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 A B S T R A C T

High-fidelity electrochemical-thermal models are essential for performance improvement, charge/discharge 
strategy optimization, and the safe operation of lithium-ion batteries. However, model performance sig-
nificantly relies on the accuracy of parameters, whose measurement is limited by laboratory conditions. 
Non-invasive methods based on relatively accessible current, voltage, and temperature data combined with 
artificial intelligence are promising for rapid parameterization of battery models. However, the model’s 
complexity and the data’s poor quality increase the difficulty of applying the methodology. To design a 
reasonable identification framework and obtain reliable data, the identifiability of model parameters must 
be analyzed under different operating conditions. This paper develops an identifiability analysis framework to 
investigate the impact of model parameters on voltage and temperature outputs and the impact of key operating 
variables, i.e., current rate and ambient temperature. By adjusting operating conditions, the sensitivity of 
specific parameters can be improved by two orders of magnitude. The results are discussed in detail concerning 
the model modeling mechanism and the physical meaning of the parameters, with a focus on improving 
non-invasive parameterization in terms of experimental design and identification strategy.
1. Introduction

Lithium-ion batteries (LIBs) dominate the electrical energy storage 
market and are widely used in both stationary and automotive ap-
plications due to their high energy density, low self-discharge, and 
long lifespan [1]. However, the performance and lifetime of LIBs are 
affected by operating conditions, where the temperature plays a crucial 
role. In particular, the challenges posed by thermal safety issues have 
created an urgent need for an effective thermal management system 
for batteries [2,3]. A well-performing thermal management system 
requires accurate models to simulate battery behavior and cost-effective 
parameterization methods for these models [4].

To model the electrical and thermal behaviors of LIBs, equiva-
lent circuit models and electrochemical models are two widely used 
models. The former uses circuit components to simulate the electri-
cal characteristics of the batteries, which has a simple structure and 
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low computational cost [5]. The parameters of these models can be 
updated using online identification methods to simulate the voltage 
and estimate the state of LIBs accurately [6,7]. Furthermore, different 
electro-thermal models have been developed for the thermal predic-
tions [8]. However, the parameters of such models usually lack a 
strong physical meaning and therefore face challenges such as low 
interpolation ability. The latter, by contrast, is based on the porous 
electrode and concentrated solution theory, which is therefore capable 
of presenting internal physical states, such as lithium-ion concentra-
tions and potentials, enabling high interpretability [9]. To further 
model the thermal behavior of LIBs, both models can be coupled 
with a thermal model to simulate the temperature change due to 
heat generation and dissipation during the charging and discharging 
process of the battery. Due to its high interpolation and extrapolation 
ability, the electrochemical-thermal model (ECTM) is becoming more 
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Nomenclature

𝐴𝑎𝑟𝑒𝑎 Electrode surface area
𝑎 Interfacial area of spherical particles
𝑐𝑒 Electrolyte Li-ion concentration
𝑐𝑠 Electrode Li-ion concentration
𝑐𝑠𝑠 Electrode surface concentration
𝑐+𝑠,𝑚𝑎𝑥 Maximum ionic concentration
𝐶𝑝,𝑖 Specific heat capacity
𝐷𝑒 Electrolyte diffusion coefficient
𝐷𝑠 Solid diffusion coefficient
𝐸𝐴,𝑋 Activation energy
𝐹 Faraday constant
ℎ𝑐𝑒𝑙𝑙 Equivalent heat exchange coefficient
𝑖0 Exchange current density
𝑘 Reaction rate
𝐿 Length of the domain
𝑋 Cell parameter
𝑄𝑜ℎ𝑚 Ohmic heat
𝑄𝑟𝑥𝑛 Irreversible heat
𝑄𝑟𝑒𝑣 Reversible heat
𝑄𝑡𝑜𝑡 Total heat
𝑅 Universal gas constant
𝑅𝑝 Particle radius
𝑅𝑆𝐸𝐼 SEI film resistance
𝑆𝐼 Sensitivity index
𝑇 Cell temperature
𝑇𝑟𝑒𝑓 Reference temperature
𝑇𝑎𝑚𝑏 Ambient temperature
𝑈 Open circuit voltage
𝑉 Terminal voltage
𝑉 (⋅) Variance
𝑌 Model output
𝜎𝑠 Electrode conductivity
𝜎𝑒 Electrolyte conductivity
𝜅𝑒𝑓𝑓 Effective electrolyte conductivity
𝜎𝑒𝑓𝑓 Effective electrode conductivity
𝜙𝑠 Solid-phase potential
𝜙𝑒 Electrolyte potential
𝑡0+ Transference number of lithium cation
𝜌𝑖 Volumetric mass density
𝜆𝑖 Thermal conductivity
𝜀𝑠 Active material volume fraction
𝜀𝑒 Electrolyte volume fraction
𝜂 Overpotential of intercalation
𝜃𝑝 Cathode lithiation
𝜃𝑛 Anode lithiation

and more popular in understanding and managing the electrical and 
thermal behaviors of LIBs. However, the performance of ECTMs relies 
heavily on precise parameters, and rapid and accurate parameteriza-
tion of ECTMs remains a challenge. State-of-the-art parameterization 
approaches usually require opening the battery cell in the glove boxes 
and measuring the physical parameters of each component. Such in-
vasive methods are limited by complex laboratory conditions, expen-
sive measurement devices, and time-consuming procedures. Moreover, 
the batteries cannot be used anymore after the invasive measure-
ment [10,11]. In contrast, non-invasive approaches use easily accessible 
data, e.g., current, voltage, and surface temperature, and optimization
2 
List of abbreviation
𝐸𝐶𝑇𝑀 Electrochemical-thermal model
𝐿𝐼𝐵 Lithium-ion battery
𝑂𝐴𝑇 One-at-A-Time
𝐷𝑂𝐷 Depth of discharge
𝐺𝑆𝐴 Global sensitivity analysis
𝑆𝐸𝐼 Solid electrolyte interphase
𝑃2𝐷 Pseudo-Two-Dimensional
𝐷𝐹𝑁 Doyle–Fuller–Newman
𝑁𝑀𝐶 Nickel manganese cobalt oxide
𝑄𝑀𝐶 Quasi-Monte Carlo
𝑂𝐶𝑉 Open circuit voltage
𝑀𝐶 Monte-Carlo
𝐵𝐶𝐼 Bootstrap confidence intervals
𝑅𝑀𝑆𝐸 Root mean square error
𝐶 − 𝑟𝑎𝑡𝑒 Current rate
𝑆𝐼 Sobol index

algorithms to parameterize the electrochemical models [12]. How-
ever, the primary challenge for such data-driven parameterization ap-
proaches is the significant differences in the identification ability of 
the parameters due to the high complexity and nonlinearity of the 
electrochemical model.

To understand the identification abilities of the physical parameters, 
sensitivity analysis has been widely investigated for LIBs: By analyzing 
the sensitivity of measurable states of LIBs on the value changes of the 
physical parameters, we are able to understand how these parameters 
affect the model behavior and what the mechanism behind it is. Sen-
sitivity analysis methods can generally be divided into local methods, 
which analyze the sensitivity around the reference value, and global 
methods, which analyze the sensitivity of the entire parameter value 
space.

Park et al. [13] derived a sensitivity matrix of electrochemical 
parameters using first-order partial derivatives and integrated this ap-
proach into a parameter identification framework for the Newman 
model via Fisher information. A drawback of this method is that its 
implementation is highly demanding, as the analytical derivation of the 
sensitivity matrix for battery models is exceedingly complex. In con-
trast, the One-at-A-Time (OAT) method, where only one parameter is 
varied within its boundaries while others remain fixed at their nominal 
value, is easier to implement [14]. Li et al. analyzed the sensitivity of 
26 parameters for an electrochemical model at different current rates 
(C-rates) and depth of discharge (DOD) ranges under real-world driving 
conditions of electric vehicles using the OAT method [15]. Similarly, 
Song et al. extended the application of the OAT method to analyze 
the sensitivities of the parameters of an ECTM, focusing on the heat 
generation rate [16]. Although less computationally intensive, local 
sensitivity analysis methods examine only a small portion of the value 
space around the nominal values [17].

