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Abstract
This paper deals with discrete Sobolev orthogonal polynomials with respect to inner
products built upon the classical Laguerre and Jacobi measures on the intervals [0,∞)

and [−1, 1], respectively. In addition, they are equipped with point masses at a finite
endpoint of the interval involving the underlying functions and their derivatives of
first or higher order. One of the intrinsic features of these polynomials are their L2-
norms in the corresponding inner product spaces. Their knowledge is essential to
orthonormalize the polynomials and thus indispensable to treat the corresponding
Fourier-Sobolev series and other topics, notably in approximation theory, spectral
theory or mathematical physics. Proceeding from an appropriate representation of the
Sobolev polynomials which reflect the influence of the point masses, we explicitly
establish their squared norm in an efficient form. In each case, the value differs from
the familiar squared norm of the Laguerre or Jacobi polynomials by a factor which
itself is a product of two essentially identical terms. Surprisingly, each of these factors
turns out to be the quotient of the leading coefficients of the Sobolev polynomial and
its classical counterpart. Obviously, our results enable to determine the asymptotic
behavior of the norms of the orthogonal polynomials considered for large n.

Keywords Sobolev-type inner products · Laguerre-Sobolev polynomials ·
Jacob-Sobolev polynomials · Norm evalutation
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1 Introduction

Over nearly four decades, the theory of orthogonal polynomials with respect to inner
products of Sobolev type has been attracting enormous interest with continuous
progress, either from a general point of view or with regard to specific orthogonal
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polynomial systems. This is best witnessed by the very useful bibliography of more
than 550 references collected and currently updated by F. Marcellán (‘Orthogonal
polynomials and Sobolev inner products’, personal communication). For various top-
ics and important developments in the fieldwe refer, e.g., to the profound survey article
by F. Marcellán and Y. Xu [1] as well as to other informative papers [2, 3].

In particular, many authors investigated the rich structure of discrete Sobolev (or
Sobolev-type) orthogonal polynomials, where derivatives occur only at discrete mass
points of the corresponding inner products. Among their many features discovered
so far are algebraic properties, representations of different kind, spectral differential
equations, recurrence relations, asymptotic properties, distribution of zeros, orthogo-
nal expansions, or analytic aspects, see, in particular, the relevant papers [3–25] and
the various contributions described in their titles and abstracts.

In general, the discrete Laguerre-Sobolev polynomials {Lα,{Sr }
n (x)}∞n=0 are defined

for α > −1, 0 ≤ x < ∞, as the orthogonal polynomials with respect to the inner
product of two functions f , g in the respective Sobolev space,

( f , g)w(α,{Sr }) = ( f , g)w(α) +
r∑

j=0

S j f
( j)(0)g( j)(0), S j ≥ 0, j = 0, ..., r , r ∈ N.

(1.1)
Likewise, the system {Pα,β,{Sr }

n (x)}∞n=0 denotes the discrete Jacobi-Sobolev polyno-
mials for α, β > −1,−1 ≤ x ≤ 1, which are orthogonal with respect to the inner
product

( f , g)w(α,β,{Sr }) =( f , g)w(α,β)+
r∑

j=0

S j f
( j)(1)g( j)(1), S j ≥ 0, j = 0, ..., r , r ∈ N.

(1.2)
If the point masses S j in (1.1) or (1.2) vanish for all 0 ≤ j ≤ r , the inner products
reduce to the weighted scalar products of the ‘classical’ Laguerre and Jacobi polyno-
mials, respectively, where the weight functions are normalized to induce a probability
measure, i.e.,

( f , g)w(α) =
∫ ∞

0
f (x)g(x)wα(x)dx, wα(x) = h−1

α e−x xα, hα = �(α+1), (1.3)

( f , g)w(α,β) =
∫ 1

−1
f (x)g(x)wα,β(x)dx,

wα,β(x) = h−1
α,β(1 − x)α(1 + x)β, hα,β = 2α+β+1�(α + 1)�(β + 1)

�(α + β + 2)
.

(1.4)

The discrete Laguerre-Sobolev polynomials have been introduced and widely stud-
ied in a series of papers by R. Koekoek and H. G. Meijer [26–29]. Concerning both
cases (1.1) and (1.2) we also refer to [1, Sec.7] and the papers cited there.

As is well known, the Laguerre and Jacobi polynomials are characterized by a
number of essential features listed, e.g., in [30, 10.6] or [31, 18.3]. In particular, they
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are members of the renowned Askey scheme with hypergeometric representations

Lα
n (x) = (α + 1)n

n! 1F1(−n;α + 1; x), 0 ≤ x < ∞,

Pα,β
n (x) = (α + 1)n

n! 2F1
( − n, n + α + β + 1;α + 1; 1 − x

2

)
, −1 ≤ x ≤ 1,

(1.5)
for n ∈ N0. Moreover, they possess the orthonormalization constants hn, n ∈ N0,

‖Lα
n‖2w(α) = hα

n := (α + 1)n
n! ,

‖Pα,β
n ‖2w(α,β) = hα,β

n := (α + 1)n(β + 1)n
(2n + α + β + 1) n! (α + β + 2)n−1

,

(1.6)

while the first and second leading coefficients of their power series are typically
denoted by

Lα
n (x) = kα

n x
n + k̄α

n x
n−1 + qn−2, k

α
n = (−1)n

n! ,
k̄α
n

kα
n

= −n(n + α),

Pα,β
n (x) = kα,β

n xn + k̄α,β
n xn−1 + qn−2, k

α,β
n = (n + α + β + 1)n

2nn! ,
k̄α,β
n

kα,β
n

= n(α − β)

2n + α + β
.

(1.7)

But rather than the latter expansion, we will use the more appropriate version

Pα,β
n (x) = κα,β

n

( x − 1

2

)n + κ̄α,β
n

( x − 1

2

)n−1 + qn−2,

κα,β
n = (n + α + β + 1)n

n! ,
κ̄

α,β
n

κ
α,β
n

= n(n + α)

2n + α + β
.

(1.8)

Here and in the following, (α)0 = 1, (α)m = α(α+1) · · · (α+m−1), α ∈ C, m ∈ N,
is the Pochhammer symbol, and qn−2 ∈ Pn−2 denotes some unspecific algebraic
polynomial of degree n − 2.

In this paper we will focus on two prominent particular settings which reflect the
principles of our approach in a comprehensible way. They are associated with the
inner products (1.1–2) with either two point masses up to the first derivative, say
S0 = N , S1 = S, or with one point mass Sr , r ≥ 2, up to a quite high order. It
is the purpose of the present paper to establish an exact relationship between the
squared norms of the Laguerre-Sobolev and Jacobi-Sobolev orthogonal polynomials
on the one hand, and the classical quantities stated in (1.6-8) on the other hand. In the
Laguerre-Sobolev cases, we will use the notations

hα,N ,S
n = ‖Lα,N ,S

n ‖2w(α,N ,S), Lα,N ,S
n (x) = kα,N ,S

n xn + k̄α,N ,S
n xn−1 + qn−2,

hα,r
n = ‖Lα,Sr

n ‖2w(α,Sr ), Lα,Sr
n (x) = kα,r

n xn + k̄α,r
n xn−1 + qn−2,

(1.9)
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while hα,β,N ,S
n , κ

α,β,N ,S
n , κ̄

α,β,N ,S
n and hα,β,r

n , κ
α,β,r
n , κ̄

α,β,r
n stand for the respective

values in the Jacobi-Sobolev cases.
In each of the four entries, we basically proceed as follows:

(1) We start off from an explicit representation of the Sobolev polynomials in terms
of the classical Laguerre and Jacobi polynomials (1.5),

r+1∑

j=0

Bj,nx
j Lα+2 j

n− j (x) and
r+1∑

j=0

Bj,n

(1 − x

2

) j
Pα+2 j,β
n− j (x), (1.10)

with certain coefficients Bj,n depending on all the parameters, cf. [20, (1.8)].
(2) With some technical efforts we determine an expression �n based on the index n

and all other parameters, which coincides with the quotient of the leading coef-
ficients of the Sobolev polynomial, say kSobn , and its classical counterpart kclassn ,
i.e.,

�n = kSobn /kclassn , n ∈ N. (1.11)

(3) Furthermore, the second leading coefficient k̄ Sobn+1 is shown to be equal to a certain
sum involving the classical counterparts k̄classn+1− j , 0 ≤ j ≤ r + 1, with appropri-
ately shifted parameters.

