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 A B S T R A C T

Boudins are ubiquitous periodic structures that form during layer-parallel extension of competent material 
embedded in less competent material. They can have a wide range of geometries, depending on paleo-
rheological conditions. This makes them a powerful tool in interpreting the time–temperature and deformation 
history of a rock package. Consequently, multiple field and modeling studies have described their geometries 
as well as explored the boundary conditions for their formation. Inspired by previous findings in modeling and 
field studies, we test the hypothesis that boudin end member geometries, such as pinch-and-swell, domino, 
torn, and shear band boudins, can be realized with purely brittle–elastic behavior of the boudinaged layer 
embedded in a viscous matrix. For this purpose, we designed a parametric Discrete Element Modeling study 
in which different failure modes in the brittle material are achieved by varying the layer thickness, material 
cohesion and the layer parallel confining stress. We show that the different boudin geometry is a first order 
result of the failure mode, fracture mechanics in the brittle layer and the associated post failure behavior. Our 
models confirm previous findings that block rotation of boudins may be associated with coaxial deformation. 
Our models indicate a failure mode transition exits between torn and drawn boudins. These results may help 
us better understand the evolution of boudins and thus help interpret natural examples such as the boudin 
trains in Naxos, Greece.
. Introduction

Boudins are ubiquitous periodic structures that form when a layer of 
ore competent material, embedded in a matrix of less competent ma-
erial, deforms during layer-parallel extension (Ramberg, 1955; Ramsay 
nd Huber, 1987; Fossen, 2010; van Noten and Sintubin, 2010). They 
orm in compressional as well as in extensional regimes, typically under 
irect tension, in shear zones or in limbs of isoclinal folds (Marques 
t al., 2012; Zulauf et al., 2010; Schöpfer et al., 2009). Boudins exist in 
 wide range of sizes from μm- to m-scale (Goscombe et al., 2004) to the 
m-to-crustal scale (Schönherr et al., 2008; Reuning et al., 2009; van 
ent et al., 2011; Gueguen et al., 1997; Jolivet et al., 2004). They also 
ccur in many different lithologies, for example in pegmatites forming 
ompetent layers in a marble matrix (Schenk et al., 2007), carbon-
tes enclosed in salt (Schönherr et al., 2008), quartz veins in various 
ost rocks (Goscombe and Passchier, 2003), amphibolites in a marble 
atrix (Bamberg et al., 2022; Virgo et al., 2018; von Hagke et al., 
018), calcite veins in limestone (Grobe et al., 2018), competent units 
n shale detachments (Morley et al., 2017, 2018), competent sandstones 
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in less competent units (Marques et al., 2012), and many other litholo-
gies (Goscombe et al., 2004). This variability shows that they form over 
a wide range of pressure and temperature conditions, including brittle 
as well as ductile deformation. This variability is reflected in the range 
of the boudin geometries, which are indicative of the properties of the 
material at the time of deformation, in particular the contrast in viscos-
ity between the competent and the less competent layers (Goscombe 
et al., 2004; Fossen, 2010; Virgo et al., 2018). The sizes of the boudin 
blocks are controlled by layer thickness, viscosity contrast and the 
properties of the interface between the different layers (Bai and Pollard, 
1999; Mandl, 2005; Li and Yang, 2007; Iyer and Podladchikov, 2009; 
Schöpfer et al., 2011). The importance of boudinage was recognized 
more than a century ago (Lohest, 1909), and since then boudins have 
been the focus of multiple studies (Quirke, 1923; Corin, 1932; Cloos, 
1947). The evolution of boudins has been studied using a wide range 
of analog (Mandal and Khan, 1991; Zulauf et al., 2009, 2010; Marques 
et al., 2012) and numerical (Lloyd and Ferguson, 1981; Passchier and 
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Fig. 1. Classification of boudinage based on geometry. Different types of boudins can form depending on coaxial or non-coaxial deformation as well as confining pressure. Block 
rotations have commonly been associated with non-coaxial deformation (Goscombe et al., 2004). Coaxial deformation results in blocky boudins with different block shapes, which 
may however also rotate. By definition based on the curvatures of the boudin exterior surface and face, no transition between torn and drawn boudins is possible. However, in 
nature such a transition may exist. In this study, we focus on the transition between boudinage types with a particular focus on uniaxial deformation.
Druguet, 2002; Maeder et al., 2009; Schöpfer et al., 2011; Abe and Urai, 
2012; Peters et al., 2015; Grasemann et al., 2019) modeling approaches. 
These studies show that the basic mechanisms of boudin formation are 
reasonably well understood and that they can be used to explain the 
influence of layer geometry, rheology, and deformation conditions on 
the resulting shape and spacing of the boudin blocks. Boudins can be 
classified based on their geometries (Goscombe et al., 2004) as shown 
in Fig.  1. Generally, symmetric boudins, which form during coaxial 
deformation, and asymmetric boudins, which form during non-coaxial 
deformation, can be distinguished. Typically, asymmetric boudins show 
rotation of the boudin blocks, and this rotation with respect to the shear 
plane can be used for boudin classification. However, block rotations 
can occur also during coaxial deformation, and consequently it may be 
challenging to distinguish between different boudinage types based on 
geometry alone (Abe and Urai, 2012; Grasemann et al., 2019). This is 
particularly relevant as the rock record only rarely allows for direct ob-
servation of the time evolution of boudinage structures. Consequently, 
one aspect that is not well understood is which parameters control the 
failure mode between boudin blocks and therefore the shape of the 
block ends.

Understanding block geometry is important, as it may provide 
insights on material properties during deformation. In this study, we 
use numerical models to investigate the influence of layer thickness, 
material strength and stress boundary conditions on the failure modes 
and resulting shapes of brittle boudins in high spatial resolution.

