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ABSTRACT

As the demand for reliable wireless networks continues to grow, there is an increasing
need for innovative network architecture concepts to meet the escalating requirements
for high throughput and good coverage. One such solution is Distributed Massive
Multiple-Input Multiple-Output (MIMO), a technology that leverages a network of
spatially distributed Access Points (APs) to serve User Equipments (UEs) simultane-
ously. This architecture offers significant advantages in terms of coverage, serving
capacity, and Spectral Efficiency (SE) (a measure of how effectively the network uses
its available bandwidth) by utilizing spatial diversity, where signals are transmitted
and received from multiple locations. However, while Distributed Massive MIMO
holds great promise, it faces scalability challenges, particularly as the number of UEs
increases and the number of available APs is limited. To tackle this challenge, AP
selection becomes a critical strategy. Instead of all APs in the network, a subset of APs
is selected to serve a given User Equipment (UE). This selective approach not only
reduces computational complexity but also optimizes the use of network resources
(i.e., available APs), making the system more practical and scalable. However, as UE
density increases while the number of available APs remains fixed, the need for smart
AP selection becomes crucial. In scalable distributed MIMO, each UE desires to be
served by an optimal set of APs with the best channel conditions. Yet, as the number
of UEs increases, each AP must serve more UEs, which introduces two significant
challenges. First, the risk of pilot contamination rises, a phenomenon where UEs
sharing the same pilots cause inter-UE interference, leading to a degradation in overall
network performance. Second, the increased signaling and data processing required
as each AP serves more UEs results in higher computational costs. Adequate AP
selection is essential in mitigating these challenges by balancing performance with
cost. This thesis focuses on the problem of constrained AP selection, specifically
examining how to optimize AP selection when resources like the number of APs and
pilots are limited. Our research introduces and evaluates various AP selection meth-
ods, including a novel approach we designed and refer to as the "Fair AP Request"
method. This method is designed to enhance network performance by reallocating
underutilized AP resources to the weakest UEs, thereby ensuring a more efficient
distribution of network serving capacity. Our analysis reveals that the Fair AP Request
method not only achieves near-peak spectral efficiency but does so with a relatively
low algorithmic complexity. This makes it a robust and scalable solution for dis-
tributed massive MIMO networks, particularly in resource-constrained scenarios. The
findings of this thesis provide valuable insights into the design and optimization of
future wireless networks, highlighting the importance of AP selection in maximizing
network efficiency and scalability.
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INTRODUCTION

The exponential growth in demand for high data rates and reliable wireless com-
munication, fueled by the proliferation of smart devices and the increasing depen-
dence on wireless networks for everyday applications, has made network architec-
tural design a critical focus in recent years. To meet these escalating demands, recent
discussions have centered on optimizing network architecture to achieve significant
improvements in spectral efficiency - how efficiently the network utilizes its available
bandwidth - and system capacity, which determines the number of UEs the network
can support [1].

Traditional cellular networks have long been the backbone of mobile communication,
utilizing centralized Base Stations (BSs) to connect users within specific geographic
cells. While this architecture was effective in earlier generations of mobile networks,
it is increasingly inadequate in addressing modern demands. As the number of con-
nected devices surges and data consumption continues to grow, these networks face
critical challenges such as capacity limits, poor coverage, and severe interference,
particularly at the edges of cells where users are far away from the Base Station (BS)
and therefore typically experience the lowest service quality [2].

To mitigate these issues, the field of wireless communication has evolved towards
Massive MIMO technology. Massive MIMO involves deploying large antenna ar-
rays at both the transmitting BS and receiving user devices, enabling the network
to transmit multiple data streams simultaneously over the same frequency band - a
process known as spatial multiplexing. This approach significantly enhances spectral
efficiency, allowing the network to accommodate more users at higher data rates. As
a result, Massive MIMO offers substantial improvements in coverage and capacity,
addressing some of the key limitations of traditional cellular networks [1].

However, despite these advancements, the centralized nature of Massive MIMO, where
large antenna arrays are installed at a single BS, still presents challenges. In densely
populated urban environments or areas with complex geographical features, the place-
ment of these base stations can lead to suboptimal performance. Users located far
from the BS or in obstructed areas may experience degraded signal quality, and the
network may suffer from imbalances in load distribution. Additionally, as user den-
sities increase, particularly with the proliferation of Internet of Things (IoT) devices,
centralized networks struggle to scale their infrastructure to meet demand without
incurring significant costs [3].
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Distributed Massive MIMO networks offer a revolutionary shift in wireless commu-
nication by decentralizing antenna arrays and dispersing numerous APs across the
coverage area. This approach addresses the limitations of traditional centralized ar-
chitectures by enabling each UE to be served by multiple APs, chosen based on the
best available channel conditions. This not only optimizes connection quality but also
improves overall network performance. Additionally, Distributed Massive MIMO
eliminates traditional cell boundaries, which often cause reduced data rates and in-
creased inter-cell interference at cell edges, ensuring consistent, high-quality service
across the entire coverage area [4].

While Distributed Massive MIMO transforms wireless communication by addressing
many limitations of traditional networks, it also introduces challenges, especially in
resource-constrained environments. As demand for higher data rates and more re-
liable connections grows, Distributed Massive MIMO systems struggle in scenarios
with limited APs and high UE densities. Serving all UEs with all APs simultaneously
is impractical and inefficient, leading to resource contention and increased interfer-
ence [5].

This issue has driven the development of Scalable Distributed Massive MIMO, where
only a subset of APs serves each UE based on channel conditions, optimizing spec-
tral efficiency. However, as UE density increases while the number of available APs
remains fixed, the need for smart AP selection becomes critical. When the number
of UEs grows, each AP must serve more UEs, leading to two significant challenges.
First, the limited number of available pilots increases the risk of pilot contamination,
where UEs sharing pilots cause inter-UE interference, degrading overall performance.
Second, the increased signaling and data processing required as each AP serves more
UEs results in higher computational costs. Adequate AP selection is essential in miti-
gating these challenges, particularly in high-density environments, by balancing per-
formance with cost. This ensures that Distributed Massive MIMO remains scalable
and capable of meeting the growing demands of modern wireless networks [6].

This thesis focuses on constrained AP selection in scalable Distributed Massive MIMO
networks, a critical area of research that addresses these challenges. We explore how
to optimize AP selection under the constraints of limited APs and pilots to ensure
that the network remains scalable, efficient, and capable of meeting the demands of
modern networks. Through our research, we aim to develop strategies that not only
enhance the performance of scalable Distributed Massive MIMO networks but also
ensure their practical applicability in real-world scenarios where resources are often
limited.

This thesis aims to address constrained AP selection in scalable Distributed Massive
MIMO networks. The primary objectives are as follows:

• To demonstrate the importance of AP selection methods.

• To understand the constraints of network design and its effects on AP selection.
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• To design a new AP selection method during this research and evaluate its
performance.

• To analyze and compare the performance of the new and existing AP selection
methods against the ideal scenario and a traditional cellular scenario.

• To assess the system cost associated with each AP selection method, balancing
performance gains against computational complexity and resource usage.

• To examine the impact of different network conditions, such as user density and
pilot sequence length, on the performance of AP selection methods.

The scope of this thesis encompasses the theoretical analysis, simulation, and perfor-
mance evaluation of AP selection methods in distributed Massive MIMO networks.
The key contributions of this work include:

• A comprehensive review of existing AP selection methods and their limitations.

• The development and validation of a new AP selection method designed by us
to enhance performance under specific network conditions.

• A detailed comparative analysis of the proposed and existing methods using
extensive simulations.

• Demonstrating the performance superiority of our method "Fair AP Request"
over most dominant existing AP selection methods.

• Considering realistic constraints, such as a limited number of APs and a maxi-
mum number of UEs each AP can serve.

• Insights into the trade-offs between performance and system cost, providing
guidelines for the practical deployment of distributed Massive MIMO networks.

Ultimately, by addressing the challenges associated with constrained AP selection in
Distributed Massive MIMO networks, this thesis aims to contribute to the develop-
ment of more efficient and especially scalable wireless communication systems.
The thesis is structured as follows:

Chapter 2: Background - This chapter provides an overview of the fundamentals of
wireless networks design, Massive MIMO technology, and distributed Massive MIMO
networks. Key concepts such as channel estimation, pilot contamination, and AP
selection are also discussed.

Chapter 3: System Model - This chapter details the network model, channel model,
and evaluation metrics used in the study. It also outlines the assumptions and con-
straints considered in the analysis.

Chapter 4: AP Selection Methods - This chapter describes the different AP selection
methods evaluated in this study, including existing methods and the new method
proposed in this research.
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Chapter 5: Results - This chapter presents the results of the performance evaluation,
including comparative performance analysis and computational cost assessment un-
der various network conditions.

Chapter 6: Conclusion and Future Work - The final chapter summarizes the key find-
ings, discusses their implications for network design, and suggests directions for fu-
ture research.
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BACKGROUND

In this chapter, we look at the foundational aspects of wireless networks, tracing
the evolution of network architectures and highlighting key concepts essential for
understanding scalable Distributed Massive MIMO networks. Section 2.1 addresses
the fundamentals of wireless networks, emphasizing the significance of designing
efficient network architectures to meet the ever-increasing demands for data rates,
reliability, and coverage. We will explore the modern challenges that current networks
face, such as spectrum efficiency, energy consumption, and scalability. Section 2.2
takes us through the evolution of network architectures. This section starts with the
traditional cellular networks and progresses to the introduction of massive MIMO
technology, which significantly enhances network capacity and efficiency. We then
discuss the transition to Distributed MIMO, highlighting its benefits over the cen-
tralized approaches. Finally, we move towards scalable Distributed MIMO, which
aims to address the challenges of high user densities and maintain optimal network
performance. Section 2.3 focuses on the key concepts in scalable distributed massive
MIMO networks. Here, we cover the constraints on network design, discussing the
need for efficient AP selection to minimize resource wastage and enhance network
performance. We also delve into channel estimation techniques essential for maintain-
ing reliable communication and examine the issue of pilot contamination, a significant
challenge in massive MIMO systems. Lastly, Section 2.4 provides a literature review,
offering a comprehensive overview of existing research and advancements in the field
of distributed massive MIMO networks. This review sets the stage for understanding
the current state of the art and identifying areas for future research.