(4) Combining the steps (1) to (3) then yields our final result

hSobn /hclassn = �n · �n+1, n ∈ N. (1.12)

For the Sobolev polynomials {Lα,N ,S
n (x)}∞n=0 and {Pα,β,N ,S

n (x)}∞n=0, the identity (1.12)
can also be proved directly via some lengthy calculations.

As a general property of any orthogonal polynomial system {pn}∞n=0 in a weighted
Hilbert space L2

w(I ), I ⊂ R, its normalization constant hn and the leading coefficients
kn, k̄n naturally occur in the three-term recurrence relation (TTRR), see e.g. [31,
18.2.10-11],

x pn(x) = an pn+1(x) + bn pn(x) + cn pn−1(x), where

an = kn
kn+1

, bn = k̄n
kn

− k̄n+1

kn+1
, n ≥ 0, cn = an−1

hn
hn−1

, n ≥ 1, an−1cn > 0.

(1.13)
This, in turn, gives rise to the well-known Christoffel-Darboux formula [31, 18.2.12]

Kn(x, y) =
n∑

k=0

pk(x)pk(y)

hk
= kn

kn+1hn

pn+1(x)pn(y) − pn(x)pn+1(y)

x − y
, (1.14)

which considerably simplifies the reproducing kernel of the partial sum operator

Sn( f , x) =
∫

I
f (x)Kn(x, y)w(x)dx, f ∈ L2

w, (1.15)
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and hence becomes a fundamental tool in approximation theory.
For discrete Sobolev orthogonal polynomials, however, it is clear that a three-term

recurrence relation no longer holds, because the multiplication operator by x is not
symmetric with respect to the inner product. Nevertheless, it has been shown in [32]
that there is always a multiplication operator by a polynomial h(x) of degree r + 1, r
being the order of the highest derivative in (1.1-2), which generates a (2r + 3)-term
recurrence relation for the Sobolev polynomials. This relation may be interpreted
as a difference equation, which implies, together with the differential equation of the
orthogonal polynomials, cf. [12, 21], their bispectrality. Formore details and important
aspects as, e.g., the relationship with matrix orthogonal polynomials see [33, Sec. 3],
[34–38].

In the Laguerre-Sobolev case, the (2r +3)-term recurrence relation has been stated
by R. Koekoek [26, (2.5.1-3)], [27, Sec. 7] as

xr+1Lα,{Sr }
n (x) =

n+r+1∑

k=max(0,n−r−1)

Eα,{Sr }
k,n Lα,{Sr }

k (x), n ∈ N0, where

hα,{Sr }
k Eα,{Sr }

k,n =(
xr+1Lα,{Sr }

n (x), Lα,{Sr }
k (x)

)
w(α,{Sr })

=(
Lα,{Sr }
n (x), xr+1Lα,{Sr }

k (x)
)
w(α,{Sr }).

(1.16)

Moreover, it has been shown in [26, (2.6.2)], [27, Sec.8], that a Christoffel-Darboux
type formula can be derived by employing the identity (1.16) in the sum

(xr+1 − yr+1)

n∑

k=0

Lα,{Sr }
k (x)Lα,{Sr }

k (y)

hα,{Sr }
k

, n ∈ N0. (1.17)

In case of the Laguerre-Sobolev polynomials Lα,N ,S
n (x), we precisely determined the

coefficients in the five-term recurrence relation (1.16) for r = 2 by (the parameters
are dropped for simplicity)

En+2,n = kn
kn+2

, En+1,n = kn
kn+1

[ k̄n
kn

− k̄n+2

kn+2

]
,

En,n =
[
1 − k̄n+1

kn+1

][ k̄n
kn

−
¯̄kn+2

kn+2

]
,

En−1,n = En,n−1
hn
hn−1

, En−2,n = En,n−2
hn
hn−2

.

(1.18)

Here, ¯̄kn denotes the third leading coefficient of the Laguerre-Sobolev polynomial
Lα,N ,S
n (x), which can easily be deduced from its representation, cf.(2.2). Via (1.18) we
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accomplish the Christoffel-Darboux type formula (with hn = hα,N ,S
n , kn = kα,N ,S

n )

n∑

k=0

Lα,N ,S
k (x)Lα,N ,S

k (y)

hk
= kn

kn+2hn

Lα,N ,S
n+2 (x)Lα,N ,S

n (y) − Lα,N ,S
n (x)Lα,N ,S

n+2 (y)

x2 − y2

+ kn
kn+1hn

[ k̄n
kn

− k̄n+2

kn+2

] Lα,N ,S
n+1 (x)Lα,N ,S

n (y) − Lα,N ,S
n (x)Lα,N ,S

n+1 (y)

x2 − y2
. (1.19)

Certainly, such a formula holds for the Jacobi-Sobolev polynomials Pα,β,N ,S
n (x),

as well, and may be extended to even more general situations. Also notice that for
Laguerre-Sobolev polynomials in a more general setting, the five-term recurrence
relation has recently been determined in [14, Sec.4], [37, Sec.5] by investigating the
TTRR of the corresponding, so-called 2-iterated kernel orthogonal polynomials.

Numerous authors have investigated the orthogonal expansions of functions into
Sobolev orthogonal polynomials and dealt with questions of their convergence or
summability, see in particular [7, 8, 16, 24, 25]. Needless to say, it is an important
task here to treat the corresponding reproducing kernels K Sob

n (x, y), whence a detailed
knowledge of the squared normand the leading coefficients of theSobolev polynomials
is highly appreciated.

The paper is organized as follows. In Section 2 we provide the Laguerre-Sobolev
polynomials

{
Lα,N ,S
n (x)

}∞
n=0 in a form accessible for our purpose. After carrying out

the two preliminary steps (Props.2.1-2), we obtain the desired representation of the
squared norm (Thm.1.1). Once knowing this result, we are in a position to confirm it
twice. In a second proof, we basically use an alternative representation of the Laguerre-
Sobolev polynomials used in [27, 28]. Moreover, we add a third proof by directly
evaluating the inner product of the polynomial with itself. The crucial part here is to
show that all the occurring terms can actually be combined to yield the product of the
�-factors as indicated in (1.12). To this end, we repeatedly make use of the symbolic
computer program MAPLE.

Section 3 is devoted to theSobolev-Laguerre polynomials
{
Lα,Sr
n (x)

}∞
n=0 associated

with a higher derivative. Here our main approach furnishes a result of similar type
(Thm.3.3). But other proofs as those in Section 2 would either be highly complicated
or at least extremely tedious.

In Section 4 we simultaneously present the results for the Jacobi-Sobolev poly-
nomials

{
Pα,β,N ,S
n (x)

}∞
n=0 and

{
Pα,β,Sr
n (x)

}∞
n=0, see Thm.4.3. Due to the additional

‘Jacobi’ parameter β, the formulas look fairly elaborate and so we just point out
the basic ideas. If necessary, various calculations have been checked and verified by
invoking MAPLE again.

