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Abstract
The digital twin holds great potential for manufacturing using time series data in statistical models and simulations. Despite 
the recognised benefits of digital twins, many companies fail to achieve satisfactory value from their data due to a discon-
nect between data collection and its application in data-driven use cases. A "data-to-value" strategy is lacking, which would 
enable companies to select effective applications to achieve specific goals. This publication introduces a methodology that 
allows for the quantification of suitability and targeted selection of data-driven applications based on a value-effort analysis 
and the underlying time series data. This makes it easier for manufacturing companies to select the most suitable application 
for their individual needs. After identifying value aspects and their interactions, the value of each data-driven application is 
evaluated using the analytical network process. Subsequently, the implementation effort of each application is assessed from 
both a data and technological perspective. The results of the quantifications are then compared using the TOPSIS method. 
The methodology is demonstrated using a grinding process example before final discussions. Assuming that the economic 
value and effort are initially unknown, the methodology contributes to decision-making in selecting the most suitable digital 
twin application.

Keywords  Data Assessment · Digital Twin · Value-Effort Analysis · Data Application · Data-to-Value Strategy · Decision 
Theory

1  Introduction

Within manufacturing, multivariate time series data is a very 
common level of data aggregation. They are recorded at the 
machine and collected by several sensors over time. [1] The 
concept of the digital twin results from the utilisation of this 
data in statistical models and simulations. It represents the 
properties and behaviour of the physical object and exhibits 
a bidirectional relationship between the physical and digi-
tal product. The use of time series data in models to create 
targeted added value for the process or product is referred 
to in this paper as a data-driven application. Such applica-
tions enable, for instance, to reduce material consumption 

or increase productivity within the production process. [2] 
Despite the potential of a digital twin, the collection of 
data and its application in data-driven applications diverge. 
Studies indicate that approximately 80% of companies fail 
to achieve satisfactory benefits from their data. Possible 
reasons for this include an insufficient in-house database 
and a lack of effective applications for utilising the data. 
To address these challenges, companies require a "data-
to-value" strategy that supports the systematic selection of 
applications to achieve specific business objectives. [3] Such 
a decision model, which enables a quantification of the suit-
ability and targeted selection of data-driven use cases, is 
currently lacking.

The scientific novelty of the presented work lies in its 
methodology that enables companies to systematically 
evaluate data-driven digital twin applications through a 
coherent value and effort framework. In contrast to exist-
ing approaches, this methodology facilitates, for the first 
time, a precise assessment of various application scenarios 
based on time series data without requiring prior monetary 
quantification. This is particularly valuable for small and 
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medium-sized enterprises, providing a viable pathway for 
targeted digital twin implementation. The methodology 
forms the foundation of a data-to-value strategy, which, 
as a next step, enables value-based assessment and pricing 
of time series data (beyond the scope of this paper). This 
work acknowledges that companies typically cannot quan-
tify economic values or costs in advance. The methodology 
consists of three core components, which will be introduced 
in Sect. 4. The practical application of the decision model 
is demonstrated using the example of grinding production 
technology.

2 � Definition of the problem of evaluating 
data and data‑driven applications

The evaluation of the value and suitability of data or digi-
tal technologies in the context of manufacturing technology 
has already been addressed in scientific work. Brandstät-
ter and Brunlechner [4] developed a cost–benefit model for 
evaluating cyber-physical systems (CPS). They used a lit-
erature review to derive performance indicators to quantify 
the benefits and relevant cost types. However, the model 
neither considered interactions between the value aspects 
nor used measurement and evaluation indicators. [4] It is 
also disadvantageous that data and their specific applica-
tions are subject to marginal cost theory. As a result of the 
infinite reproducibility of data with almost constant costs, 
the costs would have to be continuously adjusted when com-
paring value and costs depending on the amount of data 
used in the application. Transferability to the evaluation 
of data-driven applications is therefore not possible. Stein 
et al. [5] described central requirements for models for the 
evaluation of data from production without presenting an 
evaluation approach. Among other things, they named the 
consideration of data quality, the determination of a value 
from a monetary and application-specific perspective and 
the inclusion of the industrial context. [5] Kreutzer [6] pre-
sented a methodology for determining the potential value 
of CPS field data in the production environment. Manufac-
turing process data represented a subset of the field data 
considered. Users of the methodology from Kreutzer [6] are 
enabled to identify the potential of field data in the form 
of value aspects. Kreutzer [6] pursued the ordinal benefit 
theory instead of the cardinal benefit theory, within which 
no quantification of the value is provided. The author did not 
consider the connection between value aspects and data in 
specific applications and therefore assumed that data itself 
generates value. [6] Mendizabel-Arrieta et al. [7] presented a 
mathematical model for pricing industrial data. The pricing 
model was based on the costs of data collection, storage and 
analysis and multiplied weighted factors of data quality, data 
entropy, data value and Customer Relevancy Index (CRI). 

The data value from the perspective of buyers and manufac-
turers was determined using a survey as a score. The CRI 
represents the importance of each customer for the industrial 
producer. The authors implied an understanding of the value 
of selected data and used the subjective judgement of the 
data provider and consumer in their model. However, this 
knowledge regarding the suitability of time series data for 
production technology is not given in the majority of cases. 
[7] It can be summarised that an approach for evaluating the 
value and effort of data-driven applications in relation to the 
underlying basis of time series data is lacking.

3 � Fundamentals of this work

This study builds upon both methodological foundations 
and the definition of the data-driven applications consid-
ered. To establish a solid basis, this chapter first introduces 
the Analytic Network Process (ANP) and the Technique 
for Order of Preference by Similarity to Ideal Solution 
(TOPSIS) as the methodological framework for decision-
making. Subsequently, the relevant data-driven applica-
tions are defined, outlining their role in the context of this 
research.

3.1 � Theoretical foundations 
regarding decision‑making

The choice of an application that appears to be suitable 
based on the available time series data is a multi-criteria 
decision problem. Such a problem requires a decision to be 
made regarding several alternatives, considering different, 
often competing criteria and weightings. In real-life deci-
sion-making situations, alternatives and criteria can influ-
ence each other, which is why a network structure is suit-
able for modelling these situations. To select an appropriate 
method for solving the multi-criteria decision problem, the 
standardized framework by Wątróbski et al. [8] was applied 
[8]. This framework reduces the risk of poor decision quality 
by systematically evaluating decision characteristics. Given 
the nature of this problem, a two-stage decision process is 
required: First, applications are evaluated based on their 
value-effort ratio and ranked accordingly. Second, the value 
aspects are assessed in relation to the company’s strategic 
objectives. Since these assessments are subject to individual 
preferences and uncertainties, relative weightings are needed 
for both applications and value aspects. As the value aspects 
influence each other and exhibit a network structure rather 
than a strict hierarchy, the framework recommends Fuzzy 
analytical network process (ANP) + Fuzzy Technique for 
Order Preference by Similarity to Ideal Solution (TOPSIS) 
as the most suitable method combination. ANP captures 
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interdependencies between value aspects, while TOPSIS 
provides a structured ranking of applications based on their 
weighted value-effort scores.