2. Method

2.1. DEM

The numerical simulations used in this work are based on the 
Discrete Element Method (DEM). In this approach, which was origi-
nally developed by Cundall and Strack (1979) the material is modeled 
as a collection of particles, which interact with their neighbors and 
move according to Newton’s laws. The key advantage of this method 
compared to numerical continuum mechanics approaches, like Finite 
Difference (FD) or Finite Element Method (FEM) approaches, is that 
the DEM naturally includes the formation and evolution of disconti-
nuities such as brittle fractures into the model. Possible interactions 
between particles include elastic (Cundall and Strack, 1979; Donzé 
2 
et al., 1994) and frictional (Place and Mora, 1999) interactions, brittle–
elastic bonds (Mora and Place, 1994; Potyondy and Cundall, 2004; 
Wang et al., 2006) and ‘‘dash-pot’’ interactions (Abe and Urai, 2012). 
If particles are connected by brittle–elastic bonds, the interaction can 
break, i.e., be replaced by a combination of a purely repulsive elastic in-
teraction and a frictional interaction. To determine if a bond breaks, the 
relative displacements of the particles and/or the resulting interaction 
forces are compared with a given failure criterion. To obtain a real-
istic fracture behavior, the bonded interaction formulation developed 
by Wang et al. (2006) is used. This takes into account both transla-
tional (i.e., normal and tangential) and angular (bending and torsion) 
deformation of the bond. The dash-pot interaction developed by Abe 
and Urai (2012) is used to obtain a ductile material behavior similar 
to a Bingham material (Middleton and Wilcock, 1994). This implies 
that, despite the fact that the model consists of individual particles, 
it is possible to model distributed deformation (as opposed to granular 
flow only). This is because ductile deformation is scale dependent, and 
continuous deformation can be localized on the grain scale (Passchier 
and Trouw, 1996). Consequently, we model deformation that takes 
place on the grain scale as also observed in natural examples, which 
we will address in the discussion. Due to the necessary model resolution 
and consequently the large number of particles contained in the models, 
the computational cost is relatively high. We have therefore used the 
parallel DEM software ESyS-Particle (Abe et al., 2003; Weatherley 
et al., 2010), https://launchpad.net/esys-particle/, to distribute the 
computational effort across multiple computing nodes on a cluster.

2.2. Stress calculations

Calculating average stresses for a given volume is slightly more dif-
ficult in a DEM model compared to a model using a typical continuum-
based approach, such as Finite Element or Finite Difference methods. 
This is in part due to the particle-scale heterogeneity of stresses in DEM 
models. An additional problem is that the stress tensors can be locally 
non-symmetric due to rotational degrees of freedom of the particles and 
angular moments transferred by the interactions.

Three different approaches to calculate the average stress in a 
volume of a granular medium are described by Fortin et al. (2003): 
(1) summation of the tensor product of forces and contact orientation 
vector over all particle interactions within the volume, (2) summation 
over all external contacts to the volume, and (3) based on the virtual 

https://launchpad.net/esys-particle/
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Fig. 2. Distribution of calculated stresses in a triaxial compression model for different 
cell sizes of the calculation grid. Continuous lines show externally applied stresses, 
shaded areas show the distribution of calculated stresses in the grid cells and short 
colored bars show the median values of the distribution. Blue shows 𝜎𝑥𝑥, orange shows 
𝜎𝑦𝑦 and green shows 𝜎𝑧𝑧.

work principle. Of these approaches, we chose the second option and 
use a formulation directly based on the definition of the Cauchy stress 
to calculate the average stress 𝜎𝑖𝑗 in a given volume 𝑉  by summing 
the product of force 𝑓 and location vector 𝑥 of all particle–particle 
interactions where one of the particles involved is inside the volume 
and the other one is outside, i.e., 

𝜎𝑖𝑗 =
1
𝑉

∑

𝑒
𝑥𝑒𝑖𝑓

𝑒
𝑗 (1)

similar to Eq. 54 in Bardet and Vardoulakis (2001).
The stress calculation algorithm has been validated and the rela-

tion between stress grid resolution and the scatter of the calculated 
stresses has been estimated using data from a true triaxial compression 
experiment, i.e., 𝜎𝑥𝑥 ≠ 𝜎𝑦𝑦 ≠ 𝜎𝑧𝑧. In this experiment, a stress of 
𝜎𝑥𝑥 = 0.0005, 𝜎𝑦𝑦 = 0.0003, 𝜎𝑧𝑧 = 0.0001 model units is applied to 
a block of particles with a size of 40 × 80 × 40 model units. Using 
particle radii in the range 𝑟𝑚𝑖𝑛 = 0.2… 𝑟𝑚𝑎𝑥 = 1.0 model units, the block 
contains approximately 365,000 particles. The strength of the bonds 
between the particles is chosen such that no fracturing is taking place 
during the loading process. To avoid boundary effects that influence the 
observed stress distributions, the stress was calculated for a volume of 
size 36 × 72 × 36 inside the model, i.e., leaving a distance of at least 
two model units (i.e., twice the maximum particle radius) between the 
calculation volume and the boundary of the model.

The results (Fig.  2) show that the calculated stresses converge 
towards the expected values with increasing cell size of the calculation 
grid. For the particle packing used in the validation model, which is 
the same as in the models shown in the following sections, a grid cell 
size of three model units, i.e., three times the maximum particle radius, 
appears to provide the best compromise between grid resolution and 
the accuracy of the calculated stresses.

