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Abstract

The aim of this thesis is to investigate the properties of the Clifford algebra of a
quadratic lattice over a Dedekind domain and its completions and to compare it
with the properties of the Clifford algebra of its ambient quadratic space.

The new object that arises this way - the Clifford order - has not yet been studied
extensively as an independent object. The present thesis addresses this, using both
the theory of orders and Clifford algebras to extend well-known results that hold for
Clifford algebras over fields to this new, more general setting.

It was long known to theory that the centraliser of the even Clifford algebra, the
so-called centroid is a cornerstone for describing the Clifford algebra of an orthogonal
direct sum of quadratic spaces. This thesis develops the theory of quadratic orders,
to describe the centroids of Clifford orders on an abstract level. In this context, a new
invariant of a quadratic lattice, the quadratic discriminant, is introduced, allowing
for a simplified computation of the centroids in certain situations. As applications,
the centroids of the maximal lattices over a Dedekind domain and of an arbitrary
root lattice are computed, and an effective way to determine the Clifford order
of the orthogonal direct sum of two quadratic lattices is presented. Additionally,
an algorithm to compute the centroid of a given Clifford orders over an arbitrary
Dedekind domain is described.

Finally, this thesis classifies the Clifford orders and the centroids of all maximal
lattices over a complete discrete valuation ring and describes them as a subalgebra
of their ambient Clifford algebra.
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Zusammenfassung

Das Ziel dieser Dissertation ist es, die Eigenschaften der Clifford-Algebra eines
quadratischen Gitters iiber einem Dedekindbereich und dessen Komplettierungen
zu untersuchen und diese mit den Eigenschaften der Clifford-Algebra des umgeben-
den quadratischen Raums zu vergleichen. Das auf diese Weise entstehende neue
Objekt — die Clifford-Ordnung — wurde bisher noch nicht umfassend als eigenstandi-
ges Objekt untersucht. Die vorliegende Arbeit widmet sich diesem Thema und nutzt
sowohl die Theorie der Ordnungen als auch die der Clifford-Algebren, um bekannte
Ergebnisse, welche fiir Clifford-Algebren iiber Korpern gelten, auf diesen neuen,
allgemeineren Rahmen zu iibertragen.

Es war lange Zeit bekannt, dass der Zentralisator der geraden Clifford-Algebra, das
sogenannte Zentroid, ein Grundpfeiler zur Beschreibung der Clifford-Algebra einer
orthogonalen direkten Summe quadratischer Rdume ist. Diese Dissertation ent-
wickelt die Theorie der quadratischen Ordnungen mit dem Ziel, das Zentroid einer
Clifford-Ordnung auf einer abstrakten Ebene zu beschreiben. In diesem Zusam-
menhang wird eine neue Invariante eines quadratischen Gitters, die quadratische
Diskriminante, eingefiihrt, welche eine vereinfachte Berechnung des Zentroids in
bestimmten Situationen ermoglicht. Als Anwendung werden die Zentroide der max-
imalen Gitter iiber einem Dedekind-Ring und eines beliebigen Wurzelgitters berech-
net, und eine effektive Methode zur Bestimmung der Clifford-Ordnung der orthogo-
nalen direkten Summe zweier quadratischer Gitter wird vorgestellt. Dariiber hinaus
wird ein Algorithmus beschrieben, welcher es ermoglicht, das Zentroid einer Clifford-
Ordnung iiber einem beliebigen Dedekindbereich zu berechnen.

Schliefslich werden in dieser Dissertation die Clifford-Ordnungen und die Zentroide
aller maximalen Gitter iiber einem vollstandigen diskret bewerteten Ring klassifiziert
und als Teilalgebra ihrer umgebenden Clifford-Algebra beschrieben.
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List of Symbols

Symbol Description
N The set of natural numbers without zero, i.e. N = {1,2,3,...}.
Ny The set of natural numbers including zero, i.e. N = {0,1,2,3,...}.
n The set of natural numbers up ton € N, i.e. n={1,...,n}.
E, 1 E, The orthogonal direct sum of the quadratic modules E, Es.
A* The unit group of the monoid (usually a ring) A.
Anxn The set of n x n-matrices over the ring A.
GL,(A) The group of invertible n x n-matrices over the ring A.
H(A) The hyperbolic plane on the commutative ring A.
N(R) The norm form on the local ring R.
C(E) The Clifford algebra of the quadratic module (F, q).
Co(E) The even Clifford algebra of the quadratic module (F, q).
Ci(E) The odd Clifford algebra of the quadratic module (E, q).
A®B The graded tensor product of the Z/27-graded algebras A, B.
Z(E,q) The centroid of the quadratic module (F, q).
disc(E) The discriminant of the quadratic module or quadratic lattice (E, q).
disc/ (V) The half discriminant of the quadratic space (V) q).
n(L) The norm of the quadratic lattice (L, q).
s(L) The scale of the quadratic lattice (L, q).
o(L) The discriminant ideal of the quadratic lattice (L, q).
L# The dual lattice of the quadratic lattice (L, q).
A(a,t,n) The quadratic order defined by the given parameters over a Dedekind
domain.
A;(d) The quadratic order defined by the given parameters over a local ring.
A° The maximal orthogonal suborder of the quadratic order A.
disq(L) The quadratic discriminant of the quadratic lattice or quadratic order

L.

The list above presents the most important symbols used throughout this thesis. For
explanations of the technical terms that appear in italics within the descriptions,
please refer to the Index at the end of this thesis, which lists the pages where these
terms are defined.
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0O Introduction

'In simple words, can you tell me what your PhD thesis is about?’ - This is a
question that I have encountered frequently in the past few years, and while it
has been a bit of a challenge, I find that I am becoming more comfortable with
it. The challenge arises, of course, from explaining Clifford orders in simple terms
while keeping the person asking engaged, especially if they do not have a strong
mathematical background.

The main reason for this is that talking about Clifford orders requires a lot of
theory, a large part of which is not found in your standard algebra textbooks. Also
note that the title-giving term ’Clifford order’ is really a coined phrase. It unifies
the concepts of a Clifford algebra and the concept of an order in a separable algebra
into a new, more elaborate one. Consequently, at least scratching the surface of
both of these is required whenever one wants to initially understand the notion of
a Clifford order. Of course, both the theory of Clifford algebras and the theory of
orders do come with a rich history of their own.

The theory of Clifford algebras has its roots in the work of William Kingdon Clif-
ford, who introduced these algebras in 1878. In his original paper [Cli78], Clifford
extended Hermann Grassmann’s ideas by generalising complex numbers and quater-
nions to higher dimensions, thereby providing a unified framework for these entities.
Notably, Clifford did not state his ideas in terms of quadratic forms as we do today;
instead, he focused on the algebraic properties and relations within this new sys-
tem. The modern theory on the geometrical side of Clifford algebras has its roots
in the works of Elie Cartan from 1938, see [Car81]. His spinor theory connected
the representation theory of reflections in orthogonal groups in higher dimensions
to Clifford algebras. At this point in time, quadratic forms were long known to be
tightly connected to orthogonal groups; they have been studied extensively in the
18th and 19th century. Thus, it is no surprise that mathematicians started to con-
sider Clifford algebras in the context of quadratic forms. Already in 1954, Chevalley
devotes an entire chapter to the Clifford algebra of a quadratic form and studies it
as a singular object; see [Cheb4|. Over subsequent decades, the modern language for
Clifford algebras was developed. Today, Clifford algebras play a major role in vari-
ous fields, including differential geometry, computer graphics, or theoretical physics,
where they provide a unified framework for describing orthogonal transformations
and have applications in quantum computing (see [NC10]).

The theory of orders in separable algebras connects the fields of algebraic number
theory and ring theory and has benefited from advancements in both areas. Notable
contributions were made by Richard Dedekind with his ideal theory and by Emmy
Noether, who developed the theory of rings and modules from a structural point
of view. Noether established the modern concepts of Noetherian rings and mod-
ules, which are essential to define maximal orders. Additionally, Richard Brauer
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classified division algebras over number fields in [Bra29|, leading to the modern no-
tion of the Brauer group and motivating the study of orders within these algebras.
Consequently, orders within central simple algebras were considered as these can
be regarded as full matrix rings over these division algebras, due to Wedderburn’s
Theorem. In the subsequent decades many advancements have been made; the book
[Rei03] provides a great overview of these developments and is a standard reference
for the theory of orders.

Following up on these historical developments, this thesis considers certain orders
inside Clifford algebras. To my knowledge, Clifford orders, as defined in this the-
sis, have not yet been studied as a singular object. However, in his Ph.D. thesis
[Bral6|, Braun devoted an entire chapter to Clifford orders, albeit primarily from a
computational, not a structural point of view.

0.1 The mathematical framework

We briefly describe the setup and the objects that are important for this thesis.
Instead of providing extensive definitions and explanations here, we focus on the
interplay of these objects and put them inside a broader context. We start with a
simpler motivating setting and follow it up with the more general one, that we are
interested in.

Consider the ring of rational integers Z and its field of fraction, the rationals Q.
Let V be a finite dimensional (Q-space of dimension n that is equipped with a Z-
valued quadratic form ¢. After fixing a basis of V', one can think of the latter as a
homogeneous polynomial of degree two in n variables with all its coefficients lying
in Z. The pair (V,q) is then called a quadratic Q-space and one can consider its
Clifford algebra C(V, q). This is a finite dimensional associative algebra of dimension
2™ that carries essentially all relevant information on the quadratic space (V) ¢q). For
example, from it a complete set of invariants, that is sufficient to determine the
isometry type of (V,q), can be computed.

Taking any full Z-lattice L inside V, i.e. a free Z-submodule of V' of rank n,
the quadratic form ¢ restricts to L, giving rise to the quadratic Z-lattice (L, q).
Again, we can consider its Clifford algebra C(L,q) which is a subring of C(V,q).
Additionally, due to the assumption that ¢ is Z-valued, C(L,q) is also a full Z-
lattice in C(V, ¢q), regarding the latter as a 2"-dimensional Q-space. Thus, C(L, q)
is both a full Z-lattice inside C(V,¢) and a subring of C(V, ¢q); for short, we call it
a Z-order in C(V,q). Of course, orders are not exclusive to the theory of Clifford
algebras and in fact any finite dimensional algebra over any field contains orders
(see Remark 2.2.2). We call C(L, q) a Clifford order; this is done to emphasise that
the Clifford algebra of (L, q) carries additional structure provided by its ambient
algebra C(V q).

In the more general setting, we consider a Dedekind domain R and its field of
fractions K (e.g. R =7 and K = Q). Let V be a finite dimensional K-space that
carries an R-valued quadratic form such that (V,q) is a quadratic K-space. Now
take a full R-lattice L in V', which is a torsion-free R-submodule of V' that contains
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a K-basis of V. Then ¢ restricts to L and we obtain the quadratic R-lattice (L, q).
Similarly to the example setting above, the Clifford algebra C(L,q) is both a full
R-lattice inside and a subring of C(V,q), i.e. an R-order in C(V,q). Again, we call
C(L, q) a Clifford order to emphasise this additional structure of the Clifford algebra
of (L,q).

The key takeaway from the above description is that studying Clifford orders
involves both the theory of Clifford algebras and orders, necessitating a solid under-
standing of both these areas of mathematics. The preliminary concepts required are
thoroughly covered in the first two chapters of this thesis; however, basic knowledge
in algebraic number theory is still needed.

As a consequence of the above, one can pose questions about Clifford orders not
only at the level of orders but also at the level of Clifford algebras. Consider again a
quadratic K-space (V, ¢) with an R-valued quadratic form ¢g. On the order theoretic
side, one may ask which R-orders within C(V,q) arise as the Clifford algebra of a
quadratic R-lattice, i.e. which of these are Clifford orders. Additionally, it is well
known that C(V, q) is always a separable K-algebra (see Definition 2.2.10), ensuring
that any Clifford order is contained in a maximal R-order with respect to set inclu-
sion. Therefore, given a Clifford order C = C(L, q) one might ask how to transition
from it to a fixed maximal order I' such that C C I". Alternatively one could examine
the elementary divisors associated with C and I" (see Proposition 2.1.8).

On the side of Clifford algebras one may consider known results that hold for Clif-
ford algebras over fields and try to generalise these to Clifford orders. Interestingly,
many authors work with Clifford algebras over fields exclusively, as is illustrated
by the various examples [Sch85|, [OMe00], [Knu+98|, [Shil0] etc. This is due to
the fact, that they have no need to consider more general base rings for their re-
spective applications. Notable exceptions to this phenomenon are [Voi2l| where
Clifford algebras of quadratic lattices over Dedekind domains are considered and,
most importantly to this thesis, the treatment of Kneser in [KS02|. Here, Clifford
algebras are defined for quadratic modules over arbitrary commutative rings and
many results on Clifford algebras are stated in this general framework, so they hold
immediately for Clifford orders. However, there are also exceptions to this which
this thesis addresses, at least in the case of Dedekind domains.

Finally, we briefly address a point that we have neglected thus far: the choice of
the full lattice L within the quadratic K-space (V,q). Selecting an arbitrary lattice
without additional structure would make this research unnecessarily complicated
and less useful. Therefore, in this thesis we focus on specific classes of lattices that
are well-established in the theory. The most notable examples are maximal lattices
over complete discrete valuation rings, which are classified in [Eic74], and the root
lattices over Z (see, e.g. [Ebe02]).

0.2 Summary of the main results

Now that the necessary mathematical framework has been established in the previ-
ous section, we provide a concise overview of the key findings and most important
results within this thesis. Let R be a Dedekind domain with field of fractions K of
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characteristic zero.

e In Theorem 3.1.9 we show that the R-orders in a two-dimensional étale algebra
over K, we call these quadratic R-orders, are determined up to isomorphism by
their discriminant. Moreover, we show that any such order contains a unique
suborder that admits an orthogonal basis and describe its index as a sublattice
in Theorem 4.3.9.

e In Definition 3.2.1, we define a new invariant of an arbitrary quadratic R-
lattice. The quadratic discriminant is a flexible tool for studying quadratic
R-lattices, and mostly replaces the a discriminant algebra (see [KS02| (10.5)).

e In Theorem 3.2.11 we give a general description of the centroid of the orthog-
onal direct sum of two quadratic R-lattices over a Dedekind domain. We also
provide a local version of this result in Theorem 4.3.8.

e In Corollary 3.2.17, we show that the centroid (and the quadratic discriminant)
of a maximal quadratic R-lattice depend only on its anisotropic orthogonal
direct summand. The centroids and quadratic discriminants of the maximal
anisotropic quadratic R-lattices over p-adic valuation rings are then classified
in Theorem 4.3.11, giving rise to a complete overview of the centroids and
quadratic discriminants for arbitrary maximal quadratic lattices over these
rings.

e In Theorem 3.2.20 we prove that any two lattices in the same spinor genus
have the same centroid.

e In Theorem 3.3.4, we show that the set of isomorphism classes of quadratic
R-orders forms a monoid, generalising a construction of [Hah94| over Dedekind
domains.

e We generalise two results of Kneser (see [KS02] (7.12), (7.13)) in Theorem 3.4.5
and Theorem 3.4.17 which allow for expressing the (even) Clifford order of the
orthogonal direct sum of two quadratic lattices as a suborder of the usual tensor
product of their respective (even) Clifford orders over a Dedekind domain. We
also provide local versions of these in Theorem 3.4.12 and Theorem 3.4.19.

e In Section 3.5 we give a complete classification of the centroids of a root lattice.
We also provide a way to construct a basis of these centroids for the irreducible
root lattices. This is sufficient to construct a basis of the centroid of any root
lattice.

e In Theorem 4.4.6 and Theorem 4.4.7 we give a complete classification of the
Clifford orders and the even Clifford orders of maximal anisotropic quadratic
lattices over a p-adic valuation ring. This is sufficient to describe the structure
of an arbitrary maximal quadratic lattice over these rings.
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0.3 Outline of the thesis

This thesis consists of four chapters. In Chapter 1, we introduce many notations
and definitions that are important throughout the thesis. Within the general frame-
work of arbitrary commutative rings, we summarise the known theory on Clifford
algebras relevant to our work. Thus, this chapter also prepares the introduction of
Clifford orders later on. In particular, we present several standard results on Clifford
algebras, which will be generalised to Clifford orders in subsequent chapters.

In Chapter 2, we introduce the central object of this thesis, the Clifford order. We
begin by delving into both the general theory of quadratic lattices over Dedekind
domains and the general theory of orders in separable algebras. Following this, we
present some results on the structure and basic properties of Clifford orders. At the
end of this chapter, we discuss a suitable data structure that allows us to work with
Clifford orders computationally. We also briefly comment on the implementation of
Clifford orders in the OSCAR project [Osc24|, which was developed as part of this
thesis.

Chapter 3 focuses on the centroid of a quadratic lattice (or more precisely, the
centroid of its Clifford order) over an arbitrary Dedekind domain R with a field
of fractions K of characteristic zero. We first develop the general theory of so-
called quadratic R-orders, i.e. orders in two-dimensional étale algebras over K.
With this new framework in place, we proceed to study the centroid of a quadratic
lattice as a singular object. Here, we obtain many results already mentioned in
Section 0.2. Towards the end of this chapter, we explicitly construct the centroids
of all irreducible root lattices, which, combined with previous results in this chapter,
provides a complete overview of the centroids of all root lattices. Finally, we present
an algorithm for efficiently computing the centroid of a quadratic lattice over an
arbitrary Dedekind domain; see Algorithm 2.

In Chapter 4, we study Clifford orders over the valuation rings of p-adic number
fields, i.e. the valuation rings of finite extensions of the fields Q,. Note that these
rings are still Dedekind domains but with a much simpler structure, simplifying the
theory of quadratic lattices and Clifford orders established in Chapter 2. Chapter 4
begins by summarising the general theory of quadratic lattices and quaternion al-
gebras over p-adic number fields. This summary is necessary to achieve the two
aims of this chapter: restating many results from Chapter 3 in this simpler setting
and providing a full classification of the centroids and Clifford orders of maximal
quadratic lattices over the valuation rings of p-adic number fields.






1 Clifford algebras

Throughout this chapter, if not stated otherwise, let A denote an arbitrary com-
mutative ring. This first chapter is devoted to introduce the Clifford algebra of a
quadratic A-module (F,q). It is an associative algebra that, as the notation C(E, q)
implies, is unique up to isomorphism. It can be understood as some sort of uni-
versal algebra for (F, q) because many of the classical isometry invariants of such a
quadratic A-module can be recovered from it. In fact, due to a famous result from
Hasse (see [Has24]), if the base ring A is any algebraic number field then one can
retrieve a full set of isometry invariants. Still, we consider Clifford algebras in this
very general setting, so that we have a lot of useful notation and basic results readily
available, once Clifford orders are introduced in Chapter 2.

Additionally, this first chapter contains some results that do not hold in this
generality and instead require either more conditions on the base ring A or some
restriction on the quadratic A-module (E,q). For this, see especially Section 1.2 con-
cerning the center and the centroid of Clifford algebras. These results are recorded
here, so that they can be generalised to Clifford orders later on.

1.1 First definitions and basics

Above, we briefly described the Clifford algebra of a quadratic A-module without
giving any definitions at all. Now we provide the relevant theory, following the
treatment in [KS02|. We start with a brief summary of the notations and definitions
that are used throughout this thesis in the context of quadratic forms.

1.1.1 Quadratic forms

In the following, let £ denote an arbitrary A-module.
Definition 1.1.1. A quadratic form on F is a map ¢ : £ — A satisfying
(i) q(ax) = a*q(x) foralla € A, z € E.

(ii) The polarisation b,(z,y) = ¢(z+y)—q(x)—q(y) with z,y € E is a symmetric

bilinear form on FE.

Then we call the pair (F,q) a quadratic A-module. Isomorphisms of quadratic
A-modules, i.e. isomorphisms of A-modules that preserve the respective quadratic
forms are called isometries. The set of all isometries of a quadratic A-module

(E, q) onto itself is a group, the orthogonal group O(E,q) of (E, q).
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Remark 1.1.2. In the situation of Definition 1.1.1, if A is a field, we call the pair
(E,q) a quadratic A-space instead.

Below, in Definition 1.1.3, we summarise essentially all the properties that a
quadratic A-module (E,q) may have and are important to this thesis. To prepare
it, note that the polarisation b, always induces the A-module homomorphism

by E— E*, x> by(x,")
from F into its dual space E*.
Definition 1.1.3. Let (E, q) be a quadratic A-module. Then (F, q) is called
(i) non-degenerate, if l;; is a monomorphism.

(ii) regular, if I;:] is an isomorphism and F is finitely generated and projective as

an A-module.

(iii) anisotropic, if ¢(z) = 0 implies z = 0, i.e. 0 € F is the only singular element

of E. Otherwise, (E, q) is called isotropic.
(iv) singular, if ¢(E) = {0}, i.e. ¢ is the zero map.
(v) universal, if ¢(F) = A, i.e. any element a € A is represented by (E, q).

Remark 1.1.4. Given a quadratic A-module (F, q) we make it a frequent custom to
refer to a property of E or of ¢ (whichever seems better suited) instead of referring
to a property of the pair (¥, q), provided no confusion arises from this. For example,

we would say 'F is non-degenerate’ instead of ’(E, ¢) is non-degenerate’.

We continue with two notations that are used throughout this thesis.

Notation 1.1.5. If ¢ is a quadratic form on F then so is aq for each a € A with
polarisation b,, = ab,. We denote the quadratic A-module (E, aq) by “E. If we want
to emphasise that we consider some x € E as an element of this rescaled quadratic

A-module, we write it as “x.

Notation 1.1.6 (cf. [KS02] I.(2.5)f.). Let (F,q) be a free quadratic A-module of
finite rank n with basis (e, ..., e,). Then the form ¢ is uniquely determined by the

values a;; = ¢(e;) and a;; = b,(e;, €;), for 1 <, j < n. This follows from

q inei = Zx?q(ei) + Z ziwiby(ei,e;) = (T1, ., 20) Q21 . oy 2n)™,

i<j
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where the defining matrix @) € A™*" is given by
ayy ... Qip
0

We denote the free quadratic A-module (£, q) above by

ayr ... Qin
(E,q) =
ann
Further, if (eq,...,e,) is an orthogonal basis of E, i.e. a;; = 0 for i # j, we write

(E,Q) = [alla s ;a'nn] — zJ:_l[au]

Here, the symbol L denotes the orthogonal direct sum of quadratic A-modules (see
[KS02] (1.1)).

Remark 1.1.7. In the situation of Notation 1.1.6, the matrix B := Q + Q" € A™*"
is the Gram matrix of the polarisation b, with respect to the basis (eq,...,e,). It
is clear from Definition 1.1.3 that ¢ is regular, if and only if det(B) € A* is a unit;

and that ¢ is non-degenerate, if and only if det(B) is not a zero divisor in A.

FExample 1.1.8. The free quadratic A-module of rank two

is called the hyperbolic plane on A. By Remark 1.1.7, H(A) is always regular

and, if 2 € A%, we have H(A) = [1, —1]. Further, an elementary computation shows

that
0(H)=< o« ! ; " g a,ﬁeAX>,

0 Ozil /671
The quadratic module H(A) just introduced plays a major role in the theory of
quadratic forms and occurs in many canonical decompositions of quadratic modules.
We close our summary of quadratic forms with an instance of this phenomenon.

if A is an integral domain.
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Proposition 1.1.9 (Witt decomposition). Let A be a field and (E,q) be a finite-
dimensional reqular quadratic A-space. There is a uniquely determined k € Ny such

that i
(E,q) = (Fqr) L LH(A).

The (regular) subspace F' is anisotropic and uniquely determined up to isometry. The
non-negative integer k is called the Witt index of (E,q) and denoted by ind(F, q)
(or just ind(E)). The quadratic A-space (F,qr) is called the anisotropic kernel
of E.

Hence, over a field A, classifying all regular quadratic A-spaces reduces to clas-
sifying all the regular anisotropic ones. Over a finite field, the latter have at most
dimension two and are well-known in the literatue.

Proposition 1.1.10. If (E, q) is a regular anisotropic quadratic space of dimension
n over the finite field A, then n =1 orn = 2. Moreover, if n =1 then 2 € A* and
E = (1] or E = [¢] where ¢ € A* is any non-square. If n = 2 then E is isometric
to the unique degree-two field extension of A equipped with the relative field norm.

This quadratic A-space is called the norm form on A and denoted by N(A).

Proposition 1.1.9 is revisited upon considering quadratic lattices over Dedekind
domains in Chapter 2. Proposition 1.1.10 comes into play when dealing with
quadratic lattices over complete discrete valuation rings that have a finite residue
field, because isometries can be lifted.

1.1.2 The Clifford algebra of a quadratic module

Now that the basics of quadratic A-modules are covered, we may define its Clifford
algebra.
Definition 1.1.11. A Clifford algebra for the quadratic A-module (E,q) is an A-
algebra C = C(F) = C(F, q) together with an A-module homomorphism g : £ — C
with g(z)? = 1¢-q(x), for all z € F and that satisfies the following universal property:
For any A-algebra B and any homomorphism f : E — B with f(2)? = 15 - q()
there is a unique homomorphism h : C — B with f = hog.
The Clifford algebra is defined via a universal property, so the following result is
not surprising.
Theorem 1.1.12 (|[KS02] II Satz (5.4)). For any quadratic A-module (E,q) there
exists a Clifford algebra C(E, q). This A-algebra is unique up to isomorphism.
Note that within the Clifford algebra, the relations g(z)? = ¢(z) - 1¢ and

9(x)g(y) + 9(W)g(x) = (9(z) + 9(v))* — g(x)* — g(y)?
= (¢ +y) —q(@) —q(y)) - 1e = by(z,y) - 1c

10



1.2 The structure of the Clifford algebra

hold and that these are all one has to infer. Due to this, the Clifford algebra C =
C(E, q) can be constructed as the quotient of the free A-algebra on any generating set
{€;}ics of the module F by the two-sided ideal Z that is generated by the relations

(i) > ase; with a; € A, if Y a;e; =0 in E.
i€S €S
(ii) e? —q(e;) - 1, for all i € S.
(iii) eje; +eje; — by(es, ) - 1, for all i, 5 € n, i # j.

In this construction the map ¢ sends e; € E to e;+Z. For details, we refer to [KS02].
Note that due to the relations (ii) and (iii), if S is an ordered set (for example if S
finite), a generating system for the Clifford algebra as an A-module is given by

<9(€i1) .. .g(@ir) ’ re NQ, h<...<t, 7;]' S S>

At first glance, the Clifford algebra appears to be an object that is of purely
theoretical interest in the context of quadratic forms. However, many algebras can be
interpreted as a Clifford algebra, if one chooses the quadratic module (E, g) suitably.
Among the prominent examples are the quaternion algebras, as well as the R-algebra
generated by the famous Pauli matrices (see Example 1.2.7). Another example is the
exterior algebra A(FE) where FE is any free A-module; we cover it right below. These
examples highlight the relevance of the theory of Clifford algebras, even in research
areas that are not purely mathematical, such as physics and computer science.
Example 1.1.13. Let E be any free A-module of finite rank n and choose any basis
of E. The free algebra on this basis is the tensor algebra 7 (E). If we equip F with
the zero form then g(z)? = 0, for all z € E, so using the construction above, we find
that C(F) is isomorphic to T (F)/Z where Z is the two-sided ideal generated by the
elements x? € T(E). The A-algebra A(E) := T(FE)/Z is called the exterior algebra

or Graffmann algebra of E.

1.2 The structure of the Clifford algebra

With the definition at hand, we now proceed by recording results on the structure
of Clifford algebras. Throughout this section, (E, ¢) denotes an arbitrary quadratic
A-module.

1.2.1 Basis, grading and extending isometries

Theorem 1.2.1 (|[KS02| IT Satz (5.12)). If E is a free quadratic A-module of rank
n with basis (e1, ..., ey,), then the Clifford algebra C(FE, q) is a free A-module of rank
2™ with basis

(g(ei,)...glei) | ren,ip <...<ip).

11
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Proposition 1.2.2. Let {e;}ic, be a basis of E. Then, as an A-module, the Clifford
algebra C(E, q) can be decomposed into the direct sum C(E,q) = Cy @ C1 with

Cz‘ = Ci(E7Q) = <g(€i1) ‘. 'g(ei'r‘) | re NO’ r=o1, 0 < ... <y, ij < ﬂ)

Clearly, C;Cj € Citjmod2, 50 C is a Z/27Z-graded algebra and Cy is an A-algebra itself,
called the even Clifford algebra of (E,q). Moreover, Cy is a Co-module and, while
not an algebra itself, is called the odd Clifford algebra.

Corollary 1.2.3. If E is a free quadratic A-module of rank n with basis (eq, ..., e,),
then C;(E, q) is a free A-module of rank 2"~ respectively. An A-basis of C;(E,q) is

(gleq) .. gles,) | ren,r=2i, iy <...<iy).

Another immediate consequence of Theorem 1.2.1 is that if E is free, then the
map ¢ is injective. More generally, if F' is a direct summand of the free quadratic
A-module £, then also the restriction g|r is injective. Thus, we record the following,
more general result.

Corollary 1.2.4. If (E, q) is a finitely generated projective quadratic A-module then
the map g : E — C(FE) is injective, so the submodule g(E) < C(E) can be identified
with E.

From now on, if these conditions are met, we omit the map g and regard elements
of E as elements of the Clifford algebra C(E).

Remark 1.2.5. In Chapter 2 we consider lattices over Dedekind domains that carry
a quadratic form. These are always finitely generated and projective, so Corol-

lary 1.2.4 applies in this context, and we may omit the map g.

We continue with some basic facts about the structure of the even Clifford algebra.

Proposition 1.2.6 ([KS02| (5.13)f.). Let (E,q) be a free quadratic A-module of
finite rank and a € A*. Then we obtain the following isomorphisms of graded A-

algebras.
(i) Co(E) = Co(“E).
(ii) Co(E L [—a]) =2 C(“E).

We do not prove this result here. However, it is instructive for later (see Propo-
sition 2.3.7) to write down the respective isomorphisms explicitly. Let e be a fixed
generator of [—a]. Then isomorphism from assertion (ii) given by “x — ze and the
isomorphism in (i) is its restriction to the even Clifford algebra Co(*E).

12



1.2 The structure of the Clifford algebra
FExample 1.2.7. Consider the so-called Pauli matrices which are given by

0 —1 1 0
o1 = , 09 ‘= , 03 ‘= € (CQXQ.

¢t 0 0 -1

and some authors also put g = I,. These matrices are fundamental to the the-
ory of quantum computation and quantum information and for further information
regarding this, we refer to the book [NC10]. It is easy to see that o = I, and
ojo; = —oy0;, for j,1 € 3, with j # [. Thus, the R-algebra generated by the o; is
isomorphic to the Clifford algebra of the quadratic R-space (V,q) = [1, 1, 1], which
is an eight-dimensional R-algebra. We want to compute Co(V'), by using Proposi-
tion 1.2.6. Writing [1,1,1] = [1,1] L [1], we obtain

Co(V) = C(T'1,1]) =C([-1,-1]) = (Lz,y,zy | 2* = ¢ = =1, 2y = —ya)R.

This R-algebra are the famous Hamilton quaternions; we denote them by Hg for
now.

If we instead directly use Co(V') = (I, 0109, 0103, 0203) as R-vector space, together
with the easily verified identities o109 = 03i,0103 = 091, 0903 = 01% we find that
Hr = (I3, 011,090, 03i), explicitly realised as a subalgebra of C(V'). In particular,
the isomorphism from Proposition 1.2.6 (ii) is just right multiplication with i/, in

this example.

We close this subsection by recording an important consequence of the universal
property of the Clifford algebra.

Proposition 1.2.8 (|[KS02| (5.7)). Given an isometry v € O(E,q), there exists a
unique automorphism C(u) of C(E,q) that extends u, i.e. C(u)o g = gou.