To implement this methodology, the ANP is applied, 
as it is specifically designed for network-based decision 
problems. The process begins with the identification of all 
components of the network structure, alternatives, criteria, 
so-called clusters and their interdependencies. Clusters sum-
marise decision criteria with a high degree of interaction. 
In most cases using pairwise comparisons, the influence of 
all components on the objective of the decision problem is 
analysed and mapped in evaluation matrices aij with i rows 
and j columns. The rows and columns depend on the criteria 
or options to be compared. The scale of relative importance 
from 1–9 can be used for pairwise comparisons. If there is an 
indifference between two options, a rating of"1"is assigned. 
If option A has maximum importance compared to option 
B, the assessment score is "9". For each evaluation matrix 
m , a vector rm is calculated using the geometric mean, which 
represents the importance of the alternatives and criteria of 
the decision problem. The entries of a matrix are multiplied 
column by column and raised to the power of the recipro-
cal value of the number of columns s of the corresponding 
evaluation matrix aij [9]:

From the n vectors rm , weights wm are formed by nor-
malisation (each vector entry is divided by the sum of the 
column values of the vector), which are combined into prior-
ity vectors W  for the x elements and clusters of the decision 
problem [10].

Based on the priority vectors, the square supermatrix S 
of dimension NxN is formed, where N represents the total 
number of all model elements from the various clusters. 
This supermatrix, which is organised as a so-called block 
matrix, represents the direct influences of all model ele-
ments on each other, but not the indirect influences along 
various impact chains of the network on the objective of the 
ANP. To map the indirect influences on the objective of a 
decision situation, a so-called limit matrix L is developed 
by multiplying the supermatrix by itself until the values 
of a row converge to one value. This matrix indicates the 
weights of all clusters and elements of a network in relation 
to the objective of the ANP and represents the preferences 
of a decision-maker. [9] Repeated exponentiation is used to 
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capture the long-term effects of direct and indirect influences 
in the network. When convergence occurs, the values per 
row of the matrix have stabilised.

The Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS) is another method for solving deci-
sion problems. The method recommends the option that 
has the shortest distance to the positive ideal solution (best 
possible solution) and the greatest distance to the negative 
ideal solution (worst possible solution) of a decision prob-
lem. The Euclidean distance of an alternative to the positive 
ideal solution ( D+

i
 ) and the distance to the negative ideal 

solution ( D−
i
 ) results from the best possible (vj

+) and worst 
possible values (vj

− ) of the weights of the j-th criterion and 
the weighted normalised values of the decision matrix vij 
[11]:

The weighting vector vij represents the value of the j-th 
criterion for the i-th alternative. The positive v+

j
 and negative 

ideal solution v−
j
 are the maximum and minimum value of 

criterion j across all alternatives i . After calculating the 
Euclidean distance, alternatives are ranked by their relative 
proximity to the positive ideal solution C∗

i
 . The best alterna-

tive of a decision problem is given the highest value C∗
i
.

In multi-criteria decision problems, imprecise statements 
are often made by the user due to the complexity. Fuzzy 
logic is used for the mathematical modelling of fuzziness 
and colloquial descriptions. With the help of fuzzy numbers, 
it is possible to convert linguistic judgements of decision-
makers into a mathematical form. Triangular fuzzy numbers 
in the form of the triple ã=(a, b, c) can be used, for example, 
to expand the scale of relative importance. By assigning the 
triangular fuzzy numbers to a linguistic assessment of the 
decision maker, the inherent fuzziness of such an assessment 
can be compensated for, since a range of three assessments 
is considered for each assessment. Special rules apply to 
fuzzy numbers regarding arithmetic operations. The so-
called fuzzy addition ( ⊕ ) and fuzzy multiplication ( ⊗ ) of 
two fuzzy numbers ã=(a, b, c) and b̃=(d, e, f ) are defined as 
follows: [12]
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After fuzzifying a number and performing arithmetic 
operations, it is often necessary to convert a fuzzy number 
back into a"sharp"value. The centre of area method (COA) 
can be used for such defuzzification [13].

3.2 � Definition of relevant data‑driven applications 
in the context of the digital twin

In addition to selecting appropriate methods for the deci-
sion-making methodology, it is essential to define the data-
driven digital twin applications in manufacturing that will 
be considered in this study. Data-driven applications in the 
context of digital twins utilise time series data and analytical 
methods to optimise manufacturing processes and product 
performance. These methods can be based on machine learn-
ing, statistical modelling, or rule-based approaches such as 
Life Cycle Assessment (LCA) according to ISO 14044. 
Unlike purely static decision models, data-driven applica-
tions enable the continuous processing of sensor data, the 
identification of patterns, and the data-driven assessment 
of environmental and process factors. They are applied 
across various stages of manufacturing, including design, 
production, service, and recycling [14]. This study focuses 
on applications in the service phase, which leverage time 
series data to create value in distribution, usage, repair, and 
maintenance of workpieces. In contrast, applications related 
to the production phase focus on resource allocation, produc-
tion planning, and order management [15]. However, time 
series data recorded by sensors on machines, such as force, 
temperature or acoustic emission data, are not suitable for 
such applications.

In the service phase, Tao et al. define nine potential appli-
cations [15], which were also analysed for their suitability 
for time series data. The applications "Service of user man-
agement and behaviour analysis", "Service of user operation 
guide" and "Service of intelligent optimisation and update" 

(3.8)�a⊗�b = (a ∙ d, b ∙ e, c ∙ f ) are excluded from this work due to the use of user data. 
The services "Product virtual maintenance" and "Product 
virtual operation" are also not considered in more detail, 
as no virtual applications that can be used, for example, for 
learning and training purposes are intended to be part of this 
work. Instead, the focus is on digital twin applications that 
utilise data and models to characterise the property profile 
of a physical object and generate added value. Following a 
refinement of the application descriptions of Tao et al. for 
improved clarity [15], the following five applications (Ser-
vice 1–5) are identified (Table 1):

4 � A decision‑making methodology 
for selecting digital twin applications

This paper presents a three-step decision-making method-
ology that enables a structured selection of suitable data-
driven digital twin applications by considering both their 
potential value and implementation effort (Fig. 1). In the 
first step, the value of digital twin applications is quanti-
fied by identifying and assessing relevant value aspects and 
their interdependencies. These aspects fall into three value 
categories: product quality, process quality, and fulfilment 
of regulatory requirements. To systematically evaluate the 
value, the ANP method is applied. ANP facilitates pairwise 
comparisons to determine the relative importance of value 
aspects while accounting for their interdependencies, result-
ing in a quantitative value score for each application.

In the second step, the effort required is assessed from 
two perspectives. The data-related effort reflects the avail-
ability of the required time series data and key performance 
indicators for a given application. The technological effort 
evaluates a company’s methodological competence as well 
as its willingness to engage in cross-company data sharing.

