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1. Introduction

The modernization of building control systems is crucial for reduc-
ing energy consumption and CO, emissions in the built environment.
MPC has emerged as a promising approach, offering several advan-
tages over traditional building controllers [1]. These traditional con-
trollers typically rely on rule-based systems and simple Proportional-
Integral-Derivative (PID) or hysteresis controllers for setpoint tracking.
In contrast, MPC can implement precise heating and cooling sched-
ules, optimize component operations, and consider factors such as
weather forecasts and dynamic energy prices [2]. A recent critical
review of MPC field implementations by Saloux et al. [3] underscores
its practical success, demonstrating average energy cost reductions
of approximately 25% across numerous studies. However, the studies
reviewed by Saloux et al. [3] often featured buildings with a floor
area of less than 1000 m?. Realizing the full potential of MPC in
large-scale, complex BESs presents ongoing challenges. To address the
challenges of applying MPC to large-scale and complex BESs, DMPC
has emerged as a key research area [4,5]. DMPC offers the potential
for improved scalability by decomposing the overall control problem
into smaller, coupled subproblems that can be solved in parallel by
individual agents. This modularity can also simplify modeling and sys-
tem maintenance [6]. However, BESs are inherently nonlinear systems,
involving thermal dynamics, hydraulic interactions, and varying com-
ponent efficiencies. Therefore, NDMPC is often necessary to accurately
capture these characteristics and achieve optimal performance.

1.1. Literature review

This section provides an overview of the current state of research
in DMPC for BES. We first we discuss some case studies on DMPC for
buildings, then we discuss solution algorithms and challenges specific
to nonlinear DMPC.

1.1.1. Current state of distributed model predictive control for buildings

Applications of DMPC in buildings largely fall into two categories:
smart grids and multi-zone control.

In the context of smart grids, Shi et al. [7] applied DMPC to control
a smart grid with linear building models coupled through AC power
flow. Their approach used custom routines within an ADMM-based
distributed optimization framework to handle non-convex constraints
resulting from the AC power flow equations. For a demonstration on the
IEEE-123-bus system partitioned into 3 agents, their DMPC performed
within 1% of the centralized MPC. While computing time approxi-
mately doubles compared to centralized computation, the advantage
lies in reduced information exchange.

Lefebure et al. [8] explored DMPC based on dual decomposition for
multi-building energy hubs. They employed a mixed-integer quadratic
programming approach centrally, relaxing it to reduce the number
of integer decisions in the distributed version. They used regulariza-
tion terms and augmented objective functions to improve the con-
vergence of their dual ascent approach. They achieved closed-loop
performance equivalent to the centralized controller, scaling better
than the centralized controller with larger networks.

For multi-zone control, Lin and Adetola [9] utilized ADMM-based
NDMPC to control a simulated multi-zone building with up to 320
zones, conditioned with a central AHU with variable air volume flow
per zone. They included a cubic objective for the total ventilator power
intake and a simple, yet nonlinear modeling for the air temperature per
zone. The zones are coupled through the sum of their air mass flows,
and a unified supply air temperature. Crucially, they exclude thermal
energy consumption from their objective, removing the interdepen-
dence between their coupling variables. Their approach demonstrated
linear scaling with the number of zones.

Yang et al. [10] examine a NDMPC problem where they control the
ventilation rate for a multi-zone building cooled by an air handling
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unit. The MPC has a nonlinear objective including cooling power and
fan power, linear thermal coupling between zones and bi-linear zone
dynamics including the ventilation rate and the zone temperature.
They use auxiliary variables and McCormick envelopes for the bilinear
constraints to relax the zone agents into Quadratic Programs (QPs),
while retaining the nonlinear objective in the fan agent. They solve the
distributed Optimal Control Problem (OCP) using the accelerated dis-
tributed augmented Lagrangians (ADAL) method, demonstrating good
scalability for systems up to 500 zones.

While these studies solved challenging DMPC problems, they leave
some aspects of NDMPC unexplored. In particular, they do not feature
multi-variate nonlinear coupling of system dynamics between subsys-
tems. These kinds of couplings easily arise in hydraulic systems where
components are connected with a water mass flow, a supply and a
return temperature. While the study in [9] appears to make such a
coupling for an air-based system, their simplifications with regard to
the producer side make the multi-variate coupling inconsequential.

1.1.2. Solution algorithms for distributed model predictive control

Early works on DMPC focused on the distinction between coop-
erative and non-cooperative schemes. The book by Maestre and Ne-
genborn [5] comprises 35 contributions on DMPC featuring different
authors. Non-cooperative DMPC often involved non-iterative methods,
while cooperative DMPC required global system knowledge across all
agents [5]. The seminal work by Rawlings et al. [11] on MPC funda-
mentals covers linear DMPC schemes that necessitate the exchange of
system matrices. A comprehensive review by Christofides et al. [12] in
2013 also focuses on the cooperative schemes, with only brief mentions
of distributed optimization based methods like dual decomposition, or
augmented Lagrangian techniques.

Recent years have witnessed a paradigm shift towards distributed
optimization-based approaches in optimal control for buildings and
grids. These methods offer individual agents considerable autonomy,
requiring only the exchange of coupling vectors while effectively man-
aging strong inter-system couplings. Primal-dual and augmented
Lagrangian-based approaches have emerged as popular choices, being
featured in all references provided in the above Section 1.1.1.

Among these, ADMM has gained significant traction due to its
simplicity, versatility and effectiveness. ADMM was originally proposed
in the 70s [13,14] and renewed by Boyd et al. [15]. A comprehensive
survey by Yang et al. [16] provides an in-depth analysis of ADMM
and its many variants, highlighting its wide-ranging applications in dis-
tributed optimization problems. However, when applied to non-convex
problems, ADMM'’s performance can be suboptimal, often resulting in
slow convergence. In fact, Engelmann [17] notes that for constrained
optimization problems, both convergence speed and solution accuracy
can be limited, regardless of parameterization. To address the limita-
tions of ADMM in non-convex scenarios, more advanced algorithms
have been developed. Sun and Sun [18] propose a two-level algo-
rithm to handle distributed non-convex optimization problems. They
introduce slack variables to ensure feasibility and convergence of the
inner ADMM level, while driving feasibility at the outer level, using
an augmented Lagrangian based approach. Tang and Daoutidis [19]
expand on the two level algorithm, giving suggestions for parameteriza-
tion and realizing speedups through approximate iterates and Anderson
Acceleration. They demonstrate the algorithm on a quadruple tank
process, controlling volume flows through NDMPC.

Another algorithm for non-convex distributed optimization is AL-
ADIN, introduced by Houska et al.. ALADIN has shown promising
results in handling non-convex problems more effectively, combining
the decomposition benefits of ADMM with the fast local convergence of
Newton-type methods. Compared with ADMM, ALADIN trades a better
convergence rate for increased communication and central computation
overhead. While wide-spread adoption of ALADIN has yet to manifest,
there already exist a number of applications and improvements on
the original algorithm. Jiang et al. [21] used ALADIN for a DMPC
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in smart grids. They used relaxed decoupled equality constraints in
the consensus QP and dynamic updates of the slackness parameters
for said relaxation, improving upon the ADMM based solution both
in closed loop number of iterations, and in scaling towards larger
systems [21]. Su et al. [22] used ALADIN to coordinate demand
response in commercial buildings. While their problem formulation was
convex, they used a modified ALADIN variant with an analytical central
step to speed up convergence compared to ADMM [22]. Engelmann
et al. [23] extended the standard ALADIN algorithm by solving the
coordination QP in a distributed fashion as well, allowing for a fully
distributed implementation [17,23].

1.1.3. Issues with distributed transcription of optimal control problems

While existing research on NDMPC often focuses on specific op-
timization algorithms, the distributed transcription is rarely a focus.
Direct transcription methods, such as direct multiple shooting and
direct collocation are popular for central MPC, as they are easy to
implement and scale well for larger problems [24]. Multiple shooting
requires a discrete mapping from the current system states onto a
future time step, commonly realized through integrating ODEs over
the time step using Runge-Kutta methods or robust solvers like CVODE
for stiff systems. Collocation methods approximate the state evolution
over a time interval through polynomials, simultaneously optimizing
the polynomial roots with the other decision variables.

The application of direct nonlinear transcription methods towards
distributed optimization faces a challenge. As the neighbor-to-neighbor
communication between agents consists of vectors of the shared vari-
ables’ values at discrete points in time, the continuous evolution of
neighboring states is not accurately considered in an agents’ integra-
tion scheme, resulting in a reduced integration order with regard to
some states. A recent study on real-time interactions for NDMPC [25]
acknowledged this problem, referring to a distributed multiple shooting
method [26]. While the distributed transcription error can be miti-
gated, i.e. by using the proposed distributed multiple shooting method,
or using a finer discretization grid, these techniques come with the
tradeoff of increasingly large coupling variables.