2.3. Model setup

Although the models are deformed under plane strain conditions, 
we chose to use 3D models instead of a computationally cheaper 2D ap-
proach. The main reason for this decision is that granular shear zones, 
such as those developing between boudin blocks in some of the models, 
show differences in their mechanical properties, in particular in their 
macroscopic friction angles, in 2D and in 3D (Frye and Marone, 2002; 
Hazzard and Mair, 2003). We use a three-layer model where a com-
petent brittle–elastic layer is sandwiched between two less competent 
ductile layers (Fig.  3). The layers are arranged parallel to the x–z plane. 
3 
Fig. 3. Model setup. Blue particles show the brittle material, red particles show 
the ductile material. Transparent yellow planes show the boundary plates where 
the confining stress 𝜎ℎ is applied and transparent green planes show the boundary 
plates which are moved to drive the deformation. The fixed side plates are shown in 
transparent gray.

The model is using a central layer with a finite length, i.e., the brittle–
elastic layer is shorter than the complete model. The space between 
the layer terminations and the boundary plates is filled with ductile 
material. 2D studies using a similar setup have shown that the details 
of the end of the layer do not significantly influence the evolution of 
the fracture in the competent layer (Abe and Urai, 2012). However, 
the fact that the ends of brittle layer are not in direct contact with the 
boundary plates does avoid a possible boundary effect on the rotation 
of the boudin blocks closest to the boundary. Rigid plates on the outer 
surfaces of the model are used to control deformation of the particle 
assembly. The xy-boundaries are fixed, preventing deformation of the 
model in 𝑧-direction and resulting in a plane strain deformation regime. 
The yz-boundaries on the +x- and -x-ends of the model are servo-
controlled to stay at a given confining stress, which is held constant 
after an initial ramp-up phase. xz-boundaries (i.e., top- and bottom) 
are initially loaded at the same stress as the boundaries at the +x and 
-x ends of the model until the desired confining stress is reached. After 
this, they are moved towards each other to shorten the model in the 𝑦-
direction, i.e., perpendicular to layering. The rate of movement is also 
kept constant after an initial ramp-up phase. To avoid discontinuities in 
the velocity of the plate movement, and therefore spikes in the forces 
applied to the particles adjacent to the plates, a sinusoidal function has 
been used to ensure a smooth transition between the applied stress- or 
velocity values before and after ramp-up 

𝑓 (𝑡) = 𝑓0 + (𝑓1 − 𝑓0) sin
(

𝜋
2

𝑡 − 𝑡0
𝑡1 − 𝑡0

)

(2)

where 𝑓0 is the applied value before the ramp-up and 𝑓1 is the value 
afterwards, 𝑡0 the time step when the ramp begins, 𝑡1 when it ends 
and 𝑡 is the current time step. The simulation ends when 25% ver-
tical shortening is achieved. Having checked that the kinetic energy 
of the particles in the model remains much smaller than the elastic 
energy stored in the bonds ensures that the deformation rates are slow 
enough so that the simulations can be considered quasistatic, similar to 
previous work on 2D-boudinage models (Abe and Urai, 2012).

In the brittle–elastic material, particles are initially interacting by 
breakable bonded interactions and by frictional-elastic interactions 
after the bonds are broken. In the ductile material, particles are not 
bond together and do not mutually interact (cf (Abe and Urai, 2012)). 
A range of different model geometries were used in the simulations. 
For the main part of the work, two sets of simulations were performed 
based on model geometries ‘‘Thin’’ and ‘‘Thick’’ ( Table  1) with the 
same length 𝑥𝑡𝑜𝑡𝑎𝑙 and width 𝑧, but different layer thicknesses. In total, 
we present 56 simulations. Four different values of bond cohesion, 
𝐶 , for the brittle layer, 50 MPa, 75 MPa, 100 MPa and 150 MPa, 
𝑏𝑜𝑛𝑑
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Table 1
Geometric parameters of main model sets. All parameters in model units. For the 
meaning of the parameters see also Fig.  3.
 ‘‘Thin’’ ‘‘Thick’’ ‘‘Long1’’ ‘‘Long2’’ 
 length (𝑥𝑡𝑜𝑡𝑎𝑙) 220 220 330 440  
 brittle layer length (𝑥𝑏𝑙) 200 200 310 420  
 width (𝑧𝑡𝑜𝑡𝑎𝑙) 30 30 30 30  
 thickness (𝑦𝑡𝑜𝑡𝑎𝑙) 50 100 100 100  
 brittle layer thickness (𝑦𝑏𝑙) 10 30 30 30  
 min. particle radius 0.2 0.2 0.2 0.2  
 max. particle radius 1.0 1.0 1.0 1.0  

were used, resulting in the properties of the material as listed in Table 
2. This was combined with seven different confining stresses between 
1 MPa and 100 MPa for a total of 28 simulations for each model 
geometry.

In previous numerical models, it has been shown that the detailed 
shape of the layer terminations does not affect the outcome of the 
deformation process (Abe and Urai, 2012). In other words, whether the 
brittle layer is as long as the whole model, i.e., in direct contact with 
the boundary plates in the longitudinal (x) direction, or slightly shorter, 
does not change the model results. We use a geometry with a slightly 
shorter brittle layer. The gap between the ends of the brittle layer and 
the edge of the model was 10 model units in all models, i.e., the length 
of the brittle layer 𝑥𝑏𝑙 is constant at 20 units smaller than the total 
length of the model. A summary of the geometric parameters of all 
models used is provided in Table  1. The geometric properties of the 
models are given in dimensionless model units because the processes 
and structures modeled are not tied to a particular scale but occur in 
a variety of sizes in nature. A scaling to some defined size, e.g., for 
comparison with a specific natural example, can easily be achieved 
by assigning a defined real-world length to the model length unit. 
The models remain valid independent of the chosen length scale, as 
dynamic similarity (Hubbard, 1937) is ensured by defining the model 
boundary conditions in terms of stresses and not forces, and a kinematic 
similarity criterion does not apply due to the quasi-static nature of the 
deformation.