In the third step, the TOPSIS method is applied to 
establish a ranking of applications based on their value-
effort ratio. TOPSIS enables a structured comparison by 

Table 1   Selected application of the digital twin in the service phase referring to Tao et al. [15]

Name of the applications Explanation

Service of product quality monitoring and prediction (Service 1) Data-driven identification of product defects and their causes, as well as 
real-time monitoring and prediction of product quality

Service of process monitoring and improvement (Service 2) Data-driven real-time process monitoring and optimisation of machine 
settings for preventive process adjustments and increased productivity 
and resource efficiency

Service of energy consumption analysis and forecast (Service 3) Data-driven measurement and optimisation of energy consumption by 
identifying savings potential and consumption patterns

Service of measuring ecological footprint (Service 4) Data-driven analysis of greenhouse gas emissions for assessing and 
improving environmental sustainability

Service of condition-based and predictive maintenance strategy 
(Service 5)

Data-driven maintenance and restoration of tool and machine availabil-
ity, as well as monitoring of remaining service life
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calculating the relative distance of each application, based 
on its value and effort scores, to a positive-ideal and a neg-
ative-ideal solution. This approach allows for a prioritised 
selection of applications, ensuring that the most promising 
use cases are identified while considering practical con-
straints such as data availability and technological feasibility. 
The highest score C∗

i
 represents the most suitable applica-

tion. The methodology provides concrete recommendations 
for selecting digital twin applications based on a structured 
and reproducible evaluation process.

4.1 � Identification and assessment of the value 
for data‑driven applications

The quantification of value requires the prior definition of 
value categories depending on their scope, the derivation of 
so-called value aspects and their allocation to the defined 
data-driven applications as well as the identification of 
dependencies between the value aspects. A value aspect (VA) 
is the specific way in which a stakeholder generates value by 
satisfying needs (e.g. increased productivity, improved cus-
tomer experience, positive impact on the environment) [6].

4.1.1 � Definition of relevant value categories and value 
aspects of time series data‑driven applications

The previously identified applications can generate value 
in three categories. Time series data collected in the 
manufacturing process generates value in corresponding 

applications, including within process quality by reducing 
throughput times and resource consumption and increas-
ing process utilisation [16]. Another value-related area 
of impact of data-driven applications is product quality. 
Product-specific quality parameters can be identified and 
evaluated in a data-driven manner during ongoing opera-
tions [17]. There is a relationship between the two value 
categories. Process quality is the prerequisite to produce 
high-quality products. However, as the quality of a manu-
facturing process is not the only factor influencing prod-
uct quality, the two categories are listed separately below 
and are not represented by a single category. In addition 
to improving process and product quality, data-driven 
applications also serve to fulfil regulatory requirements. 
They support compliance with legal regulations relating to 
environmental protection, plant safety and product liabil-
ity. Financial penalties for a company under the Product 
Liability Act can be prevented by ensuring a continuous 
level of product quality. [18] This results in a relationship 
between product quality and the fulfilment of regulatory 
requirements.

The identification of VA for the three value categories 
was conducted through a comprehensive literature review 
using Scopus, Web of Science, and Google Scholar. As 
existing literature does not explicitly categorise the value 
of data-driven applications into distinct aspects, relevant 
studies on production improvements through time series 
data were analysed. The extracted VA were then systemati-
cally assigned to the corresponding data-driven applications 

Fig. 1   Methodology for deter-
mining the potential of applica-
tions of the digital twin based 
on value and effort
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based on their functional characteristics and impact on value 
dimensions. The final mapping is presented in Tables 1.

At the beginning, the value aspects of the product qual-
ity category were identified. The improvement of (macro- 
and micro-) geometric and mechanical product properties 
characterise the goal of optimised product quality [19]. The 
improvement of product quality (VA1) is therefore defined 
as the first value aspect of the product quality category. The 
recording of measured variables provides information about 
potential shape deviations on the workpiece itself or about 
their underlying causes and quality defects. These include 
deviations in shape, position or length (macro-geometric 
properties) as well as waviness, roughness and microstruc-
tural composition of the workpiece surface (micro-geometric 
properties). [20] In addition to optimised product quality, the 
minimisation of quality fluctuations (VA2) by reducing the 
probability of a defect in a product is a further value aspect. 
Product quality is subject to a variety of influences. Process 
anomalies in the form of unknown non-linear effects are 
responsible for quality fluctuations in manufacturing pro-
cesses and cause rejects. [21] Data-driven quality monitor-
ing (e.g. in the form of recording and adapting vibration 
information and machine performance [22]) enables flex-
ible, proactive and automated control of the manufactur-
ing process regarding quality parameters in real time. The 
value aspects VA1 and VA2 are based on quality control. By 
recording process parameters during the ongoing process, it 
is possible to recognise deviations in the production process 
without the need to measure the machined component [23]. 
This results in time savings and fewer rejects [24]. Improved 
quality control is the third value aspect VA3 to be defined. 
The identified value aspects VA1 to VA3 are generated by the 
"Service 1". Product quality monitoring is used for the early 
detection of defects in products and components to detect 
and reduce product quality fluctuations during the process 
(VA2) and to improve quality control (VA3). The use of time 
series data in machine learning models, for example, allows 
the prediction of component properties even before the start 
of the production process based on the planned machine 
parameters and available historical process signals. Adjust-
ing these parameters ensures that the desired component 
properties are available (VA1).

The category of process quality encompasses two value 
aspects. The increasing automation of manufacturing pro-
cesses results in heightened demands for process reliability. 
Reliable processes are characterised by a production flow 
with minimal disruptions and little to no downtime. [25] In 
the present context, process reliability refers to the stabil-
ity and dependability of a process rather than to a risk-free 
manufacturing process. Monitoring production parameters 
(e.g. a machine's acoustic emissions) enables the control 
of a manufacturing process's stability. [26] The analysis of 
process data and monitoring of machine conditions allow 

for the avoidance of unplanned machine failures, thus con-
tributing to high process reliability. Consequently, the fourth 
value aspect is defined as the enhancement of process reli-
ability (VA4). A financial value aspect resulting from the 
use of manufacturing process data concerns the reduction 
of process costs (VA5). The analysis of process data sup-
ports the reduction of production process costs. [27] Cost 
drivers such as scrap rates or energy consumption can be 
reduced by evaluating time series data [28]. The identified 
value aspects VA4 and VA5 are triggered by three different 
data-driven applications. The recording of time series data 
for the “Service 2” contributes to the monitoring and control 
of process reliability (VA4). When process parameters are 
identified as being outside of a defined range, they can be 
adjusted to prevent instability and ensure a reliable process. 
Furthermore, the application enables a reduction in cost-
driving process indicators such as processing time (VA5). 
[29] “Service 5” also fulfils the value aspects of enhancing 
process reliability (VA4) and reducing process costs (VA5). 
Continuous monitoring of tool wear promotes early detec-
tion of process deviations, prevents unplanned downtime, 
and improves process reliability. Predicted maintenance 
intervals also prevent damage to machines and tools before 
a failure occurs, thereby impacting process costs. “Service 
3” also fulfils the economic value aspect VA5, as the reduced 
consumption lowers energy costs per product.