In Section 5,we closewith some remarks how to extend our results to other Sobolev-
type orthogonal polynomials.
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2 The norm of the Laguerre-Sobolev polynomials associated with two
perturbations

Following the second version of the Laguerre-Sobolev polynomials in [26, (4.2.7-8)],
[28, (10.1-2)] or [21, (1.2-3)], they are related to the Laguerre polynomials (1.5) by

Lα,N ,S
n (x) =

2∑

j=0

Bα,N ,S
j,n x j Lα+2 j

n− j (x), 0 ≤ x ≤ ∞, n ∈ N0, where

Bα,N ,S
0,n = [

1 − S uα
0,n

]
, Bα,N ,S

1,n = −[
N tαn + S uα

1,n

]
, Bα,N ,S

2,n = [
S uα

2,n + NS vα
n

]
,

and tαn = (α + 2)n−1

n! , vα
n = (α + 2)n−1(α + 3)n−1

(α + 1)3 (n − 1)! n! ,

uα
0,n = (α + 2)n

(α + 1)3 (n − 2)! , u
α
1,n = (α + 2)n−1

(α+ 1)(α+ 3)(n−2)! , u
α
2,n = (α + 2)n−1

(α + 1)3 (n − 1)! .
(2.1)

This representation has the advantage that the first and second leading coefficients in
(1.9) can be derived from those in (1.7) by means of

kα,N ,S
n =

2∑

j=0

Bα,N ,S
j,n kα+2 j

n− j , where kα+2 j
n− j = (−1)n− j

(n − j − 2)! , j = 0, 1, 2,

k̄α,N ,S
n =

2∑

j=0

Bα,N ,S
j,n k̄α+2 j

n− j , where k̄α+2 j
n− j = (−1)n− j−1(n + α + j)

(n − j − 1)! , j = 0, 1, 2.

(2.2)

Proposition 2.1 For n ∈ N0, α > −1, and N , S ≥ 0, there holds

kα,N ,S
n

kα
n

= �α,N ,S
n , where �α,N ,S

n = 1 + φα
n N + χα

n S + ψα
n N S with

φα
n = (α + 2)n−1

(n − 1)! , χα
n = (α + 2)n−1

(α + 1)3 (n − 2)! [(α + 2)(n − 1) + 1],

ψα
n = (α + 2)n−1(α + 3)n−1

(α + 1)3 (n − 2)! (n − 1)! .

(2.3)

Proof Separating the influence of the point masses N , S in (2.1), the first line of (2.2)
yields

kα,N ,S
n

kα
n

=
2∑

j=0

Bα,N ,S
j,n

kα+2 j
n− j

kα
n

= 1 − tαn
kα+2
n−1

kα
n

N −
{
uα
0,n + uα

1,n

kα+2
n−1

kα
n

− uα
2,n

kα+4
n−2

kα
n

}
S + vα

n

kα+4
n−2

kα
n

N S
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= 1 + tαn n N − {
uα
0,n − uα

1,nn − uα
2,n(n − 1)2

}
S + vα

n (n − 1)2NS

= 1 + φα
n N + χα

n S + ψα
n N S.

In fact, the last identity follows by observing that

tαn n = (α + 2)n−1 n

n! = (α + 2)n−1

(n − 1)! = φα
n ,

vα
n (n − 1)2 = (α + 2)n−1(α + 3)n−1(n − 1)2

(α + 1)3 (n − 1)! n! = ψα
n ,

while the coefficient of S yields

−uα
0,n + uα

1,nn + uα
2,n(n − 1)2 = (α + 2)n−1[−(n + α + 1) + (α + 2)n + n]

(α + 1)3 (n − 2)!
= (α + 2)n−1[(α + 2)(n − 1) + 1]

(α + 1)3 (n − 2)! = χα
n .

�	
Analogously, a representation of the second leading coefficient follows from the

second line in (2.2). For our purpose, however, we need a more intricate relationship.

Proposition 2.2 With the parameters stated in Prop.2.1,

k̄α,N ,S
n+1

k̄α
n+1

=
2∑

j=0

Bα,N ,S
j,n

(n + α + 1) j
(n − j + 2) j

k̄α+2 j
n+1− j

k̄α
n+1

. (2.4)

Proof In view of (2.2),

k̄α,N ,S
n+1

k̄α
n+1

=
2∑

j=0

Bα,N ,S
j,n+1

k̄α+2 j
n+1− j

k̄α
n+1

with
k̄α+2 j
n+1− j

k̄α
n+1

= (n + α + j + 1)(−n) j

(n + α + 1)
, j = 0, 1, 2.

Observing further that on the right-hand side of (2.4),

(n + α + 1) j
(n − j + 2) j

k̄α+2 j
n+1− j

k̄α
n+1

= (n − j + 1)(n + α + 2) j
(−1) j (n + 1)

,

we have to show that

2∑

j=0

Bα,N ,S
j,n+1

(n + α + j + 1) j (−n) j

(n + α + 1)
=

2∑

j=0

Bα,N ,S
j,n

(n − j + 1)(n + α + 2) j
(−1) j (n + 1)

, (2.5)
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or, by (2.1),

[
1 − S uα

0,n+1

] + [
N tαn+1 + S uα

1,n+1

] (n + α + 2)n

(n + α + 1)
+

+ [
S uα

2,n+1 + NS vα
n+1

] (n + α + 3) j (−n)2

(n + α + 1)

= [
1 − Suα

0,n

] + [
Ntαn + Suα

1,n

]n(n + α + 2)

(n + 1)

+ [
Suα

2,n + NSvα
n

] (n − 1)(n + α + 2)2
(n + 1)

.

Checking this equation separately for the coefficients of N and NS, we easily see that

tαn+1

(n + α + 1)
= (α + 2)n−1

(n + 1)! = tαn
(n + 1)

, vα
n+1

(n + α + 3)(−n)2

(n + α + 1)

= (α + 2)n(α + 3)n(n + α + 3)(−n)2

(α + 1)3n!(n + 1)!(n + α + 1)
= vα

n
(n − 1)(n + α + 2)2

(n + 1)
.

Furthermore, some calculation shows that the required identity for the coefficient of
S holds by appropriately combining the values of uα

j,n+1 and u
α
j,n for j = 0, 1, 2, i.e.,

− uα
0,n+1 + uα

1,n+1
(n + α + 2)n

(n + α + 1)
+ uα

2,n+1
(n + α + 3)(−n)2

(n + α + 1)

= − (α + 2)n+1

(α + 1)3 (n − 1)! + (α + 2)(α + 2)n(n + α + 2)n

(α + 1)3(n − 1)!(n + α + 1)

+ (α + 2)n(n + α + 3)(−n)2

(α + 1)3 n!(n + α + 1)

= (α + 2)n−1

(α + 1)3 (n − 2)! [(n + α + 2)(α + 2) + 1]

= −uα
0,n + uα

1,n
n(n + α + 2)

(n + 1)
+ uα

2,n
(n − 1)(n + α + 2)2

(n + 1)
.

This settles the proof of (2.5) and hence that of Prop.2.2. �	

Theorem 2.3 For n ∈ N, α > −1, and N , S ≥ 0, let kα
n , kα,N ,S

n denote the leading
coefficients of the Laguerre (-Sobolev) polynomials as in Prop.2.1, and let �α,N ,S

n =
1 + φα

n N + χα
n S + ψα

n N S be defined in (2.3). Then

‖Lα,N ,S
n ‖2w(α,N ,S)

‖Lα
n‖2w(α)

= kα,N ,S
n

kα
n

kα,N ,S
n+1

kα
n+1

≡ �α,N ,S
n �

α,N ,S
n+1 , where ‖Lα

n‖2w(α) = hα
n .

