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Abstract
This paper studies moving 180-degree Néel walls in ferromagnetic thin films under
the reduced model for the in-plane magnetization proposed by Capella, Melcher and
Otto (2007), in the case when a sufficiently weak external magnetic field is applied.
It is shown that the linearization around the moving Néel wall’s phase determines a
spectral problem that is a relatively bounded perturbation of the linearization around
the static Néel wall, which is the solution when the external magnetic field is set to
zero andwhich is spectrally stable. Uniform resolvent-type estimates for the linearized
operator around the static wall are established in order to prove the spectral stability
of the moving wall upon application of perturbation theory for linear operators. The
spectral analysis is the basis to prove, in turn, both the decaying properties of the
generated semigroup and the nonlinear stability of the moving Néel wall under small
perturbations, in the case of a sufficiently weak external magnetic field. The stability
of the static Néel wall, which was established in a companion paper (Capella et al.
2024), plays a key role to obtain the main result.
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1 Introduction

The emergence of domain walls and the study of their dynamics constitute one of the
most fundamental topics in the theory of ferromagnetic materials. The term domain
wall refers to a narrow transition region between oppositemagnetization vectors inside
a ferromagnet (cf. Hubert and Schäfer (1998)). In order to describe the evolution of
the magnetization inside a ferromagnetic material, Landau and Lifshitz (1935) intro-
duced in 1935 a model system of equations (later reformulated and re-derived by
Gilbert (1955)) known as the Laundau-Lifshitz-Gilbert (LLG) micromagnetic model-
ing framework. The model relates the observed magnetization patterns to the result of
minimizing a micromagnetic energy functional, and it is posed in terms of a damped
gyromagnetic precession of a (unit) magnetization vector field. The LLGmodel and its
extensions support the description of the magnetization in response to external force
fields and damping terms as well (cf. Gilbert (2004); Brataas et al. (2012)). It was
Néel (1955) who first pointed out that, when the thickness of a certain ferromagnet
becomes sufficiently small with respect to the exchange characteristic length, it then
becomes energetically favorable for the magnetization to rotate in the thin film plane,
giving rise to a Néel wall. This wall separates two opposite magnetization regions by
an in-plane rotation oriented along an axis.

In order to study the dynamics of Néel walls, Capella et al. (2007) proposed a one-
dimensional thin film reduction of the micromagnetic energy (previously outlined by
Muratov andOsipov (2006) for numerical purposes), which profits from the gyrotropic
nature of the LLG model and from the shape of anisotropy effects from stray-field
interactions, resulting into a thin-film layer equation for the in-plane magnetization’s
phase. The effective equations encompass a wave-type dynamics for such Néel wall’s
phase. The authors in Capella et al. (2007) proved the existence of wave profile solu-
tions to the resulting model in both the static (in the absence of an external magnetic
field) and in the dynamical (when a weak in-plane external magnetic field is applied)
cases. These solutions effectively describe the dynamics of Néel walls in the thin film
limit (see also Chermisi and Muratov (2013) and Muratov and Yan (2016) for further
information).

From a mathematical perspective, micromagnetics pose many challenging prob-
lems, ranging from the calculus of variations to stochastic analysis, due to the nonlinear,
nonlocal nature of the model equations. Regarding their dynamics, one of the main
problems is to understand the behavior of these domain walls under small perturba-
tions. Therefore, the dynamical stability of such structures is a fundamental feature, not
only to validate themathematical model, but also to enhance the numerical simulations
performed by physicists and engineers in order to design new ferromagnetic materials
(see, e.g., Labbé and Bertin (1999)). As far as we know, there are few results on the
stability of ferromagnetic domain walls under a dynamical point of view reported in
the scientific literature; for an abridged list of works, the reader is refereed toCarbou
and Labbé (2006), Carbou (2010), Carbou, Massaoui and Rachi (2022), Krukowski
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(1987), Takasao (2011) and some of the references cited therein. With the exception
of the recent result by Carbou et al. (2022) (which studies the spectral stability of a
constant coefficient linearized operator around steady states in ferromagnetic rings),
most of the aforementioned works establish a priori energy estimates on the evolution
equations governing eventual perturbations of the profile solutions and study their
decay properties. It is to be observed that energy methods strongly rely on the intrinsic
structure of the model equations.

In a companion paper (Capella et al. 2024), we established the nonlinear stability
of the static 180-degree Néel wall profile under the reduced wave-type dynamics for
the in-plane magnetization proposed by Capella et al. (2007), which is the energy
minimizer in the absence of an external magnetic field. For that purpose, in Capella
et al. (2024) we adopted a different strategy to tackle the stability problem. Motivated
by the (now standard) “spectral stability implies nonlinear stability” methodology
(see, for example, the seminal works by Alexander et al. (1990), Pego and Weinstein
(1994, 1992), Zumbrun and Howard (1998), and the surveys by Sandstede (2002) and
Kapitula and Promislow (2013)), we performed the first rigorous proof of the nonlinear
stability of the static Néel wall based on a spectral study of the linearization around the
wall phase’s profile. The latter is a nonlocal, block operator matrix posed on a suitable
energy space. In our analysis, we proved that this operator is spectrally stable, that
is, its spectrum is contained in the stable half-plane of complex numbers with strictly
negative real part, except for a simple zero eigenvalue associated to translations of the
profile. Two important features of the linearization about the static wall are, first, the
presence of a spectral gap (that is, a positive distance from the zero eigenvalue to the
rest of the spectrum),which allows to conclude the exponential decay of the semigroup;
and, second, the simplicity of the eigenvalue zero, which allows to nonlinearly modu-
late perturbations depending on translations alone. The main difficulty of the analysis,
however, consisted on the nonlocal nature of the operator, for which the location of
the essential spectrum involved the establishment of a relative-compactness property
based on L2-equicontinuity of Fourier operator symbols (see Capella et al. (2024) for
details). Outside the one-dimensional eigenspace generated by the derivative of the
static Néel profile, the infinitesimal semigroup generated by this linear block operator
decays exponentially. Then, upon application of Gearhart-Prüss theorem (cf. Cramer
and Latushkin (2003); Engel and Nagel (2000)) and of an abstract nonlinear stability
result by Lattanzio et al. (2016) (see also Sattinger (1976)), we were able to deduce
the nonlinear stability of the static Néel profile from the previous spectral information.

In this paper we pose the following question: what happens to the Néel wall profile
in the presence of an external magnetic field? Capella et al. (2007) have already
proved that, if the applied external magnetic field, H = Hey , is sufficiently weak
with |H | � 1, where H denotes its intensity, then there exists a traveling wave
profile solution associated to a moving Néel wall. This solution is a phase profile that
travels with speed c, which is also small, c = O(|H |). Here, we study the dynamical
stability of such a moving Néel wall profile under small perturbations of the wall’s
phase in appropriate energy spaces, once the applied magnetic field has been fixed.We
employ the samemethodology: we linearize around themoving profile and analyze the
spectrum of the resulting operator. At this point it is important to remark, however, that
the analysis presented here is not incremental (that is, we do not perform nor repeat the
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same steps as in the case of the static operator) but rather complementary: we depart
from the stability result for the static operator and prove that the linearization around
a moving Néel wall with speed c, namely, a linearized nonlocal block operator Ac, is
a relatively bounded perturbation of the linearization around the static Néel wall, A.
This observation allows us to apply standard perturbation theory of linear operators
(cf. Kato (1995)) to conclude the spectral stability of the linearized operator for the
moving wall. For that purpose, we prove that the resolvent set of the operator Ac can
be approximated by that of the static operator A.

Despite the simplicity of this approach, the analysis is far from trivial. Indeed, our
conclusions depend on the establishment of certain resolvent-type estimates for the
static operator A. The whole central Section 5 is devoted to accomplish this task.
Although the analysis is elementary and the estimations are direct, the latter are, how-
ever, quite convoluted. For instance, it is necessary to keep track of resolvent bounds
on different regions of the resolvent set and on a small neighborhood of the origin (see
the proof of Theorem 5.5 below). Upon application of standard perturbation theory
for linear operators, we conclude the spectral stability of the moving wall for small
values of c (or, equivalently, of the applied magnetic field). The fact that the magnetic
field determines uniquely the speed of the wall implies that the manifold generated
by the traveling profile is one-dimensional and we only need to modulate perturba-
tions via translations of the profile. From a spectral viewpoint, this is tantamount to
the translation zero eigenvalue of the linearized operator being simple. Perturbation
theory also yields that the spectrum of the perturbed operator remains close to that
of the static operator. Thus, we recover spectral stability with a spectral gap and the
simplicity of the translation eigenvalue in the case of small applied magnetic fields. In
other words, we prove the persistence of the spectral stability properties of the static
wall’s phase in the case of a moving wall under a weak external field. We then apply
Lumer-Phillips theorem to generate an exponentially decaying semigroup outside the
one-dimensional eigenspace.We use this property and the simplicity of the eigenvalue
to prove, in turn, the nonlinear stability of the moving wall under small perturbations,
just like in the static case (Capella et al. 2024). This is perhaps the most standard part
of the analysis. We include it for the sake of completeness; however, we gloss over
many details which can be found somewhere else.

The contributions of this paper can be summarized as follows:

– we establish new regularity properties for themoving Néel wall which are required
for the stability analysis;

– we pose the spectral stability problem for the moving wall and, motivated by
energy minimization arguments (see Capella et al. (2024)), we select the space of
H1 perturbations for the phase;

– we prove that the spectral equation for the moving Néel wall, with speed c =
O(|H |) and |H | � 1, is set up in terms of a block matrix operator Ac. This
operator is a relatively bounded perturbation of the corresponding block matrix
operator A resulting from the spectral equation in the case of the static Néel
wall, but, in this case, it is evaluated in a (Galilean) moving frame of the form
z = x − ct (see Lemma 4.3 below). Namely, Ac = A + Bc, where Bc is an
A-bounded operator.
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– weestablish uniform resolvent-type estimates on the static operatorAwhich allows
to conclude the spectral stability of the linearized operatorAc upon application of
perturbation theory for linear operators (see Theorems 5.5 and 5.6 below);

– we prove that the operator Ac is the infinitesimal generator of a C0-semigroup
which is exponentially decaying outside the one-dimensional eigenspace associ-
ated to the eigenvalue zero; and,

– we close the analysis by showing that the moving Néel wall is nonlinearly stable
under small perturbations of its phase in the energy space.

Plan of the Paper

The remainder of the paper is structured as follows. In order to be able to state our
main result (see Theorem 2.9 below), in Section 2 we recall the thin film reduction
of the LLG model and describe the stability results for the static wall. Section 3
contains some important properties of the moving Néel wall’s phase and its relation to
the static profile, which are needed for the stability analysis. Section 4 establishes the
perturbation equations to be studied and sets up the associated spectral problem. It also
contains the relative boundedness result that motivates our methodological approach
(Lemma 4.3). The central Section 5 is devoted to establish resolvent-type estimates
for the static operator which allow to apply perturbation theory and to conclude the
spectral stability of the moving wall (a short Appendix A contains some pointwise
estimates that are needed for the proof). Section 6 focuses on the (standard) generation
of the C0-semigroup and on its decaying properties. The final Section 7 establishes
the nonlinear stability of the moving Néel wall. We close the exposition with some
final remarks (Section 8).

Notations

We denote the spaces L2(R, C), H1(R, C), and H2(R, C) of complex-valued func-
tions as L2, H1, and H2. Their real-valued counterparts are denoted as L2(R), H1(R),
and H2(R), respectively. In the whole manuscript we assume that the capital letters
U , V , F, Ū , F̄, Ũ , and F̃ are vector valued functions in H1 × L2. If needed, we will
refer to the entries of U , V , and F by U = (u, v), F = ( f , g), and V = (w, z)
for some functions u, f , w ∈ H1 and v, g, z ∈ L2. We write conv(�) to denote the
convex hull of a given set � ⊂ C and int conv(�) to denote its interior. The set of
unitary vectors in R

n is denoted by S
n−1. For any number or complex-valued func-

tion, the operation (·)∗ denotes complex conjugation. The operators p· : L2 → L2

andq· : L2 → L2 stand for the Fourier transform and its inverse, respectively. Also,
ξ represents the variable in the Fourier domain. The half-Laplacian is defined by the
relation (−�)1/2u = (|ξ |pu)q, and ‖u‖Ḣ1/2 denotes the fractional H1/2-seminorm of
the function u ∈ L2 given by ‖u‖Ḣ1/2 := ∥

∥|ξ |1/2pu∥∥L2 . For any linear, closed and
densely defined operator L : D(L) ⊂ X → Y , with X , Y Banach spaces and domain
D(L) ⊂ X , the resolvent set, ρ(L), is defined as the set of complex numbers λ ∈ C

such that L − λ is injective and onto, and (L − λ)−1 is a bounded operator. The
spectrum of L is the complex complement of the resolvent, σ(L) = C \ ρ(L).
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2 Equations, Assumptions andMain Result

In this Section we describe the micromagnetic equations in the thin film limit, recall
the previous stability results of the static Néel wall and state the main result of this
paper.

2.1 TheMicromagnetic Model and NéelWalls

The time evolution of themagnetization distribution on a ferromagnetic body, �̃ ⊂ R
3,

is governed by the Landau-Lifshitz-Gilbert (LLG) equation (cf. Landau and Lifshitz
(1935); Gilbert (1955)):

mt + m × (γHeff − αmt ) = 0, (2.1)

where m : �̃ × (0,∞) → S
2 ⊂ R

3 is the magnetization field, α > 0 is a non-
dimensional damping coefficient (Gilbert factor), and γ > 0 is the (constant) absolute
value of the gyromagnetic ratio with dimensions of frequency (see, e.g., Gilbert
(2004)). The effective field,Heff = h−∇E(m), consists of the applied field h and the
negative functional gradient of the micromagnetic interaction energy E(m), which, in
the absence of external fields, is given by

E(m) = 1

2

(

d2
∫

�̃

|∇m|2 dx +
∫

R3
|∇U |2 + Q

∫

�̃

�(m) dx
)

.

The parameter d > 0 is the exchange length and the stray field, ∇U , is defined
uniquely via the distribution equation �U = div (mχ�̃) (χA denotes the indicator
function of the set A). The last integral models crystalline anisotropies via a penalty
energy, for which � acts as a penalty function and it has usually the form of an
even polynomial in m ∈ S

2. The parameter Q > 0 measures the relative strength of
anisotropy penalization against stray-field interaction.

In the thin-film regime, that is, when �̃ = �× (0, δ)with� ⊂ R
2 and 0 < δ � d,

it is usually assumed that the magnetization is independent of the x3 variable (see
Garcia-Cervera (2004); DeSimone et al. (2006)) and �-periodic in the e2 direction,
namely,

m(x1, x2 + �) = m(x1, x2) for any x = (x1, x2) ∈ R
2.