In contrast, global sensitivity analysis (GSA) involves simultane-
ously varying several or all model parameters, enabling a comprehen-
sive exploration of the parameter value space and assessing param-
eter sensitivity in a ‘‘global sense’’ [18]. Appiah et al. conducted a 
sensitivity analysis of a battery degradation model by training a dif-
ferentiable surrogate Gaussian regression process model using various 
randomly sampled parameter sets [19]. The effect of model param-
eters on the thickness of the solid electrolyte interphase (SEI) and 
irreversible charge loss was thus obtained. However, this method re-
quires constructing a high-quality regression model in advance, making 
preparatory work complex and time-consuming. The Morris method, 
also known as the Elementary Effect Test, is commonly used in global 
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sensitivity analysis for various LIB models [20,21]. This method reduces 
the number of model calculations through a specific sampling strategy, 
employing two statistical indices to represent the effect of a parameter 
on the output and its interaction with other parameters. Deng et al. 
performed a sensitivity analysis of physics-based model parameters for 
solid-state batteries using the Morris method [21]. However, the Morris 
method does not provide information about the intensity of interactions 
between parameters [22], which is crucial for developing an accurate 
and efficient parameterization framework for the battery model.

To comprehensively analyze the sensitivity of parameters and their 
interactions with a given parameter value space, the Sobol method, 
which can dissect the total variance of the model output into contri-
butions from individual parameters and their interactions, has drawn 
significant attention. Lin et al. employed the Sobol method to analyze 
the impact of 46 parameters on discharge capacity and temperature 
variation in a 3D multiphysics model, identifying nine parameters with 
notable sensitivity and strong interactions among them [23]. Streb et al. 
applied the Sobol method to optimize experimental design, thereby 
enhancing parameter estimation [24]. Furthermore, the Sobol method 
plays an important role in identifying the impedance spectrum of 
LIBs [25]. Although the Sobol method has been widely applied to 
various battery models, a comprehensive analysis of the identifiability 
of ECTM parameters with respect to terminal voltage and battery 
temperature is still lacking. Additionally, the influence of operating 
conditions, including ambient temperature and current rate, on the 
sensitivity of these parameters has yet to be thoroughly investigated. 
Such insights are essential for the non-invasive parameterization of 
ECTMs for LIBs.

This study aims to address existing research gaps by analyzing, for 
the first time, the identifiability of 39 parameters of the ECTM with 
respect to voltage and temperature outputs across the entire value space 
using the Sobol method. First, an electrochemical-thermal coupling 
model is developed, whose parameters were benchmarked through 
a literature review and experiments. Full-order and first-order Sobol 
sensitivity indices were computed and used to rank the identifiability 
of the parameters, identifying the key parameters affecting the volt-
age and temperature outputs of the model. Additionally, second-order 
Sobol indices were analyzed to reveal interactions between specific 
parameters. To further explore the impact of significant operating 
factors on parameter identifiability, Sobol indices were computed under 
nine distinct operating conditions, each characterized by variations 
in ambient temperature and discharge current rates. The results were 
then interpreted in the context of the ECTM’s underlying modeling 
mechanisms, providing a physical explanation for the observed changes 
in parameter sensitivity. Finally, a Pareto ranking method was applied 
to rank and group the parameters according to their sensitivity and 
importance.

2. Battery modeling

The methodology developed in this work can be implemented on 
LIB models across various platforms, including COMSOL, Python, C++, 
and MATLAB. For result visualization, we selected LIONSIMBA, an 
open-access ECTM for LIBs in MATLAB [26]. LIONSIMBA is based 
on the Pseudo-Two-Dimensional (P2D) model, which is numerically 
solved using a finite-volume method. The P2D model, or Doyle–Fuller–
Newman (DFN) model, is a widely recognized and widely used electro-
chemical model for LIBs in the literature. Fig.  1 illustrates the working 
principles of the ECTM, which is described in detail in Sections 2.1 and
2.2.

2.1. Electrochemical model

The P2D model for LIBs assumes porous electrodes and encompasses 
the dynamics of both solid and electrolyte components, alongside the 
transport phenomena of lithium ions within the spatial and temporal 
3 
Fig. 1. Illustration of the coupling of the ECTM. The thermal model calculates the 
heat source from the internal states of the electrochemical model and simulates the 
heat conduction and heat dissipation processes to obtain the cell temperature. The 
values of the temperature-dependent parameters in the electrochemical model vary 
with temperature changes.

domains of the LIB cell. This model enables the derivation of inter-
nal states, such as lithium concentrations and potentials within the 
cells [9]. In the P2D model, only the dynamics along the thickness 
direction of the electrode are considered, while it is assumed that the 
dynamics along the other two directions are unaffected by chemical re-
action kinetics. The battery’s behavior is described by a set of coupled, 
nonlinear partial differential–algebraic equations and their associated 
boundary conditions [26], which are summarized in Table S1 and S2 
in the supplementary material of this work.

2.2. Thermal model

Given the significant influence of temperature on the behavior and 
performance of LIBs, we further integrated a thermal model into the 
electrochemical model to account for thermal dynamics. This inte-
gration incorporates 16 temperature-dependent parameters to capture 
these effects, following the model proposed by Kumaresan et al. [27]. 
Beyond the initial cell temperature 𝑇𝑖𝑛𝑖𝑡, the cell’s heat generation 
over time also affects its performance. The temperature dependence of 
the reaction rates 𝑘+ and 𝑘−, the electrolyte diffusion coefficient 𝐷𝑒, 
electrolyte conductivity 𝜎𝑒, and the particle diffusion coefficients in the 
active material 𝐷𝑠,𝑝 and 𝐷𝑠,𝑛 are described by the Arrhenius equation 
as follows, 

𝑋 = 𝑋𝑟𝑒𝑓 ⋅ 𝑒𝑥𝑝(
𝐸𝐴,𝑋

𝑅
( 1
𝑇𝑟𝑒𝑓

− 1
𝑇
)) (1)

where 𝑋 stands for each of the temperature-dependent parameters 
[28]. Eq. (1) determines the value of 𝑋 at temperature 𝑇  using the 
corresponding activation energy 𝐸𝐴,𝑋 and the reference value 𝑋𝑟𝑒𝑓  at 
the reference temperature 𝑇𝑟𝑒𝑓 , with 𝑅 being the universal gas constant.

The thermal model used in this work considers three different heat 
sources: ohmic heat 𝑄𝑜ℎ𝑚, irreversible heat 𝑄𝑟𝑥𝑛, and reversible heat 
𝑄𝑟𝑒𝑣 [29]. These heat source terms, also called heat generation rates, 
were implemented as follows: The total heat 𝑄𝑡𝑜𝑡 = 𝑄𝑜ℎ𝑚 + 𝑄𝑟𝑥𝑛 +
𝑄𝑟𝑒𝑣, with units of [ Wm3

], represents the sum of the individual heat 
generation rates. All three heat terms are necessary to describe the heat 
development in the electrodes accurately. The irreversible heat 𝑄
𝑟𝑥𝑛
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describes the energy required to drive electrochemical reactions and 
is expressed as follows, 
𝑄𝑟𝑥𝑛,𝑖 = 𝐹𝑎𝑖𝑗(𝑥, 𝑡)𝜂𝑖(𝑥, 𝑡), 𝑖 ∈ {+,−} (2)

where + and − denote the cathode and anode, respectively. The ir-
reversible heat 𝑄𝑟𝑥𝑛 is a function of the ionic flux 𝑗(𝑥, 𝑡) and the 
overpotential 𝜂𝑖(𝑥, 𝑡), with 𝐹  representing the Faraday constant and 𝑎𝑖
denoting the ratio of particle surface area to volume.