2.1 FUNDAMENTALS OF WIRELESS NETWORKS

Understanding the basics of wireless networks will be necessary to understand com-
plex questions and innovations as Massive MIMO and Distributed Massive MIMO.
This section provides an overview of key concepts and challenges in wireless network
design for a deeper comprehension of modern network architectures and their evolu-
tion.

Firstly, we begin by discussing the importance of network architecture design and
how the strategic arrangement of network components can significantly impact per-
formance, scalability, and efficiency. This includes addressing the large requirements
and cost constraints that drive the development of new and improved network struc-
tures.

5
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Secondly, we take a look at the modern challenges that wireless networks face. These
challenges include the increasing demand for higher data rates, reliable connectivity,
and the ability to efficiently manage a vast number of devices in diverse and dynamic
scenarios. By understanding these challenges, we can understand the necessity for
innovative solutions and the continuous evolution of network technologies and archi-
tectures.

Overall, this section establishes a foundation for understanding the essential factors
that affect wireless network performance, providing context for the upcoming discus-
sions on the progression of network architectures and the technologies designed to
tackle these fundamental issues.

2.1.1 Network Architecture Design

The design of network architecture forms the backbone of any wireless communi-
cation system, influencing its performance, scalability, and reliability. As wireless
networks continue to evolve, accommodating an ever-increasing number of connected
devices and supporting a variety of services with different QoS requirements, the
importance of an optimized network architecture has never been more critical. A
well-designed network architecture ensures efficient use of resources, minimizes la-
tency, enhances coverage, and improves the overall user experience. Conversely, a
poorly designed architecture can lead to bottlenecks, inefficient resource utilization,
and degraded performance, ultimately undermining the potential of the network [2].

Over the years, significant research has been dedicated to developing network ar-
chitectures that can meet the growing demands of modern communication systems.
Traditional cellular networks, which rely on a hierarchical structure of base stations
and cells, have served as the foundation for mobile communications. However, as
user density and data traffic have exploded, these conventional architectures have
encountered limitations in terms of scalability and efficiency. This has prompted the
exploration of more advanced architectures, such as massive MIMO and distributed
MIMO systems, which offer enhanced spectral efficiency, improved energy efficiency,
and the ability to serve a large number of users simultaneously [3].

The shift towards more modern network architectures is driven by the need to support
emerging applications, such as IoT, augmented reality, and autonomous vehicles,
all of which require reliable, low-latency communication. In this context, designing
a network architecture that can flexibly adapt to varying conditions and efficiently
manage resources is essential. The architecture must not only handle the current traffic
demands, but also be scalable to accommodate future growth in the number of users
and the diversity of services [3].

One key aspect of network architecture design is the distribution of processing and
decision-making capabilities. Centralized architectures, while simpler to manage,
often struggle with latency and scalability issues as the network grows. On the other
hand, distributed architectures, where processing is spread across multiple nodes, can
offer significant advantages in terms of flexibility and robustness. However, these
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architectures also introduce challenges, such as increased complexity in coordination
and the need for algorithms to manage distributed resources effectively [7].

In addition to these technical considerations, the design of network architecture must
also take into account economic factors, such as the cost of deployment and main-
tenance. A well architecture network strikes a balance between performance and
cost, ensuring that the network can deliver high-quality service without becoming
prohibitively expensive to operate [3].

Overall, the design of network architecture is a critical component in the development
of modern wireless communication systems. It requires a careful balance of technical
innovation, practical constraints, and future-proofing to ensure that the network can
meet the demands of today while being prepared for the challenges of tomorrow.
As we continue to push the boundaries of wireless technology, the role of network
architecture design will only become more important, driving the need for ongoing
research and development in this field.

In Section 2.2 we will take a closer, more detailed look at the advances done in the
field of network architecture design.

2.1.2 Modern Challenges

As wireless communication networks continue to evolve, they face increasingly com-
plex challenges that could significantly reduce their performance and ability to meet
growing demands. The exponential rise in connected devices, driven by advance-
ments such as the IoT, 5G, and the upcoming 6G technology, has created an un-
precedented strain on network infrastructure. This strain is found in several critical
areas, each posing unique challenges to the sustainability and scalability of modern
networks [8].

One of the biggest challenges is scalability. As networks expand to support a larger
number of users and devices, they must be able to scale efficiently without a corre-
sponding increase in complexity or cost. Traditional network architectures, which
often rely on centralized management and fixed infrastructure, struggle to scale effec-
tively as demand grows. This scalability issue is particularly acute in environments
where the number of connected devices is expected to grow exponentially, such as in
smart cities or industrial deployments. The need for a network architecture that can
efficiently scale to meet these demands without sacrificing performance or increasing
operational complexity is more pressing than ever [6].

In addition, resource allocation in modern networks has also become a significant
challenge. In a network with a high density of devices and APs, efficiently allocat-
ing resources such as bandwidth and power becomes increasingly complex. Tradi-
tional resource allocation strategies, which were designed for less dense and more
centralized networks, may no longer be sufficient to manage the demands of modern
communication systems. As networks become more distributed and devices become
more numerous, new approaches to resource allocation are needed to ensure that all
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devices can access the resources they need without causing congestion or overloading
any part of the network [6].

Furthermore, networks operating in challenging and constrained conditions such as
in industrial environments face unique challenges that further complicate network
design and performance. These environments often feature limited space for installing
infrastructure, leading to constraints on the number and placement of APs. The pres-
ence of heavy machinery, dense materials, and complex layouts can also create sig-
nificant obstacles for signal propagation, leading to increased interference and re-
duced coverage. Furthermore, the high concentration of devices, particularly with
the integration of IoT in industrial settings, intensify the strain on network resources
and increases the potential for interference. Addressing these challenges requires
innovative solutions that can operate effectively within the constraints of industrial
environments while maintaining high levels of performance and reliability [9].

2.2 EVOLUTION OF NETWORK ARCHITECTURES

In this section, we explore the development of network architectures from traditional
cellular networks to scalable distributed Massive MIMO systems. We begin by ex-
amining the transition from conventional cellular structures to Massive MIMO, high-
lighting the advancements in the performance. Next, we discuss the shift towards dis-
tributed MIMO, focusing on how decentralizing the antenna arrays enhances cover-
age and network resilience. Finally, we transition to the concept of scalable distributed
Massive MIMO, illustrating how it addresses the limitations of previous architectures
and how it is able to meet the increasing demands of modern wireless communication.
This section provides a comprehensive overview of the technological advancements
and designs that have shaped our wireless networks.

2.2.1 From Cellular to Massive MIMO

The evolution of wireless network architectures has been marked by transformative
innovations aimed at meeting the escalating demand for higher data rates, enhanced
spectral efficiency, and improved reliability. Traditional cellular networks, which rely
on dividing geographic areas into cells, have long been the foundation of mobile
communication. In these networks, each cell is served by a single BS that manages
communication with all the UEs within its coverage area. However, as the number
of UEs and the demand for data have surged, the limitations of cellular networks
have become increasingly apparent, particularly in terms of spectral efficiency and
interference management [10].

Massive MIMO technology was introduced as a revolutionary approach to overcome
these challenges. By equipping BSs with a large number of antennas, Massive MIMO
enables the simultaneous transmission of multiple data streams to different UEs, sig-
nificantly boosting spectral efficiency. This is achieved through spatial multiplexing,
allowing the system to serve many UEs on the same time-frequency resources by
leveraging the spatial dimension [10].
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Despite these advantages, the implementation of Massive MIMO in cellular networks
has limitations. The centralized nature of traditional cellular architectures means
that each UE is primarily served by the nearest BS, which can result in suboptimal
performance in terms of load balancing and coverage, especially in dense urban en-
vironments. This limitation has led to exploring more distributed network architec-
tures, paving the way for the next phase in wireless network evolution: Distributed
MIMO [6].

2.2.2 Transition to Distributed MIMO

The transition from traditional cellular networks to Distributed MIMO represents a
transformative shift in wireless network design, one that is driven by the increasing
demands for higher data rates, improved coverage, and more robust network perfor-
mance. In traditional cellular networks, each UE is typically served by a single BS,
which manages all communications within a defined coverage area or cell. This ar-
chitecture, while effective for many years, has inherent limitations, particularly as the
number of connected devices continues to surge and the demand for data-intensive
applications grows. Even with the introduction of MIMO antennas, traditional cel-
lular networks still faced significant challenges. The concept of cells, where each
BS covers a specific geographical area, inherently created issues at the boundaries or
"edges" of these cells. UEs located at cell edges often experience poorer signal quality,
higher levels of interference, and reduced data rates due to their distance from the
serving BS and the proximity to neighboring cells. This "cell-edge problem" became
a bottleneck for achieving uniform network performance, particularly in dense urban
environments where the number of UEs is high [4].

To overcome these limitations, the concept of Distributed MIMO was introduced,
representing a fundamental departure from the traditional cellular paradigm. In a Dis-
tributed MIMO network, the rigid cell boundaries are effectively dissolved. Instead
of each UE being served by a single BS, a large number of geographically dispersed
APs work together to serve the UEs across the network. These APs are typically small,
low-power units that are spread throughout the coverage area, and they communicate
with each other and a Central Processing Unit (CPU) to coordinate their actions [4].

The distributed MIMO architecture transforms the entire network into a vast, cooper-
ative antenna array, where the APs collectively act as the network’s antennas. This co-
operative approach allows the network to leverage spatial diversity more effectively,
as signals from multiple APs can be combined to improve signal quality and reduce
the impact of interference. The result is a more uniform and consistent level of service
throughout the coverage area, including in regions that would have been considered
cell edges in a traditional network [5].

One of the most significant advantages of Distributed MIMO is its ability to mitigate
the cell-edge problem that plagues traditional cellular networks. In a distributed
MIMO system, all UEs, regardless of their location within the coverage area, can be
served by multiple APs simultaneously. This means that even UEs that would be
located at the edge of a cell in a traditional network can receive strong, reliable signals
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from nearby APs, leading to better overall service quality [4].

Furthermore, distributed MIMO systems can take full advantage of the spatial diver-
sity inherent in the radio environment. By jointly processing signals from the multiple
APs, the CPU can optimize the transmission and reception strategies to exploit favor-
able propagation conditions, such as multipath reflections, which would typically be
considered a problem in a traditional network. This joint processing capability leads
to improved signal quality, reduced interference, and enhanced network capacity [4].