Both model materials are composed of particles with a radius rang-
ing between 𝑟𝑚𝑖𝑛 = 0.2 and 𝑟𝑚𝑎𝑥 = 1.0 model units. The particles 
are packed in the respective volumes using the insertion-based al-
gorithm of Place and Mora (2001), resulting in a dense, stress-free 
initial arrangement of the particles. Using these parameters, the model 
geometries contain a relatively large number of particles: 𝑛𝑝 ≈ 900 k for 
the ‘‘Thin’’ models and 𝑛𝑝 ≈ 1.7 M for the ‘‘Thick’’ models. Additional, 
longer models used to test that the deformation characteristics of the 
brittle layer are not determined by finite length effects of the model, 
using lengths of 𝑥𝑡𝑜𝑡𝑎𝑙 = 330 and 𝑥𝑡𝑜𝑡𝑎𝑙 = 440, result in 𝑛𝑝 ≈ 2.6 M and 
𝑛𝑝 ≈ 3.4 M particles respectively.

The material parameters for the ductile material are kept constant 
for all models, using a particle scale viscosity constant 𝐴 = 0.01 for 
the dashpot interactions (Abe and Urai, 2012) and a Young’s Modulus 
𝐸 = 10 GPa for the elastic interactions. In the brittle layer, a brittle 
beam model (Weatherley, 2011) is used to parameterize the bonded 
interactions, and a Young’s Modulus of 𝐸 = 30 GPa and a Poisson’s 
ratio of 𝜈 = 0.3 are used for the elastic parameters. The bond cohesion 
𝐶, which, together with the angle of internal friction 𝜙, determines 
the failure strength of the bonds, is varied between 𝐶 = 50 MPa and 
𝐶 = 150 MPa for the different simulations. The coefficient of internal 
friction used in the failure criterion of the bonded interactions is kept 
constant for all models at tan𝜙 = 0.6, i.e., 𝜙 = 30.96 deg. If bonds 
are broken in the brittle material, the particles will interact by elastic-
frictional interactions using the same Young’s Modulus of 𝐸 = 30 GPa, 
and a coefficient of friction of 𝜇 = 0.6 in cases where they come 
into contact again. The interaction between the brittle and the ductile 
materials along the interface between the layers is also implemented 
using frictional interaction with 𝜇 = 0.6.
4 
Table 2
Macroscopic strength parameters of the model material for different values of the bond 
cohesion 𝐶𝑏𝑜𝑛𝑑 : Cohesion C, tensile strength T, unconfined compressive strength UCS 
and angle of internal friction 𝜑.
 𝐶𝑏𝑜𝑛𝑑 [MPa] 50 75 100 150  
 C [MPa] 46.1 ± 0.7 66.3 ± 0.7 89.3 ± 1.0 117.8 ± 2.4 
 T [MPa] 41.6 ± 2.3 60.3 ± 2.3 76.2 ± 3.7 116 ± 5  
 UCS [MPa] 147 ± 3 215 ± 3 285 ± 5 422 ± 8  
 𝜑 [deg] 23.4 ± 0.7 24.8 ± 0.3 25.0 ± 0.5 29.6 ± 0.7  

2.3.1. Calibration of brittle material
The strength parameters of the brittle model material were cali-

brated using a range of simulated triaxial tests. A defined confining 
stress was applied to the front and back sides, i.e., those normal to 
the 𝑥-axis, of block shaped samples with x:y:z aspect ratio 1:2:1, and 
containing ≈ 45000 particles. The samples where then loaded to failure 
by applying an increasing compressive or tensile strain to the top and 
bottom sides of the sample. During the deformation process, the strain 
rate is held constant after an initial ramp-up phase.

The set of simulations is designed to generate 2D failure envelopes, 
i.e., only considering the 𝜎1 − 𝜎3-plane and not explicitly varying 𝜎2. 
To obtain failure envelopes most appropriate to the stress and strain 
conditions in the boudinage experiments, the triaxial tests have been 
performed in plane-strain conditions, i.e., 𝜖𝑧 = 0 is enforced using rigid 
side walls on the sample similar to the fixed side plates in the boudinage 
models. From the 𝜎1 and 𝜎3 values at sample failure obtained for a 
range of confining stresses, a failure envelope in the 𝜎 − 𝜏 (Mohr) - 
space is derived by computing the common tangents of neighboring 
Mohr-circles (Pincus, 2000) and combining the resulting points on the 
circles. Data from a set of tests on five samples are combined to estimate 
the uncertainty of the failure parameters resulting from the variability 
in particle packing between samples. The result is a failure envelope, 
which can be reasonably well approximated by a linear Mohr–Coulomb 
law in the compressive field. In the tensile field, the failure envelope 
can be approximated by a parabolic shape, i.e., 𝜏2 = 𝑝(𝜎−𝑇 ), where 𝑇  is 
the unconfined tensile strength of the material. Correlation coefficients 
are 𝑟 > 0.99 in all cases.