It is worth noting that many applications driving the development
of distributed algorithms for non-convex optimization, such as optimal
power flow problems, often assume separable time scales and ignore
transient effects [17]. While this simplification sidesteps the issue of
reduced integration order, it may not be applicable in dynamic building
energy systems where transient effects play a significant role.

1.1.4. Modeling for nonlinear model predictive control

In the literature, the categorization of models into white-box, gray-
box and black box is overwhelmingly prevalent, i.e. in studies [2,27,
28]. Yet, the boundaries between these categories are often blurred,
making it difficult to define precisely when a model transitions from
one category to another. This work adopts a different perspective,
shifting the focus from the source of the model knowledge (data vs.
expert) to the structure of the model itself (continuous vs. discrete).

Continuous models, typically based on ODEs, can represent the
underlying physics of the system, potentially leading to better gener-
alization. There are many existing studies using these models for Non-
linear Model Predictive Control (NMPC), for example in studies [28—
32]. However, deriving and parameterizing ODE-based models can be
complex, particularly for large-scale BES with intricate dynamics. Fur-
thermore, as discussed in Section 1.1.3, using continuous models within
a distributed optimization framework introduces challenges related to
numerical integration.

Discrete, data-driven models offer an alternative approach. These
models learn nonlinear relationships directly from data, bypassing the
need for explicit physical equations. Nonlinear Autoregressive with
Exogenous Inputs (NARX) models are a powerful class of discrete
models capable of capturing temporal dependencies in BES data [33].
Stoffel compare the use of different NARX and Autoregressive with
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Exogenous Inputs (ARX) models based on ANN and Gaussian Process
Regression (GPR) to model thermal zone behavior and heat pump
power consumptions for building MPC, showing accurate performance
in simulation and real experiments. As these models are inherently dis-
crete, the performance degradation due to neighboring states with un-
known dynamics is already priced in, and should not further deteriorate
when moving to distributed formulation. In this work, NARX models
are implemented using ANNS, leveraging their ability to approximate
arbitrary nonlinear functions.

The preceding literature review highlights that while DMPC of-
fers a path towards managing large-scale BESs, significant challenges
remain, particularly when addressing the inherent nonlinearities and
complex interdependencies prevalent in such systems. Key identified
gaps include the need for NDMPC strategies capable of handling multi-
variate couplings, comprehensive comparisons of advanced distributed
optimization algorithms like ALADIN and ADMM in these demanding
contexts, and effective methods for mitigating distributed integration
errors, especially when using ODE-based models. Successfully address-
ing these NDMPC challenges is crucial for unlocking more ambitious
control objectives. These include the simultaneous optimization of
multiple interacting subsystems considering, for example, nonlinear
component efficiencies and hydraulic effects, as well as enabling seam-
less integration with smart grids and the provision of demand response
services. This paper, therefore, focuses on the implementation and
comparative analysis of NDMPC strategies for a BES characterized by
strong hydraulic and nonlinear couplings between producers, thermal
storage, and multiple consumer zones. The aim of this work is to rigor-
ously investigate and compare the performance of ALADIN and ADMM
for this class of problems. We evaluate the efficacy of ODE-based
versus ANN-based modeling approaches within the distributed control
framework, with a particular focus on solution quality, computational
efficiency, scalability, and strategies for managing the challenges of
distributed system representation and optimization.

1.2. Contribution

This work addresses several key challenges in implementing NDMPC
for complex BESs. Our main contributions are:

1. Comprehensive NDMPC implementation for BES: We demon-
strate a fully-functional NDMPC which couples producers, distri-
bution systems, and consumers in a building energy system. This
implementation considers nonlinear dynamics and multivariate
couplings, addressing a gap in current literature where such
comprehensive NDMPC for BES is understudied.

2. Modeling Approach for Distributed Control:

(a) We introduce the use of NARX models, implemented with
ANNs, comparing them to traditional ODE-based model-
ing in NDMPC.

(b) We demonstrate that this ANN-based approach mitigates
errors arising from distributed integration without resort-
ing to complex distributed integration schemes.

3. Algorithmic Performance Analysis: We provide a comparative
analysis of ADMM and ALADIN for the NDMPC problem, com-
paring them to the solution provided by the state of the art
Nonlinear Program (NLP) solver IPOPT.

4. Scaling and Parameter Tuning Insights:

(a) We investigate the scalability of our NDMPC approach
by analyzing execution times when increasing the system
size.

(b) We highlight the importance of problem scaling and pro-
vide insights into parameter tuning for distributed opti-
mization algorithms, particularly ADMM and ALADIN.
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5. Topology Considerations: We identify potential issues with star-
like topologies in building energy systems and discuss their
impact on NDMPC performance.

Through these contributions, we aim to advance the practical im-
plementation of NDMPC in building energy systems, addressing key
challenges in modeling, optimization, and scalability.

The remainder of this paper is organized as follows: Section 2
introduces the examined problem class and introduces the case study.
Section 3 presents the controller architecture, proposing two distinct
modeling approaches, based on differential equations and discrete data-
driven models respectively. Section 4 briefly covers ADMM and AL-
ADIN, the distributed optimization algorithms used in this study. Sec-
tion 5 introduces the benchmark controllers against which the NDMPC
is compared. Section 6 provides results of our case study, includ-
ing modeling, parameter tuning, controller performance, and scalabil-
ity. Section 7 interprets the observed results, assesses the viability of
NDMPC, considers limitations of the present work, and recommends
future research directions.

2. Case study: Strong hydraulic coupling in building energy sys-
tems

2.1. Model predictive control of buildings: Expectations and challenges

Many MPC benefits observed with basic linear MPC, such as pre-
heating/cooling strategies and activating systems only when neces-
sary, can also be achieved with rules and PID controllers. In contrast,
achieving more sophisticated goals, like simultaneous optimization of
temperature and mass flow or considering nonlinear efficiency curves,
requires nonlinear optimization and consideration of whole-building
couplings. For large, interconnected building systems in particular, this
leads to intractable MPC formulations, making ambitious goals for MPC
seemingly unreachable. We experience a paradox, where easy MPC
does not bring the full benefits, while an MPC tailored to optimizing
all aspects of the operation is difficult to implement.

To address these challenges and fully realize the potential of build-
ing MPC, an MPC scheme that considers nonlinear behavior while
scaling gracefully with system size is required. Agent-based MPC,
or DMPC allows building an MPC from smaller agents that can be
configured independently and are computationally tractable. Through
parallel implementations of distributed optimization algorithms, these
DMPC schemes promise to scale better with system size compared to
classic centralized optimization algorithms, like interior point methods,
or sequential quadratic programming. In the following, we consider
types of agents that can be extracted from a BES, how they are coupled,
and present an example BES that is suitable for examining the behavior
of NDMPC.

2.2. Coupling within building energy systems

Building energy systems comprise several interconnected subsys-
tems. We categorize the subsystems into three main types:

Rooms/thermal zones. These are the primary interfaces with building
occupants, typically equipped with temperature and CO, sensors, along
with various actuators. Thermal zones are typically equipped with
heat emitters (e.g., radiators, underfloor heating) or cooling emitters
(e.g., ceiling panels, fan coil units). Some systems, like Variable Air
Volumes (VAVs), can provide heating, cooling, and fresh air supply,
acting as conditioned air delivery systems rather than simple emitters.
While further subdivision into individual components is theoretically
possible, we consider thermal zones as a single subsystem for the scope
of this study.

The behavior of these subsystems is quite individual and highly
influenced by disturbances (e.g. ambient temperature, irradiative or
internal gains), however usually exhibits only weak nonlinearities. In
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many conventional control approaches, parameters like supply temper-
atures for heating or cooling circuits are determined a priori (e.g., via
a heating curve), with local PID controllers then modulating mass
flows through valves or dampers. In contrast, MPC allows for the
simultaneous optimization of both supply temperatures and mass flows,
which can introduce beneficial, yet challenging, bilinear dynamics into
the control problem. The primary objective for these subsystems is
occupant comfort, typically achieved by maintaining air temperature
and CO, levels within acceptable ranges.

Producers. These subsystems are responsible for heating and cooling
water or air, consuming electricity or fuel in the process. Common
examples include gas boilers, combined heat and power units (CHPs),
heat pumps, and chillers. The primary objective for producers is typi-
cally to minimize energy consumption or operational costs, while keep-
ing supply temperatures adequate. These objectives may be nonlinear
due to efficiency curves.

Distribution/storage systems. This category encompasses components
such as buffer storages, hydraulic switches, injection circuits, mixing
circuits, and potentially pipe or air duct segments when flow times are
significant. These systems may have nonlinear dynamics, depending on
the degree of modeling, and the degree of freedom (i.e. are some mass
flows or temperatures fixed) They generally lack individual objective
functions and serve to connect other subsystems.

