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buildings with multivariate coupling.
ALADIN comes close to performance of 
central MPC while ADMM fails.
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and scaling variations than ADMM.
Neural Network based models reduce 
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based approaches.
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tral MPC starting at 10 thermal zones.
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 A B S T R A C T

The implementation of sophisticated control strategies for building energy systems is crucial for improving 
energy efficiency and occupant comfort. While nonlinear model predictive control offers promising benefits, 
its application to large-scale building systems remains challenging due to computational complexity and 
system coupling. This work presents a comprehensive study of Nonlinear Distributed Model Predictive Control 
(NDMPC) implementation for building energy systems, comparing Alternating Direction Method of Multipliers 
(ADMM) and Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithms alongside 
different modeling approaches. We examine a multi-zone heating system with thermal storage and multiple 
producers, investigating both Ordinary Differential Equation (ODE)-based and Artificial Neural Network (ANN) 
based modeling strategies. Through systematic parameter tuning using Bayesian optimization and closed-
loop scaling analysis with up to 40 thermal zones, we demonstrate that ALADIN-based NDMPC can achieve 
performance comparable to centralized model predictive control, showing greater robustness to parameter 
variations than ADMM. Our results reveal that ANN-based models effectively mitigate distributed integration 
errors and significantly reduce computation time compared to ODE-based approaches. Detailed computational 
profiling identifies specific bottlenecks in different NDMPC components. These findings advance the practical 
implementation of NDMPC in building energy systems, offering concrete strategies for modeling choices, 

parameter tuning, and system architecture design.
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1. Introduction

The modernization of building control systems is crucial for reduc-
ing energy consumption and CO2 emissions in the built environment. 
MPC has emerged as a promising approach, offering several advan-
tages over traditional building controllers [1]. These traditional con-
trollers typically rely on rule-based systems and simple Proportional-
Integral-Derivative (PID) or hysteresis controllers for setpoint tracking. 
In contrast, MPC can implement precise heating and cooling sched-
ules, optimize component operations, and consider factors such as 
weather forecasts and dynamic energy prices [2]. A recent critical 
review of MPC field implementations by Saloux et al. [3] underscores 
its practical success, demonstrating average energy cost reductions 
of approximately 25% across numerous studies. However, the studies 
reviewed by Saloux et al. [3] often featured buildings with a floor 
area of less than 1000 m2. Realizing the full potential of MPC in 
large-scale, complex BESs presents ongoing challenges. To address the 
challenges of applying MPC to large-scale and complex BESs, DMPC 
has emerged as a key research area [4,5]. DMPC offers the potential 
for improved scalability by decomposing the overall control problem 
into smaller, coupled subproblems that can be solved in parallel by 
individual agents. This modularity can also simplify modeling and sys-
tem maintenance [6]. However, BESs are inherently nonlinear systems, 
involving thermal dynamics, hydraulic interactions, and varying com-
ponent efficiencies. Therefore, NDMPC is often necessary to accurately 
capture these characteristics and achieve optimal performance.

1.1. Literature review

This section provides an overview of the current state of research 
in DMPC for BES. We first we discuss some case studies on DMPC for 
buildings, then we discuss solution algorithms and challenges specific 
to nonlinear DMPC.

1.1.1. Current state of distributed model predictive control for buildings
Applications of DMPC in buildings largely fall into two categories: 

smart grids and multi-zone control.
In the context of smart grids, Shi et al. [7] applied DMPC to control 

a smart grid with linear building models coupled through AC power 
flow. Their approach used custom routines within an ADMM-based 
distributed optimization framework to handle non-convex constraints 
resulting from the AC power flow equations. For a demonstration on the 
IEEE-123-bus system partitioned into 3 agents, their DMPC performed 
within 1% of the centralized MPC. While computing time approxi-
mately doubles compared to centralized computation, the advantage 
lies in reduced information exchange.

Lefebure et al. [8] explored DMPC based on dual decomposition for 
multi-building energy hubs. They employed a mixed-integer quadratic 
programming approach centrally, relaxing it to reduce the number 
of integer decisions in the distributed version. They used regulariza-
tion terms and augmented objective functions to improve the con-
vergence of their dual ascent approach. They achieved closed-loop 
performance equivalent to the centralized controller, scaling better 
than the centralized controller with larger networks.

For multi-zone control, Lin and Adetola [9] utilized ADMM-based 
NDMPC to control a simulated multi-zone building with up to 320 
zones, conditioned with a central AHU with variable air volume flow 
per zone. They included a cubic objective for the total ventilator power 
intake and a simple, yet nonlinear modeling for the air temperature per 
zone. The zones are coupled through the sum of their air mass flows, 
and a unified supply air temperature. Crucially, they exclude thermal 
energy consumption from their objective, removing the interdepen-
dence between their coupling variables. Their approach demonstrated 
linear scaling with the number of zones.

Yang et al. [10] examine a NDMPC problem where they control the 
ventilation rate for a multi-zone building cooled by an air handling 
2 
unit. The MPC has a nonlinear objective including cooling power and 
fan power, linear thermal coupling between zones and bi-linear zone 
dynamics including the ventilation rate and the zone temperature. 
They use auxiliary variables and McCormick envelopes for the bilinear 
constraints to relax the zone agents into Quadratic Programs (QPs), 
while retaining the nonlinear objective in the fan agent. They solve the 
distributed Optimal Control Problem (OCP) using the accelerated dis-
tributed augmented Lagrangians (ADAL) method, demonstrating good 
scalability for systems up to 500 zones.

While these studies solved challenging DMPC problems, they leave 
some aspects of NDMPC unexplored. In particular, they do not feature 
multi-variate nonlinear coupling of system dynamics between subsys-
tems. These kinds of couplings easily arise in hydraulic systems where 
components are connected with a water mass flow, a supply and a 
return temperature. While the study in [9] appears to make such a 
coupling for an air-based system, their simplifications with regard to 
the producer side make the multi-variate coupling inconsequential.

1.1.2. Solution algorithms for distributed model predictive control
Early works on DMPC focused on the distinction between coop-

erative and non-cooperative schemes. The book by Maestre and Ne-
genborn [5] comprises 35 contributions on DMPC featuring different 
authors. Non-cooperative DMPC often involved non-iterative methods, 
while cooperative DMPC required global system knowledge across all 
agents [5]. The seminal work by Rawlings et al. [11] on MPC funda-
mentals covers linear DMPC schemes that necessitate the exchange of 
system matrices. A comprehensive review by Christofides et al. [12] in 
2013 also focuses on the cooperative schemes, with only brief mentions 
of distributed optimization based methods like dual decomposition, or 
augmented Lagrangian techniques.

Recent years have witnessed a paradigm shift towards distributed 
optimization-based approaches in optimal control for buildings and 
grids. These methods offer individual agents considerable autonomy, 
requiring only the exchange of coupling vectors while effectively man-
aging strong inter-system couplings. Primal–dual and augmented
Lagrangian-based approaches have emerged as popular choices, being 
featured in all references provided in the above Section 1.1.1.

Among these, ADMM has gained significant traction due to its 
simplicity, versatility and effectiveness. ADMM was originally proposed 
in the 70s [13,14] and renewed by Boyd et al. [15]. A comprehensive 
survey by Yang et al. [16] provides an in-depth analysis of ADMM 
and its many variants, highlighting its wide-ranging applications in dis-
tributed optimization problems. However, when applied to non-convex 
problems, ADMM’s performance can be suboptimal, often resulting in 
slow convergence. In fact, Engelmann [17] notes that for constrained 
optimization problems, both convergence speed and solution accuracy 
can be limited, regardless of parameterization. To address the limita-
tions of ADMM in non-convex scenarios, more advanced algorithms 
have been developed.  Sun and Sun [18] propose a two-level algo-
rithm to handle distributed non-convex optimization problems. They 
introduce slack variables to ensure feasibility and convergence of the 
inner ADMM level, while driving feasibility at the outer level, using 
an augmented Lagrangian based approach.  Tang and Daoutidis [19] 
expand on the two level algorithm, giving suggestions for parameteriza-
tion and realizing speedups through approximate iterates and Anderson 
Acceleration. They demonstrate the algorithm on a quadruple tank 
process, controlling volume flows through NDMPC.

Another algorithm for non-convex distributed optimization is AL-
ADIN, introduced by Houska et al.. ALADIN has shown promising 
results in handling non-convex problems more effectively, combining 
the decomposition benefits of ADMM with the fast local convergence of 
Newton-type methods. Compared with ADMM, ALADIN trades a better 
convergence rate for increased communication and central computation 
overhead. While wide-spread adoption of ALADIN has yet to manifest, 
there already exist a number of applications and improvements on 
the original algorithm.  Jiang et al. [21] used ALADIN for a DMPC 
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in smart grids. They used relaxed decoupled equality constraints in 
the consensus QP and dynamic updates of the slackness parameters 
for said relaxation, improving upon the ADMM based solution both 
in closed loop number of iterations, and in scaling towards larger 
systems [21].  Su et al. [22] used ALADIN to coordinate demand 
response in commercial buildings. While their problem formulation was 
convex, they used a modified ALADIN variant with an analytical central 
step to speed up convergence compared to ADMM [22].  Engelmann 
et al. [23] extended the standard ALADIN algorithm by solving the 
coordination QP in a distributed fashion as well, allowing for a fully 
distributed implementation [17,23].

1.1.3. Issues with distributed transcription of optimal control problems
While existing research on NDMPC often focuses on specific op-

timization algorithms, the distributed transcription is rarely a focus. 
Direct transcription methods, such as direct multiple shooting and 
direct collocation are popular for central MPC, as they are easy to 
implement and scale well for larger problems [24]. Multiple shooting 
requires a discrete mapping from the current system states onto a 
future time step, commonly realized through integrating ODEs over 
the time step using Runge–Kutta methods or robust solvers like CVODE 
for stiff systems. Collocation methods approximate the state evolution 
over a time interval through polynomials, simultaneously optimizing 
the polynomial roots with the other decision variables.

The application of direct nonlinear transcription methods towards 
distributed optimization faces a challenge. As the neighbor-to-neighbor 
communication between agents consists of vectors of the shared vari-
ables’ values at discrete points in time, the continuous evolution of 
neighboring states is not accurately considered in an agents’ integra-
tion scheme, resulting in a reduced integration order with regard to 
some states. A recent study on real-time interactions for NDMPC [25] 
acknowledged this problem, referring to a distributed multiple shooting 
method [26]. While the distributed transcription error can be miti-
gated, i.e. by using the proposed distributed multiple shooting method, 
or using a finer discretization grid, these techniques come with the 
tradeoff of increasingly large coupling variables.

It is worth noting that many applications driving the development 
of distributed algorithms for non-convex optimization, such as optimal 
power flow problems, often assume separable time scales and ignore 
transient effects [17]. While this simplification sidesteps the issue of 
reduced integration order, it may not be applicable in dynamic building 
energy systems where transient effects play a significant role.

1.1.4. Modeling for nonlinear model predictive control
In the literature, the categorization of models into white-box, gray-

box and black box is overwhelmingly prevalent, i.e. in studies [2,27,
28]. Yet, the boundaries between these categories are often blurred, 
making it difficult to define precisely when a model transitions from 
one category to another. This work adopts a different perspective, 
shifting the focus from the source of the model knowledge (data vs. 
expert) to the structure of the model itself (continuous vs. discrete).