The tests are performed with the four different values of the bond 
cohesion 𝐶𝑏𝑜𝑛𝑑 , which were also used in the boudinage models in the 
main part of the work, i.e., 50 MPa, 75 MPa, 100 MPa, and 150 MPa. 
Comparing the failure envelopes obtained for the different values of 
𝐶𝑏𝑜𝑛𝑑 (Fig.  4a), it can be seen that the macroscopic strength parameters 
of the model material ( Table  2), i.e., cohesion, unconfined compressive 
and tensile strengths, show a linear dependence on 𝐶𝑏𝑜𝑛𝑑 (Fig.  4b), 
whereas the angle of internal friction remains nearly constant. The 
results also show a ratio between unconfined compressive and tensile 
strength of UCS∕T ≈ 3.5. This is lower than most natural rocks where 
values of UCS∕T > 10 are common (Jaeger et al., 2007; Fjaer et al., 
2008) but not unusual for fully bonded materials in DEM models (Abe 
and Urai, 2012; Schöpfer et al., 2009).

3. Results

Structures formed in a thin brittle layer, i.e., 𝑦𝑏𝑙 = 10, show a 
transition between blocky torn boudins at low confinement, 𝜎𝑥𝑥, and 
high strength of the brittle layer, 𝐶𝑏𝑜𝑛𝑑 , to drawn boudins in the 
high confinement/low strength field (Fig.  5). The models with high 
confinement and low strength (𝐶𝑏𝑜𝑛𝑑 = 50 MPa, 𝜎𝑥𝑥 = 50 MPa or 100 
MPa and 𝐶𝑏𝑜𝑛𝑑 = 75 MPa, 𝜎𝑥𝑥 = 100 MPa) might geometrically look 
like pinch-and-swell structures, but kinematically they are still drawn 
boudins, i.e., no thickening is taking place.

Models with a thick brittle layer, i.e., 𝑦𝑏𝑙 = 30, show blocky torn 
boudin structures in the low confinement/high strength field of the 
parameter space, similar to models with a thin brittle layer (Fig.  6). 
In the high confinement/low strength field, however, the transition is 
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Fig. 4. Results of strength calibration. (a) failure envelopes for different values of the bond cohesion 𝐶𝑏𝑜𝑛𝑑 . Colored symbols: points on the failure envelope calculated according 
to Pincus (2000), black lines: calculated using least squares fits to a parabolic function in the tensile field and a linear function in the compressive field. (b) dependence of 
macroscopic strength parameters on bond cohesion 𝐶𝑏𝑜𝑛𝑑 . C: cohesion, T: tensile strength, UCS: unconfined compressive strength. Symbols and error bars: data calculated from 
failure envelopes in (a), dashed lines: linear least squares fit.
Fig. 5. Deformation patterns for models with thin brittle layer (𝑦𝑏𝑙 = 10) for different confining stresses 𝜎𝑥𝑥 and bond strengths (cohesion 𝐶𝑏𝑜𝑛𝑑 ). Deformation transitions from 
blocky torn boudins to drawn boudins. Small boudin blocks partly show clockwise or counterclockwise rotation.
not towards drawn boudins as in the thin models, but shear bands form 
between the boudins. We note, however, that, as deformation is coaxial, 
the shearbands have no preferred orientation but form conjugate sets. 
The models at very high strength (𝐶𝑏𝑜𝑛𝑑 = 150 MPa) and low to 
intermediate confinement, and those at intermediate to high strength 
and low confining stress, do not fail at all in the present series of 
simulations.

In order to test that the difference in the failure mode between the 
‘‘thin’’ and the ‘‘thick’’ models is not due to the changed aspect ratio of 
the brittle layer (𝑦𝑏𝑙 ∶ 𝑥𝑏𝑙 = 1 ∶ 20 in the ‘‘thin’’ and 𝑦𝑏𝑙 ∶ 𝑥𝑏𝑙 = 1 ∶ 6.66
in the ‘‘thick’’ models), additional ‘‘thick’’ models with a larger model 
length were run. Using total model lengths 𝑥𝑡𝑜𝑡𝑎𝑙 = 330 and 𝑥𝑡𝑜𝑡𝑎𝑙 = 440
results in an aspect ratio of the brittle layer of 𝑦𝑏𝑙 ∶ 𝑥𝑏𝑙 = 1 ∶ 10.33, 
and 𝑦𝑏𝑙 ∶ 𝑥𝑏𝑙 = 1 ∶ 14 respectively (Models ‘‘Long1’’ and ‘‘Long2’’ in 
Table  1). Structures resulting from deformation at confining stresses of 
𝜎𝑥𝑥 = 10 MPa and 𝜎𝑥𝑥 = 50 MPa (Fig.  7) using a bond cohesion of 
𝐶𝑏𝑜𝑛𝑑 = 75 MPa show that the failure modes do not change with layer 
length.

3.1. Stress and failure modes

The stress inside the central part of the brittle layer, i.e., the part 
where the main fracture nucleates at a later stage of deformation, was 
calculated as described in Section 2.2. This is necessary to investigate 
the relationships between the stress applied to the whole model by 
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external forces using the boundary walls, and the internal stresses 
within, and the brittle layer. Secondly, it is needed to understand the 
relationship between the stresses in the brittle layer and characteristics 
of the subsequent failure. The externally applied stresses are calculated 
directly from forces on walls and the positions of the walls. Because 
the boundary walls do not transmit shear forces to the model, the off-
diagonal elements of the stress tensor are all zero, i.e., 𝜎𝑥𝑦 = 𝜎𝑥𝑧 = 𝜎𝑦𝑧 =
0, and the principal stresses can directly be obtained from the diagonal 
elements of the stress tensor, 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑧𝑧.

The data shows that the stresses inside the brittle layer are different 
from the externally applied stresses. In particular, all externally applied 
stresses are compressive, whereas inside the central part of the brittle 
layer, the minimum principal stress, 𝜎3, is negative, i.e., tensile (orange 
vs. black semicircles in Fig.  8).