In the category of fulfilment of regulatory requirements, 
there are three value aspects for applications of manufactur-
ing time series data. Since the introduction of the Energy 
Efficiency Act, manufacturing companies have been obliged 
to implement measures to reduce their resource and energy 
consumption to avoid the emission of harmful substances. 
Consequently, the analysis of time series data helps to main-
tain the resource efficiency of production processes to ensure 
legally compliant operations. [30] The fulfilment of sus-
tainability standards represents an additional value aspect 
(VA6). VA7 refers to traceability, particularly of consumed 
raw materials and resources, to comply with regulations such 
as the EU-Ecodesign-Directive, which aims to ensure trans-
parency regarding the impact of business activities on people 
and the environment. Additionally, traceability concerning 
the ecological impacts of a product supports the fulfilment 
of sustainability requirements for business operations. [30] 
Time series data is necessary to capture and assess sustain-
ability information from processes. Finally, the assurance 
of product conformity (VA8) is defined as a value aspect. 
Product conformity includes all legal requirements (e.g. 
those under EU directives) that a product must meet before 
entering the market [31]. Sensor data-based process moni-
toring indirectly ensures product conformity by monitoring 
product quality [32]. The identified value aspects VA6 to 
VA8 result from the use of time series data in the follow-
ing four applications of a digital twin during the service 
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phase. “Service 2” contributes to traceability (VA7) by col-
lecting time series data related to resource consumption 
(e.g. coolant). When this data is used by machine learning 
methods to optimise consumption, the application supports 
the fulfilment of sustainability standards (VA6). “Service 
3” maps process-related environmental impacts and drives 
their optimisation. Due to its interaction with greenhouse 
gas emissions, this application is relevant to a company’s 
non-financial reporting (VA6). “Service 4” also serves VA6, 
as CO2 emissions are part of the reporting under the Cor-
porate Sustainability Reporting Directive (CSRD). “Service 
1” contributes to product conformity (VA8) by identifying 
and detecting component defects early, thus reducing the 
delivery of defective or substandard products. The allocation 
of all value aspects to the corresponding applications can be 
seen in Table 2 below.

The identified value aspects form the basis for quantifying 
the value of a data-driven application. Due to the relation-
ships between the value categories, there are dependencies 
among the value aspects, despite their application-specific 
allocation, which will be examined below. The interdepend-
encies between the value aspects are significant for the eval-
uation methodology, as the interaction involved in realising 
one value aspect may result in the (partial) fulfilment of 
another. The overall value of a data-driven application can 
be enhanced by such interdependencies. The identification 
of the interdependencies was also conducted through a com-
prehensive literature review using Scopus, Web of Science, 
and Google Scholar.

Within the value categories of process quality and prod-
uct quality, the minimisation of quality variations (VA2) 
and the enhancement of process reliability (VA4) are inter-
related, as high process reliability is characterised, among 
other things, by consistent product quality [33]. The sec-
ond value aspect also influences VA5 (reduction of pro-
cess costs), as lower variability in product quality reduces 

scrap rates, material costs, and consequently, process costs 
[34]. Furthermore, process costs (VA5) are affected by pro-
cess reliability (VA4). A key aspect of a stable process is a 
lower failure rate of machines and a production free from 
unplanned downtime. As a result of reduced downtime, the 
productive time of a process is increased, and the production 
costs for a product are lowered [35].

Within the value category of product quality, improved 
quality control (VA3) influences the value aspects of prod-
uct quality improvement (VA1) and minimisation of qual-
ity variations (VA2). Optimised quality control enables the 
reliable assessment of a product's characteristic features and 
the successful identification of quality variations during the 
production process [36].

There is a relationship between the value categories of 
fulfilment of regulatory requirements and product quality, 
particularly between ensuring product conformity (VA8) 
and improving quality control (VA3). Comprehensive qual-
ity control identifies defects and ensures compliance with 
regulatory requirements [32]. VA8 and the improvement of 
product quality (VA1) also influence each other. Adequate 
product quality is often the basis for meeting regulatory 
requirements regarding product conformity [37]. Minimis-
ing quality variations (VA2) results in less scrap and rework, 
as well as reduced material and energy consumption. This 
form of sustainability enhancement affects VA6 [38].

The value aspect of enabling traceability (VA7) interacts 
with two value aspects. Traceability aids in the quick and 
efficient identification of affected products in the event of 
a product recall for regulatory or safety reasons. To iden-
tify the products, quality parameters must be consistently 
recorded and stored [23]. Consequently, the value aspect of 
improved quality control (VA3) underpins VA7. A central 
element of traceability is the assessment of a product's sus-
tainability balance, for which the collection of sensor data 
is particularly relevant. The described influence on political 

Table 2   Application-specific allocation of the identified value aspects within the value category of fulfilment of regulatory requirements

Data-driven applications of a digital twin in the product service phase

Service of product 
quality monitor-
ing and prediction 
(Service 1)

Service of process 
monitoring and 
improvement (Ser-
vice 2)

Service of energy 
consumption 
analysis and forecast 
(Service 3)

Service of measur-
ing ecological foot-
print (Service 4)

Service of condition-
based and predictive 
maintenance strategy 
(Service 5)

Value category prod-
uct quality

VA1 x
VA2 x
VA3 x

Value category pro-
cess quality

VA4 x x x
VA5 x x

Value category fulfil-
ment of require-
ments

VA6 x x x
VA7 x
VA8 x
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requirements, such as the Non-Financial Reporting Direc-
tive, highlights the impact of VA7 on the fulfilment of sus-
tainability standards (VA6). Table 3 presents the identified 
interdependencies between the value aspects.

4.1.2 � Quantification of the value

The quantification of the value of the identified data-driven 
applications represents a decision problem with a network-
like structure due to the dependencies of the value aspects 
that need to be considered. For this reason, the ANP method 
is chosen to solve the problem. The overarching goal is to 
maximise the value for the manufacturing company. The 
applications represent the alternatives to be selected in the 
decision problem, while the value aspects represent the 
underlying criteria (Chapter 3).

The quantification of the value of applications depends 
on the individual assessment of a decision-maker, as 
value is defined as a subjective measure of need sat-
isfaction [6]. Consequently, the value of a data-driven 
application is individual for each company. This subjec-
tivity is reflected by a pairwise comparison of the value 
categories and aspects, based on the fuzzified scale of 
relative importance (Table 4). The comparison creates 
transparency regarding a company’s needs and maps 
these through the scale values or their reciprocal values. 
As described in the fundamentals section, fuzzy logic is 
suitable for considering potential grey areas in decision-
making situations when human preferences are evaluated. 
The comparisons of the categories result in the evalua-
tion matrix C, and the comparisons of the value aspects 
within each category lead to the evaluation matrices U1, 

U2, and U3. The values are assigned by the user of the 
methodology according to their individual preferences, 
ensuring that the specific requirements and priorities of 
their company are accurately represented.