Moreover, it can be justified that the material underlies uniaxial anisotropy in the e2
direction, with �(m) = 1− m2

2. Under the appropriate scalings, Capella et al. (2007)
proved that the magnetization, m = (m, 0) with m = (m1, m2), is a solution to the
following variational problem

E0(m) = 1
2

(

Q‖m′‖2L2(R)
+ ‖m1‖2Ḣ1/2(R)

+ ‖m1‖2L2(R)

)

→ min,

m : R → S
2, with m(±∞) = (0,±1), (2.2)
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where ′ = d/dx1 and the constant Q > 0 is a rescaled relative strength Q. Since the
left translation operator is an isometry in L2, the expression of E0(m) is invariant under
spatial translations. This invariance is inherited by the energy, yielding that minimizers
of (2.2) are unique up to translations.Despite this invariance, E0(m) is a strictly convex
functional on m1 because |m′|2 = (m′

1)
2/(1 − m2

1). Thus, the variational principle
(2.2) has a minimizer for anyQ > 0. The minimizer that satisfies m1(0) = 1 is called
the Néel wall profile. We refer to E0(m) as the Néel wall energy. In other words, in the
thin film regime the normal component of the magnetization for any ferromagnetic
sample is penalized by the geometry in such a way that this component must vanish
as the height of the sample does (see Capella et al. (2007); Garcia-Cervera (2004);
Melcher (2010) for further details).

Consequently, the in-planemagnetization is completely determined by its phase θ ∈
(−π/2, π/2) through the relation m = (m1, m2) = (cos θ, sin θ), and the variational
problem that defines a Néel wall becomes the following variational problem for the
Néel wall’s phase,

E(θ) = 1

2

(‖θ ′‖2L2 + ‖ cos θ‖2
Ḣ1/2 + ‖ cos θ‖2L2

) → min,

θ : R → (−π/2, π/2), with θ(±∞) = ±π/2,
(2.3)

(for details, see Capella et al. (2007)). For simplicity and without loss of generality,
here we have assumed that Q ≡ 1. We keep such normalization for the rest of the
paper.

The magnetization and its phase are, of course, heavily influenced by the presence
of an applied external magnetic field. Indeed, in the case where the latter points toward
one of the end-states determined by the anisotropy, that is, h = He2, then it can be
proved (cf.Capella et al. (2007)) that the dynamical equation for the phase θ is given
by

⎧

⎪⎨

⎪⎩

∂2t θ + ν∂tθ + ∇E(θ) = H cos θ,

θ(−∞, t) = −π/2, θ(∞, t) = π/2,

θ(x, 0) = θ0(x), ∂tθ(x, 0) = v0(x),

(2.4)

where θ0 and v0 are some initial conditions, H ∈ R is the scalar parameter that
measures the externalmagnetic field strength andE(θ) is the effective energy appearing
in (2.3).

Both equations (2.3) and (2.4) constitute an effective model that describes the
dynamics of the magnetization in a ferromagnetic thin film. They are strictly derived
from electromagnetic theory and the LLG equation. We remark that, in contrast with
the LLGmodel, equation (2.4) has a second time derivative which is a consequence of
the magnetization vector being unitary, which is, in turn, an holonomic constrain. In
addition, equation (2.4) not only has a damping term as LLG-equation does, but it also
contains a second order spatial derivative emerging form the term ∇E(θ). In Capella
et al. (2007) Capella et al. showed that the in-plane magnetization of a ferromagnetic
thin film exhibits somewave-type dynamics and proved the existence of travelingwave
solutions (Néel wall profiles) under small values of the applied field, 0 ≤ |H | � 1,
including H = 0, as we describe below.
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2.2 The Static NéelWall Profile in Soft Magnetic Thin Films

In the absence of external magnetic field, with H ≡ 0, the Cauchy problem (2.4)
has a unique, odd, monotone increasing, and smooth steady state, θ̄ = θ̄ (x), such
that θ̄

′ = θ̄ ′(x) ∈ Hk for any k ∈ Z, k ≥ 0, known as the static Néel wall’s phase
profile. Also, equation (2.4) has a one-parameter group symmetry due to translation
invariance. This fact and the positiveness of the damping coefficient ν > 0 imply the
orbital stability of the steady state θ̄ , as it has been recently proved in Capella et al.
(2024). Therein, we studied the perturbation equation of (2.4) around θ̄ , by recasting
(2.4) with H = 0 as an evolution system, namely,

∂t

(

u
v

)

=
(

0 I
−L −νI

)(

u
v

)

+
(

0
∇E(θ̄ + u) − Lu

)

, (2.5)

where u(·, t) ∈ H1 for all t > 0 denotes a small perturbation of the Néel wall’s phase
profile, v = ∂t u, and L : H1 → L2 is the H1-restriction of the L2-gradient of ∇E
around the steady state θ̄ , which is given by

⎧

⎨

⎩

L : L2 → L2,

D(L) = H2,

Lu := −∂2x u + sθ̄ (1 + (−�)1/2)(sθ̄u) − cθ̄ u, u ∈ D(L).

(2.6)

Remark 2.1 It is to be observed that the operator L that appears in (2.5) refers to the
restriction of L to H1, namely L|H1 , which we write again as L with a slight abuse of
notation. Nonetheless, its spectral properties and its closedness remain (see Remark
5.2 in Capella et al. (2024)).

In the rest of the paper, we adopt the notation T for the operator (1+ (−�)1/2) for
the sake of brevity. The following result remarks the continuity of T as an operator
from Hk+1 to Hk for any non-negative integer k.

Proposition 2.2 For any k = 0, 1, 2, the nonlocal linear operator T := (1 +
(−�)1/2) : Hk+1 → Hk is bounded.

Proof Follows immediately from its definition in terms of the Fourier transform.
Indeed, for each k = 0, 1, 2, there holds

‖T u‖2Hk = ‖(1 + (−�)1/2)u‖2Hk =
∫

R

(1 + |ξ |2)k
∣
∣
(

(1 + (−�)1/2)u
)

p(ξ)
∣
∣2 dξ

≤ 2
∫

R

(1 + |ξ |2)k+1|pu(ξ)|2 dξ = 2‖u‖2Hk+1 ,

yielding

‖T ‖ = sup
‖u‖Hk+1=1

‖T u‖Hk < ∞.

��
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Remark 2.3 In order to simplify the notation, for any real functionφ = φ(x)depending
on the spatial coordinate x ∈ R we write sφ = sφ(x) to denote the function x �→
sin φ(x), and cφ = cφ(x) to denote the function x �→ cosφ(x)T (cosφ(x)). We shall
keep this notation for the rest of the paper.

One of the key points proved by Capella et al. (2024) is that the solutions to the
linear version of (2.5) constitute a C0-semigroup. The following result summarizes
the main spectral properties of the linearization around the static Néel wall’s phase.

Theorem 2.4 (Capella et al. (2024)) Let ν > 0 be fixed and let A : H1 × L2 →
H1 × L2, with dense domain D(A) = H2 × H1, be the block operator given by

(

u
v

)

�→
(

0 I
−L −νI

)(

u
v

)

. (2.7)

Then the following properties hold:

(a) λ = 0 is a simple and isolated eigenvalue of A with eigenvector �0 := (θ̄
′
, 0) ∈

D(A).
(b) There exists ζ(ν) > 1

2ν > 0 such that

σ(A) ⊂ {0} ∪ {

λ ∈ C : Re λ ≤ −ζ(ν) < 0
}

.

(c) A is the infinitesimal generator of a C0-semigroup {etA}t≥0 of quasicontractions.
(d) Let �0 := (νθ̄

′
, θ̄

′
) ∈ D(A). Then the projection operator P defined on H1× L2

and given by

U ∈ H1 × L2 �→ PU := U − 〈U ,�0〉L2×L2

〈�0,�0〉L2×L2
�0, (2.8)

commutes with A and satisfies

Ran(A) ⊂ Ran(P) = {F ∈ H1 × L2 | 〈F,�0〉L2×L2 = 0}.

Moreover, if (H1 × L2)⊥ denotes the range of P ,

(H1 × L2)⊥ := Ran(P), (2.9)

then the restriction of the operator A on (H1 × L2)⊥, denoted as A⊥ := A|(H1×L2)⊥
and with dense domain D(A⊥) = (H2 × H1) ∩ (H1 × L2)⊥, is the infinitesimal
generator of an exponentially decaying C0-semigroup {etA⊥}t≥0 and its spectrum is
stable with a spectral gap,

σ(A⊥) ⊂ {

λ ∈ C : Re λ ≤ −ζ(ν) < 0
}

. (2.10)
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Remark 2.5 A few observations about the projector P are in order. The reader might
have already noticed that the inner product appearing in formula (2.8) is not the
standard inner product of the base space H1 × L2. The operator P is, however, the
standard projection of H1 × L2 onto the eigenspace span {�0}. This holds because,
as stated in Capella et al. (2024), the eigenfunction associated to the formal adjoint
A∗ is not �0 = (νθ̄

′
, θ̄

′
) but �̌0 = (ν(1+ (−�))−1θ̄

′
, θ̄

′
) ∈ H1 × L2 and it can be

proved that

〈U , �̌0〉H1×L2 = 〈U ,�0〉L2×L2 ,

for all U ∈ H1 × L2 (see Corollary 6.9 and Lemma 6.10 in Capella et al. (2024)).
Hence we obtain formula (2.8), which provides a simpler characterization of Ran(P)

and which was crucial to deduce the spectral stability of the static Néel wall, via a
direct spectral analysis of the operatorA. Compare (2.8) with the standard expression
of the corresponding projector onto the eigenspace generated by the moving Néel
wall, formula (6.1) below. In the moving case we do not pursue a simpler expression
because the spectral stability of the linearized operator about amovingwall is analyzed
indirectly (upon application of standard perturbation theory of linear operators).

In the companion paper Capella et al. (2024), we were able to prove the nonlinear
(orbital) stability of the static Néel wall under small perturbations.We used the spectral
information of Theorem2.4 in a keyway.We shall profit from this result to examine the
case of moving Néel walls, which are related structures that appear when the external
magnetic field is switched on.

2.3 TheMoving NéelWall and Statement of theMain Result

Now let us consider the case when an external magnetic field is applied. By assuming
the existence of traveling wave solutions to equation (2.4) of the form θ(x, t) =
ψ(x − ct) for c ∈ R, a direct computation shows that the traveling profile ψ must
satisfy

c2ψ ′′ − νcψ ′ + ∇E(ψ) = H cosψ,

ψ(−∞) = −π/2, ψ(∞) = π/2,
(2.11)

where ′ = d/dz denotes differentiation with respect to the Galilean variable, z =
x −ct .We refer to the constant c ∈ R as the propagation speed. Upon an application of
the implicit function theorem, the authors of Capella et al. (2007) proved the existence
of a moving Néel wall’s phase for sufficiently small values of the applied magnetic
field.

Theorem 2.6 (Capella et al. (2007)) There exists δ̃ > 0 such that if the magnetic
field strength satisfies |H | < δ̃, then there exists a traveling wave ψ ∈ H2

loc(R)

and a propagation speed c = c(H) for the reduced LLG dynamics (2.11) such that
ψ − θ̄ ∈ H2(R). Moreover, the propagation speed has an expansion

c = β̃ H + o(H), (2.12)
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where the wall mobility β̃ > 0 is defined as β̃ := (Mν)−1 with M = 1
2‖θ̄

′‖2
L2 > 0.

Proof See the proof of Theorem 2 in Capella et al. (2007). ��
Remark 2.7 From the implicit function theorem we know that there exists an open
neighborhood �1 ⊂ R containing H = 0 and another open neighborhood �2 ⊂
H2(R)×R of (θ̄ , 0) such that the mapping H �→ (ψ(H), c(H)) is differentiable and
satisfies equations (2.11) and (ψ(0), c(0)) = (θ̄ , 0). Due to differentiability of the
mapping, there exist a positive constant γ such that

‖ψ(H) − θ̄‖H1 + |c(H)| = Hγ + o(H), (2.13)

for H small enough (for further details, see Capella et al. (2007)).

Remark 2.8 Moreover, once the intensity of the external magnetic field is fixed and
sufficiently small, |H | < δ̃, then the propagation speed of the moving Néel wall’s
phase, c = c(H) is also fixed and of order c = O(|H |) as H → 0. Since the wall
mobility is not zero, β̃ > 0, from the implicit function theorem we know that there is
a one-to-one correspondence between the parameter values H and c. Therefore, we
may use the value of c as a perturbation parameter for the physical problem, instead
of H , inasmuch as H = O(|c|) as well. In the sequel we use (according to custom in
the nonlinear wave stability theory (Kapitula and Promislow 2013)) the parameter c
as the perturbation parameter of the spectral problem. Also note that, from estimate
(2.13) we also have

‖ψ − θ̄‖H1 = O(|c|) = O(|H |). (2.14)

We are now ready to state the main result of this paper.

Theorem 2.9 (nonlinear stability of moving Néel walls) Let the damping factor ν

be positive and assume that the applied magnetic field satisfies that H = H ê2, with
constant strength |H | < δ̃. Now, assume that ψ = ψ(·) and c = O(|H |) stand for
the moving Néel wall phase’s profile and the speed, respectively, of the traveling wave
predicted by Theorem 2.6. Also, let JH ⊂ H1(R) × L2(R) be the set of (real) initial
conditions such that the Cauchy problem (2.4) has a global solution for the prescribed
magnetic field strength, H.

There exists a threshold ε ∈ (0, δ̃) on the magnetic field strength, depending on ν,
such that for every (θ0, v0) ∈ JH satisfying

|H | + ‖θ0 − ψ‖H1 + ‖v0‖L2 < ε,

there exist s ∈ R and two positive constants C and ω, depending on H and ε, such that
solution θ to the Cauchy problem (2.4) with initial condition (θ(x, 0), ∂tθ(x, 0)) =
(θ0, v0) satisfies

‖θ(·, t) − ψ(· + s)‖H1 ≤ C exp(−ωt), (2.15)

for all t > 0.

123



   83 Page 12 of 49 Journal of Nonlinear Science            (2025) 35:83 

Remark 2.10 Just as in our previous analysis (Capella et al. 2024), Theorem2.9 focuses
on the nonlinear stability property of the profileψ : eventual small perturbations of the
moving Néel profile, if they exist, do decay exponentially fast to a translated profile,
ψ(· + s). The global existence of such perturbations can be proved with standard
semigroup methods and using the decay estimates we establish later on. Still, we do
not pursue such an analysis here.