In a typical distributed MIMO network, the APs are connected to a CPU or a set of
CPUs via high-capacity backhaul links. The CPU is responsible for coordinating the
actions of the APs, including tasks such as channel estimation, signal processing, and
resource allocation. This centralized coordination allows the network to operate in a
highly efficient manner, as the CPU can dynamically adjust the operation of each AP
based on real-time network conditions and the specific needs of each UE [6].

Figure 2.1 illustrates the architecture of a Distributed MIMO network. As shown in the
figure, multiple distributed APs are connected to CPUs, and these APs jointly serve
the UEs within the coverage area. The architecture is designed to be highly flexible
and scalable, allowing the network to accommodate a large number of UEs while
maintaining high levels of performance [6].

FIGURE 2.1: Illustration of a Distributed Massive MIMO network [6].

2.3 KEY CONCEPTS OF DISTRIBUTED MIMO WITH CONSTRAINED

RESOURCES

In this section, we deal with the fundamental principles of scalable distributed mas-
sive MIMO networks. We begin by examining the constraints that impact network
design such as resource limitations and the need for efficient AP selection methods.
Next, we explore how channel estimation is done, which is crucial for maintaining
high performance and reliability in these networks. We then discuss the issue of pilot
contamination, which is a significant challenge in distributed massive MIMO systems,
and the strategies employed to mitigate its effects. By understanding these key con-
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cepts, we can have a better overview of the crucial factors involved in developing
scalable distributed massive MIMO networks.

2.3.1 Towards Scalable Distributed MIMO

As distributed MIMO networks evolve, a key challenge that arises is scalability. The
fundamental idea behind distributed MIMO, deploying a large number of geographi-
cally dispersed APs to serve UEs offers significant benefits in terms of coverage, signal
quality, and interference management. However, as the number of UEs increases, the
system faces growing complexity, making it difficult to manage efficiently. Moreover,
constraints such as limited resources (i.e. available APs) and measures to avoid pilot
contamination impose hard challenges. To address these challenges, the concept of
Scalable Distributed MIMO has been introduced [6].

Scalable Distributed MIMO, sometimes referred to as Cell-Free Massive MIMO in the
literature, represents an advanced approach that seeks to combine the strengths of
both Massive MIMO and Distributed MIMO while addressing their inherent limita-
tions. The goal is to design a network that can scale efficiently without a correspond-
ing increase in system complexity or overhead, ensuring that the network remains
manageable and performs optimally even as it grows [6].

One of the primary innovations in Scalable Distributed MIMO is the shift from a single
centralized CPU that manages the entire network to a more distributed architecture
involving multiple CPUs. In a large or complex networks, managing all APs and UEs
from a single CPU would not only create a bottleneck but also result in significant
delays and inefficiencies. By distributing the computational load across several CPUs,
each managing a subset of APs, the network can operate more efficiently, with reduced
latency and improved reliability. This decentralized processing approach allows for
more localized signal processing, which is crucial for maintaining high performance
in the network [6].

Another critical aspect of scalability is the management of the APs serving each UE. In
traditional distributed MIMO, where every AP could potentially serve every UE, the
computational and signaling overhead would become overwhelming as the network
scales. To mitigate this, Scalable Distributed MIMO systems limit the number of APs
that serve each UE to a small, carefully selected subset. This not only reduces the
burden on the network infrastructure but also optimizes the use of available resources,
ensuring that the best possible channel conditions are provided to each UE without
unnecessary duplication of effort. This limited serving AP set approach is crucial for
scalability. By focusing the network’s resources on the most effective APs for each
UE, the system can maintain high levels of performance without the need for every
AP to be involved in every communication. This selective service reduces the overall
complexity of the network, allowing it to scale more gracefully as the number of UEs
and APs increases [11].

Scalability ensures that the network can expand and adapt to changing conditions
without a proportional increase in costs, complexity, or power consumption. This
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makes scalable distributed MIMO a critical innovation for the future of wireless com-
munication, enabling the deployment of large-scale networks that can meet the chal-
lenges of tomorrow’s connected world.

In Chapter 3, we will introduce UE-centric AP selection and in Chapter 4 we will
explain the studied AP selection methods in details.

2.3.2 Constraints on Network Design

Designing wireless networks inherently involves navigating a variety of constraints
that can significantly influence the overall architecture and performance. These con-
straints stem from factors such as physical space availability, resource limitations, and
environmental conditions. In any network design, there should be a balance between
providing extensive coverage, ensuring high data rates, and managing interference,
all within the bounds of the available infrastructure and resources.

In much of the existing literature, it is often assumed that the number of APs in a
network is much larger than the number of UEs, allowing for flexible AP selection.
However, this assumption does not hold in more constrained environments, such
as industrial settings, where network design faces significant challenges. In these
scenarios, the physical space for deploying APs is often severely limited due to large
machinery, storage areas, and complex building layouts, resulting in a much smaller
number of available APs compared to the high density of UEs, such as IoT devices.
Each UE seeks to be served by an optimal set of APs, but when the UE density is
high, each AP is required to serve more UEs, leading to two critical challenges. First,
the limited number of available pilots increases the risk of pilot contamination, where
UEs sharing the same pilots cause inter-UE interference, degrading overall network
performance. Second, the increased signaling and data processing required as each
AP serves more UEs result in higher computational costs. These constraints make
smart AP selection essential, particularly in high-density scenarios, to balance per-
formance with resource allocation and computational costs. This need for intelligent
AP selection strategies is the central focus of our work, as we aim to address these
constraints, ensuring that Distributed Massive MIMO systems remain viable under
these demanding conditions.

The constraints on network design, whether in general scenarios or particularly chal-
lenging environments like industrial cases, highlight the critical importance of strate-
gic AP selection. As networks continue to evolve and face increasingly complex
demands, addressing these constraints will be essential for maintaining high perfor-
mance and reliability in a wide range of operational environments.

2.3.3 Channel Estimation

Channel estimation is a crucial component in the design and operation of Distributed
Massive MIMO systems. The performance of these systems heavily relies on accurate
knowledge of the wireless channel, as this information is used to optimize signal pro-
cessing techniques such as interference management. In Distributed Massive MIMO,
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where numerous APs are deployed to serve UEs across a large area, the complexity
and importance of channel estimation are significantly amplified [12].

In any wireless communication system, the transmitted signals undergo various forms
of degradation as they propagate through the environment. These include path loss,
fading, and interference, all of which must be accounted for to accurately recover
the transmitted information at the receiver. In Distributed Massive MIMO systems,
where the number of antennas is very large and spread across multiple locations,
the variations in the wireless channel become even more complex. The ability to
accurately estimate these channels is important to the system’s performance, as it
directly influences the effectiveness of techniques like reception across the distributed
APs [13].

Channel estimation in Distributed Massive MIMO systems is typically performed
using pilot signals, which are predefined sequences known to both the transmitter and
the receiver. During the uplink phase, users send these pilot signals to the APs, which
then estimate the channel by correlating the received signals with the known pilot
sequences. This process is repeated across all APs, allowing the system to obtain a
comprehensive understanding of the channel conditions between each AP-UE pair [6].

In Distributed Massive MIMO, accurate channel state information is crucial for man-
aging interference, particularly in dense environments with a high number of users
and APs. However, in high UE density scenarios, channel estimation becomes a signif-
icant burden due to the large volume of UEs and the complexity of their interactions
with multiple APs. This increased demand for accurate channel estimation poses a
constraint on the network due to the high signaling overhead and processing cost. To
mitigate this challenge, smart AP selection becomes essential. By carefully selecting
which APs serve each UE, the network can reduce the computational load associated
with channel estimation, ensuring better resource allocation and enhancing overall
network performance.

2.3.4 Pilot Contamination

Pilot contamination is a significant challenge in Distributed Massive MIMO systems,
one that directly impacts the performance and scalability of these networks. In mas-
sive MIMO systems, the efficient estimation of the wireless channel is achieved through
the use of pilot signals, that are predetermined sequences transmitted by users that
allow the network to estimate the Channel State Information (CSI). However, in
practical deployments, especially in large scale systems, the reuse of these pilot signals
across different cells or users leads to what is known as pilot contamination. This
phenomenon arises when the same pilot sequence is reused by multiple users, caus-
ing their signals to interfere with each other during the channel estimation process.
The resulting interference significantly degrades the quality of the channel estimates,
which in turn impacts the overall performance of the network [14].

In a massive MIMO system, channel estimation is performed using pilot sequences
that are orthogonal within each cell but must be reused across different cells due
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to the limited number of available orthogonal sequences. When a pilot sequence is
reused in different cells, the channel estimates at the base station or AP become a
linear combination of the channels from all users sharing the same pilot sequence.
This overlap causes interference during both the uplink and downlink phases, leading
to inaccuracies in the CSI. The interference caused by pilot contamination does not
diminish as the number of APs increases, making it a critical issue that limits the
theoretical capacity gains promised by massive MIMO systems [10].

The impact of pilot contamination is particularly severe in Distributed Massive MIMO
networks, where a limited number of APs must serve a high density of UEs. The
scarcity of available pilots forces UEs to share sequences, increasing the risk of inter-
UE interference and degrading overall network performance. Additionally, as more
UEs connect to each AP, the signaling and data processing demands escalate, leading
to higher computational costs and straining the network’s resources [6]. In such high-
density scenarios, smart AP selection is essential. By strategically choosing which
APs serve which UEs, the network can reduce pilot contamination and balance the
computational load, ensuring efficient performance while managing costs. Effective
AP selection is therefore key to maintaining the balance between performance and
resource constraints in Distributed Massive MIMO networks.

2.4 LITERATURE REVIEW

Traditional cellular networks face significant limitations, including capacity constraints,
poor cell-edge performance, and interference management challenges. To address
these, Distributed Massive MIMO systems were introduced. As discussed by Ngo
et al.in [4], Cell-Free Massive MIMO eliminates cell edges by using a large number of
distributed APs to jointly serve all UEs, improving spectral efficiency and user fair-
ness. However, this approach raises new challenges, particularly around scalability
and resource management. To overcome scalability issues in fully distributed Massive
MIMO systems, scalable solutions with AP selection have been developed. Björnson
in [6] presents a framework where only a subset of APs serves each UE, optimiz-
ing network performance while reducing complexity. This approach efficiently uses
resources, particularly in dense environments, but often overlooks the complexities
in highly dynamic and resource-constrained settings. In industrial settings, where
network rsources are limited (i.e. available APs), robust AP selection is crucial. Aijaz
in [9] highlights the challenges in these environments, such as interference from ma-
chinery and high device density, but does not focus on specific AP selection strategies.
Moreover, Chen et al. in [15] introduces dynamic AP selection in 6G networks but
leave gaps in AP selection under resource constraints. Despite advancements, a gap
remains in studying AP selection in scenarios where the number of UEs far exceeds
the limited number of APs. Existing literature, such as Ammar et al. in [11] and
Interdonato et al. in [5], discuss user-centric Cell-Free Massive MIMO and scalable
AP selection but do not fully address these extreme conditions. This thesis fills this
gap by introducing the "Fair AP Request" method, which optimizes AP selection in
constrained environments, balancing spectral efficiency and computational complex-
ity.



