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SUMMARY

Aging models are essential for evaluating the aging behavior of lithium-ion batteries (LIBs) and guiding indus

try decisions on warranty commitments. This study presents an open-source impedance-based aging model 

for a nickel cobalt aluminum/silicon oxide-graphite LIB. The model accurately predicts capacity loss across 

various stress factors, achieving less than 1% deviation from validation measurements in real-world driving 

scenarios. Traditional modeling approaches require extensive testing and parameterization, making the 

assessment of new cell designs time consuming and costly. To address this issue, optimized testing strate

gies are developed through sensitivity analysis, revealing significant potential to reduce testing efforts by 

focusing on key stress factors such as temperature for calendar aging and depth of discharge for cyclic ag

ing. Additionally, using fractional portions of available aging data suggests that test durations of 90 days may 

be sufficient to achieve reliable results.

INTRODUCTION

Emission-reducing innovations, especially in the field of battery- 

powered mobility, have been subject to many applications and 

studies in recent years.1,2 High energy and power density, high 

charge and discharge efficiency, low self-discharge rate, and 

low maintenance costs have made the lithium-ion battery (LIB) 

technology predominant in the field of large-scale applications 

such as electric vehicles (EVs) and stationary storage systems 

(ESSs).3,4

Electrochemical systems, such as LIBs, are inherently subject 

to degradation. This degradation is reflected in a capacity loss 

and an increase in internal resistance, resulting in decreased en

ergy and power capabilities.5 A comprehensive understanding 

of the performance of LIBs is essential for their widespread 

application. However, testing every possible degradation path 

requires considerable time and testing resources. Conse

quently, battery models capable of predicting and optimizing 

battery performance under diverse operating conditions are 

crucial for the development of efficient, safe, and reliable battery 

systems, ultimately reducing development costs. Among data- 

driven and electrochemical models,6–8 impedance-based aging 

models are widely known to strike an optimal balance between 

model accuracy and complexity in terms of parameterization 

and computation effort.9 While electrochemical models provide 

more detailed insights into the individual cell reactions that 

govern battery aging, impedance-based models offer practical 

advantages in terms of simplicity, efficiency, and system-level 

analysis. State-of-the-art impedance-based aging models 

serve as a widely utilized diagnostic tool in various applications 

to assess the state of charge (SOC) and state of health (SOH) of 

LIBs within their respective operational contexts.10,11 This is 

achieved through electrical circuit models (ECM), which offer 

the capability to replicate the non-linear voltage response of 

LIBs. Their parameterization relies on dedicated measurements 

such as electrochemical impedance spectroscopy (EIS) or pulse 

measurements, which are effective non-invasive methods for 

characterizing the polarization behavior of LIBs across a wide 

frequency range and time domain, under the influence of various 

parameters such as temperature and SOC.12,13 Besides diag

nostics, impedance-based aging models can be utilized to opti

mize operating conditions for different application scenarios 

through aging prediction, which can enhance the overall profit

ability of a battery system. Rather than focusing on microscopic 
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aging mechanisms, e.g., lithium plating,14 solid electrolyte inter

face (SEI) growth,15 or particle cracking,16 impedance-based 

aging models focus on macroscopic stress factors, e.g., depth 

of discharge (DOD), SOC, current rate (C-rate), temperature, or 

pressure17–22 and differentiate their respective contributions 

into two separate components, calendar and cyclic aging.23,24

Extensive literature exists on the development and parameteri

zation of ECMs for different application scenarios.25–31 Never

theless, only a few studies couple these ECMs with aging 

models.32–34

Based on the available literature, two key points can be 

deduced. First, it is evident that current modeling approaches 

predominantly focus on LIBs with purely graphite (Gr)-based an

odes. However, as future developments increasingly incorporate 

silicon fractions in anodes, new challenges emerge during 

modeling.35 The literature on developing impedance-based ag

ing models for these newer cell chemistries is limited, primarily 

due to challenges arising from the significant hysteresis behavior 

of silicon that can lead to accelerated aging when cycling is per

formed within specific SOC regions where the silicon particles 

experience a notable volume expansion.36–39

Second, due to the extensive testing capacities and time com

mitments required, the literature on sophisticated aging models 

that consider multiple stress factors and validation measure

ments conducted under real-world operating conditions remains 

limited. To reduce testing efforts and accelerate the model- 

acquisition process, various approaches have been proposed. 

It is well established that although incorporating a greater number 

of stress factors into an aging model enhances the accuracy of 

estimated results, it concurrently increases the necessary testing 

capacities and time commitments involved.40 Therefore, testing 

efforts can be minimized by focusing on aging components that 

predominantly influence overall aging within the specific opera

tional scenarios being investigated. Several studies advocate 

for solely examining calendar aging while overlooking cycle ag

ing.41–43 Although it may be suitable to only consider calendar ag

ing for certain applications with specific requirements, such as for 

deep space missions44,45 or military operations,46 the impact of 

fast charging47 and deep cycling48 must be considered to cover 

alternative extreme operational scenarios that can significantly 

impact overall aging. Particularly for LIBs with advanced cell 

chemistries containing fractions of silicon in the anode, cyclic ag

ing impacts overall lifetime even more profoundly within specific 

cycle regions.49,50 Another strategy to accelerate the model- 

acquisition process involves conducting accelerated tests under 

pronounced stress conditions, such as elevated ambient temper

atures or increased C-rates. The models presented by Schmal

stieg et al.32 and Sarasketa-Zabala et al.33 demonstrated robust 

predictive capabilities for capacity loss that align closely with 

validation measurements, despite being parameterized using 

datasets obtained under conditions designed to accelerate ag

ing. In this context, we investigate how the test duration in accel

erated calendar and cyclic aging tests fundamentally affects 

model accuracy. This approach can ultimately lower costs asso

ciated with evaluating new cell designs, thereby enabling faster 

decision-making in the production process of LIBs.

This paper presents the development, parameterization, and 

validation of an impedance-based semi-empirical aging model 

for a commercially available LIB featuring a silicon oxide (SiOx)- 

Gr blend anode using open-source-available tools. The final 

model along with all utilized tools are publicly accessible for 

use by industry and research institutions. The development of 

the ECM for the studied cell is illustrated through the use of EIS 

and pulse measurements, with distribution of relaxation times 

(DRT) serving as an analytical tool to derive significant insights 

into the complexity of the chosen ECM. Additionally, a hysteresis 

model is presented and integrated to account for the pronounced 

hysteresis effects of silicon, particularly in low-SOC regions. 

Consequently, our paper serves as a blueprint for researchers 

aiming to replicate our methodology for their own cell designs. 

Following the validation of the electrical model, a semi-empirical 

aging model based on aging measurements conducted on more 

than 50 cells is presented and validated across various real-world 

operating scenarios. To investigate strategies to reduce testing 

time, a sensitivity analysis is performed to identify critical stress 

factors. Following this analysis, the aging model is refitted using 

fractional portions of the total available calendar and cyclic aging 

data, with the aim of identifying the shortest test duration neces

sary to achieve acceptable model estimations.

RESULTS AND DISCUSSION

Analysis of impedance characteristics

The EIS measurements obtained at temperatures of 5◦C and 

45◦C are illustrated in Figures 1A and 1B. The EIS measurements 

corresponding to the other investigated temperatures at 15◦C, 

25◦C, and 35◦C can be found in Figure S1. The results are pre

sented in the form of Nyquist plots for each measured tempera

ture with a SOC value ranging from SOC = 0% to SOC = 100% 

with ΔSOC = 10%. Figures 1C and 1D provide a direct compar

ison of the measured impedance spectra at different tempera

tures with fixed SOC levels of 0% and 100%, highlighting the 

temperature dependency at a specific SOC level. The inspection 

of the measured impedance reveals three distinct frequency re

gions, as labeled in Figure 1A.

(1) High frequency (HF): In the HF region (6–1 kHz), the pres

ence of inductive influences (Im(Z) > 0) in the impedance 

primarily stems from the wounded cell geometry and its 

wiring.51,52 Additionally, the impedance value in the fre

quency range where Im(Z) = 0 is associated with the 

ohmic resistance contributions from the electrolyte, sepa

rator, and contact resistance between either the elec

trode/current collector or particle/particle interface.29,31,52

(2) Intermediate frequency (IF): The compressed semi-arc 

observed at intermediate frequencies (1 kHz to 0.1 Hz) re

flects the impeded interfacial charge-transfer processes 

between the electrolyte/electrode interface and/or sur

face film impedances such as SEI or cathode electrolyte 

interface (CEI).29,31,53

(3) Low frequency (LF): The branch, observed at low fre

quencies (0.1–0.01 Hz), is ascribed to the solid-phase 

diffusion process.54,55

Based on the qualitative inspection of the presented EIS mea

surements in Figures 1A–1D, the impedance characteristic at 
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different SOCs and temperatures can be directly assessed. The 

intersection between the x axis and the impedance spectra at 

HFs slightly shifts toward higher values with decreasing SOC, 

indicating an increase in ohmic resistance with decreasing 

SOC. Similarly, the width of the semi-arc observed at IFs in

creases significantly at lower SOC levels, while it only presents 

a slight decrease for SOCs above 10%. The temperature depen

dency can be assessed from Figure 1C. It is observed that the 

semi-arc at IFs increases significantly with decreasing tempera

tures, indicating impeded charge transfer at low temperatures.

Identification of main impedance contributions

It becomes evident that a separate quantitative analysis of the 

physical polarization contributions in the Nyquist plots is diffi

cult, due to overlapping processes at different frequencies. 

Especially the physical processes contributing at IFs are not 

distinguishable and perceived as a single compressed semi- 

arc. Hence, an alternative analysis approach with increased res

olution becomes necessary to interpret the measured EIS data 

and to separate the processes overlapping in the impedance 

spectra. Consequently, the DRT of the measured impedance 

spectra is examined.

The calculated DRTs for the corresponding previously pre

sented EIS measurements in Figure 1 are depicted in 

Figures 2A–2D. The calculated DRT corresponding to the other 

investigated temperatures at 15◦C, 25◦C, and 35◦C can be found 

in Figure S2. The DRT indicates five clearly distinguishable peaks 

labeled P1–P5 in Figure 2A. As mentioned in the methods sec

tion, the inductive behavior at HFs is accounted for by fitting 

an additional inductance, while the capacitive blocking electrode 

behavior at LFs is not quantitatively evaluated. Hence, this part is 

shaded gray in all DRT plots.

