiMoxAPI while ensuring that the application stays a lightweight and sophisticated
live monitoring tool, yet the added changes were necessary in order to provide a
proper monitoring tool for LA developers.

30 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

Chapter 7 Future Work

During both evaluation processes and the implementation of the suggested enhance-
ments, a lot of ideas for LiMoxAPI arose and have been discussed. Both participants
individually had a great impact on the further development of the application, but not
every feature could be implemented due to time constraints and changing demands.
Especially after the final evaluation, there was not much time left to develop further
changes.
This section will sum up particular options for improving LiMoxAPI with concrete
plans about their implementation.

7.1 Enhancing Existing Features
In the final evaluation, one participant noted that it would make more sense to trans-
form the developed history log from the pulse monitor into a histogram instead of
portraying the data in a list.
In order to achieve this it would make sense to restructure the whole pulse monitor
component by replacing the ApexCharts library with a different library for example
by using Chart.js1 or Apache’s ECharts2. Enhancing the pulse monitor in general
has shown to be quite tedious because ApexCharts turns out to not be that perfor-
mant when dealing with large datasets, especially in real-time scenarios which exist
in LiMoxAPI [Per].
Charts.js is lightweight, has good performance and is easy to use, ECharts is highly
performant, can handle large datasets and supports real-time updates [Ges21].
Both libraries are also supported by Vue and thus are easy to integrate. Due to time
issues this could not be performed in the scope of this project, but the styling and
displaying options of the chart have been adjusted such that there is no visible per-
formance issue when using the application.
The enhancements of the filter component have achieved a great difference in the
usage of the overall application. One thing that could be added here would be a fea-
ture which allows to save created filters with the option to import them for the next
monitoring session. This way, users are able to reuse filters and their provided logic
which would save effort and time.
A feature which correlates to that is the download button for the login credentials.
When providing the option to download the entered login credentials, LiMoxAPI
should also enable the user to import them such that they do not have to copy them

1 https://www.chartjs.org/docs/latest/, accessed: February 2025
2 https://echarts.apache.org/handbook/en/get-started/, accessed: February 2025

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 31

7.2. Changes in LiMoxAPI’s Architecture

from their credentials.json file, but rather are able to just select the correct creden-
tials file in their browser leading to an automatically filled out login form.

7.2 Changes in LiMoxAPI’s Architecture
This section describes possible future changes in LiMoxAPI regarding the construc-
tion of its architecture and will look at three possibilities.

7.2.1 Integration of the YetAnalytics SQL LRS

Currently, LiMoxAPI connects to an external LRS which either runs locally on the
computer of the user, or runs on the web like LL.
This LRS receives the generated learning data from the learning environment that
should be monitored. For an easy monitoring process, it is recommended to use the
pre configured YetAnalytics SQL LRS because it can be run locally and does not re-
quire an additional configuration. When using this LRS, it has to be started each time
when LiMoxAPI gets started.
Thus a great improvement would be to integrate the LRS into LiMoxAPI. One realiza-
tion of this could be done by adding the pre configured LRS to the LiMoxAPI package.
In addition, the according launch functionality has to be added to the rust backend.
This would provide a rather simple way to integrate an LRS into LiMoxAPI. But it is
still important to give the user the option to connect to a different LRS such that users
are not forced to use the SQL LRS from YetAnalytics.

7.2.2 Developing a Plugin System

One aim of this project has been to make LiMoxAPI accessible to a wider range of
users. This could be realized by providing a plugin system such that users can create
their own custom features.
During this project the demand for this idea was not high enough and therefore the
focus rather shifted towards enhancing the already existing components.
Still, one way to realize such a plugin system would be using Rust traits3. One could
define a feature trait with the required functions to process the passed data and
send it to the frontend with the use of the Tauri communication system. There, an
according event-listener is needed which acts upon the arrival of the sent data.
Nonetheless, the evaluation has shown that LA developers do not want to learn the
Rust programming language in order to create small features. Most of them would
only use this option for research purposes rather than for an analysis and verification
purpose.
Thus, users would only use this feature occasionally and if they would, they want to
have a simple way to implement their ideas.
Another option would be to use JS Sandbox4. js-sandbox is a Rust library which
enables the execution of JS code in Rust in a secure sandbox.
However, one of the participants in the user study stressed that this would be quite
tedious and time-consuming. He suggested implementing a simple RestAPI such that

3 https://doc.rust-lang.org/book/ch10-02-traits.html, accessed: February 2025
4 https://crates.io/crates/js-sandbox, accessed: February 2025