The coupling between these subsystems is achieved through shared
variables, which we refer to as coupling variables. These variables are
subject to two types of constraints:

» Exchange constraints: These require that the sum of all instances
of a variable across subsystems equals zero. For example, the mass
flow exiting a producer (with positive sign) must add up to zero
considering the mass flows through all supplied subsystems (with
negative sign).

Consensus constraints: These mandate that a variable maintains
the same value across all relevant subsystems. For instance, the
supply temperature exiting a producer must match the supply
temperature for all zones served by that producer.

While many studies focus on only one type of coupling, they can
also be combined, as seen in [9]. In this study, we realize all couplings
through consensus constraints.

2.3. Investigated building energy system

To illustrate the application of DMPC in building energy systems, we
consider a representative system as shown in Fig. 1. The system under
study, depicted in Fig. 1 and previously examined in [35], features two
primary heat producers: a gas boiler and a Combined Heat and Power
(CHP) unit. These producers feed into a sensible heat storage tank,
which acts as a thermal buffer and distribution hub. The storage tank
supplies hot water to the heating emitters of multiple thermal zones,
generally represented by N, consumers in Fig. 1.

The systems’ parameters are inspired by the E.ON Energy Research
Center main building in Aachen, Germany (usable area A,,, ~ 6300 m?,
gross volume V, ~ 31500 m?). For initial detailed controller analy-
sis and parameter tuning (as presented in Sections 6.1 and 6.3), a
baseline configuration with two distinct thermal zones is employed.
The system’s scalability is subsequently investigated by increasing the
number of consumer zones up to 40, as detailed in the results on
system scaling (Section 6.4). The design heating requirement for the
overall system is approximately 107.3 kW,,, calculated for a design
point of —5 °C ambient temperature and a 21 °C indoor reference
temperature. In the aforementioned two-zone baseline configuration,
this load is distributed as 81.3 kW,;, for Zone 1 and 26.0 kW,,, for Zone
2. The overall thermal capacity of the zones solid mass was estimated
based on DIN V 18599-2, which suggests C, = A,,, - 45 Wh/(m? K)

use
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Fig. 1. Controlled system and coupling variables.

for light building zones. Our model utilizes half of this estimated
building thermal mass. This change, balanced by the omission of faster
heat transfer mechanisms like infiltration and solar gains, ensures
appropriately fast system dynamics, which is beneficial for observing
control responses within reasonable simulation times. Furthermore, the
E.ON ERC building features significant open internal spaces, lending
credence to a model with effectively lower overall thermal inertia for
its conditioned volume.

The primary focus of this work is the behavior of NDMPC algorithms
when faced with strong, nonlinear hydraulic coupling. Therefore, de-
tailed thermal modeling of the zones was considered secondary to the
clear representation of inter-agent dependencies. Similarly, the thermal
storage is modeled as a stratified tank with two distinct layers. This is a
deliberate simplification chosen as a trade-off: it introduces the numer-
ical complexity of enthalpy exchange and distinct temperature levels—
key aspects for studying hydraulic coupling in DMPC—without making
the problem overly complex for the core algorithmic investigation.

The heat producers are dimensioned as follows. The boiler has a
nominal thermal output of 66 kW,;,, and the CHP unit provides 46 kW,;,.
The CHP is sized smaller than the boiler to encourage its prioritization
for base-load coverage, maximizing its operational runtime and overall
efficiency. The thermal storage tank has a volume of 15 m?, providing
a thermal capacity of approximately 346 kWh,, over a temperature
difference of 20 K. This capacity allows the storage to meet the build-
ing’s total heating requirement for just over three hours. To provide
a basis for external thermal disturbances, the simulations utilize an
ambient temperature profile from January of the Test Reference Year
(TRY) 2015 for Aachen, Germany. However, it is acknowledged that
the overall disturbance model is simplified, as solar irradiation and
dynamic internal gains are not considered in this study.

For the DMPC, we couple the consumers with the storage through
consensus constraints on supply temperature, return temperature, and
mass flow simultaneously. This approach results in multiple interacting
variables per edge in the system graph, leading to significant computa-
tional challenges due to nonlinear interactions. While fixing either mass
flow or supply temperature would simplify the problem considerably,
it would also limit the potential benefits of NDMPC. In the case of fixed
mass flows, the heating of the zones cannot be stopped without draining
the storage, while in the case of fixed supply temperatures, the storage
cannot provide any flexibility. For the coupling between producers and
the storage, we do fix the mass flow, balancing the overall challenge
of this setup. We allow actuation of relative producer powers and con-
sumer side mass flows, introducing the full complexity of nonlinearly

coupled subsystems. For detailed modeling on the physical system, refer
to Table 2. Due to different sizes and thermal inertia of the walls, air
and heating states, the system requires surprisingly robust integration
methods. By analyzing the behavior of the DMPC (and the underlying
distributed optimization algorithms), we aim to lay the groundwork for
MPC that is able to determine optimal operation of an entire building
and not only its subsystems.

3. Design of distributed controller

In this section, we cover the design and implementation of an
NDMPC for our example building energy system. We explain how to
use neural networks as process models in MPC, state the modeling for
our individual problem and derive the optimal control problem for the
agents from there.

3.1. Neural networks as state estimators

In the context of NMPC, NARX models based on ANN can be used
to form a discrete model of the process, capturing the evolution of a
state over a fixed time interval without the need to solve differential
equations. We train a single step predictor for the next state based on
its past states and external (exogenous) inputs:

x() = AQe(t = 1), x(t = 2), ..., x(t = ny),u(t = ),u(t = 2),...,u(t —n,)) (1)

where x(¢) is the system state at time ¢, u(f) represents the exogenous
inputs, and n, and n, are the number of past output and input terms
used for prediction. Neural networks can be trained to approximate this
function A. The network takes as input a window of past states and
inputs, and outputs the predicted next state.

Ensuring the stability and robustness of the neural network-based
controller remains a nontrivial task. Techniques such as online learning
and uncertainty quantification are active areas of research addressing
these challenges [34,36,37]. However, the generation and training of
these models is not the focus of this work. In this work, we can generate
sufficient training data by simulating the building model with a variety
of input combinations. Only the most recent past state and input is used.

3.2. Control modeling of subsystems
As illustrated in Fig. 1, the energy system under consideration

comprises two producers, a buffer storage, and multiple thermal zones.
Table 1 includes a reference to all symbols appearing in the modeling.
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Table 1
Summary of symbols used in the BES modeling.

Subsystem Symbol Description
] Mass flow rate
<, Specific heat capacity

General t Time
k Heat transfer coefficient
C Thermal capacity
N, Number of zones
T, Boiler outlet temperature
u,, Boiler control input

Boiler O, Nominal boiler thermal power
m, Boiler efficiency
Tgas Gas price
T, CHP outlet temperature
u, CHP control input

CHP 0. CHP thermal power output
P, CHP electrical power output
O, usec CHP gas consumption
o Electricity price
T, Storage hot layer temperature
T,. Storage cold layer temperature

Storage T, Storage environment temperature
H,_, Enthalpy exchange between layers
€ Smoothing parameter
Ty Heating system temperature of zone i
T,; Zone air temperature
Ty Wall temperature

Consumer Toms Ambient temperature

Heat transfer from heating to zone
(Thermal zone) Q’““ 8

Slack variable for temperature constraint

w; Weight for slack variable in objective
T min Minimum allowed zone temperature
T, max Maximum allowed zone temperature

Table 2 summarizes the modeling, constraints, and objectives of
these subsystems in the MPC framework.

The producers — a CHP and a gas boiler — are modeled using
stationary energy balances, assuming negligible thermal inertia. Their
respective control inputs, u, for the CHP and u,, for the boiler, represent
normalized power settings ranging from 0 to 1. The boiler’s gas usage
is inferred from its thermal power output via a constant efficiency,
while the CHP’s gas consumption and electricity generation are deter-
mined through interpolation tables. The producers’ objective function
incorporates gas usage at price r,,, and electricity revenue at price r,;.

The thermal storage is modeled as a stratified tank with two distinct
layers (hot and cold) to capture basic stratification effects. The two-
layer storage model is governed by the differential equations (2) and
(3):

c.dT,, N

73 dt = thpr + mccpTc - ; mh,icst,h - Hh—>c - kS(TY,h - Tenv) (2)
C dTe G L .