A B

C D

T = 5 C T = 45 C

SOC = 100%SOC = 0%

HF IF LF
Frequency

Figure 1. Analysis of the impedance char

acteristics under different temperatures 

and SOCs 

(A and B) Nyquist plots of the obtained EIS mea

surements for SOCs ranging from 0% to 100% 

with 10% increments for (A) T = 5◦C and (B) T = 

45◦C. 

(C and D) Nyquist plots at fixed SOC levels for 

varying temperatures ranging from 5◦C to 45◦C for 

(C) SOC = 0% and (D) SOC = 100%.

Each peak in the DRT corresponds to a 

physical process contributing to the 

overall cell polarization. The individual 

peaks can be assigned to corresponding 

physical processes based on the fre

quency range of their occurrence and 

their temperature/SOC dependency.52,53

However, the statements made should 

be generally taken with caution, as not 

all specific internal cell processes can 

be mapped with certainty using only 

non-invasive techniques, due to the large 

number of electrochemical processes 

occurring within complex systems. 

Nevertheless, DRT serves as a valuable tool for determining 

the occurrence and amount of processes, their contribution 

to the overall impedance, and their temperature and SOC 

dependency.

The peak P1 observed at HFs between 104 and 103 Hz is inde

pendent of SOC, as indicated by the absence of a change in 

the characteristic center frequency or a change in intensity 

over the entire SOC range in either of Figures 2A and 2B. How

ever, a slight temperature dependency is observed, as shown in 

Figures 2C and 2D. Especially at higher temperatures above 

35◦C, a decrease in the intensity of peak P1 is observed, while 

almost no change in intensity can be seen for temperatures 

below 25◦C. Given that electrochemical processes typically 

do not take place at these elevated frequencies, P1 is attributed 

to contact resistances at the particle/particle interfaces or the 

electrode/current collector interface, which is virtually unaf

fected by SOC and temperature variations according to several 

studies.30,53,55

It is evident that the processes occurring in the IF ranges 

exhibit a clear separation, perceived in the Nyquist plot only 

as a single semi-arc. Peak P2 observed at IFs between 103 

and 102 Hz demonstrates a distinct behavior. At lower 

SOCs, especially at SOC = 0%, P2 shifts toward lower fre

quencies and the intensity increases significantly, as can be 

clearly seen in Figure 2A. Furthermore, a clear temperature 

dependency is observed, with P2 disappearing almost 

completely at high temperatures above 35◦C, while at lower 

temperatures P2 constitutes a dominant portion of the overall 

cell impedance, as depicted in Figures 2C and 2D. Figure 2D 

reveals that for SOC = 100% above 25◦C, P2 partly overlaps 

with P1, while at 15◦C P2 starts to become clearly 

distinguishable and shifts toward lower frequencies. The 
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observed behavior within this frequency range indicates po

tential influences from the impedances associated with 

passivation films, which could originate from either the anode, 

such as the SEI, or the cathode, such as the CEI. In general, 

the thickness of the CEI is less than that of the SEI, especially 

for a pristine cell.13,56 Hence, P2 is attributed to the impeded 

process of lithium transport through the SEI layer. The ex

hibited SOC and temperature dependency of P2 demonstrates 

behavior similar to that in previous investigations on both Gr 

and SiOx anodes.30,57,58

Peak P3 observed at IFs between 10 and 1 Hz does not 

contribute significantly to the overall polarization of the battery. 

Additionally, no significant change in either the center frequency 

or the intensity becomes visible at different SOCs or tempera

tures, apart from one exception. At SOC = 0%, the characteristic 

frequency of P3 shifts toward higher frequencies and starts to 

partly overlap with P2. This shift is also observed at increased 

temperatures, where the center frequency of P3 shifts toward 

higher frequencies, as becomes visible in Figure 2C. Further

more, the intensity increases significantly at low temperatures 

below 15◦C, while no significant intensity changes become 

visible for temperatures above 25◦C. Zhu et al.59 investigated 

the processes that occur at low temperatures within LIBs using 

DRT. Their findings reveal that as the temperature decreases, 

the charge-transfer impedance at the anode experiences a 

notable increase, whereas at elevated temperatures its impact 

on the overall cell impedance diminishes considerably. More

over, the frequency range observed for the anode charge-trans

fer resistance aligns with the frequency range observed in our 

study and various other investigations.57,60,61 Therefore, it is 

assumed that P3 reflects the charge-transfer process of the 

anode.

A BT = 5 C T = 45 C

C D SOC = 100%SOC = 0%

Figure 2. Analysis of the DRT characteris

tics at varying temperatures and SOCs 

(A and B) Calculated DRT plots for SOCs ranging 

from 0% to 100% in 10% increments at fixed 

temperatures of (A) T = 5◦C and (B) T = 45◦C. 

(C and D) DRT plots illustrating temperature vari

ations from 5◦C to 45◦C at fixed SOC levels for (C) 

SOC = 0% and (D) SOC = 100%.

Similarly, the peak P4, observed at IFs 

between 1 and 0.1 Hz shifts toward 

higher center frequencies, and the inten

sity increases with decreasing SOC. P4 

shows the largest contribution to the 

overall impedance at temperatures 

above 15◦C. It is widely acknowledged 

that the charge-transfer process of the 

cathode is the most sluggish process 

in the IF range and therefore shows 

the lowest center frequency.62 Previous 

studies13,53 have indicated that for 

nickel cobalt aluminum (NCA), the 

charge-transfer process occurs be

tween 0.4 and 3 Hz, which aligns with 

the process observed in our study. 

Hence, P4 is attributed to the charge-transfer process of the 

cathode.

Additionally, a process at LFs below 0.1 Hz is identified and 

mainly attributed to the solid-phase diffusion process.52 Howev

er, as mentioned previously, due to the limited reliability of DRT 

at LFs, no quantitative analysis is performed. Nevertheless, the 

awareness of another process occurring at LFs is integrated 

into the model.

The information obtained from the DRT evaluation serves as 

the basis for establishing reasonable modeling assumptions, 

which will be evaluated in the following section.

Advanced electrical circuit model development

Based on the previous evaluation of the DRT, a corresponding 

ECM is proposed. The model parameters for different frequency 

ranges are extracted from different types of measurements. 

Given the better separation of fast processes in the HF and IF 

ranges, EIS measurements are used to derive these parameters. 

However, due to the limited measurement time of the EIS 

spectra, time-domain measurements are used to parameterize 

the model parameters in the LF range. The software used to 

obtain the model parameters from EIS and time-domain mea

surements is developed at our institute (ISEA, RWTH Aachen 

University) and made publicly available.63,64

Modeling fast battery dynamics through EIS

The selected model for the cell under investigation, based on the 

prior evaluation of the DRT, is shown in Figure 3A. The ECM con

sists of an inductance that is intended to account for the HF 

behavior of the cell. The ohmic resistance is modeled using a se

rial resistance R0. Each identified process in the DRT is mapped 

by means of a ZARC element, often referred to as an RQ 
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element.28,30 It is composed of a parallel connection of a con

stant phase element (CPE) and a resistance, defined as65

Z(jω) =
R

1+(jωτ)Φ: (Equation 1) 

In our model, only the polarization of the cathode charge transfer is 

considered using a ZARC element, as the anode charge-transfer 

resistance has an almost insignificant influence within the investi

gated temperature range to reduce model complexity. Accord

ingly, three ZARC elements ZARC1–ZARC3 are integrated into 

the used ECM to account for the contact, surface film, and 

charge-transfer impedance. The solid-state diffusion contribu

tions occurring at LFs are modeled using a finite-length Warburg 

(FLW) element ZW, similar to Gantenbein et al.27 and Illig et al.30

The used FLW is implemented as presented by Cruz-Manzo 

and Greenwood66:

Z(jω) = RW⋅
tanh

( ̅̅̅̅̅̅̅̅̅̅
jωτw

√ )

̅̅̅̅̅̅̅̅̅̅
jωτw

√ : (Equation 2) 

An additional capacity, CLim, is added in series to the FLW 

element to reflect the intercalation capacity, similar to the pro

posed approach by Levi and Aurbach.67 The grayed-out ele

ments in Figure 3A indicate the parameters that are later re

placed by those parameters obtained from time-domain 

measurements. Finally, a voltage source is added to represent 

the open-circuit voltage (OCV) of the cell. The used ECM shows 

excellent agreement with the experimental data from the EIS 

measurements, as demonstrated in Figures 3B and 3C. The 

L

Contact 
Impedance

Surface Film
Impedance

Charge Transfer
Impedance

OCV

Solid-State
Diffusion

A

B C

Pulse Relaxation

Figure 3. ECM development based on the 

DRT evaluation 

(A) Assignment of different DRT processes to ECM 

parameters. The LF parts of the ECM are refitted 

using time-domain measurements. 

(B and C) Comparison between measured 

impedance spectra and fitted ECM for (B) 5◦C and 

(C) 45◦C, both at fixed SOC = 50%.

comparison between measured imped

ance spectra and fitted ECM for 15◦C, 

25◦C, and 35◦C can be found in 

Figure S3.

The obtained parameters for different 

temperatures and SOCs are displayed in 

Figure 4. The course of the ohmic resis

tance (R0), the contact impedance (R1), 

the film impedance (R2), and the charge- 

transfer impedance (R3) are displayed in 

Figures 4A–4D.

The ohmic resistance R0, as depicted in 

Figure 4A, remains almost unchanged 

over the entire SOC range and only shows 

a small variation of approximately 1 mΩ 
within the SOC range of 0%–20% for all 

temperatures. In addition, R0 has the 

lowest temperature sensitivity of all pa

rameters with a parameter variation of less than 2 mΩ over a tem

perature change of 40 K. This indicates that the contribution of R0 

is decoupled of cell-internal occurring electrochemical reaction 

processes, as this would necessitate a much stronger SOC or 

temperature dependency.

The contact resistance R1 does not show a significant 

deviation in magnitude across the SOC range between 

20% and 80%, similar to R0, as shown in Figure 4B. However, 

for SOCs below 20% a decrease in polarization becomes 

visible, which can be clarified by examining the processes 

that take place on a particle level. On the cathode, virtually 

no volume change is expected, while on the anode, the 

particle volume should be smallest in the fully delithiated 

state. As a result, the pore volume becomes largest at 

low SOCs, which consequently results in reduced contact 

resistance.

