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We introduce Lindblad-like quantum tomography (LEQT) as a quantum characterization technigque of
time-correlated noise in quantum information processors. This approach enables the estimation of
time-local master equations, including their possible negative decay rates, by maximizing a likelihood
function subject to dynamical constraints. We discuss LEQT for the dephasing dynamics of single
qubits in detail, which allows for a neat understanding of the importance of including multiple
shapshots of the quantum evolution in the likelihood function, and how these need to be distributed in
time depending on the noise characteristics. By a detailed comparative study employing both
frequentist and Bayesian approaches, we assess the accuracy and precision of LEQT of a dephasing
quantum dynamical map that goes beyond the Lindblad limit, focusing on two different microscopic
noise models that can be realised in either trapped-ion or superconducting-circuit architectures. We
explore the optimization of the distribution of measurement times to minimize the estimation errors,
assessing the superiority of each learning scheme conditioned on the degree of non-Markovinity of the
noise, and setting the stage for future experimental designs of non-Markovian quantum tomography.

The field of quantum information processing has witnessed a remarkable
progress in the last years'™, as evidenced by the key advances reported in®"*.
This progress lays the groundwork for the eventual demonstration of
practical quantum advantage in real-world applications'. Central to these
advancements and future breakthroughs is the exceptional level of isolation
and control achieved over quantum information processors (QIPs),
enabling the application and integration of various strategies to fight against
the accumulation of errors during quantum computations. These strategies
can be implemented either during the processing of quantum information
or, alternatively, post-measurement, falling into three distinct categories:
quantum error suppression (QES)**”, quantum error mitigation
(QEM)**?, and quantum error correction (QEC)**™.

The development and optimization of these techniques for specific
architectures greatly benefits from a comprehensive understanding of the
underlying sources of noise, including a thorough quantum characteriza-
tion, verification and validation (QCVV) of the noise models’. By
addressing the noise characteristics, researchers can tailor their strategies to
suit the specific requirements of different platforms, thereby enhancing the
reliability and performance of QIPs. For instance, the presence of spatial and
temporal noise correlations is a critical consideration in some techniques of
QES, such as decoherence-free subspaces™™ and dynamical
decoupling™*, respectively. Likewise, in the context of QEC, the presence of
spatial®™* and temporal" noise correlations must be carefully accounted

for when considering fault-tolerant quantum computation beyond the
idealized regime of independent and identically distributed errors. In this
work, we will focus on the characterization of qubit dynamics under tem-
porally correlated noise. This can actually lead to a non-Markovian quan-
tum evolution, which will require reconsidering some of the established
characterization tools for the dynamics of Markovian open quantum sys-
tems. Before delving into more specific details about the characterization of
non-Markovian quantum evolutions, we note that the degree of non-
Markovianity’ ™ can play a role in the effectiveness of QES™** and QEM™*”’
techniques.

Within the set of QCVV techniques’ ™, quantum process tomography
(QPT) aims at characterizing the most generic type of process that can
account for the evolution of a quantum system, solely constrained by the
laws of quantum mechanics™*. For a specific evolution time, after pre-
paring and measuring the system in an informationally complete setting,
one can make an estimate of the completely-positive trace-preserving
(CPTP) quantum channel®** that determines a snapshot of the quantum
evolution. Therefore, QPT has been applied for the characterization of
quantum gates in various experimental QIPs**”*, typically restricted to small
number of qubits. In addition to the inherent complexity of QPT as the
number of qubits increases, this characterization must be repeated for each
instant of time of interest, in order to obtain a coarse-grained reconstruction
of the full, i.e. a one-parameter family of CPTP channels’*° that governs the
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time evolution of the quantum system. Although repeating QPT can allow
to characterise non-Markovian evolutions, the associated overhead can limit
the precision in architectures where the number of measurements shots
cannot be sufficiently large”.

A strategy to overcome this limitation is to focus on the estimation of
the generators of the noisy dynamics, rather than on the various coarse-
grained snapshots. For time-homogeneous quantum dynamical maps,
which form a semigroup, the time evolution can be described by the
exponential of a Lindblad super-operator”*’*”. Although one may expect
that the generators of this type of Markovian noise can be obtained by simple
algebraic manipulations of a single QPT snapshot at any arbitrary time, this
approach can lead to inconsistencies*”™*’ due to the branches of the complex
logarithm. Therefore, alternative QCVV techniques are required. One
possibility is use the Lindbladian generators for a parametrization of the
quantum evolution, which can then be inferred using different learning
strategies®™*"*>*”. Lindblad learning aims to estimate the Hamiltonian
under which the system evolves and, additionally, the jump operators and
dissipation rates that govern the non-unitary part of the dynamics of the
noisy QIP. However, it is important to note that Lindblad learning is based
on the Lindblad master equation, valid only for Markovian system-
environment interactions, i.e., memoryless interactions in which informa-
tion flows from the system to the environment but never flows back.

However, noise in real QIPs does not always fall in this category, and
temporal correlations and even non-Markovianity can play an important
role, as alluded above in connection to QES, QEM and QEC. Hence, it would
be desirable to extend the Lindblad learning to encompass non-Markovian
noise scenarios, such that the quantum dynamical maps are no longer a
semigroup, nor can they be divided into the composition of sequential CP
channels at any intermediate time”>’°. Several characterization techniques
for related problems have been developed in recent years. Quantum noise
spectroscopy protocols’” have evolved into characterization tools of non-
Markovian systems, as in ref. 93, where the authors develop a filter-function
formalism based on frames. A general non-Markovian quantum process
framework was proposed by ref. 94 allowing to characterize non-Markovian
quantum processes using process tensor tomography (PTT). This later led
to proposals of quantum non-Markovian process tomography”.
Reference™ introduced into this PTT frameworks the possibility of memory
effects within the system control itself and from undesirable interactions
between the control and the environment. This contrasts ref. 94 where
perfect gates were assumed. Reference” characterizes certain type of non-
Markovian errors in quantum gates and” proposes also characterization of
quantum gates but with a compressed approach that reduces the resources
needed in comparison to, for instance, ref. 96.

In general, any quantum evolution that results from the coupling of a
quantum system to a larger environment, or to a set of noisy controls
modeled by stochastic processes, can be expressed in terms of a time-local
master equation by using a time-convolutionless formulation™ of the
Nakajima-Zwanzig integro-differential equation”'*'". These time-local
master equations generalize the aforementioned Lindblad master
equation’®”’, and can be expressed in a canonical form that connects directly
with the degree of non-Markovianity'”. In essence, the characterization of
these time-local master equations would require a time-dependent para-
metrization of the Hamiltonian, jump operators and dissipation rates, which
can then be incorporated into a maximum-likelihood estimation that par-
allels the Markovian Lindblad limit*~*. In this work, we call this QCVV
technique Lindblad-like quantum tomography (LEQT), and develop it in the
simplest possible scenario: the dephasing dynamics of a single qubit. We
present a detailed comparative study of this QCVV technique, considering
both a frequentist and a Bayesian approach for the statistical inference. We
consider minimal dephasing models, both semi-classical and fully quan-
tum-mechanical, in which the temporal correlations and degree of non-
Markovianity can be independently controlled. By making a careful con-
nection to the the theory of asymptotic inference and Bayesian estimation,
we quantify both the accuracy and precision of LEQT. We discuss how the
amount of temporal correlations and the degree of non-Markovianity can

play a key role in deciding which of the two approaches is preferable when
learning the non-Lindblad qubit dephasing.

This article is organized as follows. In subsection “Learning time-local
master equations by maximum-likelihood estimation” we review the
techniques of Lindblad quantum tomography and present L¢QT, a gen-
eralization of Lindblad learning that allows us to characterize non-
Markovian noise. In subsections “Frequentist approach to non-Markovian
inference” and “Bayesian approach to non-Markovian inference” two
approaches to L€QT are presented. Subsection “Lindblad-like quantum
tomography for non-Markovian dephasing” presents LEQT applied to
dephasing noise. The frequentist and Bayesian approaches are later com-
pared in a performance analysis in subsections “Markovian semi-classical
dephasing” and “Non-Markovian quantum dephasing”, where we also
study how measurement times should be selected to reduce the number of
necessary measurements and the error in the estimation of noise
parameters.

Results

Learning time-local master equations by maximum-likelihood
estimation

The Lindblad master equation generalizes the Schrédinger equation to open
and noisy quantum systems™*”*””, and describes the non-unitary time
evolution of the density matrix of the system, defined as a positive-definite
unit-trace linear operator p € D(#g) C L(J#) in a Hilbert space of
dimension d = dim #¢*. This master equation can be written in terms of
an infinitesimal generator dp/dt = £ ;(p), namely

-1

yH,G(P) = _i[HnD:I + Z G(xﬁ (EapE; - % {Engp})7 (1)

ap=1

where the Hamiltonian H € Herm(#) is a Hermitian operator, and we
have introduced the so-called dissipation Lindblad matrix, a positive
semidefinite matrix G € Pos(C? ~!). Here, # ={E, = 1,,E,:ac
{1,---,d* — 1}} forms an operator basis L(#°5) = span{#)} and, together
with the Lindblad matrix, determines the dissipative non-unitary dynamics
of the system. Diagonalizing the Lindblad matrix, we obtain

d—1

1
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where {L,: nefl,--- A1)} e L(s#g) are the jump operators
responsible of generating the different noise processes with dissipative decay
rates y, € R*. The goal of Lindblad learning is to estimate %} ; or,
equivalently the system Hamiltonian and the dissipation rates and jump
operators {H, y,,, L,,}, using a finite number of measurements*>*"***"**!* In
particular, our work starts from a maximum-likelihood approac
Lindbladian quantum tomography (LQT)*****".

In the general case, LQT involves preparing an informationally com-
plete set of initial states s € S, allowing the system to evolve over a set of
times i € I, and performing measurements in different basis b € M, with
corresponding outcomes m;, € M, (or more generally using a POVM).

104 tO

These independent configurations, consisting of initial states, evolution
times, and measurement outcomes, provide the necessary data to estimate
the Hamiltonian, dissipation rates, and jump operators, ensuring a complete
reconstruction of the Lindbladian dynamics. LQT makes use of a total of
Nyt measurement shots, also known as trials in the context of statistics,
which will be distributed among the different initial states, instants of time
and measurement basis Nyt = 2, N;.ip- Therefore, the total number of
measurement shots is a function of number of initial states, measurement
basis, measurement outcomes and measurement times, expressed as
Ngot(ISol; 1M1, IML,,, 1, IL,1), where | A| denotes the cardinality of the set

A, ie., the number of elements in the set. In the experiment, one would
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count the number of times N ;, , that the m;, outcome is obtained for each
of the configurations, such that N ; , = Zm,,N

set D ={N

s,i,b,my

. This provides a data
b

s,i,b,m
} that can be understood as a random sample of the

corresponding random variable N; ; .

, obtained from Ny, experimental
measurements. We use tildes to refer to stochastic variables. In this case, the

probability of obtaining the outcome 1, when measuring in basis b is given
by p,;p(m;) = Tr{M Wi, (Po,s)}’ where M, represents the correspond-
ing projector of the combination (b, my). &, , € C(J's) is a one-parameter
family of completely-positive trace-preserving (CPTP) channels™ describ-
ing the actual time evolution of the noisy quantum system. Each mea-

surement configuration gives rise to an independent binomial distribution
with Ny, trials.