The reversible generation rate 𝑄𝑟𝑒𝑣 arises from the entropy changes 
associated with alterations in the lattice structure of the active mate-
rial [30] and can be calculated for both cathode and anode as follows,

𝑄𝑟𝑒𝑣,𝑖 = 𝐹𝑎𝑖𝑗(𝑥, 𝑡)𝑇 (𝑥, 𝑡)
𝜕𝑈𝑖
𝜕𝑇

|

|

|

|

|𝑇𝑟𝑒𝑓

, 𝑖 ∈ {+,−} (3)

where the temperature is represented by 𝑇 (𝑥, 𝑡), the open circuit voltage 
(OCV) by 𝑈 , and the entropic variation of the OCV by 𝜕𝑈𝑖

𝜕𝑇
 [26].

The ohmic heat in both electrodes is composed of two main com-
ponents: electronic transport heat in the solid phase and ion transport 
heat in the liquid phase, which can be represented as follows,

𝑄𝑜ℎ𝑚,𝑖 = 𝜎𝑒𝑓𝑓 ,𝑖(
𝜕𝜙𝑠(𝑥, 𝑡)

𝜕𝑥
)2 + 𝜅𝑒𝑓𝑓 ,𝑖(

𝜕𝜙𝑒(𝑥, 𝑡)
𝜕𝑥

)2 +
2{𝜅𝑒𝑓𝑓 ,𝑖𝑅𝑇 (𝑥, 𝑡)}

𝐹
(1 − 𝑡0+)

×
𝜕𝑙𝑛𝑐𝑒(𝑥, 𝑡)

𝜕𝑥
𝜕𝜙𝑒(𝑥, 𝑡)

𝜕𝑥
, 𝑖 ∈ {+,−} (4)

where the first term represents the electronic transport heat in the solid 
phase, and the last two represent the ion transport heat in the liquid 
phase. The coefficient of effective solid-phase conductivity is repre-
sented as 𝜎𝑒𝑓𝑓 ,𝑖, the solid potential is denoted by 𝜙𝑠(𝑥, 𝑡), the electrolyte 
potential is indicated by 𝑐𝑒(𝑥, 𝑡), while the effective conductivities of the 
electrolyte is denoted by 𝜅𝑒𝑓𝑓 ,𝑖. The ohmic heat in the separator 𝑄𝑜ℎ𝑚,𝑠
is the only heat source of the separator and can be calculated using 
Eq. (4) without the first term.

The temperature of the electrodes, taking into account the effects of 
reversible heat 𝑄𝑟𝑒𝑣, can be described as follows, 

𝜌𝑖𝐶𝑝,𝑖
𝜕𝑇𝑖(𝑥, 𝑡)

𝜕𝑡
= 𝛿

𝛿𝑥
[𝜆𝑖

𝜕𝑇𝑖(𝑥, 𝑡)
𝜕𝑥

] +𝑄𝑜ℎ𝑚,𝑖 +𝑄𝑟𝑥𝑛,𝑖 +𝑄𝑟𝑒𝑣,𝑖, 𝑖 ∈ {+,−} (5)

where 𝑇𝑖 represents the temperature of the electrode, 𝜌𝑖 represents 
the volumetric mass density, 𝐶𝑝,𝑖 denotes the specific heat capacity, 
𝜆𝑖 stands for the thermal conductivity, and 𝐿𝑖 indicates the thickness 
of the electrode or separator. The temperature of the separator can be 
calculated using Eq. (5) whereby 𝑄𝑜ℎ𝑚,𝑠 is the only heat source.

The dissipation of heat into the environment is described by the 
following two equations: 

− 𝜆𝑎
𝜕𝑇𝑖(𝑥, 𝑡)

𝜕𝑥

|

|

|

|

|𝑥=0
= ℎ𝑐𝑒𝑙𝑙(𝑇𝑎𝑚𝑏 − 𝑇 (𝑥, 𝑡)) (6)

− 𝜆𝑧
𝜕𝑇𝑖(𝑥, 𝑡)

𝜕𝑥

|

|

|

|

|𝑥=𝐿
= ℎ𝑐𝑒𝑙𝑙(𝑇 (𝑥, 𝑡) − 𝑇𝑎𝑚𝑏) (7)

These equations account for a constant ambient temperature 𝑇𝑎𝑚𝑏, 
which remains unchanged throughout the simulation and corresponds 
to the initial temperature of the cell. The positive and negative current 
collectors are denoted with 𝑖 ∈ 𝑎, 𝑧, and 𝑇 (𝑥, 𝑡) stands for the temper-
ature of the current collector at a given time. In these equations, the 
equivalent heat exchange coefficient ℎ𝑐𝑒𝑙𝑙 describes the strength of the 
heat exchange between the battery and the environment.

3. Parameter benchmarking

For variance-based sensitivity analysis methods, various factors, 
particularly parameter boundaries, can significantly influence param-
eter sensitivity. Therefore, establishing accurate value ranges for each 
parameter based on material properties and battery cell specifications 
is essential. This ensures that the results of the sensitivity analysis accu-
rately reflect real-world conditions. This work focuses on lithium nickel 
manganese cobalt oxide (NMC)/graphite cells, which are widely used 
4 
in the automotive industry due to their high energy density [31]. The 
experiments were conducted using a Li-ion pouch cell manufactured 
by KOKAM with a nominal capacity of 7.5 Ah. Post-mortem analysis re-
vealed that the cell structure comprises 23 double-coated anode sheets, 
along with 22 double-coated and two single-coated cathode sheets. The 
battery used in this study is shown in Figure S1, and its specifications 
are summarized in Table S3 of the supplementary materials.

The value ranges for the electrochemical parameters are derived 
from our previous work [15], which compiled these values from over 
20 literature sources along with laboratory experiments and measure-
ments. These parameters have been categorized into four groups, as 
shown in Table  1, to enable a more detailed assessment of the sen-
sitivity levels of the parameters and their influence on the model’s 
accuracy.

The thermal model parameters are categorized into three groups: 
material thermal properties, heat dissipation, and activation energies. 
The first group includes the volumetric mass density 𝜌𝑖, the specific heat 
capacities 𝐶 𝑖

𝑝, and the thermal conductivities 𝜆𝑖, where 𝑖 ∈ {+, 𝑠𝑒𝑝,−}. 
The equivalent heat exchange coefficient ℎ𝑐𝑒𝑙𝑙, which characterizes the 
heat exchange with the environment, significantly affects the battery 
temperature. Five activation energy parameters are used to correct the 
temperature-dependent parameters, i.e., the solid-phase diffusion coef-
ficients, the reaction rate constants, and the liquid-phase conductivity, 
through the Arrhenius equation described by Eq. (1).

Table  1 summarizes the 39 parameters of the ECTM introduced 
above, including 23 electrochemical modeling parameters and 16 ther-
mal modeling parameters, with their value ranges and sources. It 
should be noted that the parameters summarized in this work are 
only applicable to NMC/graphite cells and not to other cells with 
different electrode materials. In addition, certain parameters, such as 
electrolyte conductivity, open circuit potential, and enthalpy change 
of open circuit potential, are a function of the cell’s internal state. The 
specific settings of these parameters can be found in the supplementary 
material, while the analysis of the polynomial fitting for these param-
eters is beyond the scope of this work. Based on the value ranges of 
the 39 parameters of the ECTM applicable to NMC cells, the sensitivity 
analysis methodology using the Sobol index (SI) will be introduced in 
the following sections.