The surface film resistance R2 in Figure 4C shows an expo

nentially decreasing trend with increasing SOC. Especially for 

SOCs below 20%, a significant increase of the surface film 

resistance becomes evident. It becomes visible that the surface 

film impedance is the dominant polarization contribution for 

temperatures below 25◦C, which is in accordance with the re

sults of Steinhauer et al.57 This is also in accordance with the 

investigated DRT where, especially for low temperatures, a 

dominant polarization contribution of the surface film imped

ance became visible.

The charge-transfer resistance R3, as illustrated in 

Figure 4D, exhibits an increase at high SOC levels above 80% 

across all temperatures. Typically, a U-shaped pattern is ex

pected for the charge-transfer resistance, characterized by 
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high impedance values at both low and high SOCs, which aligns 

with findings from other studies.53,68 However, in this case, lower 

impedance values are observed at low SOC levels, particularly at 

elevated temperatures. This behavior in NCA/Gr-SiOx batteries 

can be attributed to the silicon content in the anode, which in

hibits the cathode from achieving high lithiation states that are 

usually associated with increased impedance values corre

sponding to low full-cell SOCs.68 The hysteresis behavior pri

marily arising from the silicon content within the anode may 

lead to earlier reaching of the lower cutoff voltage, resulting in 

reduced lithiation of the cathode. To validate this hypothesis, 

A B

C D

E F

G H

Figure 4. Fitted ECM parameters extracted 

from EIS measurements at varying temper

atures and SOCs 

(A) Ohmic resistance (R0), (B) contact resistance 

(R1), (C) surface film resistance (R2), and 

(D) charge-transfer resistance (R3). Correspond

ing relaxation times (E) τ1, (F) τ2, and (G) τ3. 

(H) Different impedance contributions and corre

sponding relaxation times at fixed SOC = 50% on 

a logarithmic scale over the inverse temperature.

more advanced in situ measurements at 

various SOCs, such as inductively 

coupled plasma or energy-dispersive 

X-ray spectroscopy analysis, are neces

sary. These investigations fall outside 

the scope of this paper but should be 

further explored in future studies.

The progression of the corresponding 

relaxation times τ1–τ3 are depicted in 

Figures 4E–4G. The relaxation times for 

the respective processes show a clear 

separation considering their magnitude 

but a corresponding proximity to each 

other when varying the SOC and temper

ature, indicating that, indeed, different 

processes have been fitted and, hence, 

with a physically plausible fit.

Figure 4H depicts the different imped

ance contributions and relaxation times 

for varying temperatures at a fixed 

SOC = 50% on a logarithmic scale over 

the inverse temperature. This is done to 

separately investigate the temperature 

dependency of the corresponding param

eters. It becomes visible that all fitted 

impedance parameters show a clear tem

perature dependency, where decreased 

temperatures result in an increase of the 

respective polarization contribution, indi

cating again the physical plausibility of 

the fit.30 R2 exhibits the strongest temper

ature dependency, showing a variation of 

more than two decades over a tempera

ture range of 40 K, while R0 demonstrates 

the lowest temperature dependency due 

to its independence from electrochemical reactions, as previously 

described. Both R1 and R3 exhibit smaller temperature 

dependencies compared to R2. This observation aligns with previ

ous findings, where the contact and charge-transfer resistance 

displayed comparatively smaller temperature dependencies 

than the surface film resistance R2.30

Modeling slow battery dynamics through time-domain 

measurements

The diffusion behavior of the battery was incorporated into the 

previously described model using an FLW. However, due to 
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the limited duration of the EIS measurements, the LF behavior 

cannot be fully mapped. Hence, slowly occurring processes 

with high relaxation times can be better analyzed using data ob

tained in the time domain. Therefore, based on the previously 

parameterized model for the HF and IF ranges derived from 

EIS measurements, the LF behavior of the battery is approxi

mated using pulse-relaxation measurements.

A suitable measurement for parameter extraction is the 

voltage relaxation performed before each EIS measurement 

step when setting the SOC. The duration of the relaxation after 

discharge is designed to ensure that there is no significant 

voltage change at the end of the measurement, thereby covering 

all relevant LF model components. This approach is particularly 

efficient, since no additional measurement effort is required, due 

to the necessity of a relaxation period before performing an EIS 

measurement anyway.

The corresponding parameters are estimated for different 

SOCs and temperatures through an iterative fitting process, 

analogous to the parameter calculation from EIS measure

ments. It is important to note that only processes in the LF 

range are of interest during this step and are refitted using 

time-domain data. Differentiation between these parameters 

and those in the HF and IF ranges is achieved by considering 

the varying magnitudes of the obtained relaxation times, as 

indicated by the previously presented DRT analysis. Conse

quently, parameter values for all processes in the ECM with 

relaxation times τ < 1 s are retained from the EIS fitting, while 

only the FLW and intercalation capacity are optimized using 

the time-domain fit.

The obtained model parameters for the LF region, namely 

Rw;pulses; τw;pulses, and CLim;pulses, are shown in Figures 5A–5C. 

It becomes visible that the diffusion resistance shows a sharp 

increase at low SOCs. The trend of the respective model 

parameters are consistent for both parameterization 

methods, either through EIS or time-domain measurements. 

However, the magnitude of the relaxation time τw increases 

significantly, indicating that the fit using EIS measurements 

underestimates τw due to the limited duration of the 

measurement.

Advancing model precision for Gr-SiOx blend anodes via 

hysteresis modeling

In theory, the hysteresis of a LIB should be independent of any 

polarization effects and driven purely thermodynamically. 

However, in real operation, it is very difficult to achieve this 

thermodynamic equilibrium state, and hence a low-current 

measurement at C/50 is performed to achieve a quasi-equilib

rium state.

Figure 6A depicts the charge (UCH) and discharge (UDCH)

voltage of the investigated cell measured at 25◦C in a quasi-equi

librium state with a low current of C/50. The average voltage 

(UAVG) is also depicted and calculated as

UAVG =
UCH+UDCH

2
: (Equation 3) 

It becomes evident that the cell exhibits different voltage char

acteristics, with UCH being higher than UDCH. The observed hys

teresis characteristic is attributed to the SiOx content in the 

blend anode of the cell. Adding SiOx to the anode enhances 

the energy density, while intrinsic drawbacks come into play, 

including significant volume expansion of SiOx particles and 

substantial voltage hysteresis during the lithiation and delithia

tion process.35,49,50

Figure 6B depicts the hysteresis voltage between UCH and 

UDCH, according to

UΔ = UCH − UDCH: (Equation 4) 

The average hysteresis observed across SOC = 0%–100% 

amounts to 63.4 mV, with a maximum hysteresis voltage 

reaching 273.2 mV. This indicates that the hysteresis voltage 

associated with the blended anode is significantly higher 

than the reported average of pure Gr (∼17 mV) but notably 

lower than that of pure SiOx (∼266 mV).69 Due to the 

A

B

C

Figure 5. Fitted ECM parameters extracted from time-domain 

measurements at varying temperatures and SOCs 

(A) Diffusion impedance (Rw;pulses). 

(B) Corresponding diffusion relaxation time (τw;pulses). 

(C) Intercalation capacity (CLim;pulses).
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inherently higher anode potential of SiOx compared to Gr, 

SiOx is preferentially lithiated first in lower SOC ranges, up 

to the initial Gr voltage plateau at ∼20% SOC. Above this 

threshold, competitive lithiation occurs between SiOx and 

Gr.70 Conversely, during delithiation, the pronounced hystere

sis of SiOx leads to nearly complete delithiation of Gr particles 

before SiOx particles are delithiated. This results in a clear 

separation of individual material capacity contributions.69

Hence, the increased hysteresis voltage in the low-SOC re

gion is attributed to the dominant capacity share of SiOx 

within this voltage region, similar to the studies of Zilberman 

et al.71 and Heugel et al.72 Considering that the shape of the 

hysteresis voltage in Figure 6B demonstrates that the average 

voltage difference in the main working range of the Gr material 

between 20% and 80% SOC amounts to 36.3 mV, while the 

average hysteresis voltage in the working range of SiOx be

tween 0% and 20% SOC is significantly higher at 171.7 mV, 

Figure 6B also depicts the dV/dQ plot for the blend anode 

during delithiation against the lithium metal counter electrode 

extracted from the investigated cell. Notably, the peaks in 

the dV/dQ curve closely correspond to those observed in 

the hysteresis voltage, suggesting a direct correlation be

A B

C D

E F

Delithiation

St
ro

ng
 

H
ys

te
re

si
s

= 29.98

Figure 6. Derivation of a hysteresis model 

for Gr-SiOx blend anodes 

(A) Charge (UCH), discharge (UDCH), and average 

(UAVG) cell voltage. 

(B) Hysteresis voltage difference (UCH − UDCH) and 

anode dV/dQ curve. 

(C) FOR branches measured for different partial 

cycles with cycle depths of 10%, 20%, 30%, and 

50%, with starting SOC = 0%. 

(D) Calculated and fitted hysteresis state νHYST;10. 

(E) UHYST;10 measured and simulated using the 

implemented OSH model in comparison to using 

UAVG. 

(F) Calculated RMSE error between the measured 

and simulated voltage for UHYST;10; UHYST;20;

UHYST;30, and UHYST;50 using the OSH model 

compared to using UAVG.

tween phase transformations in the 

anode materials and cell hysteresis.

It becomes clear that neglecting 

voltage hysteresis for LIBs with SiOx- 

Gr blend anodes introduces significant 

potential for errors in later simulations. 

Hence, to accurately capture the cell- 

voltage behavior, a hysteresis model is 

parameterized. The most widely utilized 

model for incorporating hysteresis 

effects in LIB models is the one-state 

hysteresis (OSH) model, as introduced 

by Plett.39 This model has been effec

tively implemented for batteries based 

on lithium iron phosphate (LFP) as well 

as batteries with SiOx-Gr blend an

odes.37,38 The OSH model considers 

the hysteresis state separately from 

the OCV itself and only describes the behavior of hysteresis 

between the two main hysteresis branches UCH and UDCH. Ac

cording to Wycisk et al.,38 the OCV of the cell UOCV can be 

described in the OSH model as

UOCV(x; t) = UAVG(x)+
UΔ(x)

2
⋅ν(x; t); (Equation 5) 

with UAVG being the average voltage as per Equation 3 and UΔ 
the hysteresis voltage as per Equation 4 at a specified SOC x. 