The data set [ can be used to estimate the Hamiltonian H and
Lindblad matrix G by maximizing the likelihood function, which is defined
as the probability distribution of the combination of all the independent
binomials pg; (). These binomials can be approximated by the Lind-
bladian of Eq. (1), namelyps_i‘b(mb)HpSL‘ivb(mb) = Tr{MMe(t'_tO)g)H-G (Pg.)}-
The larger this likelihood function is for a given pair H, G, the better the
Lindbladian description approximates the observed data'®. Taking the
negative logarithm of the likelihood function we obtain a cost function

C.(H,G) =~ Z Nibm, 1°8PsL,f,b(mb)v 3)

s,i,b.m,

with the minimum located in the same place as the maximum of the original
likelihood. The optimization problem is thus converted into a non-linear
minimization of this Lindbladian cost function. By minimizing this non-
convex estimator or, instead, a convex approximation based on linearization
and/or compressed sensing”’, LQT provides an estimate of the generators
H , G that yield the best match with the observed data, where we will use hats
to refer to estimated quantities. We note that this minimization is subject to
constraints on Hamiltonian hermicity and Lindblad matrix semidefinite
positiveness.

In this work, we describe our first steps in the development of a learning
procedure for non-Markovian quantum dynamical maps that supersedes
the above LQT. In particular, we consider the statistical inference of the
generators of quantum dynamical maps that need not fulfill CP-divisibility,
the property of a quantum dynamical map where the evolution between any

two intermediate times can be described by a completely positive map™'”.

These maps p(t) = @‘tTtLO (p,) no longer have the Lindbladian generator of
Eq. (1), but are instead governed by a time-local master equation that, when
expressed in a canonical form'”, reads p = —i[H(t), p] + P11 (p) with

Dr(p) = _ y,(8) (Ln(t)pLZ(t) - %{Li(t)Ln(t), p}) : (4)

Here, the Hamiltonian H(f), as well as the dissipative rates and jump
operators y,,(t), L,(t), can be time dependent. It is important to note that the
‘rates’ are no longer required to be positive semidefinite. The possibility of
encountering negative rates is directly linked with the non-Markovianity of
the quantum evolution™**”. This time-local master equation can always be
written in the form of Eq. (1) by letting H — H(#) and G — G(t), such that the
corresponding quantum dynamical map will depend on the history of the
time-dependent generators & tTI;U =& EI;O({H(l")7 G(t)}) for all ¢ € [t, t,].
Here, the ¢’ argument reflects the fact that now the dynamical map between
initial time f, and time ¢ depends on all intermediate times. We thus
formulate a Lindblad-like quantum tomography (L£QT) by upgrading the
LQT cost function in Eq. (3) to a time-local one that can encompass non-
Markovian effects

Cr({H(), G == > Ny, logpin(m). ()

s,i,b,my,

where the theoretical probabilities are calculated following
L _ oTL
ps,i,b(mb) = Tr{Mb‘mb(gti,to(Poﬁs)} (6)

The above cost function must be minimized subject to dynamical
constraints

(H(t), G(t)) = argmin{C ({H(t), G(t)})}, ?)

subject to H(¢') € Herm(#s), G(t') € Herm(@dz*l). Therefore, we see
that in addition to the time dependences, the dissipation matrix is no longer
required to be semi-positive definite, but only Hermitian, and can thus
support negative decay rates and incorporate non-Markovian effects.

The crucial property that differentiates LQT from other learning
approaches such as quantum process tomography’*** is that the estimator
includes |I,| different instants of time {¢;,i € I,} C T, instead of focusing
on a single snapshot of the quantum dynamical map. Although we have
shown in ref. 90 that, in certain regimes, an accurate LQT can be obtained by
focusing on a single snapshot for Lindbladian evolution, this will not be the
case for time-correlated and non-Markovian quantum evolutions. In this
case, it will be crucial to include the information of various snapshots into
the cost function. In fact, we address in this work how many snapshots
would be required, and which particular instants of time would be optimal
in order to learn about the memory effects of a time-correlated or a non-
Markovian noisy quantum evolution. We note that a black-box approach to
L¢QT is a very complicated problem, as the parameters of the Hamiltonian
and dissipation matrix can have any arbitrary time dependence. In order to
progress further, we instead look into physically-motivated models for
L¢QT, allowing us to restrict the search space, and start by focusing on a
simple and, yet, very relevant setting: a single qubit subject to time-
correlated dephasing noise, which can result in non-Markovian quantum
dynamics. Our techniques and conclusions may be useful when generalising
to more complicated non-Markovian dynamics, aiming at the character-
ization of non-Markovian noise in gate sets of QIPs to optimise a tomo-
graphic analysis”.

As stated in Eq. (7) we can follow a frequentist approach similarly to the
one in Markovian Lindblad quantum tomography*”***’, but now taking into
account the time-dependence of the decay rates, which will require an a
priori selection of the evolution times at which the system is probed. In light
of the LEQT estimation problem of Eq. (7), we do not need to consider
arbitrary time-dependent functions for the Hamiltonian and dissipation
matrix, but can actually find an effective parametrization that reduces
drastically the search space. This means that the minimization in Eq. (7) can
be over the parameters @ of the Hamiltonian and dissipation matrix.
Although several intermediate times can be taken, a single time instant
actually suffices for an accurate learning in LQT®, which makes it simpler
and computationally lighter. As the noise becomes time correlated, recon-
structing the more complex time-dependent dynamics via LEQT, demands
multiple time steps to achieve high accuracies. LQT has in principle the same
number of parameters d*(d* — 1) to be learnt as quantum process tomo-
graphy, and to do so requires at least *(&° — 1) measurement configura-
tions. For the general case, where arbitrary time-dependent rates need to be
estimated, a naive blind-search approach would require repeated LQT at
many time points, leading to high sample complexity. In contrast, LEQT’s
use of a microscopic parameterization reduces the need for extensive
measurements by imposing physical constraints, which partially addresses
the sample complexity challenge and makes it a more scalable method. Thus
in parameterized LEQT we will need at least as many measurement con-
figurations as the number of parameters to estimate.

Alternatively to this frequentist approach, we can also consider a
Bayesian approach that exploits a physically-motivated prior knowledge
about these noise parameters, which can be represented by a certain
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probability distribution. After performing measurements on the system at
certain instants of time and certain measurement basis, we update this
probability distribution with the new acquired information, a process that is
repeated until reaching a target accuracy for the parameter estimation. The
Bayesian approach has the advantage of choosing, at each step, the most
convenient subsequent time and measurement basis at which to measure by
maximizing the information one would gain. In principle, this canlead to a
reduction in the number of measurements required to reach a certain
accuracy with respect to those required by the frequentist approach. In
practice, however, the non-Markovianity of the quantum evolution can
modify this argument, as our probabilistic account of the model parameters
can be affected by the actual time correlations of the underlying random
process.

Frequentist approach to non-Markovian inference

In this section, we focus on the frequentist approach, which builds on the
relative frequencies of observed outcomes. The LEQT cost function of Eq. (5)
can be rewritten as follows

CTL(B) ZNSlb Zfstb(mb|0 )logpszb(mb|0)7 8)

s,ib

where J?s,i‘,b(mb 10,) = Ny pm,/Nsp is the ratio of the number of m,,
measurement outcomes observed N ; , . to the total of N, shots collected
at the instant of time 7 and initial state s when measuring the system with the
POVM element b. Our notation remarks that these relative frequencies
carry information about the real noise parameters 0, we aim at estimating.
In addition, the estimator depends on p; ; ,(1,|6) shown in Eq. (6), where we
make explicit the dependence on the parametrized noise.

The minimization in Eq. (7) can explicitely written as a minimization
over the noise parameters. As a consequence, the frequentist approach can
be recast as a statistical problem of parameter point estimation'*®, namely

0, = argminy{C (8) : 6 € ® = R"}. )

Instead of the general LEQT learning over d*(d* — 1) parameters, which
increase exponentially d = 2"s with the number of qubits #, and can
arbitrarily change in time, our procedure revolves around the estimation of
n noise parameters, which are independent of the system size and the
evolution times. On the other hand, the imprecision of our estimates will
indeed depend on our choice of the evolution times, forcing us to go beyond
the LQT single-time estimator”™, and actually measure at optimal times,
initial states and measurement elements for which the estimation
imprecision can be minimized. Let us note that the conditions to minimise
this cost function are the same as those that minimize the Kullback-Leibler
divergence'*®'”, which is the following relative entropy

p
Di(pillpy) = Zpl x log <P2 k>

s

(10)

between the experlmental Pig €1 f sip(My 10,)} and parameterized theo-
retical p, , € {pii,(m, |6)} probablhty distributions, provided one con-
siders variations with respect to the estimation parameters .

The above estimator depends on the data set [D, and is thus also a
stochastic variable, which will be characterized by its mean E[6] and its
moments, such as the covariance matrix

£06,1)]-

- E[(@)n - E[énl]> (e -

We note that the expectation values are taken with respect to the probability
distributions for the measurements of p; ; () which, implicitly, also have
the stochastic average over the random dephasing noise in the semi-classical
model, or a partial trace over the environment in the quantum-mechanical

[Cov(8p)],, ., (11)

one. The nice property of the maximum-likelihood estimator is that it is
asymptotically unbiased, such that B, (6;) = E[8;] — 60, — 0 for a
sufficiently large Ny, or. Moreover, its asymi)totic covariance matrix saturates
the Cramér-Rao bound'” relating the estimation precision to the Fisher
information matrix, which quantifies the amount of information in [ about
the unknown parameters. If we momentarily assume that the measurements
occur at a single instant of time ¢ = f; a single initial state and a single
measurement basis with outcomes that are independent and identically
distributed, the covariance matrix becomes Cov(8y) =~ (N cirlrein(@)) 7
where

alog(plt,(m;16)) dlog(pIL,(m;16))
Ursio®,,,, = D) a0

n ny

(12)

In this work, we deal with the more general case in which we measure at
several times, therefore the random variables are not identically distributed,
and the total number of shots need not be the same for different mea-
surement configurations, i.e., instants of time, initial states and measure-
ment basis. In this case, we must take a linear combination of the Fisher
information matrices of each measurement configuration weighted by the
proportion of measurements taken at each one of these configurations'”.
We thus obtain the asymptotic covariance matrix

-1

p: Ns i,b
Cov(be) ~ Zp = |Ngw >0 Irsin®)| . (13)
shot

s,i,b

such that, the more the Ramsey estimator varies under changes of the noise
parameters, the bigger the amplification of the noise parameter is and, thus,
the smaller the imprecision one can achieve. As we can see, the imprecision
of the estimate will scale with 1/ /N> such that the Ramsey estimator is
asymptotically consistent in the Ny — oo asymptotic limit'”. The
asymptotic statistics of the maximum-likelihood estimator is further
explained in the Methods section.

We also note that, in this limit, the observed relative frequencies will be
normally distributed, such that one can consider minimizing a weighted
least-squares cost function. For instance, assuming a binary case where 1, €
{0, 1}, corresponding to a qubit measurement, we have

456(016,) — p4(010)
Cr(0) ~ Z ( ! ) d >

s,i,b O.fs.l.b

(14)

where f 5ip(010,) = N 0/Ny;, is the ratio of the number of outcomes
observed N, o to the total of shots N; ; ;, collected at initial state s, the instant

of time t; and measurement element b. Here, &; , is the variance of these
sl

measured samples. These fm.’ »(010,) follow a binomial proportion dis-
tribution with mean given by pT,L ,»(010,) and, in the limit of alarge N, ,, they
can be approximated by a normal distribution with mean ps 1,(016,) and

2

variance 0y according to the central limit theorem. The expected variance

of the measurement configuration (s, i, b) is

PIt(01)(1 - pTh, 0 |e))
Ngip

15
oo = (15)

since we are sampling from a binomial distribution. This approximation
allows us to use a simpler weighted least-squares algorithm, such as the
trust-region reflective algorithm implemented in SciPy, where we can
optionally set some bounds for the parameters to be estimated. The
computational complexity of the trust-region reflective algorithm is
dominated in each iteration by solving the trust-region subproblem, which
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is typically O(n®), with n the number of parameters. The number of
iterations depends on the complexity of the cost function, the accuracy of the
initial guess, and the desired level of convergence. However, once the
algorithm gets close to the solution, the remaining convergence is rapid,
showing a quadratic rate, meaning the distance to the solution decreases ata
rate proportional to the square of the distance at the previous step.