4. Global sensitivity analysis

In this section, the methodology used for the GSA for all 39 param-
eters of the ECTM, considering both the terminal voltage 𝑉 (𝑡) and the 
cell temperature 𝑇 (𝑡) in the analysis, is described in detail. The terminal 
voltage can be expressed as the difference between the potentials of the 
solid phase 𝛷𝑠 of the electrodes: 
𝑉 (𝑡) = 𝛷𝑠(0+, 𝑡) −𝛷𝑠(0−, 𝑡) (8)

where 0+ and 0− correspond to the boundaries between current col-
lectors and electrodes, as shown in Fig.  1. For temperature, we will 
analyze the parameters’ sensitivity using the one-dimensional model’s 
average temperature as the output. This section explains how the first-
order, second-order, and total-order Sobol Indices are calculated and 
what they mean in our setting described above.

4.1. Methodology

For the GSA, the parameters and their boundaries described in the 
parameter benchmarking in Section 3 are used, with the median values 
of the determined intervals set as nominal values. The sensitivity of all 
39 parameters was analyzed individually by applying Sobol’s method 
to investigate the output variance of the model against the variance of 
one, two, or all input parameters of the model at the same time, as 
illustrated in Fig.  2, where the procedure of the GSA is explained.

As shown in Fig.  2, analyzing the effect of operating conditions 
on parameter sensitivity is one of the highlights of this work. Here, 
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Table 1
List of ECTM parameter value ranges for the sensitivity analyses.
 Physical 
meaning

Parameter Unit Description Benchmarking Boundaries  

 Geometry 𝐿+ μm Cathode thickness 74 [32], 36.4 [33], 78 [34], 47 [35], 70 
[36], 79 [37], 60 [38], 54.5 [10]

35 − 79  

 𝐿𝑠𝑒𝑝 μm Separator thickness 25 [32,33,37,39], 20 [34,35,38], 19 
[10], 10-30 [40]

10 − 30  

 𝐿− μm Anode thickness 62 [32], 50 [33], 81 [34], 52 [35], 63 
[36], 67 [37], 90 [38], 73.7 [10]

35 − 79  

 𝐴𝑎𝑟𝑒𝑎 m2 Electrode surface area Experimental measurement of Kokam 
cell

0.378 − 0.395  

 𝜀+𝑠 – Cathode active material volume fraction 0.38 [32], 0.5 [36], 0.375 [37], 0.428 
[10]

0.35 − 0.5  

 𝜀−𝑠 – Anode active material volume fraction 0.45 [32], 0.42 [36], 0.419 [37], 0.4 
[10]

0.4 − 0.5  

 𝜀+𝑒 – Cathode electrolyte volume fraction 0.45 [32], 0.330 [33], 0.281 [34], 0.27 
[35], 0.35 [36], 0.33 [38], 0.296 [10], 
0.3 [41]

0.27 − 0.45  

 𝜀𝑠𝑒𝑝𝑒 – Separator electrolyte volume fraction 0.5 [32], 0.5 [33,37,38], 0.4 [41], 0.46 
[34], 0.4 [35], 0.508 [10]

0.4 − 0.55  

 𝜀−𝑒 – Anode electrolyte volume fraction 0.5 [32], 0.332 [33], 0.264 [34], 0.34 
[35], 0.33 [36,38], 0.329 [10], 0.3 [41]

0.26 − 0.5  

 𝑅+
𝑝 μm Cathode particle radius 5 [34,35,39,41], 1.2 [36], 7 [37], 6.49 

[10]
1 − 11  

 𝑅−
𝑝 μm Anode particle radius 10 [34,35], 5 [39,41], 11 [37], 8.7 [10] 1 − 11  

 Kinetics 𝜅+ m2.5

s⋅mol0.5
Cathode reaction rate coefficient 2 ⋅ 10−11 [32,36,37], 4.38 ⋅ 10−11[35], 

3.01 ⋅ 10−11 [10]
1 ⋅ 10−11 − 1 ⋅ 10−10  

 𝜅− m2.5

s⋅mol0.5
Anode reaction rate coefficient 2 ⋅ 10−11 [32,37], 1.63 ⋅ 10−11 [35], 

1.45 ⋅ 10−11 [10]
1 ⋅ 10−11 − 2 ⋅ 10−10  

 𝑅𝑆𝐸𝐼 Ωm2 Anode SEI film resistance 1 ⋅ 10−2 [34], 3.5 ⋅ 10−3 [37], 1 ⋅ 10−3 [42] 1 ⋅ 10−3 − 1 ⋅ 10−2  
 Lithium 
concentration

𝑐+𝑠,𝑚𝑎𝑥
mol
m3 Cathode maximum ionic concentration 51500 [32], 49242 [37], 48580 [10], 

49500 [39,42], 51830 [41]
48 000 − 52 000  

 𝑐−𝑠,𝑚𝑎𝑥
mol
m3 Anode maximum ionic concentration 31370 [32], 29862 [37], 31920 [10], 

30900 [39], 31080 [41], 30555 [42]
29 000 − 33 000  

 𝑐𝑒,0
mol
m3 Initial electrolyte concentration 1000 [10,35], 1200 [33,34,38,39,41,42] 1000 − 1200  

 Ion and electron 
transport

𝐷+
𝑠

m2

s
Cathode solid diffusion coefficient 3 ⋅ 10−14 [32,34,35], 3.97 ⋅ 10−14 [38], 

2 ⋅ 10−14 [39,41], 8 ⋅ 10−14 [42]
1 ⋅ 10−14 − 1 ⋅ 10−13  

 𝐷−
𝑠

m2

s
Anode solid diffusion coefficient 3 ⋅ 10−14 [32], 1.75 ⋅ 10−14 [34], 2 ⋅ 10−14

[38], 1.54 ⋅ 10−14 [39], 1.4 ⋅ 10−14 [41], 
8.8 ⋅ 10−14 [42]

1 ⋅ 10−14 − 1 ⋅ 10−13  

 𝐷𝑒
m2

s
Electrolyte diffusion coefficient 2.6 ⋅ 10−10 [33,38], 2.4 ⋅ 10−10 [10], 

1.5 ⋅ 10−10 − 4.5 ⋅ 10−10 [43], 
2 ⋅ 10−10 − 4.5 ⋅ 10−10 [44]

1.5 ⋅ 10−10 − 4.5 ⋅ 10−10 

 𝑡+0 – Transference number of lithium cation 0.38 [32,41,42], 0.363 [33,38], 0.26 
[10], 0.37-0.43 [43], 0.25 - 0.4 [45], 
0.36 - 0.4 [46]

0.25 − 0.43  

 𝜎+
𝑠

S
m

Cathode electrode conductivity 36-185 [47] 36 − 185  
 𝜎−

𝑠
S
m

Anode electrode conductivity 1-10 000 [48] 1 − 10 000  
 Material thermal 
properties

𝐶+
𝑝

J
kg K Cathode specific heat capacity 750.5 [49], 849 [50], 1106 [51], 1270 

[52], 940 [53], 700 [26], 1260.2 [54]
500–1500  

 𝐶𝑠𝑒𝑝
𝑝

J
kg K Separator specific heat capacity 1718 [49], 2310 [50], 1883 [51], 1978 

[52], 1907 [53], 700 [26], 1978 [54]
500–2500  

 𝐶−
𝑝

J
kg K Anode specific heat capacity 759.3 [49], 693 [50], 1095 [51], 1437 

[52], 940 [53], 700 [26], 1437.4 [54]
500–1700  

 𝜆+ W
m K Cathode thermal conductivity 1.75 [49], 1 [51], 1.58 [52], 2.1 [26], 

1.48 [54]
1–3  

 𝜆𝑠𝑒𝑝 W
m K Separator thermal conductivity 0.22 [49], 0.5 [51], 0.34 [52], 0.16 

[26], 0.33 [54]
0.1–1  

 𝜆− W
m K Anode thermal conductivity 10.88 [49], 1 [51], 1.04 [52], 1.7 [26], 

1.04 [54]
1–11  

 𝜌+ kg
m3 Cathode volumetric mass density 4476 [49], 4800 [51], 2895 [52], 4670 

[53], 2500 [26]
2000–5000  

 𝜌𝑠𝑒𝑝 kg
m3 Separator volumetric mass density 989.6 [49], 900 [51], 1017 [52], 1009 