For each of the matrices, a vector rm is calculated using 
the geometric mean, which represents the importance of 
the value categories and aspects in a simple and compact 
form through numerical values. To do this, the fuzzy num-
bers ( lj,mj, nj ) are multiplied column-wise and raised to the 
power of the reciprocal of the column count s of the corre-
sponding evaluation matrix:

After a normalisation, defuzzification of the results is per-
formed using the COA method. The defuzzied weight wi is 
derived from the division of the weighting vector fwi by the 
value “3”, which represents the three entries of a triangular 
fuzzy number:

After accounting for subjectivity, the already identified 
interdependencies between the value aspects are quanti-
fied by a numerical scoring system to capture the rarity of 
an interaction. For this purpose, pairwise comparison is 
not used, as the interactions between the value aspects do 
not depend on individual subjective perception. Instead, 
an alternative evaluation approach is developed in this 
study. It is evaluated whether an interdependency exists 

(4.1)rm =

⎛
⎜⎜⎝

�
s�

j=1

lj

� 1

s

,

�
s�

j=1

mj

� 1

s

,

�
s�

j=1

nj

� 1

s ⎞⎟⎟⎠

(4.2)wi =
fwi

3

Table 3   Interdependencies 
between the identified value 
aspects

VA1 VA2 VA3 VA4 VA5 VA6 VA7 VA8

VA1 - x x x
VA2 x - x x x x
VA3 x x - x x
VA4 x - x
VA5 x x -
VA6 x - x
VA7 x x -
VA8 x x -

Table 4   Scale of relative importance

Indifference between 
options

One option is slightly 
prioritised

One option is pri-
oritised

One option is clearly 
prioritised

The importance of 
one option domi-
nates

Intermediate values

Values (1,1,1) (2,3,4) (4,5,6) (6,7,8) (9,9,9) (1,2,3), (3,4,5), 
(5,6,7), (7,8,9)
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between two value aspects and a third aspect. An aspect 
is considered highly significant and receives a value of 
“2” if only this aspect influences the third value aspect 
(e.g., Table 3: VA2 affects VA1, but VA4 does not, so 
VA2-VA4 is set to “2”). If there is an interaction with the 
third element for both aspects, a value of “1” is assigned 
to both (e.g., Table 3: VA2 and VA3 both affect VA1, so 
VA2-VA3 is set to “1”). No interaction corresponds to a 
rating of “0”. Diagonal values are set to “1”, represent-
ing self-interaction, while inverse values are mirrored to 
maintain symmetry. This systematic approach ensures a 
transparent and consistent quantification of interdepend-
encies, forming a reliable basis for further analysis. The 
quantified interdependencies are derived from the relation-
ships identified in Table 3. Table 5 shows all quantified 
interdependencies for VA1.

Eight evaluation matrices are generated for eight 
value aspects, for which weighting vectors are calcu-
lated after column-wise normalisation using the arith-
metic mean. Unlike pairwise comparison using the 
fuzzified scale of relative importance, the evaluation 
approach for dependencies between VA can result in 
zero values. Therefore, the evaluation matrices are 
not constructed using the geometric mean. In the case 
of using the geometric mean, the overall result could 
potentially be “0” despite existing interdependencies, 
which would contradict an actual interaction. Instead, 
the arithmetic mean is applied column-wise to calculate 
the entries of the evaluation matrices for each individual 
VA. Consequently, the evaluation matrix for the first 
value aspect is denoted as 

−

VA1.

(4.3)
−

VA1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− − − − − − − −

− 0.2 0.2 0.286 0.286 0.286 0.286 0.2

− 0.2 0.2 0.286 0.286 0.286 0.286 0.2

− 0.1 0.1 0.143 0 0 0 0.1

− 0.1 0.1 0 0.143 0 0 0.1

− 0.1 0.1 0 0 0.143 0 0.1

− 0.1 0.1 0 0 0 0.143 0.1

− 0.2 0.2 0.286 0.286 0.286 0.286 0.2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The first entry of the evaluation matrix rm,1 is deter-
mined as follows:

This is followed by the normalisation of the evaluation 
matrices to determine the priority vectors. For this purpose, 
the matrix entries in each row of an evaluation matrix are 
summed and divided by the number of potentially available 
interaction partners (in this case, seven additional VA). For 
the first VA, the priority vector WVA1 is:

The vector WVA1 indicates how important or influential 
the individual value aspects are for VA1, helping compa-
nies in their decision-making process to determine which 
application is the most suitable. The higher the entry within 
the vector, the greater the relative significance of each VA 
for VA1. As a result of the normalisation, a comparison of 
the importance between the VA is now possible. Since the 
evaluation matrices representing the dependencies between 
the value aspects are of an objective nature, they can be 
applied to each use case without the need for recalculation. 
To solve the decision problem of selecting the most appro-
priate application based on available time series data, the 
supermatrix (Table 6) is constructed. It integrates subjective 
preferences, interdependencies, and feedback loops between 
VA and applications, consolidating pairwise comparisons 
into a stable priority structure through matrix exponentia-
tion. The goal is to maximise the value generated by the 
selected application, with evaluation results for value cat-
egories Kn and value aspects VAn incorporated accordingly.

(4.4)rm,1 =
1

1 + 1 +
1

2
+

1

2
+

1

2
+

1

2
+ 1

= 0.2

(4.5)WVA1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0.249

0.249

0.063

0.063

0.063

0.063

0.249

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 5   Influences on VA1 VA1 VA2 VA3 VA4 VA5 VA6 VA7 VA8

VA1 - - - - - - - -
VA2 - 1 1 2 2 2 2 1
VA3 - 1 1 2 2 2 2 1
VA4 - 1/2 1/2 1 0 0 0 1/2
VA5 - 1/2 1/2 0 1 0 0 1/2
VA6 - 1/2 1/2 0 0 1 0 1/2
VA7 - 1/2 1/2 0 0 0 1 1/2
VA8 - 1 1 2 2 2 2 1
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In the next step, the matrix is multiplied by itself repeat-
edly until the row entries converge to a single value. The 
convergence value represents the value UVAi upon fulfilment 
of the corresponding value aspect. The value of an applica-
tion is the sum of all quantified values UVAi for the value 
aspects that the application fulfils.

4.2 � Identification and assessment of effort 
for data‑driven applications

When implementing data-driven applications, the 
described value must be weighed against the multidimen-
sional implementation effort. The effort involved in data 
collection, particularly due to the underlying sensors, and 
the technological requirements are two key dimensions 
[39]. The effort associated with data-driven applications 
is subjective for each dimension, as it depends on the 
company's individual experience, competence, and sen-
sor equipment. The subsequent evaluation results from 
the individual assessment steps are summed at the end to 
reflect the overall effort.

4.2.1 � Effort for data collection of data‑driven applications

From a financial perspective, it is not reasonable to col-
lect all potentially available parameters unless they are 
actively used to improve processes or products. The iden-
tification of the required sensors for each application and 
the comparison with the company’s current state can serve 
as a metric for assessing the so-called sensory effort. In 
this theoretical part of the methodology, the application-
specific sensor identification is carried out at the sensor 
class level, based on generalisation, and is grounded in 
a literature review of databases such as Web of Science, 
Springer Link, and Google Scholar. Users implementing 
the methodology should conduct a systematic allocation 
of specific sensors for each application case through com-
prehensive literature review in scientific databases. The 
general overview with the sensor classes provides sup-
port for assigning the specific sensors to the applications 
in the use case. The literature review was subject to the 
requirement that only publications related to (metalwork-
ing) manufacturing processes should be considered. The 