3

SYSTEM MODEL

In this chapter, we introduce the framework of our study by outlining the system
model that forms the basis of our analysis. We begin with the details about the
network architecture in Section 3.1, where we describe the structural aspects of our
network. This includes the placement and distribution of APs and UEs, along with
the key design principles and assumptions that underpin our network layout. We then
move to Section 3.2, where we introduce the concept of UE-centric AP selection. We
discuss the motivation behind this approach, highlighting its advantages over other
methods where AP selection is typically network-centric. In Section 3.3, we focus
on the channel and signal models. Here, we present the mathematical formulations
used to characterize the wireless channels and the signal propagation in our network.
This section covers the assumptions regarding the propagation environment and the
critical parameters influencing these processes. Finally, in Section 3.4, we define the
evaluation metrics used to assess the performance of our network. This includes
metrics for spectral efficiency. We provide detailed explanations on the calculation
of these metrics and their importance in evaluating the network’s performance.

3.1 NETWORK ARCHITECTURE

In this study, we consider a network architecture tailored to evaluate the performance
of various AP selection methods in a distributed massive MIMO environment. The
network is deployed over a designated area S, within which we position L single-
antenna APs and K single-antenna UEs. This setup represents a typical dense urban
or industrial scenario, where efficient and reliable communication is needed.

The distribution of UEs within the area S is modeled using a Poisson Point Process
(PPP). This stochastic process captures the random nature of UE locations, simulating
real-world conditions where users are unpredictably scattered across the network.
The UE density is defined as λU = K/S, which indicates the average number of UEs
per unit area. This random distribution of UEs introduces variability and complexity
into the network, as each UE experiences different channel conditions based on its
proximity to various APs.

On the other hand, the APs are arranged in a uniform grid pattern, ensuring an
even coverage across the entire area S. The density of APs is given by λ = L/S,
representing the average number of APs per unit area. This grid-based distribution
of APs is designed to minimize coverage gaps and ensure that every UE has access to
multiple APs, which is crucial for the implementation of the AP selection strategies
analyzed in this study. The uniform placement of APs provides a consistent reference

15
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for evaluating the effectiveness of different AP selection methods, as it reduces vari-
ability in AP availability and distance, isolating the impact of the selection algorithms
themselves.

We assume that both the APs and UEs remain static during the simulation. This as-
sumption simplifies the analysis by focusing on the inherent properties of the network
architecture and the AP selection algorithms without the added complexity of mobil-
ity. In a real-world scenario, this static assumption could correspond to environments
like industrial settings or fixed-location IoT deployments, where the positions of UEs
and APs do not change frequently.

The static nature of the APs and UEs allows us to thoroughly examine the spatial
characteristics of the network and understand how the AP selection methods perform
under these controlled conditions. By establishing a fixed network topology, we can
focus on the intricacies of AP selection, interference management, and resource al-
location, gaining deeper insights into the optimal configurations and strategies that
maximize network performance.

Figure 3.1 represents the network model and gives an illustration of our network
architecture. The blue cross symbols represent the APs, and the orange circles indicate
the UEs.

FIGURE 3.1: Network Model. The blue cross symbols represent the APs, and the
orange circles indicate the UEs.
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3.2 UE-CENTRIC AP SELECTION

In Distributed Massive MIMO networks, efficient AP selection is critical for opti-
mizing network performance and user experience. Traditionally, a network-centric
approach was often adopted, where APs were divided into disjoint clusters [16]. In
these clusters, APs share data and CSI to serve only the UEs located within their
joint coverage area. This method is very effective but inherently limited by the fixed
cluster boundaries, which may not always align with the optimal coverage areas for
individual UEs [16].

However, the rise of user-centric approaches has shifted the paradigm of AP selection
in Distributed Massive MIMO. Instead of relying on predefined clusters, user-centric
methods prioritize the individual needs and conditions of each UE. In this approach,
each UE is served by a dynamic subset of APs that provides the best possible channel
conditions. Unlike the network-centric method, these subsets of APs vary for each UE,
making it impossible to divide the network into non-overlapping clusters [17]. Con-
sequently, each AP must cooperate with different sets of APs when serving different
UEs on the same time and frequency resources, significantly enhancing the flexibility
and efficiency of the network [17]. Figure 3.2 depicts the process of UE-centric AP
selection. In the figure, The black cross symbols represent the APs and the blue circles
indicate the UEs. The red cross symbols represent the AP serving set of the dark
blue circle UE. The serving set of APs varies for each UE in the network based on the
specific conditions experienced by the UE.

FIGURE 3.2: UE-centric AP Selection. The black cross symbols represent the APs and
the blue circles indicate the UEs. The red cross symbols represent the AP serving set
of the dark blue circle UE.
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The concept of UE-centric AP selection emerges from the limitations of traditional
cellular network architectures, where each UE is typically served by the nearest AP.
This often leads to suboptimal performance due to varying channel conditions and
load distribution [18]. On the contrary, UE-centric selection considers factors such as
signal strength and channel quality to make more informed decisions about which
APs should serve a particular UE. This approach can significantly enhance spectral
efficiency, reduce latency, and improve overall network performance, especially in
scenarios with varying user densities and heterogeneous service requirements [6].

The primary goals of UE-centric AP selection in Distributed Massive MIMO networks
are to optimize spectral efficiency by selecting APs that provide the best channel
conditions for each UE, thereby maximizing data rates and overall spectral efficiency
within the network. Additionally, by distributing UEs more evenly across available
APs, this approach also helps balance the network load, helps to prevent bottlenecks
and ensures high performance, especially in dense deployment scenarios. Further-
more, by considering the specific needs and conditions of each UE, UE-centric AP
selection enhances the reliability of the network, particularly in environments with
continuously changing conditions in signal quality and interference [12].

In Chapter 4 we go into more details about the various UE-centric AP selection meth-
ods proposed and evaluated in this thesis. By comparing these methods to traditional
approaches, we aim to demonstrate their advantages in terms of performance and cost
in different network conditions.

3.3 CHANNEL AND SIGNAL MODELS

In this section, we take a look at the crucial aspects of channel and signal model-
ing, which form the backbone of our analysis of scalable distributed massive MIMO
systems. Accurate channel and signal models are essential for understanding the
complex interactions between the UEs and APs in the network, particularly in a dense
deployment scenario where things like interference, fading, and spatial diversity play
a significant role. We will introduce and discuss the specific models that capture
the characteristics of the wireless environment, the propagation of signals, and the
associated constraints that impact network performance. These models are designed
to closely mimic real-world conditions, enabling us to draw meaningful conclusions
about the performance of our various AP selection methods.

Subsection 3.3.1 begins with a detailed exploration of the channel access technique and
the channel estimation used in our network model. The chosen channel access method
is critical for ensuring that UEs can effectively communicate with APs, especially in
a dense network environment with many users competing for limited resources. In
Subsection 3.3.2, we describe the Uplink Channel Model. This model characterizes
how signals transmitted from UEs are received at the APs. Subsection 3.3.3 focuses on
the Downlink Channel Model, which mirrors the uplink model but with signals being
transmitted from APs to UEs. The downlink channel model is crucial for understand-
ing how the transmitted data is received by the UEs. Finally, in Subsection 3.3.4, we
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outline the Assumptions and Constraints that are integral to our modeling approach.
We discuss the constraints imposed by the finite number of pilots available for channel
estimation, the limitations on the number of UEs each AP can serve simultaneously,
and the limited number of APs. These constraints play an important role in shaping
the network’s performance and are essential considerations in our subsequent analy-
sis.

3.3.1 Channel Access Technique and Channel Estimation

In this subsection, we describe the channel access technique employed in our dis-
tributed massive MIMO network, which is based on Time Division Duplexing (TDD).
TDD is chosen for its efficiency in massive MIMO systems, allowing for the same
frequency band to be used for both uplink and downlink transmissions by separating
them in time [10]. This is particularly advantageous in distributed networks, where
the synchronization of CSI between multiple APs and UEs is crucial for optimal per-
formance. The TDD communication framework we adopt is structured into discrete
communication blocks, each of which has a total duration of τc slots. Each block is
divided into two distinct phases: the pilot transmission phase and the data transmis-
sion phase. These phases are critical for ensuring accurate channel estimation and
efficient data transmission. Figure 3.3 shows the structure of the TDD communication
block. We see in orange the τp long pilot transmission phase and in blue the τd data
transmission phase.

1. Pilot Transmission Phase: This phase occupies the first τp slots of each com-
munication block. During these slots, UEs transmit known pilot sequences to
the APs. The purpose of this phase is to enable the APs to estimate the uplink
CSI. Since the same channel characteristics are assumed for both uplink and
downlink transmissions due to channel reciprocity in TDD, the estimated CSI is
also applicable for the downlink phase. The accuracy of channel estimation is
pivotal for the overall system performance, as it directly influences the quality
of both uplink and downlink data transmissions.

2. Data Transmission Phase: Following the pilot transmission phase, the remaining
τd = τc − τp slots are dedicated to the actual data transmission. In this phase,
the UEs and APs use the estimated CSI to transmit and receive data. For uplink
communication, UEs send their data to the APs, while for downlink communi-
cation, APs transmit data to the UEs. The CSI obtained during the pilot phase is
crucial here, as it allows the APs to pre-code signals and minimize interference,
thereby enhancing the overall spectral efficiency.

An important assumption in our model is that channel estimation and signal pro-
cessing are performed only once every τc slots, corresponding to the start of each
communication block. This means that the CSI used during the data transmission
phase remains constant for the entire duration of the communication block. This
assumption simplifies the signal processing and reflects a realistic approach where
continuous real-time channel estimation is often impractical due to computational and
latency constraints.
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The TDD-based channel access technique, with its distinct phases for channel estima-
tion and data transmission, is essential for the operation of our distributed massive
MIMO network. By structuring communication into these well-defined blocks, we can
ensure efficient and accurate transmission of data, even in the presence of numerous
UEs and APs spread across a large area. This approach not only maximizes the use
of available resources but also lays the groundwork for the AP selection methods that
will be analyzed in subsequent sections.