(2.6)
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In particular, it follows that

‖Lα,N ,0
n ‖2w(α,N ,0)

‖Lα
n‖2w(α)

= [
1 + φα

n N
] [
1 + φα

n+1N
]
, φα

n = (α + 2)n−1

(n − 1)! ,

‖Lα,0,S
n ‖2w(α,0,S)

‖Lα
n‖2w(α)

= [
1 + χα

n S
] [
1 + χα

n+1S
]
, χα

n = (α + 2)n−1[(α + 2)(n− 1)+1]
(α+ 1)3 (n −2)! .

(2.7)

First Proof By orthogonality of the Laguerre-Sobolev polynomials we get, in view of
(1.9),

0 = (Lα,N ,S
n , Lα,N ,S

n+1 )w(α,N ,S) = (Lα,N ,S
n , kα,N ,S

n+1 xn+1 + k̄α,N ,S
n+1 xn + qn−1)w(α,N ,S)

= (Lα,N ,S
n , kα,N ,S

n+1 xn+1)w(α,N ,S) + k̄α,N ,S
n+1

kα,N ,S
n

hα,N ,S
n .

(2.8)
Obviously, the boundary terms in the latter inner product vanish, so that via (2.1),

(Lα,N ,S
n , kα,N ,S

n+1 xn+1)w(α,N ,S) = kα,N ,S
n+1

kα
n+1

(

2∑

j=0

Bα,N ,S
j,n x j Lα+2 j

n− j (x), kα
n+1x

n+1)w(α)

= kα,N ,S
n+1

kα
n+1

2∑

j=0

Bα,N ,S
j,n

hα+2 j

hα

kα
n+1

kα+2 j
n+1− j

(Lα+2 j
n− j (x), kα+2 j

n+1− j x
n+1− j )w(α+2 j).

(2.9)
Here we utilized that the Laguerre weight function in (1.3) satisfies

x2 j hα wα(x) = e−x xα+2 j = hα+2 j wα+2 j (x), j ∈ N0.

Since

kα+2 j
n+1− j x

n+1− j = Lα+2 j
n+1− j (x) − k̄α+2 j

n+1− j

kα+2 j
n− j

Lα+2 j
n− j (x) − qn−1− j ,

a combination of (2.8) and (2.9) yields

− k̄α,N ,S
n+1

kα,N ,S
n

hα,N ,S
n = (Lα,N ,S

n , kα,N ,S
n+1 xn+1)w(α,N ,S)

= −kα,N ,S
n+1

kα
n+1

hα
n

kα
n

2∑

j=0

Bα,N ,S
j,n

hα+2 j

hα

kα
n+1

kα+2 j
n+1− j

kα
n

kα+2 j
n− j

hα+2 j
n− j

hα
n

k̄α+2 j
n+1− j

= −kα,N ,S
n+1

kα
n+1

hα
n

kα
n

2∑

j=0

Bα,N ,S
j,n

(n + α + 1) j
(n + 2 − j) j

k̄α+2 j
n+1− j .
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Employing now Prop.2.2, we arrive at the required identity

hα,N ,S
n

hα
n

= kα,N ,S
n

kα
n

kα,N ,S
n+1

kα
n+1

1

k̄α,N ,S
n+1

2∑

j=0

Bα,N ,S
j,n

(n + α + 1) j
(n + 2 − j) j

k̄α+2 j
n+1− j = kα,N ,S

n

kα
n

kα,N ,S
n+1

kα
n+1

.

The second identity in (2.6) then follows by Prop.2.1. �	
Second Proof It has been shown in [28, (1.2-3)] that an alternative version of the
Laguerre-Sobolev polynomials is given by

Lα,N ,S
n (x) =

2∑

j=0

Aα,N ,S
j,n

d j

dx j
Lα
n (x), where A0 = 1 + (α + 2)n−1

(n − 1)! N+

+ [n(α + 2) − (α + 1)](α + 3)n−2

(α + 1)(α + 3)(n − 2)! S + (α + 2)n−1(α + 4)n−2

(α + 1)2 (n − 1)! (n − 2)!NS,

A1 = (α + 1)n
n! N + (n − 1)(α + 2)n−1

(α + 1)(n − 1)! S + 2(α + 1)n(α + 4)n−2

(α + 1)2 n!(n − 2)! NS,

A2 = (α + 2)n−1

(α + 1)(n − 1)! S + (α + 1)n(α + 3)n−1

(α + 1)2 n! (n − 1)! NS.

By invoking some known properties of the Laguerre polynomials, the authors then
deduced the orthogonality of the Laguerre-Sobolev polynomials as well as its norm
in the form [28, (4.4)]

hα,N ,S
n =

(
n + α

n

)
A0 [A0 + A1 + A2]. (2.10)

The factor A0 coincides already with �
α,N ,S
n = 1+ φα

n N + χα
n S + ψα

n N S. Surpris-
ingly, by adding the coefficients of N , S, and NS in A0, A1, A2, separately, we find
that

A0 + A1 + A2 = 1 + φα
n+1 N + χα

n+1 S + ψα
n+1 NS = �

α,N ,S
n+1 .

Notice, for instance, that the coefficient of S yields

[n(α + 2) − (α + 1)](α + 3)n−2

(α + 1)(α + 3)(n − 2)! + (n − 1)(α + 2)n−1

(α + 1)(n − 1)! + (α + 2)n−1

(α + 1)(n − 1)!
= (α + 2)n−1(n + α + 1)

(α + 1)3 (n − 1)! [(α + 2)n + 1] = χα
n+1.

Hence, we arrive at the second identity on the right-hand side of (2.6).
The particular case S = 0 concerns Koornwinder’s generalized Laguerre polyno-

mials known in the literature as Bochner-Krall type. Here, the first corollary in (2.7)
has been stated already in [26, (3.1.8)]. �	
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Third Proof Proceeding directly from the representation (2.1) of the Laguerre-Sobolev
polynomials we have to evaluate

‖Lα,N ,S
n ‖2w(α,N ,S) =

∫ ∞

0

( 2∑

j=0

Bα,N ,S
j,n x j Lα+2 j

n− j (x)
)2

wα(x)dx

+ N
[
Lα,N ,S
n (0)

]2 + S
[
(Lα,N ,S

n )′(0)
]2

.

Using that

Lα
n (0) = (α + 1)n

n! , (Lα
n )′(0) = −Lα+1

n−1(0) = − (α + 2)n−1

(n − 1)! ,

we find that the respective values in the Laguerre-Sobolev case either depend on S or
N , namely

Lα,N ,S
n (0) = Bα,N ,S

0,n Lα
n (0) = (1 − S uα

0,n)
(α + 1)n

n! ,

(Lα,N ,S
n )′(0) = −Bα,N ,S

0,n Lα+1
n−1(0) + Bα,N ,S

1,n Lα+2
n−1(0)

= − (α + 2)n−1

(n − 1)! − N
(α + 2)n−1

n!
(α + 3)n−1

(n − 1)! .

Hence, the two boundary terms possess the representations

N
[
Lα,N ,S
n (0)

]2 = N
[
1 − S uα

0,n

]2 (α + 1)n
n! hα

n ,

S
[
(Lα,N ,S

n )′(0)
]2 = S

[
1 + N

(α + 3)n−1

n!
]2 (α + 2)n−1 n

(α + 1)(n − 1)!h
α
n .