Table 6   Supermatrix in current 
context

Goal K1 K2 K3 VA1 VA2 VA3 VA4 VA5 VA6 VA7 VA8

Goal 0 0 0 0 0 0 0 0 0 0 0 0
K1 w

C1
0 0 0 0 0 0 0 0 0 0 0

K2 w
C2

0 0 0 0 0 0 0 0 0 0 0
K3 w

C3
0 0 0 0 0 0 0 0 0 0 0

VA1 0 w
U11

0 0 W
VA1,1 W

VA2,1 W
VA3,1 W

VA4,1 W
VA5,1 W

VA6,1 W
VA7,1 W

VA8,1

VA2 0 w
U12

0 0 W
VA1,2 W

VA2,2 W
VA3,2 W

VA4,2 W
VA5,2 W

VA6,2 W
VA7,2 W

VA8,2

VA3 0 w
U13

0 0 W
VA1,3 W

VA2,3 W
VA3,3 W

VA4,3 W
VA5,3 W

VA6,3 W
VA7,3 W

VA8,3

VA4 0 0 w
U21

0 W
VA1,4 W

VA2,4 W
VA3,4 W

VA4,4 W
VA5,4 W

VA6,4 W
VA7,4 W

VA8,4

VA5 0 0 w
U22

0 W
VA1,5 W

VA2,5 W
VA3,5 W

VA4,5 W
VA5,5 W

VA6,5 W
VA7,5 W

VA8,5

VA6 0 0 0 w
U31

W
VA1,6 W

VA2,6 W
VA3,6 W

VA4,6 W
VA5,6 W

VA6,6 W
VA7,6 W

VA8,6

VA7 0 0 0 w
U32

W
VA1,7 W

VA2,7 W
VA3,7 W

VA4,7 W
VA5,7 W

VA6,7 W
VA7,7 W

VA8,7

VA8 0 0 0 w
U33

W
VA1,8 W

VA2,8 W
VA3,8 W

VA4,8 W
VA5,8 W

VA6,8 W
VA7,8 W

VA8,8

Table 7   Required sensor classes for the identified applications

Data-driven applications of a digital twin in the product service phase

Service of product 
quality monitor-
ing and prediction 
(Service 1)

Service of process 
monitoring and 
improvement (Ser-
vice 2)

Service of energy 
consumption 
analysis and forecast 
(Service 3)

Service of measur-
ing ecological foot-
print (Service 4)

Service of condition-
based and predictive 
maintenance strategy 
(Service 5)

Sensor classes Geometrical [41] [42]
Time-based [41] [42] [43] [44] [45]
Mechanical [41] [42] [43] [46] [45]
Optical [47] [48] [49]
Electrical [41] [43] [44]
Acoustical [47] [50] [51]
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search for suitable publications was based on keywords, 
which were a combination of the different sensor classes 
according to Hering and Schönfelder [40] and the identi-
fied applications (e.g., Optical Sensors for Quality Moni-
toring). The results are shown in Table 7.

The listed sources are representative of which sensor 
classes can be used for which applications. It is to mention 
that there is no weighting of the importance of the individual 
sensors for a selected service, nor any indication of whether 
certain sensor would be sufficient for an application to, for 
example, predict product quality.

There are scenarios like manufacturing process sequences 
that rely on complete sensor coverage across multiple manu-
facturing stages. The produced outcome is influenced by all 
manufacturing processes involved in a sequence, particularly 
in terms of quality and sustainability. For instance, the wear of 
a tool of a fine blanking machine can impact the input geome-
try of a component to be milled, leading to quality degradation 
[32]. Therefore, complete process coverage is necessary for 
"Service 1", "Service 2" and "Service 4". In contrast, "Service 
3" and "Service 5" do not necessarily require complete sensor 
coverage of the process. Maintenance actions directly affect a 
machine (e.g., by reducing downtime) and indirectly impact 
the entire production process. The same applies to energy 
consumption. Even though the entire manufacturing sequence 
benefits from an increase in energy efficiency, measures to 
reduce energy consumption focus on individual value-adding 
stages. The effort for sensory process coverage of a manu-
facturing process sequence is more demanding compared to 
a partial process, as integrating additional sensors into exist-
ing machines is both time- and cost-intensive. Therefore, the 
effort for sensory process coverage across manufacturing 
sequences must be determined for each value-adding stage 
involved. The results for each stage are summed across the 
entire manufacturing process sequence and normalised by 
the number of process steps involved. It is important to note 
that for applications requiring sensory process coverage, the 
sensory effort is not considered separately, as it is already 
included in the effort for sensory process coverage.

In addition to the sensory effort or effort for sensory pro-
cess coverage, the collection of process performance indica-
tors to assess the process outcome also influences the effort 
involved in data collection. Without the collection of process 
performance indicators, applications cannot be implemented 
or their effectiveness evaluated. Like the sensory effort, the 
effort of process performance indicators is determined by 
comparing the required process performance indicators with 
the company’s current state.

4.2.2 � Technological effort of data‑driven applications

In addition to the effort involved in data collection, the 
selection of the most suitable data-driven application is also 

subject to technological effort. In this work, this effort is 
represented by a company's methodological competence in 
implementing an application, as well as its experience and 
willingness to share data beyond its organisational bounda-
ries, since data sharing is necessary for selected applications 
to realise their value. When considering methodological 
competence, particular emphasis is placed on data analy-
sis methods from the field of Machine Learning (ML). The 
company's experience in ML-based data analysis is evalu-
ated using the Technology Readiness Level (TRL) scale. 
The organisation must assess its ML proficiency across ten 
evaluation levels. A value of"0"indicates no experience, 
while a value of"1"signifies that a proven system is already 
operational in practice. This assessment framework allows 
for a systematic evaluation of the organisation's ML maturity 
and practical implementation capabilities. [52]

In addition to data analysis methods, "Service 4" requires 
competence in conducting a LCA according to ISO 14040. 
This assessment is carried out in four stages:"Defining the 
scope of the study"(Stage 1),"Compiling an inventory"(Stage 
2),"Performing impact assessment"(Stage 3), and"Reducing 
environmental impacts"(Stage 4) [53]. To evaluate the effort 
of an LCA, the company's experience with the four stages 
of an LCA according to ISO 14040 is relevant. The stage-
specific evaluation scale ranges from 0, indicating a lack of 
experience, to 1, representing experience in all four phases 
of a complete LCA as per ISO 14040.

Implementing data-driven applications requires not 
only methodological competence but also experience and 
a willingness to share data beyond the company's bounda-
ries. Cross-company data sharing can enable continuous 
improvement and transparency in products, processes, and 
their sustainability [54]. The effort related to data sharing 
stems from the challenges of identifying a suitable coopera-
tion partner and ensuring legal security and data sovereignty 
[55]. For "Service 4", data sharing is essential [56]. There-
fore, evaluating the data sharing effort is only relevant for 
this application.

Data sharing can take different forms. There are manual, 
paper-based approaches, semi-automated methods with 
manual steps (e.g., a file attachment in an email), as well as 
fully automated real-time transmissions [57]. The evaluation 
of data sharing effort is based on these forms, ranging from 
a score of 0 for the unwillingness to share data, to a score of 
1 for automated data sharing. A manual data sharing is rated 
with a value of 1/3, while semi-automated data sharing is 
rated with a value of 2/3.