Once the properties of the Ramsey frequentist estimate 8}, have been
discussed, we can search for the optimal measurement times, initial states
and measurement elements that would lead to a Ramsey estimator with the
lowest possible imprecision for a given finite Ny, Depending on which
parameter we are interested in, we may be interested in minimizing a par-
ticular component of the covariance matrix [Z5], , in Eq. (13) or, alter-
natively, minimize its determinant as a whole. In'the asymptotic limit in
which 0 follows a multivariate normal distribution, det X is proportional
to the volume enclosed by the covariance elliptical region, so it is a good
measure of the dispersion of the distribution, and a good way to C}uantify the
accuracy of the estimation. Sometimes, we will also use det Z instead,
which can be more easily compared to the individual standard deviations
[Zo]l/ 2, asboth quantities scale with 1/ /N g, ,. Minimizing det = has also
the advantage that the optimal measurement configurations obtamed are
independent of the parameters we want to determine, assuming the different
parametrizations have the same number of parameters and that a coordi-
nate transformation exists between parametrizations. In this case, the
determinants of the covariance matrices are related by detZ,
= detZy detJ?, with ] the Jacobian of the coordinate transformation
between both parametrizations, which does not depend on the measure-
ment configurations and therefore will have no influence in the mini-
mization. Before presenting these results, we discuss an approach based on
Bayesian inference'”.

Bayesian approach to non-Markovian inference

Rather than considering the relative frequencies as approximations of the
underlying probability distribution with a certain fixed value of 0, the idea
of Bayesian inference is to quantify statistically our knowledge about the
noise parameters, and how this knowledge gets updated as we collect more
information via measurements. Hence, the noise parameters become con-
tinuous stochastic variables themselves 6,0 that take values 6 € ©
according to a prior probability density function (PDF) (). This prob-
ability distribution quantifies our uncertainty about the noise parameters
before making any measurement [, = . At each £ > 0 Bayesian step, we
measure the system enlarging the data set sequentially
Dy D, =D, ,uéD,, where 6D, C D ={N,,,,} contains a
number of measurement outcomes |0N,| that is a fraction of the total Ny
These outcomes will be labeled as D, = {N; ;. m, }. The measurements
in this data set are again binary Bernoulli trials, and ‘can be described by a
joint distribution of independent binomials p(61D,), defined in analogy to
the likelihood function, but only extended to the configurations measured in
the particular Bayesian step. The prior (¢ — 1)-th probability distribution is
then updated by using Bayes’ rule based on the parametrized probability
distributions p;“(61D,|0) being understood as probabilities conditioned on
our statistical knowledge of the noise parameters

701D = x5 PODO ) 16)

Here, p/*,(81D,) = [od"0p;“(81D,|0)7,_,(6) is a normalization constant
required to interpret 7,(0|D,)—>m,(0) as a probability distribution
describing our updated knowledge about the noise, which will be used as the
subsequent prior.

One of the main differences with respect to the frequentist approach is
that we have, at each step, a probability distribution from which one can

obtain a Bayesian estimate

= E,[0] = / @d"@n[(G)B. 17)

We note that this Bayesian estimator @, minimizes the Bayesian risk
associated to a squared error loss function over all possible estimators 7,
05 = argmin{Ry (7)}'* with

R(1) =

[FRTR b my,, €60,

/ d"9m,(0)p;* (D,10) (7 — 0. (13)

In addition to the expectation value in Eq. (17), since we have the updated
probability distributions, we can quantify how our uncertainty about the
noise parameters changes via the associated covariance matrix
[Cov(GB)]n 1, OT any other statistics, regardless of the size of the Bayesian
dataset D,. This differs from our previous arguments for covariance of the
maximum likelihood estimate 0 in Eq. (13), which require working in the
asymptotic regime Ng,o — oo. In experimental situations in which this
regime cannot be reached, we note that one could use Monte Carlo sampling
techniques to estimate precision of 8", although these deal with the
estimator based on the full likelihood function.

Another crucial difference of the Bayesian approach is that, instead of
choosing a predefined set of evolution times, initial states and measurement
basis, we can find the optimal time at which we should measure to maximize
the information gain at each Bayesian step. For each update, we thus solve
for

(igs 3¢, by) = argmax;  , { E [Dyy (7,(01D)) || 7,(0))] }, (19)
where 77,(0|1D,) is the posterior probability in Eq. (16) corresponding to the
measurement results one would obtain by measuring at a time t;, initial state
sand measurement basis b, and enlarging the data setas D, = D, udD),.
In the expression above, we are making use of the Kullback-Leibler
divergence of Eq. (10) between the posterior and the prior, searching for a
measurement configuration that maximizes the relative entropy between
the prior and any of the possible posteriors, such that one gains the
maximum amount of information at each Bayesian step. Therefore, not only
the data set is enlarged sequentially D, > ID,_,, but also the specific times
are chosen adaptively. In light of the fixed set of measurement times in the
frequentist approach {t; : i € I,}, we note that the total set of updated times
after Ny Bayesian steps {t,, £ € {0, --- , Np}} can be very different, and that is
the reason why we use a different notation. Computing Eq. (19) can be quite
time-consuming, especially when dealing with a large number of
parameters. In practice, long computation times may lead to a reduction
in the frequency of experimental shots, which is undesirable. To avoid this,
we can take tens or hundreds of shots at each step before computing again
the optimal measurement configuration. This will not change the results
significantly, since a Bayesian update of a single shot does not change the
prior much and the optimal measurement time of next step remains very
similar to the previous one. We note that the Bayesian approach is ultimately
related to the maximume-likelihood estimation in the asymptotic limit
Nihot — ©o. When the variance of the prior is small, the maxima of the
Kullback-Leibler divergence in Eq. (10) between prior and posterior are
localized at the optimal measurement configurations obtained by minimiz-
ing the asymptotic covariance matrix of the maximum likelihood-
estimation in Eq. (13). Additionally, if we make a single Bayesian update
in which we take a very big number of shots at several measurement
configurations, the likelihood function relating the posterior and the prior
will be a joint distribution of independent binomials. Given the big number
of shots taken in this single step, the posterior distribution will be mainly
shaped by the likelihood function, which contains most of the information
about the parameters. The position of the maximum of this PDF will be
located at the most likely value of the parameters, and therefore it is in
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agreement with the maximum-likelihood estimator that takes measure-
ments at those measurement configurations. The Bayesian approach has the
advantage that, at each step, we measure at the most convenient
configuration that maximizes the expected information gain, and this can
lead to an overall reduction of the number of measurements needed. Also, as
noted above, the final estimate relies on a probability distribution, so that we
can immediately derive confidence intervals without requiring any
asymptotic limit.

For the Bayesian approach, where we use sequential Monte Carlo'"” to
implement it numerically, the computational complexity is dominated by
the computation of the best measurement configuration. At each step in the
Bayesian approach, we need to compute the expected posterior of the
measurement configurations, and then select the measurement configura-
tion maximizing the Kullback-Leibler divergence between posterior and
prior. The complexity of this calculation depends on the number of particles
in the particle filter, Ngy.,, the number of initial states, the number of
measurement bases, the number of measurement outcomes and the number
of measurement times considered. Therefore, we have a complexity
O(Ngyer X [Sol ¥ [M| X ML, X |[). At each one of these
Nier X 1So] X [IM,| % |Mmb| X |I,| operations we need to evaluate the

likelihood function pf-(81D,|0) to compute the posterior weight. Therefore
if the posterior function is costly to compute we could think of pre-
computing it on a grid and then make linear interpolation to reduce the
computational cost, as the authors of ref. 113 do. Ny, may need to increase
exponentially with the number of parameters, which makes the frequentist
approach more suitable in the case of large number of parameters. However,
this can be moderated by the specific structure of the model and how
concentrated the posterior is.

Lindblad-like quantum tomography for non-Markovian
dephasing

Let us formulate the LEQT for the time-local master equation of Eq. (4) for
the dephasing of a single qubit, including temporal correlations. As dis-
cussed in the Methods section, either in a semi-classical or quantum-
mechanical model of pure dephasing, the qubit dynamics can be described
by the time-local master equation in Eq. (4) with a simple Hamiltonian
H(t) = 4 w,0, and a single jump operator L({) = o,, both of which are time
independent

do_ 1

dt~ 2 (20)

[‘UOUHP} + y(t)(UZPUZ - P)

On the contrary, the decay rate is time-dependent and contains memory
information about the noise fluctuations

Yo = / () + ) @1)

In a semi-classical model, C(t, t') = E[d6d(¢)dw(t')] is the auto-correlation
function of a stochastic process dw(t) representing frequency fluctuations.
This master equation is the result of averaging over the stochastic process
p(t) = E[p(#)], and is valid for a random process in a second-order
cumulant expansion known as the fast-fluctuation expansion or, alter-
natively, for a Gaussian random process with arbitrary correlation times 7,
as discussed in the Methods section. Alternatively, for a fully quantum-
mechanical dephasing model, C(t, ') = 1 Trp{B,(#)B;(#)p}} is the auto-
correlation function on the stationary state of the environment/bath pg,
which induces fluctuations in the qubit frequency via the bath operators
By(#). In this case, the time-local master equation is the result of tracing over
the bath degrees of freedom p(t) = Trp{pgs(t)}, and is valid in a second-
order cumulant expansion also discussed in the Methods section. Assuming
wide-sense stationarity, ie., the mean of the stochastic process is constant
and the auto-correlation function only depends on t' — ¢, we can introduce

the power spectral density (PSD) of the noise

oo
c(t—1t)= / 700‘21—: S(w) =1, (22)
Therefore, the time-dependent rate becomes
1 oo

Yoy =3 / do S(@)f (@, 1), @3)

where we have introduced the following modulation function

E i 24

fy(w, t)= Esmc (wt). (24)

It will be useful to define the symmetrized auto-correlation function and the
symmetrized PSD as C(t,t') = 1(C(t,¢) + C(t', 1)) and S(w) = 1(S(w)
+8(—w)), since for dephasing noise only the symmetric part of the auto-
correlation function and the symmetric part of the PSD influence the time
evolution, as shown in the Methods section.

As discussed in the previous sections, we focus on an effective
parametrization of the Hamiltonian and dissipation matrix that reduces
the search space. Considering the expression in Eq. (23), the dephasing
rate will depend on a certain number 7 of real-valued noise parameters
0, € ® = R" via the PSD Sy (w), where we have made explicit its
parametrization. Since the Hamiltonian of the qubit is very simple, and
only depends on the transition frequency w, that is known with a high
precision using spectroscopic methods, it need not be included in the
learning. Technically, this means that we can assume that the driving
used to initialize and measure the qubit is resonant with the transition
(see Fig. 1), and work in the rotating frame presented in the Methods
section. Likewise, we have only one possible jump operator L = o, such
that the learning can focus directly on the estimation 0 of the actual noise
parameters 0, which translate into the estimation of the dephasing rate
y(t) via Eq. (23). Therefore, LEQT becomes a non-linear minimization
problem for the cost function in Eq. (5). Before giving more details on this
problem, we discuss relevant properties of the dephasing quantum
dynamical map.

For a white-noise noise model with a vanishing correlation time 7. =0,
one has a flat PSD S(w) = ¢ and a constant dephasing rate y(t) = ¢/2. This
leads to an exponential decay of the coherences p, ; (m,)
=1(1+4 (=1)"e"/T>), where m, € {0, 1} correspond to the projective
measurements on |+), |—), respectively, and we have introduced a deco-
herence time T, = 2/c. If the real system is affected by white dephasing noise,
there is thus a single noise parameter to learn 0, = c, or, alternatively, the
real decoherence time 0, = T,,. We note that this procedure is in complete
agreement with the LQT based on the corresponding Lindblad master
equation in Eq. (2). On the other hand, for a time-correlated dephasing noise
with a structured PSD, the coherence decay will generally differ from the
above exponential law, with the exception of the long-time regime t;>> 7,
where p,; (m)~3(1+ (—1)™e™"/T>) and one finds an effective
decoherence time controlled by the static part of the PSD T, = 2/5(0). As ¢;
increases towards 7., the decay will no longer be a time-homogeneous
exponential, which can actually be a consequence of (but not a prerequisite
for) a non-Markovian quantum evolution. In this more general situation, we
will have more noise parameters 0, to learn.