[53], 1100 [26]
800–1200  

 𝜌− kg
m3 Anode volumetric mass density 2310 [49], 2090 [51], 1437 [52], 2260 

[53], 2500 [26]
1300–2700  

 Heat dissipation ℎ𝑐𝑒𝑙𝑙
Wm2

K
Equivalent heat exchange coefficient 6.9 [53], 10 [51], 8.7 [55], 6 [28] 1–10  

 (continued on next page)
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Table 1 (continued).
 Activation 
energy

𝐸𝐴,𝐷+
𝑠

kJ
mol

Activation energy for 𝐷+
𝑠 40 [51], 49.6 [53], 5 [26], 35 [28], 20 

[56], 80.6 [10], 25 [41]
5–85  

 𝐸𝐴,𝐷−
𝑠

kJ
mol

Activation energy for 𝐷−
𝑠 35 [51], 28.8 [53], 5 [26], 35 [28], 35 

[56], 40.8 (30.3) [10], 30 [41]
5–50  

 𝐸𝐴,𝐷𝑒

kJ
mol

Activation energy for 𝐷𝑒 17.12 [51], 16.5 [53], 10 [28], 17.1 
[10]

10–20  

 𝐸𝐴,𝑘𝑝
kJ
mol

Activation energy for 𝑘+ 30 [51], 78.1 [53], 5 [26], 20 [28], 30 
[56], 43.6 [10], 58 [41]

5–80  

 𝐸𝐴,𝑘𝑛
kJ
mol

Activation energy for 𝑘− 53.4 [51], 48.9 [53], 5 [26], 20 [28], 
30 [56], 53.4 [10], 32 [41]

5–60  

 𝐸𝐴,𝜎𝑒
kJ
mol

Activation energy for 𝜎𝑒 4 [53], 20 [28], 17.1 [10] 4–20  
Fig. 2. Framework of the global sensitivity analysis using Sobol method.
we analyzed the impact of ambient temperature and discharge rate on 
parameter identifiability. The reason is that they directly affect the core 
physical processes inside the battery, and relevant parameters in the 
model control these processes, so these parameters exhibit sensitivity 
to temperature and current rate. Three ambient temperatures, 0 ◦C, 25 
◦C, and 35 ◦C were chosen for the study. The temperature of 0 ◦C repre-
sents a lower bound as it is the minimum allowed charging temperature 
of the cell. Similarly, 35 ◦C ambient temperature, and therefore the 
initial temperature of the battery cell, was chosen so that the maximum 
allowed charging temperature of the cell is not exceeded. These limits 
are also the generally accepted window for safe operation [57]. Thus, 
25 ◦C, the median value, was chosen as the reference temperature 
in Eq. (1) to correct the temperature-dependent parameters. Constant 
current discharge was analyzed for all temperatures at different current 
rates of 0.2 C, 1 C, and 2 C.

4.2. Quasi Monte-Carlo method

Unlike traditional Monte Carlo (MC) methods, which rely on ran-
dom input sequences, the quasi-Monte Carlo (QMC) method utilizes 
quasi-random, low-discrepancy sequences, ensuring a uniform distri-
bution of input values and thereby avoiding gaps in sampling. This 
enhances the accuracy and convergence of variance-based GSA. For 
increasing entries, the uniform distribution of these entries is reduced. 
The distribution of 100 samples for four variables using the QMC 
method is illustrated in Fig.  3(a), where the different sizes of the dots 
indicate the distribution in the fourth dimension. The projections of 
these samples in three planes in 3D space are shown in Fig.  3(b), 
demonstrating the good performance of this sampling method for high-
dimensional problems. The voltage and temperature profiles of the 
ECTM simulated at an ambient temperature of 25 ◦C and 1 C discharg-
ing for a given parameter matrix with 500 samples are shown in Fig. 
3(c) and (d), respectively. The red dashed curves indicate the simulated 
voltages and temperatures when all parameters are taken to their mean 
6 
values for the given boundaries. This approach was chosen to reduce 
the computational cost compared to the Monte-Carlo method, where 
more than 10,000 simulations per input parameter would be necessary 
to generate accurate results with an uncertainty of the estimated SI 
≤ 10% [18]. We carried out a convergence analysis that showed a 
number of 𝑛 = 2000 to give robust results for the total-order Sobol 
index 𝑆𝑇 𝑖. The convergent analysis results are shown in Figure S2 in 
the supplementary materials. In order to obtain first and second-order 
sensitivity indices with high confidence, we used a sampling number of 
10,000 in this work.

4.3. Computation of sensitivity indices

The exclusive influence or so-called main effect of a parameter 𝑋𝑖
of the model on the output 𝑌  without interaction with other inputs 
is described by the first-order sensitivity, where the model’s total 
variance normalizes the partial contribution to the variance. Here 𝑋𝑖
describes the 𝑖th parameter of the model parameters 𝑋, 𝑋∼𝑖 represents 
all parameters but 𝑋𝑖. 𝐸𝑋∼𝑖

(𝑌 |𝑋𝑖) is the mean value of the output for all 
possible input combinations at constant 𝑋𝑖. The first-order sensitivity 
index 𝑆𝑖 of the parameter 𝑋𝑖 can be calculated as follows: 

𝑆𝑖 =
𝑉𝑖

𝑉 (𝑌 )
=

𝑉𝑋𝑖
(𝐸𝑋∼𝑖

(𝑌 |𝑋𝑖))
𝑉 (𝑌 )

. (9)

Normalizing the variance 𝑉𝑖𝑗 of the output caused by the inputs 𝑋𝑖 and 
𝑋𝑗 with the total variance of the model 𝑉 (𝑌 ) results in the second-order 
sensitivity 𝑆𝑖𝑗 : 

𝑆𝑖𝑗 =
𝑉𝑖𝑗
𝑉 (𝑌 )

. (10)

Eq. (10) of the second-order sensitivity indices exclusively repre-
sents the additional contribution to the variance in the model output of 
the interaction effect of the two input parameters 𝑋𝑖 and 𝑋𝑗 that were 
varied simultaneously, while their first-order effects are subtracted.
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Fig. 3. Sampling using the quasi-Monte Carlo method with 100 samples in four dimensions, with point size denoting the fourth dimension, and simulation results of 500 samples 
in the given parameter boundary. (a) Sampling in four dimensions and (b) sample projection in three planes. (c) Voltage and (d) temperature simulation results for given parameter 
sets and the mean value of the value space.
The total-order sensitivity 𝑆𝑇𝑖 = 𝑆𝑖 + 𝑆𝑖𝑗 +⋯ + 𝑆1...𝑖...𝑘 is defined as 
the sum of the main effect 𝑆𝑖 and all higher-order interaction effects 
that can be attributed to that input parameter and therefore represents 
the total variance in the terminal voltage or cell temperature due to a 
change of the value of this parameter 𝑋𝑖: 

𝑆𝑇𝑖 =
𝐸𝑿∼𝑖

(𝑉𝑋𝑖
(𝑌 |𝑋∼𝑖))

𝑉 (𝑌 )
= 1 −

𝑉𝑿∼𝑖
(𝐸𝑋𝑖

(𝑌 |𝑿∼𝑖))
𝑉 (𝑌 )

. (11)

In the above formulas for different SIs, the output 𝑌  is the root 
mean square error (RMSE) between the model output and a reference 
profile that was the simulation result of using the central values of the 
parameters. For the terminal voltage 𝑉 (𝑡), the RMSE can be calculated 
as follows: 

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁𝑡

𝑁𝑡
∑

𝑖=1
(𝑉𝑖 − 𝑉𝑟𝑒𝑓 ,𝑖)2 (12)

where 𝑁𝑡 is the number of data points, 𝑉𝑖 is voltage in the 𝑖th data 
point for the given parameter set, and 𝑉𝑟𝑒𝑓 ,𝑖 is the voltage in the 𝑖th 
data point of the reference profile. The RMSE for the temperature 
is computed analogously. The specific formulas for calculating the 
first-order, second-order, and total-order Sobol sensitivity indices are 
provided in the supplementary materials for reference.