ν(x; t) is the hysteresis state, defined between − 1 and 1. 

The differential equation for the hysteresis state can be 

written as

dν(x; t)
dx

= γ(x)⋅
(

1 − sgn

(
dx(t)

dt

)

⋅ ν(x; t)
)

; (Equation 6) 

with t being the time, x(t) the SOC, γ(x) the SOC-dependent 

decay rate of the hysteresis transition, and sgn the signum func

tion, taking on 1, 0, or − 1 depending on the sign of 
dx(t)

dt
. Trans

forming Equation 6 into the time domain by multiplying both 
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sides by dx
dt 

and replacing dx
dt 

with 
I(t)

QNOM
, with QNOM being the nom

inal capacity of the cell, results in

dν(x; t)
dt

= γ(x) ⋅
I(t)

QNOM

⋅
(

1 − sgn

(
dx(t)

dt

)

⋅ ν(x; t)
)

:

(Equation 7) 

The SOC-dependent model parameter γ(x) controls the rate 

at which the voltage converges to the lower/upper limit of the 

main hysteresis branch.73 γ(x) is fitted to the measurement 

data of the first-order reversal (FOR) branches, as introduced 

in the methods section, by least-squares minimization. In gen

eral, it is necessary to measure many of these FOR branches 

with varying DODs, which makes the overall parameterization 

very time intensive. However, here our focus will be mainly on 

the parameterization of γ(x) for the lower SOC ranges, as the 

highest influence of hysteresis is expected within this area, as 

previously described. Hence, γ(x) is individually parameterized 

for the FOR branches with 10%, 20%, 30%, and 50% DOD, 

while the same γ(x) value is used for all other transitions, based 

on the fit of γ(x) from the FOR branch at 50%. Figure 6C illus

trates the FOR branches measured for DODs of 10%, 20%, 

30%, and 50%.

Figure 6D depicts the calculated hysteresis state νHYST;10;meas 

for UHYST;10. A positive value of ν indicates that the hysteresis 

transition voltage at this specific point exceeds UAVG, necessi

tating the scaling and addition of 
UΔ(x)

2
. Conversely, negative 

values of νHYST;10;meas indicate that the transition voltage is 

below UAVG and that the scaled value of 
UΔ(x)

2 
needs to be sub

tracted. The corresponding fit to estimate γ(x) by solving the 

differential equation provided in Equation 7 and minimizing 

the error between νHYST;10;meas and νHYST;10;fit is also displayed 

in Figure 6D. The results demonstrate that the decay of the 

hysteresis state approximates a scaled exponential function 

effectively.

Figure 6E presents the result of the measured and 

simulated FOR branch UHYST;10. Additionally, UAVG is dis

played within that SOC region to illustrate the alternative 

OCV value utilized in the model when hysteresis effects are 

not considered. It is evident that the OSH model provides a 

significantly improved simulation of the voltage behavior, 

achieving a root-mean-square error (RMSE) of only 9.4 mV. 

In contrast, the simple usage of UAVG, results in a much higher 

RMSE of 97.1 mV.

Figure 6F compares the simulation results for various OCV 

transitions against those obtained by utilizing UAVG. The results 

clearly demonstrate that the OSH model more accurately cap

tures the hysteresis behavior compared to the use of UAVG. 

Notably, this improvement is particularly pronounced at low- 

SOC regions with strong hysteresis.

Assessing the accuracy of the electrical circuit model

The estimated parameters are integrated into an impedance- 

based coupled thermal-electrical battery simulation framework, 

the ISEAFrame, developed at our institution (ISEA, RWTH 

Aachen University) and made publicly available.74 A comprehen

sive description of the framework, its components, and the inter

action between the electrical and aging model can be found in 

Rücker et al.,25 Hust et al.,75 Barbers et al.,76 and Hildenbrand 

et al.77 The input parameters required for the electrical model, 

in addition to the fitted ECM parameters, include the power/cur

rent profile, the initial cell capacity, and the initial cell SOC. For 

the thermal model, essential parameters consist of the initial 

cell temperature, environmental temperature, cell density, heat 

capacity, and thermal conductivity. The calculated cell density 

for this specific cell is 2,900 kg/m3. The specific heat capacity 

is set to 830 J/kg⋅K, while the thermal conductivity values are 

specified as 12 W/m⋅K in axial direction and 2.4 W/m⋅K in radial 

direction, based on measurements conducted on similar cylin

drical 18650 NCA cells.78,79

The developed model is validated across a broad range of 

temperatures and SOC levels using current profiles as simulation 

inputs, derived from previously conducted measurements on the 

investigated cell. Four distinct types of current profiles are 

investigated.

(1) Full discharge—temperature variation: A full discharge 

cycle conducted at a fixed C-rate of C/3 across various 

temperatures of 5◦C, 15◦C, 25◦C, 35◦C, and 45◦C.

(2) Full discharge—C-rate variation: A full discharge cycle 

performed at a fixed temperature of 25◦C with varying 

C-rates of C/2, C/3, C/10, and C/15.

(3) Pulse test: Pulses applied at a constant temperature of 

25◦C with C-rates of 0.7, 1.0, and 1.3 C in both charge 

and discharge directions for SOC = 10%, 30%, 50%, 

70%, and 90%.

(4) Drive cycle: A current profile extracted from a recorded 

real-world EV driving cycle scaled down to cell level.

Figure 7A presents the measured and simulated results of a 

full discharge at a C-rate of C/3 across various temperatures. 

The duration of the discharge process exhibits a slight 

decrease at lower temperatures, attributed to reduced avail

able capacity due to higher-occurring overpotentials at lower 

temperatures. The self-heating of the cell under load is consid

ered by the prior described thermal model. The results indicate 

that the model effectively approximates the cell behavior 

across the entire temperature range, with a maximum RMSE 

of 26.2 mV observed at 5◦C. Table S4 summarizes the RMSE 

and mean absolute percentage error (MAPE) for each simulated 

scenario. The decrease in model accuracy can be attributed to 

various changes within the cell that occur at low temperatures, 

such as diminished ionic conductivity of the electrolyte, lower 

diffusivity of lithium ions in the electrode lattice according to 

Arrhenius’ law, significant polarization of the anode, and 

increased charge-transfer resistance at the electrode-electro

lyte interface.80,81 Regarding the latter, modeling the charge- 

transfer impedance of the anode was omitted, as previously 

noted, to reduce overall model complexity. Nevertheless, as 

demonstrated here, the model is sufficient to simulate low-tem

perature behavior. However, the consideration of anode 

charge-transfer becomes important when low-temperature 

performance is critical to the application scenarios of the 

model. Notably, model accuracy improves at higher tempera

tures. This enhancement is likely due to the influence of faster 
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dynamics associated with internal electrochemical processes 

at elevated temperatures, resulting in decreased polarization 

contributions and bringing the cell voltage closer to electro

chemical equilibrium.26

Furthermore, pulses at various SOC levels are simulated to 

model voltage fluctuations over time. The comparison be

tween the simulated and measured pulse responses is illus

trated in Figure 7B for SOC = 10%, 30%, 50%, 70%, and 

90%. The model demonstrates strong performance, with 

RMSE values ranging from 3.5 to 5.1 mV, as summarized in 

Table S4.

The simulated and measured voltage curves for a full 

discharge at varying C-rates of C/2, C/3, C/10, and C/15 are de

picted in Figure 7C. It becomes visible that the model accurately 

simulates different polarization contributions across various C- 

rates. However, as the C-rate increases, the RMSE between 

the measured and simulated voltage increases, reaching a 

maximum of 12.3 mV at a C-rate of C/2. Similarly to the influence 

of temperature on polarization contributions, lower C-rates allow 

the cell voltage to approach a state closer to electrochemical 

equilibrium, while higher C-rates increase overpotential contri

butions to the overall cell voltage.

Additionally, a drive cycle profile is simulated, based on 

real-world operational conditions of an EV, as presented in 

Figure 7D. The test cycle consists of driving data for a period 

of 1.5 h. Further details regarding the test profile used can be 

found in the methods section. The RMSE between the simulated 

and measured voltage is 10.2 mV, demonstrating the accuracy 

of the developed model in predicting real-world operational 

conditions.

Overall, the model effectively simulates cell dynamics 

across a wide range of temperatures, C-rates, and SOCs. At 

lower temperatures, additional non-linearities arise in cell 

behavior due to slower internal dynamics, which can impact 

model accuracy and were also observed in other studies.82

To reduce these inaccuracies, future studies should incorpo

rate the anode charge-transfer impedance, as it significantly 

affects the overall impedance at low temperatures. Notably, 

the simulation time for all scenarios remained below 3% of 

the real time.

Battery aging model development

After validating the electrical model, a semi-empirical aging 

model is proposed to capture the aging behavior of the given 

cell under various stress factors. For this purpose, cyclic 

and calendar aging tests are performed under different stress 

conditions for the given cell. The test matrices used for the cal

endar and cyclic aging tests are detailed in the methods

section.

The used aging model is a semi-empirical model, analogous 

to the one presented by Schmalstieg et al.32 The aging pro

cesses that occur during cell storage depend primarily on 

A B C

D

T = 5 C

T = 15 C

T = 25 C

T = 35 C

T = 45 C

SOC = 10%

SOC = 30%

SOC = 50%

SOC = 70%

SOC = 90%

Figure 7. Validation of the ECM for different scenarios 

(A) Measured and simulated voltage response of a full discharge at C/3 at different temperatures of 5◦C, 15◦C, 25◦C, 35◦C, and 45◦C. 

(B) Simulated and measured voltage response for pulses at SOCs of 10%, 30%, 50%, 70%, and 90%. 

(C) Simulated and measured voltage response of a full discharge at varying C-rates of C/2, C/3, C/10, and C/15. 

(D) C-rate and voltage curve for a measured and simulated drive cycle profile, extracted from real-world operation conditions of an EV. The solid lines denote the 

measured data, while the dashed lines represent the simulated data.
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the storage temperature (T), the storage SOC, and the storage 

duration (t). Figures 8A and 8B depict the capacity progres

sion of the calendar aging results for cells stored at varying 

ambient temperatures at a fixed SOC of 45% as well as for 

cells stored at different storage SOCs under a constant 

ambient temperature of 45◦C. Based on the observed cell 

behavior, the capacity trend of each calendar aging curve is 

approximated using the following formula:

Ccal(T;SOC; t) = 1 − α(T ;SOC)⋅t0:7; (Equation 8) 

A B

C D

E F

G H

50 C
45 C

40 C

35 C

Gr

SiOx

Figure 8. Aging model development 

(A) Calendar aging measurements performed at 

varying storage temperatures at fixed SOC = 45%. 