In the integral we separately carry out the six terms emerging from the square of the
sum,

‖Lα,N ,S
n ‖2w(α) = E2

0 + E2
1 + E2

2 + 2 [E0E1 + E0E2 + E1E2],

where, after some lengthy calculations,

E2
0 = B2

0,n

∫ ∞

0
[Lα

n (x)]2wα(x)dx = [
1 − S uα

0,n

]2
hα
n ,

E2
1 = B2

1,n
hα+2

hα

∫ ∞

0
[Lα+2

n−1(x)]2wα+2(x)dx = [
N tαn + S uα

1,n

]2
n(n + α + 1)hα

n ,

E2
2 = B2

2,n
hα+4

hα

∫ ∞

0
[Lα+4

n−2(x)]2wα+4(x)dx = [
Suα

2,n + NSvα
n

]2
(n − 1)2(n + α + 1)2h

α
n
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and, by employing the leading coefficient of the Laguerre polynomial in (1.7),

2 E0E1 = 2 B0,n B1,n

∫ ∞

0
Lα
n (x)Lα+2

n−1(x)wα(x)dx

= 2 B0,n B1,n
kα+2
n−1

kα
n

hα
n = 2 B0,n B1,n n h

α
n ,

2 E0E2 = 2 B0,n B2,n
kα+4
n−2

kα
n

hα
n = 2 B0,n B2,n (n − 1)2 h

α
n ,

2 E1E2 = 2 B1,n B2,n
kα+4
n−2

kα+2
n−1

hα+2

hα

hα+2
n−1 = 2 B1,n B2,n(n − 1)2(n + α + 1)hα

n .

Next, we combine all parts and expand the resulting sum into terms of similar powers
of N and S,

‖Lα,N ,S
n ‖2w(α,N ,S)/h

α
n =1 + θN N + θN2N 2 + θS S + θS2 S

2+
+ θNSN S + θN2SN

2S + θNS2NS2 + θN2S2N
2S2.

The crucial point now is to realize that the resulting coefficients all add up to

θN = φα
n + φα

n+1, θN2 = φα
n φα

n+1, θS = χα
n + χα

n+1, θS2 = χα
n χα

n+1,

θNS = φα
n χα

n+1 + χα
n φα

n+1 + ψα
n + ψα

n+1,

θN2S = φα
n ψα

n+1 + φα
n+1ψ

α
n , θNS2 = χα

n ψα
n+1 + χα

n+1ψ
α
n , θN2S2 = ψα

n ψα
n+1.

(2.11)
This could indeed be proved by using MAPLE. Consequently,

‖Lα,N ,S
n ‖2w(α,N ,S) = hα

n

[
1+φα

n N +χα
n S+ψα

n N S
][
1+φα

n+1N +χα
n+1S+ψα

n+1NS
]
.

�	
Finally, we like to point out that, in a slightly more general setting, an explicit

relationship between the squared norms of the monic Laguerre-Sobolev orthogonal
polynomials and their classical counterparts can be found in [14, La.4.2] or [37, La.2].
When taking Prop.2.1 and the boundary values stated in the Third Proof into account,
it seems to be feasible to derive a further proof of Thm.2.3 in this way. This as well as
a possible extension to the Jacobi-Sobolev case is certainly worthwhile to be worked
out in more detail.

3 The norm of the Laguerre-Sobolev polynomials associated
with a higher derivative

In [20, Thm.2.2], we have explicitly derived a second version of the Laguerre-Sobolev
polynomials in a more general form. For our purpose, it reduces to Lα,Sr

n (x) = Lα
n (x)
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if n ≤ r , while for n > r ,

Lα,Sr
n =

r+1∑

j=0

Bα,r
j,n x

j Lα+2 j
n− j (x), Bα,r

j,n =

⎧
⎪⎪⎨

⎪⎪⎩

1 − Srγ
α,r
n

r∑

s=1

ηα,r
s,nωα,r

s,n , j = 0

Srγ
α,r
n ω

α,r
j,n, 1 ≤ j ≤ r + 1

, where

γ α,r
n = (r + α + 1)n−r r !

(α + 1)2r+1(n − r − 1)! , ηα,r
s,n = (−r)s(n + α + 1)s

(r + α + 1)s
,

ωα,r
s,n = (−1)s(r + α + 1)r+1(n − s)! (α + 2s)

(r + α + 1)s+1(n − r)! (r + 1 − s)! .

(3.1)
With the first and second leading coefficients of the Laguerre (-Sobolev) polynomials
as in (1.7), (1.9), we readily find that

kα,r
n

kα
n

=
r+1∑

j=0

Bα,r
j,n

kα+2 j
n− j

kα
n

=
r+1∑

j=0

Bα,r
j,n (−n) j ,

k̄α,r
n

k̄α
n

=
r+1∑

j=0

Bα,r
j,n

k̄α+2 j
n− j

k̄α
n

=
r+1∑

j=0

Bα,r
j,n

(n + j + α)(1 − n) j

(n + α)
.

(3.2)

Proposition 3.1 For n > r and 1 ≤ r ≤ 20,

kα,r
n

kα
n

= 1 + χα,r
n Sr =: �α,r

n , where

χα,r
n = (α + r + 1)n−r

(α + 1)2r+1(n − 1 − r)!
r∑

j=0

( r !
j !

)2
(r + α + 1) j (n − r) j .

(3.3)

Proof For r = 1, it has been shown in Prop.2.1 already that

χα,1
n = (α + 2)n−1

(α + 1)3(n − 2)! [(α + 2)(n − 1) + 1], n > 1,

and for r = 2,wefind that in viewof (3.1) and (3.2) and after some tedious calculations,

kα,2
n

kα
n

=
3∑

j=0

Bα,2
j,n (−n) j = (α + 3)n−2

[
(α+3)2(n − 2)2+4(α+3)(n − 2)+ 4

]

(α + 1)5(n − 3)! , n>2.

These first two cases already suggest the general representation stated in (3.3). In fact,
via the use of MAPLE, it was not hard to verify the result up to r = 20. But most
probably, it holds for even higher values of r. �	

The analogue of Prop.2.2 is exactly of the same structure.
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Proposition 3.2 For n > r and 1 ≤ r ≤ 20,

k̄α,r
n+1

k̄α
n+1

=
r+1∑

j=0

Bα,r
j,n

(n + α + 1) j
(n − j + 2) j

k̄α+2 j
n+1− j

k̄α
n+1

. (3.4)

Proof Analogously to (2.5), we have to show that

r+1∑

j=0

Bα,r
j,n+1

(n + α + j + 1)(−n) j

(n + α + 1)
=

r+1∑

j=0

Bα,r
j,n

(n − j + 1)(n + α + 2) j
(−1) j (n + 1)

. (3.5)

Identity (3.5), in turn, is equivalent to 1 + �
α,r
n Sr = 1 + �

α,r
n Sr , where

�α,r
n = γ

α,r
n+1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r∑

j=1

ω
α,r
j,n+1

[ (n + j + α + 1)(−n) j

(n + α + 1)
− η

α,r
j,n+1

]
+

+ ω
α,r
r+1,n+1

(n + r + α + 2)(−n)r+1

(n + α + 1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= γ α,r
n

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r∑

j=1

(−1) j (r + α + 1)r+1(n + 1 − j)! (α + 2 j)

(r + α + 1) j+1(n + 2 − r)! (r + 1 − j)!
[ (n + j + α + 1)(−n) j

(n − r)
−

− (−r) j (n + α + 1) j+1

(n − r)(r + α + 1) j

]
+ (n + r + α + 2)(n − r)r+1

(n − r)2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

and

�α,r
n = γ α,r

n

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r∑

j=1

ω
α,r
j,n

[ (n − j + 1)(n + α + 2) j
(−1) j (n + 1)