Moreover, channel estimation plays an important role in ensuring optimal system
performance [6]. Accurate CSI is crucial for mitigating interference and enhancing
spectral efficiency. In the uplink, APs estimate the channel coefficients for each AP-
UE pair by processing the received pilot signals. This estimated information is then
utilized to decode the uplink data effectively. Conversely, in the downlink, APs use
the CSI to pre-code the transmitted signals, tailoring them to the specific channel
conditions of each UE. As mentioned earlier, each coherence block is divided into
τp channel uses for UL pilots and τd for data, with τc = τp + τd. The channel between
AP l and UE k is denoted by hkl ∈ C

N , and the aggregated channel from all APs is

represented as hk =
[
hT
k1, . . . ,h

T
kL

]T ∈ C
M , where M = NL corresponds to the total

number of antennas within the coverage area. For each coherence block, an indepen-
dent realization of correlated Rayleigh fading is generated as hkl ∼ NC (0,Rkl), where
Rkl ∈ C

N×N is the spatial correlation matrix. The Gaussian distribution models the
small-scale fading, while the positive semi-definite correlation matrix Rkl captures the
large-scale fading effects, including geometric path loss, shadowing, antenna gains,
and spatial channel correlation. Assuming that channel vectors from different APs are

independently distributed, we have E

{
hkn (hkl)

H
}

= 0 for l ̸= n. This assumption

is reasonable due to the spatial distribution of APs within the network. The collective
channel follows the distribution:

hk ∼ NC (0,Rk) , (3.1)

where Rk = diag (Rk1, . . . ,RkL) ∈ C
M×M is the block diagonal spatial correlation

matrix. The channel vectors for different UEs are independently distributed. We
assume that there are τp mutually orthogonal pilot sequences of length τp, with τp
being a constant independent of K2. Pilots are assigned to UEs upon their entry into
the network. Let St ⊂ {1, . . . ,K} represent the subset of UEs assigned to pilot t. When
these UEs transmit their pilot sequence, the received signal at AP l after despreading,

denoted as y
pilot
tl ∈ C

N , is given by [6]:

y
pilot
tl =

∑

i∈St

√
τppihil + ntl, (3.2)

where pi is the transmit power of the UE i, τp is the processing gain, and ntl ∼
NC

(
0, σ2IN

)
represents the thermal noise. The minimum mean-squared-error (MMSE)

estimate of hkl for k ∈ St is:

ĥkl =
√
pkτpRklΨ

−1
tl y

pilot
tl , (3.3)
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where

Ψtl = E

{
y

pilot
tl

(
y

pilot
tl

)H}
=
∑

i∈St

τppiRil + σ2IN (3.4)

is the correlation matrix. The mutual interference caused by UEs sharing the same pi-
lot in St results in pilot contamination, which degrades system performance similarly
to traditional Massive MIMO systems. Pilot contamination has two primary effects: it
reduces the quality of channel estimation, making coherent transmission less effective,

and it causes the estimates ĥkl for k ∈ St to become correlated, leading to additional
interference. While both effects impact UEs performance, only the latter contributes
to what is known as coherent interference.

It is crucial to emphasize that our channel model is fundamentally based on the dis-
tance between the APs and UEs. In this model, the strength of the channel gain
is inversely related to the distance between an AP and a UE. Specifically, the UE
that is geographically closest to a particular AP experiences the highest channel gain
from that AP. This proximity-based characteristic ensures that the signal quality and
reliability are maximized for UEs near the AP, while those farther away experience
progressively weaker channel gains. Consequently, this model effectively captures
the spatial variations in signal strength that occur in real-world wireless networks,
where path loss and attenuation increase with distance.

FIGURE 3.3: TDD Communication Block Model: τp is the pilot transmission phase and
τd is the data transmission phase.

3.3.2 Uplink Channel Model

Here, we describe the uplink channel model, which is a critical component in the
analysis and design of distributed Massive MIMO systems. The uplink channel refers
to the communication link from the UE to the APs. During UL data transmission, the
received signal yul

l ∈ C
N at APl is

yul
l =

K∑

i=1

hilsi + nl (3.5)
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where si ∈ C is the signal transmitted from UE i with power pi and nl ∼ CN
(
0, σ2IN

)
[6].

3.3.3 Downlink Channel Model

The downlink channel model describes the communication link from the APs to the
UEs, which is equally vital in the context of distributed Massive MIMO systems. Let
wil ∈ C

N represent the pre-coding vector assigned by AP l to UE i. During downlink
(DL) transmission, the signal received at UE k is expressed as:

ydlk =

L∑

l=1

hH
kl

K∑

i=1

wilςi + nk = hH
k

K∑

i=1

wiςi + nk, (3.6)

where ςi ∈ C denotes the independent unit-power data signal intended for UE i (i.e.,

E

{
∥ςi∥2

}
= 1), wi =

[
wT

i1 . . .w
T
iL

]T ∈ C
M is the overall pre-coding vector, and nk ∼

NC

(
0, σ2

)
is the receiver noise. Given the distribution of hk, the system model is

mathematically equivalent to a DL single-cell Massive MIMO system with correlated
fading. Consequently, the achievable downlink SE in a distributed Massive MIMO
setup can be derived from existing results on Massive MIMO with correlated fading.
Similar to the uplink, the key distinction between distributed and cellular networks
lies in the design of the pre-coding vectors, which must rely solely on local CSI and
adhere to per-AP power constraints. The most common approach is Maximum Ratio
(MR) pre-coding, defined as:

wil =
√
ρi

ĥil√
E

{∥∥∥ĥil

∥∥∥
2
} , (3.7)

where ρi ≥ 0 represents the transmit power allocated to UE i [6].

3.3.4 Assumptions and Constraints

The performance and scalability of distributed Massive MIMO networks are influ-
enced by several critical constraints that challenge network performance. One of the
primary constraints is pilot contamination, a phenomenon that arises in TDD systems
where the reuse of pilot sequences across different UEs leads to inter-UE interference.
This interference degrades the accuracy of channel estimation, which is particularly
problematic in dense network environments where numerous UEs are served simulta-
neously. As the network’s UE density increases, the likelihood of pilot contamination
grows, significantly impacting the overall system performance. To mitigate the pilot
contamination problem, we assume that each AP is limited to serving a maximum of
τp UEs, where τp represents the length of the pilot sequence. This restriction helps
reduce the likelihood of interference but also limits the number of UEs that can be
effectively served by each AP.
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Another key constraint is the limited availability of AP resources. In distributed
Massive MIMO networks, the finite number of APs must be smartly allocated to
serve a potentially large number of UEs. Unlike traditional cellular networks where
APs are fixed to specific cells, the distributed nature of this system requires careful
management of AP-UE allocation to maximize spectral efficiency and minimize in-
terference. The limitation on AP resources becomes more significant as UE density
increases, further complicating network management. Each UE seeks to be served
by an optimal set of APs, but when the UE density is high, each AP is required
to serve more UEs, leading to two critical challenges. First, the limited number of
available pilots increases the risk of pilot contamination, where UEs sharing the same
pilots cause inter-UE interference, degrading overall network performance. Second,
the increased signaling and data processing required as each AP serves more UEs
results in higher computational costs, straining the network’s efficiency. These con-
straints make smart AP selection essential, particularly in high-density scenarios, to
balance performance with resource allocation and computational costs. This need
for intelligent AP selection strategies is the central focus of our work, as we aim to
address the challenges that arise when the number of UEs far exceeds the available
APs, ensuring that Distributed Massive MIMO systems remain viable and efficient
under these demanding conditions.

3.4 EVALUATION METRICS

To comprehensively assess the performance of scalable distributed massive MIMO
networks, it is crucial to evaluate various metrics that reflect both the system’s ef-
ficiency and its practical feasibility. This section outlines the key metrics used to
quantify the effectiveness of such systems, focusing on their spectral efficiency. Spec-
tral efficiency measures the data throughput capabilities of the system. By analyzing
spectral efficiency, we can tell how well the system performs under different scenarios
and identify areas for improvement.

3.4.1 Spectral Efficiency

Spectral efficiency is a fundamental performance metric in wireless communication
systems, quantifying the amount of data transmitted per unit of bandwidth. In the
context of scalable distributed massive MIMO, it is essential to understand how effi-
ciently the system utilizes the available spectrum to deliver high-quality service. This
subsection is divided into three parts, each addressing a different aspect of spectral
efficiency. As for the mathematical models of the SE in terms of Signal-to-Interference-
plus-Noise Ratio (SINR) on the uplink and the downlink, we use the models from [6]:

• On the Uplink: When the MMSE channel estimates are known, an achievable SE
of UE k is

SE
(ul,1)
k =

1

τc
E

{
log2

(
1 + SINR

(ul,1)
k

)}
(3.8)
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where the instantaneous effective signal-to-interference-and noise ratio (SINR)
is given by

SINR
(ul,1)
k =

pk

∣∣∣vH
k Dkĥk

∣∣∣
2

∑K
i=1,i ̸=k pi

∣∣∣vH
k Dkĥi

∣∣∣
2
+ vH

k Zkvk

(3.9)

with Zk = Dk

(
K∑

i=1

piCi + σ2
ulILN

)
Dk (3.10)

where Dk = diag (Dk1, . . . ,DkL) ∈ C
M×M is a block-diagonal matrix. vk =[

vT
k1 . . . vT

kL

]T ∈ C
M denotes the collective combining vector. pi is the

transmit power of UE i.

• On the Downlink: An achievable DL SE for UE k is given by
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and the expectations are with respect to the channel realizations. Dk = diag (Dk1, . . . ,DkL) ∈
C
M×M is a block-diagonal matrix. ρi ≥ 0 represents the transmit power allo-

cated to UE i.