Let us now connect to the formalism of filter functions'*******!"*-!7,
which appears naturally when considering the time evolution of the
coherences at any instant of time. This follows from the exact solution of the
time-local master equation in the rotating frame, which reads

(1+ (1™ ") =: p(m,), (25)

N | =

p?:i,x(mx) =
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Fig. 1 | Scheme for LEQT protocol of a dynamical dephasing map. In the case of
pure dephasing, the LEQT scheme reduces to a problem of Ramsey estimation. In the
QIP, the qubit is initialized in a single state in the equator of Bloch’s sphere p, , =
|+)(+| by a resonant driving inducing a 71/2 pulse on a reference state p, = |0)(0].
The qubit then evolves for different times t; : i € I, after which it is subjected to
another resonant 71/2 pulse, which effectively rotates to the Pauli measurement basis
x. As a consequence of the device dephasing noise with actual noise 0, parameters,
the m, € {0, 1} outcomes are collected as relative frequencies {f, ; (m,|0.)} which
will decay in time. This data can be collected by distributing the measurement shots
among pre-fixed evolution times, connecting to the frequentist estimation protocol.
Alternatively, in a Bayesian approach, one collects the data by successive ¢£-update
steps 0D, = {N, ; . (0,)}. In the lower half, we show the classical part of the
estimation, which starts by solving the time-local master equation for a particular

Covdp=> {liop)

parametrized power spectral density Sg(w) and filter function. This leads to the
theoretically predicted probabilities {p*"(m,|6)}. These probabilities and the rela-
tive frequencies are either fed into a log-likelihood cost function %'r; (0) that must be
minimized in order to obtain the frequentist estimate 6, or used in a Bayesian step to
update our prior knowledge of the noise parameters 7,(8|1D,), converging to the
final Bayesian estimate 0. In the frequentist approach, by calculating the covariance
matrix, we can estimate the precision and find the optimal measurement times,
which will depend on how many noise parameters we aim at estimating, and changes
with their specific values. In the Bayesian approach, knowledge about the noise
parameters is updated sequentially by selecting evolution times that are expected to
yield the greatest information gain at each step, thereby implementing feedback and
adaptive data acquisition from the quantum device.

where we have introduced the time integral of the decay rates

I(t) =2 / ; dt'y(t"), (26)

and simplified the notation by omitting the initial state and the measure-
ment basis, as they will be unique for the estimation of the dephasing map.
Using the Fourier transform in Eq. (22), this integral can be rewritten in
terms of the noise PSD as

o0 t
I(t) = / dw S(w)Fr(w,t), Fr(w,t) = / dt’f (w, 1), (27)
—00 0
where we have introduced a filter function that reads
t
Fr(w,t) = > na(@)- (28)
Note that, by making use of the nascent Dirac delta
- € an(*
n.(x) = p— sin (e ), (29)

where 77.(x) — 0(x) as e — 07, and f iooo dx 7.(x) = 1, one sees that in the
long-time limit € = 2/t — 0%, f.(w,t) & £ 8(w) becomes a Dirac delta
distribution, such that I'(f) = tS(0)/2. This agrees with the above coarse-
grained prediction for a decoherence time T, = 2/5(0). Therefore, physically,
the conditions for the long-time limit to be accurate is that t > 7.

In this article, we are not interested in this Markovian limit, as we
aim at estimating the time-local master equation that depends on the
full decay rate y(t), including situations in which non-Markovianity
becomes manifest. To quantify this, we note that the dephasing
quantum dynamical map

Sro(po) = (1= p(D)py + P(1)0 py 0., (30)
is non-Markovian when it is not CP-divisible. In Eq. (30), we have
introduced the following time-dependent probability for the occurrence of
phase-flip errors

p(t) = % (1—e®), (31)

Following'”, the degree of non-Markovianity of the quantum evolution can

be obtained by integrating over all times for which the rate of the time-local
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master equation is negative

LM@=/ﬁmwm—ﬂm. (32)

An alternatively measure of non-Markovianity is based on the trace distance
of two arbitrary initial states®'"*, which will decrease with time when there is
a flow of information from the system into the noisy environment. When
this information flows back, the trace distance increases, and the qubit can
recohere for a finite lapse of time, such that one gets a non-Markovian
quantum evolution. The instantaneous variation of trace distance is given by
o(t) = % D(@‘”E%(po), é”%(p{))), with D being the trace distance', and a
positive o(f) is thus a measure of non-Markovianity, which can be expressed
in terms of the time intervals in which the phase-flip error probability
decreases infinitesimally with time

dto(t) = —/ dt p(t).
a(t)>0 y(t)<0

Here, we have rewritten this measure in terms of the error probability of the
phase-flip channel of Eq. (31), which changes infinitesimally with
p(t) = p(t)e . Hence, the non-Markovianity condition translates into a
dynamical situation in which phase-flip errors do not increase monotonically
during the whole evolution. When the dephasing rate attains negative values,
the phase-flip error probability can decrease, such that the qubit momentarily
recoheres (see the orange lines in Fig. 1). In this simple case of pure dephasing
noise, we see that both measures of non-Markovianity in Egs. (32) and (33)
depend on the rate y(f) attaining negative values, and both are equal to 0 if y(f)
is always positive. We define and detect non-Markovianity in this case using
Egs. (32) and (33). However, it is important to note that these measures
provide sufficient, but not necessary, conditions for detecting all possible
forms of non-Markovian behavior. For instance, certain non-Markovian
dynamics may not yield an increase in trace distance.

Once these additional properties of the dephasing quantum dynamical
map have been discussed, we can move back to the estimation LEQT pro-
tocol of Eq. (7), and how it can be simplified even further. As noted above, in
contrast to the informationally-complete set of initial states an measure-
ments that must be considered for the general cost function of LéQT in Eq.
(5), we can work with a smaller number of configurations by noting that all
information of the dephasing map can be extracted by preparing a single
initial state p, = |[+) (4|, and measuring in a single basis M, (see Fig. 1).
Indeed, this combination of initial state and measurement basis yields the
expected value p?:i’x(mx) =11+ (=1)"™e ). Similarly, if we chose
po=1|+1){+il and M,, we would obtain pf}i‘i#y(my)
= %(1 + (=1)™eT®), which yields the same information. The rest of
combinations of initial states and measurement bases yield constant values
and do not provide any information about the decay rates.

As advanced in the introduction, we would like to know how many
snapshots |I,| are required, at which the system is measured after evolving
for {t;: i € I,} and, moreover, which are the optimal times of those
snapshots in terms of the specific details of the noise. We take here two
different routes: the frequentist and the Bayesian approach. In the fre-
quentist case, for pure dephasing we have the cost function

N rp = max

> (33)
PosPo

CRLO) =~ N, > fim,16)logp"(m,10).  (3)

which is greatly simplified with respect to the general case in Eq. (8), as we
only have a single initial state and a single measurement basis. Since we are
monitoring the coherence of the qubsit, this cost function corresponds to a
Ramsey-type estimator, where f(016,) = N, /N, (f(116,) = N, /N,) is
the ratio of the number of outcomes observed N; (N;; = N; — Nj) to the
total of N; shots collected at the instant of time ;, when measuring the system
with the POVM element M,y (M,;). Our notation remarks that these
relative frequencies carry information about the real noise parameters 6, we

aim at estimating. In addition, the estimator depends on p(,|6) shown in
Egs. (25)—(26), which stand for the probabilities obtained by solving the
time-local dephasing master equation of Eq. (20), where we make explicit
the dependence on the parametrized noise. Minimizing detX; we can
determine the optimal measurement times of the estimator. For the
Bayesian approach, at each ¢ > 0 Bayesian step, we measure the system
enlarging the data set sequentially D,_,—~D, =D, , uéD),, where
0D, c D ={N;, .} contains a number of measurement outcomes
|6N,| that is a fraction of the total Nihot- These outcomes will be labelled as
0D, = {N; , «m_} Ateachstep, we maximize the information gain of Eq.
Aoty
(19) to determine the optimal measurement time. As shown in Fig. 1 the
scheme for LEQT in the case of pure dephasing can be divided into the
following steps:
a) Quantum experiment:
1. Initialize the reference state p, = |0)(0] (see Fig. 1).
2. Prepare p;, = |+)(+]| by a resonant 7/2 pulse.
3. Let the qubit evolve under the pure dephasing for different evolution
times t;.
4. Apply a second resonant 71/2 pulse, rotating the qubit to the Pauli-X
measurement basis.
5. Collect the outcomes m, € {0, 1} and compute the fre-

quencies {f, ;,, }.

b) Classical processing and frequentist approach:

1. Solve the time-local master equation with a parametrized power
spectral density Sg(w) and a filter function, yielding the predicted
probabilities {p., ; , (6)}.

2. From the quantum experiment we have a set of frequencies {f, ; ,, } at
different times t;. The predicted probabilities and measured relative
frequencies are used in a log-likelihood cost function, which is
minimized to estimate noise parameters 6.

3. By calculating the covariance matrix, the precision of the estimation is
determined.

¢) Classical processing and Bayesian approach:

1. Solve the time-local master equation with a parametrized power
spectral density Sp(w) and a filter function, yielding the predicted
probabilities {p +,,._mx(ﬂ)}.

2. We have some prior knowledge of the parameters 6, which is repre-
sented by a prior probability distribution.

3. At each step, evolution time f; is chosen to maximize the information
gain of the parameters. A new quantum experiment is performed with
this new evolution time.

4. After each measurement or set of measurements the relative fre-
quencies are used to update the prior distribution of the parameters.

We present below a detailed comparison of the two approaches, fre-
quentist and Bayesian, determining the regimes in which each of them is
better than the other. For the Bayesian protocol design, we have used the
Python package Qinfer'”, which numerically implements the operations
needed by using a sequential Monte Carlo algorithm for the updates.

Let us study some dephasing dynamics in which we can apply the two
approaches we have just introduced, and make a comparative study of their
performance when learning parametrized dephasing maps with time-
correlated noise. We study two different dephasing models: a Markovian
semi-classical dephasing and a non-Markovian quantum dephasing. These
models are selected for several reasons. The semi-classical model is a well-
established generalization of purely Lindbladian evolution, and in fact,
contains the Lindbladian regime as a limiting case. This allows us to connect
with previous results from LQT and Ramsey interferometry in the context of
quantum sensing and quantum clocks. On the other hand, the non-
Markovian case represents the simplest possible generalization of the
Markovian scenario by introducing a shifted Lorentzian PSD, making it an
ideal testbed for L¢QT. Furthermore, it has experimental relevance, as we
can use a laser-cooled vibrational mode in trapped ions to obtain a fully-
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tunable implementation of this non-Markovian noise. These two dephasing
models offer both classical and quantum noise characterization through the
symmetry of the PSD, and they provide a versatile platform to demon-
strate LEQT.

Regarding the choice between frequentist and Bayesian inference, the
majority of quantum technologies traditionally use frequentist approaches.
However, Bayesian inference is becoming increasingly relevant, particularly
in situations where the number of shots is limited and clock cycle times are
large, such as in trapped-ion platforms. As we show below, Bayesian
methods offer advantages in scenarios where physical priors are available
and can provide better estimates in non-Markovian cases, where the
dynamics are more complex.

For each one of the cases presented below, we have a PSD with some
real parameters 0, from which we can determine the time-dependent
measurement probabilities pI-(m,|6,). From these probabilities, we
numerically take the necessary samples to simulate the experiment by using
the SciPy implementation of a binomial random variable'”.