Ezample 1.2.9. Suppose that D = Dy & D, is an arbitrary Z/27Z-graded algebra.
Then there is a unique involution v = vp € Aut(D), given by

x, x € Dy
V(x) = :
—x, x€ D

Coming back to the quadratic A-module (E,q) we have —id € O(FE). If D =
C(E) = C is a Clifford algebra, its unique extension C(—id) clearly satisfies the above
condition, i.e. C(—id) is the identity on the even Clifford algebra and its negative
on the odd Clifford algebra. We will denote this involution of C by ¢ = C(—id).

13
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1.2.2 Graded tensor product and regular representation

Suppose that we have a decomposition £ = E; 1 E5. Then the Clifford algebra
C(E,q) can be expressed in terms of C(E1, ¢, ) and C(E», qg,) by using the graded
tensor product. The latter is a concept that applies to arbitrary Z/2Z-algebras.
Definition 1.2.10. Let C' = Co®Cy, D = Dy® D; be two Z/2Z-graded A-algebras,
ie. C;C; C Citjmod2; DiDj C Diyjmoda2. Then the graded tensor product C®D is
defined as the A-algebra C' ® D together with the multiplication

(21 ® 29) - (1 @ o) = (—=1)?(z111) @ (z2y2), With 29 € D;, y1 € Ci.
The A-algebra C' ® D is also Z/2Z-graded via
(C® D)o = (Co® Do) ® (C1 ® Dy), (C® D), =(Cy® Dy)® (Cy @ Dy),

S0 Yo p = Yo ® Yp, using the notation of Example 1.2.9.

Proposition 1.2.11. The Clifford algebra of E = E; 1L FEs is given by
C(E7 Q) = C(Ela Q|E1) éé C(E27 Q|E2)7

with the Clifford algebras C(E;, qii,) being Z/2Z-graded by Proposition 1.2.2.

This result simplifies the analysis of the structure of the Clifford algebra of E to
that of the Clifford algebras of its orthogonal direct summands £; and E,. Con-
sequently, Proposition 1.2.11 is an important result of the theory. However, the
graded tensor product is not always that useful.

Suppose that £ = F; 1 FE, and that we already have matrix representations of
both C(E;) and C(E,) available. Our goal is to obtain a matrix representation of
the Clifford algebra of C(F) = C(E;) ® C(E,) from these. The problem that arises is
that there is no canonical way to do so, even though this is an important practical
concern, especially when one wants to implement functionality for Clifford algebras
in a computer algebra system. In view of this, one would like to work with the usual
tensor product of algebras, because there is no graded tensor product of matrices,
but there is the usual Kronecker product of matrices. In Proposition 1.2.15 below
we present a simple method, to compute the regular representation of C(F) in terms
of the regular representations of C(E;) and C(E).

Remark 1.2.12. Let (F,q) be a free quadratic A-module and choose an A-basis
(é1,...,€e,) of E. Then, by Theorem 1.2.1,

(17 €1,€2,€1€2,€3,€1€3,€2€3,€1€2€3,...,€1 ... en)

is an A-basis of the Clifford algebra C(F,q). We call it the binary basis of C(E, q)

associated to the basis (eq,...,e,). This name stems from the fact that the basis

14



1.2 The structure of the Clifford algebra

elements in this ordering correspond to the binary representation of the numbers
0,...,2" — 1 in increasing order. From a programmers point of view, this makes the
binary basis the canonical choice for implementing Clifford algebras in a computer
algebra system and in fact is widely used. It is also used for the implementation
of Clifford orders in the OSCAR project [Osc24| that was part of this thesis; see
Section 2.4.

The binary basis comes with nice inductive properties regarding the regular rep-
resentation of a Clifford algebra.

Proposition 1.2.13. Suppose that the quadratic A-module (E, q) admits an orthog-
onal basis (E,q) = ._J_lAeZ» and let D,, denote the associated binary basis. Then

n

C(E.q) = & C(Aes, [a(e:)))
by Proposition 1.2.11. In the context of matrices, let ® denote the Kronecker prod-
uct. Now, if I = Iy denotes the 2 x 2 identity matriz and D = diag(1, —1) then the

map p = p, defined by

. n—i 0 1 i—1
p:C(E,q)—>A2 x2,ei'—>®D® ( ) 0 ®®I, (1.1)

i g\€; —

7j=1 7j=1

is a monomorphism of A-algebras. It is the right reqular representation of C(E,q)

with respect to the basis D,,.

Proof. For each n € N, the map p, is an A-algebra homomorphism because the
defining relations are satisfied. We proceed by induction to show that p,, is indeed
the right regular representation, the claim being obvious for n = 1. Suppose that
this is the case for some fixed n € N. Notice that we have D, 11 = (D, Dneni1)
and p,i1(e;) = D ® py(e;) for i = 1,...,n, so the latter is the matrix of right
multiplication with e; on C(F) due to e, 16; = —€;€p11.

By abuse of notation, we have (D,,D,ens1)ent1 = (Dnenit,q(€ns1)Dy), so the

matrix of e, under right multiplication is

0 1 = 0 1
® ® ] — ® IQn.
Q(en-i-l) 0 =1 Q(en-i-l) 0

This coincides with the image of e, under p, 1. m

Remark 1.2.14. Similarly one can show that the left regular representation of

15
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C(FE, q) with respect to the binary basis is given by the map

:C(E,q) — A¥?" ¢; I® ® (X)) D.
pr:C(E.q) (§) Ly (§)

In practice, Proposition 1.2.13 yields an efficient way for storing the regular rep-
resentations of a Clifford algebra. Instead of explicitly calculating the Kronecker
products for the images of the generators e;, one can maintain a vector of length n
that contains the respective 2 X 2 matrices. This approach allows for easy recovery
of the right regular representations of the Clifford algebras C (J_I (Ae;, [q(e;)])), where

i€

I C n is an arbitrary subset. To achieve this, it suffices to take only the components
of the tensor product in Equation 1.1 at positions {n +1—i|i € I}.

In general, we can also use the strategy of Proposition 1.2.13 to compute the right

regular representation of the graded tensor product of two Clifford algebras.

Proposition 1.2.15. Suppose that we are given free quadratic A-modules (E1,q1),
(Es, q2) of ranks m and n. Let (e1,...,emn) and (€mi1,-- -, €min) be A-bases of these
and write (E,q) = E1 L Es. Moreover, let pi, ps denote the right reqular repre-
sentations of the Clifford algebras C(Ey) and C(Es) with respect to their associated
binary bases. Then the right reqular representation of C(E) with respect to the binary

basis of C(E) associated to (e1,. .., €min) 1S given by

®?:1D®p1(ei)7 t<m

p:C(E,q) — AT o .
p2(61)®®;n:1[7 T>m

with the matrices D, I as in Proposition 1.2.15.

Proof. This follows from the fact that if D; denotes the binary basis of C(W7,q;)
then the binary basis of C(F, q) is given by

(Db Diemyi1; Diemy2, Diemyi€mya, - s D1y - - €m+n)-

The rest is a straightforward calculation. O]

1.2.3 Center and centroid

Notation 1.2.16. Let (E,q) be a quadratic A-module. By Z(C) and Z(Cy) we
denote the respective centers of C(E) and Cy(E).

Definition 1.2.17. The centroid of the quadratic A-module (E, q) is

Z(E,q) ={x €C(F) | zy =yx for all y € Co(E)},

16



1.2 The structure of the Clifford algebra

i.e. the centraliser of Co(E) in C(E).

Example 1.2.18. If the free quadratic A-module (E,q) = (£,0) is singular then
2(B,0) = C(E) = A(E),

where the right-hand side is the exterior algebra on E from Example 1.1.13. Further,

if (e1,...,e,) is an A-basis of E and e, :=e;...¢, € C(E), then one computes

Co(E), n even

Z(C) = .
Co(E) & Ae,, n odd
Remark 1.2.19. For a free quadratic A-module (E,q), the centroid is easy to

compute in small dimensions n.
(i) If n = 1 with E = Ae, then Z(F,q) = C(E) = Ales] & A[X]/(X? — q(e1)).

(ii) If n = 2 with £ = (e1,e2)4, put a = g(e1),c = q(e2),b = by(e1,e2) and
z=-eje3 € Co(E). Then Z(E,q) = Co(E) = Alz] and 2* — bz + ac = 0.

There is a useful characterisation of the centroid, connecting it to the center of
the Clifford algebra.

Lemma 1.2.20 ([KS02] IT (7.5)). Suppose that the quadratic A-module (E,q) satis-
fies Aq(E) = A. There is a unique A-algebra automorphism o of Z(FE,q) such that
rz = a(2)z, for allx € E and o* = id. Moreover, the center Z(C) = {z € Z(E,q) |
a(z) = z} is the fived field of o in Z(E,q).

Building on this, we present two theorems from [KS02|; the first expresses the
center of a Clifford algebra in terms of the centroid, and the second describes the
structure of the centroid as an A-algebra. For both theorems, we require the follow-
ing additional assumptions on (F, q):

(i) E is free of finite rank n.

(ii) If n is even then E is regular; and if n is odd then E is semi-regular (see
[KS02| (2.13)).

Remark 1.2.21. The first condition is always satisfied if A is a local ring. For the
second condition, note that if 2 € A* then the notions 'regular’ and ’semi-regular’

coincide. If 2 ¢ A* then there exist no regular quadratic modules in odd dimension.
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Theorem 1.2.22 (|[KS02| II (7.10)). Under the two assumptions above, the center
of the (even) Clifford algebra is given by

A, n even
Z(C) == )

Z(FE,q), n odd

Z(E,q), n even
Z(Co) =

A, n odd

There is also a precise description of the centroid as a free A-algebra of rank two,
in [KS02] (7.9) Satz. We restate it for our purposes, but we omit some technical
details.

Theorem 1.2.23. Under the assumptions above, if n is even then
Z(E,q) 2 A[X]/(X? - X +¢)
as A-algebra with some ¢ € A such that 1 — 4c € A* is a unit. If n is odd then
Z(E,q) = A[X]/(X* —b)

as an A-algebra with a unit b € A*. Conwversely, if 2 € A* then the square classes
(1 - 40)(AX)2 and b(AX)2 determine the centroid up to isometry in the respective

case.

Remark 1.2.24 (cf. [KS02] (10.4)f.). One can define a group structure on the set
of isomorphism classes of quadratic A-algebras. In this context, the centroid of the
Clifford algebra is also called the discriminant algebra, because it generalises the
classical discriminant of a quadratic form. Compared to the latter, it is a useful
isometry invariant over arbitrary local rings and not just fields of characteristic

distinct from two.

Despite this, we now define the discriminant of a quadratic form over a field A of
characteristic distinct from two. The reason for this is that, in this thesis, A will
usually be the field of fractions of a Dedekind domain of characteristic zero, e.g. an
algebraic or a p-adic number field. For the quadratic lattices over these Dedekind
domains, which we consider in the next chapter, we provide another definition of
the discriminant (see Definition 2.1.13).

Definition 1.2.25. Let A be a field of characteristic distinct from two and let

(E,q) be a regular quadratic A-space of finite dimension n. In the notation of
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1.2 The structure of the Clifford algebra

Theorem 1.2.23, the discriminant of (F, ¢) is the A-square class (1 —4c) (AX)Z if n
is even; and it is the A-square class 2b(AX)2 if n is odd. The A-square class b(AX)2
is called the half discriminant of (E,q). We denote the discriminant of (E, q) by
disc(E, q) and its half discriminant by disc’(E, q).

Remark 1.2.26. Putting disc(E,q) = (—1)(72l)det(G)(AX)2 yields an equivalent

definition of the discriminant. Here, G is any Gram matrix of the polarisation b,.

With the discriminant available, we close this section with two important results
that, under certain conditions, express the (even) Clifford algebra of the orthogonal
direct sum £ = E; | Es in terms of the usual tensor product of the Clifford algebras
of its orthogonal summands. As highlighted in the previous subsection, these results
are quite important to the representation theory of Clifford algebras.

Theorem 1.2.27 (|[KS02| (7.12)). Suppose that E = E; L Ey with Ey reqular of
even rank and put d == disc(E1). Then

C(B) = C(E) @ C(B)*™) = C(Er) @ C("Ey),

as A-algebras.

Under similar assumptions, there is also a version for the even Clifford algebra.

Theorem 1.2.28 ([KS02| (7.13)). Suppose E = Ey L Ey with E, semi-reqular of
odd rank and put § = disc'(Ey). Then

Co(E) = Co(E)) @ C(T°E,),

as A-algebras.

In Chapter 3 we devote multiple sections to generalise these two theorems to
arbitrary Dedekind domains, where the quadratic module FE; is only required to be
non-degenerate.
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2 Clifford orders

In this chapter, we introduce the central object of this thesis, the Clifford order.
Throughout this chapter, if not stated otherwise, we agree on the following setting:
Let R be a Dedekind domain, i.e. a noetherian integrally closed domain in which
each non-zero prime ideal is maximal. Denote its field of fractions by K and assume
that char(K) = 0, so that K is either an algebraic or a p-adic number field.

We start with the definition of a Clifford order, even though at this point we have
not properly defined all the components that are necessary to do so. Instead, we
use the definition below to motivate the next sections in which these missing parts,
namely quadratic R-lattices and R-orders, are addressed individually.

Definition 2.0.1 (Clifford order). Assume that (L, q) is a full even R-lattice in the
finite-dimensional quadratic K-space (V,q). Then the Clifford algebra C(L,q) is a
full R-lattice in the Clifford algebra C(V,q) and C(L,q) C C(V,q) is an R-order. In
this context, we call C(L, ¢) the Clifford order of (L, q).

Remark 2.0.2. The condition that the quadratic R-lattice (L, q) be even is present
to ensure that (L, ¢) is a quadratic R-module. Thus, the Clifford order C(L, q) comes

with all the general properties of Clifford algebras discussed in the previous chapter.

In the following, we will consider both quadratic R-lattices and R-orders, starting
with the former.

2.1 Quadratic lattices

We will begin this chapter with the general theory of finitely generated modules over
Dedekind domains, following both [Rei03]| and [Coh00]. For the theory of lattices in
quadratic spaces we additionally refer to §81 f. in the book of O’Meara [OMe00].

2.1.1 Structure of lattices over Dedekind domains

Definition 2.1.1. An R-lattice L in the K-space V' is a finitely generated (torsion-
free) R-submodule of V. The rank of L is the dimension of the subspace KL =
K ®r L <V. If rank(L) = n then L is called full.
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Remark 2.1.2. We will frequently use the terminology ’R-lattice’ for a finitely
generated R-module L that is torsion-free without mentioning the K-space it is
contained in. This is because, according to the above definition, we can always
consider L as an R-lattice in the so-called ambient space KL = K ®g L. Note that
L is always a full lattice in K L.

Our first goal is to review the structure of lattices over Dedekind domains. Fol-
lowing the above definition, this is just the special case of the general structure

theorem for finitely generated modules over Dedekind domains that are torsion-

free. To state the latter, we briefly summarise the most important properties of a
Dedekind domain.

Notation 2.1.3. Recall that a fractional ideal in R is a finitely generated non-
zero R-submodule of K or equivalently, a full R-lattice in K. For simplicity, by
an ’'ideal of R’ we refer to a fractional ideal and we call the usual ring-theoretical
ideals "integral ideals of R’, instead. Note that the integral ideals are precisely the

fractional ideals that are subsets of R.
Proposition 2.1.4. Let R be a Dedekind domain with field of fractions K.

(i) Each ideal J is invertible with inverse J-' = {x € K |xJ C R}. Furthermore,
each ideal can be generated by at most two elements, the first of which can be

chosen arbitrarily.

(ii) Each ideal J can be expressed uniquely as a product of powers of prime ideals
m R. Moreover, J < R is an integral ideal, if and only if all these powers are

non-negative.

(11i) The class group CI(R) is the set of ideals of R modulo the set of principal
wdeals of R. It is a finite abelian group and its group order is called the class
number of R (or K). The elements of €I(R) are called ideal classes and
denoted by [a], for an ideal a of R. The class group is trivial, if and only if R

18 a unique factorisation domain, if and only if R is a principal ideal domain.

Theorem 2.1.5 (|Coh00], Theorem 1.2.12.). Let M be a finitely generated module
over the Dedekind domain R.

(i) The R-module M is torsion-free if and only if M is projective.

(ii) There exists a torsion-free submodule N < M, such that
M = Mios ® N and N & M/Mtorsa

where Mo 1s the torsion submodule of M.
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(111) If M is torsion-free and V = KM has dimension n, there exist ideals a; of R

and elements w; € V' such that
M:alwl@...@anwn.

The ideal class of a = ajay...a, depends only on M, [a] € €I(R) is called the
Steinitz class of M.

(iv) The module M is a free R-module, if and only if its Steinitz class is trivial,

i.e. the product a is principal.

(v) If M is a torsion module, there exist unique non-zero integral ideals 6; of R

and non-unique elements w; € M such that
M = (R/&l)wl D...D (R/(Sn)wn

and 6;_1 C 0; for 2 <i<mn.
The third statement motivates the following definition.

Definition 2.1.6 (|[Coh00] 1.4.1). Let L be an R-lattice and put V = KL.

(i) A pseudo-element of V' is a rank one R-submodule of V' of the form aw or
equivalently, it is an equivalence class of pairs (w, a) with 0 # w € V and a an
ideal in R. In the latter version, two pairs (w, a) and (w’, a’) are equivalent, if

and only if aw = a'w'.
(ii) The pseudo-element aw is called integral, if aw C L.

(iii) If a; are ideals of R and w; are elements of V, we say that (w;, a;)1<i<k is a

pseudo-generating set for L, if

L=0qw +...4+ apwy.

(iv) We say that (w;, a;)1<i< is a pseudo-basis of L, if
L=aquw ®... 0 apwy.

According to the structure theorem, any R-lattice L has a pseudo-basis. Also note
that the number of pseudo-elements in any pseudo-basis of L is equal to the rank
of L, hence well-defined. Moreover, given a pseudo-element aw, we can enforce that
either a is an integral ideal of R or that w is integral in R, but not necessarily both.

We close this subsection with some technical, but useful results on pseudo-bases.

23



2 Clifford orders

Proposition 2.1.7 (|[Coh00] 1.4.2). Let (w;, a;)1<i<n be a pseudo-basis of the R-
module M.

(1) If (nj,5)1<j<n is another pseudo-basis of M, put U = (u;j) the n X n matriz
satisfying (M, ..., n) = (w1, ..., w,)U and a = ay...a,, b =by...b,. Then
Ui € aibj_l and a = det(U)b.

(11) If there exist ideals b; and an n x n matriz U, such that u;; € aib;1 and a =
det(U)by ... b, then (nj,b;)1<j<n s a pseudo-basis of M, where (n1,...,n,) =
(wiy ..o wp)U.

Proposition 2.1.8 (|Coh00| 1.2.35). Let M and N be two R-lattices of ranks m
and n such that N < M. There exist compatible pseudo-bases of M and N, that is,
there ezists a pseudo-basis (w;, a;)1<i<m of M and integral ideals §; C ... C §,, such
that (wj, 0;0;)1<j<n i a pseudo-basis of N. The ideals o1, ... ,0, depend only on M

and N and are called the elementary divisors associated with M and N.

Definition 2.1.9. In the situation above, if additionally N has the same rank as
M, the integral ideal § := ;... d,, is called the index of N in M or just the index,

for short. Sometimes, we write § = [M : N].

Remark 2.1.10. If both M and N are free R-modules, e.g. if R is a principal ideal
domain, we identify the index of N in M with the determinant of any base change
matrix from M to N up to units in R. Then, if specifically R = Z, we may take the
absolute value of this determinant, due to Z* = {1, —1}. Doing so, the index of N
in M is just the usual index [M : N] of (abelian) groups, justifying the terminology.

2.1.2 Quadratic forms on lattices

In the previous subsection, the structure of R-lattices over the Dedekind domain
R has been clarified. As a next step, we equip the ambient space V = KL with a
quadratic form ¢, giving rise to the quadratic K-space (V,q). In this situation, we
can consider the restriction of ¢ to L.

Definition 2.1.11. If (V,q) is a quadratic K-space containing the full R-lattice
L then by means of restriction we obtain the quadratic R-lattice (L,q). We call

(L, ¢) non-degenerate, if (V, ¢) is non-degenerate in the sense of Definition 1.1.3 (i).

Remark 2.1.12. The quadratic form ¢ need not be R-valued, so (L,q) is not a
quadratic R-module in general. Thus, Definition 1.1.3 (i) does not apply directly to

L, but if it does, the two definitions of 'non-degenerate’ coincide.

Definition 2.1.13. Let (L, q) be a quadratic R-lattice with polarisation b = b,.
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(i) The scale of L is the ideal s(L) = (b(z,y) | =,y € L)g; and the norm of L is
the ideal n(L) = (3b(z,2) | € L)g = (q(2) | = € L)&.

(i) Let (wj,a;)1<i<n be a pseudo-basis of L. The discriminant ideal of L is
O(L) = Cl% PN afldet(b(wi, wj)w»).

(iii) The discriminant of L is the pair
dise(L) = (a(L), (1) &) det (b(w;, w; )iy ) (K )2) .

Remark 2.1.14. In [OMe00| the norm ideal is defined as (b(z,z) | = € L)g
2(q(z) | * € L), so our definition differs by a factor two. We do this so that (L, q)

is a quadratic R-module in the sense of Subsection 1.1.1, if and only if n(L) is an

integral ideal.

We continue with a couple of propositions that summarise the relevant proper-
ties of scale, norm and discriminant of a quadratic lattice, as well as state their
connection.

Proposition 2.1.15. Let (L,q) be a quadratic R-lattice with polarisation b = b,.
(i) s(L) Cn(L) C is(L).

= 2

(1i) Let (w;, a;)1<i<n be a pseudo-basis of L. Then

s(L) =Y mab(wi,w;) and n(L) = alq(w;) + s(L).

1,JEN €N

(111) If L is of rank n then d(L) C s(L)™.

Proof. Starting with (i), the first inclusion follows from

(b(x +y,x+y) — bz, x) — b(y,y)) , x,y €L,

N —

b(z,y) =

while the second one is obvious. Assertion (iii) is the content of 82:10 in [OMe00].
The proof of assertion (ii) is essentially the one of 82:8 in [OMe00], but with our

definition of the norm. First, if n = 1, we find

n(L) = %(L) _ %c@b(wl,wl) — ().

using said reference. Moreover, the general proof for the scale equation is identical.
For the general proof of the norm equation one only needs to divide the relevant
equations in [OMe00| by two. O
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Proposition 2.1.16. Let (L,q) be a quadratic R-lattice.
(1) The lattice L is non-degenerate, if and only if disc(L) # (0,0(K*)?).
(i1) Suppose that L = Ly L Ly and put s := rank(L)rank(Ly). Then
disc(L) = (—1)*disc(Ly)disc(Ls),

where the multiplication is defined entry-wise. In particular, the discriminant

18 multiplicative, if and only if at least one of the summands L; has even rank.

Remark 2.1.17. If (L, q) is a free quadratic R-lattice of finite rank n then the R-
square class (—1)(g)det(G)(RX)2, with G the Gram matrix of b, with respect to any
fixed basis of L, carries the same information as disc(L, q) from Definition 2.1.13.

In view of this and Remark 1.2.26, we make the identification
dise(L, ) = (—1)(5)det(G) (R*)?,

if L is free. The results from Proposition 2.1.16 carry over in the expected way.

Finally, from the elementary divisor theorem over Dedekind domains, Proposi-
tion 2.1.8, we obtain the discriminant of a sublattice.

Corollary 2.1.18. Let M and N be two full quadratic R-lattices in the same m-
dimensional quadratic K-space (V,q). Suppose that N < M with index [M : N| =
8§ S R. Then d(N) = §*0(M) and if v € K*/(K*)? satisfies disc(M) = (d(L), x)
then disc(N) = (6*0(M), x).

Radical splittings and pure sublattices

Recall that we introduced quadratic lattices and non-degeneracy at the same time
in Definition 2.1.1. The reason being that we almost exclusively consider non-
degenerate lattices and their Clifford orders in this thesis. However, if one encounters
a degenerate lattice it can be decomposed uniquely into the orthogonal direct sum of
a non-degenerate and a singular sublattice. This decomposition is called the radical
splitting.

Proposition 2.1.19 (cf. [OMe00] p.226). Let (L,q) be a quadratic R-lattice with
polarisation b = b,. The radical of L is L* = {x € L | b(x, L) = 0}.

(i) q induces the quadratic form q: L/L+ — R, T~ q(x) on the quotient L/L*
and (L)LY, q) is a non-degenerate quadratic R-lattice.
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(ii) There exists an R-sublattice N < L such that (N,q) = (L/L*,q) and (L,q) =
(N,q) L L* as quadratic R-lattices. This decomposition is called a radical
splitting of L.

(iii) If (L,q) = (N,q) L L+ and (L',q') = N’ L (L')* are radical splittings then
(L,q) = (L',q') as quadratic R-lattices, if and only if (N,q) = (N',q) and
Lt > (L)' as quadratic R-lattices.

Proof. Assertion (i) is obvious. To see (ii), we first note that L/L" is torsion-free,
i.e. projective by Theorem 2.1.5 (i). Indeed, if 7 € L/L" is torsion then there is
0 # a € R such that az € L*. Thus, 0 = b(az,L) = a - b(z, L), so x € L*+. Now, as

L/L* is projective, the short exact sequence
0—L*—L—L/L*—0

splits, proving (ii). For the non-trivial implication of (iii) let ¢ : L — L’ be an
isometry. Clearly, o(L*) C (L')* and using the same argument with o~ we

have equality, so L+ = (L')*. Consequently, o induces a well-defined isometry

o (L/L{E) — (L’ /(L) b/> on the quotients. Now the assertion follows from
(ii). O

Note that in (ii) we only need that the quotient L/L"* is torsion-free to show the
existence of a complement for L*. There is a general notion for sublattices with this

property.

Definition 2.1.20. Let L be an R-lattice. A sublattice F' < L is called R-pure, if
and only if the quotient L/F is torsion-free.

In view of the elementary divisor theorem for lattices over Dedekind domains,
Proposition 2.1.8, for an R-pure sublattice all the integral ideals §; in a compatible

pseudo-basis satisfy ; = R. As a consequence, we get the following characterisation
of R-pure sublattice.

Proposition 2.1.21. Let L be an R-lattice and F' < L a sublattice. The following

are equivalent:
(i) F is an R-pure sublattice.
(i1) F is a direct summand of L.

(111) There is a subspace W < KL with ' =W N0 L. In this case, one can choose
W = KF.
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The dual of a lattice

Definition 2.1.22. Let (L, q) be a non-degenerate quadratic R-lattice. The set
L#*={z e KL | by(z,l)€ Rforalll € L}

is also an R-lattice with ambient space K L, called the dual lattice of L.

We record the most important properties of the dual lattice.

Proposition 2.1.23. Let (L,q) be a non-degenerate quadratic R-lattice of rank n

with pseudo-basis (w;, a;)1<i<n-

(i) L#* has rank n. If (W, ... w#) is the dual basis of the K -basis (w1, ... ,wy) of

the ambient space KL, then (w¥, a7 ) 1<i<n is a pseudo-basis of L¥.

AR

(i) (L*)# = L, KL#* = KL, (“L)* = o' - *(L#) and (aL)# = a 'L#, for all
a € K* and ideals a of R. Furthermore, if L = Ly L Ly then L = Lf L L#.

(i) If disc(L) = (0,z) then disc(L#) = (071, 27 1) = (071, 2).

Proof. Assertions (i) and (ii) are proved in [OMe00]| §82F. Then (iii) follows from
(i) and the definition of the discriminant. O

Definition 2.1.24. Let (L, q) be a quadratic R-lattice.
(i) We call L integral if s(L) C R, i.e. the scale is an integral ideal of R.
(ii)) We call L even if n(L) C R, i.e. the norm is an integral ideal of R.

Remark 2.1.25. The non-degenerate quadratic R-lattice is integral, if and only if
L C L#. In particular, the discriminant ideal 9 = (L) = [L# : L] is the index of L in
L# for integral lattices L. Moreover, by Proposition 2.1.15 (i), s(L) € n(L) C 1s(L),
so an even R-lattice is integral and if 2 € R* the converse also hold. If 2 ¢ R* then

L is even, if and only if ¢ is R-valued.

2.1.3 Modular and maximal lattices

Now that the preliminaries of the theory of quadratic R-lattices are established, we
use this subsection to introduce two examples of classes of quadratic R-lattices that
are well understood and for which a study of their Clifford order seems suitable.
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Modular lattices

Note that for a quadratic R-lattice (L,q) of rank n with scale s(L) = a we have
o(L) C a" by Proposition 2.1.15 (iii).

Definition 2.1.26. Let (L, q) be a quadratic R-lattice of rank n and a be an ideal
of R. We call the lattice L a-modular, if §(L) = a and 9(L) = a”. We call L
modular if it is a-modular for an ideal a of R and specifically, if a = R, the lattice
L is called unimodular. If the ideal a is principal with generator a@ € K, we say

that L is a-modular instead of aR-modular.

Clearly, a modular lattice is non-degenerate. In the propositions to come, we
collect the most important properties of modular lattices, starting with two useful
descriptions.

Proposition 2.1.27 ([OMe00| 82:14a). If L is a-modular then L = {x € KL |
by(z,L) C a}.

Proposition 2.1.28 (|[OMe00] 82:14). Let a be an ideal of R and (L,q) be a non-
degenerate quadratic R-lattice. Then L is a-modular if and only if L = aL*.

Corollary 2.1.29. Let (L, q) be a quadratic R-lattice. Then the following statements

are equivalent:
(1) L is a reqular quadratic R-module.

(ii) L is an even unimodular R-lattice.

(iii) L = L*.

Maximal lattices

In the following, we mainly follow Section 14 in [KS02| which deals with maximal
lattices over principal ideal domains. We generalise some of the results there to
Dedekind domains using [OMe00] §82H. The main reason for considering the Clifford
orders of maximal lattices is Corollary 2.1.37. It states that we essentially have a
Witt decomposition for maximal lattices; see Proposition 1.1.9. In the following, let
a denote an ideal of R.

Definition 2.1.30. An R-lattice E in the regular quadratic K-space (V,q) is called
a-maximal, if n(F) C a and for any other R-lattice L in V' with n(L) C a, we have

L = FE. In the special case a = R the lattice E is called maximal.

Clearly, an a-maximal R-lattice is even, if and only if a is an integral ideal of R.

Proposition 2.1.31 ([OMe00] 82:18). Let (L,q) be a non-degenerate quadratic R-

lattice with w(L) C a. Then (L,q) is contained in some a-mazximal R-lattice.
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In order to state Corollary 2.1.37, we first classify maximal lattices in the hyper-
bolic plane H(K).

Proposition 2.1.32. Let H = H(K) be the hyperbolic plane on K and let E be a
lattice in H.

(i) E is a-mazximal, if and only if E is a-modular with n(E) = a.

(11) Let (x,y) be a K-basis of H with q(x) = q(y) =0 and by(z,y) = 1. If (E,q) is
a-mazimal then there is an ideal b such that E = bz @ ab™'y = Hy(a).

(111) If b, c are ideals of R then Hy(a) and H.(a) are isometric, if and only if [¢] =
[ab™!] or [¢c] = [b] inside the class group €(R). In particular, if G = €I(R),
then the number of isometry classes of a-maximal R-lattices in H is %|G|, if a

is not a square in G; and it is 3(|G| +|G/G?|), otherwise.

() If R a is principal ideal domain and aR = a then the rescaled lattice “H(R)

18 the unique a-maximal R-lattice in H.

Proof. Assertion (i) is 82:21 in [OMe00] and (ii) is 82:21a of said reference. For
assertion (iii), note that for A € K, we have Hy(a) = H,(a). Assume that [bc] = [q]
in €I(R) and choose A € K* with A\b = ac™!. Hence,

He(a) = (a(Ae) ™z @ Aey 2 Aex @ (a(Ac) )y = Hy(a) = He(a),

where the first isometry is given by swapping = and y.