7A dt = ; mh,iCpTh,i - (mh + mc)cst,c + Hh—>c - ks(Tsﬂc - Tenv) (3)

The enthalpy exchange between layers H,,_, is defined as:

- . Ts,h + Ts,c Tx,h - TS,C
Hy_ .= Mp_cCp T my_..Cp T (4a)
NZ
T = iy + 1) = Y 1y (4b)
i=1
L =ik e (40)

This formulation, utilizing a small smoothing parameter ¢ > 0, ensures
the differential equations remain smooth when the net flow between
layers reverses, i.e., when the mass flow through producers equals that
through consumers. The storage unit is subject only to box constraints
on its state variables and has no specific objective function.
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Each thermal zone i is characterized by three state variables: heating
temperature T}, ;, zone air temperature T,;, and lumped wall tempera-
ture T,,;. The heating system is modeled as an ideal mixed volume,
with heat exchange between thermal capacities represented by constant
coefficients k. This thermal model for the zones is deliberately kept
relatively simple (linear heat transfer, no radiation or infiltration, a
single solid capacity). The chosen model is sufficient to create dynamic
thermal loads that interact with the shared hydraulic system. A more
detailed thermal model per zone would increase the complexity of
individual agent NLPs but might obscure the specific challenges arising
from the inter-agent coupling, which is central to this study. The control
input for each zone i is u,,;, representing a normalized mass flow setting
for its heating system, ranging from O to 1. The thermal zone model
incorporates a soft constraint on air temperature T,; with variable
bounds: a lower bound of 17 °C (night setback) and an upper bound of
21 °C (comfort temperature during occupancy). This is implemented
using a slack variable s, ; with weight w; in the agent’s objective
function, as detailed in Table 2.

For ANN-based modeling, Table 2 specifies the features used to
approximate the differential equations. The modeling is autoregressive,
i.e. the output variable is always included in the inputs of the ANN.
ANN-based approximations are applied only to differential equations,
leaving stationary energy balances (e.g., in producers) unchanged from
ODE-based modeling. Note that with ANN-based modeling, we skip
modeling the heating system, instead considering the upper storage
temperature T , and mass flow m; directly in the zone temperature 7, .
Consequently, the ANN model for the storage lower layer temperature
includes the zone temperature T,; as a feature and not the heating
temperature 7}, ;.

3.3. Challenges in Distributed Integration for NDMPC

Consider the coupling variables defined in Fig. 1 in conjunction
with the equations in Table 2. Variables such as the upper layer
storage temperature T ,, which effectively serves as the supply tem-
perature for thermal zones, appear in both the storage and consumer
subsystems. When solving the optimal control problem for the entire
system using a direct transcription method like multiple shooting, an
integration scheme is employed to solve the system of differential
equations. Depending on the system’s stiffness, either a Runge-Kutta
method or more sophisticated iterative integration schemes, such as
those provided by CVODES in the Sundials Suite [38], can be utilized.
These integration schemes consider the simultaneous evolution of states
throughout the integration interval, yielding precise solutions to the
differential equations.

However, when employing a distributed solution algorithm (see
Section 4), typically only discrete values of the coupling variables
are exchanged between agents. Consequently, a state like the supply
temperature, governed by Eq. (2), is only available at discrete intervals
to the thermal zone agents. This effectively reduces the integration
order for this variable to one (i.e., an explicit Euler step) in the thermal
zone agents. Fig. 2 illustrates this. There are N + 1 states defined on an
equally spaced grid, with N inputs (i.e., controls, disturbances, etc.)
defined as constant between two grid points. Consider that variables
which serve a role in the local subproblem of an agent (i.e., as state,
controlled or non-controlled input) can also be coupling variables. The
example in Fig. 2(a) demonstrates the case where the coupling variable
serves as an input in Agent 1 (e.g., supply temperature in zone agent),
while it is a state in Agent 2 (e.g., upper layer storage temperature
in storage agent). To define a consensus constraint suitable for op-
timization with a distributed optimization algorithm, the dimensions
of the coupling variables must match exactly. In this study, we use
the input grid (length N) as a coupling grid, although this introduces
notable errors, as demonstrated in Fig. 2(b). More sophisticated meth-
ods for computing coupling variable values could be considered, such
as approximating polynomials and communicating their coefficients
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Table 2
Subsystem models, constraints, and objectives for ODE-based and ANN-based MPC.
Component ODE-based ANN-based
Model T,=T,, +u,2
Boiler Constraints Box constraints on decision vector Identical to ODE-based
Objective J, = rg,”ubﬁ
My
Model [0, Py Q'“M] = Interpc(u,)
0.
Tc = TS'C + m.c, .
CHP < Identical to ODE-based
Constraints Box constraints on decision vector
Objective Je = TeasQgascWe) = rey Py (1)
Model Dot = O Ty T Ty Ty Ton) TH = ATE TS TE . T,))
dr,, . e+l — k Tk Tk ik
- =S Ty T T Tony) T = AT T T i)
Storage Vi € Rooms, see Equations
Egs. (2) to (4)
- B . e
Cor-lstr.alnts ox constraints on decision vector Identical to ODE-based
Objective -
Model Q‘h%z,l =kp (T = T2,) Tz’flﬂ = .A(T,f,,,, T:h! m:‘)
a, Tt = AT T
dt " }
ATy _ Opos k2T =Ty
Tar
Consumer ATy ke Ty =Ty =K (T~ Tams)
Tar T
Constraints Tomin SToy+5,; ST, max
Box constraints on decision vector Identical to ODE-based
Objective I =w;sk,
k k+1 k42 k+N
states O O O O O @)
—
iz inputs
g P -
80 -
< %l ? F %l ? “.'
coupling @) O O @) O
SR S S S g L
coupling
o el
-
g states O
&
) — Agent 1 temperature (input)
inputs [ ][ J[_ 110 1 Agent 2 temperature (state)
k  k+1 k+2 k+N k+0 k+1 k+2 k+3 k+4

(a) Discretization of variable types

(b) Example with temperature

Fig. 2. Mapping of consensus constraints between agents when using direct multiple shooting.

(see [26]), or using a collocation discretization. To avoid large coupling
variables, we resort to the unmodified multiple shooting discretization.

Note We tried communicating the arithmetic mean of the states at k + 1
and k + 2 for the interval instead of the flat value at k + 1, yet noted no
significant improvements.

Concerns about partially reduced integration orders are less relevant
for ANN-based modeling. As the ANNs directly map input to a change
in output temperature over a specific time interval, they inherently are
discrete and do not require an integrator. Since these models are trained
using data at the start of the interval, they naturally function with
discrete inputs. Of course, without using features from the full system,
there is still some information loss, and similar errors can potentially
occurs. Still, the ANNs have the potential to mitigate some of these
errors by learning some of the associated system behavior, given a
suitable feature selection. For our example system, we compared the ac-
curacy of ANN-based modeling with ODE-based distributed integration
(see Fig. 4).

3.4. Distributed optimal control problem

The distributed OCP is defined in a general form:

N
x,u?g?z,c ; l;ji(xf,ui.‘,sf,zf,c}‘) (5a)
s.t. X0 =x(=0), (5b)
= faR k) vie (L., R), (50)
=gk, vie(l,.. R}, (5d)
0> h(x*,uf, Xy Vie{l,..R), (5e)
x, <xF<x vie{l,..,R}, (5f)
u <uf <7 vie {1,..,R} (52)

The formulation of the DMPC comprises the composition of R agents,
each optimizing their objectives j; over the horizon N, while adhering
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Table 3
Overview of the states x, control variables u, algebraic states z, coupling variables ¢
from other systems, slack variables s, for the MPC problem of each subsystem.

Consumer Boiler CHP Storage
X; T Topis Thi® T, T, Tips Ty
u; Upi Uy ue -
zZi iy, iy it -
; a b
Ci Tip T, T, Ty Tes ity Ty "5 Tey”
Si ST, - - -
2 ODE only.
b ANN only.

to dynamics defined by f; and path constraints defined by g; and &;
(see Table 2). It is important to note that the dynamics function f in
this context refers to a discrete mapping x* — x**!. This mapping is
realized either by integration of the ODEs over the interval or by a
forward pass of the ANN, depending on the chosen modeling approach.
For the specific system in this study (see Fig. 1 and Table 2), the overall
objective function to be minimized, as stated in Eq. (5a), is the sum over
the prediction horizon N of the per-step costs j; for each agent i. The
individual agent objectives j; at each time step k are:

+ CHP agent (j,): rng'gm_c(u’C‘) = 1o Py ()

+ Consumer agent i € {1,..., N.} (j): w;(s%)?

+ Boiler agent (j,): r

« Storage agent: Has no explicit objective term (j; = 0).

Thus, the total objective summed over all agents for a single time step
k is

O .
k k =1, k
Jratal = <rgdsub M + (rgangaS.c(uc) -

The full OCP objective is then the sum over all N agents E,I(V: I r’; al”

Table 3 summarizes the variables of the optimization problems
for each agent type in our investigated system. Due to the modeling
differences, the variables and couplings are slightly different for the

ODE and ANN variants.