Markovian semi-classical dephasing

We now apply both estimation techniques for the LEQT of a dephasing
quantum dynamical map that goes beyond the Markovian Lindblad
assumptions. In particular, we consider a time-correlated frequency noise
dw(t) that is described by an Ornstein-Uhlenbeck (OU) random
process'*"'**. This process has an underlying multi-variate Gaussian joint
PDF, and incorporates a correlation time 7. > 0 above which the correlations
between consecutive values of the process become very small. In fact,
beyond the relaxation window ¢, ¢ > 7, the correlations show an expo-
nential decay

Ct—t)= %e_ o (35)

where ¢ > 0 is a so-called diffusion constant. Since this correlations only
depend on the time differences, the process is wide-sense stationary.
Moreover, on the basis of its Gaussian joint PDF, it can be shown that the
process is indeed strictly stationary. Being Gaussian, all the information is
thus contained in its two-point functions or, alternatively, in its PSD

2
CT
S(w) = ——<—
@ 1+ (wt,)°

(36)
which has a Lorentzian shape. This Gaussian process then leads to an exact
time-local master equation for the dephasing of the qubit in Eq. (20) with a
time-dependent decay rate

Wt) = 25(0)(1 _ e—é). (37)

In the long-time limit ¢ >> 7., one recovers a constant decay rate
y(t) ~ S(0)/4 = ct?/4, which connects to our previous discussion of the
effective exponential decay of the Ramsey signal pil(m,)~
(1+(—1)"™e™"/T>)/2 and the decoherence time T, = 2/cr?. On the
other hand, for shorter time scales, we see the effects of the noise memory
through a time-inhomogeneous evolution of the coherences that goes
beyond a Lindbladian description. The time-dependent decay rate is always
positive, such that the two measures of non-Markovianity in Egs. (32)-(33)
vanish exactly. The pure dephasing quantum dynamical map of a qubit
subjected to OU frequency noise is thus Markovian albeit not Lindbladian.

From the perspective of LQT, we have two parameters to learn
0=(c,1)€®= Ri, which fully parametrize the PSD, the decay rate or,
alternatively, the Ramsey attenuation factor

I(t) = %S(O)(t - Tc(l - e*i)). (38)
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Fig. 2 | Gradient descent for OU dephasing LQT. Contour plot of the Ramsey cost
function C?}i(ﬂ) of Eq. (34) as a function of the noise parameters (T, 7.), where we recall
that T, = 2/ct? plays the role of an effective decoherence time in the long-time limit.
We choose two evolution times and, for illustration purposes, fix them at t; = 7cy, t, =
27, fixing the OU diffusion constant such that T,,/7., = 1. We distribute Ny, =

2 x 10’ shots equally per time step. The gradient descent of this convex problem con-
verges towards the global minimum, and is marked with a red cross at 75/ T, = 0.95 and
T/ Tew = 1.07, lying close to the real noise parameters 6 — 0.

a. Frequentzst Ramsey estimators. We can now evaluate the L¢QT cost
function CTL(G) in Eq. (34) by substituting the attenuation factor in Eq. (38) in
the likelihood function p/*(m,|0) = (1 + (—1)"™e~"")) /2 after a certain
set of evolution times {t;,i € I,}, and the relative frequencies for the mea-
surement outcomes f;(m, |6,). For a Lindbladian dynamics, a single mea-
suring time ¢, would suffice for the estimation”, which can actually be solved
for analytically in the present pure dephasing context, as discussed in Sec. I of
the Supplementary Material. For the OU dephasing, this is no longer the case,
and we actually need at least two times t, £,. In order to assess the performance
of the frequentist minimization problem in Eq. (9) under shot noise, we
numerically generate the relative frequencies fl(mx |6 *),fz(mx 16,) at two
instants of time by sampling the probability distribution with the actual OU
parameters 0, = (¢, Tcx) @ numMber of times Ny, = N; + N,. In the following,
rather than learning (c.., c4), we will focus on two noise parameters with units
of time (Tay, Tex), where we recall that T,, = 2/c, 72, is an effective deco-
herence time in the long- tlrne limit. In Fig. 2, we present a contour plot of this
two-time cost function C%L(G) which is actually convex and allows for a neat
visualization of its global minimum. We also depict with a red cross the result
of a gradient-descent minimization, where one can see that the estimates
0. = (T,,7.) are close to the real noise parameters. The imprecision of the
estimate is a result of the shot noise, which we now quantify.

In order to find the optimal evolution times t;, ¢, that maximize the
precision of our estimates, we can minimize the covariance in Eq. (13)
which, in turn, requires maximizing the Fisher information matrix in Eq.
(12). By Taylor expanding the cost function, we can actually find a linear
relation between the estimate difference 60 = (9 — 0., and the differences
between the parametrized probabilities and the relative frequencies
6f = pit(m,|0) — f,(m,6,), namely

_ T, (5)(e''V—1) T, () —1)

) Tz _ 1 Sinh I(7,) Sinh T(1,) 5f 1), 39)
8t | AN | @ -1 I, (1)) 1) of
¢ b T ~ STy :

where A" = F/Tz(tl)l";c(tz) — F/T:(tl)F/Tz(tz), and we have introduced a
shorthand notation for the partial derivatives I’.(¢;) = oI(¢t;)/d7.,
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Fig. 3 | Asymptotic covariance matrix for OU dephasing. We represent

det (Zy(ty, tz))l/ 2 asa function of the t, and t, measurement times selected. For f, = t,
the determinant diverges, since it is not possible to determine the parameters by just
measuring at a single time. The true parameters are 7., = T5,/2 and the number of
shots is N; = N, = 5 - 10°. The optimal times that minimize the determinant are
indicated with a white cross, t; = 0.56T5, t, = 1.99T,,. The determinant increases

rapidly when moving away from this minimum. Note the color bar scale is loga-
rithmic. The plot is symmetric with respect to the line t; = t,, therefore we just
represent the part t, > t;.

Tc*/TQ*

Fig. 4 | Optimal times for OU dephasing LEQT. We represent (t; o, £5 o) =
argmin{det(2(t,, t,))} as a function of the ratio of the real noise parameters 7.,/ T5.
In the regime where 7., < T5., we find that £, = 0.8T5, and ¢; = 0. The optimal time
of this measurement lies very close to the Lindbladian result t = 0.797T,, (gray
dashed line) found when there is no time correlation and we have a single parameter
T, which is an exact analytical result discussed in Sec. I of the Supplementary
Material.

I'; (t;) = OI(t;)/0T,. The first thing one notices is that, fixing £, = t;, the
factor 4" = 0, and the difference between the estimation and the true value
of the parameters diverges, signaling the fact that one cannot learn two noise
parameters using a Ramsey estimator with a single instant of time. The
second result one finds is that, in the asymptotic limit N; — oo, the estimate
differences will follow a bi-variate normal distribution. This follows from the
fact that Eq. (39) is a linear combination of the differences between the finite
frequencies and the binomial probabilities, which are known to follow a

normal distribution N (07 diag <a%l , a}z )) with binomial variances a}
defined in Eq. (15). Therefore, the frequentist estimates will also be normally
distributed 60 ~ N (0,%;) according to

g 0
Zé(th tz) = Ma(tlv tz)( ' 2 >M3(t11 tz)»

0 7,
where M(t,, t,) is the matrix in Eq. (39). A more detailed derivation of the
relationship between shot noise and the uncertainty in estimation, as well as
the asymptotic covariance matrix, is provided in the Methods section. From
this perspective, the aforementioned divergence for t; = t, is a consequence

of the singular nature of this matrix, which cannot be thus inverted.

A measure of the imprecision of the estimation is then obtained from
det(Z4(ty, 1,)) = (det My)0? 02 o 1/N,N; = /N, (N — N,)
which, in this bi-variate case, can be related to the area enclosed by a
covariance ellipse. We thus clearly see that the maximum precision will be
obtained when N; = N, = Ng,o/2. Turning to the optimal measurement
times, we can now numerically minimize the determinant of the asymptotic
covariance matrix

(40)

{t; o) = argmin{det 2, ({t}}) }, (41)
finding the two optimal values at which the signal shows the highest
sensitivity to changes in the OU noise (see Fig. 3). The optimal times
obtained in this way are depicted in Fig. 4 as a function of the noise
correlation time. In the limit where this correlation time is much smaller
than the effective decoherence time 7., < T4, the signal only carries
important information about the noise for times that are much larger
than the correlation time. Hence, we are in the long-time limit where the
decay rate is constant y(f) =~ 1/2T, and one expects to find agreement with
a purely Lindbladian dephasing noise. As discussed in Sec. I of the
Supplementary Material, the LQT for pure dephasing requires a single
measuring time, and can be analytically found by minimizing the
standard deviation of the estimated noise parameter. This solution yields
an optimal time fop = 0.797T,,, which is actually very close to the
intercept of the curve of £, . Shown in Fig. 4. In this long-time regime, we
find t; op = 0 indicating that measurements at time £, o, Will be mainly
used to determine parameter T, while those at #; o = 0 contribute to
determine the much smaller ..

In the more general case in which the time correlation of the OU noise
yields important memory effects, the measurement times have to be adapted
to specific optimal values, which are in general larger than the purely
Lindbladian limit as shown in Fig. 4. Since these optimal times depend on
the parameters we aim at learning, it is not straightforward to devise a
practical strategy to minimise the imprecision of the frequentist estimates.
In the pure Lindbladian case, one may foresee that the experimentalist will
have an accurate prior knowledge of the T, time, such that the measure-
ments can all be implemented close to the predicted optimal time. On the
other hand, for the OU noise, one has the additional noise correlation time
7., which is related to deviations from the time-homogeneous exponential
decay of the coherences and is not typically characterised experimentally.
The frequentist procedure to operate at the optimal regime of estimation
would then need to distribute the total Ny, in smaller groups that are
applied in sequence, each time shifting the measurement times to try to get
to the optimal point. One can foresee that this procedure will not be optimal,
as one will loose many measurements along the way and, moreover, not
scalable to other situations in which one aims at learning more noise
parameters also optimally.

b. Bayesian Ramsey estimators. Let us now describe how a Bayesian
inference for OU dephasing LEQT would proceed, which will provide an
experimental procedure to operate at the optimal estimation times. We start
by commenting on the fully-uncorrelated Lindbladian limit discussed in
Sec. I of the Supplementary Material, where the optimization of the
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measurement time for each Bayesian step in Eq. (19) can also be solved
analytically. Considering that the prior probability distribution 7,(y) for our
knowledge about the decay rate at the ¢-th step is Gaussian, we can focus on
how its mean and variance change as one takes the next Bayesian step. In
Sec. T of the Supplementary Material, we show that, minimizing the Bayesian
variance of the next step, one finds optimal measurement times that agree
with the above frequentist prediction, albeit for the knowledge of the decay
rate that we actually have at each particular step t, = 0.797/2, or, alter-
natively, of the decoherence time T, ,. This result is very encouraging, as the
experimentalist may only have a crude guess of this value, but it gets
automatically updated towards the optimal regime. This motivates an
extension to time-correlated dephasing such as the OU noise.

For the OU dephasing, we have two parameters to learn, and we
can maximize the Kullback-Leibler divergence of Eq. (19) to obtain the
subsequent optimal time t, for the next Ramsey measurement(s), and
the corresponding extension of the data set D, ;—>d0D,
=D, ;UdD,_;. We then proceed by measuring at this time, updating
the prior, and starting the optimization step all over again to finally find
the estimates in Eq. (17) 0 = (Ters T, ,). As shown in Fig. 5, as one
collects more and more data, the Bayesian measurement times cluster at
two single times, and tend to alternate between them. Remarkably,
these times are the optimal £, o and £, op¢ predictions of the frequentist
approach shown in Fig. 4. We can see how the Bayesian approach
automatically finds the optimal measurement setting to learn a time-
correlated dephasing noise.