For the remaining direction let E' be an a-maximal R-lattice inside H, isometric to
Hp(a) via the isometry ¢. Then, by K-linearity, ¢ extends uniquely to an element
in the orthogonal group O(H) and, by Example 1.1.8, there is either a € K* with

E = ¢ (Hy(a)) = abz @ a(ab )y,
i.e. E = H,p(a), or there is § € K* such that

E = ¢ (Hy(a)) = fby @ (86 ).

In the former case, put ¢ := ab. In the latter case, put ¢ := a(8b)~! to ensure
[bc] = [a] and E = ¢x @ ac'y = H(a). For the final part of (iii) just note that
[b] = [ab™!], if and only if [b%] = [a]. Finally, (iv) is immediate from (iii). O

Remark 2.1.33. The number of isometry classes of a-maximal lattices in H is

bounded by the class number |G|. This maximum is achieved, if and only if G is
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trivial, or G is an elementary abelian 2-group and a is a square in G. If |G| is odd,

there are precisely 3 (|G| + 1) isometry classes.

Remark 2.1.34. Combining the notions from Proposition 2.1.32 and Example 1.1.8,
we have H(R) = Hg(R).

Lemma 2.1.35. Let (V,q) be a regular quadratic K-space with ind(V,q) > 0 and

E <V be an a-mazimal R-lattice. Put b := b,. Then there is some singular rank 1
sublattice ' < E such that bp(F) = aF™.

Proof. This proof is essentially the one of (14.12) in [KS02| but adapted to Dedekind
domains. As ind(V') > 0, there is some singular vector v € V such that b(V,v) # 0.
Put F := E N Kv which is a rank 1 sublattice of £. Thus, F = bx with some
integral pseudo-element bz of E, so there is a unique A € b with v = Ax whence F
is singular. Moreover, b(E, F') C b(E,E) C n(E) C a as E is a-maximal. Hence,
by the unique ideal factorisation, J = b(FE, F)a~! is an integral ideal of R. This
implies that £/ .= E + J 'F is an R-lattice containing E that satisfies

q(E) Cq(E)+J 'W(E,F)+q(J'F)Ca+J aJ)+0=na.

By a-maximality, we conclude £ = E’, so J™'F C E, also implying J'F C E N
Kv = F. As J is integral, we must have J = R and hence, b(E, F') = a. Because F’
has rank 1, this implies bp(E) = aF™. O

Theorem 2.1.36. Under the hypothesis of Lemma 2.1.35 write V. = H(K) L V'
and the singular R-lattice F' of rank 1 as F' = bx. Then there is an a-mazximal
R-lattice E' in V' such that

E = Hgy(a) L E.

Proof. By Lemma 2.1.35 the sequence of R-modules
0— Ft — E—aF" —0

is exact and splits because with F' also F* is projective. Thus, there is a direct
summand G < E, isomorphic to aF*. More precisely, bp(G) = aF™, implying
G = ab~'2’ for some 2/ € V with b(z,2') € R, so without loss of generality
b(z,2') = 1. Putting H = F & G and y = 2’ — g(2")z, we have b(z,y) = 1 and
q(y) = 0. One easily computes

n(H) = a(R + ab2q(z"))

31



2 Clifford orders

and this ideal needs to be contained in n(F) C a. This implies ¢(z’) € a='b?, so
((b,z), (ab~',y)) is another pseudo-basis of H, by Proposition 2.1.7. Hence,

H = bz ®ab 'y = Hy(a),
which is an a-modular sublattice of F. Finally, as E is assumed a-maximal,
by(E,H) Cb,(E,FE)=5(F) Cn(E) Ca,

so we obtain £ = H 1 H* from |[OMe00| 82:15. Both H and E' = H' are

a-maximal in their respective ambient spaces, because F is a-maximal. O

Corollary 2.1.37. Suppose the reqular quadratic K-space V' decomposes as
k
V=Vl J__l H(K)
with V! <V the anisotropic kernel and k = ind(V'). If E is an a-mazimal R-lattice
in 'V then there is an a-mazximal R-lattice E' in V' and ideals b; of R such that
k
E=F 1 %Hbl(a)

Moreover, if R is a principal ideal domain and a = «aR then this decomposition

simplifies to

k
E=E L1 L H(R).

2.2 Orders

In this section we address the second component of Definition 2.0.1. The standard
reference that we use for the theory of orders is the book of Reiner [Rei03]. Note
that in this reference, R is a noetherian integral domain that need not be integrally
closed. However, in view of the aims of this thesis, we continue to let R denote a
Dedekind domain with field of fractions K of characteristic zero.

2.2.1 Basic definitions and properties

Definition 2.2.1. Let A be a finite dimensional K-algebra. An R-order in A is a
subring A C A with the same unit as A such that A is a full R-lattice in A.

Remark 2.2.2 ([Rei03] (8.1)). Any K-algebra A contains R-orders.
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Proposition 2.2.3 (|Rei03] (8.6) Theorem). Every element of an R-order A is

integral over R. Furthermore if R is integrally closed, then for a € A we have
min. pol. 4 r-(a) € R[X], char. pol.,,x(a) € R[X].

Corollary 2.2.4. Let A be a K-algebra with unit 1 = 14. Then, since R is integrally
closed, for any R-order A in A, we have K -1 NA = R-1, so R-1 is an R-pure
sublattice of A. Thus, by Proposition 2.1.21, we always assume that R-1 is the first

pseudo-element in any pseudo-basis of A.

Note that the condition that R be integrally closed cannot be dropped. For
example, if A =Q(v/5), R = Z[v/5] and A = Z[%g] then K- 1NA=ADR.

Definition 2.2.5. An R-order A in the K-algebra A is called maximal if it is not

properly contained in any other R-order of A.

FExample 2.2.6. If A is a maximal R-order in the K-algebra A, then for n € N, we
have that A™*™ is a maximal R-order in A™*™. Specifically, if R = Oy is the ring of
integers in the algebraic number field K, or if R is the valuation ring of the p-adic

number field K, then R"*" is a maximal order in K™*".

Being a maximal order is a local property

Definition 2.2.7. A place p of the Dedekind domain R is either a finite place,
given by a non-zero prime of R, or an infinite place given by an embedding K — C.

An infinite place p is called real, if p(K) C R and complex otherwise.

At the moment, we require only finite places.

Notation 2.2.8. For a finite place p of R we denote the localisation at p by R, and
its completion at p by ]%p. The respective fields of fractions are denoted by K, and
Kp. For an R-lattice L, we put L, := R, ®g L and ﬁp = ]%p ®gr L, the localisation

and completion of L at p.

Proposition 2.2.9 (|Rei03] (11.2), (11.6)). Let A be a K-algebra. For an R-order

A in A, the following are equivalent.
(1) A is a mazimal R-order.
(ii) For each non-zero prime p of R, A, is a mazimal R,-order in A.

(i11) For each non-zero prime p of R, Ap s a mazximal fép—order n Kp ® A.
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Existence of maximal orders and well-definedness of the index

As is evident from the definition of Clifford orders, see Definition 2.0.1, we consider
R-orders in Clifford algebras of regular quadratic K-spaces. In this brief interlude we
ensure that maximal R-orders do always exists inside these. Moreover, we establish
that given an R-order A in such a Clifford algebra, the index of A in all maximal
R-orders that contain it coincide and that this index can be read off from disc(A).

Definition 2.2.10. Let A be a finite dimensional semisimple K-algebra, so

S
A= @
1
=1

is a direct sum of full matrix rings over K-division algebras D;, by the Artin-Wedder-
burn theorem (see, e.g. 7a in [Rei03]). Then A is called a separable K-algebra,
if the center Z(D]"*"") is a separable field extension of K, for all i € s.

Proposition 2.2.11 (|Rei03] (10.4)). Let A be a separable K-algebra. FEvery R-
order in A is contained in a maximal R-order in A. There exists at least one

mazimal order in A.

Remark 2.2.12. Let (V,¢) be a regular quadratic K-space of finite dimension n
and C(V, q) its Clifford algebra. Then, by [KS02| (7.12)f., [Rei03] (7.8) and [Voi21]
(7.6.1), both C(V,q) and Cy(V,q) are K-separable. Thus, in all Clifford algebras
that do occur in this thesis, there exist maximal orders. Then, given an even R-
lattice (L,q) in (V,q), one can ask if C(L,q) is a maximal order in C(V,q) and,
if not, to which extend it fails to be one. The latter is measured in terms of the
index [m : C(L, q)] from Definition 2.1.9, where m is a maximal R-order of C(V,q)

that contains C(L, q). Of course, the same can be done for the even Clifford order

CO<L7Q)'
Theorem 2.2.13. Let A be an R-order in the separable K-algebra A. Then the

index of A in any mazimal order in A that contains it is the same. It can be deduced

from disc(A).

Proof. Being maximal is a local property by Proposition 2.2.9, so we may assume
that R is a complete discrete valuation ring. Moreover, using [Rei03] (10.5), we may
assume that A = D"*" is central simple. The maximal R-orders in such an algebra
are well understood: By [Rei03] (12.8), the integral closure of the division algebra D,
call it A, is aring, i.e. the unique maximal R-order of D. Then, using Example 2.2.6,
A™" is a maximal R-order in A and, using [Rei03] (17.3) (ii), any other maximal
order in A is conjugate to this one. This implies that all maximal R-orders have the

same discriminant. The claim now follows from Corollary 2.1.18. m
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2.3 Revisiting Clifford orders

2.3 Reuvisiting Clifford orders

Now that we have properly introduced all the necessary components for the definition
of Clifford orders to make sense, we repeat it once again. We follow this up with
some basic facts about the structure of Clifford orders.

Definition 2.3.1. Let (L, q) be an even R-lattice with ambient space V.

(i) The Clifford algebra C(L, ¢) is an R-order in C(V, q), called the Clifford order
of (L,q).

(ii) The even Clifford order is Cy(L, q) = Co(V,q) N C(L, q); and while not an
order itself, the odd Clifford order is C,(L,q) = C,(V,q) NC(L, q).

Remark 2.3.2. We always regard L as a subset of C(L), as described in Re-
mark 1.2.5.

By definition, the Clifford order C(L) is an R-lattice, so it has a pseudo-basis.
Clearly, the same must hold for the R-pure sublattices Co(L) and C;(L). We pro-
vide the respective pseudo-bases below but first, we introduce some much needed
notation.

Notation 2.3.3. Let n € Ny and zy, ..., 2, some elements in a monoid (X,-). If
I C n is an arbitrary subset with r := |I|, then z; € X denotes the ordered product
xypi= T4y ... x;,, where [ = {iy, ... 4.} and 13 < ... <1,

We will mainly use this notation in the situation where the z; are ideals of the
Dedekind domain R, or elements in some Clifford order or Clifford algebra.

Ezxample 2.3.4. Let (eq,...,e,) be a K-basis of the quadratic K-space V. Then
(e; | I Cn)isa K-basis of the Clifford algebra C(V'). The order in which I runs
through the subsets n is of course arbitrary, but usually one should use the ordering

induced by the binary basis associated to (e1,...,e,) (see Remark 1.2.12).

Theorem 2.3.5. Let L be an even R-lattice of rank n with pseudo-basis (w;, ;)ien-
Then, using Notation 2.3.3, the following hold.

(1) A pseudo-basis of C(L) is (wr,ar)rcn-

(1) A pseudo-basis of Co(L) is (wy,ar) where I runs through the subsets of n with

an even number of elements.

(111) A pseudo-basis of C1(L) is (wr, ar) where I runs through the subsets of n with

an odd number of elements.
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2 Clifford orders

Proof. Only assertion (i) needs a proof, so let A be the R-lattice with pseudo-
basis (wr, a);c,. Clearly, A is an R-order containing L, so C(L) C A, because
C(L) is generated by L as R-algebra. Conversely, the Clifford order C(L) contains
L, so it must contain all the pseudo-elements (wy, a;) with I C n. This implies

AcCc(L). O

Corollary 2.3.6. For any even R-lattice L in'V, C(L) = Co(L) ® C1(L). In partic-
ular, C(L) inherits the Z/2Z-grading from C(V,q) in a canonical way.

The results above are really just simple generalisations of some of the results from
Section 1.2. As a more involved example of a generalisation of a statement, let
us again consider Proposition 1.2.6. Applied to a quadratic K-space V, it yields
Co(V L [—a]) =C(*V), for any a € K*.

Proposition 2.3.7. Let (L,q) be an even R-lattice of finite rank n > 1 and 0 #
a € R.

(i) The even Clifford order Co(“L) is isomorphic to an R-suborder A of Co(L). Its
index is [Co(L) : A] = a*R, where s =n2"3 ifn>2; and s =0, ifn = 1.
In particular, Co(*L) = Co(L), if and only if n =1 or a € R*.
(i) The Clifford order C(°L) is isomorphic to an R-suborder A of Co(L L [—a]).
Its index is [Co(L) : A] = a*R, where s = (n — 1)2"72.
In particular, C(“L) = Co(L L [—a]), if and only if n =1 or a € R*.
Proof. We start with (ii). Let e be a fixed generator of [—a] and (e;, b;)ic,, be a
pseudo-basis of (L, q). The isomorphism from Proposition 1.2.6 is given by sending

‘¢ € KL to xze € Co(KL L [—a]). Thus, it maps the pseudo-basis (“er, bs)rc, of
C(*L) isomorphically to

<(CL|I|/2€1, br) | || =2 0) U ((a(”"l)/Qe[e, by) | |I] =2 1) :

Clearly, ((er,br) | [I| =2 0) U ((ere, by) | |[I| =5 1) is a pseudo-basis of Co(L L [—al),

so the index in question is a®R, where the exponent s is given by

s= [ S S an-n) =5 (Xim- >

|7|=20 [I|=21 ICn [I]=21

_ 1 . n n—1 _ 1 n—1 n—1\ __ n—2
=3 Z(k>k—2 =52 =2 = (n— 12"

k=0
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2.4 Data structure

To show (i), we restrict the map from above to Cy(L), so this time we only have to
consider the pseudo-elements corresponding to subsets I C n with even cardinality.
Analogously to part (ii), one sees that the desired index is a®R, but this time the

exponent is given by

1 1 < (n 1 |n2" 2 n>1
= — ] = — = — . .
5 2 Z 1] 2 Z(k)k 2 0 —1 U
|I|=20 kk:O ) n =

2.4 Data structure

In the final section of this chapter, we describe our implementation of Clifford orders
for the OSCAR project [Osc24], which is part of this thesis. For this, we first describe
the general framework and data structure, we use. We do not go into too many
technical details or analyse the basic methods, because this is not very insightful,
and there is also the documentation of the OSCAR project for this. Instead, we
focus on the key concepts that make computations with Clifford orders feasible.
Throughout this section, let (L, q) denote an even R-lattice with ambient space

V=KL.

In order to create a suitable data structure for computations in Clifford orders,
we revisit the definition of Clifford orders, Definition 2.3.1. In view of this, it is
a reasonable choice to implement C(L) as a subset of the ambient algebra C(V),
which is a Clifford algebra over a field or, more generally, a Clifford algebra of a free
module.

2.4.1 The Clifford algebra of a free module

Only for the moment, let A be an arbitrary commutative ring and let (E,q) be
a free quadratic A-module of rank n with basis (ej,...,e,). Of course, in our
applications A = K will always be the field of fractions of the Dedekind domain R
and char(K) = 0.

Then, using Theorem 1.2.1, the Clifford algebra C(FE) is also a free A-module of
rank 2", so C(E) = A?" via the usual coordinate map of free modules with respect
to some fixed basis of C(FE). For the latter, we choose the binary basis associated to
(e1,...,€,) from Remark 1.2.12, due to its useful properties. We denote the binary
basis by (e; | I € n), implicitly ordering the subsets of n. Thus, we represent the
elements of C(FE) by vectors of length 2" with entries in A, identifying the vector
(Ar | I € n) € A?" with the element Y Are; € C(F). This already covers the
module-theoretic part of C(F), by using entrywise addition and the usual scalar
multiplication of these vectors. Since C(FE) is a ring, we also need to know its
structure constants with respect to the basis (e; | I C n). Recall that C(F) =
T(E)/Z as A-algebras, with 7 (E) the tensor algebra of E and Z the ideal generated
2 = q(e;) and e;e; + eje; = byles e)), 1,7 € n, @ # j. Hence,

by the relations e;
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2 Clifford orders

the structure constants of C(F) can be computed by successively applying these
relations. Of course, in practise we would never compute the structure constants
explicitly this way; after all there are 23" = 8" of these and there is no need for
this exponential overhead. Instead, we implement the multiplication recursively,
the base cases essentially being given by the basic relations e? = g(e;) = %bq(ei, ei)
and e;e; + eje;. This way, it is sufficient to only store the Gram matrix of b, and
look up the necessary parameters on demand. For comparison, this requires only
O(n?) amount of storage instead of O(8") and speeds up multiplications in C(E)

significantly.

2.4.2 Clifford orders in OSCAR

Having seen that the Gram matrix of a free quadratic module carries sufficient
information to construct its Clifford algebra, we return to our usual setting. Since
our implementation is aimed to be a part of the OSCAR project, we build it upon
already existing data structures for even lattices over number fields. Here, the
quadratic R-lattice (L, q) of rank n is stored via a fixed pseudo-basis (e;, a;);c, and
its ambient quadratic space (V,q). Thus, our data structure for Clifford orders
carries the following information:

e The Clifford algebra C(V). Since (V,q) is a free K-module, we store it as
described above.

e The Gram matrix of (V,¢q) with respect to the K-basis (e, ..., e,).
e The coefficient ideals (a; | I C n).

The elements of the Clifford order C(L) are represented like those of C(V'); they are
vectors of length 2" with entries in K. Of course, given such a vector (A; | I C
n) € K*" we need to check if >_ Are; € C(L). This can easily be done by checking
Ar € ay for each I C n. Note that this check is only required upon construction of an
element but not during computations, so we can use the same implementations for
addition and multiplication in C(L) as for the ambient algebra C(V'). This is also the
reason why we store the Gram matrix separately; we need fast access to its entries
for the multiplication. With that, we have a basic framework available in which we
can work with Clifford orders over arbitrary Dedekind domains algorithmically.

Note that if R is a principal ideal domain then every R-lattice and hence the
Clifford order C(L) is a free R-lattice. Thus, for Clifford orders over the integers we
do not store the coefficient ideals, because they can all be chosen to equal Z. Of
course, we could do this for every Dedekind domain with class number one and not
just the integers, but in general it is too expensive to compute the class number, if
not impossible.
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3 Centroids of Clifford orders

Let R be a Dedekind domain with field of fractions K of characteristic zero. In this
chapter we study the centroid of a Clifford order. For this, note that Definition 1.2.17
also applies to Clifford orders. Alternatively, the centroid of a Clifford order can be
expressed in terms of the centroid of its ambient Clifford algebra.

Remark 3.0.1. Let (L, q) be an even non-degenerate R-lattice with ambient space
(V,q) of dimension n. Then, if n > 1, the centroid Z(L,q) = Z(V,q) NC(L) is an
R-order in the étale algebra Z(V,q) = K[X]/(X? — §), where § = disc(V, q), if n is
even; and § = disc’(V, q), if n is odd.

Note that Remark 3.0.1 also states that Z(L,q) is an R-pure sublattice of C(L),
i.e. a direct summand, by Proposition 2.1.21.

At first glance, giving the centroids of Clifford orders an entire chapter of attention
seems curious; it is just a certain rank two sublattice. However, a major motivation
for studying the centroids of Clifford orders comes from its analogue in the field case.
There, in Theorem 1.2.27 and Theorem 1.2.28, it is used implicitly to circumvent
the graded tensor product, for describing the Clifford algebra of orthogonal direct
sums of quadratic K-spaces. This is important for practical considerations, as we
discussed below Proposition 1.2.11. In view of this, the most important results of this
chapter are certainly Theorem 3.4.5 and Theorem 3.4.17. They generalise the two
above mentioned theorems from Chapter 1 to Dedekind domains. We also provide
local versions of these theorems respectively, even though a systematic treatment of
Clifford orders over complete discrete valuation rings will happen in Chapter 4. In
view of this, it is useful to have the centroids of interesting classes of non-degenerate
even R-lattice available. We address this by providing results on the centroids of
the maximal lattices. Additionally, we give a complete overview of the centroids of
the root lattices in Section 3.5. Here, we not only present the isomorphism type of
the respective centroid, but also provide an explicit way to compute a basis of it.

3.1 Quadratic orders over Dedekind domains

In this section we consider the following situation. Let A be a quadratic étale algebra
over K, i.e. A= K[X]/(X?—d) for some d € K*. Clearly, the isomorphism type of
A depends only on the square class d(K*)?. Our aim, inspired by Remark 3.0.1, is
to describe the R-orders A in A. For obvious reasons, the R-orders in the quadratic
étale algebra A are also called quadratic orders.
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3 Centroids of Clifford orders

We first note that two quadratic orders in A are isomorphic, if and only if they are
equal. Moreover, A is a separable K-algebra, so there do exist maximal R-orders in
A, by Proposition 2.2.11.

Remark 3.1.1. The quadratic étale algebra A contains a unique maximal order.
Proof. As A is commutative, its integral closure is the unique maximal order.  [J

Remark 3.1.2. There is a unique non-trivial K-automorphism g on A, that is given
by 5(X) = —X. From this, for any a € A, we obtain the trace and the norm as the
maps

t(a) == a+ B(a), n(a) = apf(a)

and the image of both is contained in K. The norm map is a quadratic form ¢ :=n

on A with polarisation

by(ar, a2) = t(a18(az)) = a1f(az) + S(ar)as,

for a1, ay € A, making the pair (A4, ¢) a two-dimensional quadratic K-space.

By means of restriction, any R-order A in A is a quadratic R-lattice (A,q) in
A. Tt is even, by Proposition 2.2.3. The following notation is fundamental for the
remainder of this thesis.

Notation 3.1.3. For an ideal a of R, t € a~! and n € a2 define the R-sublattice
A(a,t,n) = Rl ® ax C A,

where = € A satisfies ? — tx +n = 0.

Remark 3.1.4. For any ideal a of R and t € a™!, n € a2, the R-lattice A(a,t,n)
is an R-order in the quadratic étale algebra A = K[X]/(X? — (t* — 4n)). Further, if
r € A with A(a,t,n) = R1 & ax, then t = t(z) and n = n(z) are the trace and the

norm of x.

Proof. We only need to show that A = A(a,¢,n) is multiplicatively closed, the rest

is obvious. For arbitrary r1,7, € R and a1, as € a, we have
!
(r1l + a1z)(rol 4+ agzx) = (1112 — agagn)l + (r1as + rea; + ajast)r € R1 @ ax = A.

The coefficients of 1 and = are contained in the ideals R? + a’n C R and a+ a?t C a,
where the respective inclusions hold, due to the assumptions t € a=! and n €

a 2. m

40



3.1 Quadratic orders over Dedekind domains

Proposition 3.1.5. Let A be a quadratic R-order.

(i) There exists an ideal a and t € a~', n € a™? such that A = A(a,t,n) as
R-algebras.

(ii) For A € K*, we have A(a,t,n) = A(N\"ta, \t, \>n). Moreover, if A(a,t,n) =
A, t',n") then [a] = [d] in CI(R).

(iii) We have disc(A(a,t,n),q) = (a®(t* — 4n), (t* — 4n)(K*)?).
Proof. (i) This follows from Theorem 2.1.5, Corollary 2.2.4 and Remark 3.1.4.

(ii) To see the equality A(a,t,n) = A(A"'a, A'¢, \?n), note that for each A € K*,
we have ax = (A 'a)(\z) and use the fact that p, = X? — tX + n implies
e = X?—AX+A?*n. The remaining assertion follows from Theorem 2.1.5 (iii),
because an isomorphism of R-orders is also an isomorphism of R-lattices and
the Steinitz class of A(a,t,n) is the ideal class [a].

(iii) This follows from the fact that the free R-order A’ = A(R,t,n) with basis
(1, x) satisfies

as a quadratic R-lattice. O

Remark 3.1.6. Let A(a,,n) be an arbitrary quadratic R-order, with ¢ # 0. Then
Aa,t,n) = A(ta,1,t2n) from (ii) and, using (i), we have 1 € t~!a~!. This implies
ta C R, so ta is an integral ideal of R. To summarise, any quadratic R-order A
can be written as A = A(a,t,n), with an integral ideal a, n € a=2 and t € {0, 1}.
However, this explicit form is usually too inflexible for our purposes, so we do not

generally assume it.

3.1.1 Equality of quadratic orders

In this subsection we prove that the quadratic R-order A = A(a,t,n) is uniquely
determined by its Steinitz class [a] and the R-square class (t* — 4n)(R*). Equiv-
alently, knowing disc(A) is sufficient. The exact result is found in Theorem 3.1.9.
This subsection is motivated by the treatment of free quadratic orders in [Kit73].

Using Proposition 3.1.5 (ii), we only need to determine under which conditions
on the parameters ¢,t', n,n’, the two quadratic R-orders A(a,t,n) and A(a,t',n’) are
equal.
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3 Centroids of Clifford orders

Lemma 3.1.7. Let t,t' € a=! and n,n’ € a 2. The following statements are equiv-

alent.
(i) A(a,t,n) = A(a,t’,n’).

(ii) There is a unit w € R* and some w € a~', such that ' = u(t — 2w) and

n' = u*(w? — wt +n).
(iii) There is a unit u € R, such that (t')*> —4n’ = u?(t* — 4n) and t' — ut € 2a7'.

Proof. (i) = (ii): Write A(a,t,n) = R1®ax and A(a,t’,n') = R1& ay with suitable
z,y € A. By Proposition 2.1.7, as R1@® ax = R1® ay, there are u € R and v’ € a™*
such that

/

Ly =0 |, "

The determinant of this matrix, this is u, must satisfy a = ua whence u € R*.

Vand y = u(z — w). An easy computation verifies ¢’ =

Thus, w = —w'u™! € a~
t(y) = u(t — 2w) and n' = n(y) = v*(w? — wt + n).

(ii) = (i): Note that y := u~'z+w defines an isomorphism of R-orders A(a,t,n) =
A(a,t',n’), so we have the desired equality. As a side note, this isomorphism is
induced by the inverse of the matrix used in the first part of this proof.

(ii) = (iili): This just a straightforward computation.

(iii) = (ii): Put w == $(t —u'¢). Then w € w'a™' = a~! since u € R is a unit
and

ult —2w) =u(t — (t—u't))=t.

Moreover, using this identity and the assumption, we compute

4n' = (t')? — P (t* — 4n) = > (t — 2w) — v (t* — 4n)
= u?(t? — 4wt + 4w® + 4n — t*) = 4u*(w? — wt + n)

whence (ii) holds. O

Lemma 3.1.8. Keep the notation from Lemma 3.1.7. Then A(a,t,n) = A(a,t',n’),
if and only if there is a unit u € R* such that (t')* — 4n' = u?(t* — 4n), i.e. the
second condition in Lemma 3.1.7 (iii) can be dropped.

Proof. Let uw € R* with (¢')? — 4n' = u*(t* — 4n). We are done if we show ¢ — ut €
2a~!. By Proposition 3.1.5 (ii), we have A(a,t,n) = A(ua,u ', u"?n), so we may

assume that u = 1. Then the assumed equality simplifies to

(t+t)t—t)=4(n—n') € 4a2

42
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Write 2a~! = p{...p% uniquely as a product of powers of prime ideals p§’. For
i € nand s € R, let 1;(s) denote the valuation of s at the prime p;, i.e. the exponent
of the prime factor p; in the unique factorisation of sR. Put f; := v;(t +t'). Then
(t+t')(t —t') € 4a~2 implies 2¢; < f; + v;(t —t'). We are finished with the proof if

we show that v;(t —t') > e;. If f; < e; then v;(t —t') > 2¢; — f; > e;. If f; > e; then,

1

by the usual properties of valuations and due to 2t' € 2a™*, we find

vi(t —t') =yt +t' —2t") > min{ f;, v;(2t") } > e,
so we are done. O

We state the following summarising result.

Theorem 3.1.9. Let a,b be ideals of R, t € a1, t' e b™',n € a2 n € b2 The

following are equivalent.
(i) A(a,t,n) = A(b,t',n).
(i1) [a] = [b] in €U(R), and for any A € K* with b = Aa, we have

N((t)? = an')(R¥)? = (t* — 4n)(R")*.

(111) disc(A(a,t,n),q) = diSC(A(b,t’,n’),q).

Proof. (i) = (iii): This is obvious.

(iii) = (ii): By assumption, we have the equality
(a2(t2 —4n), (£ — 4n) (KX)2> - (b?((t’)? — '), ()2 — 4n) (KX)2> .

Comparing the respective second components, there is some A € K*, unique up to
multiplication with elements in R*, such that A\*((#)* — 4n’) = t* — 4n. Applying

this to the respective first components yields
Na2((#)? —4n') = a*(t? — 4n) = b*((¢')* — 4n)

as ideals. Thus, by the unique ideal factorisation in Proposition 2.1.4 (ii), the
equality b = Aa holds whence (ii).
(ii) = (i): Let A € K* with b = Aa and

N ((t)? = an')(R¥)? = (t* — 4n)(R¥)”.
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Using Proposition 3.1.5 (ii), we have A(b,#',n') = A(Aa,t',n') = A(a, \t/, \*n').
Thus, t,\' € a™t, n, \*>n’ € a~? satisfy the first condition of Lemma 3.1.7 (iii). The

second condition can be dropped due to Lemma 3.1.8. Hence
Aa,t,n) = Ala, \t', \*n) = A(b, ¢, n)
by Lemma 3.1.7. [

FExample 3.1.10. The condition that R is a Dedekind domain cannot be weakened in
an obvious way. Let R = Z[v/5]. Then, by abuse of notation, A(R,1,0) = H(R) 2
A(R,+/5,1). However, if instead R = Z[%g] then these orders are isomorphic, as

can be witnessed by using the isomorphism induced by the matrix

1 1+v5
T = 0 2 | € GLy(R).

Note that both orders have discriminant (R, 1(K*)?), where K = Q(v/5).

3.1.2 Orthogonal suborder and quadratic discriminant

In certain situations, see e.g. Theorem 3.4.5 and Theorem 3.4.17, it is sufficient to
determine the so-called maximal orthogonal sublattice of the centroid instead of the
centroid itself. It is also easier to compute and can be described in terms of the
quadratic discriminant, which we introduce in Definition 3.1.15. With this in mind,
we continue in the abstract framework of quadratic orders.

Definition 3.1.11. Call a quadratic order A orthogonal, if it can be written as

A = R1®ay with some ideal a of R and y € A such that t(y) = 0. This is equivalent

to A = A(a,0,n), for some suitable n € a2,

The following result states precisely when a quadratic R-order A is orthogonal
and if it is not, it gives us the index of the maximal orthogonal suborder A° C A.

Theorem 3.1.12. In our usual notation, let A = A(a,t,n) = R1®ax be a quadratic

R-order in A. Define the rank one sublattices
Ay ={leAN|pl)y=1l} and A_={le AN | B(l) =—1}.
(i) A, = KINA=Rl and A_ = AN K(t —2x) are R-pure sublattices of A.

(i) N° = A, & A_ is the unique mazximal orthogonal suborder of A.
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3.1 Quadratic orders over Dedekind domains

(i) A° = A(ay,0,—(t* — 4n)) = A(2ay,¢,n) = R1 & 2apz with a; = t 'R N 3a, if

t#0; and a; = 1a, if t = 0. Thus, 20, C a C a; and

2(ta) ' NR, t#0

[A: A% =200 = .
R, t=0

In particular, 2R C [A : A°] C R with A = A°, if and only if t € 2a™", so the

orthogonality of a quadratic order depends only on the primes dividing 2R.

Proof. (i) The elements 1,t — 2z € A span the one-dimensional eigenspaces asso-

(i)

(iii)

ciated to the eigenvalues 1, —1 of the involution £.

Putting y = t — 2z, we find #(y) = 2t — 2t(x) = 0, so the suborder A° is
orthogonal. Now, if A’ = R1 @ bz is another orthogonal suborder of A then
bz C Kz=Ky,s0 bz CANKy=A_ and hence, ' C R1 G A_ = A°.