− η
α,r
j,n

]
+

+ ω
α,r
r+1,n

(n − r)(n + α + 2)r+1

(−1)r+1(n + 1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= γ α,r
n

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r∑

j=1

(−1) j (r + α + 1)r+1(n − j)! (α + 2 j)

(r + α + 1) j+1(n − r)! (r + 1 − j)! ·

·
[ (n − j + 1)(n + α + 2) j

(−1) j (n + 1)
− (−r) j (n + α + 1) j

(r + α + 1) j

]
+ (n + α + 2)r+1

(n + 1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

In fact, we succeeded to verify that �
α,r
n = �

α,r
n for at least 1 ≤ r ≤ 20. For r = 1,

we checked this identity by hand, and otherwise, we employed MAPLE again. �	
Theorem 3.3 For α > −1, 1 ≤ r ≤ 20 and n > r , let the Laguerre-Sobolev poly-
nomials Lα,Sr

n (x) and their leading coefficients kα,r
n be given as in (3.1-2) and let

�
α,r
n = 1 + χ

α,r
n Sr be defined in (3.3). Then

‖Lα,Sr
n ‖2w(α,Sr )

‖Lα
n‖2w(α)

= kα,r
n

kα
n

kα,r
n+1

kα
n+1

≡ �α,r
n �

α,r
n+1, where ‖Lα

n‖2w(α) = hα
n . (3.6)
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Proof We can widely adopt the first proof of Thm.2.3, where hα,r
n denotes the squared

norm of the Laguerre-Sobolev polynomial in (1.9). Analogously to (2.8-9) there holds

− k̄α,r
n+1

kα,r
n

hα,r
n = (Lα,Sr

n , kα,r
n+1x

n+1)w(α,Sr )

= kα,r
n+1

kα
n+1

( r+1∑

j=0

Bα,r
j,n x

j Lα+2 j
n− j (x), kα

n+1x
n+1)

w(α)

= kα,r
n+1

kα
n+1

r+1∑

j=0

Bα,r
j,n

hα+2 j

hα

kα
n+1

kα+2 j
n+1− j

(Lα+2 j
n− j (x), kα+2 j

n+1− j x
n+1− j )w(α+2 j)

= −kα,r
n+1

kα
n+1

hα
n

kα
n

r+1∑

j=0

Bα,r
j,n

(n + α + 1) j
(n + 2 − j) j

k̄α+2 j
n+1− j .

(3.7)

But this identity yields, in combination with Prop.3.3,

hα,r
n

hα
n

= kα,r
n

kα
n

kα,r
n+1

kα
n+1

1

k̄α,r
n+1

r+1∑

j=0

Bα,r
j,n

(n + α + 1) j
(n + 2 − j) j

k̄α+2 j
n+1− j = kα,r

n

kα
n

kα,r
n+1

kα
n+1

.

In view of Prop.3.1, the right-hand side equals �
α,r
n �

α,r
n+1 as required. �	

Notice that the restriction of Thm.3.3 to r ≤ 20 is due to the fact that (3.3) and
(3.4) have been verified up to this order. But undoubtedly, the result should hold for
even higher values of r .

4 The norm of the Jacobi-Sobolev polynomials

For any α, β > −1 the two classes of the Jacobi-Sobolev polynomials to be considered
here, have been explicitly determined in [20, Sec.3] as particular cases of the polyno-
mials {Pα,β,SR ,ST

n (x)}∞n=0, which are orthogonal on −1 ≤ x ≤ 1 with respect to (1.2)
with two point masses SR, ST involving derivatives of any order 0 ≤ R < T ∈ N. In
terms of the classical Jacobi polynomials, the two classes are given by, cf. (1.10),

Pα,β,N ,S
n (x) =

2∑

j=0

Bα,β,N ,S
j,n

(1 − x

2

) j
Pα+2 j,β
n− j (x), where Bα,β,N ,S

0,n = [
1 − Suα,β

0,n

]
,

Bα,β,N ,S
1,n = −[

N tα,β
n + Suα,β

1,n

]
, Bα,β,N ,S

2,n = [
Suα,β

2,n + NSvα,β
n

]
, with

tα,β
n = (α + 2)n−1(α + β + 2)n

n! (β + 1)n−1
, uα,β

0,n = (α + 2)n(α + β + 2)n+1

4(α + 1)3 (n − 2)! (β + 1)n−1
,
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uα,β
1,n = (α + 2)n−1(n + α + β + 1)(α + β + 2)n+1

4(α + 1)(α + 3)(n − 2)! (β + 1)n−1
,

uα,β
2,n = (α + 2)n−1(n + α + β + 1)(α + β + 2)n+1

4(α + 1)3 (n − 1)! (β + 1)n−2
,

vα,β
n = (α + 2)n−1(α + 3)n−1(α + β + 2)n(α + β + 2)n+1

4(α + 1)3 (n − 1)! n! (β + 1)n−2(β + 1)n−1
, (4.1)

and, for any r ≥ 2,

Pα,β,Sr
n (x) =

r+1∑

j=0

Bα,β,r
j,n

(1 − x

2

) j
Pα+2 j,β
n− j (x), where

Bα,β,r
j,n =

⎧
⎪⎪⎨

⎪⎪⎩

1 − Srγ
α,β,r
n

r∑

s=1

ηα,β,r
s,n ωα,β,r

s,n , j = 0

Srγ
α,β,r
n ω

α,β,r
j,n , 1 ≤ j ≤ r + 1

, and

γ α,β,r
n = (r + α + 1)n−r r ! (n + α + β + 1)r+1(α + β + 2)n+r−1

22r (α + 1)2r+1(n − r − 1)! ,

ηα,β,r
s,n = (−r)s(n + α + 1)s

(r + α + 1)s(n + α + β + 1)s
,

ωα,β,r
s,n = (−1)s(r + α + 1)r+1(n − s)! (α + 2s)

(r + α + 1)s+1(n − r)! (r + 1 − s)! (β + 1)n−s
.

(4.2)

In both situations and in analogy to the Laguerre-Sobolev cases (2.2) and (3.2), the
first and second leading coefficients of the Jacobi-Sobolev polynomials are related to
their classical counterparts defined in (1.8) by

κ
α,β,{Sr }
n

κ
α,β
n

=
r+1∑

j=0

Bα,β,{Sr }
j,n

κ
α+2 j,β
n− j

κ
α,β
n

=
r+1∑

j=0

Bα,β,{Sr }
j,n

(−n) j

(n + α + β + 1) j
,

κ̄
α,β,{Sr }
n

κ̄
α,β
n

=
r+1∑

j=0

Bα,β,{Sr }
j,n

κ̄
α+2 j,β
n− j

κ̄
α,β
n

=
r+1∑

j=0

Bα,β,{Sr }
j,n

(n + j + α)(1 − n) j

(n + α)(n + α + β + 1) j
.

(4.3)

Proposition 4.1 For α, β > −1 and n ∈ N, the following identities hold.

(a)
κ

α,β,N ,S
n

κ
α,β
n

=�α,β,N ,S
n , where �α,β,N ,S

n =1+φα,β
n N+χα,β

n S+ψα,β
n N S with

φα,β
n = (α + 2)n−1(α + β + 2)n−1

((n − 1)! (β + 1)n−1
,
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χα,β
n = (α + 2)n−1(α + β + 2)n

4(α + 1)3 (n − 2)! (β + 1)n−1
[(α + 2)(n − 1)(n + α + β + 1) + β],

ψα,β
n = (α + 2)n−1(α + 3)n−1(α + β + 2)n−1(α + β + 2)n

4(α + 1)3 (n − 2)! (n − 1)! (β + 1)n−2(β + 1)n−1
.