3 Preliminaries

In the current Section, we gather some preliminary information, which will be used
later. In particular, we highlight some essential features of the static Néel wall and its
relation to the moving wall’s phase.

3.1 Properties of theWorking Static NéelWall’s Phase

The following definitions and results can be found in the aforementioned references
(Capella et al. 2007, 2024), which the reader can consult for further information.

Theorem 3.1 (Capella et al. (Capella et al. 2007, 2024)) Let θ̄ be the static Néel wall’s
phase and L : L2 → L2 (with domain D(L) = H2) be the L2-gradient of ∇E around
θ̄ defined in (2.6). Then, L is a closed, densely defined, self-adjoint linear operator.
Moreover, there exists a fixed positive constant �0 such that the L2-spectrum σ(L) of
L satisfies

σ(L) ⊂ {0} ∪ [�0,∞).

In addition, λ = 0 is a simple isolated eigenvalue with eigenspace spanned by θ̄
′ ∈

D(L).

Proof SeeLemmata 4.9 and 4.10 aswell as Proposition 4.6 andTheorem4.1 inCapella
et al. (2024). ��
Definition 3.2 Let L2⊥ denote the L2-orthogonal complement of θ̄

′
. For every k =

0, 1, 2, we define the following function spaces:

Hk⊥ := Hk ∩ L2⊥.

Remark 3.3 From Theorem 3.1 we know that λ = 0 is a simple eigenvalue of L with
kerL = span{θ̄ ′}. Therefore, L is not invertible. However, when restricted to L2⊥, the
operator L⊥ := L|L2⊥

: L2⊥ → L2⊥ with domain D(L⊥) = H2⊥, is indeed invertible

because λ = 0 belongs to the resolvent of L⊥. Hence, the inverse L−1
⊥ : L2⊥ → L2⊥,

with domain D(L−1
⊥ ) = L2⊥ and range Ran(L−1

⊥ ) = H2⊥, is well defined.

Since Hk-convergence is stronger that L2-convergence, it is immediate that each
space Hk⊥ is a Hilbert subspace (with the standard inner product) of Hk . The advantage
of working with these spaces is that they provide the following splitting properties.
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Lemma 3.4 Let k ∈ {0, 1, 2}. For every u ∈ Hk there exists a unique pair (α, u⊥) ∈
C × Hk⊥ such that u = u⊥ + αθ̄

′
.

Proof See the proof of Lemma 6.3 in Capella et al. (2024). ��
Remark 3.5 It is to be noticed that H1⊥ × L2⊥ ⊂ (H1 × L2)⊥ = Ran(P), inasmuch as
U = (u, v) ∈ H1⊥ × L2⊥ implies that 〈U ,�0〉L2×L2 = 〈u, νθ̄ ′〉L2 + 〈v, θ̄〉L2 = 0 and,
consequently, U = PU .

Lemma 3.6 Let a : H1⊥ × H1⊥ → C be defined by

a [u, v] := 〈∂x u , ∂xv〉L2 + 〈sθT (sθu) , v〉L2 − 〈cθ u , v〉L2 . (3.1)

Then a[·, ·] is a positive sesquilinear Hermitian form that defines an inner product
equivalent to 〈· , ·〉H1 in H1⊥, i.e., there exist two positive constants, K , k > 0, such
that

k ‖u‖H1 ≤ ‖u‖a ≤ K ‖u‖H1 , (3.2)

for all u ∈ H1⊥. Moreover,

a[u, v] = 〈L u , v〉L2 , u ∈ H2⊥, v ∈ H1⊥. (3.3)

Proof See Definition 6.4, Proposition 4.6 and Lemma 6.5 in Capella et al. (2024). ��
The norm induced by this inner product is denoted by ‖u‖a = √

a[u, u]. We will
also consider the Hilbert subspace Z = H1⊥ × L2 with the inner product 〈·, ·〉Z given
by

〈U , V 〉Z := a[u, w] + 〈v , z〉L2 , (3.4)

for U = (u, v) and V = (w, z) in Z . It is known that 〈·, ·〉Z and 〈·, ·〉H1×L2 are
equivalent inner products in Z (see Capella et al. (2024), Lemma 6.5).

Remark 3.7 It follows from the definition of (H1 × L2)⊥ (see (2.9) and Lemma 3.4)
that for everyU = (u, v) ∈ (H1×L2)⊥ there exist unique α, β ∈ C andU = (u, v) ∈
H1⊥ × L2⊥ such that U = U + θ̄

′
(α, β). Moreover, the condition 〈Ū ,�0〉L2×L2 = 0

implies that

U = U + α

(

1
−ν

)

θ̄
′ =

(

u + αθ̄
′

v − ανθ̄
′

)

, (3.5)

and this representation is unique. Indeed,

〈Ū ,�0〉L2×L2 = 〈

u, νθ̄
′〉

L2 + 〈

v, θ̄
′〉

L2

= 〈

u + αθ̄
′
, νθ̄

′〉
L2 + 〈

v + βθ̄
′
, θ̄

′〉
L2

= (

αν + β
)∥
∥θ̄

′∥
∥2

L2 .

and in view of
∥
∥θ̄

′∥
∥

L2 �= 0, we obtain that αν = −β whence 〈Ū ,�0〉L2×L2 = 0.
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In addition, the triangle inequality and the equivalence between the norms ‖ · ‖a

and ‖ · ‖H1 in H1⊥ imply that

‖U‖H1×L2 ≤ max{1, k}‖U‖Z + |α|‖(θ̄ ′
,−νθ̄

′
)‖H1×L2 , (3.6)

and

‖U‖Z + |α|‖(θ̄ ′
,−νθ̄

′
)‖H1×L2 ≤ max{1, K }‖U‖H1×L2 + ‖α(θ̄

′
,−νθ̄

′
)‖H1×L2

≤ max{2, 1 + K }‖U‖H1×L2 ,

(3.7)
both hold.

Finally, notice that, because of Theorem 2.4, λ = 0 belongs to the resolvent of the
operatorA⊥ defined as the restriction ofA to (H1× L2)⊥. Therefore, it has a bounded
and linear inverse. We end this Section by providing an explicit characterization of
A−1

⊥ . This is a result which is not directly stated in Capella et al. (2007) nor in Capella
et al. (2024), but it is an immediate consequence of Remark 3.7 and Theorem 3.1.

Lemma 3.8 The restriction A⊥ of A in (H1 × L2)⊥ has a bounded inverse A−1
⊥ :

(H1 × L2)⊥ → (H1 × L2)⊥ given by

A−1
⊥ U =

(−νL−1
⊥ −L−1

⊥
I 0

)

U − α

(

1/ν
−1

)

θ̄
′
, (3.8)

for all U ∈ (H1 × L2)⊥ and U ∈ H1⊥ × L2⊥ uniquely determined from (3.5).

Proof Follows from a direct computation. ��

3.2 Regularity of the Traveling Profile

In this Subsection we prove that equation (2.11) and the condition that ψ ∈ H2
loc(R)

with ψ − θ̄ ∈ H2(R) imply the smoothness of the traveling profile. Here we assume
that both the static and the moving profiles, θ̄ = θ̄ (z) and ψ = ψ(z), respectively, are
functions of the same spatial variable z ∈ R.

Lemma 3.9 Let ψ ∈ H2
loc(R) with ψ − θ̄ ∈ H2(R) be a solution to (2.11) for a fixed

c ∈ R with |c| < 1. Then, the following statements hold:

(a) There exist two θ̄-dependent positive constants C1 and C2 such that

∥
∥sinψ − sin θ̄

∥
∥

H1 ≤ C1(θ̄)
∥
∥ψ − θ̄

∥
∥

H1 ,
∥
∥cosψ − cos θ̄

∥
∥

H1 ≤ C2(θ̄)
∥
∥ψ − θ̄

∥
∥

H1 .

(b) ψ is a smooth function with ψ ′ ∈ Hk(R) for any k > 0.
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Proof We first prove (a). Since 0 ≤ 1 − cos t ≤ |t | for every real t , then by the
angle-addition formula and the triangle inequality, we get

∥
∥cosψ − cos θ̄

∥
∥2

L2 = ∥
∥[1 − cos(ψ − θ̄ )] cos θ̄ + sin(ψ − θ̄ ) sin θ̄

∥
∥

L2 ≤ 2‖ψ − θ̄‖2L2 ,

∥
∥sinψ − sin θ̄

∥
∥2

L2 = ∥
∥[1 − cos(ψ − θ̄ )] sin θ̄ − sin(ψ − θ̄ ) cos θ̄

∥
∥

L2 ≤ 2‖ψ − θ̄‖2L2 .

Analogously, we obtain

∥
∥(cosψ − cos θ̄ )′

∥
∥

L2 = ∥
∥(ψ − θ̄ )′ sinψ + (sinψ − sin θ̄ )θ̄ ′∥∥

L2

≤ ∥
∥(ψ − θ̄ )′

∥
∥

L2 + ‖θ̄ ′‖L∞
∥
∥ψ − θ̄

∥
∥

L2 ,

and,

∥
∥(sinψ − sin θ̄ )′

∥
∥

L2 = ∥
∥(ψ − θ̄ )′ cosψ + (cosψ − cos θ̄ )θ̄ ′∥∥

L2

≤ ∥
∥(ψ − θ̄ )′

∥
∥

L2 + 2‖θ̄ ′‖L∞
∥
∥ψ − θ̄

∥
∥

L2 .

This shows (a).
In order to verify (b), we first notice that cosψ ∈ H2. Indeed, by the reverse triangle

inequality in H1 and the fact that cos θ̄ ∈ H1 we first obtain

‖cosψ‖H1 ≤ C2(θ̄)
∥
∥ψ − θ̄

∥
∥

H1 + ∥
∥cos θ̄

∥
∥

H1 < ∞.

Now, notice that Sobolev’s embedding in R yields
∥
∥ψ ′2∥∥2

L2 ≤ ‖ψ ′‖2L∞
∥
∥ψ ′∥∥2

L2 < ∞.
Thus,

∥
∥(cosψ)′′

∥
∥

L2 =
∥
∥
∥(ψ − θ̄ )′′ sinψ + θ̄ ′′ sinψ + ψ ′2 cosψ

∥
∥
∥

L2

≤ ‖(ψ − θ̄ )′′‖2L2 + ‖θ̄ ′′‖2L2 + ‖ψ ′2‖2L2

< ∞.

We conclude that cosψ ∈ H2.
Second, a straightforward calculation of ∇E(ψ) implies that equation (2.11) can

be recast as
− (1 − c2)ψ ′′ − cνψ ′ + sinψT cosψ = H cosψ. (3.9)

Due to the boundedness of T (see Proposition 2.2) it follows that

‖sinψT cosψ‖L2 ≤ ‖T cosψ‖L2 ≤ C ‖cosψ‖H1 < ∞.

Hence, Proposition 2.2 and Hölder and Sobolev inequalities imply

∥
∥(sinψT cosψ)′

∥
∥

L2 ≤ ∥
∥ψ ′T cosψ

∥
∥

L2 + ‖T cosψ‖H1

≤ C
[

‖ψ ′‖2L∞ ‖cosψ‖H1 + ‖cosψ‖H2

]

< ∞.
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We then conclude that sinψT cosψ ∈ H1. Therefore, for |c| < 1, equation (3.9)
implies that ψ ′′ ∈ H1. A bootstrapping argument then shows that ψ ′ ∈ Hk for any k
and the smoothness of ψ follows from Sobolev’s embedding. This shows the result. ��

4 Perturbation Equations and the Spectral Stability Problem

The present Section is devoted to deriving the linearized equations for the perturbations
of a moving Néel wall’s phase, setting up the spectral problem for the perturbations
in an appropriate energy space, and establishing its relative boundedness for the cor-
responding operator in the static case.

4.1 A Scalar Equation for the Perturbation

Following (Capella et al. 2007), we consider finite energy perturbations of the moving
Néel wall’s phase in the space H1. Therefore, for any solution θ(x, t) to (2.4) where
ν > 0 and c ∈ R are fixed, we propose the ansatz θ(x, t) = u(z, t) + ψ(z). Here
z = x − ct is the spatial coordinate in a moving frame with speed c, ψ = ψ(z) is the
traveling profile solution to (2.11) and, for each fixed t > 0, u(·, t) ∈ H1 is the finite
energy perturbation of the profile. A substitution into the differential equation in (2.4)
yields

c2∂2z ψ − νc∂zψ + ∂2t u − 2c∂t zu + c2∂2z u + ν∂t u − cν∂zu + ∇E(u + ψ)

= H cos(u + ψ).

By adding and subtracting ∇E(ψ) + H cosψ and using the profile equation (2.11),
we arrive at

∂2t u−2c∂t zu+c2∂2z u+ν∂t u−cν∂zu+∇E(u+ψ)−∇E(ψ) = H(cos(u+ψ)−cosψ).

(4.1)
Equation (4.1) can be written as a first order system by introducing the auxiliary
variable v = ∂t u. Indeed, after a straightforward computation one obtains

∂t

(

u
v

)

=
(

0 I
−Lc 2c∂z − νI

)(

u
v

)

+
(

0
N (u)

)

, (4.2)

where Lc : H1 → L2 is a linear, densely defined operator with domain D(L) = H2

and N (u) : L2 → L2 comprises the nonlinear terms, again with D(N ) = H2. They
are explicitly given by

Lc := Lc + c2∂2z − cν∂z + Hsψ I,

N (u) := −∇E(ψ + u) + ∇E(ψ) + Lcu + H(cos(ψ + u) − cosψ + sψu),
(4.3)
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where the operatorLc : L2 → L2 is the L2-linearization of∇E aroundψ with domain
D(Lc) = H2. A direct calculation shows that

Lcu := −∂2z u + sψT (sψu) − cψu, u ∈ D(L) = H2. (4.4)

Upon substitution into (4.3),

⎧

⎨

⎩

Lc : H1 → L2,

D(Lc) = H2,

Lcu = −(1 − c2)∂2z u + sψT (sψu) − cν∂zu − (cψ − Hsψ)u.

(4.5)

The latter is the explicit expression of the linearized operator around the moving Néel
wall’s phase for a fixed value of themagnetization H (which, in turns, fixes the velocity
c) and whose spectral properties determine its stability.