Let a € K and note that ay = at —2ax is contained in A, if and only if at € R
and 2a € a, which is equivalent to o € a; whence A_ = a;y. Using this and
n(y) = 4n—t?, we compute the discriminant of A° = R1®ay = A(ay, 0, 4n—1?)
to be

disc(A?) = (~4a?n(y), —4n(y) (K*)?) = (~(28)n(y). ~n(y) (K*)*)

The latter coincides with the discriminant of the R-order A(2a;,t,n) = R1 &
2a;x, so the claimed equalities of quadratic orders follow from Theorem 3.1.9.
Finally, A/A° = a/2qa,, so the remaining claims follow from a straightforward

computation.
O

Being orthogonal is a local property

We briefly consider the completions of the Dedekind domain R. The following results
use Notation 2.2.8.

Lemma 3.1.13. Letp be a finite place of R, denote its associated valuation by v, and
let m, € R, be a fived uniformiser of R,. Then A(a,t,n), = A(Rp,ﬂ';;p(a)t, ﬂiyp(a)n).

Proof. Write A = A(a,t,n). We have the chain of equations of quadratic ]%p—orders

Ay = Ry @ Aa,t,n) = A(aR,,t,n) = A(W;’”(a)]%p,t, n) = A(R,, ﬁg"(a)t,wgu”(a)n).
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3 Centroids of Clifford orders

The first equality follows from the distributive properties of the tensor product:
If A = Rl ® ax with some » € K[X]|/(X? — d) that satisfies 22 — tx + n, then
}%p ®r A = }%pl &) a}%px. The second equality follows from a]%p =’ (@) }%p and the
last one from Proposition 3.1.5 (ii). O

Proposition 3.1.14. The quadratic R-order A is orthogonal, if and only if A, is
orthogonal at all primes p of R that divide 2R, if and only if A, is orthogonal at all
places p of R.

Proof. The second equivalence is obvious. For the first one, write A = A(a,¢,n).
By Theorem 3.1.12 (iii), A° = A, if and only if ¢ € 2a™!, if and only if v,(t) >

1(2) — 4(a), for all dyadic primes p. Similarly, for these dyadic primes, we have
A = A, = A (R, 72, 720 @y,
(Ap) p ps Tp L, Ty )

if and only if Wpyp(a)t € 2]%,3_1 = 2Rp, again using Theorem 3.1.12 (iii). This is also
equivalent to v,(t) > 1,(2) — v,(a), which is equivalent to A being orthogonal.  [J

The quadratic discriminant

In Theorem 3.1.12, we established that any quadratic R-order contains a unique
maximal orthogonal suborder. Thus, we can consider its discriminant as an isometry
invariant.

Definition 3.1.15. In the notation of Theorem 3.1.12, the quadratic discrimi-
nant of a quadratic R-order A = A(a,t,n) is defined as

disq(A) = idise(AO) = (a;(t* — 4n), (t* — 4n)(K™)?) .

Later, in Definition 3.2.1, we provide a more general definition of the quadratic
discriminant that is applicable to arbitrary even R-lattices. In Theorem 3.2.11, we
prove that the quadratic discriminant has the same multiplicative properties as the
usual discriminant (see Proposition 2.1.16 (ii)). This is also the reason for the scalar
}L in Definition 3.2.1; it ensures this multiplicativity. For the moment, we just state
the following lemma.

Lemma 3.1.16. Let ay, ay be ideals of R and t1,t5 € K, possibly zero. Further, put

b= tflag ﬂt;lalﬂ%alag, omitting the sets tflag and t;lal in this intersection, if the

associated t; is zero. Then, in the notation of Theorem 3.1.12, by, = (a1)s, (a2)4,-
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3.2 Properties of the centroid
Proof. Put t == tyty. If t1,t5 # 0 are both non-zero then

1 1 1 1
by =t"'RN 50 = RN 5t;laz N =ty e N =~aay

2 4
1,1 1 1 -1 1 -1 1
= tl tQ RN 5&2 N 5&1 t2 RN 5&2 = tl (Clg)t2 N 501(&2),52

= <t11Rﬂ %cq) (a2)s, = (a1)e, (d2)1s,

proving the claim in this special case. If ¢; = 0 then one uses the same computation,

but has to omit each ideal in which t; occurs. O

Remark 3.1.17. For any quadratic R-order A, the first coordinate of disq(A) is an

integral ideal.

Proof. Since disq(A) = disq(A°) we may without loss of generality assume that
A = A(a,0,n) is orthogonal. Now disq(A) = (a?n, —n(K*)?) and an is integral due
ton € a2 O

3.2 Properties of the centroid

The previous section provides us with sufficient tools to give a systematic treatment
of the centroid of Clifford orders of even R-lattices over a Dedekind domain. In this
section, we first define the quadratic discriminant for such a lattice and also record
some basic results on their centroids. We follow this up by studying the centroids
of orthogonal direct sums of even R-lattices. Afterwards, we describe the centroid
of an arbitrary maximal R-lattice. Finally, we prove that any two R-lattices in the
same spinor genus have the same centroid. The main results of this section are
Theorem 3.2.11, Corollary 3.2.17 and Theorem 3.2.20.

Throughout this section, (L, q) denotes an even R-lattice of rank n with ambient
space (V, q).

3.2.1 The quadratic discriminant of a lattice
In this subsection, additionally assume that L is non-degenerate.
Definition 3.2.1. By Remark 3.0.1, the centroid Z(L, q) is an R-order in the étale

algebra Z(V,q) & K[X]/(X? — d), for some d € K*. Define the quadratic dis-
criminant of L as disq(L) := disq(Z(L, q)).

Remark 3.2.2. One has Z(L,q)° = Z(L',¢)°, if and only if disq(L) = disq(L').
Thus, knowing the quadratic discriminant is equivalent to knowing the maximal

orthogonal sublattice of the centroid.
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3 Centroids of Clifford orders

Proof. This immediately follows from Theorem 3.1.9 (iii) and the definition of the

quadratic discriminant. O

Remark 3.2.3. Let R be a principal ideal domain. Then Z(L,q)° is free, so we
can identify disq(L) with an R-square class, by Remark 2.1.17. More precisely, if
d is any representative of the K-square class disc(V), for n even; or of disc’(V),
for n odd, then Z(L,q)° = R[X]/(X? — A\?d), for some A € K*. In this situation,
disq(L) = N%d(R*)? under the aforementioned identification.

We provide the version of Remark 1.2.19 over Dedekind domains, that describes
Z(L,q) in small dimensions.

Remark 3.2.4. (i) If n = 1 with L = az, put b = ¢(x). Then Z(L,q) =
C(L) = Rl ® ax with 22 —b = 0. Thus, Z(L,q) = A(a,0,—b) and disq(L) =
(a®b, b(K)?).

(ii) If n = 2 with L = azx & by, put a = q(z),c = q(y),b = by(r,y) and z =
xy € Co(L). Then Z(L,q) = Co(L) = R1 & abz with 2% — bz + ac = 0. Thus,
Z(L,q) = A(ab, b, ac) and disq(L) = (((ab),)?(b* — 4ac), (b* — 4ac)(K*)?).

Fxample 3.2.5. Let a be an integral ideal of R. Then the a-maximal R-lattices
Hp(a) from Proposition 2.1.32 are even and, using Remark 3.2.4 (ii), we find that
Z = Z(Hy(a)) = A(a,1,0) is an R-order in K[X]/(X?—1). Putting ¢ := RNia, we
have Z° = A(c, 0, —1) and disq(Hy(a)) = (¢?, 1(K*)?). In particular, if 2R C a C R,
then ¢ = R and 2° = A(R,0,—-1) & R[X]/(X? —1).

3.2.2 The centroid of an orthogonal direct sum

In this subsection, we investigate the centroid of an orthogonal direct sum of R-
lattices. This has two components to it. On one hand, by Proposition 2.1.19,
every even R-lattice L admits a unique radical splitting L = N L L+ with N non-
degenerate. In this case, we can ask for Z(L, ¢) in terms of N. On the other hand we
can ask for the centroid of the orthogonal direct sum of two non-degenerate even R-
lattices L = Ly 1 Ly. Here, we can additionally ask for the quadratic discriminant
disq(L) in terms of disq(L;) and disq(Ls). We answer these questions in Lemma 3.2.7
and the aforementioned Theorem 3.2.11. Beyond this, in Theorem 3.2.14, we give
a precise result under which conditions the centroid of the orthogonal direct sum of
two lattices is orthogonal in the sense of Definition 3.1.11.

Lemma 3.2.6. The unique K-algebra automorphism of Z(V,q) from Lemma 1.2.20
restricts to an R-automorphism o of Z(L,q), such that

Z(C(L)) ={z € Z(L,q) | a(z) = a}.
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3.2 Properties of the centroid

Proof. The claimed equality holds for Z(C(V')) instead of Z(C(L)), by Lemma 1.2.20.
Intersecting both sides with C(L) gives the result. O

We give a technical description of the centroid of an orthogonal direct sum. In
its core it is just the version of [KS02, II (7.8)] over Dedekind domains. The proof
is similar.

Lemma 3.2.7. Let (L,q) be an even R-lattice in the quadratic K-space (V,q) with
a decomposition (L,q) = (L1,q1) L (L2, q2).

(i) Z:=2(L,q) C Z(L1,q1) ®@ Z(Ly, ¢z) = 2, @ Z5 under the canonical isomor-
phism of R-algebras C(L) = C(Ly) ® C(Ly) from Proposition 1.2.11.

(11) If Ly, Ly are both non-degenerate then
Z={2€Z102 | (1 ®7)(z) = (1 ®aw)(2)},

where «; denotes the automorphism of Z(L;,q;) from Lemma 3.2.6 and ~y; =
C(L;)(—1) (see Example 1.2.9). Moreover, the automorphism « of Z is the

common restriction of a; ® o and 1 ® as.

(iii) If Ly is non-degenerate and Lo is singular, e.g. Ly = L*, then
Z={2€Z282 | (q®id)(2) = (11 ®id)(2)} = 1@ A(Ly),

with oy, vy as in (ii).

Proof. For assertion (i), one uses the same argument as in the first part of the proof
of [KS02, II (7.8)], but has to replace 'basis’ by 'pseudo-basis’ to see that

Z={2€2®2 | 2(x;®13) = (2, @x2)2, for all z; € L;}.

This proves (i). Assuming that L, L, are both non-degenerate, we have the auto-

morphisms o, ag available. Writing z = 21 ® 29, we compute
? 7

(1 ® T2)(21 ® 29) = (171 (21) ® v (22)w2)
= ((a107)(21) ® (72 0 a2)(22)) (21 59%2),

so z € Z, if and only if (a1 ® 712)(2) = (11 ® a2)(z), since «; and ~; are involutions
respectively. For assertion (iii), we can do the same computation if Ly is singular
but have to replace ag by 5. This yields z € Z, if and only if o (21) = 71(21). Now,
by [KS02| (7.9) b) and Lemma 3.2.6, «; is the identity, if n; := rank(L;) is odd and

49



3 Centroids of Clifford orders

the subset of Z; with even grading is precisely R. If, on the other hand, n; is even
then Z; C Cy(L4), so v, is the identity on Z; and «a;(z;) = z;. By Lemma 3.2.6,
this yields 2, = Z(C(L)) and this is again equal to R, by [KS02] (7.9) a). Finally,
as in Example 1.2.18, we have Zy = C(Ly) = A(Ls), the latter denoting the exterior
algebra on Ls. ]

Note that the third assertion answers the first question that we posed in this

subsection. Thus, in the following, we focus on non-degenerate lattices. Then, to
make effective use of Lemma 3.2.7(ii), we need the following fact.

Proposition 3.2.8. Let (L,q) be non-degenerate and let o be the automorphism of
Z = 2Z(L,q) from Lemma 3.2.6. Additionally, put v = C(L)(—id) and let 8 denote

the unique non-trivial automorphism of Z(KL,q).

(1) If the rank n is even, then Z C Cy(L), so the restriction 7z is the identity and
B =a.

(ii) If the rank n is odd, then Z = Z° is orthogonal. Thus, « is the identity, so
Z =7Z(C(L)) and p = ~. More precisely, Z = R1 & az with an ideal a of R
and some z € Cy(L), satisfying t(z) = 0.

Proof. Assertion (i) follows from [KS02| (7.9) a), intersecting with C(L) and re-
stricting the automorphisms to Z. To see (ii), suppose that n is odd. Then
Z(KL,q) = K1 ® Kz with some z € Z(KL,q), that satisfies the desired prop-
erties, by [KS02| (7.9) b). If (w;, a;)ien is a pseudo-basis of L then, as z € Cy(K L),
there exist unique p; € K, for each I C n with |I| odd such that

Thus, an arbitrary element in z € Z(K L, q) can be uniquely written as

Tr = /\1 +>\2,Z = )\1 + Z )\2,[1,[(,()]

ICn,
1] odd
with A1, A2 € K and since (wr, a);c,, is a pseudo-basis of C(L), we have x € Z =

C(L)YNZ(KL,q),ifand only if \; € Rand \y € a:= () ;' a;. Hence, Z = R1®az
w70
is orthogonal and z has the desired properties. The claim about the automorphisms

follows as in (i). O

The proof of part (ii) actually only requires that the coefficient of 1 in z is non-zero,
i.e. pug # 0. This fact is later used in Algorithm 1.
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3.2 Properties of the centroid

The next two lemmas give a complete description of the centroid and the quadratic
discriminant of the orthogonal direct sum of two non-degenerate lattices. They deal
with the different possibilities of the parities that the ranks of the summands may
have. Theorem 3.2.11 then summarises these results.

Lemma 3.2.9. Suppose that the non-degenerate R-lattice (L,q) decomposes as the
orthogonal direct sum (L,q) = (L1,q1) L (L2, q2) of non-zero lattices, where Ly is
of even rank. Write Z(L;, q;) = Aa;, t;,n;) and b =17 ax N5 'y N Sayaz, omitting

t; ay, ty 'y in this intersection, if the respective t; equals zero. Then
Z(L7 Q) = A(ba t1t2’ t%n2 + t%”l - 4n1n2)7
so in particular, disq(L) = disq(L)disq(Ls).
Proof. Asrank(L;) is even, we have Z(Ly,q) C Co(L;) and thus 7; = id. Hence, the

two orders Z(L;, ¢;) commute inside the graded tensor product C(L) = C(L1) @ C(Ls)
and if we write Z(L;, q;) = A(a;,t;,n;) = R1 @ a;z;, then

Z = Z(Ll, (h) @Z(LQ, QQ> =R1 D a2(1 é 22) D 01(21 é 1) D a1u2(21 é 22).

Using Proposition 3.2.8, we have

1 ®id —id ® B2, rank(Ls) even

QY —NQay = ,
f1® Py —id ®1id, rank(Ls) odd

so with respect to the above basis of z , the matrix of this linear map is

0 —tz tl 0 0 0 tl 0
0 2 0 % 0 -2 0 -4
or s
0 0 =2 —t 0 0 =2 0
o 0 0 0 0o 0 0 O

where the first matrix applies, if rank(Ls) is even. Due to Lemma 3.2.7, a K-basis
of the kernel of the respective matrix, say (1, z), is a K-basis of Z(KL,q). In both
cases we may choose z = t;(1 é)zQ) + ta(2z; ® 1) —2(z ®z2), because t, = 0, if Lo
has odd rank. Doing so, we have Z(L,q) = R1 & (Z~ N Kz) = R1 & bz, with some
ideal b of R. Comparing the coefficient of z to the pseudo-basis of zZ above, we

must have t, € ag, ty € a, 2 e a;as, SO b= t;lag N t;lal N %alag, pOSSibly omitting
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3 Centroids of Clifford orders
t7'ay, tytay, as claimed. A straightforward computation shows
22 —tityz + (3ng + ting — 4ning) = 0.
Regarding the quadratic discriminants, we have
Z(Li,q:)° = A(03)e,, 0, = (8] — 4n3)), Z2(L,q)" = A(by, 0, (17 — dna) (85 — 4n2))

with ¢ = t1t5. According to Lemma 3.1.16, b, = (a;)s, (a2),, so the claim follows
from Proposition 3.1.5 (iii). O

Lemma 3.2.10. Suppose that the non-degenerate R-lattice (L, q) decomposes as the
orthogonal direct sum (L,q) = (L1,q1) L (L2, q2) of two lattices of odd rank. Write
Z(Ll, q,) = A(Cli, O, nz) Then

Z(L, q) = A(Cllag, 0, nlng) =A (%alag, 0, 16”1712) s

so in particular, disq(L) = —disq(Ly)disq(Lsz).

Proof. The proof of this lemma is identical to the one of Lemma 3.2.9, just with

slightly different values. Using the same notation, we get
RV —7®a=1id®@ym—v ®id

and the matrix of this linear map with respect to the basis of Z that we used in
the proof of Lemma 3.2.9 is diag(0, —2,2,0). The kernel of this matrix is (1, z) with

2=z 2, which immediately yields 22 = —n;n, and thus,
Z(L,q) = AMaiaz,0,n1n2) = A (ialag, 0, 16n1n2) .

The assertion about the quadratic discriminants follows from this equality, using a

straightforward computation. O]

Theorem 3.2.11. Suppose that the non-degenerate R-lattice (L,q) decomposes as
the orthogonal direct sum (L,q) = (L1,q1) L (L2, q2) of two non-zero lattices and put
s == rank(Ly)rank(Ls). Write Z(L;,q;) = A(a;, t;,n;) and b == t7 axNt5 'y Niajas,
omitting t] ay, 15 ay in this intersection, if the respective t; is equal to zero. Put
t .= t1ty. Then

Z(L,q) = A(b,t,5ng + tiny — (—1)%4niny)
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3.2 Properties of the centroid

and t is non-zero, only if both L1 and Ly have even rank. Moreover,
Z(L7 q)o =A ((al)tl(aQ)tw 07 _(_1)8(25? - 4n1>(t§ - 4n2)) )

so in particular, disq(L) = (—1)*disq(L1)disq(Ls).

Remark 3.2.12. This theorem illustrates what we remarked earlier: The maximal
orthogonal sublattice is much easier to work with than the centroid itself, as it is

essentially multiplicative under orthogonal direct sums.

It follows from Theorem 3.2.11 that Z(L; L Lo, q) is orthogonal, if at least one
of Z(L;, q;) is orthogonal. In the following, we specify this result.

Lemma 3.2.13. Let (L,q) = (L1,q1) L (L2, q2) be a non-degenerate R-lattice. Then

the centroid Z(L,q) is orthogonal, if and only if for each dyadic prime p of R, at
least one of the centroids Z(L;, q;)p, 1 = 1,2, is orthogonal.

Proof. For i = 1,2, write Z(L;,q;) = A(a;,t;,n;) with the standardised form from
Remark 3.1.6, so that a; is integral and ¢; € {0,1}. Then, by Theorem 3.2.11,
Z = Z(L,q) = A(b,t,t? +t3n, —4nyny). Clearly, t equals zero, if and only if at least
one of the t; equals zero, so the claim holds in this case. Otherwise, t =t =t; =1
and, by Proposition 3.1.14, Z is orthogonal, if and only if Z, is orthogonal for each
dyadic prime p. Fix such a prime p. By Theorem 3.1.12 (iii), 2, is orthogonal,
if and only if 1 € 2(bR,)~! and this is equivalent to 14,(b) — 14,(2) > 0. Now

b= a;NasN %alag, SO
1 (b) =14 (2) =max{uy (a1), vp(a2), vy (a1) Frp(a2) =24 (2) } =14 (2) =max{u, vo, 112},

with v; = 1,(a;) — 14(2). Clearly, the right-hand side of this equations is non-
negative, if and only if at least one of the v; is non-negative. By Theorem 3.1.12 (iii),

this is equivalent to Z(L;, ¢;), being orthogonal. ]

Theorem 3.2.14. Let (L, q) be a non-degenerate R-lattice with a decomposition

(L7q) = (Llach) L. L (L87q5)'

Then the centroid Z(L,q) is orthogonal, if and only if for each dyadic prime p of
R, at least one of the centroids Z(L;,q;), i = 1,...s, is orthogonal.

Corollary 3.2.15. Under the assumptions of Theorem 3.2.14, additionally assume
that R has only one dyadic prime, e.g. R is a principal ideal domain. Then the
centroid Z(L,q) is orthogonal, if and only if at least one of the centroids Z(L;,q;),

t=1,...5 is orthogonal.
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3 Centroids of Clifford orders

Proof. This follows from Proposition 3.1.14 and Theorem 3.2.14. O]

3.2.3 Centroids of maximal lattices

We can use Theorem 3.2.11 to describe the centroid of a maximal lattice (see Def-
inition 2.1.30) over the Dedekind domain R. For this, we first identify the lattices
whose centroids behave particularly well under orthogonal direct sums.

Proposition 3.2.16. Let (L,q) be a non-degenerate R-lattice with centroid Z.

(i) We have Z(L L Ly,q L ¢1) = Z(L1,q1), for all non-degenerate even R-lattices
(L1, q1), if and only if Z = A(R,1,0) = H(R) and rank(L) is even.

(ii) We have disq(L L L,) = disq(L1), for all non-degenerate even R-lattices
(L1, q1), if and only if Z = A(a,1,0) with an ideal 2R C a C R and rank(L)
is even. In this case, Z° = H(R)° = A(R,0,—1).

Proof. Starting with (i), we use the standardised form of Z = Z(L,q) that we
briefly discussed in Remark 3.1.6. Thus, write Z = A(a,¢,n) with a integral and
t € {0,1}. Similarly, let (L1,q;) be another non-degenerate even R-lattice with
Z; = A(ay, t1,n1) and ¢, € {0,1} and a; integral. Now, if Z = Z(L L Ly,q L ¢),
for all such lattices L;, then ¢t = 1, n = 0 and rank(L) is even, by Theorem 3.2.11.
Using this, we find that

1
t;lﬂ Nay N 5&(11 = 01

holds (omitting ¢; 'a for t; = 0), if and only if a(R N 3a;) 2 a; (or 2R C a). Now a
is integral and a; can be any integral ideal. Choosing a; = R then forces a = R. In
summary, Z = A(R,1,0) = H(R) is the only possibility for the centroid.

For (ii), write Z = A(a,t,n) and assume that disq(L L L;) = disq(Ly), i.e.
(a;)?(t> — 4n) = R and t* — 4n € (K*)?, by Theorem 3.2.11. This implies that
there is some A € K* with A2 = t* — 4n and consequently (Aa;)> = R, forcing
Aa; = R by the unique ideal factorisation. Applying Proposition 3.1.5 (ii) and
Theorem 3.1.12 (iii), we obtain

Z° = N(a;, 0, —(t* — 4n)) = A(Aa;, 0, =\ 2(#* — 4n)) = A(R,0,—1) = H(R)°

as the only possibility for the maximal orthogonal sublattice Z°. In order to de-
termine Z, note that we have the inclusion chain of R-orders H(R)® C Z C H(R),
and that H(R) is the unique maximal order in K[X]/(X? — 1). Now, we have
H(R)/H(R)° = R/2R, so Z = A(a,1,0), for some ideal 2R C a C R. O
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3.2 Properties of the centroid

Corollary 3.2.17. Suppose that the reqular quadratic K-space V' decomposes as
k
V=V 1 J__l H(K)

with V! <V the anisotropic kernel and k = ind(V).

(i) If L <V is mazimal then, by Corollary 2.1.87, there is a maximal R-lattice
L' <V’ and ideals b; of R such that

k
L=I1 LH(R).

In this situation, Z(L,q) = Z(L',q¢').

(1) If L <V is a-mazimal and 2R C a C R then, by Corollary 2.1.37, there is an
a-maximal R-lattice L' < V' and ideals b; of R such that

k
L=L1 ZJ:EH[,AG)

In this situation, disq(L) = disq(L').

Proof. This follows from Example 3.2.5 and Proposition 3.2.16. O]

3.2.4 Centroid and spinor genus

Let (V,q) be regular and non-zero. From Proposition 3.2.16 we can derive that
the centroids of any two R-lattices in the same spinor genus are isometric. In the
following we give an incomplete definition of the spinor genus. It is incomplete,
because we do not define the subgroup O'(V, q) of O(V, q); doing so would require
too much theory and Theorem 3.2.20 can be understood without it. Instead, we use
the definition of O'(V') as presented in §55 in [OMe00].

Definition 3.2.18. Two quadratic R-lattices L, L' in (V q) are in the same spinor
genus, if and only if there is some isometry o € O(V, ¢q) and for each place p of R,
there is 7, € O'(K, @ V, q), such that L, = o(7(Ly)). We denote the spinor genus
of L by spn(L).

Remark 3.2.19. We give a bit of context for Definition 3.2.18 and the general
theory connected to it. Spinor genera are studied, because determining R-lattices up
to isometry is usually very difficult. The reason is that isometry of R-lattices is not a
local property, so an arbitrary quadratic K-space (V,¢) may contain R-lattices L, L/
that are not isometric, but L, = L at all places of L,. In this case L and L are said
to be in the same genus, gen(L). Clearly, if cls(L) = {L' C (V,q) | L = L'}, then
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3 Centroids of Clifford orders

cls(L) C spn(L) C gen(L) and in many situations (see [OMe00, 104:5]), actually
cls(L) = spn(L).

Theorem 3.2.20. Ifspn(L) = spn(L'), then Z(L,q) = Z(L',q).

Proof. In view of Proposition 3.2.16 (i), it is enough to show that spn(L) = spn(L’)
implies H(R) 1L L = H(R) L L'. Let o and 7, as in Definition 3.2.18. After
extending these orthogonal maps to 6 € O(H(K) L V) and 7, € O'(H(K), L 1})

via the identity map on the respective hyperbolic planes, we have
o(7p(H(R)p L L)) = H(R), L L;-

Thus, spn(H(R) L L) = spn(H(R) L L), so H(R) L L and H(R) L L' are in the
same spinor genus inside the indefinite, at least three-dimensional regular quadratic
K-space H(K') L V. This implies H(R) L L = H(R) L L', by [OMe00, 104:5]. [

3.3 Quadratic orders revisited

In the previous section, we used the rudimentary notion of a quadratic R-order to
derive some basic properties concerning the centroid of a lattice. In this section,
we want to consider quadratic R-orders on an abstract level, by defining a monoid
structure on the set of isomorphism classes of quadratic R-orders. We call it the
quadratic monoid of R and denote it by QM(R). Its definition is strongly mo-
tivated by the theory developed in [Hah94|. Here, Hahn studies finitely generated
projective separable R-algebras over an arbitrary commutative ring R; note that he
uses a more general definition of separability than the one in Definition 2.2.10. He
defines a group structure on these algebras that have rank two and shows that they
arise precisely as the centroids, Hahn calls them Arf algebras, of regular quadratic
R-lattices.

3.3.1 The quadratic monoid

For a quadratic R-order A over the Dedekind domain R in characteristic zero, denote
its isomorphism class as R-algebra by [A] and denote the set of all such isomorphism
classes by QM(R). The aim of this section is to define a monoid structure on QM (R).
For this, we define the multiplication of two quadratic R-orders Ay, Ay by

AN ={z €N ®r A | (f1 ® Ba)(z) =},

where ; denotes the unique non-trivial algebra automorphism of A;, for i = 1, 2; see
Remark 3.1.2. Writing A; = A(a;,t;,n;) = R1 & a;x;, the matrix of 3; with respect
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3.3 Quadratic orders revisited

to the basis (1, ;) of the ambient algebra KA; is

1

The 1-eigenspace of M; ® M is the kernel of the matrix

0 t t tit
0 -2 0 -t

Mi@M,—li= | " 5 ) feR™
00 0 0

Intersecting it with A; ®g Ag yields (A} ®p A2) N K(1,2) = R(1 ® 1) & az, where
Z = tl(l &® .732) + tg(l’l & 1) — 2(1’1 & .Z‘Q) and a == t;laz N t;lal N %alag,

omitting the intersections with ¢;” 1aj, if t; = 0. Thus, we are precisely in the situation
of the proof of Lemma 3.2.9. From this we obtain the following result.

Lemma 3.3.1. Let A; .= A;(a;,t;,n;) be two quadratic R-orders. Then
[Al . Ag] = [A(tl_lag N t;lal N %alag, tth, t%TLQ + t%nl — 4n1n2)] = [Ag . Al]
Moreover, for any quadratic R-order A, we have [A - A(R,1,0)] = [A].

Proof. The first equality is an immediate consequence of the proof of Lemma 3.2.9
and the expression in the middle is clearly symmetric in A; and Ay. For the last

assertion, one can use the proof of Proposition 3.2.16 (i). O

Remark 3.3.2. Let A be a quadratic R-order. The invariants 9(A),disc(A) and
disq(A) depend only on the isomorphism class of A as an R-algebra. In particular,
0([A]), disc([A]) and disq([A]) are well-defined invariants of the elements of QM(R).

Lemma 3.3.3. Let A = A(a,t,n) be a quadratic R-order with discriminant ideal
(A) = a*(t* — 4n) = R, i.e. disc(A) € {R} x K*/(K*)*>. Then a; = a. If in
addition t = 0, then a; = a is equivalent to 2 € R*.

Proof. Recall that by definition,

t'RNia, t#0
a, t=20

ay =

N | =

57



3 Centroids of Clifford orders

and first consider the case t = 0. Clearly, if 2 € R*, then a; = a, independently of
9(A). Conversely, if 9(A) = R, then R = d(A) = 4a’n C 4R, because n € a~2. This
forces 2 € R* and also shows that 9(A) = R implies a; = a, by the first part.

In the remaining case t # 0, we have a;, = t 1 RN %a = a, if and only if v, (at) =0,

for all primes p dividing 2R. Now, a?(t? — 4n) = R implies
0 =y, (a*(t* — 4n)) = v,((at)* — 4a’n)) > min{2y,(at), v, (4a’n)} > 0,

for all dyadic primes p. This forces v;(at) = 0, because either 2 € R* and there are
no such primes, or v,(4a®n) > 1,(4) > 0, so the proof is finished. O

Theorem 3.3.4. QM(R) is an abelian monoid via [Aq]-[As] == [A1-As]. The neutral

element is lomr) = [A(R, 1,0)] and its unit group is the elementary abelian 2-group
Qu(R) == QM(R)™ = {[A] € QM(R) [ d([A]) = R}, (3.1)

the so-called quadratic group of R.

Proof. The product is well-defined due to Proposition 3.1.5 (i). The assertions about
the neutral element and the commutativity of the product follow from Lemma 3.3.1.
Let Z(R) denote the ideal group of R and let X = {[A] € QM(R) | d([A]) = R}.
We first establish QM(R)* C X. It follows from Theorem 3.2.11 that

disq: QM(R) = Z(R) x K*/(K*)?, [A] — disq ([A])
is a homomorphism of abelian monoids, which restricts to a group homomorphism

QM(R)* — IZ(R) x K*/(K*)%. By Remark 3.1.17, the image of this map only

contains pairs where the first component is an integral ideal. Thus,
disq(QM(R)*) C {R} x K" /(K")2

Now let [A(a,t,n)] € QM(R)* with inverse [A(d,#,n')] and write d = t* — 4n,
d = (t')> — 4n’. Then the above properties of the quadratic discriminant yield

(a,)°d = R = (a},)d.
Now, using Theorem 3.2.11 we obtain

R =0(lqur) = d([A(a,t,n) - A(d',t',n)]) = (ta' N t'aN $aa’)*dd’.
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3.3 Quadratic orders revisited
We expand the right-hand side:
(o' N () rantaa)?dd = (¢ Na(a),))?dd = (t3(a')* Nt ad'a), N a®(ay,)?) dd

Because this is an intersection of ideals, R C a*(a},)*dd’ = (a%d)((a},)?d’) = a*d must
hold. On the other hand, a?d = ?([A(a,t,n)]) C R, so in total 3([A(a,t,n)]) = R.
Thus, QM(R)* C X.