Continuous models, typically based on ODEs, can represent the 
underlying physics of the system, potentially leading to better gener-
alization. There are many existing studies using these models for Non-
linear Model Predictive Control (NMPC), for example in studies [28–
32]. However, deriving and parameterizing ODE-based models can be 
complex, particularly for large-scale BES with intricate dynamics. Fur-
thermore, as discussed in Section 1.1.3, using continuous models within 
a distributed optimization framework introduces challenges related to 
numerical integration.

Discrete, data-driven models offer an alternative approach. These 
models learn nonlinear relationships directly from data, bypassing the 
need for explicit physical equations. Nonlinear Autoregressive with 
Exogenous Inputs (NARX) models are a powerful class of discrete 
models capable of capturing temporal dependencies in BES data [33]. 
Stoffel compare the use of different NARX and Autoregressive with 
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Exogenous Inputs (ARX) models based on ANN and Gaussian Process 
Regression (GPR) to model thermal zone behavior and heat pump 
power consumptions for building MPC, showing accurate performance 
in simulation and real experiments. As these models are inherently dis-
crete, the performance degradation due to neighboring states with un-
known dynamics is already priced in, and should not further deteriorate 
when moving to distributed formulation. In this work, NARX models 
are implemented using ANNs, leveraging their ability to approximate 
arbitrary nonlinear functions.

The preceding literature review highlights that while DMPC of-
fers a path towards managing large-scale BESs, significant challenges 
remain, particularly when addressing the inherent nonlinearities and 
complex interdependencies prevalent in such systems. Key identified 
gaps include the need for NDMPC strategies capable of handling multi-
variate couplings, comprehensive comparisons of advanced distributed 
optimization algorithms like ALADIN and ADMM in these demanding 
contexts, and effective methods for mitigating distributed integration 
errors, especially when using ODE-based models. Successfully address-
ing these NDMPC challenges is crucial for unlocking more ambitious 
control objectives. These include the simultaneous optimization of 
multiple interacting subsystems considering, for example, nonlinear 
component efficiencies and hydraulic effects, as well as enabling seam-
less integration with smart grids and the provision of demand response 
services. This paper, therefore, focuses on the implementation and 
comparative analysis of NDMPC strategies for a BES characterized by 
strong hydraulic and nonlinear couplings between producers, thermal 
storage, and multiple consumer zones. The aim of this work is to rigor-
ously investigate and compare the performance of ALADIN and ADMM 
for this class of problems. We evaluate the efficacy of ODE-based 
versus ANN-based modeling approaches within the distributed control 
framework, with a particular focus on solution quality, computational 
efficiency, scalability, and strategies for managing the challenges of 
distributed system representation and optimization.

1.2. Contribution

This work addresses several key challenges in implementing NDMPC 
for complex BESs. Our main contributions are:

1. Comprehensive NDMPC implementation for BES: We demon-
strate a fully-functional NDMPC which couples producers, distri-
bution systems, and consumers in a building energy system. This 
implementation considers nonlinear dynamics and multivariate 
couplings, addressing a gap in current literature where such 
comprehensive NDMPC for BES is understudied.

2. Modeling Approach for Distributed Control:

(a) We introduce the use of NARX models, implemented with 
ANNs, comparing them to traditional ODE-based model-
ing in NDMPC.

(b) We demonstrate that this ANN-based approach mitigates 
errors arising from distributed integration without resort-
ing to complex distributed integration schemes.

3. Algorithmic Performance Analysis: We provide a comparative 
analysis of ADMM and ALADIN for the NDMPC problem, com-
paring them to the solution provided by the state of the art 
Nonlinear Program (NLP) solver IPOPT.

4. Scaling and Parameter Tuning Insights:

(a) We investigate the scalability of our NDMPC approach 
by analyzing execution times when increasing the system 
size.

(b) We highlight the importance of problem scaling and pro-
vide insights into parameter tuning for distributed opti-
mization algorithms, particularly ADMM and ALADIN.
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5. Topology Considerations: We identify potential issues with star-
like topologies in building energy systems and discuss their 
impact on NDMPC performance.

Through these contributions, we aim to advance the practical im-
plementation of NDMPC in building energy systems, addressing key 
challenges in modeling, optimization, and scalability.

The remainder of this paper is organized as follows: Section 2 
introduces the examined problem class and introduces the case study. 
Section 3 presents the controller architecture, proposing two distinct 
modeling approaches, based on differential equations and discrete data-
driven models respectively. Section 4 briefly covers ADMM and AL-
ADIN, the distributed optimization algorithms used in this study. Sec-
tion 5 introduces the benchmark controllers against which the NDMPC 
is compared. Section 6 provides results of our case study, includ-
ing modeling, parameter tuning, controller performance, and scalabil-
ity. Section 7 interprets the observed results, assesses the viability of 
NDMPC, considers limitations of the present work, and recommends 
future research directions.

2. Case study: Strong hydraulic coupling in building energy sys-
tems

2.1. Model predictive control of buildings: Expectations and challenges

Many MPC benefits observed with basic linear MPC, such as pre-
heating/cooling strategies and activating systems only when neces-
sary, can also be achieved with rules and PID controllers. In contrast, 
achieving more sophisticated goals, like simultaneous optimization of 
temperature and mass flow or considering nonlinear efficiency curves, 
requires nonlinear optimization and consideration of whole-building 
couplings. For large, interconnected building systems in particular, this 
leads to intractable MPC formulations, making ambitious goals for MPC 
seemingly unreachable. We experience a paradox, where easy MPC 
does not bring the full benefits, while an MPC tailored to optimizing 
all aspects of the operation is difficult to implement.

To address these challenges and fully realize the potential of build-
ing MPC, an MPC scheme that considers nonlinear behavior while 
scaling gracefully with system size is required. Agent-based MPC, 
or DMPC allows building an MPC from smaller agents that can be 
configured independently and are computationally tractable. Through 
parallel implementations of distributed optimization algorithms, these 
DMPC schemes promise to scale better with system size compared to 
classic centralized optimization algorithms, like interior point methods, 
or sequential quadratic programming. In the following, we consider 
types of agents that can be extracted from a BES, how they are coupled, 
and present an example BES that is suitable for examining the behavior 
of NDMPC.

2.2. Coupling within building energy systems

Building energy systems comprise several interconnected subsys-
tems. We categorize the subsystems into three main types:
Rooms/thermal zones. These are the primary interfaces with building 
occupants, typically equipped with temperature and CO2 sensors, along 
with various actuators. Thermal zones are typically equipped with 
heat emitters (e.g., radiators, underfloor heating) or cooling emitters 
(e.g., ceiling panels, fan coil units). Some systems, like Variable Air 
Volumes (VAVs), can provide heating, cooling, and fresh air supply, 
acting as conditioned air delivery systems rather than simple emitters. 
While further subdivision into individual components is theoretically 
possible, we consider thermal zones as a single subsystem for the scope 
of this study.

The behavior of these subsystems is quite individual and highly 
influenced by disturbances (e.g. ambient temperature, irradiative or 
internal gains), however usually exhibits only weak nonlinearities. In 
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many conventional control approaches, parameters like supply temper-
atures for heating or cooling circuits are determined a priori (e.g., via 
a heating curve), with local PID controllers then modulating mass 
flows through valves or dampers. In contrast, MPC allows for the 
simultaneous optimization of both supply temperatures and mass flows, 
which can introduce beneficial, yet challenging, bilinear dynamics into 
the control problem. The primary objective for these subsystems is 
occupant comfort, typically achieved by maintaining air temperature 
and CO2 levels within acceptable ranges.
Producers. These subsystems are responsible for heating and cooling 
water or air, consuming electricity or fuel in the process. Common 
examples include gas boilers, combined heat and power units (CHPs), 
heat pumps, and chillers. The primary objective for producers is typi-
cally to minimize energy consumption or operational costs, while keep-
ing supply temperatures adequate. These objectives may be nonlinear 
due to efficiency curves.
Distribution/storage systems. This category encompasses components 
such as buffer storages, hydraulic switches, injection circuits, mixing 
circuits, and potentially pipe or air duct segments when flow times are 
significant. These systems may have nonlinear dynamics, depending on 
the degree of modeling, and the degree of freedom (i.e. are some mass 
flows or temperatures fixed) They generally lack individual objective 
functions and serve to connect other subsystems.

The coupling between these subsystems is achieved through shared 
variables, which we refer to as coupling variables. These variables are 
subject to two types of constraints:

• Exchange constraints: These require that the sum of all instances 
of a variable across subsystems equals zero. For example, the mass 
flow exiting a producer (with positive sign) must add up to zero 
considering the mass flows through all supplied subsystems (with 
negative sign).

• Consensus constraints: These mandate that a variable maintains 
the same value across all relevant subsystems. For instance, the 
supply temperature exiting a producer must match the supply 
temperature for all zones served by that producer.

While many studies focus on only one type of coupling, they can 
also be combined, as seen in [9]. In this study, we realize all couplings 
through consensus constraints.

2.3. Investigated building energy system

To illustrate the application of DMPC in building energy systems, we 
consider a representative system as shown in Fig.  1. The system under 
study, depicted in Fig.  1 and previously examined in [35], features two 
primary heat producers: a gas boiler and a Combined Heat and Power 
(CHP) unit. These producers feed into a sensible heat storage tank, 
which acts as a thermal buffer and distribution hub. The storage tank 
supplies hot water to the heating emitters of multiple thermal zones, 
generally represented by 𝑁𝑧 consumers in Fig.  1.

The systems’ parameters are inspired by the E.ON Energy Research 
Center main building in Aachen, Germany (usable area 𝐴𝑢𝑠𝑒 ≈ 6300 m2, 
gross volume 𝑉𝑔 ≈ 31500 m3). For initial detailed controller analy-
sis and parameter tuning (as presented in Sections 6.1 and 6.3), a 
baseline configuration with two distinct thermal zones is employed. 
The system’s scalability is subsequently investigated by increasing the 
number of consumer zones up to 40, as detailed in the results on 
system scaling (Section 6.4). The design heating requirement for the 
overall system is approximately 107.3 kWth, calculated for a design 
point of −5 ◦C ambient temperature and a 21 ◦C indoor reference 
temperature. In the aforementioned two-zone baseline configuration, 
this load is distributed as 81.3 kWth for Zone 1 and 26.0 kWth for Zone 
2. The overall thermal capacity of the zones solid mass was estimated 
based on DIN V 18599-2, which suggests 𝐶 = 𝐴 ⋅ 45 Wh∕(m2 K)
𝑏 𝑢𝑠𝑒
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Fig. 1. Controlled system and coupling variables.
for light building zones. Our model utilizes half of this estimated 
building thermal mass. This change, balanced by the omission of faster 
heat transfer mechanisms like infiltration and solar gains, ensures 
appropriately fast system dynamics, which is beneficial for observing 
control responses within reasonable simulation times. Furthermore, the 
E.ON ERC building features significant open internal spaces, lending 
credence to a model with effectively lower overall thermal inertia for 
its conditioned volume.