(B) Calendar aging measurements performed at 

varying storage SOCs at fixed temperature of 

45◦C. 

(C) Cyclic aging measurements performed at 

varying SOCs with fixed DOD of 20%. 

(D) Cyclic aging measurements performed at 

varying DODs with fixed SOC = 50%. 

(E) Arrhenius plot of α1(T). 

(F) Linear fit of α2(SOC). 

(G) Double-exponential fit of β1(SOC). 

(H) Polynomial fit of β2(DOD).

with T being the storage temperature in 

kelvins, SOC the respective storage 

SOC in percent, t the storage time in 

days, α(T ;SOC) the aging decay rate, 

and Ccal(T ;SOC; t) the normalized cell 

capacity relative to the initially extracted 

capacity in the pristine state. Similar ap

proaches have been used with varying 

exponential constants between 0.5 and 

0.75, based on the underlying assump

tion that the dominant effect during cal

endar aging is the thickening of the SEI 

layer, which is inversely proportional to 

the amount of lithium consumed during 

storage.32,34,41

Figure 8C shows the results of the cy

clic aging measurements for cycling 

around different average SOCs (SOC)

at a fixed DOD of 20%. SOC denotes 

the average SOC around which cycling 

is performed with a specified DOD. For 

example, cycling between 80% to 

100% in this nomenclature would 

correspond to a SOC = 90% and 

DOD = 20%. Figure 8D shows the re

sults of cyclic aging for cycling at 

different DODs around the same SOC 

of 50%. Only data up to a capacity 

retention of 70% were used to exclude 

spontaneous cell failures. Similar to 

Schmalstieg et al.,32 cyclic aging is 

assumed to be mainly influenced by 

DOD, SOC, and the charge throughput (Q), as given by the 

equation

Ccyc(Q;DOD;SOC) = 1 − β(DOD;SOC)⋅Q0:5; (Equation 9) 

with SOC being the average cycle SOC in percent, DOD the 

respective cycle depth in percent, Q the charge throughput in 

Ah, β(DOD;SOC) the aging decay rate, and Ccyc(Q;DOD;SOC)

the normalized cell capacity relative to the initially extracted 
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capacity in pristine state. The dependency on C-rate is not explic

itly addressed in the model. However, it is assumed that higher C- 

rates primarily result in increased heat generation within the 

cell.83 This effect is captured by the thermal model, which will 

subsequently be factored into the temperature dependency of 

the overall model, leading to accelerated aging.

α(T ;SOC) and β(DOD;SOC) describe the decay rates for spe

cific combinations of storage SOC and temperature, respec

tively DOD and SOC. These decay rates are further referred to 

as aging factors and are obtained by fitting each individual ca

pacity curve to the formulas described in Equations 8 and 9. 

Subsequently, the values obtained for the aging factors are 

used to determine the dependency of each individual stress fac

tor (T, SOC, DOD, and SOC) on the cumulative aging by estab

lishing a plausible regressive relationship.

It is commonly known that the rate of chemical reaction pro

cesses is accelerated at increased temperatures. Hence, the 

temperature dependency of the aging factors α(T ;SOC) is cho

sen to follow an Arrhenius relationship:

α1(T) = a1⋅e−
EA
R⋅T ; (Equation 10) 

with R being the gas constant and EA the activation energy. As 

depicted in Figure 8E, the applicability of the Arrhenius equa

tion is confirmed by the linear dependency of the logarithmic 

aging factors α1(T) with R2 = 0:981. This indicates that 

increased storage temperatures result in exponentially accel

erated side reactions, leading to faster capacity loss and ag

ing. The physically interpretable nature of the Arrhenius depen

dency indicates that it may be extrapolated to temperatures 

not covered within the calendar aging tests. While this is likely 

valid for higher temperatures where the primary aging mecha

nism is expected to remain SEI growth, its applicability for 

extrapolation to lower temperatures is less certain, as the pre

dominant aging mechanisms in lower-temperature regions 

might differ from those associated with SEI growth.43,84,85 In 

operating scenarios where lower temperatures are critical, 

lithium plating becomes the primary aging mechanism associ

ated with cyclic aging, rather than calendar aging. In these in

stances, the traditional Arrhenius dependency represented by 

a single exponential function might be insufficient and should 

be expanded to a double-exponential model that captures 

the increased aging rates at low temperatures.85 However, 

when evaluating the impact of storage temperature on calen

dar aging specifically, the Arrhenius dependency remains 

applicable. The activation energy can be calculated as EA = 

29:21 kJ/mol⋅K.

The aging factors of the SOC dependency show a linear trend, 

where higher storage SOCs result in faster aging, as depicted in 

Figure 8F. Hence, the SOC dependency of the aging factor is 

approximated using the following equation:

α2(SOC) = a2⋅SOC + a3: (Equation 11) 

The linear fit reproduces the trend of the SOC dependency 

well, indicated by R2 = 0:954. Higher storage SOCs lead to 

increased lithiation levels in the anode, causing more significant 

volume expansion and loss of lithium. However, it should be 

noted that the lowest measured storage SOC was at 20%, which 

is still above the SiOx capacity working range. Hence, the purely 

empirical found linear trend might only be applicable between 

20% and 80% SOC.

To account for the overlapping effects of calendar aging dur

ing cycling, the capacity loss attributed to solely calendar aging 

during cycling is estimated using the formula presented in 

Equation 8. The calculated calendar aging component is subse

quently added to the cyclic aging data to isolate the pure cyclic 

aging component. Although this method has been critically 

examined in other studies for datasets aimed at identifying 

distinct degradation modes and linking them to particular aging 

mechanisms, in our dataset this approach produced satisfactory 

outcomes in terms of capacity estimation.86

As illustrated in Figure 8G, cycling around both high and low 

SOC levels significantly accelerates the aging rate. This observa

tion is attributed to the fact that cycling at low SOCs primarily uti

lizes the SiOx content in the anode, leading to substantial dete

rioration due to pronounced volume expansion. Conversely, 

cycling at high SOCs induces significant volume expansion of 

the Gr portion, further contributing to accelerated aging. A dou

ble-exponential approach is employed to effectively capture the 

enhanced aging dynamics of both anode components, as 

follows:

β1(SOC) = b1 ⋅ eb2 ⋅SOC + b3⋅eb4 ⋅SOC: (Equation 12) 

The relationship between cyclic aging and DOD is modeled 

using a quadratic approach, expressed as follows:

β2(DOD) = b5⋅DOD
2

+ b6⋅DOD + b7: (Equation 13) 

The results demonstrate that deeper cycles lead to greater ag

ing compared to shallower cycle depths as presented in 

Figure 8H, which is consistent with findings reported in other 

studies.32,87

The overall combined model expressions for the aging factors 

associated with calendar and cyclic aging, derived from our pre

vious approximations, are as follows:

α(T ;SOC) = (a1 ⋅ SOC + a2)⋅e− K
T
; (Equation 14) 

β(DOD;SOC)= b1⋅eb2 ⋅SOC + b3⋅eb4 ⋅SOC

+ b5⋅DOD
2

+ b6⋅DOD + b7

: (Equation 15) 

In the final step, the calendar and cyclic aging factors obtained 

from the individual fitting of each aging curve are integrated 

into a three-dimensional fitting algorithm using the depen

dencies outlined in Equations 14 and 15. This process enables 

the simultaneous estimation of all model parameters. The esti

mated parameters from the final fit are summarized in Table S5.

The overall calendar and cyclic capacity loss is therefore 

given by

C(t;Q;T ;SOC;DOD;SOC) =

1 −
(

α(T ;SOC)⋅t0:7 + β(DOD;SOC)⋅Q0:5
)
: (Equation 16) 
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Assessment of aging model accuracy

The developed aging model is validated using aging data ob

tained from cells cycled under three distinct EV driving sce

narios. Figures 9A–9C illustrate, for each scenario, the applied 

current at the cell level normalized to the nominal capacity, the 

calculated cell SOC, the cell voltage, the cell heating, and both 

measured and simulated aging results. In addition, the cyclic 

and calendar aging components that contribute to overall aging 

are presented separately to elucidate the dominant aging mech

anisms. The simulated results are extrapolated, as indicated by 

the green-shaded areas, until the overall capacity reaches 

80% remaining capacity, which we assume corresponds to the 

end-of-life (EOL) criteria in our analysis. The RMSE, MAPE, and 

equivalent full cycles (EFCs) until the EOL criteria is reached 

are provided in Table S6.

The results indicate that the simulated aging behavior closely 

approximates the measured aging of the cell. The RMSE be

tween measured and simulated aging ranges from 0.41% to 

0.79%, with the maximum deviation remaining below 1% across 

all aging scenarios. Given that cycling was not conducted under 

significantly elevated temperatures or exclusively high SOCs, 

calendar aging always shows less significant impact on overall 

aging than cyclic aging for all scenarios tested. Although EVs 

are typically idle for a substantial portion of their operational 

time, calendar aging remains critical unless they are stationed 

in areas with considerably low ambient temperatures. Keil and 

Jossen88 demonstrated that, for temperatures up to 25◦C, the 

calendar aging component contributes significantly less to ca

pacity loss compared to cyclic aging. In addition, EV batteries 

are generally equipped with thermal management systems de

signed to maintain cell temperature within specified limits.89

Considering these factors, cyclic aging is expected to predomi

nantly influence the overall aging process, particularly in sce

narios involving fast charging or regular usage patterns with 

deep cycling, as observed in our tests.

Scenario 1 has the highest cycle depth of all scenarios with 

DOD = 80%, resulting in the largest overall capacity loss reach

ing 85.5% rest capacity after nearly 1,000 EFCs. The contribu

tion of cyclic aging to the overall capacity loss is twice as 

much as the calendar aging contribution, thus highlighting the 

considerable impact of deep cycling on battery aging. Scenario 

2 was cycled with a slightly reduced cycle depth of DOD = 70% 

compared to scenario 1 and at an ambient temperature of 10◦C. 