4.3 � Comparison of value and effort for selecting 
the most suitable application

The selection of the most suitable application requires a 
balance between value and effort. Since value and effort 
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are measured on different scales, a direct comparison is not 
possible without prior normalisation. Therefore, before the 
TOPSIS method can be applied, the calculated value and 
effort scores for each application must be normalised. This 
is achieved by dividing the calculated value or effort score of 
an application by the sum of all value or effort scores across 
all applications.

The purpose of normalisation is twofold. Firstly, it 
ensures that the results for value and effort are compara-
ble, regardless of their original measurement units. It can be 
interpreted within a standardised range. Secondly, it prevents 
disproportionate influence of any single application on the 
final ranking by scaling all values to a standardised range 
between 0 and 1. The values “0” and “1” serve as extreme 
reference points for value and effort. The maximum value or 
minimum effort is represented by “1”, indicating the ideal 
application. The minimum value or maximum effort is rep-
resented by “0”, marking the least favourable application.

After normalisation, the TOPSIS method is used to deter-
mine a ranking of the most suitable applications for a com-
pany by calculating the distance measure C∗

i
 ​. The required 

Euclidean distances D+
i
 ​ and D−

i
 ​ represent the previously 

determined normalised value Ui ​ and normalised effort Ai of 
the i-th application.

The distances are calculated in a two-dimensional space, 
where the x-axis represents effort and the y-axis represents 
value. The ideal application (highest value, lowest effort) is 
located at (1,1), while the least favourable application (low-
est value, highest effort) is located at (0,0). These reference 
points ensure a structured ranking, allowing decision-makers 
to prioritise applications that provide the highest value with 
the least effort.

5 � Application of the methodology

The following section applies the developed methodology 
to a fictional example of a manufacturing process sequence 
for producing gears. This sequence consists of the value-
adding stages of fine blanking, grinding, and milling [32]. 
For the determination of the value, the company's prefer-
ences regarding the value categories are first recorded. In 
this example, the fulfilment of regulatory requirements is 
more important to the company than process quality. Product 
quality and regulatory requirements are prioritised equally 
(Table 8). Additionally, the VA within each category are 

(4.6)D+
i
=

√(
1 − Ui

)2
+
(
1 − Ai

)2

(4.7)D−
i
=

√(
0 − Ui

)2
+
(
0 − Ai

)2

compared in terms of the company’s preferences (Table 9 
illustrates this for the VA of the value category product qual-
ity). The same approach applies to the VA of the other cat-
egories but is not explicitly shown.

The creation of priority vectors is based on calculating 
the geometric mean of each pairwise comparison of the VA 
categories and the VA. The geometric mean rU1,1 for the first 
row of the results of Table 9 is calculated as follows:

The whole evaluation matrix U1 rU1 is as follows:

After column-wise normalisation of rU1 , the following 
applies:

The priority vector wU1 is obtained after defuzzification:

After calculating these vectors, the supermatrix is con-
structed (Table 10). The priority vector of the evaluation 
matrix of the VA categories is marked in red, the priority 
vector of the VA of the category product quality in blue, the 
priority vector of the VA of the category process quality 
in green, and the priority vector of the VA of the category 
fulfilment of requirements in yellow. The quantified inter-
dependencies of the VA, which are outlined in black, are 
displayed.

The created supermatrix is raised to a power to solve the 
ANP, until the row entries of the value aspects converge. A 
matrix power is the result of repeated matrix multiplication. 

(5.1)

rU1,1=

(
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n=1

aij

) 1

s

=
(
1 ∙

1

5
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1
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) 1
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,

(
1 ∙

1

4
∙
1

3

) 1

3

,

(
1 ∙

1

3
∙
1

2

) 1

3

= (0.37, 0.44, 0.55)

(5.2)rU1=

⎛⎜⎜⎝

0.37 0.44 0.55

1.44 1.59 1.71

1.26 1.44 1.59

⎞⎟⎟⎠

(5.3)rU1,normalized=

⎛⎜⎜⎝

0.12 0.13 0.14

0.47 0.46 0.44

0.41 0.42 0.41

⎞⎟⎟⎠

(5.4)wU1=

⎛⎜⎜⎝

0.13

0.457

0.413

⎞⎟⎟⎠

Table 8   Pairwise comparison of the value categories (C)

Product quality Process quality Fulfilment 
regulatory 
requirements

Product quality (1,1,1) (3,4,5) (1,1,1)
Process quality (1/5,1/4,1/3) (1,1,1) (1/6,1/5,1/4)
Fulfilment 

regulatory 
requirements

(1,1,1) (4,5,6) (1,1,1)
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Thus, the matrix is multiplied by itself until convergence of 
the entries in rows VA1 to VA8 is achieved. In this exam-
ple, ten iterations were required to calculate the value of the 
individual value aspects. The converged supermatrix (lim-
itmatrix) is shown below (Table 11).

The evaluated value of the individual VA is normalised and 
can be derived. To determine the value for each use case, the 
quantified value of the relevant VA influenced by the applica-
tions is added. For the quantification of the effort, it is assumed 
that only time series data from the grinding process is available. 

In Table 12, the comparison of the actual data basis with the 
required target state for each application is shown (sensory effort).

To represent the effort for sensory process coverage, for 
all applications requiring data collection from the entire 
manufacturing process chain, the ratio of collected to 
required data from the sensory effort study is considered. 
Since no data is recorded for the fine blanking and mill-
ing process steps, the sensory effort for these applications is 
multiplied by “1/3” to represent the effort for sensory pro-
cess coverage (Table 13).

Table 9   Pairwise comparison 
of the value aspects of the 
category product quality (U1)

Improvement 
product quality

Minimisation qual-
ity fluctuations

Improved quality control

Improvement product quality (1,1,1) (1/5, 1/4, 1/3) (1/4,1/3,1/2)
Minimisation quality fluctuations (3,4,5) (1,1,1) (1,1,1)
Improved quality control (2,3,4) (1,1,1) (1,1,1)

Table 10   Supermatrix in this example

 Goal K1 K2 K3 VA1 VA2 VA3 VA4 VA5 VA6 VA7 VA8 

Goal 

K1 0.432

K2 0.102

K3 0.466

VA1 0.13

VA2 0.457

VA3 0.413

VA4 0.743

VA5 0.257

VA6 0.271

VA7 0.608

VA8 0.121

Table 11   Limitmatrix in this 
example

Goal K1 K2 K3 VA1 VA2 VA3 VA4 VA5 VA6 VA7 VA8

Goal 0 0 0 0 0 0 0 0 0 0 0 0
K1 0 0 0 0 0 0 0 0 0 0 0 0
K2 0 0 0 0 0 0 0 0 0 0 0 0
K3 0 0 0 0 0 0 0 0 0 0 0 0
VA1 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123
VA2 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185
VA3 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154
VA4 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106
VA5 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106
VA6 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106 0.106
VA7 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108
VA8 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
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In the final part of the effort for data collection, the effort 
of process performance indicators is represented by compar-
ing the collected indicators with the required ones for each 
application (Table 14).