In the model with high confinement (𝜎𝑥𝑥 = 50 MPa), which displays 
shear failure, the internal stress state is compatible with the observed 
failure mode. While the average stress state in the central part of the 
brittle layer (black semicircle in Fig.  8 b) has not yet reached the critical 
stress (green failure envelope in Fig.  8 b), shear failure is triggered. 
This is because the stress distribution is sufficiently heterogeneous so 
that some volume within the brittle layer is in a critical stress state. 
Additionally, the orientation of the shear planes is compatible with the 
expected values. Based on an angle of internal friction of the model 
material, 𝜑 ≈ 25 deg ( Table  2), an angle of around 57.5 deg between 
the layer-normal direction and the failure plane would be expected. 
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Fig. 6. Deformation patterns for models with thick brittle layer (𝑦𝑏𝑙 = 30) for different confining stresses 𝜎𝑥𝑥 and bond strengths (cohesion 𝐶𝑏𝑜𝑛𝑑 ). Non-fracturing high strength/low 
confinement models in the bottom right corner not shown for clarity.
Fig. 7. Boudin structures for different layer lengths at the same brittle layer strength 𝐶𝑏𝑜𝑛𝑑 = 75 MPa. left column (a, b,c) confinement 𝜎𝑥𝑥 = 10 MPa, right column (d, e, f) 
confinement 𝜎𝑥𝑥 = 50 MPa. (a), (d) brittle layer length 𝑥𝑏𝑙 = 200, (b), (e) 𝑥𝑏𝑙 = 310, (c), (f) 𝑥𝑏𝑙 = 420.
The observed initial orientations fall in the range of 𝜑 = 52 − 56 deg
(Fig.  9).

In models where the brittle layer undergoes tensile failure, the 
average stress state immediately before failure is further away from the 
failure envelope as compared to shear failure (Fig.  8 a). Based on the 
calculated heterogeneity of the stress state, the distance to the failure 
envelope is about two standard deviations, compared to slightly less 
than one standard deviation in models with shear failure (compare 
semi-circle blue areas in Figs.  8). This suggests that a much smaller 
part of the brittle layer needs to be in (or near) a critical stress state 
to cause tensile failure. Furthermore, in the case of tensile failure, the 
observed pre-failure stress state does not match the failure mode as well 
as that observed in the case of shear failure. The data (Fig.  8 a) show 
that 𝜎3 is tensile, but the position of the Mohr circle is more compatible 
with hybrid shear/tensile failure than with pure tensile failure. Videos 
showing the evolution of stresses in the brittle layer for two models 
(𝐶𝑏𝑜𝑛𝑑 = 100 MPa, 𝜎𝑥𝑥 = 100 MPa and 𝐶𝑏𝑜𝑛𝑑 = 50 MPa, 𝜎𝑥𝑥 = 3 MPa) are 
available in the supplementary material.
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4. Discussion

The results of the numerical models show that the change in failure 
mode with brittle layer thickness under high confinement stress condi-
tions is due to the relationship between the thickness of the brittle layer 
and the thickness of the shear bands developing at the point of failure. 
The thickness of the shear bands is approximately 4–5 model units (Fig. 
9). The mean particle radius in the model material of ≈ 0.325 model 
units represents a width of approximately 6–8 particles across the shear 
band. This is compatible with what is known about typical shear bands 
in granular materials, which generally are in the range between 6 and 
10 particles wide (Roscoe, 1970; Mühlhaus and Vardoulakis, 1987). 
This also means that the model resolution needs to be high enough 
to actually resolve the shear bands in order to correctly model the 
evolving structures, i.e., as a result of the finite shear band thickness, 
the geometrical constraints prevent the formation of shear bands if the 
brittle layer thickness is not significantly larger than the typical shear 
band width of the material. In models with thin geometry ( Table  1), 
the brittle layer is only about twice as thick as the shear band in this 
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Fig. 8. Stress state in the central part immediately before failure in the model with 
𝐶𝑏𝑜𝑛𝑑 = 75 MPa, confinement 𝜎𝑥𝑥 = 10 MPa (a) and 𝜎𝑥𝑥 = 50 MPa (b) vs. failure envelope 
of the material. Gray semicircles: stress states from triaxial tests used for the calculation 
of the failure envelope (Section 2.3.1), green dashed line: estimated failure envelope, 
black semicircle: average stress state in the central part of the brittle layer, blue area: 
average stress state plus/minus one standard deviation, orange semicircle: externally 
applied stress.

Fig. 9. Detailed view of conjugate shear zones in the model with a thick brittle layer, 
bond cohesion 𝐶𝑏𝑜𝑛𝑑 = 75 MPa and confining stress 𝜎𝑥𝑥 = 100 MPa along a slice through 
the center of the model parallel to the x–y-plane. Particles are colored by size of the 
block to which they belong (blue/green: small grains, orange/red: large blocks).

material, i.e., 10 model units vs. approximately 5 model units (Fig.  9). 
This does not allow the shear bands to form. In contrast, the brittle layer 
in the models with the thick geometry is about 6 times as thick as the 
shear bands, therefore allowing them to form. In addition, the brittle 
layer requires a minimum length so that boudins can form because 
the length of the boudin blocks is determined by layer thickness and 
boundary conditions.