In comparison to scenario 1, a reduced overall capacity loss of 

87.1% rest capacity after nearly 1,150 EFCs, even under fast- 

charging conditions, is visible. In addition, scenario 2 exhibits 

the largest disparity between cyclic and calendar aging compo

nents. The low amount of calendar aging contribution is primarily 

attributed to the low ambient test temperature of 10◦C, while in 

comparison to scenario 1 a considerably larger fraction of the 

overall aging stems from cyclic aging, which is in accordance 

with various publications.84,88 Scenario 3 shows the lowest aging 

gradient among all tested scenarios, offering 93.7% of the initial 

capacity after 500 EFCs, which is attributed to the low cycle 

depth of DOD = 30%. In comparison to scenarios 1 and 2, the 

fraction of calendar aging and cyclic aging on overall aging 

shows the closest proximity in their respective share of aging. 

The extrapolated trends of the simulated results suggests that 

upon reaching the EOL criteria at 80% remaining capacity, the 

shares of calendar and cyclic aging influence overall aging to a 

similar extent for scenario 3. This indicates that indeed for short 

trips with no fast-charging requirements or deep cycling, calen

dar aging has a pronounced influence on the overall aging, while 

cyclic aging is drastically reduced. The model performance for 

A B C

Extrapolated

Figure 9. C-rate, SOC, cell voltage, cell heating, and measured/simulated capacity progression for different EV scenarios extracted from 

real-world operation conditions 

(A) Scenario 1: long trip (DOD = 80%, T = 25◦C). 

(B) Scenario 2: fast charging (DOD = 70%, T = 10◦C). 

(C) Scenario 3: short trip (DOD = 30%, T = 25◦C).
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this specific scenario exhibits the highest overall error. This 

increased error can be attributed to the limitations of the avail

able cyclic aging data, which were used to parameterize the 

model. As shown in Figure 8G, no measurements were conduct

ed for DODs between 20% and 50%. Instead, within this range, 

the DOD dependency is solely interpolated between the two 

nearest available measurements at 20% and 50%. This sug

gests that the DOD dependency within the cyclic aging compo

nent is slightly overestimated, resulting in an overall overestima

tion of aging for this scenario.

The estimated results obtained from the aging model are 

particularly interesting, considering that the validation data 

were derived from cycling the cell at ambient temperatures of 

25◦C and 10◦C, which are significantly lower than the tempera

tures used to parameterize the temperature dependency in the 

aging model. This suggests that extrapolation based on the Ar

rhenius equation is a valid approach. However, it is important to 

note that the relatively minor influence of calendar aging at low 

temperatures may have contributed to maintaining confidence 

in this assumption, as any discrepancies arising from extrapo

lating the model in scenarios where it does not accurately reflect 

aging effects are likely to be negligible. Although the model was 

fitted on aging data from synthetic load cycles, it yields reason

able results for highly dynamic and diverse automotive load 

cases. Similar to Schmalstieg et al.32 and Sarasketa-Zabala 

et al.,33 our findings indicate that extrapolating models based 

on accelerated measurements to non-accelerated standard 

operating conditions is a feasible approach. Nonetheless, it is 

important to recognize certain limitations of the model. In partic

ular, the model does not consider the relaxation behavior of LIBs, 

which has been demonstrated to significantly promote capacity 

recovery effects.77,90,91 This effect is particularly pronounced 

following accelerated aging conditions, such as elevated C- 

rates, which lead to increased inhomogeneity in lithium distribu

tion within the negative electrode.92,93 As this relaxation behavior 

is not appropriately covered in either accelerated cyclic aging 

tests or validation measurements, cell aging may inadvertently 

be exacerbated. Hence, the results should be viewed as worst- 

case approximations, which remain valuable for manufacturers 

when considering warranty commitments.90,94 Additionally, fac

tors such as spontaneous cell failure and statistical uncertainties 

associated with fitted model parameters and the resulting aging 

estimations have not been addressed but will be investigated in 

our future work. Furthermore, for scenarios beyond the regular 

operation of the cell in EV or ESS scenarios, extrapolating the ob

tained model to extreme conditions such as ultra-high tempera

tures or C-rates, may not be feasible.

Despite these limitations, the qualitative trends of the respec

tive aging trajectories are simulated with good agreement. The 

simulated aging rates for different load scenarios align well 

with actual measured aging rates in descending order: scenario 

1 > scenario 2 > scenario 3. Similarly, the attainment of the EOL 

criteria, as presented in Table S6, shows a consistent trend, with 

scenario 1 reaching the EOL criteria the fastest at 1,664 EFCs, 

followed by scenario 2 at 2,598 EFCs and scenario 3 at 3,097 

EFCs. Consequently, it appears more reasonable to evaluate 

impedance-based aging models by their capability to provide 

qualitative comparisons across different operating strategies. 

This enables identification of trends and patterns in the behavior 

of LIBs under varying conditions and can help manufacturers to 

identify specific optimization opportunities within a battery pack. 

Moreover, understanding the varying influences of calendar and 

cyclic aging components can help identify specific optimization 

opportunities within a battery pack while serving as an early- 

warning system for potential issues as performance deviates 

from expected trends. Consequently, the model can be consid

ered as an overall viable tool for estimating the impact of aging 

under various real-world operational conditions for EVs.

Accelerating aging model acquisition

The dataset utilized to parameterize the aging model was 

collected over several years and involved numerous cells tested 

under various conditions. Although extended test periods are 

essential for comprehensively understanding cell internal degra

dation processes for later electrochemical analyses, shorter test 

durations are preferable for modeling purposes. Consequently, 

accelerating model acquisition by minimizing test time and 

altering test conditions becomes crucial. Therefore, a sensitivity 

analysis is performed on all model parameters to evaluate the 

impact of modifications to these parameters on the model 

output. Following this analysis, the aging model is refitted using 

fractional portions of the total available calendar and cyclic aging 

data, aiming to identify the shortest test duration necessary to 

achieve acceptable model outcomes. The same model structure 

as outlined in the previous section is employed throughout this 

section.

Revealing key stress factors through sensitivity analysis

A global sensitivity analysis is performed as described in the 

methods section. Figure 10A presents the calculated absolute 

rank correlation coefficients for the calendar aging model pa

rameters a1; a2, and K in relation to the model output across 

varying storage SOCs and temperatures. It becomes evident 

that, under different storage conditions, the overall correlation 

with the model output remains consistent across all model pa

rameters. Generally, the temperature parameter K governs the 

overall output of the model at any investigated storage SOC 

and temperature, as indicated by the high correlation with the 

model output. In contrast, varying the storage SOC parameters 

a1 and a2 shows no significant correlation with their correspond

ing generated model output. Thus, the order of significance for 

the parameters in the calendar aging model can be classified 

as follows: K > a1 > a2. The results can be interpreted for physical 

plausibility and their implications for a reduced testing strategy. 

Specifically, it appears that for calendar aging, temperature dur

ing storage has a greater influence on the model output than 

storage SOC, which aligns with expectations based on the 

exponential nature of the Arrhenius’ law, rendering the temper

ature dependency superior. Importantly, this finding does not 

introduce any bias into the sensitivity analysis, since only mono

tonic relationships are evaluated using the Spearman rank cor

relation coefficient. This ensures a robust assessment of param

eter influences while accounting for the inherent characteristics 

of the underlying relationships in the model. Thus, for this spe

cific cell chemistry, more emphasis should be placed on tem

perature variations in calendar aging studies. It is recommended 
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that variations in storage SOC during calendar aging tests be im

plemented sparingly. The validation of the aging model demon

strated that extrapolating the fitted Arrhenius dependency from 

accelerated aging tests at elevated storage temperatures 

(35◦C–50◦C) to lower ambient temperatures (10◦C) to estimate 

the impact of calendar aging seems feasible, thereby facilitating 

accelerated data aggregation.

Figure 10B illustrates the absolute values of rank correlation 

coefficients for the cyclic aging model parameters b1–b7 under 

varying operating conditions. The sensitivity analysis reveals 

that parameter b6 exhibits a high correlation with the model 

output across different operating windows. Parameters b1 and 

b2 demonstrate stronger correlation with the model output in 

lower-SOC regions, while b3 and b4 show increased correla

tions at higher-SOC regions. This behavior can be attributed 

to different material components of the anode, specifically 

SiOx and Gr, that influence the output of the aging model in their 

respective cycling windows. Hence, the proposed SOC depen

dency using two exponential functions effectively captures the 

differing cycling effects in areas where SiOx or Gr predominately 

contributes to the overall capacity. Regarding parameter varia

tions associated with DOD, it is evident that changes in param

eter b6 yield the strongest correlation with the model output over 

a wide DOD range, while parameter b7 exhibits high correlation 

primarily at low DODs in combination with low SOCs. The cyclic 

aging parameters indicate that the model output is sensitive to 

both embedded dependencies SOC and DOD. In the cyclic ag

ing model, the parameters can be ranked in significance as 

follows: b6 > b4 > b7 > b5 > b3 > b1 > b2. Consequently, incorpo

rating both stress factors is crucial for accurate lifetime estima

tion. However, given that the DOD dependency demonstrates a 

stronger correlation with the model output across a broader 

operating range, it is recommended that priority should be given 

to the DOD dependency over the SOC dependency. The pro

nounced influence of DOD on cyclic aging aligns with the find

ings reported by Wildfeuer et al.95

Examining the impact of test time reduction on model 

accuracy

To investigate the influence of reduced test duration on model 

precision, fractional portions of the total dataset are collected 

at specific test intervals ranging from 90 days to 360 days, with 

increments of 15 days. For each of these 19 subsets, the previ

ously described aging model is refitted, aiming to provide in

sights into how reduced data availability from shorter testing du

rations impacts model performance and alters the estimated 

model parameters.

The progression of model parameters that exhibit a strong 

correlation with the model output is analyzed based on the pre

viously conducted sensitivity analysis. Figure 10C illustrates the 

A B

C D E
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Figure 10. Investigating the impact of reduced test duration on model accuracy 

(A) Absolute rank correlation coefficients for the calendar aging model parameters a1;a2, and K at varying storage SOCs and temperatures. 

(B) Absolute rank correlation coefficients for the cyclic aging model parameters b1–b7 under varying operating conditions. 

(C) Progression of successively fitted parameters using only subsets of the entire available dataset, with up to 360 days of data for sensitive parameters K;b4;b6, 

and b7. 

(D and E) Simulation of (D) scenario 2 and (E) scenario 3 using different fractional portions of the available dataset between 90 and 360 days. The orange solid line 

represents the simulation results obtained using the entire dataset. 