NZ
PP W) + Y (wi(sE )P (6)

i=1

4. Algorithms for distributed optimization

To solve the OCP defined in Eq. (5) we consider distributed opti-
mization algorithms. The OCP can be reformulated in a concise way:

. Fo 7

i 2 7

subject to z A;x; = b, (7b)
ier

where f;(x;) = f;(x;) + 1x;(x;), with 1y,;(x;) being the indicator function
for the local constraint set, defined as:

0, ifx; e,
1y (x;) = { . ®
! oo, otherwise.
{X,‘ =X; € R" | gi(x;) =0,h;(x;) < 0} ©)

Here, x; € R" is the local decision vector of subsystem i, f; : R" — R
is the local objective function, A; € R™" is the local coefficient matrix,
b € R™ is the global resource vector, and g; and h; represent the local
equality and inequality constraints, respectively. The set R = {1, ..., R}
refers to the agents. A common special case that is included in this prob-
lem formulation is the consensus problem, where coupling variables
(components of x;) need to attain an agreed value among a subset of
agents R; C R. This is typically formulated such that for each coupling
variable, A; selects the corresponding local variable in agent i € R;
(e.g., A;j» = 1 for the coupling variable in question, and 0 otherwise
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for one agent, and 4, je=-1 for another agent k € R ok # i), and the
corresponding entry in b is zero (b; = 0). This ensures x; , — x; , = 0.
For systems with more than two agents sharing a variable, consensus
can be enforced through bilateral constraints (e.g., x;, = x;, and
x; s = X, ), designating one agent as a “parent” that holds the reference
value for that variable, forming bilateral consensus constraints with all
other “child” agents sharing this variable. To solve problems defined
by Eq. (7), conventional optimization algorithms can be used to solve
the full problem at once, or distributed optimization algorithms, that
solve the subsystems i in parallel, can be employed. In the following,
we briefly cover two distributed optimization algorithms, ADMM and
ALADIN.

4.1. Alternating direction method of multipliers (ADMM)

ADMM is a distributed optimization algorithm that solves prob-
lem (7) by introducing a central coordinator and local subproblems.
The algorithm iteratively updates the local decision vectors, the global
resource allocation, and the dual variables. In this work, we use stan-
dard ADMM (see [15]) and bilateral coupling to implement consensus
constraints. While it is possible to implement a fully decentralized
version for consensus ADMM, our implementation includes a central
coordinator to keep track of residuals and computation timers. The
steps of ADMM are outlined in Algorithm 1.

Algorithm 1 Parallel ADMM for problem (7)

1: Initialize z° A%, p > 0, kpaxs Frol» k = 0

2: while k < kg, and r* > r,; do

3 xf*! < argmin, fi(x)+ T A% + 2l|4;x; = 241>, VieR  (parallel)
Z! — argmin, Y° Ax;—z—b
ARt gk +I’Z,-R:o Ax; — k1

4 (centralized)
5:

6: Pk = ||Aix,l'(+l _zk+l||

7

8

(centralized)

k<~ k+1
: end while

In Algorithm 1, z € R™ is the global resource allocation at
iteration k, A¥ € R™ is the dual variable associated with the consensus
constraint (7b), and p is the penalty parameter for the augmented
Lagrangian term. r* denotes the primal residual, r, and k,,, denote
the tolerance on the primal residual and the maximum number of
iterations respectively. We do not use any heuristics for dynamic scaling
or updates of the penalty parameter p, as results during initial testing
were not promising.

4.2. Augmented Lagrangian Alternating Direction Inexact Newton (AL-
ADIN )

ALADIN is a distributed optimization algorithm that incorporates
second-order information and can find local solutions of non-convex
problems [20,39]. Inspired by Sequential Quadratic Programming
methods, it introduces a quadratic approximation of the objective
function and a linearization of the constraints in the central step. The
steps of ALADIN are summarized in Algorithm 2.

Table 4 shows additional symbols that are used in Algorithm 2.
4.3. Practical adjustments and parameters

Several adjustments and heuristics are implemented to enhance
ALADIN’s convergence and closed-loop performance:

+ Hessian regularization: Hessian regularization is applied to the
hessian approximation B, to ensure positive definiteness, flipping
the sign of negative eigenvalues and putting zero eigenvalues on

a small parameter Breq (see [39]).
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Algorithm 2 Basic ALADIN for problem (7)

1: Initialize z0 € R", 2% € R", 30> 0,9° > 0, 4° > 0, pryay> Hmax
2: while k < kg, and r* > r, do
3: Solve local objectives (parallel)

k
2 T .
X argmin fi(x) + 2% A,x, + %Hxl - P, vieRr

X;

4: Determine active set and effective equality constraints g (xf*')
(parallel):
k+1
Skl &(x;™)
8= [hﬁ"(#‘*‘)

where Af(xf*") = {h;; (") 1 Ry 2 €4 )
5: Compute Sensitivities (parallel):
V £,(xf*!) (Gradient)
Bf » Vi,x, (£ + 7T (Y + u] by (xF*1)) (Hessian approx.)
Vg,(x¥*!) (Constraint Jacobian)

6: Solve the coordination QP (central):

. 1
Ax* = argmin E EAxiT BfAx; + V f;,(xF*)T Ax,
Ax,s iR

k
.
+ 2k s+%||s||2

s.t. Z A FAx)=b+s | Agp

iER
VE(xAx; =0, VieR
7: Update local targets z;, global multiplier 4 and determine residual r
z,’.‘“ = xf.‘“ + akAx,].‘

A= 25 4 a*(Agp — 45

= 1A - bl
8: end while
Table 4
Symbols used in Algorithm 2.
Symbol Description
Vis U Dual variables associated with local equality and inequality
constraints
Zi(x;) Local equality constraints and active inequalities
Axk e R" Primal update direction at iteration k
seR™ Slack variable on coupling constraints
ak e (0,1] Step size for updating the primal variables at iteration k
uk >0 Penalty parameter for the slack variable at iteration k
Pmax> Hmax Maximum values for p and u
Aop Lagrange multipliers from the coordination QP

Parameter updates: p is updated according to p**! = p* - p, .

Variable scaling: We scale coupling variables using factors T},
and iy, to improve problem conditioning.

Step size control: We limit the step size « based on the infinity
norm of the QP step ||4x||, and an absolute maximum Ax
preventing excessively large steps.

Best solution recovery: To deal with instability between itera-
tions, we track and return the best solution based on coupling
constraint violation.

max?

The Hessian regularization and p-updates are included with
ALADIN-a [39], while scaling implementation, step size control and
solution recovery were adjusted based on own experience.

5. Reference controllers

To evaluate the performance of the DMPC strategies, we compare
them against a conventional baseline controller, and a centralized
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benchmark MPC, serving as the upper bound. The reference controllers
are explained in the following sections.

Rule-based control strategy

The rule-based control strategy serves as a baseline for comparison
with the MPC approaches. This control scheme combines PID con-
trollers for local zone temperature regulation with supervisory logic
for producer coordination. Individual PID controllers regulate the mass
flow through each zone’s heating system (u,;) to track time-varying
temperature setpoints. The control action is bounded between 0 and
1, representing the normalized pump speed.

During occupied hours (8:00-18:00), the setpoint is 21 °C, while
during unoccupied hours, it reduces to 17 °C for energy savings. To
ensure comfort at the start of occupancy, the controller initiates a pre-
heating period four hours before the scheduled occupancy time, raising
the setpoint to 21 °C in advance.

A hysteresis-based strategy manages the storage tank’s hot layer
temperature to follow a setpoint of 55 °C. The boiler activates when
the storage temperature drops below 52 °C (3 K below the 55 °C
setpoint) and deactivates when it rises above 55.5 °C (0.5 K above the
setpoint). This asymmetric hysteresis band prevents excessive cycling
while ensuring adequate heat supply.

Producer prioritization follows a simple hierarchy: the CHP unit
operates as the base-load supplier, while the boiler provides peak-load
coverage. When the boiler is active due to low storage temperatures,
the CHP is commanded to full power (100%) to maximize its contribu-
tion and compensate gas consumption through electricity generation.
The boiler is then modulated with a PID controller to track the storage
temperature setpoint. When the boiler is inactive, the CHP modulates
its output through a separate PID controller.

The PID parameters were manually tuned with simulations to pro-
vide stable operation. The main design choices for this control are
the pre-heating time and the storage temperature supply temperature.
We chose the pre-heating time high enough to avoid most comfort
violations, and the storage supply temperature based on original con-
siderations when designing the example system. Coincidentally, the
MPC simulations finish at a similar storage temperature, minimizing
the error when comparing the controls (due to heat that was generated,
but is still available in the storage to a different extend).

We would like to note that this is a very strong conventional
baseline control, tuned through simulations, similar to how the MPC
parameters were also extensively tuned (see Section 6.3). In a real
setting, this conventional control would likely perform worse, as pre-
heating times cannot be known in advance and PID parameters are not
optimal.