4.2 The Spectral Problem

As usual (Kapitula and Promislow 2013; Sandstede 2002), we start our stability analy-
sis by disregarding the nonlinear terms and by focusing on the associated linear spectral
problem . To that end, we notice that the linearization of equation (4.1) around the
traveling Néel profile reads

∂2t u − 2c∂t zu + ν∂t u + Lcu = 0. (4.6)

Last equation is equivalent to the following linear system,

∂t

(

u
v

)

=
(

0 I
−Lc 2c∂z − νI

)(

u
v

)

. (4.7)

We specialize equation (4.6) to perturbations of the form eλt u(z), where λ ∈ C is
the spectral parameter. This substitution yields the following (non-standard) spectral
problem

(λ2 − 2cλ∂z + νλ)u + Lu = 0. (4.8)

The latter is a spectral equation which is quadratic in λ. The transformation v = λu
(the spectral equivalent of the change of variables v = ∂t u) is used to write equation
(4.8) as a genuine eigenvalue problem of the form

Ac

(

u
v

)

:=
(

0 I
−Lc 2c∂z − νI

)(

u
v

)

= λ

(

u
v

)

, (4.9)

but now posed on a base space defined as a Cartesian product. The matrix operatorAc

is often called the companion matrix to equation (4.8). Notice that (4.9) is the spectral
equation associated to the linear system (4.7). We shall refer to both (4.8) and (4.9) as
the spectral problem making no distinction between them.
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Therefore, we are interested in the spectral properties of the following block matrix
operator (for each fixed value of c),

Ac : H1 × L2 → H1 × L2,

regarded as a linear, densely defined operator in theHilbert space H1×L2 with domain
D(Ac) := H2 × H1 and explicitly given by

AcU =
(

0 I
−Lc 2c∂z − νI

)(

u
v

)

, (4.10)

for all U = (u, v) ∈ H2 × H1.

Remark 4.1 From the expressions (4.10) and (4.5) we notice that in the case when
c = 0, the operatorsA0 and L0 coincide with the operatorsA and L, respectively, for
the static Néel wall phase (see Theorem 2.4). From now on and for the sake of brevity,
we simply write A and L to denote the “static” operators.

Remark 4.2 At this point we call the reader’s attention to the following fundamental
property of the operatorAc: once the intensity of the external magnetic field has been
set, |H | � 1, then the speed of the moving Néel wall gets fixed and it is small as well,
|c| = O(|H |). As a result, if we examine the expression of the linearized operator Lc

around the moving profile, we notice that it can be recast as

Lcu = Lu + c2∂2z u + sψ(z)T (sψ(z)u) − cν∂zu + (

cθ̄ (z) − cψ(z) + Hsψ(z)
)

u

− sθ̄ (z)T (sθ̄ (z)u),

for all u ∈ H2, where

Lu = −∂2z u + sθ̄ (z)T (sθ̄ (z)u) − cθ̄ (z)u,

is the linearized operator around the static Néel profile, θ̄ = θ̄ (z), evaluated at the
Galilean variable of translation, z = x − ct . Whence, the block operator Ac can be
written as

Ac = A + Bc,

where the block perturbation operator

{

Bc : D(Bc) ⊂ H1 × L2 → H1 × L2,

D(Bc) = H2 × H1,

is defined as

Bc :=
(

0 0
−S 2c∂z

)

, (4.11)
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and the nonlocal operator S : D(S) = H2 ⊂ H1 → L2 is determined via the relation

Su := c2∂2z u − cν∂zu + sψ(z)T (sψ(z)u) − sθ̄ (z)T (sθ̄ (z)u)

+ (

cθ̄ (z) − cψ(z) + Hsψ(z)
)

u,
(4.12)

for all u ∈ H2. In what follows we verify that this is a relatively bounded perturbation
of the static operator A.

4.3 Relative Boundedness

We recall that given two linear operators P and S on a Banach space X , we say that
S is P-bounded if D(P) ⊂ D(S) and there exists two non-negative constants a and
b such that

‖Su‖ ≤ a‖u‖ + b‖Pu‖, ∀ u ∈ D(P). (4.13)

The greatest lower bound b0 of all admissible constants b is called the P-bound of S.

Lemma 4.3 The operator Bc = Ac − A is A-bounded in H1 × L2 with coefficients
a(c) and b(c) that are continuous and increasing functions of c and both tend to zero
as c does.

An immediate consequence of Lemma 4.3 is the following result.

Corollary 4.4 The operator Ac is A-bounded in H1 × L2 with coefficients ã(c) and
b̃(c) that are continuous and increasing functions of c such that ã(c) and 1 − b̃(c)
tend to zero as c does.

Proof of Lemma 4.3 First notice that for each U = (u, v) ∈ D(Ac) = H2 × H1 we
have

‖BcU‖H1×L2 = ‖Su − 2c∂zv‖L2 ,

‖AU‖2H1×L2 = ‖v‖2H1 + ‖Lu + νv‖2L2 .
(4.14)

Second, we bound ‖BcU‖H1×L2 by a sum of terms depending on powers of H (or,
equivalently, on powers of c). Substitution of (4.12) into the expression of BcU , as
well as addition and subtraction of c2[sθ̄T (sθ̄u) − cθ̄ u], yields

BcU = (0,−c2[−∂2z u + sθ̄T (sθ̄ u) − cθ̄ u + νv] − 2c∂zv + c2νv + c2[sθ̄T (sθ̄ u) − cθ̄ u]+
+ Hsψu − cν∂zu + sψT (sψu) − sθ̄T (sθ̄ u) + (cθ̄ − cψ)u).

Using (2.6), we get

‖BcU‖H1×L2 ≤
∥
∥
∥c2(Lu + νv) + 2c∂zv − c2νv

∥
∥
∥

L2
+ c2

∥
∥sθ̄T (sθ̄ u) − cθ̄ u

∥
∥

L2 +
+ ∥
∥Hsψ u − cν∂zu

∥
∥

L2 + ∥
∥sψT (sψ u) − sθ̄T (sθ̄ u)

∥
∥

L2 + ∥
∥(cψ − cθ̄ )u

∥
∥

L2 .

(4.15)
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Third, we estimate each term of the right hand side of last inequality. The first term
is directly bounded by Young’s inequality, since

∥
∥
∥c2(Lu + νv) + 2c∂zv + c2νv

∥
∥
∥

2

L2
≤ 3(c4 ‖Lu + νv‖2

L2 + 4c2 ‖∂zv‖2
L2 + c4ν2 ‖v‖2

L2 )

≤ 3max{c4, 4c2, c4ν2}(‖Lu + νv‖2
L2 + ‖v‖2

H1).

Since we are interested in the behavior of the operators for small values of |c| and in
the limit when c → 0, we may assume that |c| < 1. Therefore, we get the estimate

∥
∥
∥c2(Lu + νv) + 2c∂zv + c2νv

∥
∥
∥

L2
≤ 2max{2|c|, c2ν}‖AU‖H1×L2 . (4.16)

For the second term on the right hand side of (4.15), we use the triangle inequality
and the boundedness of T : H1 → L2 (see Proposition 2.2) to obtain

c2
∥
∥sθ̄T (sθ̄u) − cθ̄ u

∥
∥

L2 ≤ c2[∥∥sθ̄T (sθ̄u)
∥
∥

L2 + ∥
∥cθ̄ u

∥
∥

L2 ]
≤ c2[C ∥

∥(sθ̄ u)
∥
∥

H1 + ∥
∥cθ̄ u

∥
∥

L2 ]
≤ C(θ̄)c2 ‖u‖H1 .

(4.17)

In the same fashion, we use (2.12) in order to estimate the third term in (4.15),
yielding

∥
∥Hsψu − cν∂zu

∥
∥

L2 ≤ |H |
(∥
∥sψu

∥
∥

L2 + cν

H
‖∂zu‖L2

)

≤ |H |
[

‖u‖L2 + 2

‖θ̄ ′‖2
L2 + o(1)

‖∂zu‖L2

]

≤ |H |
[

‖u‖L2 + 2

‖θ̄ ′‖2
L2 + o(1)

‖∂zu‖L2

]

= |H |C(θ̄) ‖u‖H1 .

(4.18)

In order to estimate the fourth term in the right-hand side of (4.15), we add and
subtract the term sψT (sθ̄u) and use the boundedness of T (Proposition 2.2). The result
is

∥
∥sψT (sψu) − sθ̄T (sθ̄u)

∥
∥

L2 ≤ ∥
∥sψT ((sψ − sθ̄ )u)

∥
∥

L2 + ∥
∥(sψ − sθ̄ )T (sθ̄u)

∥
∥

L2

≤ C
∥
∥(sψ − sθ̄ )u

∥
∥

H1 + ‖(sψ − sθ̄ )‖L∞
∥
∥sθ̄u

∥
∥

H1 .

Since H1 is a Banach algebra, its norm sub-distributes any product. This fact and
Sobolev’s inequality imply the estimate

∥
∥sψT (sψu) − sθ̄T (sθ̄ u)

∥
∥

L2 ≤ C
∥
∥sψ − sθ̄

∥
∥

H1 (‖u‖H1 + ∥
∥sθ̄ u

∥
∥

H1)

≤ C(θ̄)
∥
∥ψ − θ̄

∥
∥

H1 ‖u‖H1 ,
(4.19)
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where the last inequality follows from Lemma 3.9 (a).
Finally, we estimate the last term in (4.15). By Hölder and Sobolev inequalities,

we clearly have

∥
∥(cψ − cθ̄ )u

∥
∥

L2 ≤ ∥
∥cψ − cθ̄

∥
∥

L2 ‖u‖L∞ ≤ ∥
∥cψ − cθ̄

∥
∥

L2 ‖u‖H1 .

We symmetrize previous relation by adding and subtracting cosψT cos θ̄ . Hence,
together with Proposition 2.2, one obtains

∥
∥(cψ − cθ̄ )u

∥
∥

L2 ≤ ∥
∥cosψT (cosψ − cos θ̄ ) + (cosψ − cos θ̄ )T cos θ̄

∥
∥

L2 ‖u‖H1

≤ [∥
∥T (cosψ − cos θ̄ )

∥
∥

L2 + ∥
∥(cosψ − cos θ̄ )T cos θ̄

∥
∥

L2

] ‖u‖H1

≤ C(θ̄)
∥
∥cosψ − cos θ̄

∥
∥

H1 ‖u‖H1

≤ C(θ̄)
∥
∥ψ − θ̄

∥
∥

H1 ‖u‖H1 .

(4.20)
Combining estimates (4.16) thru (4.20), we arrive at

‖BcU‖H1×L2 ≤ 2max{2|c|, c2ν}‖AU‖H1×L2

+ C(θ̄)(c2 + H + 2‖ψ − θ̄‖H1)‖u‖H1 .
(4.21)

Due to Remark 2.7 and Theorem 2.6, the result now follows. ��
A direct consequence of Lemma 4.3 is the closedness of the block operator Ac for c
small enough.

Corollary 4.5 The block operator Ac is closed in H1 × L2 for every c such that
b(c) < 1.

Proof From Theorem IV.1.1 in Kato (1995), p. 190, we easily conclude that Ac is a
closed operator because Ac = A + Bc, where Bc is A-bounded with A-bound less
that b(c) < 1 and A is a closed operator (see Lemma 5.4 in Capella et al. (2024)). ��
Remark 4.6 Estimate (4.21) and Remark 2.7 imply that, in fact, Ac is an O(|c|)-
perturbation of the static operator A (indeed, substitute (2.14) and H = O(|c|) into
(4.21) to conclude). This is the main observation that motivates the strategy of ana-
lyzing the spectrum/resolvent of Ac as a perturbation of the spectrum/resolvent of
A.

5 Resolvent-type Estimates and Spectral Stability

In this Section we establish the spectral stability of the family of operators Ac for
sufficiently small parameter values of |c|. To that end, we apply perturbation theory
of linear operators and the spectral stability of the linearized block operatorA around
the static Néel wall (see Theorem 2.4 and the companion paper (Capella et al. 2024)).
The strategy of proof is based on establishing resolvent-type estimates which allow to
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locate the resolvent set of the perturbed operator in terms of the resolvent set of the
operator around the static wall.

To smooth the reading, we clarify the notation on the vector-valued functions used
at the present section. We denote any vector in H1 × L2 by a capital letter with a
∼, for example Ũ and F̃ . Also, any vector (H1 × L2)⊥ is denoted by a capital letter
with a bar. Finally, if the capital letter is simple, it denotes a vector-valued function in
H1⊥ × L2⊥. We recall that these sets satisfy that H1⊥ × L2⊥ � (H1 × L2)⊥ � H1 × L2,
see subsection 3.1.

We start by showing that the translation eigenvalue of Ac is isolated for all |c|
sufficiently small.

Lemma 5.1 Let the operator Ac be as in (4.9) and let A and ζ(ν) > 0 be as in Lemma
2.4. Fix δ ∈ (0, ζ(ν)). Then there exists cδ > 0 such that the square � in the complex
plane with length side 2δ and center at λ = 0, more precisely (see Figure 1(a) below),

� := {

z ∈ C : z = ζ ± iδ, ζ ∈ [−δ, δ]} ∪ {

z ∈ C : z = ±δ + iζ, ζ ∈ [−δ, δ]},
(5.1)

belongs to ρ(Ac) and

σ(Ac) ∩ int conv(�) = {0}, for all |c| ≤ cδ.

Moreover, λ = 0 is an isolated simple eigenvalue of the block operator Ac with
eigenspace spanned by

�c := (∂zψ, 0) ∈ D(Ac) = H2 × H1. (5.2)

Proof Let δ ∈ (0, ζ(ν)) be fixed. First, we prove the existence of cδ > 0 such that �

isolates λ = 0 from the rest of the spectrum of Ac for all |c| ≤ cδ . Since λ = 0 is an
isolated simple eigenvalue of A and the rest of the spectrum satisfies Re λ < −ζ(ν)

(see Theorem 2.4), we know that the closed simple curve � ⊂ ρ(A) divides σ(A).
Moreover, it induces a partition on the working space H1 × L2 = M ′(A) ⊕ M ′′(A)

where M ′(A) and M ′′(A) are the images of H1 × L2 under the linear operators P
and I − P , respectively, with

P := I −
∫

�

(A − λI)−1 dλ.

Because ‖(A−λ)−1‖ and ‖A(A−λ)−1‖ are analytic functions in λ, we conclude that
both functions are bounded on �. Also, from Lemma 4.3 we know thatAc = A+Bc

and Bc isA-bounded with constants a(c) and b(c) that are continuous and increasing
in c with a(0) = b(0) = 0 but they do not depend on λ. These facts imply the existence
of cδ > 0 small enough such that

a(cδ) sup
λ∈�

‖(A − λ)−1‖ + b(cδ) sup
λ∈�

‖A(A − λ)−1‖ < 1.
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Due to Lemma 4.3, properties of the supremum imply that

sup
λ∈�

(

a(c)‖(A − λ)−1‖ + b(c)‖A(A − λ)−1‖
)

< 1,

for every c with |c| ≤ cδ . Therefore, Theorems IV.3.18 and IV.3.16 in Kato (1995),
pp. 212 – 214, imply that � ⊂ ρ(Ac) and splits σ(Ac) into two sets. Moreover,
the induced partition on the working space H1 × L2 = M ′(Ac) ⊕ M ′′(Ac) satisfies
dim M ′(A) = dim M ′(Ac) and dim M ′′(A) = dim M ′′(Ac).