The primary focus of this work is the behavior of NDMPC algorithms 
when faced with strong, nonlinear hydraulic coupling. Therefore, de-
tailed thermal modeling of the zones was considered secondary to the 
clear representation of inter-agent dependencies. Similarly, the thermal 
storage is modeled as a stratified tank with two distinct layers. This is a 
deliberate simplification chosen as a trade-off: it introduces the numer-
ical complexity of enthalpy exchange and distinct temperature levels—
key aspects for studying hydraulic coupling in DMPC—without making 
the problem overly complex for the core algorithmic investigation.

The heat producers are dimensioned as follows. The boiler has a 
nominal thermal output of 66 kWth, and the CHP unit provides 46 kWth. 
The CHP is sized smaller than the boiler to encourage its prioritization 
for base-load coverage, maximizing its operational runtime and overall 
efficiency. The thermal storage tank has a volume of 15 m3, providing 
a thermal capacity of approximately 346 kWhth over a temperature 
difference of 20 K. This capacity allows the storage to meet the build-
ing’s total heating requirement for just over three hours. To provide 
a basis for external thermal disturbances, the simulations utilize an 
ambient temperature profile from January of the Test Reference Year 
(TRY) 2015 for Aachen, Germany. However, it is acknowledged that 
the overall disturbance model is simplified, as solar irradiation and 
dynamic internal gains are not considered in this study.

For the DMPC, we couple the consumers with the storage through 
consensus constraints on supply temperature, return temperature, and 
mass flow simultaneously. This approach results in multiple interacting 
variables per edge in the system graph, leading to significant computa-
tional challenges due to nonlinear interactions. While fixing either mass 
flow or supply temperature would simplify the problem considerably, 
it would also limit the potential benefits of NDMPC. In the case of fixed 
mass flows, the heating of the zones cannot be stopped without draining 
the storage, while in the case of fixed supply temperatures, the storage 
cannot provide any flexibility. For the coupling between producers and 
the storage, we do fix the mass flow, balancing the overall challenge 
of this setup. We allow actuation of relative producer powers and con-
sumer side mass flows, introducing the full complexity of nonlinearly 
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coupled subsystems. For detailed modeling on the physical system, refer 
to Table  2. Due to different sizes and thermal inertia of the walls, air 
and heating states, the system requires surprisingly robust integration 
methods. By analyzing the behavior of the DMPC (and the underlying 
distributed optimization algorithms), we aim to lay the groundwork for 
MPC that is able to determine optimal operation of an entire building 
and not only its subsystems.

3. Design of distributed controller

In this section, we cover the design and implementation of an 
NDMPC for our example building energy system. We explain how to 
use neural networks as process models in MPC, state the modeling for 
our individual problem and derive the optimal control problem for the 
agents from there.

3.1. Neural networks as state estimators

In the context of NMPC, NARX models based on ANN can be used 
to form a discrete model of the process, capturing the evolution of a 
state over a fixed time interval without the need to solve differential 
equations. We train a single step predictor for the next state based on 
its past states and external (exogenous) inputs: 
𝑥(𝑡) = (𝑥(𝑡 − 1), 𝑥(𝑡 − 2),… , 𝑥(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2),… , 𝑢(𝑡 − 𝑛𝑢)) (1)

where 𝑥(𝑡) is the system state at time 𝑡, 𝑢(𝑡) represents the exogenous 
inputs, and 𝑛𝑦 and 𝑛𝑢 are the number of past output and input terms 
used for prediction. Neural networks can be trained to approximate this 
function . The network takes as input a window of past states and 
inputs, and outputs the predicted next state.

Ensuring the stability and robustness of the neural network-based 
controller remains a nontrivial task. Techniques such as online learning 
and uncertainty quantification are active areas of research addressing 
these challenges [34,36,37]. However, the generation and training of 
these models is not the focus of this work. In this work, we can generate 
sufficient training data by simulating the building model with a variety 
of input combinations. Only the most recent past state and input is used.

3.2. Control modeling of subsystems

As illustrated in Fig.  1, the energy system under consideration 
comprises two producers, a buffer storage, and multiple thermal zones. 
Table  1 includes a reference to all symbols appearing in the modeling.
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Table 1
Summary of symbols used in the BES modeling.
 Subsystem Symbol Description  
 

General

𝑚̇ Mass flow rate  
 𝑐𝑝 Specific heat capacity  
 𝑡 Time  
 𝑘 Heat transfer coefficient  
 𝐶 Thermal capacity  
 𝑁𝑧 Number of zones  
 

Boiler

𝑇𝑏 Boiler outlet temperature  
 𝑢𝑏 Boiler control input  
 𝑄̇𝑛,𝑏 Nominal boiler thermal power  
 𝜂𝑏 Boiler efficiency  
 𝑟𝑔𝑎𝑠 Gas price  
 

CHP

𝑇𝑐 CHP outlet temperature  
 𝑢𝑐 CHP control input  
 𝑄̇𝑐 CHP thermal power output  
 𝑃𝑒𝑙,𝑐 CHP electrical power output  
 𝑄̇𝑔𝑎𝑠,𝑐 CHP gas consumption  
 𝑟𝑒𝑙 Electricity price  
 

Storage

𝑇𝑠,ℎ Storage hot layer temperature  
 𝑇𝑠,𝑐 Storage cold layer temperature  
 𝑇𝑒𝑛𝑣 Storage environment temperature  
 𝐻̇ℎ→𝑐 Enthalpy exchange between layers  
 𝜖 Smoothing parameter  
 

Consumer
(Thermal zone)

𝑇ℎ,𝑖 Heating system temperature of zone i  
 𝑇𝑧,𝑖 Zone air temperature  
 𝑇𝑤,𝑖 Wall temperature  
 𝑇𝑎𝑚𝑏 Ambient temperature  
 𝑄̇ℎ→𝑧,𝑖 Heat transfer from heating to zone  
 𝑠𝑧,𝑖 Slack variable for temperature constraint 
 𝑤𝑖 Weight for slack variable in objective  
 𝑇𝑧,min Minimum allowed zone temperature  
 𝑇𝑧,max Maximum allowed zone temperature  

Table  2 summarizes the modeling, constraints, and objectives of 
these subsystems in the MPC framework.

The producers – a CHP and a gas boiler – are modeled using 
stationary energy balances, assuming negligible thermal inertia. Their 
respective control inputs, 𝑢𝑐 for the CHP and 𝑢𝑏 for the boiler, represent 
normalized power settings ranging from 0 to 1. The boiler’s gas usage 
is inferred from its thermal power output via a constant efficiency, 
while the CHP’s gas consumption and electricity generation are deter-
mined through interpolation tables. The producers’ objective function 
incorporates gas usage at price 𝑟𝑔𝑎𝑠 and electricity revenue at price 𝑟𝑒𝑙.

The thermal storage is modeled as a stratified tank with two distinct 
layers (hot and cold) to capture basic stratification effects. The two-
layer storage model is governed by the differential equations (2) and 
(3):

𝐶𝑠
2

𝑑𝑇𝑠,ℎ
𝑑𝑡

= 𝑚̇𝑏𝑐𝑝𝑇𝑏 + 𝑚̇𝑐𝑐𝑝𝑇𝑐 −
𝑁𝑧
∑

𝑖=1
𝑚̇ℎ,𝑖𝑐𝑝𝑇𝑠,ℎ − 𝐻̇ℎ→𝑐 − 𝑘𝑠(𝑇𝑠,ℎ − 𝑇𝑒𝑛𝑣) (2)

𝐶𝑠
2

𝑑𝑇𝑠,𝑐
𝑑𝑡

=
𝑁𝑧
∑

𝑖=1
𝑚̇ℎ,𝑖𝑐𝑝𝑇ℎ,𝑖 − (𝑚̇𝑏 + 𝑚̇𝑐 )𝑐𝑝𝑇𝑠,𝑐 + 𝐻̇ℎ→𝑐 − 𝑘𝑠(𝑇𝑠,𝑐 − 𝑇𝑒𝑛𝑣) (3)

The enthalpy exchange between layers 𝐻̇ℎ→𝑐 is defined as: 

𝐻̇ℎ→𝑐 = 𝑚̇ℎ→𝑐𝑐𝑝
𝑇𝑠,ℎ + 𝑇𝑠,𝑐

2
+ 𝑚̇∗

ℎ→𝑐𝑐𝑝
𝑇𝑠,ℎ − 𝑇𝑠,𝑐

2
(4a)

𝑚̇ℎ→𝑐 = (𝑚̇𝑏 + 𝑚̇𝑐 ) −
𝑁𝑧
∑

𝑖=1
𝑚̇ℎ,𝑖 (4b)

𝑚̇∗
ℎ→𝑐 =

√

𝑚̇2
ℎ→𝑐 + 𝜖 (4c)

This formulation, utilizing a small smoothing parameter 𝜖 > 0, ensures 
the differential equations remain smooth when the net flow between 
layers reverses, i.e., when the mass flow through producers equals that 
through consumers. The storage unit is subject only to box constraints 
on its state variables and has no specific objective function.
6 
Each thermal zone 𝑖 is characterized by three state variables: heating 
temperature 𝑇ℎ,𝑖, zone air temperature 𝑇𝑧,𝑖, and lumped wall tempera-
ture 𝑇𝑤,𝑖. The heating system is modeled as an ideal mixed volume, 
with heat exchange between thermal capacities represented by constant 
coefficients 𝑘. This thermal model for the zones is deliberately kept 
relatively simple (linear heat transfer, no radiation or infiltration, a 
single solid capacity). The chosen model is sufficient to create dynamic 
thermal loads that interact with the shared hydraulic system. A more 
detailed thermal model per zone would increase the complexity of 
individual agent NLPs but might obscure the specific challenges arising 
from the inter-agent coupling, which is central to this study. The control 
input for each zone 𝑖 is 𝑢𝑝,𝑖, representing a normalized mass flow setting 
for its heating system, ranging from 0 to 1. The thermal zone model 
incorporates a soft constraint on air temperature 𝑇𝑧,𝑖 with variable 
bounds: a lower bound of 17 ◦C (night setback) and an upper bound of 
21 ◦C (comfort temperature during occupancy). This is implemented 
using a slack variable 𝑠𝑧,𝑖 with weight 𝑤𝑖 in the agent’s objective 
function, as detailed in Table  2.

For ANN-based modeling, Table  2 specifies the features used to 
approximate the differential equations. The modeling is autoregressive, 
i.e. the output variable is always included in the inputs of the ANN. 
ANN-based approximations are applied only to differential equations, 
leaving stationary energy balances (e.g., in producers) unchanged from 
ODE-based modeling. Note that with ANN-based modeling, we skip 
modeling the heating system, instead considering the upper storage 
temperature 𝑇𝑠,ℎ and mass flow 𝑚𝑖 directly in the zone temperature 𝑇𝑧,𝑖. 
Consequently, the ANN model for the storage lower layer temperature 
includes the zone temperature 𝑇𝑧,𝑖 as a feature and not the heating 
temperature 𝑇ℎ,𝑖.

3.3. Challenges in Distributed Integration for NDMPC

Consider the coupling variables defined in Fig.  1 in conjunction 
with the equations in Table  2. Variables such as the upper layer 
storage temperature 𝑇𝑠,ℎ, which effectively serves as the supply tem-
perature for thermal zones, appear in both the storage and consumer 
subsystems. When solving the optimal control problem for the entire 
system using a direct transcription method like multiple shooting, an 
integration scheme is employed to solve the system of differential 
equations. Depending on the system’s stiffness, either a Runge–Kutta 
method or more sophisticated iterative integration schemes, such as 
those provided by CVODES in the Sundials Suite [38], can be utilized. 
These integration schemes consider the simultaneous evolution of states 
throughout the integration interval, yielding precise solutions to the 
differential equations.