32 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

Chapter 8 Conclusion

The main goal of this project was to find out how the usability and data integrity in
the existing version of LiMoxAPI could be enhanced in order to provide an even better
live monitoring tool for LA developers.
Originally, the application was a prior bachelor thesis which has been developed in the
context of the OmiLAXR Ecosystem provided by the research group Learning Tech-
nologies.
Therefore, it was mainly provided for LA developers with a VR context.
It was aimed to broaden the application field of LiMoxAPI such that LA developers
from all fields were able to engage with the application.
In order to achieve this, a user evaluation has been conducted with two participants
from different LA application fields, widening the perspective on the analysis of xAPI
statements.
Initially, LiMoxAPI was a solid prototype for monitoring incoming learning data in a
connected LRS but there existed multiple issues. The application was stiff, all compo-
nents were independent from each other and did not provide any interplay.
Users also did not have many options to interact with the desktop application and
thus were limited in their analysis potential.
The conducted user evaluation led to the retrieval of multiple different suggestions
for additional features as well as further improvements for existing components.
The main focus lay on the overall simpler understanding of LiMoxAPI thus an im-
proved user experience.
In addition, this thesis strived for a more complex interplay between the different
components and more options for the user to engage with the application with a par-
ticular focus on the filter component.
This component had the biggest changes, being the enablement for RegEx search in
the value field of a filter rule and the option to provide filter logic between different
filter rules.
In addition, users are now able to analyze single aspects more intensely and individ-
ually due to the ability of logging the filtered statements of all filters in the logging
console or only logging the filtered statements of a specific filter in a separate filter-
log.
Moreover, users are able to either reset the whole monitoring session while keeping
specific filters or to only reset the statement counter of a specific filter.
The other components obtained a restructuring by adding x-axis labels to the pulse
monitor and displaying the logging console as a table, because it now contains check-
boxes which enable the user to select a logged statement as a filter.
Besides that, additional coherent explanatory details and graph definitions led to a

34 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

simpler comprehension of the given components, their interplay and therefore the
overall application.
Due to these implemented changes, users are now able to monitor, analyze and thus
verify their xAPI data in a simpler way.
This also sets the path for an improved data integrity due to enhanced feedback to
the user and an overall better clarification of the application reducing user errors and
incorrect actions but rather enhancing analysis potential.
Nevertheless, the final evaluation has shown that there still exist possible improve-
ments for LiMoxAPI which could not be realized in the scope of this project due to
time constraints.
These contain the restructuring of the pulse monitor by replacing the ApexCharts li-
brary with a more performant library, for example being Chart.js or Apache’s ECharts.
In addition, some little adjustments in the frontend components would be helpful. Big-
ger changes would be the realization of a plugin system, as well as the inclusion of
the YetAnalytics LRS to automate its starting process.
Finally, the code of LiMoxAPI could be restructured such that the Tauri Framework
gets replaced by an HTTP REST-API such that its backend and frontend can be dock-
erized individually.
All in all, the goal of enhancing the usability and data integrity of LiMoxAPI was
achieved resulting in a performant and sophisticated live monitoring tool for LA de-
velopers of all application fields. There is still room for improvement and enhance-
ment, but it is always a trade off between upgrading LiMoxAPI while ensuring that
the application stays a lightweight live monitoring tool.

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 35

Appendix A Bibliography

[BKP+16] Aneesha Bakharia, Kirsty Kitto, Abelardo Pardo, Dragan Gašević, and
Shane Dawson. Recipe for success: lessons learnt from using xapi
within the connected learning analytics toolkit. In Proceedings of

the sixth international conference on learning analytics & knowledge,
pages 378–382, 2016.

[BT75] Victor R Basil and Albert J Turner. Iterative enhancement: A practical
technique for software development. IEEE Transactions on Software

Engineering, (4):390–396, 1975.

[CDST12] Mohamed Amine Chatti, Anna Lea Dyckhoff, Ulrik Schroeder, and Hen-
drik Thüs. A reference model for learning analytics. International jour-
nal of Technology Enhanced learning, 4(5-6):318–331, 2012.

[Clo13] Doug Clow. An overview of learning analytics. Teaching in Higher

Education, 18(6):683–695, 2013.

[cona] Actix contributors. Actix web documentation. https://actix.rs/docs/, Ac-
cessed: February 2025.

[conb] Axios contributors. Axios documentation - introduction. https://axios-
http.com/docs/intro, Accessed: February 2025.

[CV97] Mahil Carr and June Verner. Prototyping and software development
approaches. Department of Information Systems, City University of

Hong Kong, Hong Kong, pages 319–338, 1997.