4.4. Bootstrap confidence intervals for the Sobol indices

The results of Sobol index calculations are subject to sampling 
errors, and to quantify this uncertainty, Bootstrap Confidence Intervals 
(BCIs) are employed. This method provides a robust way to estimate 
the variability of the indices, offering more reliable and precise un-
certainty quantification. We constructed the 95% and 50% confidence 
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intervals for the first- and total-order Sobol indices 𝑆𝑖 and 𝑆𝑇 𝑖 using the 
bootstrap method in this work. To compute the BCIs, we resampled the 
10,000 model evaluations obtained through QMC, performing 10,000 
resamples with replacement, and used the MATLAB bias-corrected 
percentile method. While resampling a number of 1000 or 2000 is often 
utilized in practice, a higher count can yield better and more robust 
estimates for the BCIs, especially for larger percentiles. These numbers 
also demonstrated promising results compared to the 10,000 resamples 
reported in this work. However, since the model is not re-evaluated 
during the re-sampling and the computational cost and time required 
are low, choosing this higher number is not prohibitive or an issue in 
practice.

4.5. Pareto ranking of the ECTM parameters

This paper aims to identify the most critical parameters considering 
multiple outputs, which can be done via a Pareto ranking using the 
concept of Pareto dominance [58]. The parameters that maximize both 
the total SIs for terminal voltage and cell temperature simultaneously 
are more influential and more dominant than other parameters whose 
indices are smaller. First, we categorize the key parameters as the 
first group in the Pareto ranking. These key parameters are the ones 
without any other parameters in the upper right quadrant, which means 
there is no parameter for which the sensitivity indices for terminal 
voltage and cell temperature are simultaneously higher than these key 
parameters. The first group of parameters was then excluded, and 
the same procedure was used to find the key parameters among the 
remaining parameters and categorize them into the second group of 
Pareto ranking. The procedure is repeated until all parameters have 
been grouped.
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5. Results and discussion

This section discusses the global sensitivity analysis results using 
the Sobol method for the NMC/graphite cell. Firstly, the ECTM pa-
rameters were ranked based on their total-order sensitivity magnitudes. 
Their first- and second-order sensitivity indices were analyzed during 
a discharge at 1 C and a temperature of 25 ◦C. Next, we examined the 
impact of different operating conditions, i.e., ambient temperature and 
current rate, on the total-order sensitivity of the parameters. Detailed 
explanations are provided for these effects. Subsequently, we employed 
the Pareto ranking method to sort the parameters, considering their 
influence on multiple outputs. By comparing the sensitivity indices of 
the parameters and analyzing the impact of operating conditions, valu-
able insights were obtained to optimize the parameter identification 
process and data selection in the future. The parallel computation was 
conducted in MATLAB using the High-Performance Computing service 
from RWTH to expedite the computational process.

5.1. Sobol indices of terminal voltage

In Fig.  4(a), we present the ranking of the 15 most influential 
parameters based on their total-order SIs of the terminal voltage. The 
95% and 50% Bootstrap Confidence Intervals are calculated for both 
total-order and first-order SIs. In addition, the sensitivity distributions 
of the two highest-ranked parameters are given in Fig.  4(b), demon-
strating that the confidence intervals for total-order SI are smaller than 
that of first-order SI. Among them, the cathode thickness 𝐿+ has the 
largest total-order SI, more than 0.7, and first-order SI, about 0.3, 
as it determines the usable capacity of the cell. Apart from 𝐿+, the 
sensitivity of the remaining six capacity-related parameters and specific 
impedance-related parameters are also relatively high, determining the 
solid-phase diffusion effect and reaction rate. The variation of these 
parameters affects the impedance properties of the battery and, thus, 
the time to reach the final cutoff voltage in the discharge, affecting 
the battery’s usable capacity. However, the thermal model parameters 
have less effect on the terminal voltage than the electrochemical model 
parameters in this operating condition.

Based on the ranking of the sensitivities, the parameter interactions 
among the ten most sensitive parameters are revealed in Fig.  4(c). The 
white squares in the lower triangle on the left side of the graph indicate 
no interaction or a fragile interaction between the two parameters. 
The upper triangle is intentionally empty to capture the interactions 
only once. The most vital interaction occurs between the cathode 
thicknesses 𝐿+ and anode thickness 𝐿− as the second-order SI between 
them is more significant than 0.1, because both the cathode and anode 
determine the capacity of the battery. In addition, there is also a 
strong interaction between 𝐿+ and the cathode volume fraction of the 
active material 𝜖+𝑠 , since together they determine the amount of active 
material available for the cathode. Although the total-order SIs for 
both cathode and anode thicknesses are high, their first-order indices, 
which describe the effect of parameter variation alone on the model 
output, are much lower than the total-order sensitivities. The significant 
difference between these two illustrates that these parameters strongly 
interact with other parameters and, therefore, jointly influence the 
model’s output.

5.2. Total-order SI of terminal voltage under different operating conditions

The total-order SI of terminal voltage for 23 electrochemical-model 
parameters based on the ECTM used in this work under different 
ambient temperatures and C-rates are shown in Fig.  5, where both the 
color and size of the markers in the scatter plot indicate the magnitude 
of the sensitivity. For certain parameters, such as 𝐷+

𝑠 , the sensitivity in 
the highest case is two orders of magnitude greater than in the lowest 
case, indicating the high impact of test conditions on the parameter 
identifiability.
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As illustrated in the first sub-diagram, the seven capacity-related 
parameters, i.e., electrode thickness 𝐿±, volume fraction of active 
material 𝜖±𝑠 , maximum ion concentration 𝑐±𝑠,𝑚𝑎𝑥, and electrode surface 
area 𝐴𝑎𝑟𝑒𝑎, show high or medium sensitivity under the given parameter 
boundaries. The variation of these parameters leads to changes in 
battery capacity and the OCV curve of the full cell, which further results 
in significant variations in the terminal voltage under a given load 
profile. The sensitivity of these parameters is simultaneously related to 
the ambient temperature and the magnitude of the discharge current. 
Low temperature affects the charge/discharge characteristics of the 
LIB by inhibiting the reaction rate, electron transport, and solid- and 
liquid-phase diffusion, increasing the cell’s impedance, which causes 
the battery to reach the cutoff voltage early, before it is fully discharged 
or charged, thus resulting in a decline in the battery’s capacity. Simi-
larly, LIB also experiences capacity failure as the current rate increases 
due to severe polarization. Therefore, when the battery is charged or 
discharged at a low temperature and high current rate, the impact 
of impedance-related parameters on the model terminal voltage in-
creases, thus exhibiting greater sensitivity. In contrast, the effect of the 
capacity-related parameters on the terminal voltage is weakened and, 
thus, their sensitivity is reduced. The cathode and anode solid-phase 
diffusion coefficient 𝐷±

𝑠  and particle radius 𝑅±
𝑝 , which determine the 

performance of lithium-ion diffusion in the electrode active material, 
show higher sensitivity with decreasing temperatures and increasing C-
rate. In addition, the sensitivity of the reaction rate constant 𝑘± and the 
SEI resistance 𝑅𝑆𝐸𝐼  show the same trend. It should be noted that some 
impedance-related parameters have the same very low sensitivities 
under different operating conditions, which may be related to the 
small boundaries of these parameters. However, this does not mean 
that the operating conditions do not influence their sensitivities. In 
particular, varying the value of specific capacity-related parameters 
can also influence the impedance of LIB. For example, increasing the 
thickness of the electrode will lead to a more considerable diffusion 
distance of lithium ions and will increase the concentration difference 
polarization.