For the remaining inclusion, it suffices to show that each A(a,t,n), with a®(t* —
4n) = R, satisfies [A(a,t,n)]> = lqm(r). This also establishes that QM(R)* is a
2-group. A direct computation yields [A(a,t,n)]? = [A(aay, t?,2t* — 4n?)] and the

discriminant of the right-hand side is equal to
(a®(ay)?(t* — 4(2t°n — 4n?)), t* — 4(26°n — 4n®)(K™)?) = ((aa,(t* — 4n))* 1(K*)?) .

By Lemma 3.3.3, we have a; = a and hence (aa;(t* — 4n))? = (a(t®* — 4n))? =
R. To summarise, we have disc([A(a,t,n)]?) = (R, 1(K*)?) = disc(lqmr)), so
[A(a,t,n)]* = 1qmr) by Theorem 3.1.9. O

Remark 3.3.5. In the case where R is a Dedekind domain of characteristic zero,
the group Qu(R) coincides with that of [Hah94| §12 A. Hahn gives a more general
construction of this group, working over an arbitrary commutative ring. He also

proves that it is an abelian 2-group.

Proposition 3.3.6. QM(R) has the cancellation property, which means that ab = ac
implies b = ¢, for all a,b,c € QM(R), if and only if 2 € R*. In particular, QM(R)
can be embedded into a group, if and only if 2 € R*.

Proof. A straightforward computation shows [A(R,0, —1)] - [A] = [A?], for all [A] €
QM(R). In particular, we have

[A(R,0,—1)] - [A] = [A(R,0,—1)] - [A°]. (3.2)

Thus, if 2 ¢ R, then choosing A = A(R,1,0) yields [A] # [A°], so QM(R) does
not have the cancellation property. Conversely, if 2 € R*, disq([A]) = disc([A]),
so disc : QM(R) — Z(R) x K*/(K*)?* is an injective homomorphism of abelian
monoids by Theorem 3.1.9. Because the codomain of this map is a group, it has the

cancellation property and so does QM(R). O

As a consequence of the proofs of Theorem 3.3.4 and Proposition 3.3.6 we record
the following result.
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3 Centroids of Clifford orders

Corollary 3.3.7. The quadratic discriminant induces a homomorphism of abelian
monoids
disq: QM(R) — Z(R) x K™ /(K*)?, [A] — disq ([A]).

It is injective, if and only if 2 € R*.

3.3.2 The orthogonal quadratic monoid

Revisiting Equation 3.2, the element 1° := [A(R,0,—1)] € QM(R) acts as a neutral
element on the subset

OQM(R) == {[A] € QM(R) | A = A? is orthogonal} C QM(R).

Thus, by restricting the product, OQM(R) becomes an abelian monoid with neu-
tral element 1°. We call it the orthogonal quadratic monoid of R. Note that
QM(R) = OQM(R), if and only if 2 € R* and otherwise, OQM(R) is not even a
submonoid of QM(R); the respective neutral elements are distinct. The unit group
of OQM(R) is
OQM(R)* = {[A] € OQM(R) | o([A]) = 4R},

because 0([A]) = 4R is equivalent to disq([A]) = (R, \(K*)?), for some A\ € K*,
and because of the following fact.

Remark 3.3.8. The quadratic discriminant induces an injective homomorphism of

abelian monoids
disq: OQM(R) — Z(R) x K*/(K*)?, [A] ~ disq ([A]) :
In particular, OQM(R) has the cancellation property.

Proof. This map being injective is an immediate consequence of Theorem 3.1.12.
The assertion about the cancellation property follows because the codomain of this

map is a group. 0

Proposition 3.3.9. If M is an abelian monoid, there exists an abelian group K
and a monoid homomorphism v : M — (M), such that for any other abelian
group A with a monoid homomorphism h : M — A, there exists a unique group
homomorphism ¢ : K(M) — A with h = ¢ o~. The group K(M) is unique up to
isomorphism and called the Grothendieck group of M. The map v is injective, if
and only if M has the cancellation property.

Proof. This is a well-known construction for abelian monoids. See, for example,
[Lan02| p. 39f. O
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3.4 The orthogonal decomposition

Performing this construction with the two abelian monoids QM (R) and OQM(R)
yields the following result.

Theorem 3.3.10. £ = KL(QM(R)) = K(OQM(R)). Moreover, the quadratic dis-

criminant yields a well-defined group monomorphism
K Z(R) x K*/(K*)?

Proof. For a quadratic R-order A = A(a,t,n), let (A) denote the element in K
with y([A]) = 7([A°]) = (A), where [A°] can be regarded as an element of QM (R)
or OQM(R). Note that in view of Equation 3.2, (A) = (A°) for each quadratic
R-order A. Thus, the elements of K, which are equivalence classes of quadratic
R-orders, are represented by orthogonal quadratic R-orders. By Remark 3.3.8, any
two equivalence classes (A), (A’) coincide, if and only if disq(A) = disq(A’). This

implies the assertion about the quadratic discriminant. O]

3.4 The orthogonal decomposition

This section is devoted to generalising Theorem 1.2.27 and Theorem 1.2.28 to non-
degenerate lattices over the Dedekind domain R, and hence quite technical in nature.
We address these theorems in separate subsections because they differ in certain
details that require special attention. Before going over to the respective case study,
we first describe the universal setting that applies to the generalisations of both
theorems. It remains valid throughout this section.

Let (E, q) be an even R-lattice with ambient space V' such that (E,q) = (Ey,q1) L
(Es, g2) with E; non-degenerate and n := rank(FEs) > 0. Denote the ambient space
of E; by V;,i=1,2,s0 that V =V L V; and write Z := Z(E},q). Finally, in this
section, we frequently use (graded) tensor products, so we abbreviate ®r by ® and
®gr by @, for improved readability.

3.4.1 The orthogonal decomposition for even rank

We begin with the generalisation of Theorem 1.2.27. For this, let 2m = rank(E))
be even, so dim(V) = 2m + n. Using Proposition 1.2.11 and Theorem 1.2.27, we
obtain

C(E) = C(E:) ®C(Ey) € C(Vi) ®x C(Va) = C(Vi) @ C(V)I) 2 C(V) @ C(TVa),
where d’ is any representative of the K-square class disc(V;). This implies that C(F)
and C(E;) ® C(E)PV) are isomorphic to certain R-orders in C(Vi) ® C(?V3). Thus,

we have two objectives: Determine these R-orders up to isomorphism, and find a
reasonable substitute for the parameter d'.
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3 Centroids of Clifford orders

By Proposition 3.2.8 (i), an arbitrary element
w € C(B)F) = ZQC(E,)) = 22 C(Ey)

is contained in C(E)¥1) | if and only if it commutes with = ® 1 for all x € E;. This
is equivalent to (a1 ® 72)(w) = w with oy the automorphism from Lemma 3.2.6 and
v = (C(Ey))(—id). From the field case we know that

w el ®CO(E2) PZ_® Cl(EQ)

must hold, with Z_ < Z| the rank-one sublattice of elements in Z that have van-
ishing trace, as defined in Theorem 3.1.12. Conversely, an easy computation verifies

that all elements w in this set satisfy (a1 ® 72)(w) = w, so we get the isomorphism
of R-orders

C(E,) ® C(E)EY = C(Ey) ® Co(Fs) ® C(E1)Z_ @ Cy(Ey) < C(Ey) ®C(Ey).

Writing Z_ = ¢z with an ideal ¢ of R and an element z € Z, the pseudo-element ¢z
is uniquely determined, because Z° = R1 ® Z_, by Theorem 3.1.12 (ii). Thus, the
set 0 := {\?22 | X € ¢} is also uniquely determined, because putting d := 2? € R,
we have disq(E1) = (*d,d(K*)?) and d = ¢?d N d(K*)*.

Remark 3.4.1. In the notation above, d(K*)? = d'(K*)2, so C(%WV,) = C(*V3).

We collect some more facts about the set 0, which will serve as our substitute for
the parameter d'.

Lemma 3.4.2. (i) We have 9N R* # 0, if and only if we can choose ¢ = R and
22 =d e R*.

(11) For each prime p, of R we have v,(9) = 2v;(c) + 14(d) > 0.

(iii) If B is free and we regard disq(Ey) as an R-square class, then d = disq(FE;)R?,
where R? = {2* | x € R}.

Proof. For the non-trivial direction of assertion (i), let v € 9 N R*. Then there is
some non-zero A € ¢, such that u = \?22, so putting 2’ == Az and ¢ = A\ 7'z, we
have cz = A~ tedz = /2’ with (2/)? =« € R* a unit. Thus, it remains to show that
¢ = R. First we show that ¢/ C R holds. Assuming the opposite, there exists some
s € ¢ — R with sz’ € C(F}), so sz’ must have an integral minimal polynomial over
R, by Proposition 2.2.3. However, (s2')? = s>u ¢ R, a contradiction. Thus, ¢ C R
holds. If ¢ C R, then there is a prime p of R that divides ¢. For any u € p, we have
Vp(p*u) > 0 and this implies

INR ={pPfue R* |ped} C{Pue R |pep}=0.
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3.4 The orthogonal decomposition

Hence, 9 N R* = (), which contradicts our assumption. This proves (i). Assertion
(ii) is clear, due to @ C R. Finally, assertion (iii) is immediate from Remark 2.1.17,
the definition of the quadratic discriminant and the equality 0 = ¢?d N d(K*)?. [

Notation 3.4.3. Fix pseudo-bases (e;, @;)icom of £y and (fj,b;)jen of Es. Using
Notation 2.3.3, write e; and f;, for I C 2n and J C n. Furthermore, write °f; when
considering f; as an element of C(°E,). Here, °Fy = (°E,,dgs) denotes the even

R-lattice with pseudo-basis (f;, ¢b;);c, and the by d rescaled quadratic form g,.

For example, (°f;, c/lb;) ;c, is a pseudo-basis of the Clifford order C(°E,). Also,
note that C(°E,) is an R-order in C(“V3), so 0 is a reasonable substitute for d'.

Lemma 3.4.4. Using Notation 3.4.3, the following hold.
(i) The R-algebra C(E) has the pseudo-basis ((e1fs, arby)).
(i) The R-algebra C(E;) ® C(E)PY) < C(E) has the pseudo-basis

((erfr arby) | 1J] =2 0) U ((zerfo,carby) | |J] =2 1).

(i) The R-algebra C(E;) ® C(°Ey) has the pseudo-basis

((61 ®°fs, C|J|afbj)> :

Proof. Parts (i) and (iii) are obvious. Part (ii) follows from the isomorphism
C(E)) ® C(E)°®) = C(E)) ® Co(E») ® C(E1)Z- ® Ci(E»)
and e;zf; = (—=1)ze; f;. O

Theorem 3.4.5. Use Notation 3.4.3 and let X denote the R-suborder of C(V}) @k
C(Vy) with pseudo-basis

((6[ (%9 DfJ,d_%abe> ‘ |J| =9 0) U ((256] & Df‘],d_“”;rl Cl[[]J) ‘ |J| =9 1) .

Then C(E) = X as graded R-algebras, so Y = C(E;) ® C(°Es) is an R-suborder
of X. Moreover, X =Y, that is, C(E) = C(E)) ® C(°Ey), if and only if for all
primes p of R, we have v,(d) = 2v,(c) + 1v,(d) = 0, i.e. v,(d) € 2Z, for all p and

vp(d)

p
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Proof. By the proof of Theorem 1.2.27, there is an isomorphism of K-algebras ¢ :
C(V)) ® C(V)¢M) — ¢(V}) ® C(%V,) that respects the gradings and is defined by

i
Ulerfr) =d 2e @y, for |J] =2 0
[J]-1
W(zerfy) = (=DMd""2 e; @ Uy, for [J| =, 1.

By Proposition 3.2.8 (ii), z € Cy(E1), so ¢¥(z) = z ® 1. Moreover, V; is regular,
because [ is non-degenerate. Thus, we have 22 = d # 0, i.e. 27! = d~ 'z exists
and ¥(z7!) = d7'2 ® 1. Hence, ¢ maps the pseudo-basis ((6[fj,a[bj ) of C(F)

isomorphically to

((61 ® DfJ,df%‘ﬂzbO ’ |J| =2 0) U ((261 ® DfJ,dflJl;laIbJ) ‘ |J| =2 1) ,

establishing C(E) = X and also respecting the gradings. As a next step, we compare
the R-algebras X and ), both of which are R-orders in C(V}) ® C(“V3). We denote
the pseudo-element associated to the subsets I C 2m,J C n in the pseudo-basis

of X above by z7;. From Lemma 3.4.4, we know that ) has the pseudo-basis
((6[ ®°fy, C‘Jla[bj)). The map

() — lagbye; @ °fy, (u2Vl z) — pzl’lz

: [EI : EIES U :
is onto for all I,.J, because 2/l = d'z | if |J| is even; and 2| = a2 271, if | J| is

odd. Moreover, the set ¢//IzI/l is contained in C(E), for each |J|, so 9 (c’Iz17) =
/12l @ 1 C X. Thus, we have ) C X and therefore C(E) = Y, if and only if
Y = X. This is an equality of R-lattices, which is well known to be a local property

(see, e.g. (4.21) in [Rei03]). Thus, we postpone the remainder of this proof after

stating and proving the local version of the present theorem. O]

Remark 3.4.6. While we are able to precisely describe the index [X : Y] above, it

is sufficient to do that only in the local version of this theorem, see Theorem 3.4.12.

Remark 3.4.7. Theorem 3.4.5 is very powerful over complete discrete valuation
rings, because there we have the Witt decomposition, see Proposition 1.1.9, available.

In certain situations, it is also useful over arbitrary Dedekind domains. If, for

k
example, Fj = J__l H(R) and E, is arbitrary, we have the isomorphism of R-algebras

k
C (Ll H(R) L E2> >~ C(B,)? .

64



3.4 The orthogonal decomposition

k

Proof. We have disq(E1) = []disq(H(R)) = (R,1(K*)?), by Theorem 3.2.11,
i=1

Proposition 3.2.16 (ii) and Example 3.2.5. Thus, we obtain the isomorphism

C (il H(R) L E2> ~C (il H(R)) ® C(Es)

from Theorem 3.4.5. Next, in view of Example 1.1.8, we choose an R-basis (z,y) of
H(R), such that 22 = y*> = 0 and zy + yr = 0 in C(H(R)). This implies that

01
¢ CH(R)) = B7 p(x) = | ] (@) =
defines an isomorphism of R-algebras. Thus, we obtain the isomorphisms
k
‘ <£ H<R>> ©C(By) = B @ C(Fy) = C(Fp)"

The first isomorphism holds by Theorem 3.4.5 and then applying the usual tensor
product successively. The second one is standard; see, e.g. [HO89] 1.1.1. ]

Definition 3.4.8. Let A = Ay @ A; be a Z/2Z-graded K-algebra. Then, under the
identification A = A, the K-algebra A2""*2*"" ig also Z./27-graded via

(AQkXQk)O (A2kx2k)1
(A2k><2k)l (A2k><2k)0

(Az’“xzk)l (AQkXZk)O
(A2k><2k)0 (AQkXQk)l ’

(A2k+l ><2k+1 )O _

: (A2k+1><2k+l) _

for each k € Ny. Moreover, given any R-order A in A2°*2" A is a Z/2Z-graded

R-algebra by means of restriction.

k
Corollary 3.4.9. If E, = _7]_1]I-]I(R) and Es s arbitrary, we have the isomorphism
of Z.)2Z-graded R-algebras

k
C (5 H(R) L E2> >~ C(F,)? %,
where the right-hand side is graded as in Definition 3.4.8.

Proof. The isomorphism ¢ from the proof of Remark 3.4.7 respects the gradings,
and so does the tensor product by Definition 3.4.8. O]
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The orthogonal decomposition for even rank - local version

In this brief interlude we present the local version of Theorem 3.4.12. Thus, only now
we assume that R is a complete discrete valuation ring with uniformiser 7 and field
of fractions K of characteristic zero. Since R is a Dedekind domain, all the previous
result of Subsection 3.4.1 still apply to (F,¢q). Thus, we obtain the isomorphism of
R-algebras

C(E,) ® C(E)EY = C(Ey) ® Co(Es) ® C(E1)Z_ @ Cy(Ey) < C(Ey) ®C(E,),

but this time we may write Z_ = Rz with z € Z, satisfying 22 = d. Here, d denotes
a fixed representative of disq(E}), the latter being regarded as an R-square class, as
described in Remark 3.2.3.

Notation 3.4.10. Fix R-bases (e; | i € 2m) of E; and (f; | j € n) of Es, so that
(er | I € 2m) and (“f; | J C n) are R-bases of C(E;) and C(“Es) respectively.

Note that C(“Fs) is an R-order inside C(“V;) and, due to Lemma 3.4.2 (iii), it is
actually the local equivalent of the R-order C(°FEy) from the global case.

Lemma 3.4.11. Using Notation 3.4.10, the following hold.
(i) The R-algebra C(E) has the basis (erfy).

(i1) The R-algebra C(E,) ® C(E)°¥1) < C(E) has the basis
(ejfj | |J| =9 0) U (Zejfj | ’J| =9 1) .

(iii) The R-algebra C(E) @ C(Ey) has the basis <€] ® de>.

Theorem 3.4.12. Use Notation 3.4.10 and let X denote the R-order in C(V}) @
C(Vy) with basis

d-'%, FEX

[J]+1

<()\IJ61)®de |[§2_m,J§ﬂ>, Ay = :
(-D)Hd="="2, |J| =1

Then C(E) = X as graded R-algebras, so Y = C(E,) ® C(Ey) is an R-suborder of

X. Moreover, the index of Y in X is [X : Y] = 7°, with s = v(d)2*™ V", In

particular, X =Y, i.e. C(E) =2 C(F,) ® C(*E,), if and only if d € R* is a unit.

Proof. The isomorphism C(FE) = X is follows immediately what we already proved in
Theorem 3.4.5. We also showed )V C X, so it remains to consider the quotient of R-
modules X' /Y. This is an R-torsion module, uniquely determined by its elementary

divisors and we need to determine their product. To compute it, we consider two
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R-module endomorphisms of X, that induce automorphisms of the ambient space

K ® X. The first one, call it ¢, is defined as the identity on the basis elements

d%‘el ® 4f;, if | J| is even; and as left multiplication with z on the basis elements
_ I+

d="2 ze; @ Ufy, if |J] is odd. Clearly, det(p) = d2*" """, due to 22 = d and
rank(C(E;)) = 2?™. The second endomorphism, call it 7, is given by

[J]=1

7(61 & dfj) = d%ej ® de, ‘J| =9 0 and 7'(6] X df]) = dTGI (29 dfj, |J| =9 1.

In the following, I, J run through the subsets of 2m and n and equality only holds

up to a sign. We compute

92m
L1 L1 2] =1
det(r)= [] d2 J[ -0"da = =| [] d= [] 4
1,J, 1,J, |J] even |J| odd
|J] even |J] odd

1
5( SRVINDS (|J|—1)>22m
|J| even |J| odd

=d = d".

Simplifying the exponent yields

p=22" Y g Y (- =2t (D= >

|J| even |J]| odd |J] odd

n

n

— 22m—1 k: - 2n—1 — 22m—1 2n—1 o 2n—1 — o 1 22(m—1)+n.

> (3) ( )=
k=0

By construction, 7 o ¢ induces a K-automorphism of K ® X which maps the basis

of X to a basis of ). Taking the valuation of det(y)det(7) gives the result. O

Remaining proof of Theorem 3.4.5. Returning to the situation that R is an arbi-
trary Dedekind domain with field of fractions K of characteristic zero, we denote
the completion of R at the fixed prime p by R,. Put a, = 14,(c), so 14(0) =
2a, + 1y(d) > 0 and fix a uniformiser 7, € R,. Then R, ®p ¢z = Ry(my"z) and
(mp"2)? = Wﬁa”d S Rp. Applying Theorem 3.4.12 to Ii’p, we have

fzp ®RX:}A%p ®Ry7
if and only if m2%d € RX is a unit. This is equivalent to 14,(0) = 2a, + 14,(d) = 0 and
p p p p TV

because equality of lattices is a local property, the proof is finished. n
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3 Centroids of Clifford orders

3.4.2 The orthogonal decomposition for odd rank

It remains to generalise Theorem 1.2.28. For this, let 2m + 1 := rank(E}) be odd,
so dim(V) = 2m + n 4+ 1. By Proposition 3.2.8 (ii), the centroid Z = Z(E,q)
is orthogonal and there is z € C;(E;), with Z = R1 @ ¢z and 0 == 2* € K. More
precisely one has 6(K*)? = disc'(V4). Put 0 :== {—=)\?2? | A\ € ¢}, so that we have
disq(E1) = (¢%0,6(K*)?) and 0 = —c?6 N —4(K*)?. Then, with exactly the same
proof as for Lemma 3.4.4, we obtain the following facts about the set 0.

Lemma 3.4.13. (i) We have dNR* # 0, if and only if we can choose ¢ = R and
22 = -0 € R*.

(11) For each prime p of R, we have v,(d) := 2v4(c) + 14(0) > 0.

(iii) If B is free and we regard disq(E1) as an R-square class, then d = disq(F;)R?,
where R* = {2* | © € R}.

Notation 3.4.14. Fix pseudo-bases (e;, a;)icom+1 of £y and (f;, b;) e, of Ey. More-
over, let °Fy = (°Ey, —dqz) denote the even R-lattice with pseudo-basis (f;,¢b;)jen
and the by —¢ rescaled quadratic form gs.

For example, (°f;, c’lb;) ;c, is a pseudo-basis of the Clifford order C(°E,). Also,
note that C(°Es) is an R-order in C(7°V3).

Lemma 3.4.15. Using Notation 3.4.14, the following hold.
(i) The R-algebra Co(E) has the pseudo-basis <(6]f], arby) | |1]+]J] =2 0).

(ii) The R-algebra Co(E,) ® C(°Esy) has the pseudo-basis

((61 @ fy, Mlarby) | 1] = o) .

Our aim is to describe the isomorphic image of Cy(E) under the K-algebra iso-
morphism Cy(V) 22 Co(V1) ®x C(7°Va) from Theorem 1.2.28. Thus, we need this
isomorphism explicitly.

Lemma 3.4.16. Use Notation 3.4.14, so that (erf; | |I|+|J| =2 0) is a K-basis of
C(Vi L V,). Then the following hold.

(i) For any two Ji,Jo Cn, let t == |Jy| + | Jo|. If

frfrn=">_ nifrec(va)

JCn
‘J‘Egt
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3.4 The orthogonal decomposition

with unique py € K (equal to zero whenever |J| > t), we have

O f 0, = Z (=8) VD2, 1 e C(V3).

JCn

|J|52t

(ii) The K-algebras Co(Vi L Vo) and Co(Vi) ® C(™°Va) are isomorphic via

(—5)*”'/261@_5[], [I| =2 |J| =20

@(6[]{]) = .
(—=0)" WD 22e, @ 0 fy, I =2|J| =2 1

Proof. We start with assertion (i). The left-hand side f;, f;, can be transformed

into the right-hand side > pusf; € C(Va) by successively applying the relations
|J|=2t

fifs = b(fis £5)— i and f2 = q(f:). By applying the exact same steps to ~*f5, ~*f,.
one obtains the claimed right-hand side. This is because the relations in C(~°V3)
can only shorten the length of the initial index sequence (Ji,J3) by two, while
introducing a factor —d, whenever this happens (and may generate a of copy of the
current index sequence). For part (ii), we only need to show that ¢ is multiplicative,
since with 1 and z also the images of the basis vectors of Co(V; L V3) under ¢ are
K-linearly independent. Consider subsets I;, I C 2m + 1, J;,J; C n, such that
enfn,enfn €Co(Vi L V3) and put t := |Ji| + |J2|. Then, forall I C2m+1,JCn
with |I| =2 t and |J| =5 t, there are unique A7, 1y € K such that the equations

erer, = Z Arer and  fj fj, = Z prfr

|I|52t |J|Ezt

hold. Moreover, using e; f; = —fje;, for alli € 2m + 1, j € n, we have ey, fjer, f7, =

(=D)I2Iile; e, £, f1,. Using these two facts, we obtain

()0(611612fJ1fJ2) = Z )\I/LJ‘;D(elfJ)

|[‘EQ|J|EQt
S A (=8) V2 0 70y, t even
|I|52‘J‘52t
S Ay (=0)" WD 2z, @ 0F, 0t odd
|I|EQ‘J‘EQt
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3 Centroids of Clifford orders

on one hand. On the other hand, we compute

)
(=0) " enern, @ °f1 " f1, t even

(_1)”1“[2'(,0(6[1le)(P(GIQfJQ) =
(=0)~ "V 2z¢p e, @ 17 fsy, todd

\

)
> Ai(—6) "2 ®_6fJ1_6fJ2, t even
_ |I|Ezt
ST N(=6) "Dz, @0 f, 70 f5,, todd
[I|=2t
\

using t = |J1| + |I2| and the definition of p. By part (i) of the present lemma, these

two expressions are equal, so we are done. ]

Theorem 3.4.17. Use Notation 3.4.14 and let X denote the R-order in Co(V1) @k
C(°V,) with pseudo-basis

((e; ®°fs, (—5>_%a[bj>‘ || 520) U ((ze; ®°f;, (—6)_”';1 a]bj)‘ 1] =, 1> ,

where (I, J) runs through the pairs of subsets of 2m + 1 and n, that satisfy |I| =
|J|. Then Co(E) = X as graded R-algebras, so Y = Co(E,) ® C(°Ey) is an R-
suborder of X. Moreover, X =Y, that is, Co(E) = Co(E,) @ C(°Ey), if and only if
rank(F,) = rank(Ey) =1, i.e. m =0 and n = 1; or for all primes p of R, we have

vp (d)

Vy(0) = 215(¢) + 14(0) = 0, d.e. 1,(0) € 2Z, for allp and c=[[p~ "=z .
p

Proof. The claim Cy(E) = X is immediate from Lemma 3.4.15 (ii). If Y = Co(E1) ®
C(°E,), then Y C X follows from an analogous argument as was used in the proof
of Theorem 3.4.5. Thus, Co(E) = Y, if and only if ) = X and this can be checked

locally, so the proof of the local version of this theorem suffices. n

The orthogonal decomposition for odd rank - local version

Suppose that R is a complete discrete valuation ring with uniformiser 7 and field
of fractions K of characteristic zero. Then Z = R1 & Rz, with z € C;(E;) and § =
z? € R, so we identify disq(E,) with the R-square class §(R*)?, as in Remark 3.2.3.
In particular, 6(K*)? = disc’(V1, ¢1) holds. Choose R-bases (e; | i € 2m + 1) of E;
and (f; | j € n) of By, so that (e; | I € 2m+1) and (7°f; | J C n) are R-bases
of (,; (E)) and C(7°E,) respectively. Also note that C(~°FE,) is an R-order inside
C(Va).

Lemma 3.4.18. zC,(E)) < Co(E1) is an R-sublattice and [Co(Ey) : 2C1(E1)] = 7°,
where s = v(6)22™71 if m > 1; and s = v(§), if m = 0. More concisely, s =
V(5>2max{2m—170}_
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3.4 The orthogonal decomposition

Proof. By Proposition 3.2.8 (ii), we have z € C;(E}), so zCy(F}) is a sublattice of
Co(F1) as claimed. It remains compute the index [Co(F1) : 2C1(E7)]. The case m =0
is trivial, as then Ci(Ey) = Ey = Rz, so zC,(F;) = RS and Cy(F1) = R1. Now, let

2m
m > 1 and put e = ey,,11. Without loss of generality, write £y = @ Re; 1. Re =

i=1
(E',q") L Re. Put a = q(e) € R — {0}, so that 6 = disq(E,) = disq(E£")disq([a]) =
a-disq(E’), by Theorem 3.2.11. Hence, the element 2’ := a"lez = a~'ze € Cy(E') C
Co(E)) satisfies (2/)* = a1, so (1,2') is an R-basis of Z(FE’,¢')°. Using this, we

compute

2C1(Ey) = @ 2Re; ® @ 2Reje = EB ZeRe; ® GB Z'eRere

I1C2m 1C2m |I] odd |I] even
|I] odd || even

= @ 7' Reje @ @ 7' Rae; = 2 @ Rere @ @ Rae;
|I] odd |I| even |I] odd |I] even

This implies that there is an inclusion chain of R-lattices
2C1(Ey) < 2'Co(Er) < Co(Eh)

and [2'Co(EL) @ 2C1(Ey)] = o™ . Finally, left multiplication with 2’ is an R-module
endomorphism of Cy(E;) with image 2'Cy(FE7). Thus, using rank(Co(F;)) = 2*™ and
(2/)2 = a8, we have [Co(E)) : 2/Co(Fy)] = (a='6)*™". Now the claim follows from

[Co(Er) @ 2C1(EL)] = [Co(Er) : 2/Co(Er)] - [2'Co(Er) = 2C1(Er)] = 57 O

Theorem 3.4.19. Keep the notation from above and let X denote the R-order in
Co(V1) @k C(~°V4) with basis

(=0 2er @ =f5 [ 11 =20) U (=) 0 22e @ 70fy | 1] =51),

where (1, J) runs through the pairs of subsets of 2m + 1 and n, that satisfy |I| =2 |J].
Then Co(E) = X as R-algebras, so Y = Co(E1) ® C(7°E,) is an R-suborder of X.
Moreover, the index of Y in X is [X : Y] = 7, where s = v(§)220m=V+np_4f
m > 1; and s = v(6)2" %(n — 1), if m = 0. In particular, X = Y, i.e. Co(E) =
Co(E1) @ C(T°Ey), if and only if 6 € R* is a unit; or both m = 0 and n = 1 hold.

Proof. By Theorem 3.4.17, we have Co(F) = X and Y C X. Consider the following
three full R-lattices inside Cy(V1) ®x C(~°V4), where I runs through the subsets of
2m + 1 and J runs through the subsets of n:
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3 Centroids of Clifford orders

) @ R VPere e @ R(=0) W (zer @ ~f))

|1]=]J|=0 IEE!
2) @ Rer® °f)e @ Rl °f)
|I|=|J|=0 |7|=0,|J|=1

3) @D Rer®’f))® @ R(ze;® °f)

[|=|J7|=0 [|=l7|=1
Note that the first lattice is X, the second one is Y and the third one, call it
L, satisfies L C Y. Then, a computation analogous to the one in the proof of
Theorem 3.4.12 yields [X : L] = 7°t, with s; = v(§)22™~Y*"(n + 1). Furthermore,
using Lemma 3.4.18 and rank(C(E:)) = 2", we have [V : L] = 7% with 5o =
p(0)2maxi2m=1)+nn=1} ' Thyus, [X : )] =[x : L]-[YV: L' = 772, We compute

22(m71)+nn’ m>1

S| — 8o = V((S) (22(m71)+n(n + 1) . 2rr1ax{2(n’L71)er7 nfl}) _ ’
2"2(n—1), m=0

so we are done. O

Remark 3.4.20. For m = 0, we regain the statement of Proposition 2.3.7 (ii) in

the special case that R is a complete discrete valuation ring.

3.5 Centroids of the root lattices

In this section we conduct a case study on the centroids of the so-called root lattices.
We prepare it with a brief introduction to the theory.

3.5.1 Root lattices

For the theory presented in this subsection, we mainly follow [Ebe02, Section 1.4].

Definition 3.5.1. Let R" = (R", ®) be the euclidean n-space with the standard
scalar product ® and (L, ¢) C R™ be an integral quadratic Z-lattice. The set of roots
of LisR = {z € L | g(x) = 1}. L is called a root lattice, if and only if L is
generated by fR.

Remark 3.5.2 (|[Ebe02| Theorem 1.1). Let (L,q) be a root lattice. Then, with
respect to a suitable basis (ej,...,e,), we have ¢g(e;) = 1, for i = 1,...,n and
®(e;, e;) € {0, —1}. This means that the Gram matrix with respect to this basis has
twos on its main diagonal and all other entries are 0 or —1. In particular, a root

lattice is always even, so it has a Clifford order.
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3.5 Centroids of the root lattices

Definition 3.5.3. A lattice L C R" is called reducible if there are non-zero lattices
Ly CR™, Ly C R™ with L = Ly 1 Ly. Otherwise, it is called irreducible.