However, when employing a distributed solution algorithm (see 
Section 4), typically only discrete values of the coupling variables 
are exchanged between agents. Consequently, a state like the supply 
temperature, governed by Eq.  (2), is only available at discrete intervals 
to the thermal zone agents. This effectively reduces the integration 
order for this variable to one (i.e., an explicit Euler step) in the thermal 
zone agents. Fig.  2 illustrates this. There are 𝑁 +1 states defined on an 
equally spaced grid, with 𝑁 inputs (i.e., controls, disturbances, etc.) 
defined as constant between two grid points. Consider that variables 
which serve a role in the local subproblem of an agent (i.e., as state, 
controlled or non-controlled input) can also be coupling variables. The 
example in Fig.  2(a) demonstrates the case where the coupling variable 
serves as an input in Agent 1 (e.g., supply temperature in zone agent), 
while it is a state in Agent 2 (e.g., upper layer storage temperature 
in storage agent). To define a consensus constraint suitable for op-
timization with a distributed optimization algorithm, the dimensions 
of the coupling variables must match exactly. In this study, we use 
the input grid (length 𝑁) as a coupling grid, although this introduces 
notable errors, as demonstrated in Fig.  2(b). More sophisticated meth-
ods for computing coupling variable values could be considered, such 
as approximating polynomials and communicating their coefficients 
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Table 2
Subsystem models, constraints, and objectives for ODE-based and ANN-based MPC.
 Component ODE-based ANN-based  
 
Boiler

Model 𝑇𝑏 = 𝑇𝑠,𝑐 + 𝑢𝑏
𝑄̇𝑛,𝑏

𝑚̇𝑏𝑐𝑝

Identical to ODE-based
 

 Constraints Box constraints on decision vector  
 Objective 𝐽𝑏 = 𝑟𝑔𝑎𝑠𝑢𝑏

𝑄̇𝑛,𝑏

𝜂𝑏
 

 

CHP

Model [𝑄̇𝑐 , 𝑃𝑒𝑙,𝑐 , 𝑄̇𝑔𝑎𝑠,𝑐 ] = Interp𝑐(𝑢𝑐 )
𝑇𝑐 = 𝑇𝑠,𝑐 +

𝑄̇𝑐

𝑚̇𝑐 𝑐𝑝 Identical to ODE-based

 

 Constraints Box constraints on decision vector  
 Objective 𝐽𝑐 = 𝑟𝑔𝑎𝑠𝑄̇𝑔𝑎𝑠,𝑐 (𝑢𝑐 ) − 𝑟𝑒𝑙𝑃𝑒𝑙,𝑐 (𝑢𝑐 )  
 

Storage

Model 𝑑𝑇𝑠,ℎ
𝑑𝑡

= 𝑓 (𝑚̇𝑖 , 𝑇𝑏 , 𝑇𝑐 , 𝑇𝑠,ℎ , 𝑇𝑠,𝑐 , 𝑇𝑒𝑛𝑣)
𝑑𝑇𝑠,𝑐
𝑑𝑡

= 𝑓 (𝑚̇𝑖 , 𝑇ℎ,𝑖 , 𝑇𝑠,ℎ , 𝑇𝑠,𝑐 , 𝑇𝑒𝑛𝑣)

∀𝑖 ∈ Rooms,  see Equations 
Eqs. (2) to (4)

𝑇 𝑘+1
𝑠,ℎ = (𝑇 𝑘

𝑠,𝑐 , 𝑇
𝑘
𝑏 , 𝑇

𝑘
𝑐 , 𝑚̇

𝑘
𝑖 , 𝑇𝑧,𝑖)

𝑇 𝑘+1
𝑠,𝑐 = (𝑇 𝑘

𝑠,ℎ , 𝑇
𝑘
𝑏 , 𝑇

𝑘
𝑐 , 𝑚̇

𝑘
𝑖 )

 

 Constraints Box constraints on decision vector Identical to ODE-based  
 Objective –  
 

Consumer

Model 𝑄̇ℎ→𝑧,𝑖 = 𝑘ℎ,𝑖(𝑇ℎ,𝑖 − 𝑇𝑧,𝑖)
𝑑𝑇ℎ,𝑖
𝑑𝑡

= 𝑚̇ℎ,𝑖𝑐𝑝 (𝑇𝑠,ℎ−𝑇ℎ,𝑖 )−𝑄̇ℎ→𝑧,𝑖

𝐶𝑖

𝑑𝑇𝑧,𝑖
𝑑𝑡

= 𝑄̇ℎ→𝑧,𝑖−𝑘𝑧,𝑖(𝑇𝑧,𝑖−𝑇𝑤,𝑖 )
𝐶𝑧,𝑖

𝑑𝑇𝑤,𝑖

𝑑𝑡
= 𝑘𝑧,𝑖 (𝑇𝑧,𝑖−𝑇𝑤,𝑖 )−𝑘𝑤,𝑖 (𝑇𝑤,𝑖−𝑇𝑎𝑚𝑏 )

𝐶𝑤,𝑖

𝑇 𝑘+1
𝑧,𝑖 = (𝑇 𝑘

𝑤,𝑖 , 𝑇
𝑘
𝑠,ℎ , 𝑚̇

𝑘
𝑖 )

𝑇 𝑘+1
𝑤,𝑖 = (𝑇 𝑘

𝑧,𝑖 , 𝑇
𝑘
𝑎𝑚𝑏)

 

 Constraints 𝑇𝑧,min ≤ 𝑇𝑧,𝑖 + 𝑠𝑧,𝑖 ≤ 𝑇𝑧,max
Box constraints on decision vector Identical to ODE-based

 

 Objective 𝐽𝑧,𝑖 = 𝑤𝑖𝑠2𝑧,𝑖  
Fig. 2. Mapping of consensus constraints between agents when using direct multiple shooting.
(see [26]), or using a collocation discretization. To avoid large coupling 
variables, we resort to the unmodified multiple shooting discretization.
Note We tried communicating the arithmetic mean of the states at 𝑘 + 1
and 𝑘 + 2 for the interval instead of the flat value at 𝑘 + 1, yet noted no 
significant improvements.

Concerns about partially reduced integration orders are less relevant 
for ANN-based modeling. As the ANNs directly map input to a change 
in output temperature over a specific time interval, they inherently are 
discrete and do not require an integrator. Since these models are trained 
using data at the start of the interval, they naturally function with 
discrete inputs. Of course, without using features from the full system, 
there is still some information loss, and similar errors can potentially 
occurs. Still, the ANNs have the potential to mitigate some of these 
errors by learning some of the associated system behavior, given a 
suitable feature selection. For our example system, we compared the ac-
curacy of ANN-based modeling with ODE-based distributed integration 
(see Fig.  4).
7 
3.4. Distributed optimal control problem

The distributed OCP is defined in a general form:

min𝑥, 𝑢, 𝑠, 𝑧, 𝑐

𝑅
∑

𝑖=1

𝑁
∑

𝑘=1
𝑗𝑖(𝑥k𝑖 , 𝑢

k
𝑖 , 𝑠

k
𝑖 , 𝑧

k
𝑖 , 𝑐

k
𝑖 ) (5a)

s.t. 𝑥𝑖,0 = 𝑥(𝑡 = 0), (5b)

𝑥𝑘+1𝑖 = 𝑓𝑖(𝑥k𝑖 , 𝑢
k
𝑖 , 𝑐

k
𝑖 ) ∀𝑖 ∈ {1, ..., 𝑅}, (5c)

𝑧k𝑖 = 𝑔𝑖(𝑥k𝑖 , 𝑢
k
𝑖 , 𝑐

k
𝑖 ) ∀𝑖 ∈ {1, ..., 𝑅}, (5d)

0 ≥ ℎ𝑖(𝑥k𝑖 , 𝑢
k
𝑖 , 𝑐

k
𝑖 ) ∀𝑖 ∈ {1, ..., 𝑅}, (5e)

𝑥𝑖 ≤ 𝑥k𝑖 ≤ 𝑥̄𝑖 ∀𝑖 ∈ {1, ..., 𝑅}, (5f)

𝑢𝑖 ≤ 𝑢k𝑖 ≤ 𝑢̄𝑖 ∀𝑖 ∈ {1, ..., 𝑅} (5g)

 The formulation of the DMPC comprises the composition of 𝑅 agents, 
each optimizing their objectives 𝑗  over the horizon 𝑁 , while adhering 
𝑖
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Table 3
Overview of the states 𝑥, control variables 𝑢, algebraic states 𝑧, coupling variables 𝑐
from other systems, slack variables 𝑠, for the MPC problem of each subsystem.
 Consumer Boiler CHP Storage  
 𝑥𝑖 𝑇𝑧,𝑖 , 𝑇𝑤,𝑖 , 𝑇ℎ,𝑖a 𝑇𝑏 𝑇𝑐 𝑇𝑠,ℎ , 𝑇𝑠,𝑐 ,  
 𝑢𝑖 𝑢𝑝,𝑖 𝑢𝑏 𝑢𝑐 –  
 𝑧𝑖 𝑚̇ℎ,𝑖 𝑚̇𝑏 𝑚̇𝑐 –  
 𝑐𝑖 𝑇𝑠,ℎ 𝑇𝑠,𝑐 𝑇𝑠,𝑐 𝑇𝑏 , 𝑇𝑐 , 𝑚̇ℎ,𝑖 , 𝑇ℎ,𝑖a , 𝑇𝑧,𝑖b 
 𝑠𝑖 𝑠𝑇𝑧,𝑖 – – –  
a ODE only.
b ANN only.

to dynamics defined by 𝑓𝑖 and path constraints defined by 𝑔𝑖 and ℎ𝑖
(see Table  2). It is important to note that the dynamics function 𝑓 in 
this context refers to a discrete mapping 𝑥𝑘 → 𝑥𝑘+1. This mapping is 
realized either by integration of the ODEs over the interval or by a 
forward pass of the ANN, depending on the chosen modeling approach. 
For the specific system in this study (see Fig.  1 and Table  2), the overall 
objective function to be minimized, as stated in Eq. (5a), is the sum over 
the prediction horizon 𝑁 of the per-step costs 𝑗𝑖 for each agent 𝑖. The 
individual agent objectives 𝑗𝑖 at each time step 𝑘 are:

• Boiler agent (𝑗𝑏): 𝑟𝑔𝑎𝑠𝑢𝑘𝑏
𝑄̇𝑛,𝑏
𝜂𝑏

• CHP agent (𝑗𝑐): 𝑟𝑔𝑎𝑠𝑄̇𝑔𝑎𝑠,𝑐 (𝑢𝑘𝑐 ) − 𝑟𝑒𝑙𝑃𝑒𝑙,𝑐 (𝑢𝑘𝑐 )
• Consumer agent 𝑖 ∈ {1,… , 𝑁𝑧} (𝑗𝑧,𝑖): 𝑤𝑖(𝑠𝑘𝑧,𝑖)

2

• Storage agent: Has no explicit objective term (𝑗𝑠 = 0).