[For18] Jodi Forlizzi. Moving beyond user-centered design. interactions,
25(5):22–23, 2018.

[Fri06] Jeffrey Friedl. Mastering regular expressions. " O’Reilly Media, Inc.",
2006.

[Ges21] Ralf Geschke. Javascript chart libraries im bench-
mark: Apexcharts, chart.js, apache echarts, 2021.
https://www.kuerbis.org/2021/02/javascript-chart-libraries-im-
benchmark-apexcharts-chart-js-apache-echarts/, 2021, Accessed:
February 2025.

[GHS24] Sergej Görzen, Birte Heinemann, and Ulrik Schroeder. Towards using
the xapi specification for learning analytics in virtual reality. In LAK

Workshops, pages 260–271, 2024.

36 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

A Bibliography

[GTE+17] Maria Grandl, Behnam Taraghi, Markus Ebner, Philipp Leitner, and
Martin Ebner. Learning analytics. Handbuch E-Learning. Expertenwis-

sen aus Wissenschaft und Praxis–Strategien, Instrumente, Fallstudien.

Köln: Wolters Kluwer, pages 1–16, 2017.

[Gö24] Sergej Görzen. Omilaxr, 2024. https://omilaxr.dev/get-started/, 2024,
Accessed: February 21, 2025.

[Ham23] Nasrullah Hamidli. Introduction to ui/ux design: key con-
cepts and principles. Academia. URL: https://www. academia.

edu/98036432/Introduction_to_UI_UX_Design_Key_Concepts_and_-

Principles [accessed 2024-04-27], 2023.

[HEGS22] Birte Heinemann, Matthias Ehlenz, Sergej Görzen, and Ulrik
Schroeder. xapi made easy: A learning analytics infrastructure for in-
terdisciplinary projects. International Journal of Online & Biomedical

Engineering, 18(14), 2022.

[HGD+24] Birte Heinemann, Sergej Görzen, Ana Dragoljic, Lars Meiendresch,
Marc Troll, and Ulrik Schroeder. A learning analytics dashboard to
investigate the influence of interaction in a vr learning application. In
LAK Workshops, pages 251–259, 2024.

[HGS+22] Birte Heinemann, Sergej Görzen, Ulrik Schroeder, J Bourdin, and E Pa-
quette. Repix vr-learning environment for the rendering pipeline in
virtual reality. Bourdin, J.-J.; Paquette, E., Hrsg.): Eurographics, 2022.

[HGS23] Birte Heinemann, Sergej Görzen, and Ulrik Schroeder. Teaching the
basics of computer graphics in virtual reality. Computers & Graphics,
112:1–12, 2023.

[Hol93] Andy Holyer. Methods for evaluating user interfaces. 1993.

[JDT20] Akhila Joshi, Padmashree Desai, and Prakash Tewari. Learning analyt-
ics framework for measuring students’ performance and teachers’ in-
volvement through problem based learning in engineering education.
Procedia Computer Science, 172:954–959, 2020.

[KE15] Mohammad Khalil and Martin Ebner. Learning analytics: principles
and constraints. In Edmedia+ innovate learning, pages 1789–1799.
Association for the Advancement of Computing in Education (AACE),
2015.

[LRV+08] Effie Law, Virpi Roto, Arnold POS Vermeeren, Joke Kort, and Marc Has-
senzahl. Towards a shared definition of user experience. In CHI’08 ex-

tended abstracts on Human factors in computing systems, pages 2395–
2398. 2008.

[MG19] Katerina Mangaroska and Michail Giannakos. Learning analytics for
learning design: A systematic literature review of analytics-driven de-
sign to enhance learning. IEEE Transactions on Learning Technologies,
12(4):516–534, 2019.

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 37

A Bibliography

[MHH18] Angela Minichiello, Joel R Hood, and Derrick Shawn Harkness. Bring-
ing user experience design to bear on stem education: A narrative lit-
erature review. Journal for STEM Education Research, 1:7–33, 2018.

[Per] Robin Percy. Comparing the most popular javascript chart-
ing libraries. https://blog.logrocket.com/comparing-most-popular-
javascript-charting-libraries/, 2023, Accessed: February 2025.

[Rad14] Iulian Radu. Augmented reality in education: a meta-review and cross-
media analysis. Personal and ubiquitous computing, 18:1533–1543,
2014.

[RSS21] Jenny Ruiz, Estefanía Serral, and Monique Snoeck. Unifying func-
tional user interface design principles. International Journal of Human–

Computer Interaction, 37(1):47–67, 2021.