Let us now present a detailed comparison of the precision of the fre-
quentist and Bayesian approaches. For the frequentist approach, we can
obtain the expected covariance of the estimator Cov(fy) by performing
several runs, and computing the covariance matrix of the results. We
emphasise that this is not the asymptotic 2 discussed previously, and does
not require a very large number of measurement shots. For the Bayesian
approach we obtain a posterior probability distribution after € steps, 7,(6),
and we can directly compute the covariance matrix X, of this posterior
distribution. A good measure of the uncertainty of each one of the
approaches can be obtained by taking the determinant of the corresponding
covariance matrix. For a Gaussian distribution, this quantity det X gives us
the elliptical area associated to the bi-variate Gaussian covariance, and we
can define an average radius R = +/det £/7. In order for this to scale as
1/4/Ng. and that it has the same units as the standard deviation, we will
use the square root of this radius det %'/%. Therefore, we will compare
det '/* for both frequentist and Bayesian approaches by taking the ratio of
the determinants,

det( Cov(f
(0 ) (@)

T, =
ou detX 7 ’

with éF,opt the frequentist estimator taking measurements at optimal times
and considering for both approaches the same number of total measure-
ments Ny, This ratio is represented in Fig. 6 as a function of 7 4/ T5. As we
can see, the Bayesian approach is better for small number of measurements,
since it has some prior knowledge of the parameters. As we make more
measurements and the frequentist estimator keeps measuring at optimal
times we get to the opposite situation. Finally, in the limit of big Ny, the
Bayesian approach takes also most measurements at these optimal times
and the ratio saturates to 7oy = 1, indicating that both approaches offer a
similar precision. Let us emphasize, however, that the frequentist approach
will not operate in practice at the optimal times, as these depend on the noise
parameters one aims at estimating. It is also interesting to note that, as the
correlation time of the noise increases, the region where the Bayesian
strategy overcomes the frequentist one grows also in terms of the required
number of shots. In regimes in which the time correlations are much larger
than the effective decoherence time, the Bayesian approach will always be
preferred unless one can perform a prohibitively-large number of
measurements.
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Fig. 5 | Bayesian optimal measurement time at each step. We consider OU noise
and set 7c, = T5,/2. The prior of the parameters is a continuous uniform distribution
with T, € [T54/3,3T24], T € [Tcx/3, 374 ]. At each Bayesian step, we increase the data
set with |61D,| = 50 new outcomes, which are used to compute the Bayesian update.
The total number of measurements after 500 steps is 500 x 50 = 25000. In the
Bayesian steps at the beginning, we see that the evolution times lie around ¢ ~ T5,.
Later on, the algorithm tends to alternate between two times, which correspond to
the optimal times £, o = 0.56 Tp, £ opt = 1.99T,4 in the case of 7.y = T4/2. As the
number of steps increases and and the posterior gets closer to the true values of 7.,
and T, the Bayesian algorithm tends to select measurement times which are closer
to the optimal times.
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Fig. 6 | Comparison of frequentist and Bayesian approaches for OU noise. The
ratio of Eq. (42) computed for different parameter values 7., and total number of
shots Ngpor. 5000 frequentist runs were done to estimate det Cov(@Faop‘), while 200
Bayesian runs were done to estimate detX,  for each point (7¢+> Nshot)- In the
Bayesian approach 100 shots were taken at each step and the prior is a continuous
uniform distribution with T, € [T24/3, 3T54], T € [Tcx/3, 37c4 ). Analogously, for the
least-squares minimization algorithm used in the frequentist approach (trust-region
reflective algorithm), we set the same parameter bounds as the ones of the uniform
distribution.

Non-Markovian quantum dephasing

Let us now move on to the discussion of LEQT for a non-Markovian
dephasing dynamics. In the previous section, we have shown that a semi-
classical dephasing with OU noise, an archetype for time-correlated
Gaussian random processes, yields a dephasing map that, although
departing from the time-homogeneous Lindbladian case, does not fall under
the class of non-Markovian quantum dynamical maps. We have shown how

npj Quantum Information | (2025)11:96

11


www.nature.com/npjqi

https://doi.org/10.1038/s41534-025-01044-7

Article

both the frequentist and Bayesian approaches can learn the time-local
master equation, which is parametrized in terms of an effective decoherence
time T, and a correlation time 7.. In this section, we focus on a quantum-
mechanical dephasing noise that can actually lead to non-Markovianity in
the qubit evolution, and see how the degree of non-Markovianity affects the
precision of both the frequentist and LEQT. We consider an apparently mild
modification of the noise PSD with respect to the OU case in Eq. (36). In
particular, we use

K

S(w) = 4¢; (@ + AC)Z n (K/2)2 s

(43)

which is a Lorentzian of width x centered around — A, and reaching a
maximum of 16¢2 /x. We note that for A = 0, we recover the previous OU
case (36) with 7. =2/kand c = 4g§1 k. On the other hand, for A, # 0, this PSD
is not an even function S(w) # S(— w), and the associated frequency noise
cannot arise from a semi-classical stochastic model™. Instead, this
particular PSD can be deduced from a quantum-mechanical dephasing
model as discussed in the Methods section, and applied to a qubit coupled to
a dissipative bosonic mode.In the context of superconducting circuits'**, A,
is the detuning of a bosonic microwave resonator with respect to the
frequency of an external driving, which is considered to be resonant with the
qubit, such that A. = w. — w,. In addition, g is a qubit-resonator cross-Kerr
coupling that leads to a bosonic enhancement g2 = gn, where 7 is the
average bosonic occupation of the driven resonator, and « is the rate of
spontaneous emission/loss of photons into the electromagnetic environ-
ment. We note that a similar dynamics can be engineered in a two-ion
crystal, in analogy t0'?°, such that one of the ions encodes the qubit in a pair
of ground state/metastable levels, while the other one is continuously
Doppler cooled via a laser that is red-detuned with respect to a dipole-
allowed transition. This laser then drives the carrier and motional sidebands,
and effectively laser cools the common vibrational modes, one of which will
play the role of the above dissipative bosonic mode, such that the above w,
will now be its vibrational frequency. The role of the above « is then played
by the laser cooling rate, and the phonon population in the steady state 7
depends on the difference of laser cooling and heating processes'’, which
can be controlled by the Rabi frequency and detuning of the laser that drives
the dipole-allowed transition. The dissipative phonons will then act as an
effective Lorentzian bath for the qubits'*>'*”'**, We consider the qubit to be
subjected to a far-detuned sideband coupling, which induces a second-order
cross-Kerr coupling of strength g describing a phonon-dependent ac-Stark
shift on the qubit levels.

In any of the two architectures discussed, when the coupling between
the bosonic mode and the qubit is weaker than the dissipative rate g, <x,
one can truncate the cumulant expansion of a time-convolutionless master
equation of the qubit at second order such that, after tracing over the driven-
dissipative mode in its stationary state, one arrives at a time-local dephasing
master equation of the form given in Eq. (20). This master equation will be
controlled by an auto-correlation function for the bath operator
B(t) = 2g(a’a — n), following the notation used below Eq. (21) and in the
Methods section. In particular, making use of the quantum regression
theorem'”, this auto-correlation can be expressed as

C(t _ t’) — 4g§e—g\t—ﬂe—mc(t—t’)7 (44)
which coincides with the OU auto-correlation function in Eq. (35) when A
= 0. Being wide-sense stationary, one can Fourier transform this function as
shown in Eq. (22), leading to the displaced Lorentzian PSD in Eq. (43).
Following Eq. (23), one can obtain the following time-dependent decay rate

y(t) = %S(O) (1 —e (cos At + Zic sin Act)) . (45)

In comparison to Eq. (37), this decay rate presents additional oscillatory
terms for A. # 0 that will play an important role for the non-Markovianity of

the quantum dynamical map. The attenuation factor that controls the decay
of the coherence is

(V) <t L 208/0° ~1

2
— +Ze 2 cos (1) |, 46
2 \"raagr e TR )> o

where we have introduced ¢(t) = A_t — 2 arctan 28

Recalling that we can assign a correlation time to this noise by . =2/x,
one would expect to recover a Markovian Lindbladian description for ¢ > ...
In this limit, the term linear in ¢ in Eq. (46) is the dominant one, which leads
to a time-homogeneous exponential decay of the Ramsey probabilities
pit(m,|0) ~ (1 + (—1)"e~"/T2) /2 with an associated decoherence time
T, =2/800) = ((x/ 2 + A%)/2g%k. As in the OU case, for shorter times,
the memory effects will start playing a bigger role in the qubit dynamics,
such that the Ramsey decay is no longer a time-homogeneous exponential.
Moreover, in this particular case, these memory effects can give rise to a non-
Markovianity that can be understood as a backflow of information from the
environment into the system. According to Eq. (32) or (33), non-
Markovianity occurs when the decay rate takes negative values y(t) < 0.
This can only happen if the second contribution in Eq. (45) dominates over
the first one, which cannot happen if A, = 0. Since this contribution is
suppressed by e "%, we will need the frequency of the oscillations A, to be
sufficiently large in comparison to «, such that one can get a non-vanishing
degree of non-Markovianity. In Fig. 7, we depict the measure of non-
Markovianity of Eq. (32) as a function of A. and 7. = 2/x. We see that the
parameter regime A. > 1.82« (white dashed line) is where y(#) can become
negative at some time during the evolution, leading to larger non-
Markovianity as both A, and 7, are further increased.

Let us now discuss the statistical inference for the LEQT of this non-
Markovian dephasing map, and compare the frequentist and Bayesian
approaches to the statistical estimation.

a. Frequentist Ramsey estimators. As in the OU case, we need to
minimize CP (6) in Eq. (34), where the likelihood function p™(m, |6) =
(14 (=1)"e ") /2 now depends on the new attenuation factor in Eq.
(46). Since there are three noise parameters 8, = (g2, ,x,,A,) € ®@ = R?,
we shall at least need to measure at three different times. To assess the
performance of the frequentist approach under shot noise, we numerically
generate the relative frequencies f,(m, |0,), f,(m, 10,),f;(m, |0,) at these
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Fig. 7 | Non-Markovianity measure for the quantum dephasing map. Non-
Markovianity measure of Eq. (32) for different values of 7, = 2/x and A.. The dashed
line signals the limit between the Markovian and the non-Markovian regions and
corresponds to the equation A, = 1.82«. The non-Markovian region is located in the
upper right corner.
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times by sampling the probability distribution with the real noise parameters
0, a number of times Ng,ox = N; + N, + Ns. In order to find the three
optimal times, we minimize the determinant of the covariance matrix in Eq.
(41), which will have an similar expression as Eq. (40), but now expressed in
terms of 3 x 3 matrices for the underlying trivariate normal distribution.
Since we are optimizing f;, t, and t3;, one may wonder if we also could
improve the estimation by redistributing the total number of measurements
differently at each of these times. However, according to our prescription in
which the imprecision is quantified by the long-run Gaussian PDF,
which defines an elliptical volume in this case, one gets
det Z5(* 1 opts t2,0pts 13,0pt) ¢ 1/N1N,N;. Therefore, the number of mea-
surements must be equally distributed between the three different times N;
= NZ = N3 = Nshot/3-

The minimization in Eq. (41) then yields the optimal times {£; op> £2,0pt>
t3,0pt} Shown in Fig. 8, which have been represented as a function of 7.,/ T
for a fixed value of A.. The non-zero value of the later is responsible for the
fact that, for 7., > 0.73T.,, we cross the red-dashed line and enter a non-
Markovian regime in which the effective dephasing dynamics is no longer
CP-divisible. In this non—Ma{kovian regime, the optimal times tend to be
close to the local maxima of f,(mm,6, ), providing a large amount of infor-
mation about the dephasing noise. Conversely, deep in the Markovian
regime 7., << Ty, it suffices to measure at t3 55 = 0.797T5, in order to
determine T>,, in agreement with the analytical Lindblad result, while t; o
and , ¢ tend to zero and would be used to determine the two other noise
parameters.

b. Bayesian Ramsey estimators. Let us now move to the Bayesian
approach, where we have some prior knowledge as shown in Eq. (16) of the
parameters 0 = (g2, x, A.) that gets updated at each Bayesian step t, by
enlarging the data set with §1D,. Minimizing the relative entropy between
the prior and the posterior in Eq. (19), we obtain the subsequent evolution
time #,, and update our knowledge about the noise parameters in the best
possible way. As shown in Fig. 9, the Bayesian procedure starts by using
evolution update times that are scattered in a broad range of values. How-
ever, as the number of iterations increases and we gain more knowledge,
they tend to cluster around three well-defined times. In fact, as shown by the
corresponding dashed lines, these times coincide with the optimal mea-
surement times of the frequentist approach in Fig. 8. Therefore, if we start a
Bayesian experiment with some prior, and we let the experiment run for
sufficiently long number of steps, we will learn the optimal times
automatically.