Second, we verify that λ = 0 is an isolated simple eigenvalue of Ac. Indeed, we
know that (∂zψ, 0) ∈ kerAc; this follows by noticing thatAc(∂zψ, 0) = (0,Lc∂zψ),
but a direct differentiation of (2.11) implies Lc∂zψ = 0, for any value of c. If |c| ≤ cδ

holds then we conclude that the algebraic multiplicity of λ = 0 is equal to one because
dim M ′(A) = dim M ′(Ac). The lemma is proved. ��

Lemma 5.1 implies that � separates the origin from the rest of the spectrum, but it
still does not guarantee the spectral stability nor the existence of a spectral gap in the
following sense: that for each 0 < |c| � 1 there exists ζc > 0 such that σ(Ac)\{0}
is strictly contained in {Re λ < −ζc < 0}. The following results are devoted to prove
these properties.

Lemma 5.2 Let λ ∈ C be fixed and different from zero. Suppose that U = (u, v) and
F = ( f , g) belong to H1⊥ × L2⊥.

(a) If U , F satisfy
(λ − A)U = F, (5.3)

then u, v, f , and g satisfy the following estimate

∣
∣
∣λ

∗‖u‖2a + (λ + ν) ‖v‖2L2

∣
∣
∣ ≤ ‖U‖Z‖F‖Z . (5.4)

(b) If U , F satisfy
(A − λ)A−1

⊥ U = F, (5.5)

then u, v, f , and g satisfy the following estimates,

∣
∣
∣λ

∗‖u‖2a + (ν + λ) ‖v‖2L2

∣
∣
∣ ≤ C1(|λ|‖u‖a + |λ + ν| ‖v‖L2)‖F‖Z , (5.6a)

∣
∣
∣‖u‖a − |ν + λ|�−1/2

0 ‖v‖L2

∣
∣
∣ ≤ C2‖F‖Z , (5.6b)

for some constants C1, C2 > 0 and where �0 > 0 is the spectral bound for L
from Theorem 3.1.

Remark 5.3 Notice that the operatorA−1
⊥ is well defined on H1⊥ × L2⊥ ⊂ Ran(P) (see

Remark 3.5). Thus we may use the representation formula from Lemma 3.8. Observe
that L−1

⊥ is also well defined on L2⊥.
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Proof of Lemma 5.2 First, we assume that U , F ∈ H1⊥ × L2⊥ satisfy equation (5.3),
which is equivalent to the system

λu − v = f ,

L u + (λ + ν)v = g.

Now,we apply a[u, ·] to the first equation and 〈· , v〉L2 to the second equation, yielding

a[u, λu] − a[u, v] = a[u, f ],
〈Lu , v〉L2 + (λ + ν) ‖v‖2L2 = 〈g , v〉L2 .

The properties of the sesquilinear form a[·, ·] (see, for instance, Lemma 3.6 and (3.3)),
imply that

λ∗a[u, u] − a[u, v] = a[u, f ],
a[u, v] + (λ + ν) ‖v‖2L2 = 〈g , v〉L2 .

By adding both equations we obtain

λ∗‖u‖2a + (λ + ν) ‖v‖2L2 = a[u, f ] + 〈v , g〉L2 .

Hence, relation (5.4) follows by noticing that 〈U , F〉Z = a[u, f ] + 〈v , g〉L2 and by
applying Cauchy-Schwarz inequality to the inner product in Z . This shows (a).

Let us prove (b). First, notice that relation (5.5) implies that

{

u + λL−1
⊥ (νu + v) = f ,

v − λu = g,

(5.7a)

(5.7b)

inasmuch as νu + v ∈ L2⊥ = D(L−1
⊥ ). By adding and subtracting λν−1v, equation

(5.7b) is recast as

(ν + λ)v − λ(νu + v) = νg ∈ L2⊥.

Apply L−1
⊥ to last equation and add equation (5.7a) in order to obtain

u + (ν + λ)L−1
⊥ v = f + νL−1

⊥ g. (5.8)

Also, from equation (5.7b) we know that v − g = λu ∈ H1⊥. Therefore,

λ∗a[u, u] + (ν + λ)a[L−1
⊥ v, v − g] = λ∗a[ f + νL−1

⊥ g, u].

Since L−1
⊥ : L2⊥ → H2⊥, from (3.3) we get

λ∗‖u‖2a + (ν + λ) 〈v , v − g〉L2 = λ∗a[ f + νL−1
⊥ g, u]. (5.9)
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If we distribute the L2-inner product in equation (5.9), then we arrive at

λ∗‖u‖2a + (ν + λ) ‖v‖2L2 = λ∗a[ f + νL−1
⊥ g, u] + (ν + λ) 〈v , g〉L2 . (5.10)

Use identity (3.3) in equation (5.10), take its modulus and apply the Cauchy-Schwarz
inequality twice. The result is

|λ∗‖u‖2a + (ν + λ) ‖v‖2
L2 | = |λ∗a[ f , u] + νλ∗ 〈g , u〉L2 + (ν + λ) 〈v , g〉L2 |,

≤ |λ|(‖ f ‖a |‖u‖a + ν ‖g‖L2 ‖u‖L2 ) + |λ + ν| ‖g‖L2 ‖v‖L2 ,

≤ max{1, ν}(‖ f ‖a + ‖g‖L2 )(|λ|‖u‖a + |λ + ν| ‖v‖L2 ).

Therefore, relation (5.6a) follows.
Let us now substitute v − g = λu into (5.9). This yields,

‖u‖2a + (ν + λ) 〈v , u〉L2 = a[ f + νL−1
⊥ g, u]. (5.11)

Thus, if we take the L2-inner product between v and (5.8) we then obtain

〈v , u〉L2 + (ν + λ)∗
〈

v ,L−1
⊥ v

〉

L2
= 〈v , f 〉L2 + ν∗ 〈v ,L−1

⊥ g
〉

L2
.

We use this last equation to simplify (5.11), yielding

‖u‖2a − |ν + λ|2
〈

v ,L−1
⊥ v

〉

L2
= a[ f , u] + ν 〈g , u〉L2 − (ν + λ)

〈

v , f + νL−1
⊥ g

〉

L2
.

(5.12)

Therefore relation (5.6b) follows from (5.12) by noticing that
〈

v ,L−1
⊥ v

〉

L2
≤

�−1
0 ‖v‖2

L2 for every v ∈ H1⊥ (see Theorem 3.1 above). Indeed, the latter lower bound
for the left-hand side of (5.12) implies that

‖u‖2a − |ν + λ|2�−1
0 ‖v‖2L2 ≤ |‖u‖2a − |ν + λ|2

〈

v ,L−1
⊥ v

〉

L2
|. (5.13)

Moreover, the right-hand side of (5.12) can be bounded above by

|a[ f , u] + ν 〈g , u〉L2 − (ν + λ)
〈

v , f + νL−1
⊥ g

〉

L2
| ≤ ‖ f ‖a‖u‖a + ν ‖g‖L2 ‖u‖L2 +

+ |ν + λ| ‖v‖L2 (‖ f ‖L2

+ ν

∥
∥
∥L−1

⊥ g
∥
∥
∥

L2
).
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Since ‖ · ‖a and ‖·‖H1 are equivalent in H1⊥ (see (3.2) at Lemma 3.6) we know that
there exists k > 0 such that ‖u‖L2 ≤ k−1‖u‖a for every u ∈ H1⊥. Hence,

|a[ f , u] + ν 〈g , u〉L2 − (ν + λ)
〈

v , f + νL−1
⊥ g

〉

L2
| ≤

≤ (‖ f ‖a + νk−1 ‖g‖L2 )‖u‖a + |ν + λ|�−1/2
0 ‖v‖L2 (�

1/2
0 k−1‖ f ‖a + ν ‖g‖L2 )

≤ C(‖u‖a + |ν + λ|�−1/2
0 ‖v‖L2 )(‖ f ‖a + ‖g‖L2 ),

(5.14)
where C = max{1, νk−1, ν,�

1/2
0 k−1} > 0. The proof is complete by noticing that

equation (5.6b) is obtained upon a substitution of (5.13) and (5.14) in (5.12). This
shows (b) and the lemma is now proved. ��
Remark 5.4 Notice that unless ‖u‖a = 0 and ‖v‖L2 = 0, the left hand term of identity
(5.10) vanishes if either, (i) λ ∈ R and ν ‖v‖2

L2 = −λ(‖u‖2a + ‖v‖2
L2), or (ii) ‖u‖a =

‖v‖L2 and Re λ = −ν/2. This observation will be helpful later on.

Next, we prove the spectral stability of the moving profile with a positive spectral
gap. The strategy of the proof is based on establishing resolvent-type estimates for the
operator around the static Néel wall (namely, to estimate ‖(A − λI)−1‖ and ‖A(A −
λI)−1‖) which yield, in turn, the location of the spectrum of Ac for |c| small enough
upon application of the standard perturbation theory for linear operators.

Theorem 5.5 (resolvent-type estimates) Let ν > 0 be fixed, Ac be as in (4.9) and A,
ζ(ν) > 0 be as in Lemma 2.4. Also, let δ ∈ (0, ζ(ν)) be fixed and let � ⊂ C denote
the square with length side 2δ and center at λ = 0 as in Lemma 5.1. If cδ > 0 is small
enough such that Lemma 5.1 holds then both ‖(A − λI)−1‖ and ‖A(A − λI)−1‖ are
uniformly bounded for λ in the set

G := {λ ∈ C |Re λ > −δ} \ int conv(�).

Proof First, we prove that ‖(A − λ)−1‖ is uniformly bounded. Let Ũ , F̃ ∈ H1 × L2

and assume thatP : H1 × L2 → (H1 × L2)⊥ is the projector operator that commutes
withA and which is defined in (2.8). By the definition of P it follows that I −P also
commutes with A and A(I − P) that is the null operator. Then,

(A − λ)Ũ = (A − λ)(PŨ + (I − P)Ũ )

= (A − λ)PŨ + (A − λ)(I − P)Ũ

= (A − λ)PŨ − λ(I − P)Ũ ,

and the relation (A − λ)Ũ = F̃ implies that

(A − λ)PŨ − λ(I − P)Ũ = P F̃ + (I − P)F̃ .

Last equation splits into the following two equations,

(A − λ)PŨ = P F̃, and − λ(I − P)Ũ = (I − P)F̃ .
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Therefore,

‖Ũ‖H1×L2 ≤ ‖PŨ‖H1×L2 + ‖(I − P)Ũ‖H1×L2

≤
[

‖P(A − λ)−1P‖ + 1

|λ|
]

‖F̃‖H1×L2 , (5.15)

because P and I−P are projector operators. Estimate (5.15) implies that the proof is
complete provided thatweverify that (A−λ)−1, regarded as anoperator in (H1×L2)⊥,
is uniformly bounded on G. To that end, we must prove that there exists a uniform
bound C such that, if U , F ∈ (H1 × L2)⊥ satisfy

(A − λ)U = F, (5.16)

then they also satisfy the following estimate,

‖U‖H1×L2 ≤ C‖F‖H1×L2 .

Once again, by Remark 3.7, we know that U = U + α(1,−ν)θ̄
′
and F = F +

β(1,−ν)θ̄
′
for some U , F ∈ H1⊥ × L2⊥ and α, β ∈ C. Thus, equation (5.16) implies

that

(A − λ)U = F, and − α(ν + λ) = β.

Then, α = −β/(ν + λ) and by Lemma 5.2 (a),

|λ∗‖u‖2a + (λ + ν) ‖v‖2L2 | = ‖U‖Z‖F‖Z ,

for U = (u, v). Substituting ‖u‖a = ‖U‖Z cosφ and ‖v‖L2 = ‖U‖Z sin φ for
φ ∈ [0, π/2], we have

‖U‖Z ≤ C(λ, φ)‖F‖Z ,

where

C(λ, φ) = 1
√

(Re λ + ν sin2 φ)2 + (Im λ)2 cos2 2φ
≤

√

δ2 + ν2

4

δ( ν
2 − δ)

,
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thanks to Lemma A.1. In addition, Remark 3.7 and equations (3.6) and (3.7) yield

‖Ū‖H1×L2 ≤ |α|‖(1,−ν)θ̄
′‖H1×L2 + ‖U‖H1×L2

≤ 1

|ν + λ| ‖β(1,−ν)θ̄
′‖H1×L2 + K

√

δ2 + ν2

4

kδ( ν
2 − δ)

‖F‖H1×L2

≤
⎡

⎣
1

|ν + λ| + K
√

δ2 + ν2

4

kδ( ν
2 − δ)

⎤

⎦ (‖β(1,−ν)θ̄
′‖H1×L2 + ‖F‖H1×L2).

≤ √
2

⎡

⎣
1

|ν + λ| + K
√

δ2 + ν2

4

kδ( ν
2 − δ)

⎤

⎦ ‖F‖H1×L2 .

Upon substitution of last inequality in (5.15) we conclude that

‖Ũ‖H1×L2 ≤
⎡

⎣

√
2

|ν + λ| + K
√

δ2 + ν2

4

kδ( ν
2 − δ)

+ 1

|λ|

⎤

⎦ ‖F̃‖H1×L2 .

Since the right-hand side of the last equation is uniformly bounded on G, we obtain
that ‖(A − λ)−1‖ is uniformly bounded on G.

Finally, we prove that ‖A(A−λ)−1‖ is uniformly bounded on G. Due to Theorem
2.4, we know thatA is the infinitesimal generator of a C0-semigroup of quasicontrac-
tions and, by virtue of Feller-Miyadera-Phillips’ theorem (see, e.g., Engel and Nagel
(2006), p. 69), we know there exists w ∈ R such that for every λ ∈ ρ (A) with
Re λ > w there holds

‖(A − λI)−1‖H1×L2 ≤ 1

Re λ − w
. (5.17)

We then choose a positive constant M1 > w and divide the set G into three subsets as
follows (see Figure 1(b)):

G1 = {λ ∈ G : Re λ > M1, |Im λ| ≤ δ},
G2 = {λ ∈ G : |Im λ| > δ} ∪ {δ(t ± i) : t ∈ (−1, 1)},
G3 = G \ (G1 ∪ G2).