Centralized MPC benchmark

The centralized MPC serves as an upper performance benchmark.
It utilizes the exact ODE-based process model (Table 2) for all agents.
The OCP is transcribed using direct multiple shooting with a CVODES
integrator, ensuring full integration order for all states, including those
involved in inter-agent coupling, by solving the entire system model
simultaneously. The resulting NLP is solved using IPOPT. This setup
represents the best achievable performance for an MPC under ideal
modeling and centralized information with the given prediction hori-
zon. The current horizon of 6 h (Table 5) does not allow the MPC
to foresee the start of the next day’s occupancy period when making
decisions towards the end of the current day. While a longer horizon
could potentially improve benchmark performance further, it was kept
consistent with the DMPC setups, where longer horizons would sig-
nificantly increase computational demands and exacerbate challenges
related to ANN model accuracy over extended predictions.
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6. Results

In this section, we present numerical results for the control of the
example building energy system described in Section 2.3. We evaluate
various DMPC configurations, featuring both ODE-based and ANN-
based models, and compare the distributed optimization algorithms
ADMM and ALADIN. The distributed solvers (ADMM and ALADIN) uti-
lize IPOPT to solve local subproblems. All simulations are implemented
in MATLAB using a modified version of the ALADIN-« Toolbox [39].
Parameter tuning for the distributed algorithms is orchestrated using
Weights & Biases [40], running with matlabengine from Python. Sim-
ulations are conducted on a machine with an Intel(R) Xeon(R) Silver
4216 processor. ANN models are trained with Keras [41] in Python.
The subsequent subsections detail the closed-loop control performance,
the accuracy of distributed integration methods, the parameter tuning
process, and a closed-loop scalability analysis of the system.

6.1. Closed-loop control

To validate the efficacy of the proposed DMPC schemes, we con-
ducted a series of closed-loop simulations on the example system
comprising two thermal zones (five agents in total, as per Fig. 1). The
performance of these schemes is compared against the conventional
rule-based controller and the centralized MPC benchmark. For the
DMPC methods, we present results from ALADIN and ADMM using
ANN-based process models, specifically showcasing the best-performing
configurations identified during the parameter tuning process detailed
in Section 6.3.3. Table 5 outlines the key simulation parameters used
for these comparisons. Controller performance is quantified by the total
energy cost in Euro and the RMSCV in Kelvin. The RMSCYV is calculated
similarly to the Root Mean Square Error but only considers deviations
below the lower comfort bound; if the temperature is above the comfort
bound, the comfort violation is zero.

Fig. 3 illustrates a 48-h closed-loop simulation, comparing the con-
ventional controller, the centralized benchmark MPC, and the best-
tuned ANN-based ALADIN and ADMM controllers. The centralized
benchmark achieves the best performance with an RMSCV of 0.01 K
and operation costs of 421 €. The conventional controller performs well
with negligible comfort violations (RMSCV: 0.05 K) and operation costs
of 440 €. The ALADIN-based DMPC achieves comparable performance
(RMSCV: 0.08 K, costs: 431 €), with operating costs slightly higher
than the benchmark, and slightly lower than the conventional control.
The ADMM-based approach shows the highest costs (486 €) with
an RMSCV of 0.07 K. The ALADIN-based DMPC exhibits more pro-
nounced oscillations in control inputs, particularly the valve openings.
This behavior can be attributed to potential inaccuracies in the ANN
models or suboptimal convergence characteristics of the distributed
algorithm, which in turn cause the controller to make strong corrective
actions. In a practical setting, such oscillations can be mitigated by
adding penalties for rapid control changes, further tuning the cost
function, or improving model accuracy. Nevertheless, the key takeaway
is that ALADIN generally identifies the optimal operational strategy
but may lack precision in execution due to these factors. In contrast,
the ADMM-based DMPC performs noticeably worse, particularly by
failing to effectively utilize the night setback strategy, leading to higher
operational costs. It is important to note that this comparison is quite fa-
vorable to the conventional controller. Its strong performance is largely
due to careful tuning in simulation. In a scenario with more complex
dynamics, such as highly nonlinear producer efficiencies (e.g., heat
pumps benefitting from precise supply temperature control) or variable
energy tariffs, the advantages of MPC-based approaches would likely be
more pronounced.

10
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Table 5

Simulation parameters.
Parameter Value
Simulation time 48 h
Max ALADIN/ADMM iterations 50
ALADIN/ADMM tolerance r,, le-3
MPC step size 30 min

Prediction horizon 12 steps (6 h)

Table 6

Parameter tuning overview.
Symbol Algorithm  Range Description
Po Both [le—4, 1e6] Initial penalty parameter
Tycate Both [0.1, 1e3] Temperature scaling factor
Myegre Both [0.1, 1e2] Mass flow scaling factor
Pupdate ALADIN [1, 2] Penalty parameter update factor
Prnax ALADIN [1e5, 1e9] Maximum penalty parameter
Ho ALADIN [1le-2, 1e6] QP penalty parameter
a ALADIN [0.4, 1.0] Absolute step size limitation
regParam  ALADIN [5e-5, 3e-3] Hessian regularization parameter
actMargin ~ ALADIN [-1le-3, —5e—6] Margin for active set detection
max_iter ADMM [15, 400] IPOPT max iterations
tol ADMM [le—4, 1] IPOPT acceptable tolerance?®
compl_ tol ~ADMM [1e-5, 1] IPOPT complementarity tolerance®
constr_tol ADMM [le-5, 1] IPOPT constraint violation tolerance?

a Referring to acceptable tolerance of IPOPT.

6.2. Distributed Integration Accuracy of ANN s and ODEs

In Section 3.3, we outlined how integration accuracy can be com-
promised in a distributed setting. Here, we compare the error propa-
gation of distributed integration (with fixed neighbor states over the
interval) and ANN-based discrete modeling against the benchmark of
full system integration.

We conducted 1000 simulations with random initial conditions and
inputs, comparing the errors at 3-h and 12-h endpoints to the full
integration solution. The step size for constant inputs is set at 30 min,
matching the MPC step size used in our study. Fig. 4 illustrates the
results. The top row of Fig. 4 displays the prediction error in room
temperature (7,), while the bottom row shows the prediction error in
heating return temperature (7},). In all scenarios, distributed modeling
leads to an underestimation of final temperatures, with distributed
ODEs exhibiting significantly larger errors. It is evident that for the
energy system in this study, some form of error mitigation technique
is necessary to achieve performance comparable to centralized MPC.
While Fig. 4 shows better accuracy for ANNs, the improvements in
closed loop control are marginal (see Fig. 8). While this work does
not offer a concrete solution to this problem, we want to emphasize
its importance, as it is not commonly noted in the literature.

6.3. Parameter tuning

To optimize the performance of the ADMM and ALADIN algo-
rithms, we conducted extensive parameter tuning using Weights &
Biases (wandb) sweeps. This approach allowed us to systematically
explore the parameter space and identify optimal configurations for
both algorithms. Table 6 shows the parameters that are optimized for
the algorithms.

6.3.1. Tuning process

Two of the most impactful parameters are Ty, and #,.,,, Which
are used to scale the problem. While the ALADIN as proposed in
i.e. [17] incorporates a scaling matrix X in the local coupling term,
we found scaling the variables themselves, affecting the entire OCP, to
be more effective. Scaling factors are implemented like this:

T
T,

scale

T=

, (10)
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Fig. 3. Comparison of conventional controller, benchmark central MPC and DMPC with ADMM and ALADIN over a 48-h closed-loop simulation period.

where T the optimization variable instead of T. For example, if the
original optimal value for a temperature in the OCP was 300 K, and
the scaling factor T}, is 100 K, the optimum returned from the solver
would be 3. This results in well-scaled variables for the coordination
operations in ADMM and ALADIN. We scale all temperatures and all
mass flows in the OCP with the same factor respectively.

For ADMM, we tune some solver parameters for the local solution
with IPOPT, as preliminary tests showed a high sensitivity of ADMM
to the solution tolerance of the local problems (where more precise
was not necessarily better). For ALADIN, we chose suitable IPOPT
tolerances beforehand, but excluded them from the large-scale tuning,
as we found ALADIN to be less sensitive in that regard.

We employed both Bayesian optimization and random search to
explore the parameter space defined in Table 6. The optimization was
evaluated by a custom cost function Jyping, defined as:

P

cons

Jtuning = Jecon T 1

where J..,, is the economic cost function of the MPC, and P,y is a

penalty term for the consensus constraint violations r,,.

llrpll® 3f [Ir, Il > 107

0

12)

cons = .
otherwise

This formulation ensures that solutions with small consensus viola-
tions (less than 103) are compared based on the lowest reached
cumulative objective, while larger violations incur a cubic penalty,
strongly encouraging the optimizer to find solutions that satisfy the
consensus constraints. An artificial high value for Jyn, is set, when
the optimization hits a time limit of 200 s. The search ranges for each
parameter were chosen based on preliminary experiments and domain
knowledge, as shown in Table 6. Log-uniform distributions were used
for parameters spanning several orders of magnitude, while uniform
distributions were used for parameters with narrower ranges.
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Fig. 4. Box plot for the comparison of integration error propagation for ANNs and
ODEs with reduced neighbor integration order over 1000 random sample simulations.