(b)
κ̄

α,β,N ,S
n+1

κ̄
α,β
n+1

=
2∑

j=0

Bα,β,N ,S
j,n

(n + α + 1) j (n + α + β + 2) j
(n − j + 2) j (n − j + β + 1) j

κ̄
α+2 j,β
n+1− j

κ̄
α,β
n+1

.

Proof (a) In view of (4.3), it follows by definition of Bα,β,N ,S
j,n that

κ
α,β,N ,S
n

κ
α,β
n

=1 + tα,β
n n

(n + α + β + 1)
N − [

uα,β
0,n − uα,β

1,n n

(n + α + β + 1)
− uα,β

2,n (n − 1)2

(n + α + β + 1)2

]
S

+ v
α,β
n (n − 1)2

(n + α + β + 1)2
NS.

Some calculations then show that the coefficients of N , S, and NS are equal to φ
α,β
n ,

χ
α,β
n , and ψ

α,β
n , respectively.

(b)We note that the identity is equivalent to

2∑

j=0

Bα,β,N ,S
j,n+1

(n + j+ α + 1)(−n) j

(n + α + 1)(n + α+ β+ 2) j
=

2∑

j=0

Bα,β,N ,S
j,n

(n − j+ 1)(n + α+ 2) j
(n + 1)(−n − β) j

.

With the knowledge of the coefficients and some efforts, this can indeed be
verified. �	

In case of an inner product with a single point mass Sr related to a derivative of
order r , we obtain the following.

Proposition 4.2 For α, β > −1, n > r and 1 ≤ r ≤ 10, the following identities hold.

(a)
κ

α,β,r
n

κ
α,β
n

= �α,β,r
n , where �α,β,r

n = 1 + χα,β,r
n Sr with

χα,β,r
n =δα,β,r

n

r∑

j=0

( r !
j !

)2
(r+ α + 1) j (n− r) j (n+ r + α +β+ 1− j) j (β)r− j ,

and δα,β,r
n = (α + r + 1)n−r (α + β + 2)n−1+r

(α + 1)2r+1(n − 1 − r)! (β + 1)n−1
.

(b)
κ̄

α,β,r
n+1

κ̄
α,β
n+1

=
r+1∑

j=0

Bα,β,r
j,n

(n + α + 1) j (n + α + β + 2) j
(n − j + 2) j (n − j + β + 1) j

κ̄
α+2 j,β
n+1− j

κ̄
α,β
n+1

.
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Proof (a) Notice that χα,β,1
n is equal to χ

α,β
n defined in Prop.4.1(a), while

χα,β,2
n = (α + 3)n−2(α + β + 2)n+1

24(α + 1)5(n − 3)! (β + 1)n−1

⎧
⎪⎨

⎪⎩

(α + 3)2(n − 2)2(n + α + β + 1)2
+ 4β (α + 3)(n − 2)(n + α + β + 2)

+ 4β(β + 1)

⎫
⎪⎬

⎪⎭
.

For higher values up to r = 10, the formula has been verified by MAPLE.
(b) To prove this identity, we made use of MAPLE, as well. �	

When compared with Prop.3.1 and Prop.3.2 in the Laguerre-Sobolev case, the
even higher complexity of the two identities in Prop.4.2 is responsible for the stronger
limitation to r ≤ 10.Again, there is no reason to believe that this restriction is essential.

Theorem 4.3 For α, β > −1 and N , S ≥ 0, Sr > 0, let the Jacobi-Sobolev polyno-
mials Pα,β,N ,S

n (x) and Pα,β,Sr
n (x) be given in (4.1-2), and let their first and second

leading coefficients be denoted by κ
α,β,N ,S
n , κ̄

α,β,N ,S
n and κ

α,β,r
n , κ̄

α,β,r
n , respectively.

We also recall that ‖Pα,β
n ‖2w(α,β) = hα,β

n as stated in (1.6).

(a) Let �
α,β,N ,S
n = 1 + φ

α,β
n N + χ

α,β
n S + ψ

α,β
n N S, n ∈ N, be given as in

Prop.4.1.(a). Then

‖Pα,β,N ,S
n ‖2w(α,β,N ,S)

‖Pα,β
n ‖2w(α,β)

= κ
α,β,N ,S
n

κ
α,β
n

κ
α,β,N ,S
n+1

κ
α,β
n+1

≡ �α,β,N ,S
n �

α,β,N ,S
n+1 . (4.4)

In particular, it follows that

‖Pα,β,N ,0
n ‖2w(α,β,N ,0)

‖Pα,β
n ‖2w(α,β)

= [
1 + φα,β

n N
] [
1 + φ

α,β
n+1N

]
,

‖Pα,β,0,S
n ‖2w(α,β,0,S)

‖Pα,β
n ‖2w(α,β)

= [
1 + χα,β

n S
] [
1 + χ

α,β
n+1S

]
.

(b) Let �
α,β,r
n = 1 + χ

α,β,r
n Sr , n > r , 1 ≤ r ≤ 10, be given as in Prop.4.2(a).

Then
‖Pα,β,Sr

n ‖2w(α,β,Sr )

‖Pα,β
n ‖2w(α,β)

= κ
α,β,r
n

κ
α,β
n

κ
α,β,r
n+1

κ
α,β
n+1

≡ �α,β,r
n �

α,β,r
n+1 . (4.5)

Proof The method we used to prove Thm.2.3 and Thm.3.3 in the Laguerre-Sobolev
cases is applicable here, aswell. Again, the basic ingredients are provided in Props.4.1-
2. Notice that the decisive transition from the Jacobi-Sobolev inner product to the
Jacobi scalar product holds true, since the Sobolev polynomials are expanded into
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powers of (1 − x)/2 which vanish at the boundary x = 1. To begin with part (b), the
identities (3.7) correspond to

− κ̄
α,β,r
n+1

κ
α,β,r
n

hα,β,r
n = (Pα,β,Sr

n , κ
α,β,r
n+1

(1 − x

2

)n+1
)w(α,β,Sr )

= κ
α,β,r
n+1

κ
α,β
n+1

( r+1∑

j=0

Bα,β,r
j,n

(1 − x

2

) j
Pα+2 j,β
n− j (x), κα,β

n+1

(1 − x

2

)n+1)
w(α,β)

= κ
α,β,r
n+1

κ
α,β
n+1

r+1∑

j=0

Bα,β,r
j,n

hα+2 j,β

22 j hα,β

κ
α,β
n+1

κ
α+2 j,β
n+1− j

(
Pα+2 j,β
n− j (x), κα+2 j,β

n+1− j

(1 − x

2

)n+1− j )
w(α+2 j,β)

= − κ
α,β,r
n+1

κ
α,β
n+1

r+1∑

j=0

Bα,β,r
j,n

hα+2 j,β

22 j hα,β

κ
α,β
n+1

κ
α+2 j,β
n+1− j

κ̄
α+2 j,β
n+1− j

κ
α+2 j,β
n− j

hα+2 j,β
n− j

= − κ
α,β,r
n+1

κ
α,β
n+1

hα,β
n

κ
α,β
n

r+1∑

j=0

Bα,β,r
j,n

(n + α + 1) j (n + α + β + 2) j
(n − j + 2) j (n − j + β + 1) j

κ̄
α+2 j,β
n+1− j .

(4.6)

Here, the shift of the parameter α in the Jacobi weight function (1.4) was justified in
view of

(1 − x

2

)2 j
hα,β wα,β(x) = 1

22 j
(1− x)α(1+ x)β = 1

22 j
hα+2 j,β wα+2 j,β(x), j ∈ N0,

while the last identity in (4.6) follows in view of

hα+2 j,β

22 j hα,β

κ
α,β
n+1

κ
α+2 j,β
n+1− j

κ
α,β
n

κ
α+2 j,β
n− j

hα+2 j,β
n− j

hα,β
n

= (n + α + 1) j (n + α + β + 2) j
(n − j + 2) j (n − j + β + 1) j

.