Some models at intermediate conditions, e.g., the one at 𝐶𝑏𝑜𝑛𝑑 =
75 MPa, 𝜎𝑥𝑥 = 50 MPa in Fig.  6, could possibly also be considered 
domino boudins. However, following the nomenclature of Goscombe 
et al. (2004), asymmetric boudins, such as domino boudins or shear 
band boudins, are associated with non-coaxial deformation. Our models 
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are coaxial, and thus domino or shear band boudins are not expected. 
However, it has been shown that block rotations can also occur during 
coaxial deformation depending on the layer thickness ratio (i.e., thick-
ness ratio of the brittle and ductile layer) and strength ratio (i.e., tensile 
strength in the brittle layer divided by the flow strength in the ductile 
layer) (Abe and Urai, 2012; Mandal et al., 2000). These boudins have 
been termed shear fracture boudins (Mandal et al., 2000). As the 
terms ‘‘shear band boudin’’ and ’’shear fracture boudin’’ can be easily 
confused, as they both point to the existence of shear fracturing, we 
propose to use instead the terms symmetric or asymmetric shear band 
boudin to better match the nomenclature of Goscombe et al. (2004). 
Symmetric shear band boudins bridge the gap between torn boudins 
and drawn boudins (Fig.  10).

Calculating the stress state of the brittle layer immediately before 
failure shows that the failure mode is compatible with the stress state 
observed in the shear failure case (Fig.  8 b). However, there is a 
discrepancy in the case of tensile failure (mode-1, Fig.  8 a). The issue 
that the stress circle is still well away from the failure envelope of 
the brittle material obtained from triaxial tests (Section 2.3.1) can be 
explained by stress heterogeneity. However, it remains unclear why the 
stress circle is farther away from the failure envelope in the tensile 
case than in the shear case. Given that the heterogeneity of the stress 
distribution in both cases is similar (see light blue areas in Fig.  8), this 
also means that in the tensile case, a smaller part of the brittle layer 
needs to reach a critical stress state to cause failure. Alternatively, the 
effect might be related to the observation that in DEM simulations the 
tensile strength of the material tends to show a stronger variability 
at the same spatial scale as the compressive strength (cf. Fig. 2 h 
in Schöpfer et al., 2007). In addition, the calculated Mohr circle in the 
models that fail in tension indicate a hybrid tensile/shear failure rather 
than shear failure only, because its closest point to the failure envelope 
is well away from 𝜏 = 0. The reason for this discrepancy is unclear. 
One factor might be the inability of the stress calculation procedure 
to resolve highly localized stress concentrations prior to macroscopic 
failure. Another possible cause is the difference in boundary conditions 
between the triaxial tests used to calculate the failure envelope and 
the actual boudinage models. However, a detailed investigation of 
the effect is beyond the scope of this work. Additionally, it may be 
necessary to consider that the difference in the ratio between the tensile 
and compressive strengths of the DEM material compared to most rocks 
is likely to have an influence on the failure modes of the material 
under certain stress conditions. In particular, the transition from mode 
1 (tensile) to hybrid failure is likely to happen at a lower mean stress 
in the DEM models than would be expected in rocks with the same 
tensile strength. This should be taken into account when trying to 
quantitatively compare the failure modes observed in the models to 
specific stress/strength conditions in real rocks under very low mean 
stress.

Geometries observed in our models can be compared to natural 
boudinage. Using the classification of Goscombe et al. (2004), models 
with thick boudinage plot in the field between gash and domino 
boudins (Fig.  10). This is because the blocks rotate during deformation. 
However, in our models, no bulk shear is applied. It has been shown 
earlier that block rotations can occur without the presence of bulk 
shear (Abe and Urai, 2012; Passchier and Druguet, 2002; Grasemann 
et al., 2019). The presence of shear bands between the boudin blocks 
therefore does not automatically mean that they are actually shear 
band boudins, as defined in Goscombe et al. (2004). They can also be 
classified as domino boudins based on their geometry. Theoretically, 
it is possible to distinguish boudins with bulk shear from torn boudins 
based on the termination, i.e., the angle between the exterior surface 
of the boudin and the inter-boudin plane (𝛩 after (Goscombe et al., 
2004)). In the case of torn boudins, the angle is comparably large, as it 
can be explained by shear fracturing in a Mohr–Coulomb environment. 
Domino and shear band boudins can rotate much more, leading to 
𝛩 angles that can be < 45◦. Therefore, ductile deformation can be 
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Fig. 10. Boudin block shape vs. block rotation angle. 𝛩 is the angle between boudin 
exterior and inter-boudin interface as defined in Goscombe et al. (2004), 𝛼 is the block 
rotation angle. Dashed and dotted lines show the outlines of the fields for different 
boudin types adapted from Fig. 7 in Goscombe et al. (2004), symbols show data from 
this work. A transition between torn, shear band and drawn boudins becomes apparent.

inferred in the field if 𝛩 angles are smaller than 45◦. Our findings 
may help understand the transition between different end-member 
types of boudinage. While in natural examples commonly one type of 
boudinage is dominant, transitions between end-members have been 
described (Goscombe et al., 2004). Our models contribute towards the 
understanding of the mechanical conditions under which such tran-
sitions occur. This study focuses on the fully brittle to brittle–ductile 
domain, but similar transitions may occur in the ductile regime.

We apply our modeling results to the multiple boudins exposed in 
Naxos, Greece (Schenk et al., 2007; Bamberg et al., 2022; von Hagke 
et al., 2018; Virgo et al., 2018). Here, multiple phases of boudinage 
and folding record the internal deformation of the migmatitic center of 
the Naxos metamorphic core complex from high-grade metamorphic 
conditions over the pro- and retrograde path to shallow deforma-
tion (Cao et al., 2017; Lamont et al., 2023). This is witnessed in 
amphibolite and pegmatite layers embedded in marble (Fig.  11). The 
decrease in temperature and pressure is particularly well recorded in 
the embrittlement of amphibolite and marble during exhumation and 
by mineral assemblages associated with the respective structures that 
change from biotite to chlorite and secondary calcite (Virgo et al., 
2018). This led to the formation of five distinguishable generations of 
boudinage, which are, old to young, long-wavelength pinch and swell 
boudins, short-wavelength pinch and swell boudins, domino boudins, 
torn boudins and hairline veins (Virgo et al., 2018; von Hagke et al., 
2018). All boudin generations indicate E-W shortening with different 
orientations of layer parallel extension, rotating in the plane of layering 
from vertical over south vergent and horizontal to north vergent. Strain 
progressively decreases from ≫100 percent elongation in the long-
wavelength pinch-and swell boudins over about 10 percent in domino 
boudins to approximately one percent in the hairline veins (Virgo 
et al., 2018). This offers insights into the evolution of boudins under 
progressively decreasing strains, pressures and temperatures.