In order to compare the precision of the frequentist and Bayesian
approaches, we proceed in analogy to the OU noise by looking for a para-
meter that captures the relative precision of the two approaches in Eq. (42).
We now have to consider that the determinant of the trivariate Gaussian
covariance detX is a volume, and we can define an average radius as
R = /[3]det2/(47/3). We can quantify the precision by taking the square
root of this radius, which scales like a standard deviation. Altogether, the
relative precision of the frequentist and Bayesian approaches is defined by
the ratio

o| det (Cov(@F‘opt))
—dz,

M = (47)

‘max

Here, ép opt 18 the frequentist estimator taking measurements at the optimal
times, and we consider the same number of total measurements Ny, for
both approaches. This ratio is represented in Fig. 10 for Ny,o = 2 x 10,
which is still far from the asymptotic regime of large Ny, where one would
obtain ryy = 1 in similarity to the results found for the OU noise in Fig. 6.
Instead of exploring how this ratio changes with the number of measure-
ment shots, we are here interested in understanding how the degree of non-
Markovianity can affect the performance of the two estimation strategies.
We thus set Ny,o; =2 x 10%, since the variance is already good enough but the
cost in terms of number of measurements is still not too big, and plot the
precision ratio as a function of the real noise parameters. As we can see in
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Fig. 8 | Optimal times for quantum dephasing LEQT. We represent the three
optimal times (¢, g, £ opts 13 0pt) = Argmin{det(Zy(t,, t,, t;))} as a function of the
ratio of the real noise parameters 7.,/ T5., setting A, = 5/T5,. The vertical red
dashed line separates the Markovian regime (left) from the non-Markovian one
(right). On the Markovian regime, as 7, << T, we see that the #, ¢, in blue and
orange tend to zero, while #; in green tends to the optimal value of the pure Lind-
bladian case t3 = 0.797T,,. On the other hand, as 7., increases and memory effects
become more relevant, the three optimal times start to depart from each other. In the
non-Markovian regime, the optimal time £, o is closer to £3 o than it is to #; opt.
Moreover, this optimal t; o, time starts to decrease as 7., goes deep into the non-
Markovian regime.
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Fig. 9 | Bayesian optimal measurement time at each step. We consider the non-
Markovian quantum dephasing with noise parameters 7. , = T4/2 and A., = 5/T5,.
We consider as initial prior a continuous uniform distribution with
g% €lg2,/3,3¢2,], k € [3x,,x, /3], A € [3A.,,A.,/3]. At each Bayesian step, we
increase the data set with |[§1D,| = 50 new outcomes. As the Bayesian protocol
proceeds, we see that the Bayesian update times cluster in three groups of data, which
lie around the optimal times #1 opt, £2,0pt> £3,0pt Of the frequentist approach, which are
represented by dashed lines.

Fig. 10, the blue region represents a regime in which the frequentist
approach is slightly better than the Bayesian one, and coincides with the
regime of Markovian dephasing that is delimited by the dashed white line.
The continuous white line marks the ratio contour line with g = 1, and
thus delimits the part of the blue region in which the frequentist approach
with optimal times is preferable. In the green and yellow areas, which
coincide with the non-Markovian regime, the Bayesian approach becomes
preferable and the advantage can actually be quite significant. As we go
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Fig. 10 | Ratio between determinants of covariance matrices of frequentist and
Bayesian approaches. The ratio of Eq. (47) computed for different parameter values
7., and Ay, and a fixed number of total measurements Ny, = 2 - 10*. The dashed
white line separates the Markovian from the non-Markovian regime, with the non-
Markovian region located in the upper right corner. The continuous white line
indicates the level where the ratio equals 1. 5000 frequentist runs were done to
estimate det Cov(éF‘opt), while 30 Bayesian runs were done to estimate detX,  for
each point (7.4, Acy). In the Bayesian approach 100 shots were taken at each step and
the prior is a continuous uniform distribution with 6 € [0,/3, 30, ]. Analogously, for
the least-squares minimization used in the frequentist approach (trust-region
reflective algorithm), we set the same parameter bounds as the ones of the uniform
distribution.
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deeper in the non-Markovian regime, the oscillating term in Eq. (46)
becomes bigger and the decay of the coherence exhibits an increasing
number of local maxima. These local maxima represent times that provide a
significant amount of information in terms of the Kullback-Leibler
divergence of Eq. (19). Therefore, the presence of more local maxima in
the non-Markovian regime makes it easier for the Bayesian method to, even
if the prior information is minimal, select a time as useful as the
asymptotically optimal times.

It is also useful to quantify the advantage of one estimator with respect
to the other in terms of number of measurements that is required to reach a
target precision, which amounts to reaching the same value of the above
covariance determinant. The values shown for the ratio of the determinants
in Fig. 10 can be converted into the ratio of number of measurements by
assuming that both covariance determinants in Eq. (47) scale as 1//N g,
even in the non-asymptotic regime. Although there can be corrections to
this scaling, this can give us in most cases an idea of the proportion of
measurement shots one can save by using the best estimator. With this
assumption, we get N r/Ngop & ry> With mav the ratio of the
determinants of two different approaches. Thus, if for instance ryy = 1.5, we
obtain that Ny, ot 5/Nghot s = 2.25. Therefore, we get more than a 2x reduction
in the number of measurements with the Bayesian approach in comparison
to the frequentist one to reach the same precision. Going back to the values
of Fig. 10, we see that the Bayesian approach can result in a considerable
improvement as one goes deep in the non-Markovian limit. Before closing
this subsection, it is worth recalling once more that, in practice, the fre-
quentist estimation will never be performed at the three optimal times, and
the advantage of the Bayesian approach can be even bigger. In Sec. II of the
Supplementary Material, we present a detailed comparison of these esti-
mators with another one in which the shots are evenly distributed between
the measurements after evolution times that cover uniformly the whole time
interval T. As discussed in Sec. II of the Supplementary Material, the
Bayesian approach is preferable for most of the parameter values, and can
again show a big advantage as one enters into the non-Markovian regime.

Discussion

We have presented LEQT, a new tool designed to characterize non-
Markovian dephasing noise in QIPs, building upon the established frame-
work of Lindblad quantum tomography. LEQT extends the applicability of
Lindblad learning to scenarios where temporal correlations and non-
Markovian dynamics play a significant role. In particular, it allows us to
extend the characterization of the generators of quantum dynamical maps
that go beyond the time-homogeneous Lindblad limit, which connect to a
time-local master equation that can display negative decay rates in certain
time intervals and, thus, strictly non-Markovian quantum evolutions.
Through a detailed comparative study, both frequentist and Bayesian
approaches to L#QT are presented, offering insights into the accuracy and
precision of noise estimation under different conditions.

By focusing on the time-correlated dephasing quantum dynamical
map of a single qubit, we show that LEQT can be formally expressed as a
parameter estimation process, which simplifies the most general learning
scheme to a single initial state and a single measurement basis. In particular,
the problem reduces to a time-correlated Ramsey estimator for a para-
metrized decay rate, which depends on the noise parameters via a filtered
power spectral density of the noise. In the frequentist approach, the focus lies
on optimizing measurement times to reduce the number of necessary
measurements while minimizing error in parameter estimation. By lever-
aging statistical inference techniques, the frequentist approach provides
valuable insights into the efficiency and effectiveness of LEQT, particularly in
scenarios with varying degrees of temporal correlations and non-
Markovianity. Conversely, the Bayesian approach offers a more dynamic
and adaptive framework, allowing for the incorporation of prior knowledge
and iterative updates to refine noise estimates over time.

We have compared the performance of both approaches for two dif-
ferent dephasing quantum dynamical maps, either for a semi-classical or for
a quantum-mechanical noise model. In both cases, the microscopically-
motivated parametrization allows one to interpolate between a fully Mar-
kovian Lindblad limit, for which we derive analytical solutions for the
optimal estimation, and a time-correlated and even non-Markovian regime
which require a different distribution of the optimal and Bayesian mea-
suring times. Interestingly, in the quantum-mechanical dephasing model,
which can be obtained from a microscopic model of a qubit that is coupled
to a dissipative bosonic mode in both superconducting-circuit and trapped-
ion architectures, the best of the two approaches depends on whether we are
in the Markovian or the non-Markovian regime. The Bayesian approach
yields much better results in the non-Markovian regime, showing that it is
able to automatically adapt to the particularities of the non-Markovian
evolution to make much better estimations with a limited number of shots.
Moreover, we also compare to more standard schemes considered in the
context of Lindbladian quantum tomography, in which the measurements
are distributed uniformly (see Supplementary Material). In this case we
show an advantage of our schemes that again becomes more appreciable in
the non-Markovian regime for the Bayesian approach. However, we also
find that for the frequentist approach, the optimal distribution of mea-
surements does not always outperform the uniform distribution when the
number of measurments is small and the asymptotic regime has not yet been
reached. These results may suggest that the observed patterns extend to
other similar cases, but further exploration would be required to
confirm this.

The semi-classical dephasing model we have discussed has also been
considered in the context of central spin models, where the central spin/
qubit is dipolarly-coupled to an ensemble of environmental spins that play
the role of a mesoscopic bath. For the case of NV centers in diamond'*, the
bath corresponds to nearby substitutional nitrogen atoms, also known as P1
centers, which have a much smaller splitting than the qubit. Due to the
mismatch, energy exchange processes can be neglected, and only long-
itudinal ones survive leading to a time-correlated dephasing. For these
systems, assuming incoherent dynamics of different bath spins and negli-
gible back action is a good approximation, such that the above semi-classical
model with an Ornstein-Uhlenbeck process turns out to be a reasonably-
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good approximation. More generally, if the bath consists of weakly-
interacting nuclear spins that get dipolarly-coupled to the qubit, bath cor-
relations might be relevant. Although this is not generally valid, when the
leading bath correlations can be reduced to pairs of spins, a similar Gaussian
semi-classical model can still be used"”’, albeit considering other PSDs. In
more general situations, one should consider larger groups of spins, and
explore other spin-bath dephasing models. Although this goes beyond the
scope of this work, we believe that incorporating a detailed microscopically-
motivated parametrization of this type of non-Markovian dephasing should
allow for a more efficient parametrization of the noise that could be
incorporated in a LQT that is similar in spirit to the one considered in
this work.

Future research shall explore the extension of these non-Markovian
characterization techniques to larger quantum systems, combining the
effect of spatial and temporal correlations. More importantly, our work sets
the stage to generalize to more complex situations beyond pure dephasing,
specially focusing on scalability and robustness, and eventually targeting the
noise in full universal gate sets of QIPs.