One can assign an undirected graph to a root lattice, the so-called Coxeter-Dynkin
diagram. It has the vertex set {e1,...,e,} and two vertices are connected by an
edge, if and only if ®(e;, e;) = e;e; +eje; = —1 € C(L).

Theorem 3.5.4 (|[Ebe02] Theorem 1.2). Ewvery root lattice is the orthogonal di-
rect sum of the irreducible root lattices with the Coxeter-Dynkin diagrams of types
A, Dy, (n>3), Eg, E7 and Eg. Here, n > 1, for type A; and n > 3, for type D.

We will denote the corresponding irreducible root lattices by A,,,D,, Eqs, E; and
Eg. For detailed constructions we refer to [Ebe02|. Instead, we provide a brief
summary of their construction, as well as a Gram matrix and the discriminant for
each of these lattices. In the following, let I,, = (Z", ®) denote the standard lattice,
given by the orthonormal basis €1, ..., ¢&,.

The lattices A,

These lattices can be constructed as a sublattice of I,,; 1, namely it is the orthogonal
complement of the vector e = (1,...,1)" € 1. Then A, has the basis (e1,...,e,)
with e; = ¢; — €;21 and the associated Gram matrix is given by

(3.3)

Its determinant is n + 1, so disc(4A,,) = (—1)(3)(71 + 1) € Z, under the identification
Z)(Z*)* 2 Z.

The lattices D, (n > 3)

For a fixed n > 3, the lattice D, is the so-called even sublattice of I,,, that is

D, ={z€l,|qx) €22} ={(z1,....z,)" €L, | > _x; € 2Z}.

Thus, a basis is given by (eq,...,e,), with e; = &; — &;4q, for i = 1,...,n — 1 and
en = €n—1 + &,. The associated Gram matrix is

Ry (3.4)
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3 Centroids of Clifford orders

Its determinant is 4, because [I, : D,] = 2. Hence, disc(D,) = (—1)(3>4 € Z.
Finally, note that D3 = Az by swapping the first two basis elements of 3. For
n > 4, the lattices A,, and D,, are not isometric.

The lattices E,, (n = 6,7,8) We start by considering Eg. This lattice is known
to be even and unimodular, so disc(Eg) = 1. It can be constructed from the so-
called extended Hamming code of length 8 (cf. [Ebe02] 1.3). The lattices E; and Eg
can be constructed as the orthogonal complements of a one-dimensional and two-
dimensional subspace of Eg respectively. We represent the root lattices E,, by a basis
(e1,...,€,) n=06,7,8 with Gram matrix

Gny —1

-1 2 -1 0 -1
-1 2 -1 0 |ezv (3.5)
0 -1 2 0
-1 0 0 2

where G,,_, € Z("=9*(=4) i5 the Gram matrix of the lattice A,,_, from above. One
has disc(Eg) = —3, disc(E7) = —2.

Remark 3.5.5. While one does not obtain a root lattice anymore, one can define
the bilinear Z-lattice E,,, with n > 10 as the non-degenerate even Z-lattice of rank n
with Gram matrix 3.5. This lattice is not positive definite, so it cannot be regarded
as a sublattice of (R", ®). Its determinant is 9 — n, so disc(E,) = (—1)(3) (9 —n).

Remark 3.5.6. Not only does the Gram matrix of A,,_4 occur as a submatrix of
the Gram matrix of [E,,, but also the Gram matrix of A,,_; occurs as a submatrix of
the Gram matrix of I,,. This is a key observation for the construction of the bases

of the centroids in the next subsection.

3.5.2 Computing the centroids

Let (L, q) be aroot lattice with quadratic discriminant ¢ = disq(L) € Z/(Z*)?* = Z.
As Z is a principal ideal domain, each Z-order is free as Z-lattice, so Z = Z(L, q)
has a Z-basis (1,z), where x € Z is integral as an element of the ambient space
Z(QL,q) = Q[X]/(X?—0). The general strategy for finding such an element z is to
first find an element 2’ € Z such that (1,2’) is a Z-basis of the maximal orthogonal
suborder Z°. Then, either x = 2/, so Z = Z° is orthogonal, or z = HTI/ and
then Z = Z[X]/(X? — X + 15%). The latter happens, if and only if 5= € C(L)
(this requires rank(L) € 2Z by Proposition 3.2.8 (ii)). In the following, we call 2’
a mazximal orthogonal element of (L,q). It is unique up to conjugation with the
unique non-trivial automorphism B of Z, i.e. up to its sign. It satisfies (2/)* =

disq(L, q) = 6.
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3.5 Centroids of the root lattices

By Theorem 3.5.4, every root lattice is the orthogonal direct sum of irreducible
ones, the latter being the lattices of types A,,D, and E, with their respective
allowed values for n. Thus, in view of Theorem 3.2.11, it is sufficient to compute the
centroids of said irreducible root lattices. Alternatively, if we have the centroids of
the irreducible root lattices available, we can apply Theorem 3.2.14. We illustrate
this.

Ezxample 3.5.7. In Theorem 3.5.10 we show that disq(A;) = 3, disq(Ag) = —7 and

give explicit formulas for the maximal orthogonal elements of these lattices.

(i) We have disq(As L As) =9, s0 Z(As L A;)° = Z[X]/(X? — 9) and, due to
Theorem 3.2.14, the centroid is orthogonal, whence Z(A; L Aj) = Z(A5; L
As)°.

(ii) We have disq(A; L Ag) = —21, so Z(As L Ag)° = Z[X]/(X? + 21) and since
the rank of this lattice is odd, also Z(As; L Ag) = Z(A5 L Ag)°. We could, of

course, have used Theorem 3.2.14 once again.

(iii) We have disq(Ag L Ag) =49, so Z(Ag L Ag)° = Z[X]/(X? — 49). This time,
the centroid is not orthogonal, by Theorem 3.2.14. This implies Z(Ag L Ag) =
ZIX]/(X? — X —12).

If one is interested in formulas for the maximal orthogonal elements of these direct

sums, one can use Theorem 3.2.11.

The lattices A,

The Gram matrix 3.3 provides a natural embedding C(A,) C C(A,+1), for all n >
1. Thus, we can consider all the following computations inside C(A,,) for some
sufficiently large m € N.

Let (e1,...,en) be the basis of A, with the Gram matrix from 3.3 and define the
sequence (a;);>0 by

2, i even

apg — 1, a; = € and a; = €;Q;_1€; + a;_9, with g = . .
1, iodd

If necessary, we put a; = 0, for 7 < 0.

FExample 3.5.8. The first elements of this sequence are

ag — 1, a; = €1, g = 1+ 26162, a3 = e; +es+ 2616263.

Our goal is to show that a, is a maximal orthogonal element of A, for n > 1. To
do so, we need a number of technical results on this sequence.
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3 Centroids of Clifford orders

Co(A;) C Co(A,,), i even

Lemma 3.5.9. (i) Fori > 1, we have a; € :
Ci(A;) C Ci(A,,), i odd

(11) If the coefficient of the basis vector e;, .. .e;

is mon-zero, then it is 2131, In particular, the greatest common divisor of all

€ C(A,,) as a summand of a;

r

these coefficients is equal to 1 and H% € C(A,,), if and only if n is even.

(iii) For all 0 <i < j—2<m, we have e;a; = (—1)'a;e;.

. . 20,1 + a;€i11 = Qi1 + a1, L even
() Foralli>0: e;1a; = .
—Qj—1 — Aj€iy1 = —Qiy1 + €41, 1 odd

In particular, e, 1a; — (—1)'a;e;01 = (—1)'g;ai4 1.

(v) For alli>1: e;a; = (—1)tase; and e;_1a; = (1) Lae; .

Proof. Assertion (i) is an easy induction and (iii) is an immediate consequence of (i)
as e; does not occur as a factor in any summand of a;, if i < j — 2. To see (ii), note
that a; and a;,1 do not share any common summands, as one of these is even and
the other one is odd by (i). Now (ii) is an easy induction. Assertion (iv) is obvious,
for 2 =20,1, so let « > 2. Then

(i) | —2ai-1€41€; + a;_2€i11, 1 even
€it10; =
@;—1€i41€; — Aj—2€41, i odd

;

—2a;-1(—1 — ejej41) + aj—2€i41, @ even

ai—1(—1 — eeip1) — ai—g€i41, i odd
\
4

2a;_1 + a;e;11, 1 even

7
—@j—1 — i€y, 1 odd
\

which proves (iv). Finally, consider (v). The statements hold for i = 1,2 respec-
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tively, so let ¢ > 3. Then

.
2e;a;_1€; + a;_s€;, 1 even

€y =
€;a;_1€; — A;—26€;, 1 odd

\

(

1 even

2(—ai + ai_167;) + a;_o6;,
(ai + ai_g)ei — a;—26;, 1 odd

\
—a;e;, 1 even

)
a;e;, 1 odd

where the last equation in the even case holds due to e? = 1. This proves the first
part of (v). Using it yields

2a;_1(€i—1€; + €i€;_1) + €,_1a;_2 + a;_2e,_1, 1 even

i
€;—10; + (—1) a;e;—1 = .
—a;_1(€i—16; +eiei1) + €i_1a;—2 — a;—2¢,_1, 1 odd

—2a;_1+ 2a,_1 =0, 17 even
iodd

aj—1 — a;—1 =0,

(i)

so the proof is finished.
Theorem 3.5.10. (i) For alln € N and 1 < j < n, the equality

eja, = (—1)"la,e;

holds. In particular, (1,ay) is a Q-basis of Z(QA,,).

n 1
)2)‘ n—+1, n even

(ii) For allm >0, we have a? = (—1 ( .
ntl n odd

2

(111) a, is a maximal orthogonal element for A, for all n € N.

(iv) Put 6, = a?> = disq(A,). Then, for all n € N, we have an isomorphism of

Z-orders
ZIX)/(X? = X + ), n even

Z(A,) & .
Z[X]/(X? - 6,), n odd
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Proof. Assertion (i) is clearly true for ¢ = 1, so suppose that it already holds up to

some fixed n € N. If 1 < j <n — 1, using this hypothesis, we find

n—1 n—2
€jlnt1 = €janeni1 + €jan_1 = (—1)" azejent1 + (—1)" “a,_1e;

= (=1)" an(—ensre;) + (1) "an_1e; = (=1)"ans1e;.

The remaining cases j = n and j = n + 1 follow from Lemma 3.5.9 (v). Assertion

(ii) holds for n = 0, 1, so let n > 2 and note that assertion (i) implies
Ap—10p—2 = (_1)nan—2an—1-

Using this, we find

(
4 + 2 + + a? %
Ap—1€nadp—1€n Ap—1€nQp—2o Ap—2Qp_1€En a, o, N even
a + a + + 2 dd
n—1€ndn—1€n Ap—1€nAn—2 Qp—20n—16€n an_Qa no

\
p

4ay 1 (—Qp_9 — Qp_1€p)en + 40y _2a, 16, +a> 5, n even
an—1(2an—2 + an—len)en + 2an—2an—1en + a721—27 n odd

\
p

2 2
—4a;_| +a;,_o, neven

2 2
a,_,+a; o, n odd

DB - (n-1)=(-1)Bn+1), neven
(—1)(3)(71—"7_1) - (_1)(3)"—+1, nodd

2

which proves (ii). Now (iii) follows from (i), (ii) and Lemma 3.5.9 (ii). Finally, (iv)
follows from (iii). The respective isomorphism is given by sending a,, or H% to the

residue class of X. OJ

Corollary 3.5.11. Z(A,,) is the mazimal order in Z(QA,,), if and only if n+ 1 is
squarefree, for even n; and “TH is squarefree, for odd n. Moreover, Z(A,) = Z(A,)°

18 orthogonal, if and only if n is odd.

The lattices D,, (n > 3)

For n > 3, we fix a basis (e, ..., e,) of D,, with associated Gram matrix 3.4. Then
we have an embedding C(A,_;) C C(D,) because the Z-subalgebra generated by
(é1,...,€,_1) is naturally isomorphic to C(A,,_1). Thus, the finite subsequence a;,
i =0,...,n—1 which is defined as for the lattices A,_; makes sense inside of C(D,,)
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3.5 Centroids of the root lattices

and for n > 3, we can define
dn = Qp—1€n + Qp_36n_1 € C(Dn)

We claim that d,, is a maximal orthogonal element for ID,,. As for the lattices of type
A,,, we will again need a number of technical results. Note, that we have the results
from Lemma 3.5.9 and Theorem 3.5.10 available, as long as all terms involved do lie
in the subalgebra C(A,,_1).

Lemma 3.5.12. Let n > 3. The following relations hold inside of C(D,,).

(i) For all 0 <i <n — 3, we have e a; = (—1)'a;e,,.

2ay,-3+ a,2€ n even
—Qp—3 — Ap—2€yn, N odd

(iii) entn_1 = (=1)""Yan_16, — 2a,_36,_1).
(iv) an-1+ an_sen_1€n_o+ (—1)"€p_2a,_3€,_1 = 0.

Proof. Assertion (i) follows from Lemma 3.5.9 (iii), while (ii) is pretty much just
(iv) from said lemma, but in the current situation. Its proof is the same calculation,

using e, o€, = —e,e,_o. For assertion (iii), we compute

Enln—-1 = en(gn—lan—Qen—l + an—3>
¢ ,:(“) (_1)n<5n—1an—2(_en—len) + 2an—3en—1) + (_1)n_1an—3en

(_1>n71<€n*1an*2€n71 + a/nf?))en + (_1>n2a/n,3€n,1

=

(=) Yap_1e, — 2an_365_1).
Finally, consider (iv). Using the recursive definition of a,_; twice yields
(p—1 = 20p_3€n—2€n_1 + En—10n—4€n_1 + Qp_3.
Using this and e,_1e,_9 = —1 — €,,_se,,_1, we find the identity
Ap-1+ Qp_36n_16n_2 = (An_36n_2 + En_10n_4)€n_1.
Now, by Lemma 3.5.9 (iv), the equation
(=) "ep—san_3en_1 = —(an_36n_2+ €n_1an_4)€n_1

holds, whence the proof is finished. n
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3 Centroids of Clifford orders
Theorem 3.5.13. (i) For alln >3 and 1 < j < n, the equality
ejd, = (=1)""'d,e;
holds. In particular, (1,d,) is a Q-basis of Z(QD,,).

1, n even

(1i) For allm >0, we have d? = (—1)(75) : .
2, n odd

(111) d, is a maximal orthogonal element for D,,, for n > 3.

(iv) Put ¢, = d?> = disq(D,). Then, for all n > 3, we have an isomorphism of
Z-orders Z(D,,) = Z[X]/(X? — §,). More precisely,

(

ZIX]/(X? = 1), n=40
ZIX)/(X2=2), n=41
2 JEXV 2, =1
ZIX])/(X?2+1), n=42
ZIX]/(X?+2), n=43
Proof. Beginning with (i), we have e;d, = ej(a,—1€e, — an_3€;), so the claimed

equality is easy to see for all j # n — 2, n. We first consider j = n. Then, using

Lemma 3.5.12 (iii), we compute

endn = (_1)n71<an716n + 2an73€n71)€n - <_1)n71an73€n€n71

(_1)n—1(an_1 + 2an—36n—1€n - an—?’en—len)

(=) Nan—1€n + an-3€n_1)e, = (—1)""'d,e,.

Now let j = n — 2. Similarly, we compute

n
en—2dn - 1 (an 1€n— 2€n) — €p—20p—3€6n—1

1 " (d €n—2 + Ap—1 + Ap—3€6n—1€6n—2 +( 1)n€n—2an—3en—1)

(=1)
(=) Yan_1 + Gp_160€n_2) — €n_20n_36n_1
(=1)
(=1)

1n1d6n 2,

where in the last step, Lemma 3.5.12 (iv) was used. This proves (i). For assertion

(ii) we have

di - (an—len—1)2 - (an—lenan—?)en—l + an—3€n—1an—16n) + (an—Sen—l)z-
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3.5 Centroids of the root lattices

Using a,—1Gn—3 = Gp_3a,_1, for all n > 3 and Lemma 3.5.12 (i), the summand in

the middle simplifies to
—(Ap—1€nn_3n_1 + Upn_36n_1an_16y) = (—1)" 20y, _1ap_36n_1€p.
The same argument applied to the last summand yields
(an-sen1)? = (—1)" a2 e, = (~1)" a2
Lastly, using Lemma 3.5.12 (iii), the first summand becomes
(an_len_1)2 = (—1)”_1(afl_1 — 2010y _3€,_1€5).

After substituting the equalities for the three summands and using the identities for

a? from Theorem 3.5.10, we obtain

|3

=1, n even

n—(n—2)=2, nodd

whence (ii). Assertion (iii) follows from (i) and (ii), together with Lemma 3.5.9 (ii):
By the definition of d,,, the coefficient as a summand of d,, of the basis element e,,_1,
if n is odd; or of the basis element eje,_1, otherwise, is —1 respectively. Finally,
because the coefficient of 1 € C(D,,) is zero, 1% ¢ C(D,,), so (iv) follows immediately
from (iii). O

Corollary 3.5.14. Z(D,,) is the mazimal order in Z(QDy,), if and only if n is not
divisible by 4. If n =4, 0, Z(D,,) is isomorphic to the unique indez-two suborder of
the mazimal order Z[X]/(X? — X). In all cases, Z(D,) = Z(D,)° is orthogonal.

The lattices E,, (n =6,7,8)

For these lattices of exceptional type, finding a maximal orthogonal element, call it
z, € C(E,), can be solved algorithmically; see Algorithm 2. Let (ey,...,e,) be a
basis of [E,, with associated Gram matrix 3.5. Then, as in the case of the lattices
D,,, we have a natural inclusion C(A,,_4) C C(E,) and the elements of the sequence
a; make sense inside C(E,,), for i =0,...,n — 4.

Theorem 3.5.15. Let n =6,7,8.
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3 Centroids of Clifford orders
(i) The following elements x,, are mazximal orthogonal for E,:

xg = as(1 + 2e4e5) + 2ases,
x7 = az(1 + 2eseq) + ager,

xg = aq(1l + 2eger) + 2azes.

Moreover, the equalities x3 = —3, x2 = —1, 22 =1 hold, so disq(Es) = —3,
disq(F7) = —1 and disq(FEg) = 1.

(ii) We have the isomorphisms of Z-orders

X
5
I
N

[X]/(X* =X +1),
Z(Er) = Z[X]/(X? + 1),

so Z(E,) is the unique maximal order in Z(QE,) in all cases.

Proof. Assertion (i) is an explicit computation, while (ii) follows from (i), and Lem-
ma 3.5.9 (ii). For n = 6,8 the isomorphism is given by sending H%, for n = 7 by

sending x7 to the respective residue class of X. O

Remark 3.5.16. More generally, if one considers the lattices E, with n # 9 and

n > 6 that were described in Remark 3.5.5 then one can show that

an-a(1+2e, 9e,_1) + 2a,,_1€,, n even
Ty =
an_a(l+2e, 9e, 1)+ a,_16,, nodd

is a maximal orthogonal element for [E,, and that

9—n, neven

9n  podd

holds. Hence, putting 6, := 22, we have the isomorphisms of Z-orders

ZIX]/(X?— X + 1), neven

Z(E,) .
ZIX]/(X? = 6,), n odd

In particular, for even n, Z(E,) is the maximal R-order in Z(QE,), if and only
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3.6 Practical considerations

if 9 — n is squarefree. For odd n, it is the maximal R-order, if and only if %2 is

squarefree.

3.6 Practical considerations

In this final section, we present how the centroid and the quadratic discriminant
can be computed effectively over an arbitrary Dedekind domain R. This is done in
Algorithm 1 and Algorithm 2 below. The idea of this algorithm is heavily based on
the short discussion at the beginning of Subsection 3.5.2, as will become apparent
in the proof of Theorem 3.6.2. Let (L, q) be non-degenerate of rank n with pseudo-
basis (e;, a;)icn. For better readability, we identify 0~' with K. This is effectively

Algorithm 1 Quadratic discriminant and centroid

Input: The Clifford order C(L) with pseudo-basis ((e7,a;) | I C n)
Output: Pseudo-clements (3, b) and (z, a), such that disq(L ) (b%32,3%(K*)?) and
Z(L,q) = R1 ® az
1: Compute an orthogonal basis (z1,...,x,) of (KL,b,)
2 Put 3« a1...2, = Y. Aje; € C(KL), ¢+ () A\;'a; > Identifying 07! with K

Icn 0#ICn
3: b A;'RNe, 24 Xp+3 and a< (2\g) 'RNc © Identifying 0! with K
4: return (3,b) and (z,a)

the same as omitting the intersections with the ideals A} 'a, if I C n with A\; = 0.
Remark 3.6.1. Let Z := Z(L,q).
(i) If Ay =0, e.g. if n is odd (see Proposition 3.2.8), then Z = Z°.

ii) Algorithm 1 returns Z = A(a,2Xg, A2 — 32). If Z D Z° then Ay # 0 and we
0

have

)\2 52
A(a, 20, A5 — 3°) = A [ 2090, 1, .

4)\2

Here the right-hand is as in Remark 3.1.6. It is obtained by adding a normal-
isation step to Algorithm 1. This in turns leads to the normalised algorithm
Algorithm 2 further below.

Theorem 3.6.2. Algorithm 1 is correct.

Proof. Let Z = Z(L,q). We first focus on the quadratic discriminant. From
Theorem 3.1.12 it follows that Z° = R16.2°, the latter summand being the elements
in Z with vanishing trace. Now Z° has rank one and from [KS02, (7.9) Satz|, we
obtain that KZ° = K3, with 3 as defined in Algorithm 1. Thus, Z° = b3, with b
the largest ideal of R such that b C C(L). Since ((es,a;) | I C n) is a pseudo-basis
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3 Centroids of Clifford orders

of C(L) and 3 = > Arey € C(K L), with unique A\; € K, this implies bA; C ay, for

ICn
17Cn N
Al = oW b= \'a

ICn,
A7 #£0

satisfies this and, by its definition, is the largest such ideal. Note that b = )\alRﬁc, if
Ap # 0; and b = ¢, otherwise. Thus, Algorithm 1 computes disq(L) correctly. With
that it remains to consider Z. Due to Proposition 2.1.8 and Theorem 3.1.12 (iii),
there are fractional ideals b’, R C J C %R and some z, such that Z° = R1 & b’z
and Z = R1 & Jb'z (compatible pseudo-bases). Using Proposition 2.1.7 (i), we
may assume that b’ = b and z = \ + 3, with some A\ € b~!. Clearly, A must be
chosen, such that R C J C %R is as large as possible, with Jbz C C(L). Now,
Jbz C C(L) is equivalent to J C b= (A a;), for all } # I C n, with \; # 0; and
(A4 Xg)TJb C ayp = R. For short, the two conditions

JCb'cand A+ X)JbC R

must hold. Note that only the second condition depends on A and is always satisfied
for \:== )Xy € b7 !, dueto J C %R. Thus, z == A\p+3 and since R C J C %R must be
as large as possible with 7 C b~ !¢, we have J = %Rﬂb_lc. Thus, a .= Jb = %bﬂc
satisfies Z = R1 @ az. Finally, using b = )\Q_IR M ¢, we obtain

1 1
a= §b Ne=(2\) 'RN FeMe= (2M\) 'RNc,

so Algorithm 1 is correct. O

Remark 3.6.3. The algorithm itself does not really need to compute the maximal
orthogonal suborder Z(L, q)° before computing Z(L, q), even though this order of
operations is crucial to the proof. Note that, in view of the discussion at the begin-
ning of Subsection 3.5.2, we could call bz the mazimal orthogonal pseudo-element of
(L, q). It is uniquely determined by (L, q).

As a part of this thesis, Algorithm 2 was implemented for the OSCAR project
[Osc24].
Example 3.6.4. Put Z = Z(L,q), K = Q(v/-5) and R = Z[/—5]. Consider
the R-lattice (L,q) = Re; @ d'ey with g(e1) = q(e2) = 0, by(e1,e2) = —2 and
R Cda CLiR. Clearly, (KL,q) = H(K) and, by Remark 3.2.4 (ii), Z = A(d’, —2,0)
and Z° = A(3R,0,—4). We want to verify this again, using Algorithm 2, while also
obtaining the canonical form of Z as described in Remark 3.1.6.

First, we compute the orthogonal basis (x1,z3) of KL, where 21 = e; — %‘62, Ty =
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Algorithm 2 Quadratic discriminant and centroid (normalised)

Input: The Clifford order C(L) with pseudo-basis ((e7,a;) | I C n)
Output: Pseudo-elements (3, b) and (2, a), such that disq(L) = (6232, 3?(K*)?) and
Z(L,q) = R1®az=A(a,t,n). If t #0, then t =1 and a is integral
1: Compute an orthogonal basis (z1,...,z,) of (KL,b,)
2: Put 3 x1...0,= > Aer € C(KL), ¢+ )\I_laf > Identifying 0~! with K

iCn 0AICn
3: if Ay = 0 then > Here, Z(L,q) = Z(L, q)°
4: bvc¢, a<b and z+3
5: else > Here, Z(L,q) 2 Z(L,q)°
6: 3 ﬁg and ¢+ 2)\pc > normalisation
7 b« 2RNc¢, z4 143 and a< RNc
8: end if
9: return (3,b) and (z,a)

2e1 + %62, using a Gram-Schmidt method from [Osc24]. We find that 3 « 2125 =
1+ ereg, 50 ¢ < 17'a’ = a’ and \yg = 1 # 0. Thus, we perform the normalisation
step 3 < 33 = 3(1 4+ e1ea), ¢ < 2¢ = 2d’. Finally, b <+~ 2RN¢ = 2RN2d = 2R,
Z %4—3 =1+ %6162 and a «+ RNc¢ = RN2d = 2d’. To summarise, the
algorithm returns that Z = A(2a,1,0) and Z° = A(2R,0,—7). Note that 2a’ is

indeed integral.

Remark 3.6.5. Note that A(R,0,—1) = A(2R,0, —i) in Example 3.6.4. In gen-
eral there does not seem to be an obvious way to describe the maximal orthog-
onal suborder Z° = A(b,0,—32) canonically, given no further information about
b. An exception to this is if Z 2 Z° because the canonical form of Z also
yields a description for Z°: In the notation of Algorithm 2, if Z = A(a, 1,n), then
Z2°=A(2RNa,0,—5(1 —4n)).
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4 Clifford orders over complete

discrete valuation rings

The final chapter of this thesis concerns the study of Clifford orders in the following
setting. Following [Neu92| II. §5, K is a local field of characteristic zero with nor-
malised valuation v. Let R = {x € K | v(z) > 0} be the valuation ring and = be a
fixed uniformiser of R, that is v(7) = 1. Moreover, let k = R/mR denote the finite
residue field of positive characteristic p. Equivalently, K is a finite extension of the
field of p-adic numbers Q,, with [K : Q,] = v(p) - [k : F,], see [Neu92| II. (5.2) and
(6.8). We call such a finite extension of Q, a p-adic number field.

In the first part of this chapter, we provide some basic facts about quaternion
algebras, because they will be used frequently throughout this chapter. After this,
we record some basic facts about maximal lattices over complete discrete valuation
rings. In addition to that, we revisit quadratic orders, mainly because their de-
scription is significantly easier and more specific over complete discrete valuation
rings. Building on this, we provide a full classification of the centroids and the
(even) Clifford orders of the maximal lattices. The main results of this chapter are
Theorem 4.3.11, Theorem 4.4.6 and Theorem 4.4.7.

4.1 Quaternion algebras over p-adic number fields

Quaternion algebras occur naturally in the context of quadratic forms, because they
are precisely the Clifford algebras of the two-dimensional regular quadratic K-spaces.
In this section, we summarise the most important properties of quaternion algebras.
The results in this chapter are taken from [GS17] and [Voi2l|.

Definition 4.1.1. A (generalised) quaternion algebra over K is a K-algebra

2 = a,y? = bvy = —yux, for

that has a basis (1, x,y,xy) with defining relations x
some a,b € K*. This algebra is denoted by (a,b)x and a basis of this form is called

a quaternion basis of (a,b)r. The K-linear antiautomorphism

Q= Q, AL+ Ao 4+ A3y + My = A — Aot — A3y — Mgy

is called the canonical involution on Q).

Proposition 4.1.2. The canonical involution on @) has the following properties.
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4 Clifford orders over complete discrete valuation rings

(i) N(w) =ww € K and T(w) =w+w € K, for allw € Q.
(ii) w* — T(w)w + N(w) =0, for all w € Q.

(111) N(wy + we) = N(wy) + N(wz) + T(ww3), for all wy,wy € Q, so N is a
quadratic form on @ with polarisation by (wy,ws) = T(wqw3), called the (re-

duced) norm form on Q.

Ezample 4.1.3. The canonical involution on K**? = (1,1)k is (¢4) — (%4 20), so

—C a

the maps T and N are just the usual trace and determinant of 2 x 2 matrices.

Proposition 4.1.4 (cf. [Voi2l| Theorem 5.4.4.). Leta,b € K* and put Q = (a,b)x.

The following statements are equivalent:
(i) Q is split, i.e. Q = K?*? as K -algebras.
(ii) Q is not a division algebra.
(11i) The norm form (Q, N) is isotropic.
(iv) The norm form of the field extension K(\/a)/K, that is, [1, —a] represents b.

Remark 4.1.5. Proposition 4.1.4 states that a quaternion algebra is either isomor-
phic to K?*2, or isomorphic to a central K-division algebra in dimension four. The
converse of this statement holds as well; see [GS17] Proposition 1.2.1. Thus, one
can equivalently define a quaternion algebra to be a four-dimensional central simple
K-algebra. The reduced norm and the reduced trace (see [Rei03] 9a) of such a cen-
tral simple algebra () coincide with the maps N, T : — K from Proposition 4.1.2,
by [Voi21] 3.3.

Definition 4.1.6. Call two central simple K-algebras A, A’ Brauer equivalent,
if they are isomorphic to full matrix rings over the same K-division algebra. The
Brauer group Br(K) is the abelian group of Brauer equivalence classes of central

simple K-algebras with the tensor product as group operation.

The multiplication in Br(X) is well-defined, because the tensor product of central
simple K-algebras is again a central simple, by [Sch85| §8, Theorem 3.2. The neutral
element is the class of K. In abuse of notation, we write (a,b)x or just (a,b) to
refer to the Brauer class of the quaternion algebra (a,b)r. By [KS02] (11.10), the
Brauer class of the tensor product of two quaternion algebras is again represented by
a quaternion algebra. Moreover, (a,b)? = 1Bi(k), s0 the Brauer classes of quaternion
algebras generate an elementary abelian 2-subgroup of Br(K). We denote it by
BI‘Q (K) .
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4.1.1 Division algebras over p-adic number fields

Up until this point, we did not use the fact that K is a local field. In fact, all
of the results in this section hold over any field of characteristic zero. However,
over the local field K, the central division algebras are easily classified, immediately
clarifying the structure of Bry(K). In the following, we summarise the main results
of chapter three in [Rei03].

Let D be a central K-division algebra. Then dimg (D) = n?, for some n € N,
called the Schur index of D, see [Rei03] (7.15). Similarly to extensions of p-adic
number fields, there is a unique discrete valuation w on D that extends v and is
explicitly given by

1
w(a) = EV(ND/K@L)% a€D,
where Np/k denotes the usual norm map. It holds that a € D is integral over R, if
and only if Np/k(a) € R, if and only if w(a) > 0. Thus, if one puts

A={aeD | wa)>0}={acD | Np/k(a) € R},

the valuation ring of D with respect to w, then A is the integral closure of R in
D. One can show that A is a local ring, i.e. the set of non-units in A forms a
two-sided ideal p = mpA. Here mp € A is any uniformiser of A, i.e. an element
with minimal strictly positive valuation, which is of the form %, for some e € N.
Further the residue class ring A/p is a skew field over the finite field k, i.e. a finite
field extension of k. Put f = f(D/K) = [A/p : k]. For finite k, one can show that
e = f = n, so if we put [ = |k|, there are (" — 1)-th roots of unity in D, due to
Hensel’s Lemma and n is maximal with that property. The following two theorems
completely describe the structure of a central division algebra over the local field K
of characteristic zero.