Thus, the total objective summed over all agents for a single time step 
𝑘 is 

𝐽𝑘
𝑡𝑜𝑡𝑎𝑙 =

(

𝑟𝑔𝑎𝑠𝑢
𝑘
𝑏
𝑄̇𝑛,𝑏

𝜂𝑏

)

+
(

𝑟𝑔𝑎𝑠𝑄̇𝑔𝑎𝑠,𝑐 (𝑢𝑘𝑐 ) − 𝑟𝑒𝑙𝑃𝑒𝑙,𝑐 (𝑢𝑘𝑐 )
)

+
𝑁𝑧
∑

𝑖=1
(𝑤𝑖(𝑠𝑘𝑧,𝑖)

2) (6)

The full OCP objective is then the sum over all 𝑁 agents ∑𝑁
𝑘=1 𝐽

𝑘
𝑡𝑜𝑡𝑎𝑙.

Table  3 summarizes the variables of the optimization problems 
for each agent type in our investigated system. Due to the modeling 
differences, the variables and couplings are slightly different for the 
ODE and ANN variants.

4. Algorithms for distributed optimization

To solve the OCP defined in Eq. (5) we consider distributed opti-
mization algorithms. The OCP can be reformulated in a concise way: 

min
𝑥1 ,…,𝑥𝑅

∑

𝑖∈
𝑓𝑖(𝑥𝑖) (7a)

subject to
∑

𝑖∈
𝐴𝑖𝑥𝑖 = 𝑏, (7b)

 where 𝑓𝑖(𝑥𝑖) = 𝑓𝑖(𝑥𝑖) + 𝜄𝑖(𝑥𝑖), with 𝜄𝑖(𝑥𝑖) being the indicator function 
for the local constraint set, defined as:

𝜄𝑖
(𝑥𝑖) =

{

0, if 𝑥𝑖 ∈ 𝑖,
∞, otherwise.

(8)

{

𝑖 = 𝑥𝑖 ∈ R𝑛𝑖 ∣ 𝑔𝑖(𝑥𝑖) = 0, ℎ𝑖(𝑥𝑖) ≤ 0
}

(9)

Here, 𝑥𝑖 ∈ R𝑛𝑖  is the local decision vector of subsystem 𝑖, 𝑓𝑖 ∶ R𝑛𝑖 → R
is the local objective function, 𝐴𝑖 ∈ R𝑚×𝑛𝑖  is the local coefficient matrix, 
𝑏 ∈ R𝑚 is the global resource vector, and 𝑔𝑖 and ℎ𝑖 represent the local 
equality and inequality constraints, respectively. The set  = {1,… , 𝑅}
refers to the agents. A common special case that is included in this prob-
lem formulation is the consensus problem, where coupling variables 
(components of 𝑥𝑖) need to attain an agreed value among a subset of 
agents 𝑗 ⊆ . This is typically formulated such that for each coupling 
variable, 𝐴𝑖 selects the corresponding local variable in agent 𝑖 ∈ 𝑗
(e.g., 𝐴 = 1 for the coupling variable in question, and 0 otherwise 
𝑖,𝑗𝓁

8 
for one agent, and 𝐴𝑘,𝑗𝓁 = −1 for another agent 𝑘 ∈ 𝑗 , 𝑘 ≠ 𝑖), and the 
corresponding entry in 𝑏 is zero (𝑏𝑗 = 0). This ensures 𝑥𝑖,𝓁 − 𝑥𝑘,𝓁 = 0. 
For systems with more than two agents sharing a variable, consensus 
can be enforced through bilateral constraints (e.g., 𝑥𝑖,𝓁 = 𝑥𝑘,𝓁 and 
𝑥𝑖,𝓁 = 𝑥𝑝,𝓁), designating one agent as a ‘‘parent’’ that holds the reference 
value for that variable, forming bilateral consensus constraints with all 
other ‘‘child’’ agents sharing this variable. To solve problems defined 
by Eq. (7), conventional optimization algorithms can be used to solve 
the full problem at once, or distributed optimization algorithms, that 
solve the subsystems 𝑖 in parallel, can be employed. In the following, 
we briefly cover two distributed optimization algorithms, ADMM and 
ALADIN.

4.1. Alternating direction method of multipliers (ADMM)

ADMM is a distributed optimization algorithm that solves prob-
lem (7) by introducing a central coordinator and local subproblems. 
The algorithm iteratively updates the local decision vectors, the global 
resource allocation, and the dual variables. In this work, we use stan-
dard ADMM (see [15]) and bilateral coupling to implement consensus 
constraints. While it is possible to implement a fully decentralized 
version for consensus ADMM, our implementation includes a central 
coordinator to keep track of residuals and computation timers. The 
steps of ADMM are outlined in Algorithm 1.

Algorithm 1 Parallel ADMM for problem (7)
1: Initialize 𝑧0, 𝜆0, 𝜌 > 0, 𝑘max, 𝑟tol, 𝑘 = 0
2: while 𝑘 < 𝑘max and 𝑟𝑘 > 𝑟tol do
3:  𝑥𝑘+1𝑖 ← argmin𝑥𝑖 𝑓𝑖(𝑥𝑖) + 𝜆𝑘⊤𝐴𝑖𝑥𝑖 +

𝜌
2
||𝐴𝑖𝑥𝑖 − 𝑧𝑘||2, ∀𝑖 ∈   (parallel)

4:  𝑧𝑘+1 ← argmin𝑧
∑𝑅

𝑖=1 𝐴𝑖𝑥𝑖 − 𝑧 − 𝑏  (centralized)
5:  𝜆𝑘+1 ← 𝜆𝑘 + 𝜌

∑𝑅
𝑖=0 𝐴𝑖𝑥𝑖 − 𝑧𝑘+1  (centralized)

6:  𝑟𝑘 = ||𝐴𝑖𝑥𝑘+1𝑖 − 𝑧𝑘+1||
7:  𝑘 ← 𝑘 + 1
8: end while
In Algorithm 1, 𝑧𝑘 ∈ R𝑚 is the global resource allocation at 

iteration 𝑘, 𝜆𝑘 ∈ R𝑚 is the dual variable associated with the consensus 
constraint (7b), and 𝜌 is the penalty parameter for the augmented 
Lagrangian term. 𝑟𝑘 denotes the primal residual, 𝑟tol and 𝑘max denote 
the tolerance on the primal residual and the maximum number of 
iterations respectively. We do not use any heuristics for dynamic scaling 
or updates of the penalty parameter 𝜌, as results during initial testing 
were not promising.

4.2. Augmented Lagrangian Alternating Direction Inexact Newton (AL-
ADIN )

ALADIN is a distributed optimization algorithm that incorporates 
second-order information and can find local solutions of non-convex 
problems [20,39]. Inspired by Sequential Quadratic Programming
methods, it introduces a quadratic approximation of the objective 
function and a linearization of the constraints in the central step. The 
steps of ALADIN are summarized in Algorithm 2.

Table  4 shows additional symbols that are used in Algorithm 2.

4.3. Practical adjustments and parameters

Several adjustments and heuristics are implemented to enhance 
ALADIN’s convergence and closed-loop performance:

• Hessian regularization: Hessian regularization is applied to the 
hessian approximation 𝐵𝑖 to ensure positive definiteness, flipping 
the sign of negative eigenvalues and putting zero eigenvalues on 
a small parameter 𝛿  (see [39]).
𝑟𝑒𝑔
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Algorithm 2 Basic ALADIN for problem (7)
1: Initialize 𝑧0𝑖 ∈ R𝑛𝑖 , 𝜆0 ∈ R𝑚, 𝛴0 > 0, 𝜌0 > 0, 𝜇0 > 0, 𝜌max, 𝜇max
2: while 𝑘 < 𝑘max and 𝑟𝑘 > 𝑟tol do
3:  Solve local objectives (parallel)

𝑥𝑘+1𝑖 ← argmin
𝑥𝑖

𝑓𝑖(𝑥𝑖) + 𝜆𝑘⊤𝐴𝑖𝑥𝑖 +
𝜌𝑘

2
||𝑥𝑖 − 𝑧𝑘𝑖 ||

2, ∀𝑖 ∈ 

4:  Determine active set and effective equality constraints 𝑔̃𝑖(𝑥𝑘+1𝑖 )
(parallel):

𝑔̃𝑖(𝑥𝑘+1𝑖 ) =
[

𝑔𝑖(𝑥𝑘+1𝑖 )
ℎ𝑎
𝑖 (𝑥

𝑘+1
𝑖 )

]

where ℎ𝑎
𝑖 (𝑥

𝑘+1
𝑖 ) = {ℎ𝑖,𝑗 (𝑥𝑘+1𝑖 ) ∶ ℎ𝑖,𝑗 (𝑥𝑘+1𝑖 ) ≥ −𝜖𝑎𝑐𝑡}

5:  Compute Sensitivities (parallel):
∇𝑓𝑖(𝑥𝑘+1𝑖 ) (Gradient)
𝐵𝑘
𝑖 ≈ ∇2

𝑥𝑖𝑥𝑖

(

𝑓𝑖(𝑥𝑘+1𝑖 ) + 𝛾⊤𝑖 𝑔𝑖(𝑥
𝑘+1
𝑖 ) + 𝜇⊤

𝑖 ℎ𝑖(𝑥𝑘+1𝑖 )
)  (Hessian approx.)

∇𝑔̃𝑖(𝑥𝑘+1𝑖 ) (Constraint Jacobian)
6:  Solve the coordination QP (central):

𝛥𝑥𝑘 = argmin
𝛥𝑥,𝑠

∑

𝑖∈

1
2
𝛥𝑥⊤𝑖 𝐵

𝑘
𝑖 𝛥𝑥𝑖 + ∇𝑓𝑖(𝑥𝑘+1𝑖 )⊤𝛥𝑥𝑖

+ 𝜆𝑘⊤𝑠 +
𝜇𝑘

2
||𝑠||2

s.t.
∑

𝑖∈
𝐴𝑖(𝑥𝑘+1𝑖 + 𝛥𝑥𝑖) = 𝑏 + 𝑠 | 𝜆𝑄𝑃

∇𝑔̃𝑖(𝑥𝑘+1𝑖 )𝛥𝑥𝑖 = 0, ∀𝑖 ∈ 

7:  Update local targets 𝑧𝑖, global multiplier 𝜆 and determine residual 𝑟
𝑧𝑘+1𝑖 = 𝑥𝑘+1𝑖 + 𝛼𝑘𝛥𝑥𝑘𝑖
𝜆𝑘+1 = 𝜆𝑘 + 𝛼𝑘(𝜆𝑄𝑃 − 𝜆𝑘)

𝑟𝑘 = ||𝐴𝑖𝑥
𝑘+1
𝑖 − 𝑏||

8: end while

Table 4
Symbols used in Algorithm 2.
 Symbol Description  
 𝛾𝑖 , 𝜇𝑖 Dual variables associated with local equality and inequality 

constraints 
 

 𝑔̃𝑖(𝑥𝑖) Local equality constraints and active inequalities  
 𝛥𝑥𝑘 ∈ R𝑛 Primal update direction at iteration 𝑘  
 𝑠 ∈ R𝑚 Slack variable on coupling constraints  
 𝛼𝑘 ∈ (0, 1] Step size for updating the primal variables at iteration 𝑘  
 𝜇𝑘 > 0 Penalty parameter for the slack variable at iteration 𝑘  
 𝜌max , 𝜇max Maximum values for 𝜌 and 𝜇  
 𝜆𝑄𝑃 Lagrange multipliers from the coordination QP  

• Parameter updates: 𝜌 is updated according to 𝜌𝑘+1 = 𝜌𝑘 ⋅ 𝜌𝑢𝑝𝑑𝑎𝑡𝑒.
• Variable scaling: We scale coupling variables using factors 𝑇𝑠𝑐𝑎𝑙𝑒
and 𝑚̇𝑠𝑐𝑎𝑙𝑒 to improve problem conditioning.