(F and G) Average RMSE for (F) scenario 2 and (G) scenario 3 between the simulated and measured capacity curve for different fractional portions of the available 

dataset between 90 and 360 days.
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evolution of the parameters K;b4;b6, and b7 following succes

sive refitting of the aging model using 19 distinct subsets. The 

straight line represents the fitted value for each respective 

parameter derived from the complete dataset. It is evident 

that the parameter values obtained from the subsets demon

strate a converging trend toward those derived from the entire 

dataset. Notably, the calendar aging parameter K shows no sig

nificant change in its value beyond 270 days, suggesting that a 

testing duration of 270 days would suffice from a modeling 

perspective. This finding indicates a substantial potential for 

test time reduction compared to the actual performed calendar 

aging test dataset, which spans over 1,200 days. Regarding cy

clic aging parameters, both b4 and b6 closely align with their 

corresponding values obtained from the complete dataset after 

approximately 300 days of testing. In contrast, parameter b7 ex

hibits no significant deviation from its value derived from the 

complete dataset after just 170 days.

To evaluate the accuracy of the models derived from different 

subsets, we conducted simulations for scenarios 2 and 3, as 

illustrated in Figures 10D and 10E. The results clearly demon

strate that as testing duration and, thus, data availability in

creases, the accuracy of the model also improves. The average 

RMSE between the simulated and measured capacity curves 

for various subsets, utilizing data ranging from 90 to 360 days, 

is presented in Figures 10F and 10G. For scenario 2, the 

RMSE decreases from an initial value of 0.8% to 0.47%, indi

cating a modest reduction with increasing data availability. 

Notably, even with just 90 days of data, estimation errors below 

1% are achieved, while approximately 150 days of data suffices 

to attain similar estimation errors as those derived from the 

complete dataset (0.42%). The low estimation errors observed, 

even with limited data availability, can be attributed to the min

imal impact of calendar aging in scenario 2 due to the environ

mental test temperature of 10◦C. Consequently, although the 

temperature parameter K that governs calendar aging con

verges after approximately 270 days, an over- or underestima

tion to a certain degree within this period does not have a signif

icant impact on the overall model error. In this case, cyclic aging 

emerges as the dominant factor that necessitates less testing 

time to accurately represent long-term aging trajectories 

compared to calendar aging. Furthermore, the variation among 

the different model estimations for reaching the EOL cycle is 

minimal, with values ranging from 2,291 to 2,507 EFCs, depend

ing on the amount of data used. This suggests that, for this sce

nario, even a testing duration of 90 days would have been suffi

cient for a quantitative aging estimation.

In scenario 3, the variation in reaching the EOL criteria from 

the model estimations derived from different subsets is more 

pronounced, ranging between 1,950 and 2,843 EFCs. The 

RMSE decreases from an initial value of 1.8% for the subset 

considering only 90 days of data to 0.78% for the subset incor

porating 360 days of available data. The most substantial 

reduction in RMSE occurs within the first 200 days. The results 

generally demonstrate a trend similar to that observed in sce

nario 2. As testing duration increases, the accuracy of the sim

ulations improves significantly. However, due to substantial 

variations in the estimated results from different subsets, a 

testing duration of 90 days is inadequate for accurately predict

ing the aging trajectory in this specific scenario. This limitation 

can be primarily attributed to the increased impact of calendar 

aging in this scenario, which exerts a greater influence on over

all aging compared to scenario 2. These findings indicate that 

different operational scenarios can significantly impact the 

amount of testing required to obtain acceptable model results.

In summary, we presented the development, parameteriza

tion, and validation of a semi-empirical aging model coupled 

with a thermal-electrical impedance model for a commercially 

available NCA LIB featuring a SiOx-Gr blend anode. The integra

tion of results obtained from DRT analysis, EIS, and pulse mea

surements within the model allowed an accurate characteriza

tion of the complex electrical behavior of the battery under 

various operational conditions. By incorporating a hysteresis 

model, the significant volume expansion effects associated 

with silicon during lithiation and delithiation were effectively ac

counted for. The presented aging model captures both calendar 

and cyclic aging mechanisms, yielding predictions of capacity 

loss that align closely with accelerated real-world operational 

scenarios, achieving less than 1% deviation from validation 

measurements. The presented detailed instructions on how 

to develop the impedance-based aging model can be used 

as a guideline for others who wish to create a similar imped

ance-based aging model. Additionally, we offer the following 

recommendations.

A sensitivity analysis evaluated the impact of each aging 

model parameter on the model output, followed by refitting the 

model with fractional portions of available calendar and cyclic 

aging data between 90 and 360 days, aiming to identify the 

shortest test duration necessary to achieve acceptable model 

outcomes. The findings suggest that testing conditions can stra

tegically be optimized alongside shorter testing durations while 

still attaining satisfactory levels of model accuracy, depending 

on the specific application of the aging model. Based on these 

findings, we offer the following recommendations.

Accelerating model development: Embracing open- 

source resources

Creating an impedance-based model from scratch is a chal

lenging task, with measurements alone often taking several 

months. Developing the entire tool chain required for construct

ing the model can take even longer. However, utilizing available 

open-source tools can significantly reduce the time needed to 

obtain the model. Furthermore, when researchers use the 

same tools, results become more comparable and integrable 

across studies. Additionally, these tools can be extended by 

the community, benefiting all users. Therefore, we recommend 

adhering to already published tools in this area, similar to those 

employed in our study here. The presented aging model along 

with all relevant data are publicly accessible for use by industry 

and research institutions.

Enhancing ECM accuracy through advanced techniques 

and hysteresis modeling

The developed ECM successfully simulates battery dynamics 

across a range of temperatures and SOCs. Researchers should 

consider the use of DRT as a valuable tool for establishing 

reasonable model assumptions. Improved results can be 

achieved by differentiating between fast and slow battery dy

namics through the integration of both EIS and pulse 
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measurements. For enhanced accuracy, particularly at low tem

peratures, incorporating the polarization of the anode charge- 

transfer impedance is recommended. Additionally, for LIBs 

with silicon fractions in the anode, implementing a hysteresis 

model, albeit in a minimized form as demonstrated in our study, 

is essential to accurately capture real cell voltage.

Optimizing test conditions for modeling purposes by 

prioritizing key stress factors

The sensitivity analysis carried out has identified key stress fac

tors and highlighted the importance of understanding the dy

namics of individual model parameters over different test dura

tions to effectively accelerate model acquisition. There is 

substantial potential to reduce test efforts while ensuring reliable 

model performance by prioritizing key stress factors such as 

temperature for calendar aging and DOD for cyclic aging.

Based on the results obtained, we recommend conducting 

accelerated calendar aging tests at a minimum of four relevant 

temperature levels, specifically at elevated storage tempera

tures above 30◦C, as the extrapolation of the Arrhenius’ law to 

lower temperatures proved to be a feasible approach due to 

the smaller impact of calendar aging on the overall aging at 

low storage temperatures. It is recommended that variations in 

storage SOC during calendar aging tests be implemented 

more sparingly.

For cyclic aging tests, it is essential to incorporate both inves

tigated stress factors SOC and DOD for an accurate lifetime esti

mation. However, since the DOD dependency showed stronger 

correlation with model output across a broader operating range, 

priority should be given to DOD dependency over SOC depen

dency. It is recommended to perform cyclic aging tests consid

ering at least five different DODs within the relevant operation 

range. Meanwhile, the SOC dependency should be considered 

more conservatively with a maximum of three test points, while 

especially for cells with silicon content the SOC ranges between 

5% and 20% should be investigated, as the impact on model 

output has demonstrated a strong correlation within these 

intervals.

Reducing test time by defining operational ranges of the 

aging model

The findings demonstrate that different operational scenarios 

can significantly influence the amount of testing necessary to 

achieve acceptable model results. In our case, scenario 2 yielded 

satisfactory outcomes with just 90 days of data (RMSE = 0.8%), 

while scenario 3 showed considerable variations when the data 

used for model fitting was reduced to fewer than 200 days. 

Therefore, it is crucial to clearly define the operational ranges 

for which the aging model is intended to predict performance. 

Additionally, the results indicate that required test durations 

vary based on the relative influence of calendar and cyclic aging 

within the simulated operating scenarios. Extended test periods 

are particularly essential for accurate modeling of calendar ag

ing. In situations where calendar aging is expected to have min

imal impact, such as in cold-weather regions or in applications 

involving only fast charging, satisfactory model results can be 

achieved with only 90 days of testing. Conversely, in scenarios 

where calendar aging is not significantly overshadowed by cyclic 

aging, it is advisable to conduct at least 200 days of aging to 

secure satisfactory model outcomes.

It is important to note that these recommendations are primar

ily focused on the modeling aspect. For more comprehensive 

electrochemical analyses, longer test durations and examination 

of additional stress factors may be necessary. Furthermore, the 

results should be viewed as worst-case approximations, since 

all tests were conducted under constant-stress conditions 

without substantial relaxation phases. Future research should 

aim to explore the interactions of various additional stress fac

tors, such as resting periods on cyclic aging. Nevertheless, the 

provided recommendations can serve as a foundation for estab

lishing testing requirements aimed at ultimately developing aging 

models based on obtained data.

Overall, this research contributes to the understanding of 

modeling LIBs with SiOx-Gr blends. The open-source toolchain 

and datasets presented will facilitate further investigations into 

battery performance prediction across various applications 

such as EVs or ESSs.

METHODS

Investigated cell

In this work, commercially available high-energy cylindrical Sam

sung SDI INR18650 35E LIBs are investigated. The nominal ca

pacity is specified by the manufacturer as 3.35 Ah, and the 

voltage limits are given as between 2.65 and 4.2 V. The electrode 

material consists of a blend of Gr + 1.5 wt % SiOx on the anode 

and NCA as the cathode material. More detailed cell specifica

tions can be found in Kuntz et al.96 All measurements presented 

were conducted in accordance with the specifications outlined 

by the manufacturer and can be found in Morales Torricos 

et al.93,97 and Willenberg et al.93,97

Electrochemical impedance spectroscopy and pulse 

measurements

All EIS measurements were performed using a Digatron EIS

meter within a Binder MK53 climate chamber in which the cho

sen test temperature is adjusted and controlled with an accuracy 

of ±1 K.