3.4.1.1 Spectral Efficiency per User

Spectral Efficiency per user, or SE per UE, is a critical metric in evaluating the per-
formance of wireless communication systems. It quantifies how efficiently the avail-
able spectrum is utilized by each individual user in the network. In our analysis,
SE per UE is calculated as the average achievable spectral efficiency across multiple
time stamps, offering a comprehensive view of the network’s ability to support high
data rates for each user over time. The SE per UE is derived by taking into account
the instantaneous data rate achieved by a specific UE at each time stamp, relative
to the bandwidth utilized. By averaging the SE over time, we obtain a stable and
meaningful measure that reflects the overall performance experienced by the user,
rather than momentary peaks or troughs that might occur due to transient conditions.
This metric is particularly valuable in assessing how well the network can maintain
consistent performance for each UE, regardless of its position or the specific APs
it connects to. It also helps in identifying any disparities in service quality among
users, which might arise due to uneven resource distribution, interference, or varying
channel conditions. By analyzing SE per UE, network designers can make informed
decisions on optimizing the deployment of APs, the allocation of resources, and the
configuration of transmission schemes to ensure fair and efficient use of the spectrum
across all users.
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3.4.1.2 Sum Spectral Efficiency

Sum Spectral Efficiency (Sum SE) is a fundamental metric used to evaluate the overall
performance of a wireless communication network. It provides a holistic measure
of how efficiently the network utilizes its available spectrum to serve all connected
users simultaneously. Specifically, Sum SE is calculated as the averaged summation
of the SEs of all UEs at a given time stamp. This calculation is repeated over multiple
time stamps to account for temporal variations in the network, resulting in an average
Sum SE that reflects the network’s overall capacity. The Sum SE metric is particularly
valuable in scenarios where the collective performance of the network is of interest,
such as in dense environments or industrial settings with high UE densities. By
summing the SEs of all UEs, this metric captures the total capacity of the network.
This is crucial for understanding the network’s ability to meet the demands of high-
traffic scenarios and to identify potential bottlenecks in resource allocation. Moreover,
Sum SE is often used as a benchmark to compare different AP selection methods
or network configurations. By analyzing the Sum SE, network designers can assess
the trade-offs between individual user performance and overall network efficiency,
guiding decisions on how to optimize network design for maximum capacity.

3.4.1.3 95% Likely Spectral Efficiency

The 95% Likely Spectral Efficiency (95% Likely SE) is a key performance metric used
to assess the reliability and consistency of spectral efficiency across a network. This
metric specifically focuses on the lower tail of the SE distribution, representing the
SE value that 95% of the UEs are likely to achieve or exceed, making it an essential
metric for evaluating the robustness of a network. The 95% Likely SE is particularly
important in scenarios where user experience must be consistently high, even under
challenging conditions such as high user densities. By focusing on the SE that the
majority of users can expect to achieve, this metric helps ensure that the network
design not only maximizes overall capacity but also delivers acceptable performance
levels to nearly all users. To calculate the 95% Likely SE, the SEs of all UEs are first
computed and then sorted in ascending order. The SE value at the 5th percentile
of this sorted list is identified, which represents the 95% Likely SE. This process is
typically repeated across multiple time stamps to account for temporal fluctuations
in the network, resulting in an averaged 95% Likely SE that reflects the network’s
performance under typical operating conditions. In distributed massive MIMO sys-
tems, where the network consists of APs serving a large number of UEs, the 95%
Likely SE is a critical measure of how well the network handles varying user demands
and environmental conditions. A higher 95% Likely SE suggests that the network is
effectively managing its resources and minimizing the impact of adverse conditions
on user performance, thereby ensuring that most users receive a satisfactory level of
service. This metric is also valuable for comparing different AP selection strategies
or network configurations. By analyzing the 95% Likely SE, network designers can
identify approaches that not only maximize overall spectral efficiency but also ensure
that the network provides reliable and consistent performance to nearly all users,
regardless of their location or channel quality.



4

AP SELECTION METHODS

In this chapter, we explore the various methods of AP selection in our network. Firstly,
Section 4.1 explains the new Fair AP Request method, which we developed in this
work and which aims to ensure a balanced load distribution among APs while achiev-
ing higher performance levels for all UEs. In Section 4.2, we present the baseline and
reference AP selection methods used for the comparative analysis. This section sets
the stage for the comparative performance analysis in the results chapter, allowing
us to understand the relative merits of different AP selection methods. Lastly, in Sec-
tion 4.3 we provide an overview of the computational complexities of the algorithms
behind the AP selection methods.

4.1 FAIR AP REQUEST

In this section, we design the Fair AP Request method, an AP selection strategy devel-
oped during this thesis, to address some of the key challenges in Distributed Massive
MIMO networks. The Fair AP Request aims to balance the network load more effec-
tively by ensuring a fair distribution of UEs across available APs, thereby optimizing
both spectral efficiency and system performance. It also aims to better utilize and
exploit the available networks resources in order to achieve the best possible perfor-
mance, especially for weaker UEs.

It’s worth highlighting that our definition of "Fairness" diverges from the traditional
interpretation found in the literature. In our work, "Fairness" signifies that the major-
ity of UEs enjoy a consistent level of performance, irrespective of their location or the
conditions they face.

The Fair AP Request method functions by dynamically assigning UEs to APs based
on the quality of the channel conditions, while also considering the number of UEs
each AP is already serving. This approach mitigates the issue of overloading certain
APs, which is a common drawback in other AP selection methods, and ensures that
the network resources are utilized more equitably. By integrating fairness into the AP
selection process, this method can achieve significant performance gains, particularly
in scenarios with high user densities or variable network conditions.

The core idea of Fair AP Request is to allow UEs to request service from APs that not
only provide strong signal quality but are also underutilized in terms of the number
of UEs they are serving. This dual consideration helps in preventing scenarios where
certain APs become bottlenecks due to excessive demand, while others remain under-
utilized. As a result, this method can provide better load balancing, which is crucial

26
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for maintaining high network performance, especially in dense environments.

Fair AP Request has proven to be advantageous over other AP selection methods
in various scenarios, as will be demonstrated in Chapter 5. Its ability to adapt to
changing network conditions while maintaining fairness among APs makes it a robust
and scalable solution for Distributed Massive MIMO.

Here is the pseudocode for the Fair AP Request method:

Algorithm 1 Fair AP Request

Inputs: Number of UEs K, Initial number of AP requests G, Maximum number of
UEs each AP can serve X , Number of APs L

1: for each UE k = 1 to K do

2: Initialize ServingAPs← 0
3: for each AP request g = 1 to initial G do

4: candiAP ← AP corresponding to the g-th closest distance
5: if AP candiAP is serving fewer than X UEs then

6: Assign AP candiAP to serve UE k
7: D[k, candiAP ]← 1
8: else

9: WorstUE ← Find the UE with the worst channel gain at candiAP
10: if Channel gain of UEk is better than WorstUE then

11: Disconnect WorstUE
12: D[WorstUE, candiAP ]← 0
13: Assign AP candiAP to serve UEk

14: D[k, candiAP ]← 1
15: end if

16: end if

17: ServingAPs← ServingAPs+ 1
18: end for

19: end for

20: Fairness Step: Sort UEs from weakest to strongest by channel gain and distance
to APs with available capacity

21: for each AP a with available capacity do

22: while sum(D[:, a]) < X do

23: Connect the weakest nearest UE to a until the limit X is reached,
24: Update D accordingly
25: end while

26: end for

Output: AP-UE allocation matrix D

The following detailed description provides a detailed logical flow of the Fair AP
Request algorithm:

• Initialization (Input Parameters):

– The algorithm begins by taking the following input parameters:
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* K: The total number of UEs that need to be served.

* G: The initial number of AP requests that each UE will make.

* X : The maximum number of UEs that any single AP can serve.

* L: The total number of APs in the network.

– These inputs define the constraints within which the algorithm operates,
including the limits on AP capacity and the number of initial requests each
UE can make.

• Step 1: Iterating Over Each UE

– The first for loop iterates over each UE from 1 to K. This loop ensures that
the AP selection process is applied to every UE in the network individually.

• Step 2: Initialize the ServingAPs Counter

– For each UE, the ServingAPs counter is initialized to zero. This counter
tracks how many APs have been assigned to serve the current UE so far.

• Step 3: Iterating Over Initial AP Requests

– The second for loop iterates over each of the initial G AP requests for the
current UE. This loop is responsible for evaluating potential APs based on
their proximity to the UE.

• Step 4: Identifying the Candidate AP

– For each request, the algorithm identifies the candidate AP (candiAP) cor-
responding to the g-th closest AP to the UE k.

• Step 5: Checking AP Capacity

– The algorithm checks if the candidate AP is currently serving fewer than X
UEs. If the AP has available capacity, it can be assigned to the current UE.

• Step 6 - 8: Assigning the AP to Serve the UE

– If the candidate AP has available capacity, it is assigned to serve the current
UE. The algorithm updates the AP-UE allocation matrix D(k,candiAP) by
setting the corresponding entry to 1, indicating that this AP is now serving
this UE.

• Step 9 - 16: Handling AP Overload

– If the candidate AP has already reached its capacity, the algorithm identifies
the UE with the worst channel gain currently served by this AP (WorstUE).

– If the current UE k has a better channel gain than WorstUE, the AP dis-
connects WorstUE and instead serves UE k. The allocation matrix D is
updated accordingly.

• Step 17 - 19: Incrementing the ServingAPs Counter
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– After an AP has been assigned to the current UE, the ServingAPs counter
is incremented.

• Step 20 (Fairness Step): Sorting and Reallocating Resources

– Once the initial assignment is complete for all UEs, the algorithm performs
a fairness step. It sorts UEs from weakest to strongest based on their chan-
nel gain and distance to APs with available capacity. This step ensures
that weaker UEs, which may have been disadvantaged during the initial
assignment, receive additional resources.

• Step 21 - 26: Allocating Remaining Capacity to the Weakest UEs

– The algorithm iterates over each AP that still has available capacity. It
connects the weakest nearest UEs to these APs until the APs reach their
maximum serving limit X . The allocation matrix D is updated to reflect
these connections.

• Final Output: AP-UE Allocation Matrix D(K,L)

– After all steps, including the fairness adjustment, have been completed,
the algorithm outputs the AP-UE allocation matrix D(K,L). This matrix
indicates which APs are assigned to which UEs.

In summary, the Fair AP Request method is a significant advancement in AP selection
strategies, offering a balanced approach to handling the complexities of Distributed
Massive MIMO networks. As Chapter 5 will show, this method consistently outper-
forms other AP selection methods in many scenarios, particularly in terms of fairness,
load balancing, and overall network performance.