• Step size control: We limit the step size 𝛼 based on the infinity 
norm of the QP step ‖𝛥𝑥‖∞ and an absolute maximum 𝛥𝑥𝑚𝑎𝑥, 
preventing excessively large steps.

• Best solution recovery: To deal with instability between itera-
tions, we track and return the best solution based on coupling 
constraint violation.

The Hessian regularization and 𝜌-updates are included with
ALADIN-𝛼 [39], while scaling implementation, step size control and 
solution recovery were adjusted based on own experience.

5. Reference controllers

To evaluate the performance of the DMPC strategies, we compare 
them against a conventional baseline controller, and a centralized 
9 
benchmark MPC, serving as the upper bound. The reference controllers 
are explained in the following sections. 

Rule-based control strategy
The rule-based control strategy serves as a baseline for comparison 

with the MPC approaches. This control scheme combines PID con-
trollers for local zone temperature regulation with supervisory logic 
for producer coordination. Individual PID controllers regulate the mass 
flow through each zone’s heating system (𝑢𝑝,𝑖) to track time-varying 
temperature setpoints. The control action is bounded between 0 and 
1, representing the normalized pump speed.

During occupied hours (8:00–18:00), the setpoint is 21 ◦C, while 
during unoccupied hours, it reduces to 17 ◦C for energy savings. To 
ensure comfort at the start of occupancy, the controller initiates a pre-
heating period four hours before the scheduled occupancy time, raising 
the setpoint to 21 ◦C in advance.

A hysteresis-based strategy manages the storage tank’s hot layer 
temperature to follow a setpoint of 55 ◦C. The boiler activates when 
the storage temperature drops below 52 ◦C (3 K below the 55 ◦C 
setpoint) and deactivates when it rises above 55.5 ◦C (0.5 K above the 
setpoint). This asymmetric hysteresis band prevents excessive cycling 
while ensuring adequate heat supply.

Producer prioritization follows a simple hierarchy: the CHP unit 
operates as the base-load supplier, while the boiler provides peak-load 
coverage. When the boiler is active due to low storage temperatures, 
the CHP is commanded to full power (100%) to maximize its contribu-
tion and compensate gas consumption through electricity generation. 
The boiler is then modulated with a PID controller to track the storage 
temperature setpoint. When the boiler is inactive, the CHP modulates 
its output through a separate PID controller.

The PID parameters were manually tuned with simulations to pro-
vide stable operation. The main design choices for this control are 
the pre-heating time and the storage temperature supply temperature. 
We chose the pre-heating time high enough to avoid most comfort 
violations, and the storage supply temperature based on original con-
siderations when designing the example system. Coincidentally, the 
MPC simulations finish at a similar storage temperature, minimizing 
the error when comparing the controls (due to heat that was generated, 
but is still available in the storage to a different extend).

We would like to note that this is a very strong conventional 
baseline control, tuned through simulations, similar to how the MPC 
parameters were also extensively tuned (see Section 6.3). In a real 
setting, this conventional control would likely perform worse, as pre-
heating times cannot be known in advance and PID parameters are not 
optimal.

Centralized MPC benchmark
The centralized MPC serves as an upper performance benchmark. 

It utilizes the exact ODE-based process model (Table  2) for all agents. 
The OCP is transcribed using direct multiple shooting with a CVODES 
integrator, ensuring full integration order for all states, including those 
involved in inter-agent coupling, by solving the entire system model 
simultaneously. The resulting NLP is solved using IPOPT. This setup 
represents the best achievable performance for an MPC under ideal 
modeling and centralized information with the given prediction hori-
zon. The current horizon of 6 h (Table  5) does not allow the MPC 
to foresee the start of the next day’s occupancy period when making 
decisions towards the end of the current day. While a longer horizon 
could potentially improve benchmark performance further, it was kept 
consistent with the DMPC setups, where longer horizons would sig-
nificantly increase computational demands and exacerbate challenges 
related to ANN model accuracy over extended predictions.
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6. Results

In this section, we present numerical results for the control of the 
example building energy system described in Section 2.3. We evaluate 
various DMPC configurations, featuring both ODE-based and ANN-
based models, and compare the distributed optimization algorithms 
ADMM and ALADIN. The distributed solvers (ADMM and ALADIN) uti-
lize IPOPT to solve local subproblems. All simulations are implemented 
in MATLAB using a modified version of the ALADIN-𝛼 Toolbox [39]. 
Parameter tuning for the distributed algorithms is orchestrated using 
Weights & Biases [40], running with matlabengine from Python. Sim-
ulations are conducted on a machine with an Intel(R) Xeon(R) Silver 
4216 processor. ANN models are trained with Keras [41] in Python. 
The subsequent subsections detail the closed-loop control performance, 
the accuracy of distributed integration methods, the parameter tuning 
process, and a closed-loop scalability analysis of the system.

6.1. Closed-loop control

To validate the efficacy of the proposed DMPC schemes, we con-
ducted a series of closed-loop simulations on the example system 
comprising two thermal zones (five agents in total, as per Fig.  1). The 
performance of these schemes is compared against the conventional 
rule-based controller and the centralized MPC benchmark. For the 
DMPC methods, we present results from ALADIN and ADMM using 
ANN-based process models, specifically showcasing the best-performing 
configurations identified during the parameter tuning process detailed 
in Section 6.3.3. Table  5 outlines the key simulation parameters used 
for these comparisons. Controller performance is quantified by the total 
energy cost in Euro and the RMSCV in Kelvin. The RMSCV is calculated 
similarly to the Root Mean Square Error but only considers deviations 
below the lower comfort bound; if the temperature is above the comfort 
bound, the comfort violation is zero.

Fig.  3 illustrates a 48-h closed-loop simulation, comparing the con-
ventional controller, the centralized benchmark MPC, and the best-
tuned ANN-based ALADIN and ADMM controllers. The centralized 
benchmark achieves the best performance with an RMSCV of 0.01 K 
and operation costs of 421 e. The conventional controller performs well 
with negligible comfort violations (RMSCV: 0.05 K) and operation costs 
of 440 e. The ALADIN-based DMPC achieves comparable performance 
(RMSCV: 0.08 K, costs: 431 e), with operating costs slightly higher 
than the benchmark, and slightly lower than the conventional control. 
The ADMM-based approach shows the highest costs (486 e) with 
an RMSCV of 0.07 K. The ALADIN-based DMPC exhibits more pro-
nounced oscillations in control inputs, particularly the valve openings. 
This behavior can be attributed to potential inaccuracies in the ANN 
models or suboptimal convergence characteristics of the distributed 
algorithm, which in turn cause the controller to make strong corrective 
actions. In a practical setting, such oscillations can be mitigated by 
adding penalties for rapid control changes, further tuning the cost 
function, or improving model accuracy. Nevertheless, the key takeaway 
is that ALADIN generally identifies the optimal operational strategy 
but may lack precision in execution due to these factors. In contrast, 
the ADMM-based DMPC performs noticeably worse, particularly by 
failing to effectively utilize the night setback strategy, leading to higher 
operational costs. It is important to note that this comparison is quite fa-
vorable to the conventional controller. Its strong performance is largely 
due to careful tuning in simulation. In a scenario with more complex 
dynamics, such as highly nonlinear producer efficiencies (e.g., heat 
pumps benefitting from precise supply temperature control) or variable 
energy tariffs, the advantages of MPC-based approaches would likely be 
more pronounced.
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Table 5
Simulation parameters.
 Parameter Value  
 Simulation time 48 h  
 Max ALADIN/ADMM iterations 50  
 ALADIN/ADMM tolerance 𝑟𝑡𝑜𝑙 1e−3  
 MPC step size 30 min  
 Prediction horizon 12 steps (6 h) 

Table 6
Parameter tuning overview.
 Symbol Algorithm Range Description  
 𝜌0 Both [1e−4, 1e6] Initial penalty parameter  
 𝑇𝑠𝑐𝑎𝑙𝑒 Both [0.1, 1e3] Temperature scaling factor  
 𝑚̇𝑠𝑐𝑎𝑙𝑒 Both [0.1, 1e2] Mass flow scaling factor  
 𝜌𝑢𝑝𝑑𝑎𝑡𝑒 ALADIN [1, 2] Penalty parameter update factor  
 𝜌𝑚𝑎𝑥 ALADIN [1e5, 1e9] Maximum penalty parameter  
 𝜇0 ALADIN [1e−2, 1e6] QP penalty parameter  
 𝛼 ALADIN [0.4, 1.0] Absolute step size limitation  
 regParam ALADIN [5e−5, 3e−3] Hessian regularization parameter  
 actMargin ALADIN [−1e−3, −5e−6] Margin for active set detection  
 max_iter ADMM [15, 400] IPOPT max iterations  
 tol ADMM [1e−4, 1] IPOPT acceptable tolerancea  
 compl_tol ADMM [1e−5, 1] IPOPT complementarity tolerancea  
 constr_tol ADMM [1e−5, 1] IPOPT constraint violation tolerancea 
a Referring to acceptable tolerance of IPOPT.

6.2. Distributed Integration Accuracy of ANN s and ODEs

In Section 3.3, we outlined how integration accuracy can be com-
promised in a distributed setting. Here, we compare the error propa-
gation of distributed integration (with fixed neighbor states over the 
interval) and ANN-based discrete modeling against the benchmark of 
full system integration.

We conducted 1000 simulations with random initial conditions and 
inputs, comparing the errors at 3-h and 12-h endpoints to the full 
integration solution. The step size for constant inputs is set at 30 min, 
matching the MPC step size used in our study. Fig.  4 illustrates the 
results. The top row of Fig.  4 displays the prediction error in room 
temperature (𝑇𝑧), while the bottom row shows the prediction error in 
heating return temperature (𝑇ℎ). In all scenarios, distributed modeling 
leads to an underestimation of final temperatures, with distributed 
ODEs exhibiting significantly larger errors. It is evident that for the 
energy system in this study, some form of error mitigation technique 
is necessary to achieve performance comparable to centralized MPC. 
While Fig.  4 shows better accuracy for ANNs, the improvements in 
closed loop control are marginal (see Fig.  8). While this work does 
not offer a concrete solution to this problem, we want to emphasize 
its importance, as it is not commonly noted in the literature.

6.3. Parameter tuning

To optimize the performance of the ADMM and ALADIN algo-
rithms, we conducted extensive parameter tuning using Weights & 
Biases (wandb) sweeps. This approach allowed us to systematically 
explore the parameter space and identify optimal configurations for 
both algorithms. Table  6 shows the parameters that are optimized for 
the algorithms.