As described in Section 3, we divided the 16 thermal parameters 
into material thermal property parameters, heat dissipation parameters, 
and activation energy parameters. The first two categories affect the LIB 
model’s temperature change during operation, indirectly affecting the 
model’s voltage output. The Arrhenius equations apply the activation 
energy parameters to correct temperature-dependent parameters that 
affect the impedance properties of the cell due to temperature variation. 
In Fig.  5, we can also see how the thermal model parameter affects 
the terminal voltage under different operating conditions. It can be 
seen that the model is more sensitive to specific activation energy 
parameters, while the sensitivity of other thermal parameters is very 
low. Furthermore, comparing the sensitivity of the activation energy 
with the sensitivity of the corresponding parameter corrected in Fig. 
5, it can be observed that they are positively relevant. For example, 
the solid-phase diffusion coefficients 𝐷±

𝑠  and the reaction rate constants 
𝑘± exhibit a considerable sensitivity as well as their corresponding 
activation energies 𝐸𝐴,𝐷±

𝑠
 and 𝐸𝐴,𝑘± , while the sensitivity of both the 

liquid-phase diffusion coefficient 𝐷𝑒 and its activation energy 𝐸𝐴,𝐷𝑒
 are 

small. Similar to the electrochemical model parameters, the sensitivity 
of the activation energy parameters is also affected by the ambi-
ent temperature and the C-rates. However, their sensitivity does not 
vary monotonically with ambient temperature. The activation energy 
parameters have minimal sensitivity when the ambient temperature 
is 25 ◦C, due to the slight temperature difference 1

𝑇𝑟𝑒𝑓
− 1

𝑇 (𝑥, 𝑡)
 at 

this time. As the current rate increases, the sensitivity of the activa-
tion energy parameter also increases, similar to the impedance-related
parameters.
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Fig. 4. Sobol indices of the terminal voltage at 25 ◦C and 1 C discharge. (a) Ranking of the first- and total-order SIs of the terminal voltage for the 15 most sensitive parameters. 
The parameters in the blue area are related to the capacity. (b) Distribution of the bootstrap sensitivity indices given for the two most important parameters. (c) Second-order SIs. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Total-order SIs of the terminal voltage for all 39 ECTM parameters under different ambient temperatures and C-rates. The color and size of the marker indicate the 
magnitude of SI.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Sobol indices of the cell temperature at 25 ◦C and 1 C discharge. (a) Ranking of the first- and total-order SIs of the cell temperature for the 15 most sensitive parameters. 
The parameters in the blue area and yellow are related to the capacity and thermal model, respectively. (b) Distribution of the bootstrap sensitivity indices given for the two most 
important parameters. (c) Second-order SIs.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
5.3. Sobol indices of cell temperature

Fig.  6(a) shows the sensitivity of cell temperature to the parameters 
of the ECTM, and the sensitivity distributions of the two most sensitive 
parameters are given by Fig.  6(b). The battery temperature is mainly 
determined by the equivalent heat exchange coefficient ℎ𝑐𝑒𝑙𝑙, which has 
a total-order sensitivity index close to 0.5 in this case. However, the 
cell temperature is not sensitive to the material’s thermal properties 
and the activation energy parameters, whose SI is less than 0.01. The 
lower sensitivity of the former indicates that the main factor of tem-
perature variation is not the thermal properties but the terms of heat 
generation and dissipation. The lower sensitivity of the latter is that 
the ambient temperature is close to the reference temperature in the 
Arrhenius equations, and the extremely small temperature difference 
weakens its ability to correct temperature-dependent parameters. In 
addition, the sensitivity of the capacity-related parameters decreases 
while the sensitivity of the parameters related to the heat generation 
rate increases.

The interaction between the ECTM parameters regarding the cell 
temperature is not as strong as that of the terminal voltage. The 
maximum second-order sensitivity is less than 0.05, see Fig.  6(c). A 
relatively strong interaction between the equivalent heat exchange 
coefficient and the anode thickness is noted. These two parameters 
have the highest sensitivity with the sum of their first-order sensitivities 
exceeding 0.5, as shown in Fig.  6(a). The temperature change can be 
analyzed in three aspects: heat sources, heat dissipation, and thermal 
properties. The third term is determined by the thermal physical prop-
erties, i.e., thermal conductivity and specific heat capacity, and the size 
of the cell, i.e., thickness. Anode thickness 𝐿− affects the capacity of 
the cell and thus the heat production on the one hand and determines 
the size of the negative electrode and hence its ability to store thermal 
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energy on the other hand. Based on the boundary of thermal property 
parameters given in Table  1, the negative electrode is more likely to 
have a more remarkable ability to store heat. This also explains the 
higher sensitivity of the cathode parameters considering voltage output 
in Fig.  4 compared to the anode, and the higher sensitivity of the anode 
parameters considering the temperature output in Fig.  6.

5.4. Total-order SI of cell temperature under different operation conditions

Compared to the total-order SIs of terminal voltage, the sensitivity 
of the ECTM parameters is significantly different when considering the 
temperature output of the ECTM, as shown in Fig.  7. It is noticeable 
in Fig.  7 that the sensitivity of all the capacity-related parameters 
has decreased. However, they still determine the utilization capacity 
and thus affect the charge/discharge time of the battery, i.e., the 
length of the voltage and temperature curves. Specific impedance-
related parameters, such as the electrolyte volume fraction 𝜖±𝑒  and 
electrolyte diffusion coefficient 𝐷𝑒, hardly affect the terminal voltage 
but affect the cell temperature. The electrolyte volume fraction is used 
to correct the effective liquid-phase conductivity 𝜅±

𝑒𝑓𝑓  together with the 
Bruggeman coefficient, which plays an essential role in the ohmic heat 
generation rate, as shown in Eq.  (4). The liquid-phase conductivity, 
which is related to the ohmic heat generation term, is critical to the 
model temperature output. In addition to the liquid-phase conductivity, 
the diffusion characteristics of ions in the electrolyte are another key 
factor affecting the temperature output because it affects the ohmic 
heat generation rate by changing the lithium ions concentration in 
the electrolyte, which explains the greater sensitivity of the model’s 
temperature output to the electrolyte volume fraction 𝜖±𝑒  and diffusion 
coefficient 𝐷𝑒. The other two heat source terms, i.e., the heat of 
reaction 𝑄  and reversible heat 𝑄 , as represented by Eqs. (2) and 
𝑟𝑥𝑛 𝑟𝑒𝑣
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Fig. 7. Total-order Sobol index of the cell temperature for all 39 ECTM parameters under different ambient temperatures and C-rates. The color and size of the marker indicate 
the magnitude of SI.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(3), are both influenced by the ionic flow. Therefore, the reaction rate 
constants remain highly sensitive because the magnitude of the ion 
flux is directly related to these parameters. However, the importance of 
the solid-phase diffusion diminishes considering the model temperature 
output, which is reflected in the sensitivity of the solid-phase diffusion 
coefficient.