4.2 BASELINE AND REFERENCE AP SELECTION METHODS

In this section, we present and explain the baseline and reference AP selection meth-
ods against which the proposed Fair AP Request method will be evaluated. These
methods serve as critical benchmarks for understanding the performance and effi-
ciency of AP selection strategies within Distributed Massive MIMO networks. By
comparing our approach to these established methods, we can better highlight the
improvements and advantages offered by the Fair AP Request method.

The baseline and reference AP selection methods typically include approaches that
are either widely used in current network architectures or represent theoretical ideals.
These methods provide a spectrum of AP selection strategies, from simple and static
models to more dynamic and complex approaches. Understanding how these meth-
ods function, their advantages, and their limitations is crucial for contextualizing the
performance of any new AP selection strategy.

By examining the performance of the Fair AP Request method against these baseline
and reference methods as we will see in Chapter 5, we aim to demonstrate the specific
advantages of our approach, particularly in terms of load balancing, fairness, and
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overall network efficiency. The results from these comparisons will be crucial in
validating the effectiveness of the Fair AP Request method under various network
conditions and constraints.

4.2.1 G APs

In this subsection, we look into the "G APs" method, which is the most basic AP
selection method examined in this thesis [6]. The "G APs" method is designed to
assign each UE to a fixed number of APs, specifically the nearest G APs in terms
of geographical distance or channel quality. This method is a useful benchmark for
evaluating more advanced AP selection strategies.

The "G APs" method operates on the principle of proximity. For each UE in the
network, the algorithm identifies the G closest APs based on distance or channel
quality metrics. These G APs are then assigned to serve the UE, ensuring that every
UE has a fixed number of APs providing service. This method does not consider
factors such as the load on individual APs or the overall distribution of UEs across the
network, which can lead to inefficiencies in networks with uneven UE distributions.

The following pseudocode outlines the steps involved in the "G APs" method:

Algorithm 2 G APs [6]

Inputs: Number of APs L, Number of UEs K, Number of nearest APs to select G,
Maximum number of UEs an AP can serve X

1: for each UE k = 1 to K do

2: Identify the set tn of the G nearest APs to UE k
3: for each AP m in tn do

4: if AP m is serving fewer than X UEs then

5: Assign AP m to serve UE k by setting D(k,m)← 1
6: end if

7: end for

8: end for

Output: AP-UE allocation matrix D(K,L)

The following detailed description provides a detailed logical flow of the G APs algo-
rithm:

• Initialization (Input Parameters):

– The algorithm begins with several input parameters:

* L: The total number of APs in the network.

* K: The total number of UEs that need to be served.

* G: The number of nearest APs to select for each UE.

* X : The maximum number of UEs that any single AP can serve.

– These inputs define the network’s structure and the constraints that the
algorithm must respect during the AP selection process.
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• Step 1: Iterating Over Each UE

– The first for loop iterates over each UE from 1 to K. This loop ensures that
the algorithm individually processes each UE in the network. The goal in
each iteration is to identify the G nearest APs to the current UE and assign
them to serve the UE, if possible.

• Step 2: Identifying the Set tn of Nearest APs

– For each UE k, the algorithm identifies the set tn of the G nearest APs
based on proximity (e.g., distance or signal strength). This step involves
computing the distances from the UE to all APs and selecting the closest G
APs. The set tn contains the indices of these G APs.

• Step 3: Iterating Over Each AP in tn

– The second for loop iterates over each AP m in the set tn of nearest APs.
The purpose of this loop is to evaluate whether each selected AP m has the
capacity to serve the current UE k.

• Step 4: Checking AP Capacity

– The algorithm checks if AP m is currently serving fewer than X UEs. This
is a crucial constraint, as no AP can serve more than X UEs. If AP m
has available capacity (i.e., is serving fewer than X UEs), the algorithm
proceeds to the next step.

• Step 5 - 8: Assigning the AP to Serve the UE

– If the capacity check is satisfied, AP m is assigned to serve UE k. This
assignment is recorded by setting the corresponding element in the AP-UE
allocation matrix D(k,m) to 1, indicating that AP m is now serving UE k.

• Final Output: AP-UE Allocation Matrix D(K,L)

– After processing all UEs and their nearest APs, the algorithm outputs the
AP-UE allocation matrix D(K,L). This matrix has dimensions K×L, where
each entry D(k,m) = 1 indicates that AP m is assigned to serve UE k.
Entries with D(k,m) = 0 indicate that AP m is not serving UE k.

By comparing more advanced methods against this straightforward approach, we
can better understand the benefits of incorporating additional factors such as load
balancing, fairness, and dynamic AP selection into the network design.

The "G APs" method serves as a foundational AP selection strategy within the context
of Distributed Massive MIMO networks. However, its performance is limited by
its lack of consideration for AP load balancing and other dynamic factors. As we
explore more advanced AP selection methods in subsequent sections, the "G APs"
method provides a critical reference point, highlighting the potential gains achieved
by incorporating more critical selection criteria.
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4.2.2 Dynamic AP Request

The Dynamic AP Request method is designed to provide a more flexible and respon-
sive approach to AP selection compared to simpler methods like "G APs" [15]. In this
method, each UE dynamically requests service from a G number of APs that offer the
best channel conditions. This method begins by each UE sending out requests to the G
APs that are expected to offer the most favorable channel conditions. Upon receiving
these requests, the APs evaluate the current load, their remaining capacity, and the
channel gain associated with each UE. If the APs have available capacity, they accept
the UE’s request and establish a connection. If not, the UE continues to request service
from other APs within its range until it finds an available one or exhausts its options.

The following pseudocode illustrates the steps involved in the Dynamic AP Request
method:

Algorithm 3 Dynamic AP Request [15]

Inputs: Number of APs L, Number of UEs K, Target number of APs to serve each UE
G, Maximum number of UEs an AP can serve X

1: for each UE k = 1 to K do

2: Initialize ServingAPs = 0
3: for each AP m = 1 to L (sorted by distance) do

4: candiAP ← AP corresponding to the m-th closest distance to UE k
5: if AP candiAP is serving fewer than X UEs then

6: Assign AP candiAP to serve UE k by setting D(k, candiAP )← 1
7: ServingAPs← ServingAPs+ 1
8: end if

9: if ServingAPs = G then

10: break

11: end if

12: end for

13: end for

Output: AP-UE allocation matrix D(K,L)

• Initialization (Input Parameters):

– The algorithm begins with several input parameters:

* L: The total number of APs in the network.

* K: The total number of UEs that need to be served.

* G: The target number of APs that should serve each UE.

* X : The maximum number of UEs that any single AP can serve.

– These inputs establish the framework within which the algorithm operates,
defining the network’s structure and the constraints for AP selection.

• Step 1: Iterating Over Each UE

– The first for loop iterates over each UE from 1 to K. This loop ensures that
the algorithm processes each UE individually, assigning the appropriate
number of APs to each one.
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• Step 2: Initialize the ServingAPs Counter

– For each UE, the ServingAPs counter is initialized to zero. This counter
keeps track of how many APs have been successfully assigned to serve the
current UE.

• Step 3: Iterating Over Each AP (Sorted by Distance)

– The second for loop iterates over each AP m from 1 to L. The APs are
considered in the order of their proximity to the current UE, with m =
1 representing the closest AP and m = L representing the furthest. The
purpose of this loop is to evaluate whether each AP can serve the UE, with
the aim of selecting the closest APs until the target number G is reached.

• Step 4: Identifying the Candidate AP

– The algorithm identifies the candidate AP (candiAP) corresponding to the
m-th closest distance to the UE k. This AP is considered for assignment to
the current UE.

• Step 5: Checking AP Capacity

– The algorithm checks if the candidate AP is currently serving fewer than X
UEs. This check ensures that the AP has the capacity to serve another UE
without exceeding its limit. If the AP has available capacity, the algorithm
proceeds to the next step.

• Step 6: Assigning the AP to Serve the UE

– If the candidate AP has capacity, it is assigned to serve the current UE. This
assignment is recorded by setting the corresponding element in the AP-UE
allocation matrix D(k,candiAP) to 1, indicating that AP candiAP is now
serving UE k.

• Step 7: Incrementing the ServingAPs Counter

– After successfully assigning an AP to the current UE, the ServingAPs

counter is incremented by one. This step tracks how many APs have been
assigned to the UE so far.

• Step 8 - 13: Checking if the Target Number of APs has been Reached

– The algorithm checks if the ServingAPs counter has reached the target
number G. If the UE has been successfully assigned to G APs, the algorithm
breaks out of the loop, stopping further consideration of additional APs.
This ensures that the UE is served by exactly G APs, if possible.

• Final Output: AP-UE Allocation Matrix D(K,L)
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– After processing all UEs and their nearest APs, the algorithm outputs the
AP-UE allocation matrix D(K,L). This matrix has dimensions K×L, where
each entry D(k,candiAP) = 1 indicates that AP candiAP is assigned to
serve UE k. Entries with D(k,candiAP) = 0 indicate that AP candiAP is
not serving UE k.

While the Dynamic AP Request method represents a significant improvement over
static approaches, it has notable shortcomings, particularly when compared to "Fair
AP Request".

• In Step 3 of Dynamic AP Request: The algorithm iterates over APs in the
order of their proximity to the UE, assigning APs until the target number G
is reached. However, this method does not account for the overall network
performance, it simply allocates APs based on proximity without considering
the load distribution or channel quality beyond the initial assignment.

• In contrast, in Step 9 of Fair AP Request: After selecting the initial G APs based
on proximity, the method evaluates whether the selected AP is already serving
the maximum number of UEs. If the AP is overloaded, the algorithm compares
the current UE’s channel gain with the UE that has the worst channel gain at
that AP (Step 10). This ensures that the AP serves the UE with the better channel
gain, optimizing the network’s performance by reassigning resources to those
who can benefit the most.

• Dynamic AP Request in Step 6: The method does not provide any mechanism
to reconsider the AP allocation if a UE ends up with less favorable conditions
after the initial allocation. Fair AP Request, on the other hand, introduces a fair-
ness adjustment step (Step 20), where UEs are sorted from weakest to strongest
based on channel conditions, and remaining resources are reallocated to the
weakest UEs. This step ensures that even UEs with initially poor conditions
receive additional resources, balancing the load more effectively and improving
overall network performance.