By converting (4.6) we get

hα,β,r
n

hα,β
n

= κ
α,β,r
n

κ
α,β
n

κ
α,β,r
n+1

κ
α,β
n+1

1

κ̄
α,β,r
n+1

r+1∑

j=0

Bα,β,r
j,n

(n + α + 1) j (n + α + β + 2) j
(n − j + 2) j (n − j + β + 1) j

κ̄
α+2 j,β
n+1− j .

Applying now both parts (b) and (a) of Prop.4.2 then yields the result (4.5).
To verify (4.4), we proceed from the definition (4.1) of the Jacobi-Sobolev polyno-

mials Pα,β,N ,S
n (x) with coefficients Bα,β,N ,S

j,n , j = 0, 1, 2. Essentially, the procedure
(4.6) is independent of the choice of the coefficients, so that

hα,β,N ,S
n

hα,β
n

= κ
α,β,N ,S
n κ

α,β,N ,S
n+1

κ
α,β
n κ

α,β
n+1 κ̄

α,β,N ,S
n+1

2∑

j=0

Bα,β,N ,S
j,n

(n + α + 1) j (n + α + β + 2) j
(n − j + 2) j (n − j + β + 1) j

κ̄
α+2 j,β
n+1− j .

By invoking Prop.4.1, the proof is accomplished. �	
The results stated above have the following interesting consequence in common.
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Corollary 4.4 Let {PSob
n }∞n=0 denote any of the polynomial systems treated in Thms.2.3,

3.3 and 4.3 and let�Sob
n be the corresponding quantity defined in (2.6), (3.6), (4.4) and

(4.5), respectively. Then the L2-norms of the Sobolev polynomials and their classical
counterparts are asymptotically related to each other by

‖PSob
n ‖ � ‖Pclass

n ‖ · �Sob
n (n → ∞).

Remark 4.5 We are not aware of an identity analogous to (2.10) in case of the Jacobi-
Sobolev polynomials Pα,β,N ,S

n (x), which could be utilized to give another proof of
Thm.4.4(a). We found, however, a direct proof similar to the third one of Thm.2.3.
Again, it required to split up the representation of the squared norm

‖Pα,β,N ,S
n ‖2w(α,β,N ,S) =

∫ 1

−1

( 2∑

j=0

Bα,β,N ,S
j,n

(1 − x

2

) j
Pα+2 j,β
n− j (x)

)2
wα,β(x))dx

+ N
[
Pα,β,N ,S
n (1)

]2 + S
[
(Pα,β,N ,S

n )′(1)
]2

into eight pieces and to evaluate each of them, separately. After expanding their sum
into similar powers of N and S, it was really amazing to realize that, similarly as in
(2.11) and again by the use of MAPLE, all the resulting coefficients can be written
in terms of φ

α,β
n , χ

α,β
n , ψ

α,β
n in Prop.4.1(a) in such way that they factorize into the

second product on the right-hand side of (4.4).

Remark 4.6 Comparing the results in Thm.4.3 with those in the Laguerre-Sobolev
cases one encounters a striking similarity. This is not surprising when taking into
account that the Jacobi- and Laguerre-Sobolev polynomials are linked to each other
via a limit process which extends the well-known relation limβ→∞ Pα,β

n (1−2x/β) =
Lα
n (x). In fact, it has been shown in [21, Prop.2.2] and, more generally, in [20, Cor.3.1]

that, after replacing the point mass Sr by Sr (β) = (2/β)2r Sr , there holds

lim
β→∞ Pα,β,N ,S1(β)

n

(
1−2x

β

)=Lα,N ,S1
n (x), lim

β→∞ Pα,β,Sr (β)
n

(
1−2x

β

)=Lα,Sr
n (x), r ∈N.

Furthermore, we find that

( − 2

β
Dξ

)r
Pα,β,N ,S1(β)
n (ξ)

∣∣
ξ=1 −−−→

β→∞ (Lα,Sr
n )(r)(0), r ∈ N.

2

β
wα,β

(
1 − 2x

β

) −−−→
β→∞ wα(x), hα,β

n −−−→
β→∞ hα

n .

Hence, the quotients of the squared norms in (4.4) and (4.5) tend in the limit β → ∞
to the quotients of the respective norms of the Laguerre-Sobolev polynomials in (2.6)
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and (3.6). The identities stated there then follow by observing that

�α,β,N ,S(β)
n = 1 + φα,β

n N + χα,β
n

4S

β2 + ψα,β
n N

4S

β2

−−−→
β→∞ 1 + φα

n N + χα
n S + ψα

n N S = �α,N ,S
n

and

�α,β,Sr (β)
n = 1 + χα,β,r

n

( 2
β

)2r
Sr

= 1+( 2
β

)2r
δα,β,r
n

r∑

j=0

( r !
j !

)2
(r+ α +1) j (n −r) j (n+ r + α +β +1 − j) j (β)r− j Sr

−−−→
β→∞ 1+

[ (r + α + 1)n−r

(α + 1)2r+1(n − 1 − r)!
r∑

j=0

( r !
j !

)2
(r + α + 1) j (n − r) j

]
Sr = �α,Sr

n .

5 Concluding remarks and perspectives

There are further systems of Sobolev-type orthogonal polynomials with important
properties one would like to know, notably their representations and the values of
their norms. For instance, one may think of the Jacobi-Sobolev polynomials with
point masses at both sides of the interval [−1, 1], say {Pα,β,M,N ,T ,S

n (x)}∞n=0, being
orthogonal with respect to the inner product, cf. [6, Sec.3], [24],

( f , g)w(α,β,M,N ,T ,S) = ( f , g)(wα,β) +
{
M f (−1)g(−1) + N f (1)g(1)+
T f ′(−1)g′(−1) + S f ′(1)g′(1).

(5.1)

In three particular situations, the norm values can be treated by our methods.

1. First of all, we note that our results in Section 4 immediately carry over to the
Jacobi-Sobolev polynomials with only point masses at x = −1, i.e., in case
N = S = 0 of (5.1). This is due to the symmetry relation of the Jacobi-Sobolev
polynomials Pα,β,M,N ,T ,S

n (−x)=(−1)n Pβ,α,N ,M,S,T
n (x) [6, Prop.1], [8, Sec.3],

combined with a corresponding relationship of the inner products.
2. In the particular case T = S = 0, (5.1) reduces to the scalar product for the gener-

alized Jacobi polynomials of Bochner-Krall type, which have been introduced by
J. and R. Koekoek [39] and studied by many authors. Here, the squared norm has
been given already in a form analogous to Thm.4.1(a) [40]. The proof is based on
the four-term representation of the polynomials Pα,β,M,N ,0,0

n (x) and requires an
elaborate evaluation of the numerous pieces of the squared norm similarly to the
third proof of Thm.2.3.
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3. In the literature, there are also many valuable contributions in the symmetric case
M = N , T = S. The corresponding polynomials are known as the (symmetric)
Gegenbauer-Sobolev polynomials as given in [41, Sec.2], see also [21, Sec.3]. By
applying our new approach described in Section 1, we recently determined their
squared norms in a form similar to the Jacobi-Sobolev case treated in Thm.4.1(a).
But here the indices of the two resulting�−factors differ by 2.We intent to publish
these and related results with further relevant references in due course.

To conclude: We are confident that the disclosed norm values of the considered
Sobolev orthogonal polynomials are useful to further explore their features and to
gain deeper insight into their nature. Moreover, there is a fair chance that the presented
concept will open promising new perspectives.
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