6.3.2. Tuning results and analysis

To visualize the results of our parameter tuning efforts, we have
created a cumulative distribution function (CDF) plot of the tuning
fitness function Jyging for both ADMM and ALADIN algorithms, com-
paring random search and Bayesian optimization approaches. This plot
is presented in Fig. 5.

The optimal value of the tuning function, which directly corre-
sponds to the DMPC objective function, is approximately 50. Notably,
around 40% of ALADIN configurations yield a tuning function value
below 60, indicating a high proportion of convergent solutions. In
contrast, only about 10% of ADMM configurations converge, despite
having fewer parameters to tune. This disparity suggests that ALADIN
exhibits greater robustness to parameter variations, with a wider range
of parameter sets leading to near-optimal solutions, while ADMM'’s
convergence to the optimum is more sensitive to specific parame-
ter combinations. The figure also reveals a slight advantage in us-
ing Bayesian optimization over random search, as evidenced by a
marginally higher fraction of convergent solutions among open-loop
runs for both algorithms.

Fig. 6 provides deeper insights into the parameter tuning results
for ADMM. The parallel coordinates plots visualize the relationship
between key parameters (p, Ty.,., and ri.,,) and the resulting per-
formance for the best and worst ADMM runs. Examining the best-
performing runs in Fig. 6(a) confirms common ADMM intuitions:

+ The penalty parameter p needs to be sufficiently high to prevent
divergence.

* Both mscale and Tscale

are close to 1.

should be chosen so that the scaled variables

Configurations that fail to meet these conditions consistently result in
poor ADMM performance.

However, Fig. 6(b) reveals that adhering to these general guidelines
does not guarantee optimal performance. Poor runs can still occur even
with large values of p and appropriate scaling factors. This suggests that
while these intuitive guidelines are necessary for good performance,
they are not sufficient on their own for this challenging, non-convex
problem.

For ALADIN, the tuning results are shown in Fig. 7. Compared
with ADMM, it is apparent that the best runs (Fig. 7(a)) make up a
larger portion of overall runs compared to the poor runs (Fig. 7(b)).

Additionally, only the temperature scaling 7., has a clearly visible
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impact, which can also be seen for the worse runs, where low values for
Tycale are clearly correlated with high (i.e. poor) values for the fitness

function. The mass flow scaling seems to matter less, while the
penalty parameter p is more consistent at lower values. However, if p
is too small, the algorithm will diverge fully, which is not shown here
to improve scaling of the figure. Summarizing, ALADIN demonstrates
more consistent good performance when T, ,, and p are chosen within

intuitively good ranges compared to ADMM.

scale

While these findings indicate some correlation between intuitive
parameter choices and actual performance, sophisticated parameter
tuning is still required for either algorithm to achieve optimal perfor-
mance. In the following section, we examine how a good open-loop
performance translates to closed-loop performance.

6.3.3. Transfer to closed-loop performance

To assess whether open-loop tuning translates to effective closed-
loop performance, we executed the top 10 configurations from the
parameter tuning for each DMPC scheme. Fig. 8 presents the closed-
loop results of all examined DMPC schemes for 48-h simulations.
The x-axis represents operating costs, while the y-axis shows comfort
violation (RMSCV). The benchmark occupies the bottom-left corner, in-
dicating the least comfort violation and lowest operating costs. Judging
from the benchmark and detailed plots of other runs, we consider runs
with RMSCV below 0.2K to be good, usually experiencing one smaller
deviation in the room temperature profile. Runs with an RMSCV above
0.4K usually have serious issues, disqualifying them considering the
expectations one has on a sophisticated control scheme like MPC. Table
7 summarizes the key performance indicators presented in Fig. 8.

IPOPT results are consistently close to the benchmark, regardless of
the modeling approach, though still inferior, highlighting the numerical
errors introduced through the reduced integration order of neighboring
states, or the ANN models. Note that the IPOPT results are obtained
with the variable scaling from the ADMM-tuning, explaining differences
in operation cost and execution time. ADMM results exhibit good
comfort levels at high and widely varying operating costs. These are
often the result of serious overheating, disregarding the temperature
profile, and low sensitivity towards choosing the correct producer.
ALADIN results with ANNs show acceptable comfort violations and
lower operating costs compared to ADMM, though still notable varia-
tion exists. Comparing ALADIN results to IPOPT in detailed simulations
reveals very similar control profiles. The higher RMSCV is usually
attributed to comfort violations around the edges of the occupancy
window, i.e. late heating or early stopping. ALADIN results with ODEs
are significantly worse, displaying unacceptable control behavior, often
running into the iteration limit without finding a convergent solution.
This could be attributed to the tuning being optimized for ANNS,
with the computational intensity of ODEs making ODE-targeted tuning
impractical.

Regarding computation times, shown on the right side of Fig. 8,
ANN-based IPOPT is the fastest, requiring under five seconds per
MPC step, followed by the benchmark. ANN-based ALADIN, ANN-
based ADMM, and ODE-based IPOPT are comparable, taking between
40-80 s. ODE-based ADMM and ALADIN are notably slower, requiring
around 500 s per optimization.

While these optimization times may seem large, several factors
contribute to this. CVODES’ inherent slowness affects all ODE-based
approaches. Additionally, ALADIN and ADMM do not scale efficiently
for small systems (only 5 agents in this case) and require multiple
IPOPT problem solutions. Furthermore, CasADi’s C-code generation
feature was not utilized in this study, as it cannot be used for code
including CVODES.
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6.4. Closed-loop scalability study

To evaluate performance with larger systems, we progressively
increased the number of consumers. This scaling was performed while
keeping storage and producer parameters constant; consumer size was
scaled down proportionally to the number of systems. For scenarios
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with five or more consumers, we generated three randomized room
sizes, training a new ANN as a process model for each of these con-
figurations. We tested systems with 2, 5, 10, 20, and 40 consumers,
conducting closed-loop simulations over a 24-h period using the best

configuration determined from open-loop parameter tuning. Due to the
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Table 7

Summary of controller performance metrics from closed-loop simulations (48-h period, 2 thermal zones). Values for
ADMM and ALADIN represent averages over the top 10 tuned configurations.

Solver Modeling Operating cost (€) RMSCV (K) Time (s)
Avg. Min. Max. Avg. Min. Max. Avg.
IPOPT ODE® 421.71 0.01 13.25
IPOPT ODE-D 430.85 430.05 431.67 0.05 0.05 0.05 26.55
IPOPT ANN 429.51 427.22 431.25 0.08 0.08 0.08 3.71
ADMM ODE-D 491.54 453.50 523.67 0.06 0.03 0.11 282.84
ADMM ANN 526.57 485.89 580.27 0.05 0.01 0.09 18.59
ALADIN ODE-D 446.72 418.91 536.40 1.25 0.09 1.96 556.06
ALADIN ANN 452.64 430.97 509.69 0.17 0.08 0.36 37.63

2 This row (IPOPT, ODE) represents the benchmark (see Fig. 8). The key difference in ODE-D are the distributed

integration errors introduced, see Section 3.3.

large runtimes of ODE-based approaches, we only performed these sim-
ulations with the ANN-based MPC. Fig. 9(a) illustrates the performance
of DMPC for increasing numbers of consumers comparing IPOPT with
ADMM and ALADIN.

All methods exhibit a significant increase in runtime as the num-
ber of consumers grows. Beyond 20 consumers, ADMM and ALADIN
outperform IPOPT in terms of computational speed. ADMM reaches its
iteration limit after 20 consumers, a behavior not observed with AL-
ADIN in the tested scenarios. Operational costs and comfort violations
are elevated and generally more volatile for cases with more than two
consumers, suggesting less optimal solutions. This trend is consistent
across all algorithms, including the central solution provided by IPOPT.
A plausible explanation is the decreased model accuracy of the ANNs,
as a new set of ANNs is trained for each case.

While the KPIs (Key Performance Indicators) in Fig. 9(a) might sug-
gest that all algorithms converge to similar solutions for 40 consumers,
Fig. 9(b) reveals substantial differences in operational detail between
the algorithms. The MPC using IPOPT and ALADIN adheres to the ref-
erence lower bound and deactivates producers at the start of the night.
Performance varies across rooms; some consumers (e.g., zone 1) exhibit
smooth operation, while others show more erratic behavior. At this
stage, it is unclear whether these variations stem from model inaccura-
cies or insufficient convergence of the algorithms. ADMM, conversely,
produces a feasible but clearly suboptimal operation, disregarding night
setbacks and continuously operating the boiler. Consequently, while
ALADIN still has areas requiring refinement for real-world application,
it achieves a solution much closer to the optimum than ADMM.
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Although the DMPC is an order of magnitude faster than the cen-
tral MPC for the largest case (40 consumers), the runtimes remain
substantial. We therefore conducted a more in-depth examination of
the computational profile. Fig. 10 presents a detailed breakdown of
ALADIN’s computation times.