6.3.1. Tuning process
Two of the most impactful parameters are 𝑇𝑠𝑐𝑎𝑙𝑒 and 𝑚̇𝑠𝑐𝑎𝑙𝑒, which 

are used to scale the problem. While the ALADIN as proposed in 
i.e. [17] incorporates a scaling matrix 𝛴 in the local coupling term, 
we found scaling the variables themselves, affecting the entire OCP, to 
be more effective. Scaling factors are implemented like this: 

𝑇̃ = 𝑇 , (10)

𝑇𝑠𝑐𝑎𝑙𝑒
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Fig. 3. Comparison of conventional controller, benchmark central MPC and DMPC with ADMM and ALADIN over a 48-h closed-loop simulation period.
where 𝑇̃  the optimization variable instead of 𝑇 . For example, if the 
original optimal value for a temperature in the OCP was 300 K, and 
the scaling factor 𝑇𝑠𝑐𝑎𝑙𝑒 is 100 K, the optimum returned from the solver 
would be 3. This results in well-scaled variables for the coordination 
operations in ADMM and ALADIN. We scale all temperatures and all 
mass flows in the OCP with the same factor respectively.

For ADMM, we tune some solver parameters for the local solution 
with IPOPT, as preliminary tests showed a high sensitivity of ADMM 
to the solution tolerance of the local problems (where more precise 
was not necessarily better). For ALADIN, we chose suitable IPOPT 
tolerances beforehand, but excluded them from the large-scale tuning, 
as we found ALADIN to be less sensitive in that regard.

We employed both Bayesian optimization and random search to 
explore the parameter space defined in Table  6. The optimization was 
evaluated by a custom cost function 𝐽tuning, defined as: 

𝐽 = 𝐽 + 𝑃 (11)
tuning econ cons

11 
where 𝐽econ is the economic cost function of the MPC, and 𝑃cons is a 
penalty term for the consensus constraint violations 𝑟𝑝. 

𝑃cons =

⎧

⎪

⎨

⎪

⎩

‖𝑟𝑝‖3 if ‖𝑟𝑝‖ > 10−3

0 otherwise
(12)

This formulation ensures that solutions with small consensus viola-
tions (less than 10−3) are compared based on the lowest reached 
cumulative objective, while larger violations incur a cubic penalty, 
strongly encouraging the optimizer to find solutions that satisfy the 
consensus constraints. An artificial high value for 𝐽tuning is set, when 
the optimization hits a time limit of 200 s. The search ranges for each 
parameter were chosen based on preliminary experiments and domain 
knowledge, as shown in Table  6. Log-uniform distributions were used 
for parameters spanning several orders of magnitude, while uniform 
distributions were used for parameters with narrower ranges.
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Fig. 4. Box plot for the comparison of integration error propagation for ANNs and 
ODEs with reduced neighbor integration order over 1000 random sample simulations.

6.3.2. Tuning results and analysis
To visualize the results of our parameter tuning efforts, we have 

created a cumulative distribution function (CDF) plot of the tuning 
fitness function 𝐽tuning for both ADMM and ALADIN algorithms, com-
paring random search and Bayesian optimization approaches. This plot 
is presented in Fig.  5.

The optimal value of the tuning function, which directly corre-
sponds to the DMPC objective function, is approximately 50. Notably, 
around 40% of ALADIN configurations yield a tuning function value 
below 60, indicating a high proportion of convergent solutions. In 
contrast, only about 10% of ADMM configurations converge, despite 
having fewer parameters to tune. This disparity suggests that ALADIN 
exhibits greater robustness to parameter variations, with a wider range 
of parameter sets leading to near-optimal solutions, while ADMM’s 
convergence to the optimum is more sensitive to specific parame-
ter combinations. The figure also reveals a slight advantage in us-
ing Bayesian optimization over random search, as evidenced by a 
marginally higher fraction of convergent solutions among open-loop 
runs for both algorithms.

Fig.  6 provides deeper insights into the parameter tuning results 
for ADMM. The parallel coordinates plots visualize the relationship 
between key parameters (𝜌, 𝑇𝑠𝑐𝑎𝑙𝑒, and 𝑚̇𝑠𝑐𝑎𝑙𝑒) and the resulting per-
formance for the best and worst ADMM runs. Examining the best-
performing runs in Fig.  6(a) confirms common ADMM intuitions:

• The penalty parameter 𝜌 needs to be sufficiently high to prevent 
divergence.

• Both 𝑚̇𝑠𝑐𝑎𝑙𝑒 and 𝑇𝑠𝑐𝑎𝑙𝑒 should be chosen so that the scaled variables 
are close to 1.

Configurations that fail to meet these conditions consistently result in 
poor ADMM performance.

However, Fig.  6(b) reveals that adhering to these general guidelines 
does not guarantee optimal performance. Poor runs can still occur even 
with large values of 𝜌 and appropriate scaling factors. This suggests that 
while these intuitive guidelines are necessary for good performance, 
they are not sufficient on their own for this challenging, non-convex 
problem.

For ALADIN, the tuning results are shown in Fig.  7. Compared 
with ADMM, it is apparent that the best runs (Fig.  7(a)) make up a 
larger portion of overall runs compared to the poor runs (Fig.  7(b)). 
Additionally, only the temperature scaling 𝑇  has a clearly visible 
𝑠𝑐𝑎𝑙𝑒
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impact, which can also be seen for the worse runs, where low values for 
𝑇𝑠𝑐𝑎𝑙𝑒 are clearly correlated with high (i.e. poor) values for the fitness 
function. The mass flow scaling 𝑚̇𝑠𝑐𝑎𝑙𝑒 seems to matter less, while the 
penalty parameter 𝜌 is more consistent at lower values. However, if 𝜌
is too small, the algorithm will diverge fully, which is not shown here 
to improve scaling of the figure. Summarizing, ALADIN demonstrates 
more consistent good performance when 𝑇𝑠𝑐𝑎𝑙𝑒 and 𝜌 are chosen within 
intuitively good ranges compared to ADMM.

While these findings indicate some correlation between intuitive 
parameter choices and actual performance, sophisticated parameter 
tuning is still required for either algorithm to achieve optimal perfor-
mance. In the following section, we examine how a good open-loop 
performance translates to closed-loop performance.

6.3.3. Transfer to closed-loop performance
To assess whether open-loop tuning translates to effective closed-

loop performance, we executed the top 10 configurations from the 
parameter tuning for each DMPC scheme. Fig.  8 presents the closed-
loop results of all examined DMPC schemes for 48-h simulations. 
The 𝑥-axis represents operating costs, while the 𝑦-axis shows comfort 
violation (RMSCV). The benchmark occupies the bottom-left corner, in-
dicating the least comfort violation and lowest operating costs. Judging 
from the benchmark and detailed plots of other runs, we consider runs 
with RMSCV below 0.2K to be good, usually experiencing one smaller 
deviation in the room temperature profile. Runs with an RMSCV above 
0.4K usually have serious issues, disqualifying them considering the 
expectations one has on a sophisticated control scheme like MPC. Table 
7 summarizes the key performance indicators presented in Fig.  8.

IPOPT results are consistently close to the benchmark, regardless of 
the modeling approach, though still inferior, highlighting the numerical 
errors introduced through the reduced integration order of neighboring 
states, or the ANN models. Note that the IPOPT results are obtained 
with the variable scaling from the ADMM-tuning, explaining differences 
in operation cost and execution time. ADMM results exhibit good 
comfort levels at high and widely varying operating costs. These are 
often the result of serious overheating, disregarding the temperature 
profile, and low sensitivity towards choosing the correct producer. 
ALADIN results with ANNs show acceptable comfort violations and 
lower operating costs compared to ADMM, though still notable varia-
tion exists. Comparing ALADIN results to IPOPT in detailed simulations 
reveals very similar control profiles. The higher RMSCV is usually 
attributed to comfort violations around the edges of the occupancy 
window, i.e. late heating or early stopping. ALADIN results with ODEs 
are significantly worse, displaying unacceptable control behavior, often 
running into the iteration limit without finding a convergent solution. 
This could be attributed to the tuning being optimized for ANNs, 
with the computational intensity of ODEs making ODE-targeted tuning 
impractical.

Regarding computation times, shown on the right side of Fig.  8, 
ANN-based IPOPT is the fastest, requiring under five seconds per 
MPC step, followed by the benchmark. ANN-based ALADIN, ANN-
based ADMM, and ODE-based IPOPT are comparable, taking between 
40–80 s. ODE-based ADMM and ALADIN are notably slower, requiring 
around 500 s per optimization.

While these optimization times may seem large, several factors 
contribute to this. CVODES’ inherent slowness affects all ODE-based 
approaches. Additionally, ALADIN and ADMM do not scale efficiently 
for small systems (only 5 agents in this case) and require multiple 
IPOPT problem solutions. Furthermore, CasADi’s C-code generation 
feature was not utilized in this study, as it cannot be used for code 
including CVODES.
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Fig. 5. Cumulative distribution function of the tuning fitness function 𝐽tuning for ADMM and ALADIN algorithms, comparing random search and Bayesian optimization approaches.
Fig. 6. Parallel coordinates plots highlighting the best and worst ADMM runs with respect to their tuning values for 𝜌, 𝑇𝑠𝑐𝑎𝑙𝑒, and 𝑚̇𝑠𝑐𝑎𝑙𝑒.
Fig. 7. Parallel coordinates plots highlighting the best and worst ALADIN runs with respect to their tuning values for 𝜌, 𝑇𝑠𝑐𝑎𝑙𝑒, and 𝑚̇𝑠𝑐𝑎𝑙𝑒.
6.4. Closed-loop scalability study

To evaluate performance with larger systems, we progressively 
increased the number of consumers. This scaling was performed while 
keeping storage and producer parameters constant; consumer size was 
scaled down proportionally to the number of systems. For scenarios 
13 
with five or more consumers, we generated three randomized room 
sizes, training a new ANN as a process model for each of these con-
figurations. We tested systems with 2, 5, 10, 20, and 40 consumers, 
conducting closed-loop simulations over a 24-h period using the best 
configuration determined from open-loop parameter tuning. Due to the 
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Fig. 8. Comparison of DMPC schemes: Operating costs vs. Comfort violation (RMSCV) and Computation times per MPC step.
Table 7
Summary of controller performance metrics from closed-loop simulations (48-h period, 2 thermal zones). Values for 
ADMM and ALADIN represent averages over the top 10 tuned configurations.
 Solver Modeling Operating cost (e) RMSCV (K) Time (s)
 Avg. Min. Max. Avg. Min. Max. Avg.  
 IPOPT ODEa 421.71 0.01 13.25  
 IPOPT ODE-D 430.85 430.05 431.67 0.05 0.05 0.05 26.55  
 IPOPT ANN 429.51 427.22 431.25 0.08 0.08 0.08 3.71  
 ADMM ODE-D 491.54 453.50 523.67 0.06 0.03 0.11 282.84 
 ADMM ANN 526.57 485.89 580.27 0.05 0.01 0.09 18.59  
 ALADIN ODE-D 446.72 418.91 536.40 1.25 0.09 1.96 556.06 
 ALADIN ANN 452.64 430.97 509.69 0.17 0.08 0.36 37.63  
a This row (IPOPT, ODE) represents the benchmark (see Fig.  8). The key difference in ODE-D are the distributed 
integration errors introduced, see Section 3.3.
large runtimes of ODE-based approaches, we only performed these sim-
ulations with the ANN-based MPC. Fig.  9(a) illustrates the performance 
of DMPC for increasing numbers of consumers comparing IPOPT with 
ADMM and ALADIN.