Theorem 4.1.7 ([Rei03| (14.5) Theorem). Let w € D be a primitive (I"™ —1)-th root

of unity and m € R be a uniformiser. There is a uniformiser mp € A with

h =m, apwrp’ = Wb
where r is a positive integer, such that 1 < r <n and ged(r,n) = 1. The integer r
15 uniquely determined by the division algebra D and does not depend on the choice

of w or m. The fraction T is called the Hasse tnvariant of D.

Theorem 4.1.8 (|Rei03| (14.6) Theorem). Let 1 < r <n and ged(r,n) = 1. Then

there exists a central K-division algebra D with index n and Hasse invariant .

Returning to quaternion algebras, we have n = 2. This implies that Bry(K) = Cs,
so there is a unique four-dimensional K-division algebra. We denote it by Q = Q.
Reiner also gives an explicit construction for the division algebra in Theorem 4.1.8.
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Corollary 4.1.9. Let QQ be a quaternion algebra over K.

(i) Either Q = K**2 or Q = Qx = Q is isomorphic to the division algebra

l__x

Q= (1w, mhw'my | (W) =1, (1) =7, wow” = ()'mo)k

(ii) Letw be a (1*—1)-th root of unity in the algebraic closure K and put F = K (w).
Then F' is isomorphic to the unique unramified degree-two extension of K and

a reduced representation of Q s given by

0: FOrk QS F2 1w — 1wy =

wl

Remark 4.1.10. Using the explicit reduced representation of Q over I’ and Exam-
ple 4.1.3, the norm form on F @ Q = F?*? with respect to the basis (1 ® 1,1 ®
w1 ® 7y, 1 ®wny) is given by

1 t -7 —7t
n —7n

Here t := w* + (w*)! is the reduced trace and n := (w*)"*! is the reduced norm of w*
and both quantities are units in R, because they lie in R and do not vanish mod
7. In particular, the norm form on Q only takes values in K, thus defining the
quadratic K-space (Q, Neq). The quadratic form N,q is called the reduced norm of

Q. It is regular with discriminant 1(K*)? and anisotropic, due to Proposition 4.1.4.

Notation 4.1.11. Put A = (1,w*, 75, w'n | (WPt =1, (m5)? = 7, THw* =
(w*)lW*Q)R. This is an R-order in Q, so by Remark 4.1.10, (A, Nyeq) is an even R-
lattice. Its discriminant is (¢2 —4n)?m?(R*)? = 72(R*)?, due to t* —4n € R*. Then
it follows from [Rei03] (14.9) and Theorem 2.2.13 that A is the unique maximal

order in Q.

4.2 Lattices over complete discrete valuation rings

We begin this section with a fundamental result that connects even unimodular R-
lattices with regular quadratic k-spaces. Given a quadratic R-lattice (L, q), denote
its reduction mod 7 by (L,q), the latter being a quadratic k-space.

Theorem 4.2.1 (|[KS02| Satz (15.6)). Let (E,q) be a quadratic R-lattice and (F,q’)
be a reqular quadratic R-module. If u : E — F induces an isometry via @ : (E,q) —
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(F,q),T v u(x), then there is an isometry U : E — F with u(z) = u(x) mod . In
particular, if E = F as quadratic k-spaces, then E = F as quadratic R-lattices.

Note that the regular quadratic R-modules are precisely the even unimodular
R-lattices, by Corollary 2.1.29.

Corollary 4.2.2. Let (U,q) be an even unimodular R-lattice in an anisotropic
quadratic K-space. Then n = 2 and U is isometric to the norm form N(R).
It is the valuation ring of the unique unramified degree-two extension of K, equipped
with the usual relative field norm. In addition, if 2 € R*, then also n = 1 is possible,
with U = [1] or U = [¢], where € € k™ is any non-square.

Proof. This follows from Theorem 4.2.1, N(R) = N (k) and Proposition 1.1.10. [

Remark 4.2.3. The set of elements represented by N(R) is given by

| Jn¥R* U{0} = {z € R | v(z) = 0} U{0}.

1=0

We denote the ambient space of N(R) by N(K). Thus, N(K) is the unique un-
ramified degree-two extension of K, equipped with the relative field norm. Moreover,
N(K) represents precisely the elements of K with even valuation and zero.

4.2.1 Maximal lattices

In Corollary 3.2.17, we already described the general structure of a maximal lattice
over a Dedekind domain. Interpreting this result in the more specific setting of this
chapter, we obtain that an arbitrary maximal R-lattice (E,q) with ambient space
(V,q) decomposes as

(E.q) = (B'q) L LH(R)

Here, E' denotes a maximal R-lattice inside the anisotropic kernel V' of V. It is well
known that E’ is uniquely determined. Put F;(V',¢') = {zx € V' | ¢(z) € m'R}, for
1 € Np.

Proposition 4.2.4 ([KS02| (16.1)). E;(V’,q) is an R-submodule of V', so it is the

unique w'-maximal lattice in (V' q'). In particular,

k
(Ea Q) - EO(V/> q/) 1L H(R)

=1
is the unique mazimal R-lattice in (V,q). We call Ey(V',q') the anisotropic kernel
of (E,q)-

Thus, in order to classify all maximal R-lattices, it is necessary to classify the
anisotropic quadratic K-spaces first. We summarise the known theory.
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4 Clifford orders over complete discrete valuation rings

Proposition 4.2.5. Let (V,q) be an anisotropic quadratic K -space.
(i) n=dim(V) < 4.

(ii) V is determined up to isometry by the three invariants dim(V) mod 2, disq(V')
and the Clifford invariant ¢(V') == [C(V)] € Bra(K). Any such triple occurs as

mwvariants of an anisotropic quadratic K -space.

(iit) If dim(V') = 4, then (V,q) = N(K) L"N(K) and V is universal. We denote
this space by Uy .

Proof. This is the content of [KS02| (16.3) - (16.9). Just note that by definition,
disq(V') = disc(V), if dim(V') is even; and disq(V') = disc/(V), if dim(V') is odd. [

Remark 4.2.6. Using Bry(K) = (5 and Corollary 4.1.9, we make the identification
¢(V) =1, if C(V) is a full matrix ring over K; and ¢(V) = —1, if C(V) is a full

matrix ring over Q.
Proposition 4.2.7. Uy = (Q, Nyea) and Eo(Ux) = (A, Nyea) = N(R) L"N(R).

Proof. By Remark 4.1.10, (Q, Nyeq) is anisotropic and four-dimensional, so the first
claim follows from Proposition 4.2.5 (iii). The second claim follows from the first

one and Notation 4.1.11, because A is the unique maximal order in Q. O]

Classification of maximal anisotropic lattices

In the following, (V,q) denotes an anisotropic quadratic K-space of dimension n.
Put £ = Ey(V,q). Following Proposition 4.2.5 (i), we go through the possible
dimensions n € {0,1,2,3,4}. The classification presented in Theorem 4.2.19 is
taken from [Eic74] II. Satz 9.7.

We agree on the following additional notation. Put e := v/(2), which is zero unless
p = 2. Moreover, let § denote a fixed representative of the square class disq(V'), with
v(8) € {0,1}. For simplicity, we write § = disq(V') instead of §(K*)? = disq(V) and
§ = disq(E) instead of §(R*)? = disq(FE). Finally, call the K-square class §(K*)?
even, if v(d) = 0; and odd otherwise.

Remark 4.2.8. By Proposition 4.2.5 (ii), there are precisely 4| K* /(K *)?| isometry
classes of anisotropic quadratic K-spaces. If p # 2, then a transversal of K> /(K*)?
is {1,e,m,¢e}, with e € R*, such that £ ¢ (k*)?. If p = 2, we have |K*/(K*)? =
29+2 with d = [K : Q] by [Neu92| 1I (5.8).

To summarise, there exist precisely 16 isometry classes of anisotropic quadratic

K -spaces in the non-dyadic case and 2%+* of such isometry classes in the dyadic case.
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4.2 Lattices over complete discrete valuation rings

n = 0: Trivially, V = F = {0}. For consistency reasons, we put disq(V') := 1 and
similarly disq(FE) = 1.

n = 1: Here, V = [§] as quadratic K-space and, due to v(d) € {0, 1}, also £ = [J]
is the maximal lattice.

n = 2: Due to Proposition 4.2.5 (ii), there are at most two isometry classes of
anisotropic quadratic K-spaces with disq(V) = ¢.

Remark 4.2.9. The representative 0 is a non-square. Let L = K(\/g), N = Np/k
the relative field norm and n € K*, with n ¢ N(L). Then (V,q) = (L,N), if
¢(V)=1;and (V,q) = (L,"N), if ¢(V) = —1. Thus, the maximal lattice (E, q) is
obtained by restricting N or "N (for a suitable choice of n) to the valuation ring of
L.

Proof. {0} and Uy exhaust the even-dimensional spaces with disq(V) = 1(K*)?. We
have ¢(L, N) = (1, =0)x = 1 and ¢(L,"N) = (n, =nd)x = (1, —nd) = (0,n) = 1,
using Proposition 4.1.4 (iv) and [KS02] (11.10). Clearly, both spaces have quadratic

discriminant 4. O]

Proposition 4.2.10. Keep the notation from Remark 4.2.9 and denote the valuation
ring of L by S.

(i) If the square class of § is odd, an R-basis of S is given by (1,+/0). Thus,
(S7 N) = [17 _6] and (57 UN) = [777 _776}7

with n € R*.

(ii) If the square class of & is even, an R-basis of S is given by (1,7 9(u +/5)),
where 0 < g < e is the maximal integer such that 6 = u?>mod w29, for some
u € R*. Thus,

1 279 n 2 9un

S,N) = d (S,"N) =
(5. V) a2 gy| SN 7292 — §)

Y

with n € R*, if K(V/0) is ramified; and n =, if K(V/0) is unramified.

Proof. In |Eic74] I1 6.1, the R-bases of S are computed. The isometries of R-lattices
then follow from (L, N) = [1, —0], with respect to the K-basis (1, —0) of L. O

The integer g in assertion (ii) is called the quadratic defect. In the remainder of
this thesis it will occur frequently, so we define it separately.
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4 Clifford orders over complete discrete valuation rings

Definition 4.2.11. Let x € K*, v(x) € {0,1}. The quadratic defect of x in K

is
e, x is a square

defq(x) == defqy (x) =

max{n € Ny | Ju € R*: x =2, u*}, otherwise

Proposition 4.2.12. Let x € K* with v(z) € {0,1}.
(i) If v(z) =0 or p # 2, then defq(z) = 0.
(ii) One has 0 < defq(x) < e.

Proof. Assertion (i) is obvious. For assertion (ii), the case p = 2 and = even is

proven in |Eic74, II. Satz 6.1]. The remaining cases follow from (i). O

Remark 4.2.13. In [OMe00]| §63A, the quadratic defect of an arbitrary element
x of K* is defined as a certain ideal I, < R. For x € K* with v(z) € {0,1},

it compares to our definition as follows. The element x is a square, if and only if
I, = {0}. If v(z) = 0, then I, = 7M@) R If y(z) = 1, then I, = 2R = 7R.

Our definition of the quadratic defect has the advantage, that we can describe
the maximal anisotropic R-lattices, and later on their Clifford orders, independent
of the residue characteristic p. For now, we collect some further properties of the
quadratic defect in the context of the two-dimensional lattices.

Remark 4.2.14. Keep the notations from Proposition 4.2.10.

(i) After replacing § by a suitable representative, we may assume u = 1. There

is a unit @ € R* with 2 = an®, so

1 2n 79 ~ 1 Y
729 (u? — 9) WQ(G*Q)(%;)
(i) If g = 0, then
1 2779
N R

729 (u? - 9)
In particular, (S, N) admits an orthogonal basis, if and only if g = 0.
This description allows us to conclude the following classical result about the

unramified degree-two extension of a 2-adic number field, see e.g. [DV 18| Proposition
4.8.
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4.2 Lattices over complete discrete valuation rings

Proposition 4.2.15. Let p = 2 and d € R*. Then K(\/d) is unramified, if and
only if d has mazimal quadratic defect defq(d) = e > 0, if and only if d is a square
mod 4.

Proof. If d € (R*)? is a square, the claim is obvious, so suppose d that is a non-
square. The even R-lattice (E,q) = [ ! Wz(ezrj;)_(glzid)] with disq(F) = d and g =
defq(d) is unimodular, if and only if ¢ = e, if and only if d =4 1. This implies
(E,q) = N(R), by Corollary 2.1.29, Theorem 4.2.1 and using the fact that (E,q)
is anisotropic. Now, by Corollary 4.2.2, N(R) is the norm form of the unique

unramified degree-two extension of K. O

Corollary 4.2.16. Let ¢ € R. Then K( /) is the unique unramified degree-two
field extension of K, if and only if disq(N(R)) = e(R*)>.

Proof. For p = 2, this follows from the proof Proposition 4.2.15. For p # 2, this
follows from N(R) = [1, —disq(N(R))] and Corollary 4.2.2. O

Corollary 4.2.17. Lete € R* such that K (/) is unramified of degree two over K.
We have (€,8) = —1, if and only if v(0) =2 1. In particular, € ¢ Ny (/5K (K(ﬂ)),
if and only if v(§) =5 1.

Proof. By Proposition 4.1.4 (iv) and Corollary 4.2.16, we have (¢,0) = —1, if and
only if § is not represented by N(R). This is equivalent to v(d) =2 1, by Re-
mark 4.2.3. [

As a consequence, we always choose 77 = ¢ in Proposition 4.2.10 (i).

n = 3: In dimension three, there exists exactly one anisotropic quadratic K-space
(V,q), for each possible choice of §. They all satisfy ¢(V) = —1. From [Eic74] II.
Satz 9.7, we obtain the maximal lattices as follows.

Proposition 4.2.18. Let ¢ € R*, with K(\/¢) unramified of degree two over K.
(i) If the square class of § is odd, the maximal lattice in (V,q) is given by

(E,q) = N(R) L [20].

(i1) If the square class of § is even, the maximal lattice in (V,q) is given by

(E,q) = "N(R) L [£d].
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4 Clifford orders over complete discrete valuation rings

n = 4: This case is the content of Proposition 4.2.7.

Theorem 4.2.19. For each one of the 4|K/(K*)?| distinct isometry classes of
anisotropic reqular quadratic K -spaces, the mazximal lattice (E, q) in (V, q) is given by
the table below. Here, § runs through all square classes of K, satisfies v(d) € {0,1}
and 0 =29 1, with g == defq(0) the quadratic defect. The last column in the table

denotes the number of isometry classes for the respective row.

dim(V) disq(V,q) ¢(V,q) max. lattice in (V,q) No. of spaces
0 1 1 {0} 1
1 5 1 [0] | K/ ()]
2 § odd 1 [1,—4] 31K/ (K
2 146 1 ! ™ SK/(K*)?| -1
# § even 2(e0)(1=8) 5K/ (K% —
1
2 § odd ~1 [, —&d] 31/ (7))
B U T 1 x\2| _
2 1 # § even 1 7T2(6_g)(14;§)77 SIK/(K*)? =1
3 d odd -1 N(R) L [e] SIK/(K*)?|
3 J even -1 "N(R) L [g] %|K/(KX)2|
4 1 ~1 N(R) L "™N(R) 1

Theorem 4.2.20. In the non-dyadic case, for each isometry class of anisotropic
reqular quadratic K -spaces, the mazimal lattice (E, q) in (V,q) admits the orthogonal

basis given in the table below, where 6 € {1,¢,m, em}.

dim(V) disq(V,q) ¢(V,q) max. lattice in (V,q) No. of spaces
0 1 1 {0} 1
1 5 1 6] 4
2 146 1 1, 4] 3
2 € -1 [, —em] 1
2 T -1 e, —em] 1
2 em -1 [e, —7] 1
3 1 -1 [, —em, €] 1
3 -1 [7, —em, 1] 1
3 T —1 [1,—¢,en] 1
3 em -1 [1,—¢, 7] 1
4 1 -1 1, —e, 7, —em| 1
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4.3 Centroids over complete discrete valuation rings

4.3 Centroids over complete discrete valuation
rings

In this section, we consider the centroids of Clifford orders over local fields. First, we
provide an easier description of quadratic R-orders, using the fact that any R-lattice
is free. After this, we state local versions of the more important theorems from the
previous chapter; see, e.g. Theorem 4.3.8. Finally, in Theorem 4.3.11, we present
the classification of the centroids of the maximal quadratic R-lattices.

4.3.1 Quadratic orders over local fields

Put e := v(2) and let d € K* with v(d) € {0,1}. Further, let A be an R-order
in the étale algebra A := K[X]/(X? — d). Then, because A is free, we can write
A = A(R,t,n) = R|z] using Notation 3.1.3. Here, 2> —tz+n = 0, where t = z+ 3(2)
and n = zf(z) as in Remark 3.1.2 and both lie in R. By Theorem 3.1.12, this lattice
admits an orthogonal basis, if and only if ¢ € 2R. This is equivalent to v(t) > e.

Notation 4.3.1. One either has ¢t = 0, or after replacing z by z + 1 and thus ¢ by
t + 2, we can assume that 0 < v(t) < v(2). Hence, we can assume t € R*, if p # 2;
and 2t~ € R, if p = 2. In these cases, we put A(t,n) := A.

We put the results of Theorem 3.1.12 in the new context. The quadratic order
A = A(t,n) has the basis (1,z), so if p # 2, then (1,t — 2z) is another basis, so
A = A° = A0, —(t* — 4n)).

If instead p = 2 and ¢ # 0, then (1,1 — 2t7'2) is an R-basis of A° = A(0, —(1 —
4t72n)), so [A : A% = 7@ Note that A° = R[X]/(X? — n%d), for some suitable
i € Ny. Hence, there is an a € R* with

d = a*(1 — 4t *n).

Comparing the valuations on both sides, either v(t) = e and then A = A° =
A(0,—(1 — 4¢72n)), or the right-hand side of this equation is a unit, which implies
i = 0and v(d) = 0. In the latter case, put g := defq(d). Then e—v(t) < g, by Propo-
sition 4.2.10, yielding an upper bound for the index [A : R[X]/(X? —d)] = [A : A?].
Conversely, write

d=1+7%u=1—47"9"N/

with suitable u,u’ € R*. Then A(7¢ 9, u') is an R-order in A, which contains the
suborder R[X]/(X? — d) of index 79. Thus, the upper bound is achieved and

e— e— e—g)l— ~ 1 meY
A(m9, ) IA(W g, g)%d) = [ 7Tz(e—g)(l_d)]
4

is the unique maximal R-order in A. With that we have a complete overview of the
R-orders in A.
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4 Clifford orders over complete discrete valuation rings

Notation 4.3.2. Let A = K[X]/(X? — d) and g = defq(d). For j € g, put
A_;(d)=A (We—j’WQ(e—j)%l)' For j > 0, put A;(d) = A(0, —7%d).

Theorem 4.3.3. Let A = K[X]/(X? —d) and g := defq(d). The orders in A are

linearly ordered,
A_y(d) DA_gp1(d) D ... D Ao(d) DA(d) D ...,

so A_y4(d) is the unique mazimal order in A. In this inclusion chain, each order has
index 7 in the previous one. Finally, for j >0, A_;(d)° = Ao(d) and A;(d)° = A;(d).

Remark 4.3.4. (i) If d is a non-square, (A_,(d), ¢) is the unique maximal aniso-
tropic R-lattice in the two-dimensional K-space with discriminant d and Clif-

ford invariant 1.
(i) If d is a square then A_.(d) = H(R).

Proof. Assertion (i) is immediate from Theorem 4.2.19. For (ii) we may without

loss of generality assume d = 1, so one calculates

1 1 0 1

(A—e(l)a(J) - (A(170)7Q> = 0 0

I
I
=
=
0

We also obtain another representation of the norm form N(R).

Remark 4.3.5. Let K be the algebraic closure of the p-adic number field K. Put
| = |k|, let w € K be an (I> — 1)-th root of unity, so that L = K(w) is the
unique unramified degree-two field extension of K, by Corollary 4.1.9. Further, put
t = Ny /k(w) =w+w and n := N(w) = "' Then

(Rw], Nyj) = | i ! t_lzn _ N(R).

In particular, R[w] is the valuation ring of L.

Proof. Only the last equality needs a proof. Put A = (R[w], Nz k) and a unit
e € R* with disq(A) = . Then A = A;(e), with some ¢ > —e, by Theorem 4.3.3.
An easy computation yields that A° = A (O, 1— 4t_2n) = Ao(e) is the index 7
sublattice of A. Thus, i = —e and R|w] is the unique maximal order in L, i.e. its

valuation ring. O]
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Using Theorem 4.3.3, we collect some properties of the quadratic discriminant of
a quadratic order.

Remark 4.3.6. Let A = A;(d), with i > —defq(d). Then disq(A) = m2max{0i}q( R*)?
and A° = R[X]/(X2 — disq(A)).
Proposition 4.3.7. (i) If j € defq(d) then disc(A_;(d)) = 72 Ddisq(A_;(d)) =
=D d(R¥)2.
(ii) If 7 > 0 then disc(A;(d)) = 4disq(A;(d)) = 47 d(R*)?.

(111) If A is a quadratic order then disq(A) is a square class of units, if and only if
d is even and A = A_;(d), for some 0 < i < defq(d).

The centroid of an orthogonal direct sum

Using Notation 4.3.2, we provide the local version of Theorem 3.2.11.

Theorem 4.3.8. Suppose that the non-degenerate even R-lattice (L, q) decomposes
as the orthogonal direct sum (L,q) = (L1,q1) L (L2, q2) of two non-zero lattices and
put s = rank(L,)rank(Ly). Write Z(L;,q;) = A, (d;), with j; > —defq(d;). Here, d;
is a representative of disq(K L;), with v(d;) € {0,1}. Then

Ajl+j2((—1>8d1d2), jl,jg Z 0 cmd V(dldQ) & {0, 1}
Z(L,q) = Ajyjpnr (1)1 2didy), iy Jo > 0 and v(dyds) = 2
Amax{jr,jo} (d1da), else
In particular, Z(L,q)° = Z(L,q), if and only if j1 > 0 or jo > 0. Otherwise,

if both j1,j2 < 0, the ranks of Ly and Ly are even and Z(L,q)° = Ao(dids) €
Amax(jr jo3 (dids) = Z(L, q). In particular, disq(L) = (—1)*disq(L1)disq(Ls).

~— ~—

We also present a result for the special case where the lattice (L, q) admits an
orthogonal basis. Although this is a consequence of Theorem 4.3.8, we choose to
prove it directly instead.

Theorem 4.3.9. Suppose that the non-degenerate even R-lattice (L,q) of rank n
admits an orthogonal basis (l1,...,l,) and put 6 = (—1)(;)q(11)...q(lT). Then
Z(L,q) = Z(L,q)° = R[X]/(X? - ), so disq(L) = §(R*)%. Moreover, if 6 = w?d,
with some i > 0 and v(d) € {0,1}, then Z(L,q) = A\i(d).

Proof. The result holds for Z(V,q) by [KS02| II Satz (7.9). Now, (I; | Il Cn) is an
R-basis of C(L), by Example 2.3.4. Thus, using Z(L, q) = Z(V,q) NC(L), the result
follows. O
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4 Clifford orders over complete discrete valuation rings

4.3.2 Classification of the centroids of maximal lattices

The key ingredients for the classification of the centroids of the maximal lattices
are Corollary 3.2.17 and Theorem 4.2.19. The corollary states that the centroid
of a maximal lattice equals the centroid of its anisotropic kernel and the theorem
provides a full list of the latter. Thus, in the following, we go through the table
in Theorem 4.2.19 and explicitly compute their centroids. Note that given these
centroids, we easily obtain their quadratic discriminants from Proposition 4.3.7.

We use the notation from Theorem 4.2.19. Thus, (V, ¢) is an anisotropic quadratic
K-space of dimension n € {0,1,2,3,4} and E = Ey(V,q) is its unique maximal
sublattice. Further, let 6 be a representative of disq(V') with v(0) € {0,1} and
d =p2 1, where g = defq(d). For simplicity, we write 6 = disq(V') instead of
§(K*)? = disq(V) and § = disq(E) instead of §(R*)?* = disq(F)

n = 0: Clearly, £ = {0} implies Z(E,q) = R.

n=1: Here, (E,q) = [0] and Z(FE,q) = Ao(0), by Theorem 4.3.9. Thus, the
centroid has index 79 in the unique maximal order of Z(V, ¢) and disq(E) = .

n = 2: By Theorem 4.2.19 and Theorem 4.3.9, it is enough to consider the cases
where 0 is a non-square and represents an even square class. Then, depending on
the Clifford invariant of (V, q), we have

1 w9 n T 9n
E,q) = e—g)(1=sy| Or (B, q) = e—g) (1= ;
( ) [ 71_2( g)(lzl_é)] ( ) [ 71_2( g)(14_§)n]
with 7 not a norm in K (v/§). Thus, by Remark 1.2.19, we find that

Z(B.q) = A (770, w0 (52)) or Z(E,q) = A (n*70n, 7% (1))

Now, if ¢(V) = —1, then, by Proposition 4.2.10 (ii), either (E,q) = "N(R), so we
may choose 1 = 7; or, in any other case, n € R* is a unit. Theorem 4.3.3 implies

gL £9°0

where ¢ € R* is a fixed element such that K (/) is unramified of degree two over
K. These orders are maximal in Z(V,q), unless if (£, q) = "N(R), in which case it
has index 7 in the maximal order. Finally, we have disq("N(R)) = 72§ and, in all
other cases, disq(F) = 0. Here, ¢t := max{0, —e+1},s0t =0, if p=2; and t = 1, if
p# 2

Remark 4.3.10. If (E,q) & N(R) or (E,q) = "N(R), then ¢(K*)? = §(K*)?, so

we may assume € = 9.
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n = 3: By Theorem 4.2.19, we have (E,q) = N(R) L [¢d], if the square class of ¢
is odd; and (E,q) = "N(R) L [6], otherwise. We already know Z([ed]) = Ag(gd),
Z(N(R)) = A_c(e) and Z("N(R)) = A_41(e) from the cases n = 1 and n = 2.
Hence, using Theorem 4.3.8, we find that

Z<E7 Q) = Amax{O,fe}(gz(S) = AO(5)>

if the square class of § is odd, so this is the unique maximal order in Z(V,¢q) and
disq(E, q) = §. In the remaining cases, we find

Z<Ev q) = Amax{(],—e—i—l} (525) = At(6>7

again writing ¢ := max{0, —e + 1}. Thus, Z(E, q) is the index 7'"9 suborder of the
maximal order in Z(V,q) and disq(E, q) = 726.

n = 4: Here, we only have (V,q) = Uk, with (E,q) = N(R) L "N(R). From the
case n = 2, we know that Z(N(R)) = A_.(¢) and Z("N(R)) = A_c41(g). Thus,
by Theorem 4.3.8, we have Z(E,q) = Amax{—e,—e+13(€%) = A_c11(1), so it is the
unique suborder of index 7 in the maximal order A_.(1) = A(1,0) = R® R, whence
Z(E,q) = ((1,1),(0,7)). Finally, disq(E, q) = 7§, with ¢ as above.

Summary In Theorem 4.3.11 below, we provide the classification of the centroids
and the quadratic discriminants of the maximal anisotropic quadratic R-lattices
(E, q) in form of a table. It contains five columns, the second being the most notable
one. It is labelled 'Cond.” and has the following purpose: In Theorem 4.2.19, we
describe the isometry class of the maximal anisotropic lattices (F,q) in terms of
d = disq(V,q). There, as well as in the preceding discussion, we noticed that we
sometimes have to infer multiple conditions on J; see especially the case n = 2 above.
Thus, the column ’Cond.” contains abbreviations for the many possible conditions
that we may need to infer. Below is an exhaustive overview of all sets of conditions
that may occur either in Theorem 4.3.11, but also later on in Theorem 4.4.6 and
Theorem 4.4.7, where these abbreviations are used again.

Cond. Explanation
— p is arbitrary and  can only take one value.
p2— p =2 and J can only take one value.
np2— p # 2 and J can only take one value.
a Both p and ¢ are arbitrary.
Vi p is arbitrary and v(d) =i € {0, 1}.
v0nl p is arbitrary and v(6) = 0 with ¢ # 1.

vOnle v(0) = 0 with § # 1, ¢ (this implies p = 2).
p2v0nl p=2and v(J) =0 with § # 1.

Beyond this, the first column describes the isometry type of the lattice (E,q),
while the third and fourth contain information about the quadratic discriminant
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4 Clifford orders over complete discrete valuation rings

and the centroid of (F,q), respectively. The last column contains the index of
Z(FE,q) in the unique maximal order of its ambient algebra Z(V, q).

Theorem 4.3.11. An overview of the centroids and quadratic discriminants of the
maximal anisotropic quadratic R-lattices over the p-adic valuation ring R is given
by the table below. Here, 0 = disq(V') runs through the square classes of K with
v(0) € {0,1} and § =,29 1, where g = defq(5). Moreover, ¢ is subject to the
respective condition in the column Cond.’. Finally, t = max{0, —e + 1}, sot =0

in the dyadic case; and t =1 in the non-dyadic case.

Max. lattice in (V, q) Cond. disq(E) Z(E,q) Index
R

{0} — 1 1
0] a J Ao(0) 79
[1,—0] vl J Ao(0) 9
oo 1 5 Ay(8 1
12(e—g) (14;5> von ~o(0)
e, —&0] vl J Ao(9) 1
"N(R) — e A_eii(e) m
e—g
! 7r2(e—7;-) %> ; vOnle ) A_4(0) 79
N(R) L [26] V1 5 Ao(6) 1
"N(R) L [ed] v0 ) A(9) wit9
N(R) L "N(R) — 2 A_oi1(1) m

4.4 Clifford orders of maximal lattices

In this section we provide a complete overview of both the Clifford orders and the
even Clifford orders of the maximal R-lattices (F,q). By Corollary 3.4.9,

C(E) ~ C(EI>2k><2k,
as graded R-algebras, with £ = ind(KF) and E’ the anisotropic kernel of E. Thus,
it is again sufficient to consider the anisotropic maximal R-lattices and determine

their Clifford orders and even Clifford orders, respectively. The results can be found
in Theorem 4.4.6 and Theorem 4.4.7.

Throughout this section, we use the following, mostly familiar notation. Let
(V,q) be an n-dimensional anisotropic quadratic K-space with § = disq(V'), such
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4.4 Clifford orders of maximal lattices

that v(0) € {0,1}. Moreover, we assume 0 =29 1, with g := defq(¢), the quadratic
defect from Definition 4.2.11. Further, let (E,q) be the unique maximal R-lattice
in (V,q).

We make two specific choices for §, namely 6 = 1 to represent 1(K*)*> and § = ¢ €
R* a unit with L := K(4/¢) the unique unramified degree-two extension of K. We
further specify this e: Recall that, by Corollary 4.1.9 (i), the unique four-dimensional
K-division algebra Q := Q has the presentation

P =1, (7 =, m” = (@) 7Dk

Q= (l,w", 15, w'ny | (W)
with [ = |k|. For simplicity, we usually omit the % from now on and regard w* as an
element of L, so that L = K(w). Now, if we put t :== w + !, n := w*?! the reduced
trace and reduced norm of w, then R[w]| is the valuation ring of L, by Remark 4.3.5

and
1 t 1 1
n] = [ tzn] = N(R).

Thus, comparing discriminants, &’ = t2 — 4n = (w — w')? € R is a non-square
with K(v/¢') = K(w). Using Proposition 4.2.15, we conclude that ¢’ has maximal
quadratic defect defq(e’) = e. Now, recall that our choice for £ must satisfy e =2 1,
but as of yet ¢/ =2 t2. Note that t € R* as its reduction mod 7 does not vanish,
so we choose € = t72¢/ = (1 — 2t7'w)? = 1 — 4t~?n € R* as our representative. In
particular, this implies n = %(1 — €), so the discriminant of the quadratic space

(Rlw], N/k) =

is exactly . For later use, we also fix the root /¢ = t71(w! —w) = 1 - 2t7w,

regarding it as an element of R[w].