EIS and pulse measurements were performed for five different 

temperature levels (5◦C, 15◦C, 25◦C, 35◦C, and 45◦C) at 11 equi

distant SOCs between 100% and 0%. The decision to restrict 

the model to these temperature limits is based on the manufac

turer’s data sheet, which indicates that the cell should not be 

charged at temperatures exceeding 45◦C. The cell was allowed 

to rest for 12 h at the respective testing temperature. Before 

starting the EIS and pulse characterization routine, the cell is fully 

charged until the upper cutoff voltage is reached with C=3 in con

stant-current (CC) constant-voltage (CV) mode until the float cur

rent falls below C=50 (68 mA). Following a 15-min resting phase, 

a low-current measurement with C=15 in discharge and charge 

direction is performed between the respective cutoff voltages. 

Thereafter, a capacity test at C=3 in discharge and charge direc

tion is performed. After the final CCCV charging phase of the ca

pacity test, starting in fully charged state (that is, SOC = 100%), 

impedance spectra were recorded with the AC amplitude of the 

applied signal perturbation at 10 mV and an applied current of 

less than 2 A. Each EIS measurement was performed in a fre

quency range from 6 kHz to 10 mHz with eight frequencies per 
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decade, resulting in a total of 48 measured frequencies. After the 

initial measurement, the targeted SOCs were adjusted in 

ascending order Ah-based using the prior obtained C= 3 

discharge capacity from the capacity test performed at the 

respective temperature level with a C-rate of C=3. Thereafter, a 

rest period is employed for as long as until the voltage fluctuation 

falls below 5 mV or a maximum of 3 h has passed after reaching 

each targeted SOC.

After measuring the impedance spectra, pulse measure

ments are performed at the respective SOC and temperature. 

For this purpose, pulses with a C-rate of 0.7 C, 1 C, and 1.4 C 

were successively applied in charge and discharge direction 

with a duration of 20 s. To compensate for the additional charge 

throughput after each charge/discharge pulse, the charged/ 

discharged amount of capacity is withdrawn/added before per

forming the next pulse measurement using a C=3 discharge/ 

charge.

Distribution of relaxation times

The DRT enables a deconvolution of the impedance spectra and 

was originally introduced to evaluate impedance measurements 

of solid oxide fuels, while in recent years it has also been widely 

used to analyze impedance spectra of LIBs.52,53,55,98 The main 

advantage compared to conventional analysis methods, such 

as fitting an ECM, is that no a priori choice of circuit elements 

is necessary, thereby increasing the physical interpretability of 

the impedance data. This is achieved mathematically by trans

forming the measured impedance data from the frequency 

domain into the time domain using a distribution function of 

relaxation times with corresponding relaxation amplitudes, ex

pressed as

Z(f) = R0 +

∫ ∞

0

g(τ)
1+i2πfτ

dτ; (Equation 17) 

where R0 describes the ohmic resistance, and g(τ) is a suitable 

function describing the relaxation time characteristics of the 

measured electrochemical system, paired with their respective 

resistive contribution.99,100 Every physical process occurring 

within the battery results in a peak in the DRT with associated 

center frequency indicating the rate of the polarization, whereas 

the magnitude provides insights into the impedance contribu

tions of different processes to the overall impedance of the LIB.

Since impedance measurements are typically acquired with a 

certain number of points per decade, Equation 17 can be conve

niently rewritten in logarithmic form by substituting τ = expln(τ). 

Applying the DRT necessitates that the impedance of the 

measured system meets several converging constraints.101 Usu

ally these constraints are not fulfilled for LIBs due to the inductive 

behavior at HF and the capacitive behavior at LF. Hence, the 

impedance function in Equation 18 is extended by the transfer 

function of an inductance to account for the HF effect. As no 

quantitative statements regarding the diffusive part will be drawn 

from the LF DRT portion, no compensation of the capacitive 

effects is required. Furthermore, the integral is normalized, 

resulting in the separation from the polarization resistance Rpol, 

ultimately yielding to

Z(f) = R0 + i2πfL + Rpol⋅
∫ ∞

− ∞

~γ(ln(τ))
1+i2πfτ

d ln(τ)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

;

= 1

(Equation 18) 

with γ(ln(τ)) = Rpol⋅~γ(ln(τ)):

A more comprehensive review and mathematical description 

of the DRT can be found in Plank et al.102 The presented DRT 

within this paper is mainly utilized to deconvolute different pro

cesses at IF and is calculated using the open-source-available 

DRTtools.99,100 To ensure reliable DRT calculation, the required 

parameters to calculate the DRT are identical for each EIS 

measurement.

Hysteresis characterization measurements

The hysteresis characterization measurements were performed 

using a Neware BTS-4008-5V6A circuit within a Binder MK240 

climate chamber, where the selected test temperature of 25◦C 

is adjusted and controlled with an accuracy of ±1 K. The cell 

was allowed to rest for 12 h at the respective testing tempera

ture. The cell was preconditioned by fully discharging it to the 

lower cutoff voltage using a CCCV discharge with a C-rate of 

C=3 until the float current was below C=50. Following a 15-min 

resting phase, the cell was discharged again at C=50 to ensure 

it was completely discharged.

Initially, a complete charge-and-discharge cycle was per

formed to obtain the main hysteresis branch that bounds the hys

teresis model. For all measurements of the relevant hysteresis 

curves, a C-rate of C=50 was used to minimize polarization ef

fects. Additionally, after each discharge procedure, a resting 

phase of 15 min was used before conducting another discharge 

with C=50 to the lower cutoff voltage to ensure that the cell 

was fully discharged. To assess transition behavior during partial 

charge/discharge cycles, FOR branches were measured, as 

defined in Plett.39 After a complete discharge, a specific SOC 

was targeted Ah-based using the prior measured C=50 discharge 

capacity. The cell was then discharged again to the lower cutoff 

voltage. This procedure was repeated for different SOC levels 

ranging from 10% to 50% in increments of ΔSOC = 10%.

Calendar and cyclic aging measurements

The calendar aging tests to fit the aging model were performed at 

our institute (ISEA, RWTH Aachen University) under variation of 

ambient temperature and SOC. Four different ambient tempera

tures of 35◦C, 40◦C, 45◦C, and 50◦C were investigated. Further

more, four different SOCs at 25%, 45%, 59%, and 80% were 

selected to investigate the influence of different lithiation states 

on calendar aging. An in-depth analysis of these calendar aging 

measurements and procedures used can be found in the work of 

Frie et al.103

The aging measurements used to fit the cyclic aging model 

were also performed at our institute (ISEA, RWTH Aachen Uni

versity) for five different DODs and eight varying average 

SOCs. The C-rate employed for all cyclic aging measurements 

was 0.5 C during the charging phase, followed by an Ah-based 

discharge corresponding to the investigated DOD. An in-depth 
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analysis and description of the performed cyclic aging tests can 

be found in the works by Willenberg et al.97,104,105

The test matrices used to fit the calendar and cyclic aging 

model are presented in Tables S7 and S8. Multiple cells were 

used for the same operating point in order to show the reproduc

ibility of the measurements.

Validation profiles

Several automotive load cases serve for model validation. For 

this purpose, dynamic load profiles were measured and scaled 

down to cell level, as described in Schreiber et al.,94 Wassiliadis 

et al.,106 and Jöst et al.107 For a higher degree of realism, power 

profiles are applied to the cells, such as in the vehicle. Discharg

ing is terminated after extracting a predefined amount of 

charge, representing constant range requirements throughout 

the experiment. Two long-distance scenarios with 80% DOD 

(scenario 1) and 70% DOD (scenario 2) and one shorter trip 

with 30% DOD (scenario 3) are used. The cells are charged to 

4.1 V or 90% SOC, respectively, using different charging strate

gies. Scenario 1 uses a CCCV charging protocol with 1.02 A. 

Scenario 2 applies a CCCV charging strategy with 1.2 A, which 

is the maximum continuous charging current defined by the cell 

manufacturer, simulating a fast charging event. Scenario 3 uses 

a constant-power constant-voltage (CPCV) protocol, simulating 

an 11 kW wallbox charging event, which yields a charging power 

of 2.32 W on cell level. The test specifications are summarized in 

Table S9.

A reference performance test (RPT) is carried out on a regular 

basis following the presented RPT routines in Schreiber et al.94

and Jöst et al.107 Both cycling and RPT are performed at 25◦C 

ambient temperature. Only for scenario 2, the cell is cycled at 

10◦C ambient temperature.

Sensitivity analysis

Each parameter of the semi-empirical aging model affects the 

accuracy of the model output to varying degrees. Hence, a 

sensitivity analysis considering different operation points was 

carried out in this work to investigate the sensitivity of the calen

dar and cyclic aging model parameters under varying operating/ 

storage conditions. To examine the full range of possible out

comes a global sensitivity analysis is conducted, in which all vari

ables are simultaneously varied by logarithmically covering latin 

hypercube sampling.108 The simulations were performed in 

MATLAB using lhsdesign, with 1,000 simulations executed for 

each operation point. Each parameter of interest in the calendar 

and cyclic aging model was correlated with the change in the 

respective aging factor at varying operating ranges using Spear

man’s rank correlation coefficient.109 Table S10 displays the 

ranges of parameters utilized.
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65. López-Villanueva, J.A., Rodrı́guez-Iturriaga, P., Parrilla, L., and Rodrı́

guez-Bolı́var, S. (2022). A compact model of the ZARC for circuit simula

tors in the frequency and time domains. AEU-International Journal of 

Electronics and Communications 153, 154293.

66. Cruz-Manzo, S., and Greenwood, P. (2022). Analytical transfer function 

to simulate the dynamic response of the finite-length warburg impedance 

in the time-domain. J. Energy Storage 55, 105529.

67. Levi, M.D., and Aurbach, D. (1997). Simultaneous measurements and 

modeling of the electrochemical impedance and the cyclic voltammetric 

characteristics of graphite electrodes doped with lithium. J. Phys. Chem. 

B 101, 4630–4640.

68. Weber, R., Louli, A.J., Plucknett, K.P., and Dahn, J.R. (2019). Resistance 

growth in lithium-ion pouch cells with LiNi0.80Co0.15Al0.05O2 positive 

electrodes and proposed mechanism for voltage dependent charge- 

transfer resistance. J. Electrochem. Soc. 166, A1779–A1784.

69. Knorr, J., Gomez-Martin, A., Hsiao, H.C., Adam, A., Rödl, B., and Danzer, 
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