Methods

Time-local master equation for pure dephasing

For the sake of completeness, we present here a derivation of the time-local

master equation in Eq. (20) for a qubit subjected to time-correlated dephasing

noise, both in a semi-classical and a fully quantum-mechanical model. This

serves to introduce well-known concepts and set our notation following’”.
a. Semi-classical time-correlated dephasing.- The qubit evolves under a

stochastic rotating-frame Hamiltonian

H(t) = %8&)(1?)02, (48)

where da(t) is the detuning of the qubit with respect to the frequency of a
driving used in the initialization/measurement stages with respect to, and we
have set 2 = 1. We use a tilde to highlight the random nature of §@(t), which
is modeled as a stochastic process with zero mean E[d@(¢)] = 0, thus
assuming that the driving frequency is resonant with the qubit transition on
average. We recall that the averages are taken with respect to the underlying
joint PDF of the process for any finite set of times
Psa(0w) =p, - (6w, dw,,- -, dw,), VneZ" : dw, = dw(t,)
e R, {t}L, € T, "which fulfills the conditions Ps>(0w)=0 and
JT1,ddw,ps; (8w) = 1. Physically, these stochastic fluctuations can
either stem from frequency/phase noise of the drive, or from additional
external fields that shift the energy of the qubit. For each individual tra-
jectory of the noise 8a(t), the evolution of an initial qubit state p, =
[¥o){W,| in the rotating frame is purely unitary but random, giving rise to
p(t), and expectation values will thus depend on stochastic averages I,
leading to a completely-positive trace-preserving (CPTP) map after
averaging p(t) = E[p(t)] = &, (p,)""*"**""". The corresponding stochastic
differential equations are

P 260, 7,0 = —ith), o),

(49)
where one sees that the noise §() thus enters multiplicatively. Using the
Nakajima-Zwanzig™* projection operators 2 = [£,and 2 = 1 — 2, we can
find differential equations for the averaged density matrix using

p(t) = P((1)) = 2py) = 0= P(Z,). (50)
In fact, this averaged evolution can be written as a time-local master
equation”"**"*, namely

® _ oo,

dt 1)

where J#(t) is the so-called time-convolutionless kernel that encapsulates
the effects that the finite memory of the time-correlated noise has on the
qubit. In particular, this kernel can be expressed as follows

H()= 27,0 -21) (52)
where we have used a super-operator playing the role of a ‘self-energy’,
which can be expanded as

()= "%, 0,4 () =Y 22, <Z amim(t)) . (53)

In this way, the kernel is organised in a power series of a microscopic
coupling « that characterizes the order of magnitude of the coupling of the
system to the external noise, and Eq. (50) can be used to show that only even
terms contribute

H() =D Ao (8). (54)

This series agrees with the Kubo and Van Kampen cumulant
expansion””"**, and one finds that the n-th order term can be expressed in
terms of n — 1 nested time-ordered integrals’™, being the lowest-order
contribution #,(t) = || ; dt' 2(ZL,Z,). This term is controlled by the
auto-correlation of the stochastic process, leading to

d t
21/ A+ ) (P00 pn). 6

which, for wide-sense stationary processes, can be expressed in terms of the
PSD of the stochastic process

* dw

= S(w) e“t=1),
2

C(t — t') = E[da(t)da(t)] = / (56)

We note that for any wide-sense stationary classical noise, the PSD is even
S(w) = S(— w)'?, and C(t,t')= C(|t — t'|) = C(¢,t) such that the
symmetrized autocorrelation function and the symmetrized PSD intro-
duced below Eq. (24) already contain all of the required information for a
second-order approximation. The truncation at this order is justified by first
noting that the autocorrelation is typically concentrated within |t — ¢'| < 7,
where 7. is a characteristic correlation time. Due to the cluster property' ™',
one finds that #",(t) ~ af with « = 1/C(0) and a small parameter

(=ar. = |5, (57)

where we have defined a characteristic time as T, = 2/5(0). The cluster
property for the higher n-th order contributions, which have (n — 1) nested
integrals, states that the corresponding kernels scale with 7, (t) ~ a{" ™",
justifying a low-order truncation whenever the condition { <« 1 is met. This
is known as a fast-fluctuation expansion and, back from the rotating frame,
yields the time-local master equation in Eq. (20).

Let us note that the above truncation rests on the importance of the
memory effects 7.within the T, time. As discussed in more detail in the
“Results”, this T, time controls the time scale for the decay of coherences
(0,(1)) ~ e /T2 ina long-time Lindbladian limit t > 7. However, for
shorter times, the structure of the noise can actually lead to deviations from
this limit, leading to a coherence decay that is not exponential. As empha-
sized in the main text, this is not an univocal signal of non-Markovianity for
the qubit evolution. We note that there is an exception to the 7. < T,
requirement for Gaussian random processes, which are defined by a joint
PDF that is a multivariate normal distribution for any set of times. In this
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case, the time-local master equation in Eq. (20) is actually an exact result,
independently of the value of {. In fact, the higher-order contributions to the
kernel” vanish identically #,,(t) = 0, Vn > 2, due to Isserlis’ theorem, most
commonly referred to as Wick’s theorem in the context of physics
E[a(t,)00(t5) - 8(t,)] = 35 0@t 50t )]~ B[00ty 1))
d(t ()], where S, is the group of all possible permutations of 1 elements,
eg.o(l,2,-,n—1Ln=mn12-,n—-1)

b. Quantum-mechanical time-correlated dephasing.- We consider a
single qubit coupled to an environment, and evolving dpg, /dt = Z,(pgg)
under the following Liouvillian

Y=L+ Ly Ly0)= =3 [(0 +BO)o" o], (8)

where B(f) is an environment/bath operator that introduces fluctuations on
the qubit frequency, and #5(e) is the Liouvillian of the bath. In the standard
description of quantum master equations, the environment is macro-
scopically large and subject to a purely-unitary evolution
ZL5(e) = —i[Hp, o). When the system-environment coupling is weak,
one can assume that the environment remains unaltered, such that the
evolution takes place on the qubit but there is no back action pgg = p(f) ® pp.
A Born-Markov approximation then yields a non-unitary master equation
for the qubit'”. This can be expressed as a time convolutionless master
equation as the one discussed in the previous subsection in Eq. (51), also
truncated at second order, where 2 is now a super-operator tracing over the
bath degrees of freedom 2(pgy) = Trp(ps) = p’". The non-unitary
evolution of the qubit results from the large number of degrees of freedom
in the environment, such that the purity of the state can only decrease with
1O recurrences.

Let us note, however, that the conditions under which these
assumptions are made can be more general, and the degrees of freedom
playing the role of an environment need not be macroscopically large.
The crucial requirement is that the time with which the effective envir-
onment reaches its steady state #(p}) = 0 must be much shorter than
the timescale of interest in which the system evolves p(t). In the present
context, this is the case of a single bosonic mode that exchanges energy
with a larger electromagnetic bath with a certain rate x. The bath Liou-
villian reads

gB(.) = _i[ HB(t)7 .] + K(“PQT - %{aTu> .}> ) (59)

where Hg(t) is the bosonic mode Hamiltonian, which can include
external drivings, and a', a are the bosonic creation and annihilation
operators, respectively. The condition for this single driven-dissipative
mode to act as an environment is that x must be much larger than the
coupling strength inside B(f). In the context of the superconducting
circuits discussed in the main text, x is the rate of photon loss in a
resonator, and Hg must contain a linear resonant microwave driving of
the resonator that controls the non-zero number of photons in the steady
state'*. For trapped ions, x will be the rate of sympathetic cooling of a
vibrational model in a two-ion crystal, which will also be supplemented
with a smaller heating rate'’. The difference of these two rates controls
the population of phonons in the steady state, and can be controlled by an
external laser.

We now move to the interaction picture with respect to the bare system

Here, we have assumed that 2(B,(t)) = 0, and we note that B(f) need not
commute with itself at different times. Once more, if these quantum-
mechanical auto-correlation functions are wide-sense stationary,
C(t,t') = C(t — t'). We note that, in contrast to the semi-classical case
where S(w) = S(— w), this is not necessarily the case in the quantum-
mechanical case S(w) # S(— w)'*. However, in the case of pure dephasing, the
time evolution in Eq. (55) only depends on the symmetrized auto-correlation
function C(t,t) = 1(C(t,1')+ C(¢', 1)) and therefore only the symmetric
part of the auto-correlation function influences the time evolution

dp 1/ .
dit) = 5/0 dr'C(t, t') (0" p(t)o® — p(1)). (61)

Moving back to the Schrodinger picture, we obtain the master equation in
Eq. (20), which will only depend on the symmetrized noise PSD defined
below Eq. (24).

Error analysis and asymptotic statistics

We show here the asymptotic normality of the maximum-likelihood esti-
mator in Eq. (9) when Ny, tends to infinity and how this is related to the
Fisher information in Eq. (13). The asymptotic covariance matrix is used in
the main text to obtain the optimal times of the frequentist estimator and
can be used to obtain approximate confidence intervals of estimations. To
simplify the notation and reduce complexity, we consider the pure
dephasing case here, where the cost function is simplified. However, the
conclusions remain the same, and the general case can be recovered by
substituting i — i, s, b and m, — my,,. In this case, instead of considering only
measurement points in time, we account for measurement conﬁgurations,
including evolution times, initial states, measurement bases, and measure-
ment outcomes.

Our estimation ), is affected by the limited number of measurement
shots N; at each point in time t;, which will cause f; to behave as a normal
random variable and will produce a random error in the final estimation of
the parameters. The maximum-likelihood cost function reads

" -
ChL(0) = — ZNifi,mx log p;(m,|0), (62)
wherefi‘m denotesfi(mx 16,) and p;(m,|0) denotes p;*(m,|6). The mini-
mum of the cost function satisfies

aecgi — _ ZN;]? aepz(mxle) -0

M p(m,]0) (63)

im,

Since f‘lm = p;(m,0,) + Af im.> With Afi_’m small, the minimum of the
cost function is slightly displaced from the true minimum 6, to 8, + A#.
Taylor expanding Eq. (63) around 6, to first order we have

d z 9, pi(m|6)
% CrL~— 2N, [Pi(me) + Afi,mx] [ 20T | g
im, =0,

39,p;(m,16) 6
o, P11
+§kj 6, 1o ’H Aﬂk} =0.

Keeping only first-order terms in A@ and Afi‘m and simplifying we obtain

. 1 _ ot % . s ~ J A 7]
L1ouv1!hanlp.,(t) = e ~(pg))t‘(\2nth ZL(0) = —1[% @0, o], and the bare Z AGjNi[Ii(G*)]jk _ ZNiAfi,mx 0,Pi(m16) : (65)
bath Liouvillian, i.e,, B;(t) = e’<#(B(t)). The key step is that, due to the fast 7 py pi(m,|6) 0=0,
decay of the bath, for the timescales of interest ¢ >> 1/x, one can assume that n
psp(t) = p(t) ® p3, the second-order time-convolutionless master equa- where we have defined the matrix
tion can be expressed as in Eq. (55) with

1,01 =
Clt, ) = E[B()B,(1)] = Trg{B,()B,(1)p5 ). (60) 5 pi(m16,)0, 10g p,(m,10)y, og pi(m Mg, ()
m ]
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Note that this is the Fisher information given in Eq. (12). Taking into

account that Af = —Af, ;0 and f. i1 = 1 — f; o> and defining the matrices
9,0i(010)]_
Ju=> N0, Fi= (67)
# = 2NIONs F =N g S iy
we arrive at the expression
— —1 f
Aby = Z]jk Fidfi, (68)
ij

which relates differences between the expected and measured values
Af, im, =fim — Pi(m|0,) to differences between the estimated and the

true parameters Ay When N; is sufficiently large, f, , behaves as the normal
dlStrlbuthIlN[/d p;(016, )7af = p,(016,)p,(110, )/N] Thus, we have

Af iy ~ N[y =00} = pi(0|0*)pi(1|0*)/N,-] . (69)

After the linear transformation of Eq. (68), we obtain that A@ behaves as

A~ Nu=0,%,=]"], (70)
where we have used that /]~ lelag(az)F g~ 1) = J~1. Thus, the shot noise
produces a normal random error w1th covariance matrix Tg = J~' which
scales as 1/Ny,op With Ngpop = >N, which is the result presented in Eq. (13).

Data availability
The following GitHub repository contains the code to reproduce our
findings: https://github.com/varona/llqt.

Code availability
The code used to conduct the analyses and generate the results presented in
this work is openly accessible at https://github.com/varona/llqt.
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