Notice that ‖A(A − λ)−1‖ is uniformly bounded in G1 and G3. Indeed, since
λ �→ ‖A(A− λ)−1‖ is analytic and G3 is compact, the uniform bound in G3 follows
from standard results. To verify the assertion for G1 use the identity A(A − λ)−1 =
I + λ(A − λ)−1 and relation (5.17) to arrive at

‖A(A − λ)−1‖ ≤ 1 + |λ|‖(A − λ)−1‖ ≤ 1 + |λ|
Re λ − w

, (5.18)
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Fig. 1 Panel (a) shows the set {λ ∈ C |Re λ < −ζ(ν)} ∪ {0} which contains σ(A) (blue region), the curve
� that splits σ(Ac) (dotted black curve), and the set G contained in ρ(Ac) (red zone). Panel (b) displays
the suggested partition of G, where G3 is compact (Color figure online)

for every λ ∈ G. Notice that the right-hand side of (5.18) is uniformly bounded on
G1 and so is ‖A(A − λ)−1‖.

It remains to get a uniform bound on G2. By Theorem 2.4, we know that there exists
a projector operator P : H1 × L2 → (H1 × L2)⊥ that commutes with A. Moreover,
P and (A− λ)−1 also commute for every λ ∈ ρ(A) (see Kato (1995), p. 173). Then,
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for every F̃ ∈ H1 × L2, there holds that F̃ = P F̃ + (I − P)F̃ and

A(A − λ)−1 F̃ = AP(A − λ)−1 F̃ = AP2(A − λ)−1 F̃ = PA(A − λ)−1P F̃ .

Thus, last equation implies that the operator norm of A(A − λ)−1 in H1 × L2 is
equal to the norm of the same operator in (H1 × L2)⊥. In addition,A is invertible as a
restricted operator on (H1× L2)⊥ (see Lemma 3.8). It is straightforward to verify that
the required uniform boundedness of ‖A(A − λ)−1‖ on G2, regarded as an operator
from (H1 × L2)⊥ into itself, is readily implied by showing the existence of a constant
C independent of λ such that for every U , F ∈ (H1 × L2)⊥ satisfying

(A − λ)A−1
⊥ U = F, (5.19)

they also satisfy the estimate

‖U‖H1×L2 ≤ C‖F‖H1×L2 .

Moreover, Remark 3.7 implies that U , F ∈ (H1 × L2)⊥ is equivalent to

U = U + α

(

1
−ν

)

θ̄
′
, and F = F + β

(

1
−ν

)

θ̄
′
,

for some U , F ∈ H1⊥ × L2⊥. Under these assumptions, system (5.19) reduces to

(A − I)A−1
⊥ U = F, (5.20)

α(1 + λν−1) − β = 0. (5.21)

From (5.21) it follows that α = β/(1+ λν−1), and from Lemma 5.2 (b) we have that
the entries of U and F satisfy conditions (5.6a) and (5.6b).

In addition, we assume that ‖u‖a = ‖U‖Z cosφ and ‖v‖L2 = ‖U‖Z sin φ for
φ ∈ [0, π/2] , due to the expression for ‖U‖Z (see equation (3.4)). Hence, relations
(5.6a) and (5.6b) yield

‖U‖Z |λ∗ cos2 φ + (λ + ν) sin2 φ| ≤ C1(|λ| cosφ + |λ + ν| sin φ)‖F‖Z , (5.22a)

‖U‖Z | cosφ − |λ + ν|�−1/2
0 sin φ| ≤ C2‖F‖Z . (5.22b)

Thus, equations (5.22a) and (5.22b) imply that

‖U‖Z ≤ 2C M(φ, λ)‖F‖Z ,

for some positive constant C and

M(φ, λ) = min

{

1

| cosφ − |λ + ν|�−1/2
0 sin φ|

,
|λ| + |λ + ν|

|λ∗ cos2 φ + (λ + ν) sin2 φ|

}

.
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Notice that M(φ, λ) is well-defined for every (φ, λ) ∈ [0, π/2] × G2 since
|λ∗ cos2 φ + (λ + ν) sin2 φ| �= 0 (see Remark 5.4). Moreover by Lemma A.4 we
conclude that M(φ, λ) is uniformly bounded in [0, π/2] × G2. This implies, in turn,
that ‖A(A − λ)−1‖ is uniformly bounded on G2. Therefore, it is uniformly bounded
on G and the proof is complete. ��
Theorem 5.6 (spectral stability with spectral gap) Under the assumptions of Theorem
5.5 there exists c′

δ ∈ (0, cδ) such that

σ(Ac) ⊂ {0} ∪ {λ ∈ C |Re λ ≤ −δ}, (5.23)

for every speed c such that |c| < c′
δ .

Proof First we prove that if both ‖(A − λI)−1‖ and ‖A(A − λI)−1‖ are uniformly
bounded for λ ∈ G, then (5.23) holds. Since the hypotheses of Lemma 5.1 hold,
we know that � divides σ(Ac) into two sets: {0}, which is contained in contained in
int conv(�), and σ(Ac)\{0}, contained in the exterior of conv(�).

It suffices to consider λ ∈ σ(Ac)\{0}. For the part of the spectrum contained in the
exterior of conv(�) we use the fact that the term a(cδ)‖(A− λI)−1‖ + b(cδ)‖A(A−
λI)−1‖ is uniformly bounded for λ ∈ {λ ∈ C |Re λ > δ} \ int conv(�) and, conse-
quently, Lemma 4.3 implies the existence of c′

δ ∈ (0, cδ) such that

a(c)‖(A − λI)−1‖ + b(c)‖A(A − λI)−1‖ < 1,

for every c with |c| < c′
δ . Therefore, we are now able to apply standard perturbation

theory of linear operators, in particular, Theorem IV.3.17 in Kato (1995), p. 214, and
to conclude that the whole set G belongs to ρ(Ac) for all |c| < c′

δ . The theorem is
proved. ��

6 Generation of the Semigroup and Decay Estimates

In the current Section, we show that for sufficiently small values of c, the operatorAc :
H1 × L2 → H1 × L2 is the infinitesimal generator of a C0- semigroup which, when
restricted to the appropriate subspace, becomes exponentially decaying. To accomplish
this task, we assume that for every fixed parameter value ν > 0, ζ(ν) > 0 is defined
as in Lemma 2.4, δ ∈ (0, ζ(ν)) is also kept fixed, and cδ, c′

δ are the positive constants
such that Theorem 5.6 holds.

6.1 The Adjoint Operator

It is well-known that if λ ∈ C is an eigenvalue of a closed operatorA : D ⊂ H → H
then λ∗ is an eigenvalue ofA∗ (formal adjoint) with the same geometric and algebraic
multiplicities (see Kato (1995), Remark III.6.23, p. 184). In our case, since H1× L2 is
a reflexive Hilbert space, andAc : H1× L2 → H1× L2, with domainD = H2× H1,
is a closed operator for c small enough (see Lemma 4.3 and Corollary 4.5) it has a
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formal adjoint which is also closed and densely defined. Moreover, A∗∗
c = Ac (cf.

Kato (1995), Theorem III.5.29, pg. 168). Upon these observations we immediately
have the following result.

Lemma 6.1 λ = 0 is an isolated, simple eigenvalue of A∗
c : (H1 × L2)∗ → (H1 ×

L2)∗, and there exists an eigenfunction �c ∈ (H1 × L2)∗ such that

A∗
c�c = 0.

It is to be observed that, byRiesz representation theorem, there exists �̃c ∈ H1×L2

such that

�c(U ) = 〈U , �̃c〉H1×L2 ,

for allU ∈ H1×L2. Indeed, for each c small, �̃c (respectively,�c) is the eigenfunction
associated to the simple eigenvalue λ = 0 of the operator A∗

c (respectively, Ac).

Lemma 6.2 Let Rc be the H1 × L2-inner product between �c and �̃c, then Rc �= 0.

Proof By contradiction, suppose that Rc = 0. This implies that 〈�c, �̃c〉H1×L2 = 0
or, equivalently, that

�̃c ∈ (

kerAc
)⊥ = Ran(A∗

c).

Therefore, there exists � ∈ D(A∗
c), � �= 0 (because �̃c �= 0), such that A∗

c� = �̃c.
But this is a contradiction with the fact that λ = 0 is a simple eigenvalue of A∗

c . ��
Now, we define X̃ ⊂ H1 × L2 as the range of the spectral projection,

⎧

⎨

⎩

Pc : H1 × L2 → H1 × L2,

PcU := U − R−1
c 〈U , �̃c〉H1×L2 �c,

X̃ := Ran(Pc).

(6.1)

Remark 6.3 Notice that X̃ = Ran(Pc) is the range of a bounded linear operator and,
consequently, it is a (closed) Hilbert subspace of H1 × L2. Hence, we project out the
eigenspace spanned by the single eigenfunction �c.

We dedicate the rest of the Section to prove that for |c| small enough, the block
operator Ac is a generator of a C0-semigroup of quasicontractions such that, outside
this eigenspace, decays exponentially.

6.2 Generation of the Semigroup

In the current subsection, we apply Lumer-Phillips’s theorem and the fact that the
operatorAc is an O(c)-perturbation of the block operator A in order to show thatAc

is the infinitesimal generator of a C0-semigroup for each c small enough.
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Theorem 6.4 The operator Ac : H1 × L2 → H1 × L2, with domain D(Ac) = H2 ×
H1, is the infinitesimal generator of a C0-semigroup of quasicontractions {etAc }t≥0
for every speed c such that |c| < c′

δ . Moreover, for each U ∈ H2 × H1,

d

dt

(

etAcU
) = etAcAcU = Ac(e

tAcU ). (6.2)

Proof In order to apply Lumer-Phillips’s theorem we need to verify that

(i) there exists ω0 ∈ R such that

Re 〈AcU , U 〉H1×L2 ≤ ω0‖U‖2H1×L2 ,

for each U ∈ D(Ac) = H2 × H1; and that
(ii) there exists τ0 > ω0 such that A − τ0 is onto;

(see, e.g., Renardy and Rogers (2004), Theorem 12.22, p. 407). From Theorem 5.6 we
already know that if |c| < c′

δ , with c′
δ > 0 sufficiently small, then the whole positive

real semi-axis belongs to the resolvent of Ac, that is,

(0,∞) ⊂ ρ(Ac),

(see (5.23)). Hence,Ac −τ is onto for any τ > 0 and (ii) holds for any τ0 > ω0, where
ω0 is the constant found in (i). Therefore, it suffices to prove (i) for some ω0 > 0.

As in Lemma 4.3, we know that Ac is A-bounded with constants a(c) and b(c),
which are continuous and increasing functions of c. Moreover, Ac = A + Bc, where
Bc(u, v) = (0,−Su + 2c∂zv) and S is the nonlocal operator defined in (4.12). Then,
for every U ∈ D(Ac) = H2 × H1, the Cauchy-Schwarz inequality implies that

Re 〈AcU , U 〉H1×L2 = Re 〈AU , U 〉H1×L2 + Re 〈BcU , U 〉H1×L2

≤ Re〈AU , U 〉H1×L2 + ‖BcU‖H1×L2‖U‖H1×L2 .

Also, we know that Bc is A-bounded and A is the generator of a C0-semigroup of
quasicontractions. Thus,

‖BcU‖H1×L2 ≤ a(c)‖U‖H1×L2 + b(c)‖AU‖H1×L2 ,

and

Re 〈AU , U 〉H1×L2 ≤ ω〈U , U 〉H1×L2 ,

for some ω ∈ R and every U ∈ H2 × H1, (see Lemma 6.7 in Capella et al. (2024)).
These two observations yield

Re 〈AcU , U 〉H1×L2 ≤ (ω + a(c) + b(c))‖U‖2H1×L2 .

Therefore (i) holds by setting ω0 ≥ ω + a(c) + b(c). Finally, identity (6.2) holds by
standard theory of C0-semigroups (see, e.g., Pazy (1983)). ��
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Lemma 6.5 Let Pc be the projection operator given in (6.1). Then, etAcPc = PcetAc

for all t ≥ 0.

Proof In the reflexive Banach space H1 × L2, weak and weak∗ topologies coincide.
Therefore, the family of dual operators {(etAc )∗}t≥0, consisting of all the correspond-
ing formal adjoints in (H1×L2)∗, is also aC0-semigroup (cf. Engel andNagel (2000),
p. 44) with infinitesimal generator A∗

c (see Corollary 10.6 in Pazy (1983)). Hence,

(etAc )∗ = etA∗
c . (6.3)

Now, let U ∈ H1 × L2. Then from the definition of Pc we have

Pc
(

etAcU
) = etAcU − R−1

c 〈etAcU , �̃c〉H1×L2�c.

Since �c and �̃c belong to the kernels of their respective generators, equation (6.3)
and the standard semigroup theory (cf. Pazy (1983); Engel and Nagel (2000)) yield

etAc�c = �c, and
(

etAc
)∗

�̃c = etA∗
c �̃c = �̃c.

This implies that

〈etAcU , �̃c〉H1×L2�c = 〈U ,
(

etAc
)∗

�̃c〉H1×L2�c = 〈U , �̃c〉H1×L2etAc�c,

verifying the identity

Pc
(

etAcU
) = etAc

(

U − R−1
c 〈U , �̃c〉H1×L2�c

)

= etAcPcU ,

for all U ∈ H1 × L2, as claimed. ��

6.3 Exponential Decay

We denote the restriction of Ac in X̃ by Ãc : X̃ → X̃ with domain

D̃ := {U ∈ D(Ac) ∩ X̃ : AcU ∈ X̃},

and assignation rule given by

ÃcU := AcU , U ∈ D̃.

The following lemma shows that λ = 0 does not belong to σ(Ãc) and that this operator
is the infinitesimal generator of an exponentially decaying C0-semigroup.

Lemma 6.6 Let X̃ be the range of Pc and let Ãc denote the restriction of Ac on X̃ as
above. Then,
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(a) The block operator Ãc is a closed and densely defined operator on the Hilbert
space X̃ .

(b) The spectrum of Ãc satisfies that

σ(Ãc) ⊂ {λ ∈ C |Re λ ≤ −δ}

(c) The family of operators {etÃc }t≥0, defined as

etÃcU := etAcU ,

for U ∈ X̃ and t ≥ 0, is a C0-semigroup of quasicontractions in the Hilbert space
(H1 × L2)⊥ with infinitesimal generator Ãc.

(d) There exists uniform constants M ≥ 1 and ω > 0, such that

‖etÃcU‖H1×L2 ≤ Me−ωt‖U‖H1×L2 , (6.4)

for all t ≥ 0 and every U ∈ (H1 × L2)⊥.

Proof Since Ãc is a densely defined operator then its closedness is inherited from the
closedness of Ac and the closedness of the subspace X̃ . This shows (a).