[Sie12] George Siemens. Learning analytics: envisioning a research discipline
and a domain of practice. In Proceedings of the 2nd international con-

ference on learning analytics and knowledge, pages 4–8, 2012.

[SLMOH+17] Ángel Serrano-Laguna, Iván Martínez-Ortiz, Jason Haag, Damon Re-
gan, Andy Johnson, and Baltasar Fernández-Manjón. Applying stan-
dards to systematize learning analytics in serious games. Computer

Standards & Interfaces, 50:116–123, 2017.

[TSL24] Georg Thiesen, Ulrik Schroeder, and Horst Lichter. A Learning Analyt-
ics Monitoring Tool for Supporting VR Developers, 2024.

[Väk23] Valtteri Väkevä. Tracking learning experiences with xapi. Master’s
thesis, 2023.

[VODC+20] Katrien Verbert, Xavier Ochoa, Robin De Croon, Raphael A Dourado,
and Tinne De Laet. Learning analytics dashboards: The past, the
present and the future. In Proceedings of the tenth international con-

ference on learning analytics & knowledge, pages 35–40, 2020.

[VRL15] Juan C Vidal, Thomas Rabelo, and Manuel Lama. Semantic description
of the experience api specification. In 2015 IEEE 15th International

Conference on Advanced Learning Technologies, pages 268–269. IEEE,
2015.

[WKS22] Salome Wörner, Jochen Kuhn, and Katharina Scheiter. The best of two
worlds: A systematic review on combining real and virtual experiments
in science education. Review of Educational Research, 92(6):911–952,
2022.

38 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

Appendix B User Evaluation Script

This appendix contains the script which was followed while conducting the first round
of user evaluations.
It holds the motivation for LiMoxAPI, the five different tasks the participants had to
solve as well as the questions which were discussed after each task and the further
ideas that have been presented and discussed at the end of the study.
The evaluation itself was supported by presentation slides which have been created
from the given script.
The script is displayed on the next two pages.

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 39

Glossary

JSON The JavaScript Object Notation is a common data
format to store and transmit data.

LL Learning Locker is the Learning Record Store
which is used in combination with the OmiLAXR
Ecosystem.

RegEx A regular expression is a pattern which describes
a set of strings that matches the pattern.

SQL LRS the Learning Record Store of YetAnalytics.

42 Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

Acronyms

HMD Head Mounted Display.

IPC Inter-Process Communication.

LA Learning Analytics.
LiMoxAPI Live Monitoring of xAPI Statements.
LMS Learning Management System.
LRS Learning Record Store.

OmiLAXR Open and modular integration of Learning Ana-
lytics in eXtended Reality.

UI User Interface.
UX User Experience.

xAPI experience API.
XR eXtended Reality.

Lea Sieler - Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers 43

Sieler, Lea 434459

Enhancing Usability and Data Integrity in LiMoxAPI for LA Developers

Aachen, February 22, 2025

Aachen, February 22, 2025

Acknowledgement
I want to thank my supervisors, Sergej Görzen and Sarah Sahabi, for their support
and feedback throughout my thesis. Besides, I want to thank the two participants
whose participation allowed me to conduct the user evaluations and helped to improve
LiMoxAPI. At last, I am thanking the research group Learning Technologies for giving
me the opportunity to write my bachelor thesis.

	List of Figures
	Introduction
	Motivation
	Goal

	Scientific Background
	Iterative Enhancement
	Learning Analytics
	Tasks and Purpose
	LA in a XR Context

	Experience API
	UI and UX Design

	Related Work
	OmiLAXR Ecosystem
	xAPI Definitions Registry
	xAPI4Unity
	The Researcher Companion Panel
	OmiLAXR Framework

	LiMoxAPI
	Technical Stack
	Frontend Components

	First Requirements and User Evaluation
	Reviving Requirements
	Evaluation
	The Setting
	The Study
	The Results

	Implementation
	Download and Reset Button
	Helpful Explanations for an improved UX
	Pulse Monitor
	X-Axis Labeling
	History Log
	Additional Statement Type Graphs

	Logging Console
	Filter Enhancements
	Simplified Filter Rule Definition
	Analysis of Single Filters
	RegEx
	Filter Logic

	Final Evaluation
	The Evaluation
	Pulse Monitor
	Info Component
	Filter Component
	Logging Console
	Button Improvements

	Overall Results

	Future Work
	Enhancing Existing Features
	Changes in LiMoxAPI’s Architecture
	Integration of the YetAnalytics SQL LRS
	Developing a Plugin System
	Creating a REST-API

	Conclusion
	Appendix
	Bibliography
	User Evaluation Script
	Glossary
	Acronyms

