h1

h2

h3

h4

h5
h6


001     1010924
005     20250929154302.0
024 7 _ |2 ISSN
|a 2166-2525
024 7 _ |2 SCOPUS
|a SCOPUS:2-s2.0-85215551527
024 7 _ |2 WOS
|a WOS:001450056300004
024 7 _ |2 doi
|a 10.1137/23M161433X
024 7 _ |2 datacite_doi
|a 10.18154/RWTH-2025-04436
037 _ _ |a RWTH-2025-04436
041 _ _ |a English
082 _ _ |a 510
100 1 _ |0 P:(DE-82)1015582
|a Terhag, Felix
|b 0
|e Corresponding author
|u rwth
245 _ _ |a Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI
|h online
260 _ _ |a Philadelphia, Pa.
|b SIAM
|c 2025
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
588 _ _ |a Dataset connected to , , , CrossRef, Journals: publications.rwth-aachen.de
591 _ _ |a Germany
591 _ _ |a Saudi Arabia
700 1 _ |a Knechtges, Philipp
|b 1
700 1 _ |a Basermann, Achim
|b 2
700 1 _ |0 P:(DE-82)IDM03048
|a Tempone, Raul
|b 3
|u rwth
773 _ _ |0 PERI:(DE-600)2690603-X
|a 10.1137/23M161433X
|n 1
|p 90-113
|t SIAM ASA journal on uncertainty quantification
|v 13
|x 2166-2525
|y 2025
856 4 _ |u https://publications.rwth-aachen.de/record/1010924/files/1010924.pdf
|y OpenAccess
909 C O |o oai:publications.rwth-aachen.de:1010924
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)1015582
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-82)IDM03048
|a RWTH Aachen
|b 3
|k RWTH
914 1 _ |y 2025
915 1 _ |0 StatID:(DE-HGF)0031
|2 StatID
|a Peer reviewed article
|x 0
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2024-12-18
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SIAM-ASA J UNCERTAIN : 2022
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 1 _ |0 I:(DE-82)118110_20190107
|k 118110
|l Lehrstuhl für Mathematics for Uncertainty Quantification
|x 0
920 1 _ |0 I:(DE-82)110000_20140620
|k 110000
|l Fachgruppe Mathematik
|x 1
980 1 _ |a FullTexts
980 _ _ |a I:(DE-82)110000_20140620
980 _ _ |a I:(DE-82)118110_20190107
980 _ _ |a UNRESTRICTED
980 _ _ |a VDB
980 _ _ |a journal


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21