We now prove (b). By the spectral decomposition theorem we know that σ(A⊥) ⊂
σ(A) (cf. Kato (1995)), but 0 /∈ σ(A⊥) because P� = 0 and � �= 0 so that � /∈ X̃ .
Therefore, by Theorem 5.5, we have that σ(Ãc) ⊂ σ(Ac) \ {0} ⊂ {λ ∈ C : Re λ ≤
−δ} as claimed.

By Lemma 6.5 and Remark 6.3, we conclude that X̃ is an etA-invariant closed
Hilbert subspace of H1 × L2. Therefore, property (c) readily follows from a direct
application of classical results from semigroup theory (see Section 2.3 of Engel and
Nagel (2000), p. 61). Thus, Ãc is the infinitesimal generator of the “restricted” semi-
group {etA⊥}t≥0.

Finally, (d) follows by an application of Gearhart-Prüss theorem and since the
operator Ãc is spectrally stable (see (b)), it remains to prove that

sup
Re λ>0

‖(λ − Ãc)
−1‖X̃→X̃ < ∞. (6.5)

From (b) we know that the mapping λ �→ ‖(λ − Ãc)
−1‖X̃→X̃ is continuous, hence it

is uniformly bounded in the compact set K := {λ ∈ C | 0 ≤ Re λ ≤ δ, ∧ |Im λ| ≤ δ}.
By Theorem 5.5we know that ‖(λ−Ac)

−1‖ is uniformly bounded in {λ ∈ C : Re λ >

0} \ K ; hence, the proof is complete by noticing that

‖(λ − Ãc)
−1‖X̃→X̃ ≤ ‖(λ − Ac)

−1‖X→X

since X̃ ⊂ X = H1 × L2 and Ãc = Ac on D̃ by definition. ��
We are now ready to prove the main result of the paper: the nonlinear stability of

moving Néel wall’s phase for |c| sufficiently small.
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7 Nonlinear (Orbital) Stability of Moving Néel Walls

Finally, this section establishes the nonlinear (orbital) stability of themovingNéelwall,
that is, the decay in time of solutions θ(x, t) to the Cauchy problem (2.4), provided
they exist, for initial conditions close to the traveling Néel wall profile ψ(z). This is
accomplished by recasting equation (2.4) as a new equation that underlies the traveling
Néel wall profile ψ(z) as a stationary point.

By using themoving frame variables (z, t), with z = x−ct , the differential equation
for the Néel wall phase θ(x, t) = θ̃ (z, t) induces the following differential equation
on θ̃ :

∂2t θ̃ − 2c∂t z θ̃ + c2∂2z θ̃ + ν∂t θ̃ − cν∂z θ̃ + ∇E(θ̃) = H cos(θ̃). (7.1)

To ease the notation, we drop out all the tilded variables in equation (7.1) from now
on. Notice that equation (7.1) is also invariant under translations in the variable z.
Moreover, θ = ψ(z) is a stationary solution since ψ is solution to (2.11). By defining
the auxiliary variableϕ = ∂tθ , equation (7.1) is recast as the following vector evolution
equation

{

∂t W = F(W ), z ∈ R, t > 0,

W (z, 0) = W0(z), z ∈ R,
(7.2)

where W = (θ, ϕ), W0 = (θ0, v0) is the initial datum and

F(W ) =
(

ϕ

2c∂zϕ − c2∂2z θ − νϕ + cν∂zθ − ∇E(θ) + H cos(θ)

)

. (7.3)

Due to the existence of the stationary stateψ and the translation invariance of equation
(7.1), the term F satisfies that for every s ∈ R

F(φ(s)) = 0, where φ(s) =
(

ψ(· + s)
0

)

. (7.4)

Thus, differentiation with respect to s readily implies that λ = 0 is a eigenvalue of the
derivative DF of F . In addition, the linearization of (7.2) around the time-independent
solution φ(s) is

{

∂t V = As
cV , z ∈ R, t > 0,

V (z, 0) = V0(z), z ∈ R,
(7.5)

where

As
c :=

(

0 I
−Ls

c 2c∂z − νI

)

,

with

Ls
c = Ls

c + c2∂2z − cν∂z + H sinψ(· + s) I, and Ls
c = d

dε
∇E (ψ(· + s) + εu)

∣
∣
∣
∣
ε=0

.
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Asbefore (seeCapella et al. (2024), Section 7), the operatorsAs
c : H1×L2 → H1×L2

and Ls
c : H1 → L2 have dense domains, D(As

c) = H2 × H1 and D(Ls
c) = H2,

respectively. When s = 0, we observe that

A0
c = Ac, and L0

c = Lc .

Indeed, it is not difficult to verify that if Tl(s) denotes the left translation operator then
it is an H1-isometry and the generator of a C0-semigroup (see Capella et al. (2024),
Section 7 and Engel and Nagel (2000)). As a consequence, all spectral results for the
operatorAc with s = 0 from last sections are applicable to the family of operatorsAs

c
with s �= 0. Actually, by Lemma 4.2.1 in Kapitula and Promislow (2013), p. 87, the
whole family of operators {s ∈ R : As

c} is isospectral. In order to distinguish all the
mathematical objects used until Sect. 6, we add a superscript “s” for the corresponding
mathematical object in the case where s �= 0. For example, the projector operator Ps

c
and its range X̃ s which replace the projector operator Pc and its range X̃ used before
for the case s = 0. For details, see Capella et al. (2024).

Since the whole family of operators is isospectral, we conclude that the spectral gap
is also preserved and the existence of a unique solution to the Cauchy linear problem
(7.5) in H1× L2 is guaranteed by the action of the C0-semigroup of quasicontractions
generated by As

c on the initial conditions. Moreover, when we restrict the admissible
solutions of (7.5) to the Hilbert subspace X̃ s , the Lemma 6.6 implies the existence of
constants M ≥ 1 and ω̃ > 0 such that

‖etÃs
c V0‖H1×L2 ≤ Me−ω̃t‖V0‖H1×L2 ,

for every V0 ∈ X̃ s . It is important to point out that the decaying rate bound ω̃ also
is independent of s because it only depends on the spectral gap and the H1 and L2

norms of ψ(· + s), which remain constant under translations.
Just like in our previous stability analysis (Capella et al. 2024), the proof of Theorem

2.9 follows from a direct application of the following abstract nonlinear stability result.

Theorem 7.1 (Lattanzio et al. (2016)) Let X be a Hilbert space and I ⊂ R be an
open neighborhood of s = 0. Assume that F : D ⊂ X → X and φ : I ⊂ R → D
satisfies F(φ) = 0. Suppose that Ps is the projector onto {φ′(s)}⊥X and that there exist
positive constants C0, s0, M, ω and γ such that

(A1) for every solution V = V (t, V0, s) to (7.5), there holds

‖Ps V (t, V0, s)‖X ≤ C0e−ωt‖Ps V0‖X ,

(A2) φ is differentiable at s = 0 with

‖φ(s) − φ(0) − φ′(0)s‖X ≤ C0|s|1+γ ,

for |s| < s0; and,
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(A3) F is differentiable at φ(s) for every s ∈ (−s0, s0) with

‖F(φ(s) + W ) − F(φ(s)) − DF(φ(s))W‖X ≤ C0‖W‖1+γ

X , (7.6)

for ‖W‖X ≤ M.

Then there exists ε > 0 such that for any W0 ∈ Bε(φ(0)) ⊂ X there exists s ∈ I and
a positive constant C for which the solution W (t; W0) to the nonlinear system (7.2)
satisfies

‖W (t, W0) − φ(s)‖X ≤ C ‖W0 − φ(0)‖X e−ωt .

Remark 7.2 Theorem7.1 is an extension toHilbert spaces of an early result bySattinger
(1976) which establishes nonlinear stability from spectral stability by controlling the
growth of the nonlinear terms via the variation of constants formula, but only in the
case of a simple translation eigenvalue λ = 0 for the linearization. In such a case the
manifold generated by the travelingwave is one-dimensional, the projectionP onto the
eigenspace has rank one and the necessary nonlinear modulations of the perturbations
of the wave pertain to translations alone.

The proof of Theorem 2.9 follows from Theorem 7.1 upon verifying assumptions
(A1) through (A3). Moreover, Theorems 5.5 and 5.6 impose a speed threshold, c∗ > 0,
necessary to obtain spectral stability with spectral gap, and in consequence, to achieve
(A1). The speed threshold c∗ also implies an upper bound on themagnetic field strength
(see Remark 2.8). Hence, the magnetic strength threshold ε follows from Theorem 7.1
and the upper bound on the magnetic field strength imposed by c∗.

7.1 Proof of Theorem 2.9

Let X = H1 × L2, D := H2 × H1. Since |H | < δ̃, we know that the traveling Néel
wave, predicted by Capella et. al. (2007), exists. By defining F as in (7.3) and φ(s)
as in (7.4), it follows that F(φ(s)) = 0 for every s ∈ R by (7.4).

Let ζ(ν) be the decay rate bound fromTheorem 2.4, and fix δ ∈ (0, ζ(ν)). Upon and
application of Theorems 5.5 and 5.6, there exists c∗

δ > 0 such that linear perturbation
equation (4.6), or equivalently (4.7), is spectrally stable with a spectral gap δ > 0, if
the speed c of the traveling wave ψ satisfies that |c| = O(|H |) < c∗

δ . Moreover, the
Lemma 6.6 implies that (A1) is satisfied for the projectors Ps

c due to the isospectrality
of the family of block operators {As

c : H1 × L2 → H1 × L2 : s ∈ R}. Since δ was
arbitrarily chosen, it follows that for every traveling speed c such that

|c| < c∗ := sup{c∗
δ | 0 < δ < ζ(ν)},

the condition (A1) in Theorem 7.1 is satisfied.
In order to verify (A2), first notice that since ψ ∈ H2 is a real-valued smooth

function, then there holds

‖φ(s) − φ(0) − φ′(0)s‖H1×L2 = ‖ψ(· + s) − ψ − (∂zψ)s‖H1 .
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By the Taylor series’ remainder integral representation and by Jensen’s inequality, we
have

‖ψ(· + s) − ψ − (∂zψ)s‖2L2 ≤
∫

R

s4
∣
∣
∣
∣

∫ 1

0
(1 − t) ∂2z ψ(x + ts) dt

∣
∣
∣
∣

2

dx

≤ s4
∫

R

∫ 1

0
(1 − t)2

(

∂2z ψ(x + ts)
)2

dt dx .

Now, by changing the order of integration, and recalling that every translation is a
L2-isometry, we get

‖ψ(· + s) − ψ − (∂zψ)s‖2L2 = s4
∥
∥
∥∂

2
z ψ

∥
∥
∥

2

L2

∫ 1

0
(1 − t)2 dt .

A similar argument for ∂zψ yields

∥
∥
∥∂zψ(· + s) − ∂zψ − (∂2z ψ)s

∥
∥
∥

2

L2
= s4

∥
∥
∥∂

3
z ψ

∥
∥
∥

2

L2

∫ 1

0
(1 − t)2 dt .

Therefore,

‖φ(s) − φ(0) − φ′(0)s‖H1×L2 ≤ s2√
3

∥
∥
∥∂

2
z ψ

∥
∥
∥

H1
,

and (A2) follows with γ = 1.
Now let W = (w1, w2) ∈ H2 × H1 and for any s ∈ R let us denote the s-left

translation of the traveling Néel wall profile, namely, ψ(· + s), by ψs . Hence,

F(φ(s) + W ) =
(

ω2

2c∂zω2 − c2∂2z (ψs + ω1) − νω2 + cν∂z(ψs + ω1) − ∇E(ψs + ω1) + H cos(ψs + ω1)

)

,

F(φ(s)) =
(

0
−c2∂2z ψs + cν∂zψs − ∇E(ψs ) + H cosψs

)

,

DF(φ(s))W = As
cW =

(

w2
2c∂zw2 − νw2 − Ls

cw1

)

.

Upon substitution of the expressions for F(φ(s) + W ), F(φ(s)), As
cW , and the left-

shifted version of equation (4.3), we get

‖F(φ(δ) + W ) − F(φ(δ)) − DF(φ(δ))W‖H1×L2

=
∥
∥
∥∇E(ψs ) − ∇E(ψs + w1) + H cos(ψs + ω1) − H cosψs + Ls

cw1 − c2∂2z w1 + cν∂zω1

∥
∥
∥

L2

=
∥
∥
∥∇E(ψs ) − ∇E(ψs + w1) + Ls

cw1 + H cos(ψs + ω1) − H cosψs + H sinψcw1

∥
∥
∥

L2

≤
∥
∥
∥∇E(ψs ) − ∇E(ψs + w1) + Ls

cw1

∥
∥
∥

L2
+ ‖H cos(ψs + ω1) − H cosψs + H sinψcw1‖L2
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where the last equality follows from the triangle inequality. The first term on the
right-hand side of last inequality satisfies the estimate

∥
∥
∥∇E(ψs) − ∇E(ψs + w1) + Ls

cw1

∥
∥
∥

L2
≤ C‖W‖2H1×L2 ,

for some constant C > 0. Since the traveling Néel wall profile phaseψ is as smooth as
the static Néel wall profile phase θ̄ , the proof of this statement is the same as the proof
performed on bounding the term

∥
∥∇E(θ̄δ) − ∇E(θ̄δ + w1) + Lδw1

∥
∥

L2 fromTheorem
2.3 in Capella et al. (2024), word-by-word.

Finally, the inequality | cos(ψs +w1)− cosψs +w1 cosψs | ≤ 1
2w

2
1 and Sobolev’s

embedding theorem yield

‖H cos(ψs + ω1) − H cosψs + H sinψcw1‖2L2 ≤ 1
4 |H |2

∥
∥
∥w

2
1

∥
∥
∥

2

L2

≤ 1
4 |H |2‖w1‖2∞ ‖w1‖2L2

≤ 1
4 |H |2 ‖w1‖4H1

≤ 1
4 |H |2‖W‖4H1×L2

Therefore, (A3) holds for γ = 1 and some C0 > 0 that depends on the magnitude of
the externalmagnetic field H . Thus, Theorem7.1 implies the existence of the threshold
ε̃ ∈ (0, δ̃), the translation s ∈ R, and the positive constants C and ω, such that (2.15)
holds. The proof is completed by setting ε = min{ε̃, H∗}, where H∗ is the magnetic
field strength required for a moving Néel wall at speed c∗. ��

8 Discussion

We have proved the nonlinear stability of moving Néel walls in ferromagnetic thin
films in the present paper. These structures emerge when a weak external magnetic
field is applied. The moving Néel wall is described by a wave-type dynamics equation
for the phase of the in-plane magnetization. The speed of propagation of the moving
wall, c, is of order O(|H |), where |H | � 1 measures the intensity of the external
field. After linearizing the model equations around a moving wall’s phase, the result-
ing spectral problem for the perturbation turns out to be an order O(|c|)-perturbation
of the linearized operator around the static Néel wall, which is spectrally stable. The
main result relies on establishing resolvent-type estimates for the latter operator, which
imply the stability of the linearized operator around the moving Néel wall upon appli-
cation of standard perturbation theory for linear operators. Whence, Lumer-Phillips
theorem, the theory of C0-semigroups, and a nonlinear iteration argument yield the
nonlinear stability result.