Similar to the voltage output, the ability of the parameters to affect 
the temperature output is also related to the ambient temperature and 
C-rates. As the current rate increases, the sensitivity of temperature 
for most impedance-related parameters increases, as shown in Fig.  7. 
Under a high current rate, the battery’s heat generation power is signifi-
cant due to the large current exchange density and severe polarization, 
which leads to a rapid increase in battery temperature. At this time, 
changes in the magnitude of the impedance-related parameters have a 
greater impact on the temperature rise curve, thus exhibiting a greater 
sensitivity. However, the sensitivities of the capacity-related parame-
ters did not show the same variation trend. For example, when the 
ambient temperature is 0 ◦C, the negative electrode thickness has the 
maximum sensitivity under discharging with 0.2 C, while the highest 
sensitivity was found at 25 ◦C and 35 ◦C at under 1 C discharging.

For the thermal model parameters, those indicating the material’s 
thermal properties, including specific heat capacity, volumetric mass 
density, and thermal conductivity, always show very low sensitivity 
compared to those related to the heat generation term and the heat 
dissipation term. This indicates that the temperature output of the 
model is mainly influenced by the heat generation term as well as the 
heat dissipation term, rather than the thermal properties. It is obvious 
that the equivalent heat exchange coefficient ℎ𝑐𝑒𝑙𝑙, whose total-order 
sensitivity is greater than 0.4 for all operating conditions, plays an 
important role in the battery temperature. The reason is that it is the 
only parameter that describes the heat transfer process between the 
cell and the environment, which determines the ability of the cell to 
dissipate heat to the environment. Its sensitivity is affected by the 
temperature and the current rate, and it is negatively correlated with 
the sensitivity of the parameters related to the heat generation terms. 
The sensitivity of the ℎ𝑐𝑒𝑙𝑙 reaches a maximum at 35 ◦C and 0.2 C 
discharge because the high temperature and low current rate improve 
the cell polarization, reduce the heat generation rate, and decrease the 
sensitivity of the impedance parameters, thus increasing the sensitivity 
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of ℎ𝑐𝑒𝑙𝑙. Among the six activation energy parameters, only the activation 
energy parameter used to correct the reaction rate showed sensitivity 
under low temperatures. Their sensitivity increases as the temperature 
deviates more from the reference temperature.

5.5. Pareto ranking of the ECTM parameters

To use multi-type data to improve the identification parameters of 
the ECTM, we must consider the parameters’ effect on the model’s mul-
tiple outputs. Here, we used Pareto ranking, introduced in Section 4.5, 
to rank all model parameters according to their total-order indices. An 
example of ranking is illustrated in Fig.  8(a), where 10 parameters are 
divided into four groups. The Pareto ranking for 25 ◦C and 1 C current 
rate is shown in Fig.  8(b) in double logarithmic coordinates, where all 
parameters are divided into five groups, and the higher ranking of the 
parameters indicates that the parameters have a greater influence on 
the voltage output and temperature output of the model, which can 
provide guidance when determining the values of the parameters using 
a stepwise identification approach.

The effects of ambient temperature and current rate on the Pareto 
ranking of the ECTM parameters are summarized in Fig.  8(c), where the 
marker’s color indicates the parameter’s Pareto ranking. It can be seen 
that parameters such as electrode thickness and heat transfer coefficient 
are of high order at different ambient temperatures and current levels. 
So, these parameters need to be prioritized and accurately determined 
during the identification process to avoid the impact on the accurate 
identification of other parameters. Other parameters related to battery 
capacity and impedance-related parameters with relatively high sensi-
tivity are ranked as being more influenced by ambient temperature and 
current magnitude. Therefore, selecting appropriate measurement data 
can improve the identification results of these parameters. Measured 
data at higher temperatures and lower currents are suitable for iden-
tifying capacity-related parameters, while low temperatures and high 
currents can increase the ranking of impedance-related parameters. 
Meanwhile, the ranking of parameters not shown in the figure is always 
at a lower level for different operating conditions. For parameters 
that do not significantly affect the output, improving their sensitivity 
is challenging, even with changes in operating conditions, making it 
hard to accurately identify their values. These parameter values can 
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Fig. 8. Pareto ranking result. (a) Schematic diagram of the Pareto ranking method. (b) Grouping of parameter sensitivities under 1 C discharge at 25 ◦C. (c) Parameter Pareto 
rank at different temperatures and C-rates. Parameters that do not appear indicate that they are always Rank 5.  (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
be established by reviewing the literature to evaluate their reference 
values, which should remain constant throughout the identification 
process.

5.6. Future work and application

In the future, we aim to explore the possibility of developing a 
non-invasive method for parameterizing ECTMs with the help of the 
identifiability analysis framework developed in this work. Fast param-
eterization of the model by using measured voltage and temperature 
data greatly reduces time and money costs compared to complex ex-
perimental measurement methods, which makes significant sense for 
the rapid model development of a new generation of batteries. A 
major research direction is the design of experiments, i.e., how to 
design suitable working conditions that maximize the information in 
the obtained measured voltage and temperature data, thus contributing 
to accurate parameterization. This work focuses on the effects of am-
bient temperature and discharge current rate on sensitivity, but future 
work could incorporate additional operating factors such as relaxation 
segments, dynamic working conditions, and depth of discharge.

This adaptable method can be tailored for use in different battery 
sub-models. In addition to temperature and voltage outputs, the method 
can give the effect of parameters on the electrochemical impedance 
spectra and the aging simulation, which is critical for understanding, 
developing battery models, and determining key parameters. For the 
aging models integrated into the electrochemical model, the capacity 
and power fade of the battery will have different trajectories when 
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different degradation mechanisms and the values of the aging model 
parameters are chosen. Therefore, analyzing the effects of parameters 
on the aging behavior of batteries is of great help in constructing aging 
models applied in different situations.

6. Conclusions

In this paper, a framework for parameter identifiability analysis 
was developed for the electrochemical thermal coupling model using 
different types of measurement data, such as terminal voltage and 
cell temperature, to facilitate non-invasive parameterization. The pa-
rameters were rigorously benchmarked through thorough literature 
reviews and experiments to ensure the reliability of the analysis results. 
Based on this, the Sobol sensitivity indices were calculated to quantify 
parameter influence on model outputs and their interactions, consid-
ering both voltage and temperature. The proposed framework was 
implemented on an nickel manganese cobalt oxide/graphite battery, 
and the impact of operating conditions on parameter identifiability was 
further analyzed by varying the discharge current rate and ambient 
temperature. The developed framework can be easily extended and 
applied to different battery chemistries and can also accommodate 
a wider range of battery data types. Our analysis has led to some 
important conclusions:

• Choosing the appropriate test temperature and current rate can 
increase the sensitivity of certain parameters by up to two orders 
of magnitude.
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• Lowering the test temperature and increasing the current rate can 
increase the identifiability of impedance-related parameters and 
reduce the identifiability of capacity-related parameters.

• Excessive heat dissipation minimizes temperature changes, re-
ducing the identifiability of thermal parameters, which must be 
considered in experimental design.

• To identify the activation energy parameter, tests in a wide 
temperature range need to be performed.

• Temperature data can help identify specific parameters that have 
little effect on voltage but are more sensitive to cell temperature.

The findings offer valuable guidance for designing test conditions that 
facilitate the acquisition of high-quality data for non-invasive parame-
ter identification. In addition, the Pareto ranking method was applied 
in this work to group parameters when different types of data are 
considered. In general, the results of the parameter identifiability anal-
ysis in this work lay the foundation for developing a non-invasive 
parameterization framework of an electrochemical thermal coupling 
model using the easy-to-measure electrical and temperature data.
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