Our models are representative of the brittle phase boudins, i.e., the 
torn and domino or shear band boudinage. Fig.  11 shows a compilation 
of structures observed in the field. Many boudin geometries indicate 
non-coaxial deformation because of a strong predominance of one dip 
direction of boudin interfaces. However, particularly in boudins that 
formed at a late stage of deformation (cf. von Hagke et al., 2018), shear 
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fractures dipping in opposite directions can be observed. These geome-
tries are akin to our model observations and can thus be interpreted as 
symmetric shear band boudins.

As observed in our models, in natural examples shear fracturing can-
not be observed macroscopically in layers thinner than approximately 
10 mm (Bamberg et al., 2022). Instead, layers fail in a ductile manner. 
Our models provide an explanation for that behavior. However, based 
on the observation that the mean spacing of boudins and lateral di-
mensions is largely independent on the thickness of the amphibolite, it 
has also been shown that the mechanical unit in part consists not only 
of the amphibolite, but also includes the surrounding marble (Virgo 
et al., 2018). In this case, it is expected that fractures will crosscut 
lithological boundaries. Although this can be observed for the latest 
stage of deformation in the Naxos boudins (Bamberg et al., 2022; Virgo 
et al., 2018; von Hagke et al., 2018), it is not the case in the domino 
boudins.

The amphibolites in Naxos underwent boudinage in five phases un-
der different boundary conditions during exhumation. Therefore, differ-
ent types of boudinage are present within single boudinage trains (Bam-
berg et al., 2022; Virgo et al., 2018; von Hagke et al., 2018; Schenk 
et al., 2007), Fig.  11. Based on our models, it is possible to interpret 
the different geometries as the result of constant exhumation and 
thus transition between different types of boudinage (Fig.  12). Early 
drawn boudins were later overprinted by shear band boudins and torn 
boudins, witnessing the constant lowering of confining pressure (Fig. 
12). Different types of boudinage have been preserved because of a 
rotation of the regional stress field with respect to the amphibolite 
layers (Virgo et al., 2018). Using our models as pressure gauges for 
the natural examples, this would imply that late stage deformation in 
Naxos occurred at pressures possibly as low as 30 MPa (Fig.  6), which 
translates to depths of approximately 3 km based on the relatively low 
strength of the amphibolite.

5. Conclusions

We studied the dependence of failure modes and the resulting struc-
tures on the initial layer thickness, material parameters and applied 
boundary conditions. The results of our models confirm that a range 
of boudinage behaviors can be achieved in the parameter space of 
cohesion and confinement, from pinch to swell to torn boudins. A 
higher confinement and lower cohesion contribute to the change of the 
failure mode in a qualitatively similar way. We show that:

• Transition from blocky torn boudins to drawn boudins can be 
modeled as a function of material strength and confining pressure.

• Local heterogeneities can cause shear failure already before crit-
ical stress of the entire rock column is reached.

• In the pinch-and-swell regime (high confinement, low cohesion), 
a high number of bond breaks throughout the brittle layer lead 
to weakening of the brittle layer before extensional strain. Pinch-
and-swell boudins form as the layers progress in extension as the 
layer deforms along conjugated slip planes and by granular flow 
of the particles.

• In the transition regime (lower confinements, higher cohesion), 
bond breakage localizes in wide zones (i.e., as thick as, or thicker 
than, layer thickness) in small scale conjugated shear and hybrid 
fractures. This results in necks of highly deformed material be-
tween intact blocks of the brittle layer. The boudins have a more 
angular shape and block rotation is more common than in the 
flow regime.

• In the torn boudin regime (low confinements and/or high cohe-
sion), the distributed damage in the layer is low and failure occurs 
in localized mode-I fractures.

• These models can be used to better understand natural examples 
of boudinage.
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Fig. 11. Examples from boudinage structures from Naxos, Greece. A: boudin train under transmitted light showing blocks bound by shear fractures dipping in opposite directions. 
These may have formed during coaxial deformation. Note thin vertical chlorite filled veins above and below the amphibolite layer, which are tension gashes. Consequently, some of 
the boudins classify as gash boudins. B: Several meter log boudin train as exposed in the marble quarries. Details shown in E and F. C: torn boudins with concave faces (modified 
after (Virgo et al., 2018). D: Boudinaged pegmatite layer. Without the presence of shear fractures dipping in the opposite direction, it is challenging to distinguish between boudins 
that formed under coaxial or non-coaxial conditions. E: Detail of large boudin train and interpretations. Boudin blocks with shear failure in two conjugate dip directions may 
indicate late coaxial deformation and a transition between drawn and torn boudins. F: Detail of large boudin train shown in B. Drawn boudins within the same boudin train 
indicate the transition from ductile to brittle boudinage. See Virgo et al. (2018), von Hagke et al. (2018) for more details on multiple boudinage phases within these layers.
Fig. 12. Concept of transition between torn boudins to shearband boudins and drawn 
boudins during coaxial deformation. Here, boudin geometries are akin to classic rock 
mechanical tests, and differences form as a result of different confining pressures. Rock 
deformation experiments based on Paterson and Wong (2005).
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