The smallness of the applied magnetic field is a crucial feature to infer both the
existence and the stability of a moving domain wall. It is well known inmicromagnetic
literature, see Mougin et al. (2007); Hubert and Schäfer (1998), that the Walker break-
down condition dictates the existence of a threshold value for the magnetic field’s
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intensity H for which the stability and/or the existence of the moving wall is lost.
Finding this threshold value from a rigorous analysis is not only essential for applica-
tions but also a challenging open problem. Indeed, if the magnetic field is too strong,
we expect the instability to be so violent that we practically never see the moving wall
evolve over time. This behavior is, perhaps, associated with a bifurcation phenomenon
in which the intensity of the magnetic field plays the role of the bifurcation parameter.
This is an open problem that warrants further investigation.

Appendix A Useful Estimates

In the present appendix, we state and prove some useful lemmata necessary in the
proof of the resolvent estimates from Theorem 5.5.

Lemma A.1 Let ν > 0 and δ ∈ (0, ν/2) be fixed. Assume that � ⊂ C is the square of
side length 2δ and center at the origin as defined in (5.1). Also, define S : [0, π/2] ×
C → R as

S(φ, λ) := |λ∗ cos2 φ + (λ + ν) sin2 φ|.

Then, for every (φ, λ) ∈ [0, π/2] × {Re λ > −δ} \ conv(�) there holds that

S(φ, λ) ≥ δ
√

δ2 + ν2

4

(ν

2
− δ

)

> 0.

Moreover, if Im λ �= 0, then

S(φ, λ) ≥
√
2|Im λ||Re λ + ν/2|

ν/2 + |Im λ| > 0.

Proof First, we let S2
1 (φ, λ) := (Re λ + ν sin2 φ)2 and S2

2 (φ, λ) = (Im λ)2 cos2 2φ,
this implies from the definition of S that S2 = S2

1 + S2
2 . By letting φ(u) =

arcsin( 1√
2

√
u + 1) we get

f 2(u, λ) := S2
1 (φ(u), λ) + S2

2 (φ(u), λ) = (

Re λ + ν
2 (1 + u)

)2 + (Im λ)2u2. (A.1)

Notice that the mapping φ : [−1, 1] → [0, π/2] is onto, hence bounding S2 on
the set [0, π/2] × {Re λ > −δ} \ conv(�) is equivalent to bounding f 2 on the set
� := [−1, 1] × {Re λ > −δ} \ conv(�). Indeed, f 2 > 0, otherwise both terms in
(A.1) must vanish, yielding that either λ = −ν(1+ u)/2 or Re λ = −ν/2, but neither
of both conditions are met on the set {Re λ > −δ} \ int conv(�). Also, since f (u, ·)
grows linearly with λ for |λ| big enough, then there exists a compact neighborhood of
(0, 0) where f 2 meets its global minimum. It is not hard to see that f 2 has no critical
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points inside �, then its minimum is attained at ∂� which is divided into the sets

�1 = {(u, λ) ∈ � | u = −1},
�2 = {(u, λ) ∈ � | u = 1},
�3 = {(u, λ) ∈ � | |Im λ| ≤ δ, Re λ = δ},
�4 = {(u, λ) ∈ � | |Im λ| ≥ δ, Re λ = −δ},
�5 = {(u, λ) ∈ � | |Im λ| = δ, |Re λ| ≤ δ}.

By a simple evaluation, we readily get that

min
�1∪�3

f 2(u, λ) = δ2, and min
�2

f 2(u, λ) = (ν − δ)2 + δ2.

Regarding the sets �4 and �5 as two-dimensional sets, standard analysis tools yield
that the minimum values of f 2 on each set are attained on their boundary. Indeed,

min
�4∪�5

f 2(u, λ) = f 2
(

−δ(1 ± i),
− ν

2 ( ν
2 − δ)2

δ2 + ν2

4

)

= δ2( ν
2 − δ)2

δ2 + ν2

4

.

This completes the first part of the statement.
Finally, when Im λ �= 0 the convexity of S2

1 (φ(·), λ) and S2
2 (φ(·), λ) plus its non-

negativeness imply that S2(φ(·), λ) ≥ min{S2
1 (φ(·), λ), S2

2 (φ(·), λ)}, which is also a
convex and non-negative function whose minimum is attained in the set {u ∈ [−1, 1] :
S2
1 (φ(·), λ) = S2

2 (φ(·), λ)}. Due to these simple expressions, we easily get that

S2(φ(·), λ) ≥ min{S2
1 (φ(·), λ), S2

2 (φ(·), λ)} ≥ 2(Im λ)2(Re λ + ν/2)2

(ν/2 + |Im λ|)2 > 0.

��

Lemma A.2 Let ν > 0 and β ∈ (0, 1) be fixed. Assume that λ ∈ C is such that
Re λ > −βν/2 and (Im λ)2 > �0 + �

1/2
0 (2 − β)ν; then

|1 − �
−1/2
0 |ν + λ|| >

(

1 − β

2

)

�
−1/2
0 ν.
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Proof Weobserve that |1−�
−1/2
0 |ν+λ|| ≥ 1 since�

−1/2
0 |ν+λ| > �

−1/2
0 |Im λ| > 1.

Therefore,

|1 − �
−1/2
0 |ν + λ|| = �

−1/2
0

√

(Re (λ) + ν)2 + (Im λ)2 − 1

≥ �
−1/2
0

√
(

1 − β

2

)2

ν2 + �0 + �
1/2
0 (2 − β)ν − 1

= �
−1/2
0

(

�
1/2
0 +

(

1 − β

2

)

ν

)

− 1

=
(

1 − β

2

)

�
−1/2
0 ν.

��

Lemma A.3 Let λ ∈ C be as in Lemma A.2. Define a(λ) = |ν + λ|�−1/2
0 and

fa(λ)(ϕ) = (1 − a(λ)) cosϕ − (1 + a(λ)) sin ϕ.

Then | fa(λ)(ϕ)| ≥ 1
2

(

1 − β
2

)

�
−1/2
0 ν for every |ϕ| < ε, where

ε := 2 (2 − β) �
−1/2
0 ν

4π + (2 + π) (2 − β) �
−1/2
0 ν

> 0.

Proof First, we notice that the function fa(λ)(ϕ) is continuous and decreasing on its
argument since a(λ) > 1. Also, fa(λ)(ϕ) < 0 for ϕ ∈ ((1 − a(λ))/(1 + a(λ)), 0).
Therefore, | fa(λ)(ϕ)| ≥ − fa(λ)(− 1

2 sin
−1 ε) ≥ 0. Since cosϕ ≥ 2

π
ϕ + 1 and π

2 ϕ ≥
sin−1 ϕ hold for ϕ ∈ [0, π/2] and ϕ ≥ sin ϕ, we get

| fa(λ)(ϕ)| ≥ − fa(λ)

(

−1

2
sin−1 ε

)

= (a(λ) − 1) cos

(
1

2
sin−1 ε

)

− (1 + a(λ)) sin

(
1

2
sin−1 ε

)

≥ (a(λ) − 1)

(

1 − sin−1 ε

π

)

− (1 + a(λ))

(
1

2
sin−1 ε

)

≥ (a(λ) − 1)
(

1 − ε

2

)

− π

4
(1 + a(λ))ε.
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This last inequality and Lemma A.2 imply that

| fa(λ)(ϕ)| ≥ a(λ)

(

1 −
(
1

2
+ π

4

)

ε

)

−
(

1 −
(
1

2
− π

4

)

ε

)

≥
(

1 +
(

1 − β

2

)

�
−1/2
0 ν

)(

1 −
(
1

2
+ π

4

)

ε

)

−
(

1 −
(
1

2
− π

4

)

ε

)

≥
(

1 − β

2

)

�
−1/2
0 ν −

[
π

2
+
(
1

2
+ π

4

)(

1 − β

2

)

�
−1/2
0 ν

]

ε

≥ 1

2

(

1 − β

2

)

�
−1/2
0 ν,

where the last inequality holds for ε chosen as in the statement of the lemma. This
finishes the proof. ��
Lemma A.4 Let ν > 0 be fixed and ζ(ν) > 0 be as in Lemma 2.4. Also, let δ ∈ (0, ζ(ν))

be fixed and define

G2 = {λ ∈ C : Re λ > −δ, |Im λ| > δ} ∪ {δ(t ± i) : t ∈ (−1, 1)}. (A.2)

The function M : [0, π/2] × G2 → R, given by

M(φ, λ) = min

{

1

| cosφ − |λ + ν|�−1/2
0 sin φ|

,
|λ| + |λ + ν|

|λ∗ cos2 φ + (λ + ν) sin2 φ|

}

,

(A.3)
is uniformly bounded on its domain.

Proof In order to prove this,
let β ∈ (0, 1) be a fixed constant such that 2δ < βν and define ε > 0 as

ε = 2 (2 − β) �
−1/2
0 ν

4π + (2 + π) (2 − β) �
−1/2
0 ν

.

Then, [0, π/2] × G2 is the union of the following three sets:

H1 = ([0, π/2] \ (π/4 − ε, π/4 + ε)) × G2,

H2 = (π/4 − 1
2 sin

−1 ε, π/4 + 1
2 sin

−1 ε) × {λ ∈ G2 | (Im λ)2 ≤ �0 + �
1/2
0 (2 − β)ν},

H3 = (π/4 − 1
2 sin

−1 ε, π/4 + 1
2 sin

−1 ε) × {λ ∈ G2 | (Im λ)2 > �0 + �
1/2
0 (2 − β)ν}

(see Figures 2 and 3). Before proving that M(φ, λ) is uniformly bounded on (φ, λ) ∈
[0, π/2]×G2, let us examine Figures 2 and 3. Figure 2 shows the projections of the sets
H1 and H2 ∪ H3 (regions in light blue and in light green, respectively) onto the plane
Im λ = −d for any constant d > δ. The purple and blue curves represent the regions
where (Re λ + ν sin2 φ)2 = 0 and (Im λ)2 cos2 2φ = 0 in the plane Im λ = −d. Both
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Fig. 2 Depiction of the sets H1
and H2 ∪ H3, regions in light
blue and light green colors,
respectively, projected onto the
plane Im λ = −d for any
constant d > δ (Color figure
online)

curves intersect at the point (π/4,−ν/2) which lies outside of the region of interest
because δ > ζ(ν) ≥ −ν/2. This fact implies that

|λ∗ cos2 φ + (λ + ν) sin2 φ| > 0,

in every plane of the form Im λ = −d for any constant d > δ.
Figure 3 shows the sets H1 and H2 ∪ H3, regions in light blue and light green

colors, respectively, in the region Im λ ≤ 0. Once again, the red curve and the black
dotted curve represent the sets where |λ∗ cos2 φ + (λ + ν) sin2 φ| = 0 and the curve
�, respectively. This graphical representation makes evident that M(φ, λ) < ∞ since
this curve is outside [0, π/2]×G2. Despite of the boundedness of the term |λ∗ cos2 φ+
(λ+ ν) sin2 φ|−1, the uniform boundedness of M(φ, λ) does not follow from it since

lim|Im λ|→∞
|λ| + |λ + ν|

√

(Re λ + ν sin2 φ)2 + (Im λ)2 cos2 2φ

∣
∣
∣
∣
∣
π/4

= ∞.

This behavior justifies the necessity for the splitting of [0, π/2] × G2 into the sets
Hi ’s and the two resolvent estimates in Lemma 5.2.

Notice that the set H2 is empty provided that δ > �0 +�
1/2
0 (2−β)ν. Also, due to

the proximity of φ to π/4 in H2 and H3, we assume that, in those sets, φ = π/4 + ϕ

with |ϕ| < 1
2 sin

−1 ε. Thus, we easily get that

ε2 ≥ sin2(2ϕ) = cos2 2(π/4 + ϕ) = cos2 2φ.
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Fig. 3 Illustration of the sets H1 and H2 ∪ H3 (in light blue and light green colors, respectively), in the
region Im λ ≤ 0. Once again, the red curve and the black dotted curve are the sets where |λ∗ cos2 φ + (λ +
ν) sin2 φ| = 0 and the curve �, respectively (Color figure online)

Now, we examine M(φ, λ) on each of the sets Hi , i = 1, 2, 3.

(H1) Notice that | cos 2φ| ≥ ε in H1. Therefore,

M(φ, λ) ≤ (|λ| + |λ + ν|)
√

(Re λ + ν sin2 φ)2 + (cos(2φ)Im λ)2

≤ (|λ| + |λ + ν|)
√

(Re λ + ν sin2 φ)2 + ε2(Im λ)2
.

Observe that the term on the right hand side is uniformly bounded since it is contin-
uous as a function of (λ, φ) ∈ C1×([0, π/4− 1

2 sin
−1 ε]∪[π/4+ 1

2 sin
−1 ε, π/2])

and it is bounded as |λ| → ∞.
(H2) In this set, Lemma A.2 and equation (A.3) imply that

M(φ, λ) ≤
(

ν/2 + |Im λ|
|Im λ|

)( |λ| + |λ + ν|
|Re λ + ν/2|

)

≤
(

ν/2 + |Im λ|
|Im λ|

)( |Re λ| + |Re λ + ν| + 2|Im λ|
|Re λ + ν/2|

)

.

Thus, M(φ, λ) is uniformly bounded in H2 since Im λ < (Im λ)2 ≤ �0+�
1/2
0 (2−

β)ν.
(H3) By the selection of β, it follows that Re λ > −βν/2 and (Im λ)2 > �0 +
�

1/2
0 (2−β)ν. Hence, the conclusion of LemmaA.2 holds.Moreover, the selection

of ε implies that Lemma A.3 also holds. These observations immediately imply
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that

M(φ, λ) = M(π/4 + ϕ, λ)

≤
√
2

|(1 − |λ + ν|�−1/2
0 ) cosϕ − (1 + |λ + ν|�−1/2

0 ) sin ϕ|

≤ 2
√
2�1/2

0

(1 − β/2)ν
,

for (φ, λ) ∈ H3. Hence, M(φ, λ) is uniformly bounded in H3.

The combination of the estimates in these three cases proves the lemma. ��
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