The technological effort requires querying the capabili-
ties and experience related to ML methods. The organi-
sation reports a Technology Readiness Level (TRL) of 3, 
indicating they possess theoretical knowledge and experi-
mental experience in data analysis through proof-of-concept 
implementations. Regarding the life cycle assessment, the 
company indicates that in past projects, it has only defined 
the study framework (Stage 1 of ISO 14040). All results of 
the method-based effort are shown in Table 15. Finally, the 
willingness and competence in data sharing are examined. 
The grinding company practises a manual data sharing with 
other participants in the value chain. This effort is quantified 
with a value of 1/3.

To identify the best application of the digital twin in the 
product service phase for the grinding company, the results 
of the value and effort quantification are combined after a 
normalisation. Normalisation represents the total value or 
effort of an application in relation to the sum of the total 
value or effort across all applications. As defined in Chap-
ter 4, the highest value or lowest effort is represented by “1”. 
This facilitates the graphical representation of the TOPSIS 
analysis results. The ideal application would be positioned 
at the top right corner, while the least favourable application 
would be represented by the tuple (0,0).

The calculation of the Euclidean distance of the consid-
ered value and effort of an application from the theoretically 
best and worst value and effort using TOPSIS is required to 
calculate the distance measure C∗

i
 ​. This distance measure 

helps rank the data-driven applications. The value-effort 
pairs for each application (blue points) and the distances to 
the positive ideal solution and the negative ideal solution 
(light blue lines) can be graphically represented. In Fig. 2, 
the individual applications are shown as blue points, while 
the positive ideal solution is marked in green and the nega-
tive ideal solution in red.

The final ranking of the applications for the given context 
of the fictional example is shown in Table 16. The "Service 
of product quality monitoring and prediction (Service 1)" 
appears to be the most suitable application in terms of the 
value-effort ratio.

6 � Conclusion and discussion of the results

This work presented a value-effort-oriented decision model 
designed to enable companies to select the most suitable 
digital twin application in the product service phase for their 
specific needs, based on the underlying time series data. The 
approach addresses the challenge that companies often can-
not quantify economic value or costs in advance, making it 
difficult to decide on the most appropriate application purely 
based on monetary metrics. By applying a data-to-value 

Table 12   Sensory effort in this example

Ser-
vice of 
product 
quality 
monitor-
ing and 
prediction 
(Service 
1)

Ser-
vice of 
process 
monitor-
ing and 
improve-
ment 
(Service 
2)

Service 
of energy 
consump-
tion 
analysis 
and 
forecast 
(Service 
3)

Service 
of meas-
uring 
eco-
logical 
footprint 
(Service 
4)

Service of 
condition-
based and 
predictive 
main-
tenance 
strategy 
(Service 5)

Share 
cap-
tured 
data

3/5 4/5 1 1 2/4

Table 13   Effort for sensory process coverage in this example

Fineblanking Grinding Milling Sum Effort for sensory 
process coverage

Service of product quality monitoring and prediction (Service 1) 0 3/5 0 3/5 1

3
∙

3

5
=

3

15

Service of process monitoring and improvement (Service 2) 0 4/5 0 4/5 1

3
∙

4

5
=

4

15

Service of measuring ecological footprint (Service 4) 0 1 0 1 1

3
∙ 1 =

1

3

Table 14   Effort of process performance indicators in this example

Ser-
vice of 
product 
quality 
monitor-
ing and 
prediction 
(Service 
1)

Ser-
vice of 
process 
monitor-
ing and 
improve-
ment 
(Service 
2)

Service 
of energy 
consump-
tion 
analysis 
and 
forecast 
(Service 
3)

Service 
of meas-
uring 
eco-
logical 
footprint 
(Service 
4)

Service of 
condition-
based and 
predictive 
main-
tenance 
strategy 
(Service 5)

Share 
cap-
tured 
indica-
tors

1/3 2/4 1 1 2/3
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strategy, the proposed model aims to bridge the gap between 
data collection and utilisation, unlocking the full potential 
of digital twins. Additionally, the model enables scenario 
simulation to explore how different data availability, meth-
odological knowledge, or expanded application areas affect 
value and effort assessments.

While the proposed decision model offers a struc-
tured approach to application selection, several limita-
tions need to be considered. The method and evaluation 
results rely on expert-based weightings, which can intro-
duce bias and variability. Incorporating quantitative KPI, 
such as production efficiency gains or energy savings, 
could provide a more objective assessment. However, 
deriving such benchmarks requires broader adoption of 
digital twin applications beyond the pilot stage. Another 
limitation is that the model currently does not incorporate 
implementation costs, which could play a crucial role in 
decision-making. Integrating rough monetary value and 
cost estimations could enhance its practical applicability 
by allowing companies to make more informed investment 
decisions. Additionally, the decision model assumes suf-
ficient and high-quality time series data, which may not 
always be available in practice. Data incompleteness or 
inaccuracy could significantly affect the reliability of the 
model's recommendations. To address this, future research 
should explore integrating a data quality assessment into 

Table 15   Overview of the efforts in this example

Sensory effort Effort sensory 
process cover-
age

Effort process 
performance 
indicators

Effort 
ML 
method

Effort LCA Effort 
data 
sharing

Sum

Service of product quality monitoring and 
prediction (Service 1)

- 3/15 1/3 4/10 - - 0.933

Service of process monitoring and improve-
ment (Service 2)

- 4/15 2/4 4/10 - - 1.166

Service of energy consumption analysis and 
forecast (Service 3)

1 - 1 4/10 - - 2.400

Service of measuring ecological footprint 
(Service 4)

- 1/3 1 - 1/4 1/3 1.916

Service of condition-based and predictive 
maintenance strategy (Service 5)

2/4 - 2/3 4/10 - - 1.566

Fig. 2   Results of TOPSIS in 
this example

Table 16   Ranking of the applications in this example

Service of 
product 
quality 
monitor-
ing and 
prediction 
(Service 
1)

Service 
of process 
monitor-
ing and 
improve-
ment 
(Service 
2)

Service 
of energy 
consump-
tion 
analysis 
and 
forecast 
(Service 
3)

Service 
of meas-
uring 
eco-
logical 
footprint 
(Service 
4)

Service of 
condition-
based and 
predictive 
main-
tenance 
strategy 
(Service 5)

C
∗ 0.25 0.22 0.22 0.18 0.21

Ranking 1 3 2 4 5
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the decision model to ensure that selected applications are 
supported by reliable input data.

The proposed approach can be expanded both in terms 
of the data considered and the application cases. Following 
the approach of Kreutzer [6], the scope could be extended 
to include field data. Accordingly, the number of value 
aspects and the interactions to be considered would need 
to be adjusted. If new application cases are added, it is 
necessary to evaluate whether additional data collection 
or technological efforts should be included and whether 
new value aspects need to be defined. It may also be worth 
considering adjusting the value and effort scales based on 
the economic impact of the monetary benefits and costs, 
to provide a more realistic recommendation for an appli-
cation. However, this would require knowledge or at least 
a rough estimation of the monetary consequences of each 
application.

Building on the results of this paper, further steps can 
be taken towards data assessment. With an understanding 
of the most suitable application in terms of the value-effort 
ratio, reviewing the quality of the underlying data set and 
evaluating which manufacturing technology target features 
should be prioritised would be the next steps to further 
enhance the value of the company's data.
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