4.4.1 Clifford orders of anisotropic maximal lattices -
computations

In this subsection we conduct a case study on the (even) Clifford orders of maximal
anisotropic lattices. We abbreviate ® zp by ®, as we will use it constantly throughout
this chapter. We start by noting that all occurring (even) Clifford orders do have
a reduced matrix representation as a suborder of either K2"**" or K(w)**?" and
that the first one is possible, if and only if ¢(V, q) = 1. We call representations of the
first type R-representations and of the second type R|w]-representations. Clearly,
given an R[w]-representation, it is easy to produce an R-representation.

Proposition 4.4.1. Let t = w + ', n = W', so that w?> —tw +n=0. Then

0 —n

L Rw] = R¥? 1w I, wrs L

103



4 Clifford orders over complete discrete valuation rings

induces a monomorphism of R-algebras, by R-linear extension. It respects the Z./27.-
gradings of the respective ambient algebras. Here, we have the gradings K(w) =
K1® K+\/¢ and for K**2, we use the grading from Definition 3.4.8.

Proof. This is obvious because the image of w under this map is just the companion

matrix of w. O

Example 4.4.2. From Corollary 4.1.9 we obtain an R[w]-representation of the unique

maximal R-order A in Q (see Notation 4.1.11). This representation is given by

w 0

A < R[w]*?, w*
0 t—w

, TH

Then, applying ¢ from Proposition 4.4.1 entrywise, we obtain the R-representation

0| 0 0
— mrpe INRUIC R g s
0 | =16 6910

0
T

o3

A — RY W

More generally, given an R|w]-representation as matrices in R[w|"*", we obtain an

R-representation as matrices in R?"*?" by applying ¢ entry-wise. Keeping this in
mind, we start with the classification of the Clifford orders of the maximal R-lattices.
We go through the isometry classes of the lattices listed in Theorem 4.2.19.

n = 0: Here, V=F = {0} as sets, so C(E) = Cy(F) = R is the unique maximal
order in C(V) =Co(V) = K.

n=1: disq(V,q) = ¢ forces (E,q) = [§]. Thus, C(E) = R[X]/(X?—§) = Ay(d) as
an R-algebra, due to v(0) € {0,1}. Thus, C(F) is the unique index 79 suborder of
the unique maximal R-order A_,4(0) in C(V'). Recall that we have g = 0, whenever
p # 2;or p=2and v(d) = 1, by Proposition 4.2.12. Hence, in these cases, C(F) is
the unique maximal R-order. In terms of R-representations, we have

06 (16
o= (5 (22)) it a3 9))
R R

Finally, it is clear that Cy(E) = R is the unique maximal order in Cy(V') = K.

n = 2: We make two preliminary remarks that should seem familiar. Firstly, by
Remark 3.2.4, the even Clifford order Cy(FE) coincides with the centroid Z(E,q)
and we already computed these Theorem 4.3.11. Secondly, there is no maximal
anisotropic R-lattice with quadratic discriminant 6 = 1 in dimension two. Keep-
ing this in mind, it remains to compute C(F) in four cases. These arise from the
possibilities for the values v(§) € {0,1} and ¢(V,q) € {1,—1}. Specifically, in
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4.4 Clifford orders of maximal lattices

the non-dyadic case there are six lattices to consider: For a fixed Clifford invari-
ant, there are two lattices with v(J) = 1 respectively, namely [1, —7], [1, —e7] and
[e, —em], [e, —m]. Similarly, for v(J) = 0, the lattices N(R) and "N(R) are to be
considered.

Notation 4.4.3. Since it will occur frequently in the following, we extend Defini-
tion 4.1.1 to valuation rings. Thus, given the local field X with valuation ring S
and a,b € S — {0}, the symbol (a,b)s denotes the S-algebra with basis (1, z,y, zy)

2

and the relations 22 = a, y?> = b and xy = —yx. We call such a basis a quaternion

basis of (a,b)s.
Clearly, (a,b)s is an S-order in the quaternion algebra (a, b) x and any non-degene-

rate even S-lattice that admits an orthogonal basis has a Clifford order of the form
(a,b)s, for some a,b € S —{0}.

We start by considering the cases ¢(V,q) = 1, i.e. C(V) = K?*2. First, let
v(0) = 1. By Theorem 4.2.19, we have (E,q) = [1,—0], i.e. C(E) = (1,—d)g. Let
(1,z,y,zy) be a quaternion basis of C(F). There is a monomorphism of R-algebras
¢ : C(E) — R**? given by

w@%=@ fJ,w@w:G ;ﬁ.

A simple computation shows
1 0 0

¢(51+w)=<ég>,
@ @(y—xy)) = (? 8) : @ (—%(zﬁw)) = (8 (1)> :

and these four matrices form an R-basis of the maximal R-order R?*2? in K?2*2.
Clearly, [R**? : ¢(C(F))] = 46. Now v(48) = 2e + 1, due to v(§) = 1. Thus, C(E) is

a suborder of index 72! in R?*2. More precisely, as a suborder of R?*2, we have

C(E) ~ <l’1 “+ X9 —(5(2153—'—5(74))

XT3 — T4 T — T2
. T+ X2 —7T<$3 + 134)
XT3 — T4 xT1 — T2

In particular, independent of the quadratic discriminant 4, all the Clifford orders
C(E) are isomorphic as R-algebras in this case, but not as graded algebras. The
grading of the ambient algebra K?*2, of course, depends only on ¢ and so does the

L1, X2,T3, Ty €ER

X1,T2,T3,T4 S R
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4 Clifford orders over complete discrete valuation rings

grading of C(E). If p # 2 then (E,q) is either equal to [1, —7| or [1, —e7] and in
both cases the algebra above simplifies to the index-m suborder

Next, let v(6) = 0. Then, by Remark 4.2.14 (i) and Theorem 4.2.19, we have

1 279 11 T
(E,q) = [ 7T—2g(1 - 5)] = [ 2(e=9) (145)] .

We use the first description to avoid introducing the unit a € R* with 2 = an®;
the multiplication of the second basis element with it induces the isometry above.
By Proposition 4.2.10, the description on the left-hand side is obtained as the norm
form of K (\/c_s ), restricted to its valuation ring, call it Rs, with respect to the R-basis
B = (1,779(1 +V9)) of Rs. Put E' := (Rs)°, the maximal orthogonal sublattice.
Then B’ = (1,/d) is an R-basis of E’, so E' = [1, —8] and the change of basis from
B to B’ is given by the matrix

— I -1 2X2
re s ) e

Thus, the Clifford order C(F) contains C(E’) = (1,—0)g as an R-suborder. The
change of basis from the former order to the latter one is given by the matrix

1 —1
T e R4,
71-9

Thus, [C(E) : C(E')] = 7%. More precisely, if (1,z,y,zy’) is a quaternion basis
of (1, —=0)g, then (1,z,y,xy) is an R-basis of C(E), where y = 779z +¢/). In
particular, an R-representation of C(F) is given by

p(z) = ((1) _01> cply) =m0 G :i) :

Hence, the index of C(E) in any maximal order of C(V) = K22 is 72(¢=9). This can
either be verified by direct computation, or by noticing that [R**? : C(E')] = m%.
In particular, C'(E) is a maximal order, if and only if K (1/) is unramified of degree
two over K and this equivalent to (E,q) = N(R) and § = ¢, by Corollary 4.2.16.
Thus, we have C(N(R)) = R**? = C(H(R)) as R-algebras, but not as graded R-
algebras. Finally, if p # 2 then (E,q) = N(R) is the only option in the case we just
considered.
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4.4 Clifford orders of maximal lattices

Only the quadratic spaces with ¢(V,q) = —1 remain. Thus, the Clifford order
C(E) is an R-order in unique four-dimensional K-division algebra Q = Qy from
Corollary 4.1.9 (i). Recall that Q contains the unique maximal R-order

A={(l,w mg,wrg | Wl =1, 7T2Q =7, Tow = w'm) R,
so we try to describe C(E) in terms of A.

Let v(9) = 1. Then Theorem 4.2.19 yields (E, q) = [e, —&0], so C(E) = (&, —€0)g.
Thus, we must find elements =,y € A that satisfy the relations

2? =¢, y? = —e6 and 2y = —yx.

To construct x, we compare the R-order R[+/2] to the valuation ring of the unramified
extension K(y/e) = K(w), which is R[w], by Remark 4.3.5. Using the identity
w? — tw +n = 0, we have

(1t —2w))? =t (£ —dwt +4(wt —n)) =t 2(* —4n) = ¢,

by the definition of €. Thus, R[y/¢] is an R-suborder of R[w], the base change being
given by the matrix ( o 1) € R¥2. It is invertible, if and only if p # 2. Either
way, using Corollary 4.1.9, as a first step to construct an R[w|-representation of

C(E), we put
(1-2t"w 0 (Ve O
T ( 0 —(1— 2t‘1w)> - ( 0 —ﬁ) ‘

If we want to make a choice for y that is consistent with said corollary, we have to

find A\, \" € R such that
- 0« 0 7w
y_A(1 o>+A <wq 0)'

This is always possible since on one hand, arbitrary linear combinations of this
form anti-commute with x and on the other hand, the norm form on the R-lattice
generated by these two matrices is isometric to "N(R), by Remark 4.1.10. By
Remark 4.2.3, the lattice "N(R) represents exactly those elements of R that have
odd valuation. Now v(y?) = v(—ed) =1 is odd and —N(y) = y*.

The advantage of being consistent with Corollary 4.1.9 is that it is easy to deter-
mine the index [A : C(E)]. The base change matrix from A to the basis (1, z,y, zy)
of C(E), with the above choices for z,y, is given by

1 0 0
-2t 0 0

0 X (A+2t7'Wn)

0 N —@2tIA+X)

c R4><4

o O O
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4 Clifford orders over complete discrete valuation rings

Its determinant is 4¢72(\2 + ANt + (X)?n) = 4t72(7~'y?), where this equality holds
due to
—e6 = y? = 7(N 4+ Mt + (\)?n).

Thus, the determinant is 4 up to units in R and [A : C(E)] = 7%, so A = C(E) is
maximal, if and only if p # 2.

If we do not wish to be consistent with Corollary 4.1.9, the much simpler and

straightforward choice is
(0 —&d
=11 o

and satisfies the desired relations. In order to obtain an R-representation of C(E)
from the R[w|-representations above, we can simply invoke Proposition 4.4.1.

Finally, let v(6) = 0. Using Remark 4.2.14 and Theorem 4.2.19, we have

29 w9
(E,Q) = [77 7T729(1 _715)77] [77 7TQ(e—g)(%)n]

and, similar to the case with trivial Clifford invariant, we prefer the first description.
Thus, we are looking for elements z,y € A, such that the relations

I

?=n =721 —0)n and zy+yr =21 9

hold, because then (1, x, y, zy) is an R-basis of C(E). The problem that we encounter
is that there does not seem to be a canonical choice for the non-norm . However, we
can still compute the index of C(F) in the maximal order A, by using the inclusion
chain of R-lattices C(F) C A C A# C C(E)#, where the dual is taken with respect
to the reduced trace form T,.,q on Q. Then the Gram matrix of T,.q with respect to
the R-basis (1,z,y,zy) of C(F) is

2 0 0 29
0 2n 2w 0 4x4
0 279 27%(1—0)n 0 R
279 0 0 2m729(1 — §)n?

The determinant of this matrix is (47 296n%)?, so its valuation is 4(e — g + v(n)).
By Notation 4.1.11, [A% : A] = 72, so [A : C(E)] = #2=9tvM)=1 Recall that 7
is a unit, whenever K(v/9)/K is ramified and that we may choose 7 = 7 in the
unramified case. Thus, if § # ¢, the index is 72¢~9~1; and, if instead § = ¢, the
index is 7.

In addition, if § = ¢, we can construct the Clifford order explicitly in terms of
A. This is useful for the classification of the Clifford orders in dimension three. For
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4.4 Clifford orders of maximal lattices

said construction, recall that
2
A= {lwmgwrg | W =175 =m mTow = w'To)r

and also note that, due to § = ¢,

(E,q) ="N(R) =

Now, if (x,y) is an R-basis of the right-most description of "N(R), i.e. 2% =7, y? =

mn,xy + yr = wt in C("N(R)), the map defined by
T T, Y Tow = (t —w)Tg, TY > Tw

induces an isomorphism of R-algebras. This can be verified by checking the re-
spective relations. As a consequence, C(F) has index 7 inside A, as we already
established earlier. In addition to that, we obtain the R[w]-representation

w

o+ Blw] © C(E) = RW]?, plz) = (ﬁ’ g) oly) = (0 ”g’q) ,

from Corollary 4.1.9. Thus, we identify C(FE) with the R-subalgebra Xz of R**1
which one obtains after applying Proposition 4.4.1 to the R[w]-algebra

Y <a +brw w(c+ dwq)>

ctdw a+brw! a,b,c,d € R p < R[w]***.

More precisely, we have
w(c+dt) mdn

a —mbn
Pr b a+ bt —7d e
R c —dn a+ wbt whn
o T

a,bc,d € Ry < R™

and, in particular, Rlw] ® Xr = ) as R|w]-algebras and R-algebras.
We return to the case ¢(V,q) = —1, with v(d) = 0, but ¢ # e. Thus,

I

(E7Q):

n 29
7291 —d)n

n w9
w9 (10

with n € R*. We describe C(E) but not in terms of A. Instead, we use the fact
that K(,/n)/K is a degree-two field extension, i.e. it is a splitting field for Q, by
[Rei03] (31.10). Thus, K(/7) @k Q = K(/7)***. Now, we proceed as in the case
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4 Clifford orders over complete discrete valuation rings

v(0) = 0, with trivial Clifford invariant.

Consider the orthogonal sublattice £ = [n, —nd] of E, which has the Clifford
order C(E") = (n, —n)r,, where R, = R[x~9(1 4 /n)] the valuation ring of K (/7).
If (1,z,y/,xy’) is a suitable quaternion basis of this algebra, then (1,x,y,zy) is an
R-basis of C(E), where y == n79(x + y'). Consequently, an R,-representation of
C(E) is given by

ole) = Vi (é _01> ) =70 (} j‘f) -

Moreover, this implies that C(E) has index 729! in any maximal order of C(V) =
Q because the maximal order A is mapped to the index-7 suborder (gz ﬂ}i K > of the

maximal order R%“.

n = 3: From Theorem 4.2.19, we know that

(B.q) = {N(R) L8], v(é)

1
"N(R) L[ed], v(6)=0

In view of Theorem 3.4.12 and Theorem 3.4.19, we first consider the quadratic
discriminants of N(R) and "N (R). From Theorem 4.3.11 we obtain disq(N(R)) = ¢
and disq("N(R)) = n%e, with t = 0, if p = 2; and t = 1, if p # 2. Thus, if v(§) = 1,
whether disq("N(R)) is a unit depends on p; therefore, we must distinguish between
the dyadic and non-dyadic case.

We start with v(6) = 1. Then we have
C(N(R) L [£8]) = C(N(R)) ® C([£26]) = R**? ® R[V] = R[V]>2.

as R-algebras, by Theorem 3.4.12, because ¢ € R*. Since defq(d) = 0, we know that
R[V/4] is the unique maximal R-order in K (v/9), so using Example 2.2.6, we conclude
that R[v/9]>*? = C(E) is a maximal R-order in C(V'). Beyond this, Theorem 3.4.12
yields that the eight matrices below form an R-basis of C(N(R) ® [ed]). These are
obtained by using the Kronecker product of matrices and the matrix representations
of C(N(R)) and C([ed]), which we discussed in the lower-dimensional cases.

_ 22
[4 (1)86s 0 ﬂ_fe ]2 _5-[2 71'76 /(1)606‘ _05 %6
) 0 —e ’ _ ) 0 ed 0 —edb )
0 -1 0 I I \180‘ -1 0

IQ 0 s 12 ‘ _512 /(1)56;‘ \ —e e 0
0|-L)" \]2‘ —IQ/’ \0 ‘0865}’ \_01755 (1)606

Moreover, the matrices are ordered such that the four matrices in the first row
form an R-basis of Co(F). As ¢(V,q) = —1, the K-span of these four matrices is
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4.4 Clifford orders of maximal lattices

isomorphic to Q as K-algebra and Cy(F) is an R-order inside it.

Using the fact that v(—ed) = 1 and applying Proposition 2.3.7 (ii), we conclude
that Co(E) contains the suborder C(*°N(R)) = C("N(R)) of index 7. However, we
already know from the two-dimensional case that C("N(R)) is an index-7 suborder
of the maximal R-order A in Q. Since A is the unique maximal R-order inside O,
this implies Co(E) = A.

To summarise the case v(d) = 1, both the Clifford order C(E) and the even Clifford
order Cy(E) are maximal R-orders in the Clifford algebra C(V') and the even Clifford
algebra Cy(V), respectively.

Next, let v(0) = 0 and consider the dyadic case first. Then, by Theorem 3.4.12,
the Clifford order C(F) is isomorphic to

C(E) = C("N(R)) @ C([%0]) = Xp @ R[X]/(X* —4)

as an R-algebra. Now, if § = 1, then R[X]|/(X? —1) = Ay(1) is the unique index 7*
suborder of A_.(1) 2 R & R. In this case, C(E) has index 7% - 7% = 7%¢*2 in the
maximal R-order

ARRX]/(X*-X)2AR(ROR) ¥ ADA.
of @@ Q. To be precise,
C(E> = <(a’7a)7 (CL, _a’) | ac XR> = <(XRaXR>? (XRv _XR)> <A®A

Otherwise, § # 1 and then C(E) = X ® R[V0] as R-algebra. From this we obtain
an R-representation as 8 x 8 matrices, either by using the Kronecker product and
the R-representations of X'y and R[\/g] that we discussed earlier, or by noticing that

R[w] ® (Xr ® R[V3)) = (R[w] ® Xg) ® RV =Y @ RV

as an R|w|-algebra. Then we can again use the Kronecker product of matrices to
obtain an R|w]|-representation as 4 x 4 matrices and use Proposition 4.4.1 to get the
desired R-representation as 8 x 8 matrices.

We determine its index in a maximal order in C(V'). Note that C(V) = Q ®xk
K(V$) = K(v/3§)*2, because, by Corollary (31.10) in [Rei03], any degree-two field
extension of K is a splitting field for the K-division algebra Q. Thus, R§X2 is a
maximal R-order in C(V') and it is easily seen that A is mapped to

R5 ™ R5
Rs Rs
under the isomorphism Q ®x K (\/5) 2K (\/(_5)2“. Hence, the isomorphic image of

A has index 72 in R2*? and, in total, we find that C(E) = Xz ® R[v/d] has index
74942 . 72 = 749+ in any maximal R-order of C(V).
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4 Clifford orders over complete discrete valuation rings

In contrast, the isomorphism type and the index of the even Clifford order Cy(FE)
in the maximal R-order A are easier to determine. As a reminder, we have v(§) =0
and this time we also allow § = 1. By Proposition 2.3.7 (ii), we have the isomorphism
of R-algebras

Co(E) = C("TN(R)) = C("N(R)) = Xk,

because £ € R* and, by Remark 4.2.3, the norm form N(R) represents every unit
of R. We have already seen that [A : Xg| = 7, when we considered n = 2.

With that, only the non-dyadic cases with v(J) = 0 remain and actually, the
above result regarding the isomorphism type and the index in A of Cy(F) carry over
to the non-dyadic case. This is because in order to apply Proposition 2.3.7 (ii), we
only require ¢6 € R*. This holds independent of p.

As we already discussed, we have disq("N(R)) = w%¢. Thus, by Theorem 3.4.12,
the R-order Y := C("N(R)) ® C([r24]) has index 7* in the Clifford order C(E). On
the other hand, ) also has index 7* inside the R-order T' := C("N(R)) ® C([d]).
Hence, the index of C(F) in a maximal order coincides with the index of I' =
Xr ® R[X]/(X? — §) in a maximal order, so we are essentially back in the dyadic
case. However, this time all quadratic defects are zero, so we conclude that the
index of C(FE) in a maximal order is 72, if § = 1; and it is 7%, if § = €.

We can also consider the R-orders above in more detail. Recall that in the non-
dyadic case, "N(R) = [m,—em| and that, if (e;,ey) is a suitable orthogonal R-
basis of "N(R), then Z("™N(R)) = (1,2)p, with z = eje, satisfying 2% = 7% =
disq("N(R)). Write E = [, —em] L [¢d] and let f be a generator of the second
summand. Then C(F) = (ey, ea, f) as R-algebra and we have the K-algebra isomor-
phism

¢ :C(KE) = KI' = C(K[r,—en]) @ C(K[d]), ei = e, @1, f = 1 2@,
where z is a generator of [0] with ¢(z) = 0. Doing the computation, we find

o(f) =nterea @z, plerf) =ea @, p(eaf) =ce1 @, plereaf) =T @ x
and since ¢ € R* is a unit, we reobtain the claim about the indices of C(£) and
[ in a maximal order. Moreover, the R-suborder of Q ®x K[X]/(X? — §) that is

generated by the images ¢(eq), p(e2), ¢(f) is isomorphic to C(E), so we can obtain
a matrix representation of C(F) from this.

n = 4: The unique maximal anisotropic R-lattice of rank four is (F,q) = N(R) L
"N(R) with ambient space (V,q) = Ux = N(K) L "N(K). Independent of p, we
have disq(N(R)) = €, so Theorem 3.4.12 yields

C(E) = C(N(R)) ® C("'N(R)) = R** @ C("N(R)) = R** @ Xp = A3’

as R-orders. Using the determinant formula for the Kronecker product of matrices,
this is a suborder of the maximal order A?*? of index 7*, and an R-representation
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4.4 Clifford orders of maximal lattices

of C(F) is easily obtained from the R-representation of X, which we discussed in
the two-dimensional case.

Finally, we consider the even Clifford order Cy(E). Recalling w? — tw +n = 0, we
have
1t w7t

N(R) = NP

and "N(R) =

Let (z,y) and (2/,%) be suitable bases of these R-lattices respectively, i.e. 2% =

Ly* =n, 2y +yr =t € C(N(R)), and similarly for "N(R). Then we get the
isomorphism of R-algebras

Co(E) = Co(N(R)) @ Co("N(R)) & C1(N(R)) @ Ci("N(R)) = A
and, after a suitable permutation, the R-algebra A has the R-basis

IelLrzedryelyes)Uyeay,yoy, 2oy, 1Y)
From now on, for simplicity, we write 1 instead of 1 ® 1 and put

e=a®2, f=ay®1, soalso ef =y

Then e = 7, f2—tf+n =0, (ef)? = (y®x)> = 7n and ef + fe = te hold.
Hence, because the relations are satisfied, the R-algebra generated by (1,e, f,ef) is
isomorphic to the unique maximal R-order A in Q, via

e mo, [rw, ef —»mow=(t—w)mo.

Moreover, if we put 3 == (em) ™" (z(2t7'y — 2) ® 2/(2t 7'y’ — '), then the identities
e3 = 3¢, [3 =3f and 3> = 1 hold. Now the R-algebra with basis

(e, fef)U(3,e3, f3.¢f3),

call it BB, is also an R-order in the K-algebra KA and it satisfies B 2 A@R[X]/(X?—
1). Consequently, we get the isomorphism of K-algebras

Co(V) 2 KA=KB~2Q®r K[X]/(X*-1)2Q®Q
for the ambient space and, because Q @ O contains a unique maximal R-order,

namely A @& A, so does Co(V). Moreover, with respect to the two bases above, the
base change matrix from A to Bis T'= (4 V) € R*® with

0U
4r)"t 0 271 0 1 0 2t7n 0
_ -1 0 4! 0 2 _ -1 0 1 0 2t In
U — (8{) 0 ) 0 —4{71'(1 5 W =& _2{71 0 1 0
—2771 0 —4(rt)"'n 0 0 —-20' 0o -1
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4 Clifford orders over complete discrete valuation rings

and its determinant is det(T") = det(U) = —16(t?e7) 2 whence [A : B] = 72, Now
R[X]/(X?—1) has index 7¢ in the maximal order R[X]/(X?—X) of K[X]/(X?*-1),
so using the determinant formula for the Kronecker product of matrices and AGA =
A® R[X]/(X?—X), we conclude that Cy(F) has index 74¢~(“¢=2) = 72 in the unique
maximal order of Cy(V). In order to precisely determine the isomorphic image of
Co(E) as a suborder of Q & Q, we first note that on one hand

—mm 0 0 —%ﬂ’t
-1
T_1 . I4 —-WU -1 _ 0 —-n —%t 0 -1 _ 1 8 8(1]75
—1o0 -1 7U - 1 0 0 - 7WU __§t 7000
2 0100
0 2t 1 o0

and on the other hand the maximal order m inside KA has the R-basis

(3+7 €3+ f5+7 €f3+) U (5*7 €3 fﬁ*? 6f3*)

with 3, = %(1 +3),3- = %(1 —3) € KA, the centrally primitive idempotents. With
respect to these bases, the base change matrix from m to Bis M = <i‘ _%4) € R®*3,

because 1 =3, +3_ and 3 = 3, — 3_. Hence, the base change matrix from m to A,
which is the one of interest, is given by

. -1 _ [4 [4 [4 —WU_l . I4 U_l — WU_l
V = MT = <[4 —I4 0 U_1 - [4 _(U—l + WU_I) .

There is a suitable £ € GLg(R) with XE = (ﬁ g) with D = diag(m,1,7,1), as
can be verified by using Gaussian elimination on the columns of X. This right-
multiplication corresponds to a change of basis of the R-lattice A, so

(Le, fref)U (m3—,e3-,mf3-,ef3-)

is an R-basis of A = Cy(FE) that is compatible with the R-basis

(Le, fref)U (3-,e5-, f3-,ef3-)

of the maximal order m. Inside the K-algebra Q@ Q, which is isomorphic to Co(V'),
we identify these two R-orders, by mapping 34 + (1,0) and 3_ > (0, 1).

_ Then A@ A=A(1,1) & A(0,1) =m and A(1,1) & A(0,1) = A= Co(E), where
A is the sublattice of A of index 72 with the R-basis (7, e, 7f, ef).

4.4.2 Clifford orders of anisotropic maximal lattices - results

We collect our results regarding the isomorphism types of the Clifford orders and
the even Clifford orders considered above. As before, we let £ = Ey(V,q) be the
unique maximal R-lattice in the anisotropic quadratic K-space (V,q). The tables
in Theorem 4.4.6 and Theorem 4.4.7 below should be interpreted as follows: The
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4.4 Clifford orders of maximal lattices

first column lists the maximal R-lattices (F,q) in roughly the same order as in
Theorem 4.2.19. We add some rows, since some results in the table only hold under
extra conditions on the prime p and the quadratic discriminant 6 of (F,q). Thus,
the second column contains abbreviations for said conditions. We repeat the already
familiar abbreviations.

Cond. Explanation
— p is arbitrary and 0 can only take one value.
p2— p =2 and J can only take one value.
np2— p # 2 and d can only take one value.
a Both p and ¢ are arbitrary.
Vi p is arbitrary and v(0) =i € {0, 1}.
vOnl p is arbitrary and v(0) = 0 with § # 1.

v0nle v(0) = 0 with 0 # 1,¢ (this implies p = 2).
p2v0nl p=2and v(J) =0 with § # 1.

The third column is reserved for the isomorphism type of C(E) or Cy(E) as R-
algebra. Usually, it contains a matrix representation of it. The last column contains

the index of C(E) or Cy(FE) in a maximal order of C(V') or Cy(V') as R-order.

Notation 4.4.4. Recall that the K-algebras K & K and K(w) both contain a
unique maximal order m, by Remark 3.1.1. In the first case, we have m = R ® R
and in the second case, we have m = Rjw]. Let o denote the unique non-trivial
automorphism of m, so that in the first case o(zy + z2) = 1 — 22 € R ® R and
o(x1 + xow) = 71 + xow? € R[w| in the second case. Since all orders of K & K and
K (w) are linearly ordered, we have I'” := ¢(I') = T for any suborder I' C m. Now,

given suborders I';, I'y € m and scalars a, b, c,d € R, we put

Iy .-bl'g b
@ 2 = @ 0'(5132) T € Fl, To €Iy » < mQXQ.
CFQ o dF({ CTo dO‘(CE1)

To better illustrate this new notation, we use it to describe some of the orders,
which we encountered in this section.

Ezxample 4.4.5. (i) The Clifford order of "N (R) is given by

a+brw w(c+ dw?)

C(TN(R)) = Xp =
(N(R)) r c+dw a-+brw?

a,b,c,d e R
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4 Clifford orders over complete discrete valuation rings

(ii) The lattice [1, —0] with v(J) = 1 has the Clifford order

Ty + 29 —0(x3 — 24)

e, ) =

T1,X2,T3, Ty €ER

T3+ X4 T1 — To

ROR-. .—6(R®R)
R®R" (R®R)Y

Using this notation, we present the two main results of this chapter, the classifica-
tion of the Clifford orders and of the even Clifford orders of the maximal anisotropic
R-lattices. Keep in mind that this information is sufficient to classify the Clifford
orders of all maximal R-lattices, by Corollary 3.4.9.

Theorem 4.4.6. An overview of the Clifford orders of the mazimal anisotropic

R-lattices over the p-adic valuation ring R is given by the table below.

Max. lattice in (V, ¢q) Cond. Isomorphism type of C(E) Index
{0} - R 1
[0] a Ao(9) 79
_ R®R-.—0(R®R) 2e+1
11, =] V1 ( R&R™ (R®R) m
1 =9
" V()nl A6 7T2(€—g)
7'('2(6_9)17_6
R —edR[/e]° e
& <0 V1 ( mvA < TR ) ™
. _ ~ ( Rlw] - R[w]”
N *ﬁ—(Rw« Rlwl” "
e—g
K , " 177 5 vOnle Bs r2e=9)-1
e (e_g)%n
N(R) L [g0] vl R[V5]>*? 1
"N(R) L [e] p2— ((Xr, Xr), (Xr, —XR)) riet?
[, —em, €] np2— * 72
"N(R) L [gd] p2r0nl RV @ Xg 74g+1)
(7, —em, 1] np2— s m
N(R) L "N(R) - X s

Here, let Xg be as in Example 4.4.5 (i), and regard ((Xg, Xg), (Xr, —Xr)) < A®A
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4.4 Clifford orders of maximal lattices

as a suborder of Q@ & Q. Moreover, put

A T+ x9 + W_g(l'g + .1'4) —(571'_9(33'3 + £C4)
5§ — )
7 9(xg — xy) Ty — xg + 7 9(Tg — T3)
go— J[ Tt Vit 7 9(\/NT3 + 124) =0T 9(\/NT3 + 1T4)
s =

T I(\/Nx3 — N4) T1 — /N2 + 79Ny — \/N73)

where all z; € R respectively.

The two x-symbols can be replaced by a (left) reqular representation of the Clifford
order in question, or, by the representation of it as a suborder of Q@ K[X]/(X%—0)
(then, asp # 2, 6 € {1,¢}).

Theorem 4.4.7. In the following, the expressions N;(-) with i € Z are as in No-
tation 4.3.2. Moreover, regard A(1,1) & A(0,1) < A® A as a suborder of Q & Q
with A the R-sublattice of A with basis (m, Mg, Tw, mow) (recall that (1, mg,w, Tow)
is an R-basis of A). Then, an overview of the even Clifford orders of the maximal
anisotropic quadratic R-lattices over the p-adic valuation ring R is given by the table

below.

Max. lattice in (V] q) Cond. [somorphism type of Cy(FE) Index

{0} - i 1
9 “ ) 1
1. v Ao(3) !

1 eI
e i vOnl A—g(é) !
[e, —&d] vl Ao(9) !
"N(R) - A-en(€) '

noo T
71'2(6—9)1;‘577 s A_g(5> 1
N(R) L [e6] vl A !
"N(R) L [£6] ) Xp & ( g{i% u WP?[%LU ) 7r
N(R) L "N(R) - L1 ®A0.1) i
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pseudo-basis, 23
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