ALADIN’s computation comprises the solution of local NLPs, calcu-
lation of local gradients, Hessian regularization, and the central QP. As
steps 1-3 can be executed in parallel for all agents, we only consider
the slowest agent for those components. Local NLP solution time is in
all cases the dominant component of the computation, as shown in
Fig. 10(a). It remains relatively constant between 2 and 5 consumers
but increases exponentially thereafter. The central QP solution scales
exponentially from the outset, becoming a significant contributor to
the overall computation time as the number of consumers increases.
Hessian regularization and sensitivity calculations also scale, but have
a minor impact on total time.

A closer examination of local NLP solution times in Fig. 10(b)
reveals the average NLP solution time for a single iteration by sub-
system type (consumer, producer, storage). While NLP solution time
is independent of system size for consumers and producers, it increases
with the number of consumers for the storage subsystem. This explains
the minimal change in runtime between 2 and 5 consumers, as the
dominant system shifted from consumer to storage.

The storage NLP scales in size with the number of consumers due
to coupling variables affecting system dynamics for each consumer.
Consequently, the advantage of DMPC is diminished, as a single agent
within the network still scales with the overall problem size. It is
also noteworthy that the central QP becomes a significant portion of
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optimization time for larger systems, indicating a potential bottleneck
for ALADIN.

7. Discussion

In the following section, we summarize our findings, disclose limi-
tations of this study and consider future research directions.

7.1. Findings regarding NDMPC in Building Energy Systems

This study advances practical understanding of NDMPC for build-
ings regarding system topology, optimization algorithms and transcrip-
tion and modeling.
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Performance and scalability. The results demonstrate that NDMPC can
achieve performance levels comparable to centralized MPC in building
energy management. This finding is particularly significant for large-
scale systems, where a parallel implementation shows computational
advantages over centralized approaches, disregarding communication
overhead. However, it is crucial to consider the system architecture
carefully. Star-like graphs with an agent sharing many individual con-
sensus constraints with neighbors should be avoided, as that can lead
to exponential growth in computational complexity for that agent,
negating the scaling advantages of distributed architectures. This phe-
nomenon was also observed in the study [8], although less severe,
as their storage modeling is linear. While in this study, distributed
approaches outperformed the central solution computationally, this
only occurred for system sizes where computation times and solution
quality are insufficient for all approaches, prompting a need for further
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improvements before these technologies become viable. We also no-
ticed significant sensitivity towards algorithm parameters and system
configuration (as seen in Fig. 9).

Algorithm characteristics and tuning. Our investigation revealed distinct
characteristics of different algorithms. ADMM proved effective at find-
ing approximate and feasible solutions, but severely lacked in achieving
energy optimality compared to ALADIN or a central solver like [IPOPT.
ALADIN in general converged to higher accuracies, providing energy-
efficiency close to IPOPT in many cases, although its solutions are
less stable, resulting in violations of comfort constraints from time
to time. Both ADMM and ALADIN may fail to converge without so-
phisticated parameter tuning and variable scaling, but ALADIN is less
sensitive to variations in variable scaling. While open-loop tuning can
effectively identify non-convergent configurations, we noted significant
and seemingly random variations in performance among convergent
setups. This variability highlights the complexity of NDMPC systems
and the challenges in predicting and optimizing their performance
across different scenarios.

Modeling and transcription strategies. The study highlighted the signif-
icant impact of modeling and OCP transcription choices on DMPC
performance. Distributed multiple shooting transcriptions that only
consider neighboring states as piece-wise constant can introduce signifi-
cant errors, reducing controller performance. Additionally, using robust
integrators like CVODES results in prohibitive computation times for
systems that require them. NARX models like ANNs alleviate these
issues, showing major improvements in computation time while grace-
fully handling these integration errors, as they are inherently trained
on discrete data. One should keep in mind that in systems where a
Euler-step is sufficient for integration accuracy, these issues are less of
a concern.

7.2. Limitations

While our study provides insights into the performance of NDMPC
for building energy systems, it is important to acknowledge several
limitations:

The computation time analysis for parallel ADMM and ALADIN
implementations does not account for communication overhead.
In real-world applications, this overhead can be a significant, if
not the main, contributor to the overall run time [6].

Our overall computation times should be considered in the con-
text of the software environment used. The simulations were
conducted using MATLAB with CasADi without C-Code genera-
tion, which may not achieve the same performance as directly
running optimized C-code with tailored low-level algorithms.
The performance of artificial neural networks (ANNs) introduces
notable variability in closed-loop results, even for centralized
MPC. We put significant effort into tuning and feature selection
for the two-room case to ensure good performance, however we
cannot guarantee that this transfers to the cases with more rooms.
Creating high-quality ANN models for all subsystems in large-
scale applications and automatically validating their performance
remains a significant challenge. This limitation becomes particu-
larly pronounced as the system size increases.

While we tested numerous parameterizations and attempted to
treat all algorithms fairly, there remain unexplored options. These
include various ADMM modifications and a more detailed analysis
of solution accuracy and termination criteria across different
algorithms. We also ran the ODE-based configurations with pa-
rameters from the open-loop tuning with ANN-based MPC, as the
high runtimes of the ODE-based MPC make tuning with them
impractical.

16

Energy and Al 21 (2025) 100536

» The study uses a real ambient temperature profile and repre-
sentative building/zone dimensions, but does not incorporate
other real-world data sources such as occupancy profiles, internal
gains schedules from measurements, or validate against a physical
testbed. A comprehensive validation with extensive real-world
data, including various uncertainties, is considered out of scope
for this paper, which focuses on the algorithmic and numeric
aspects of modeling NDMPC for strongly coupled systems.

7.3. Future research directions and potential enhancements

The results of this study show promise for NDMPC and highlight
further research directions towards practical and reliable implementa-
tion.

Alternative discrete modeling approaches. While Artificial Neural Net-
works (ANNs) performed well in our study, their success may be
attributed more to their discrete nature than to the specific ANN
architecture. Future research could explore other inherently discrete,
data-based modeling options that are computationally more efficient
and easier to train than ANNs. Hammerstein—-Wiener type models, for
instance, could offer a promising alternative, potentially combining
the benefits of discrete representation with reduced computational
complexity and training difficulty.

Comparative analysis of transcription methods. Our current study focused
on multiple shooting but did not include a comprehensive compar-
ison with direct collocation methods. In a previous study [35], we
explored direct collocation for a similar system, which proved highly
effective for centralized MPC, demonstrating a significant improvement
in computation time compared to our current centralized benchmark.
Nevertheless, the distributed version using direct collocation encoun-
tered challenges, requiring an excessive number of ADMM iterations to
converge. This difficulty may be attributed to the higher dimensionality
of the coupling variables in the collocation approach. It is important to
note that the previous study lacked the variable scaling and intensive
parameter tuning implemented in our current work, making direct
comparisons between the two approaches problematic. These observa-
tions underscore the need for further research to fully understand the
trade-offs between multiple shooting and direct collocation in NDMPC
contexts. Finally, further improvements should be made regarding dis-
tributed transcription of OCPs, aiming at reducing numerical errors
with regard to neighboring integration order, while keeping coupling
variables of low dimension.

Topology optimization for improved scaling. Future work could focus on
adjusting the system topology to enhance scalability. One approach
is the introduction of aggregator agents at points where numerous
coupling variables converge. These aggregator agents, comprising sim-
ple equations (for example, computing the total enthalpy flow from a
number of mass flows and temperatures), could significantly reduce the
number of variables handled by more complex agents, such as storage
agents. This strategy has the potential to distribute computational load
more evenly and improve overall system performance. Fig. 11 shows
how the topology could be changed with an aggregator agent.

8. Conclusion

This study investigates the application of NDMPC to complex BES,
focusing on scenarios with multivariate coupling between subsystems.
We compared the performance of ADMM and ALADIN optimization
algorithms against a centralized IPOPT benchmark, using both ODE-
based and ANN-based modeling approaches. Our results demonstrate
that NDMPC can achieve performance comparable to centralized MPC,
particularly when using ALADIN. We also highlighted the critical role
of parameter tuning and variable scaling for both ADMM and ALADIN,
observing that ALADIN exhibits greater robustness to parameter vari-
ations. Furthermore, we identified a scalability bottleneck in star-like
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performs light computation to reduce the number of inputs for the central agent.

topologies where a central agent, such as the storage agent in our case
study, experiences increasing computational burden with growing sys-
tem size. The use of ANN-based models offered computational advan-
tages compared to ODE-based approaches. However, further research
is needed to address the identified scalability limitations, exploring
alternative system topologies and aggregation techniques. Future work
should also focus on improving the consistency of the controller, espe-
cially with regard to model accuracy and robustness towards parameter
variations. It should also include application to a variety of systems,
especially ones that bring out the full potential of NMPC, featuring
more nonlinear producers such as heat pumps, and varying energy
tariffs, further incentivizing utilization of the storage.
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