All methods exhibit a significant increase in runtime as the num-
ber of consumers grows. Beyond 20 consumers, ADMM and ALADIN 
outperform IPOPT in terms of computational speed. ADMM reaches its 
iteration limit after 20 consumers, a behavior not observed with AL-
ADIN in the tested scenarios. Operational costs and comfort violations 
are elevated and generally more volatile for cases with more than two 
consumers, suggesting less optimal solutions. This trend is consistent 
across all algorithms, including the central solution provided by IPOPT. 
A plausible explanation is the decreased model accuracy of the ANNs, 
as a new set of ANNs is trained for each case.

While the KPIs (Key Performance Indicators) in Fig.  9(a) might sug-
gest that all algorithms converge to similar solutions for 40 consumers, 
Fig.  9(b) reveals substantial differences in operational detail between 
the algorithms. The MPC using IPOPT and ALADIN adheres to the ref-
erence lower bound and deactivates producers at the start of the night. 
Performance varies across rooms; some consumers (e.g., zone 1) exhibit 
smooth operation, while others show more erratic behavior. At this 
stage, it is unclear whether these variations stem from model inaccura-
cies or insufficient convergence of the algorithms. ADMM, conversely, 
produces a feasible but clearly suboptimal operation, disregarding night 
setbacks and continuously operating the boiler. Consequently, while 
ALADIN still has areas requiring refinement for real-world application, 
it achieves a solution much closer to the optimum than ADMM.
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Although the DMPC is an order of magnitude faster than the cen-
tral MPC for the largest case (40 consumers), the runtimes remain 
substantial. We therefore conducted a more in-depth examination of 
the computational profile. Fig.  10 presents a detailed breakdown of 
ALADIN’s computation times.

ALADIN’s computation comprises the solution of local NLPs, calcu-
lation of local gradients, Hessian regularization, and the central QP. As 
steps 1–3 can be executed in parallel for all agents, we only consider 
the slowest agent for those components. Local NLP solution time is in 
all cases the dominant component of the computation, as shown in 
Fig.  10(a). It remains relatively constant between 2 and 5 consumers 
but increases exponentially thereafter. The central QP solution scales 
exponentially from the outset, becoming a significant contributor to 
the overall computation time as the number of consumers increases. 
Hessian regularization and sensitivity calculations also scale, but have 
a minor impact on total time.

A closer examination of local NLP solution times in Fig.  10(b) 
reveals the average NLP solution time for a single iteration by sub-
system type (consumer, producer, storage). While NLP solution time 
is independent of system size for consumers and producers, it increases 
with the number of consumers for the storage subsystem. This explains 
the minimal change in runtime between 2 and 5 consumers, as the 
dominant system shifted from consumer to storage.

The storage NLP scales in size with the number of consumers due 
to coupling variables affecting system dynamics for each consumer. 
Consequently, the advantage of DMPC is diminished, as a single agent 
within the network still scales with the overall problem size. It is 
also noteworthy that the central QP becomes a significant portion of 
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Fig. 9. Performance analysis for larger systems in closed-loop operation.
Fig. 10. Analysis of the ALADIN computation times for varying consumer numbers.
optimization time for larger systems, indicating a potential bottleneck 
for ALADIN.

7. Discussion

In the following section, we summarize our findings, disclose limi-
tations of this study and consider future research directions.

7.1. Findings regarding NDMPC in Building Energy Systems

This study advances practical understanding of NDMPC for build-
ings regarding system topology, optimization algorithms and transcrip-
tion and modeling.
15 
Performance and scalability. The results demonstrate that NDMPC can 
achieve performance levels comparable to centralized MPC in building 
energy management. This finding is particularly significant for large-
scale systems, where a parallel implementation shows computational 
advantages over centralized approaches, disregarding communication 
overhead. However, it is crucial to consider the system architecture 
carefully. Star-like graphs with an agent sharing many individual con-
sensus constraints with neighbors should be avoided, as that can lead 
to exponential growth in computational complexity for that agent, 
negating the scaling advantages of distributed architectures. This phe-
nomenon was also observed in the study [8], although less severe, 
as their storage modeling is linear. While in this study, distributed 
approaches outperformed the central solution computationally, this 
only occurred for system sizes where computation times and solution 
quality are insufficient for all approaches, prompting a need for further 
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improvements before these technologies become viable. We also no-
ticed significant sensitivity towards algorithm parameters and system 
configuration (as seen in Fig.  9).

Algorithm characteristics and tuning. Our investigation revealed distinct 
characteristics of different algorithms. ADMM proved effective at find-
ing approximate and feasible solutions, but severely lacked in achieving 
energy optimality compared to ALADIN or a central solver like IPOPT. 
ALADIN in general converged to higher accuracies, providing energy-
efficiency close to IPOPT in many cases, although its solutions are 
less stable, resulting in violations of comfort constraints from time 
to time. Both ADMM and ALADIN may fail to converge without so-
phisticated parameter tuning and variable scaling, but ALADIN is less 
sensitive to variations in variable scaling. While open-loop tuning can 
effectively identify non-convergent configurations, we noted significant 
and seemingly random variations in performance among convergent 
setups. This variability highlights the complexity of NDMPC systems 
and the challenges in predicting and optimizing their performance 
across different scenarios.

Modeling and transcription strategies. The study highlighted the signif-
icant impact of modeling and OCP transcription choices on DMPC 
performance. Distributed multiple shooting transcriptions that only 
consider neighboring states as piece-wise constant can introduce signifi-
cant errors, reducing controller performance. Additionally, using robust 
integrators like CVODES results in prohibitive computation times for 
systems that require them. NARX models like ANNs alleviate these 
issues, showing major improvements in computation time while grace-
fully handling these integration errors, as they are inherently trained 
on discrete data. One should keep in mind that in systems where a 
Euler-step is sufficient for integration accuracy, these issues are less of 
a concern.

7.2. Limitations

While our study provides insights into the performance of NDMPC 
for building energy systems, it is important to acknowledge several 
limitations:

• The computation time analysis for parallel ADMM and ALADIN 
implementations does not account for communication overhead. 
In real-world applications, this overhead can be a significant, if 
not the main, contributor to the overall run time [6].

• Our overall computation times should be considered in the con-
text of the software environment used. The simulations were 
conducted using MATLAB with CasADi without C–Code genera-
tion, which may not achieve the same performance as directly 
running optimized C-code with tailored low-level algorithms.

• The performance of artificial neural networks (ANNs) introduces 
notable variability in closed-loop results, even for centralized 
MPC. We put significant effort into tuning and feature selection 
for the two-room case to ensure good performance, however we 
cannot guarantee that this transfers to the cases with more rooms.

• Creating high-quality ANN models for all subsystems in large-
scale applications and automatically validating their performance 
remains a significant challenge. This limitation becomes particu-
larly pronounced as the system size increases.

• While we tested numerous parameterizations and attempted to 
treat all algorithms fairly, there remain unexplored options. These 
include various ADMM modifications and a more detailed analysis 
of solution accuracy and termination criteria across different 
algorithms. We also ran the ODE-based configurations with pa-
rameters from the open-loop tuning with ANN-based MPC, as the 
high runtimes of the ODE-based MPC make tuning with them 
impractical.
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• The study uses a real ambient temperature profile and repre-
sentative building/zone dimensions, but does not incorporate 
other real-world data sources such as occupancy profiles, internal 
gains schedules from measurements, or validate against a physical 
testbed. A comprehensive validation with extensive real-world 
data, including various uncertainties, is considered out of scope 
for this paper, which focuses on the algorithmic and numeric 
aspects of modeling NDMPC for strongly coupled systems.

7.3. Future research directions and potential enhancements

The results of this study show promise for NDMPC and highlight 
further research directions towards practical and reliable implementa-
tion.

Alternative discrete modeling approaches. While Artificial Neural Net-
works (ANNs) performed well in our study, their success may be 
attributed more to their discrete nature than to the specific ANN 
architecture. Future research could explore other inherently discrete, 
data-based modeling options that are computationally more efficient 
and easier to train than ANNs. Hammerstein–Wiener type models, for 
instance, could offer a promising alternative, potentially combining 
the benefits of discrete representation with reduced computational 
complexity and training difficulty.
Comparative analysis of transcription methods. Our current study focused 
on multiple shooting but did not include a comprehensive compar-
ison with direct collocation methods. In a previous study [35], we 
explored direct collocation for a similar system, which proved highly 
effective for centralized MPC, demonstrating a significant improvement 
in computation time compared to our current centralized benchmark. 
Nevertheless, the distributed version using direct collocation encoun-
tered challenges, requiring an excessive number of ADMM iterations to 
converge. This difficulty may be attributed to the higher dimensionality 
of the coupling variables in the collocation approach. It is important to 
note that the previous study lacked the variable scaling and intensive 
parameter tuning implemented in our current work, making direct 
comparisons between the two approaches problematic. These observa-
tions underscore the need for further research to fully understand the 
trade-offs between multiple shooting and direct collocation in NDMPC 
contexts. Finally, further improvements should be made regarding dis-
tributed transcription of OCPs, aiming at reducing numerical errors 
with regard to neighboring integration order, while keeping coupling 
variables of low dimension.
Topology optimization for improved scaling. Future work could focus on 
adjusting the system topology to enhance scalability. One approach 
is the introduction of aggregator agents at points where numerous 
coupling variables converge. These aggregator agents, comprising sim-
ple equations (for example, computing the total enthalpy flow from a 
number of mass flows and temperatures), could significantly reduce the 
number of variables handled by more complex agents, such as storage 
agents. This strategy has the potential to distribute computational load 
more evenly and improve overall system performance. Fig.  11 shows 
how the topology could be changed with an aggregator agent.

8. Conclusion

This study investigates the application of NDMPC to complex BES, 
focusing on scenarios with multivariate coupling between subsystems. 
We compared the performance of ADMM and ALADIN optimization 
algorithms against a centralized IPOPT benchmark, using both ODE-
based and ANN-based modeling approaches. Our results demonstrate 
that NDMPC can achieve performance comparable to centralized MPC, 
particularly when using ALADIN. We also highlighted the critical role 
of parameter tuning and variable scaling for both ADMM and ALADIN, 
observing that ALADIN exhibits greater robustness to parameter vari-
ations. Furthermore, we identified a scalability bottleneck in star-like 
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Fig. 11. Comparison of system topologies: (a) shows the original direct connection between the central agent and consumer agent, while (b) introduces an aggregator node that 
performs light computation to reduce the number of inputs for the central agent.
topologies where a central agent, such as the storage agent in our case 
study, experiences increasing computational burden with growing sys-
tem size. The use of ANN-based models offered computational advan-
tages compared to ODE-based approaches. However, further research 
is needed to address the identified scalability limitations, exploring 
alternative system topologies and aggregation techniques. Future work 
should also focus on improving the consistency of the controller, espe-
cially with regard to model accuracy and robustness towards parameter 
variations. It should also include application to a variety of systems, 
especially ones that bring out the full potential of NMPC, featuring 
more nonlinear producers such as heat pumps, and varying energy 
tariffs, further incentivizing utilization of the storage.
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