• In Step 13 of Dynamic AP Request: The algorithm stops assigning APs once the
target G APs have been allocated, without considering if other UEs may have
been assigned to those APs with better channel conditions. Fair AP Request,
in contrast, revisits the AP assignments during its fairness step (Steps 20-26),
actively reallocating available AP resources to UEs with weaker channel gains,
thus ensuring a more equitable distribution of network resources.

Overall, the Fair AP Request method addresses the shortcomings of the Dynamic AP
Request by not only considering immediate channel conditions but also by imple-
menting mechanisms to balance the network load, reallocate underutilized APs, and
improve fairness across all UEs. This approach results in better overall network per-
formance, especially in high-density scenarios, where effective resource management
is crucial.
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4.2.3 Adaptive AP Request

The Adaptive AP Request method introduces a more refined approach to AP selection
by considering not only the current channel conditions but also the capacity con-
straints of the APs [15]. In this method, each UE initiates a connection request to a
G number of APs based on the best channel conditions available. However, unlike
the Dynamic AP Request method, the Adaptive AP Request adds another layer of
decision-making.

When an AP receives a connection request, it evaluates its current load and determines
whether it can accommodate the new UE. If the AP has reached its capacity limit,
it doesn’t automatically reject the request. Instead, the AP compares the channel
conditions of the incoming UE with those of the UEs it is already serving. If the new
UE has better channel conditions than one of the currently served UEs, the AP may
disconnect the UE with the worst channel conditions and replace it with the new UE.
This adaptive mechanism allows the network to optimize the allocation of resources
dynamically, ensuring that the UEs with the best possible conditions are served.

The following pseudocode outlines the steps involved in the "Adaptive AP Request"
method:

Algorithm 4 Adaptive AP Request [15]

Inputs: Number of UEs K, Initial number of AP requests G, Maximum number of
UEs each AP can serve X , Number of APs L

1: for each UE k = 1 to K do

2: Initialize ServingAPs← 0
3: for each AP request g = 1 to G do

4: candiAP ← AP corresponding to the g-th closest distance
5: if AP candiAP is serving fewer than X UEs then

6: Assign AP candiAP to serve UE k
7: D[k, candiAP ]← 1
8: else

9: WorstUE ← Find the UE with the worst channel gain at candiAP
10: if Channel gain of UEk is better than WorstUE then

11: Disconnect WorstUE
12: D[WorstUE, candiAP ]← 0
13: Assign AP candiAP to serve UEk

14: D[k, candiAP ]← 1
15: end if

16: end if

17: ServingAPs← ServingAPs+ 1
18: end for

19: end for

Output: AP-UE allocation matrix D

1. Initialization (Input Parameters):
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• The algorithm begins by accepting the following input parameters:

– K: The total number of UEs that need to be served.

– G: The initial number of AP requests that each UE will make.

– X : The maximum number of UEs that any single AP can serve.

– L: The total number of APs in the network.

• These inputs define the framework within which the algorithm operates,
including the limits on AP capacity and the number of initial requests each
UE can make.

2. Step 1: Iterating Over Each UE

• The first for loop iterates over each UE from 1 to K. This loop ensures that
the AP selection process is applied individually to every UE in the network.

3. Step 2: Initialize the ServingAPs Counter

• For each UE, the ServingAPs counter is initialized to zero. This counter
tracks how many APs have been successfully assigned to serve the current
UE.

4. Step 3: Iterating Over Initial AP Requests

• The second for loop iterates over the initial G AP requests for the current
UE. This loop is responsible for evaluating potential APs based on their
proximity to the UE.

5. Step 4: Identifying the Candidate AP

• For each request, the algorithm identifies the candidate AP (candiAP) cor-
responding to the g-th closest AP to the UE k.

6. Step 5: Checking AP Capacity

• The algorithm checks if the candidate AP is currently serving fewer than X
UEs. If the AP has available capacity, it can be assigned to the current UE.

7. Step 6 - 8: Assigning the AP to Serve the UE

• If the candidate AP has available capacity, it is assigned to serve the current
UE. The algorithm updates the AP-UE allocation matrix D(k,candiAP) by
setting the corresponding entry to 1, indicating that this AP is now serving
this UE.

8. Step 9 - 16: Handling AP Overload

• If the candidate AP has already reached its capacity, the algorithm identifies
the UE with the worst channel gain currently served by this AP (WorstUE).

• If the current UE k has a better channel gain than WorstUE, the AP dis-
connects WorstUE and instead serves UE k. The allocation matrix D is
updated accordingly to reflect these changes.
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9. Step 17 - 19: Incrementing the ServingAPs Counter

• After an AP has been assigned to the current UE, the ServingAPs counter
is incremented. This step ensures that the UE continues to request addi-
tional APs until the desired number G is reached or no more suitable APs
are available.

10. Final Output: AP-UE Allocation Matrix D(K,L)

• After processing all UEs and their nearest APs, the algorithm outputs the
AP-UE allocation matrix D(K,L). This matrix indicates which APs are
assigned to which UEs, taking into account both proximity and channel
conditions to optimize overall network performance.

While the Adaptive AP Request method offers a more advanced approach than the
Dynamic AP Request by actively managing AP resources and attempting to optimize
service quality, it still falls short of the optimal balance provided by the "Fair AP
Request" method.

• In Step 9 of Adaptive AP Request: The algorithm reallocates resources by
disconnecting the UE with the worst channel gain if a new UE has a better
channel gain. However, this approach primarily focuses on optimizing service
quality for individual UEs based on immediate channel conditions, potentially
leading to an uneven distribution of network resources.

• In contrast, in Step 20 of Fair AP Request: The method introduces a fairness
adjustment where UEs are sorted based on their channel gain and distance to
available APs. This step ensures that weaker UEs, which may have been disad-
vantaged in the initial allocation, receive additional resources, thereby improv-
ing overall network performance.

• Adaptive AP Request in Steps 6-16: The method effectively reallocates AP
resources based on channel conditions, but it does not consider the overall net-
work fairness. Fair AP Request, on the other hand, actively ensures that even
UEs with poorer channel conditions are given priority during the fairness step
(Steps 20-26), thereby leading to a more equitable distribution of network re-
sources.

• Step 19 of Adaptive AP Request: The method increments the ServingAPs counter
until the target number G is reached, focusing on immediate channel conditions
without reassessing the overall network balance. Fair AP Request, however,
revisits the AP assignments in its fairness step (Step 20), reallocating available
AP resources to weaker UEs and ensuring a more uniform service distribution
across the network.

Overall, the Fair AP Request method addresses the shortcomings of the Adaptive AP
Request by not only optimizing for the best channel conditions but also by imple-
menting mechanisms to ensure fairness and load balancing across the network. This
results in improved overall network performance and user satisfaction, especially in
high-density scenarios where effective resource management is crucial.
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4.2.4 Baseline: All APs and Cellular

In this subsection, we discuss the baseline strategies, "All APs" and "Cellular," which
serve as fundamental reference points for evaluating the performance of the AP se-
lection methods. These baselines represent two extremes in the spectrum of network
architectures, and comparing our proposed methods against them is crucial for un-
derstanding their relative strengths and weaknesses in Distributed Massive MIMO
networks.

"All APs" is the unscalable approach of Distributed Massive MIMO, wherein each
UE is simultaneously served by all available APs in the network. This approach
assumes a fully connected network where there is no selection mechanism; every
AP in the system contributes to serving every UE. While this approach might seem
ideal in theory, offering the maximum possible diversity and potentially improving
signal strength through constructive interference, it is far from practical. The "All
APs" method leads to significant drawbacks, including:

• Excessive Overhead: With every AP involved in serving every UE, the coor-
dination required between APs becomes increasingly complex and resource-
intensive.

• High Energy Consumption: Since all APs are active for every UE, energy con-
sumption is significantly higher than necessary.

• Increased Interference: The simultaneous transmission from multiple APs can
cause interference, particularly in environments with a high density of UEs.

Despite these drawbacks, "All APs" serves as an important benchmark. It provides
an upper bound on the potential performance of AP selection methods, helping us
understand the maximum achievable performance in an idealized scenario.

On the other hand, "Cellular" represents the traditional approach to wireless network
design, where each UE is exclusively served by a single AP, the one to which it is
closest or has the best signal strength. This method is characteristic of conventional
cellular networks, where the network is divided into cells, and each UE connects to the
base station at the center of its cell. Moreover, the "Cellular" approach has limitations:

• Limited Flexibility: UEs are confined to a single AP, which can lead to subopti-
mal performance if the chosen AP is overloaded or if better channel conditions
are available from other nearby APs.

• Lower Diversity Gains: Since each UE is served by only one AP, there is no
opportunity to exploit diversity gains that could improve signal reliability and
reduce fading.

• Potential for Bottlenecks: In dense deployment scenarios, certain APs may be-
come overloaded, leading to increased latency and reduced data rates for UEs
connected to those APs.
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Despite these limitations, the "Cellular" method is a critical reference point because it
represents the baseline performance of a traditional network. By comparing advanced
AP selection methods to the "Cellular" baseline, we can assess how much performance
improvement can be achieved through selection strategies.

Comparing the advanced AP selection methods developed in this thesis to the "All
APs" and "Cellular" baselines is essential for several reasons:

1. Establishing a Performance Benchmark: The "All APs" baseline provides a theo-
retical upper limit of network performance, allowing us to gauge how close the
advanced methods come to this ideal scenario.

2. Assessing Practicality: The "Cellular" baseline reflects the real-world constraints
of current network architectures. By comparing advanced methods to this base-
line, we can determine the practicality and real-world applicability of these meth-
ods.

3. Evaluating Trade-offs: Both baselines represent extreme approaches, with "All
APs" maximizing diversity and "Cellular" maximizing simplicity. By comparing
our methods against these extremes, we can better understand the trade-offs
involved in terms of complexity, energy efficiency, and performance.

The baselines "All APs" and "Cellular" serve as crucial points of reference for evaluat-
ing the effectiveness of advanced AP selection methods in Distributed Massive MIMO
networks. While "All APs" sets a theoretical performance ceiling, "Cellular" provides
a practical comparison rooted in traditional network designs. Understanding how
AP selection methods perform relative to these baselines helps to highlight their ad-
vantages, limitations, and overall potential for improving network efficiency and user
experience.

4.3 ALGORITHM COMPLEXITY OF THE AP SELECTION METHODS

In distributed massive MIMO systems, the selection of APs plays a critical role in
determining the algorithmic complexity. Complexity of an algorithm is the amount
of resources (i.e. time or memory) required to perform a task or solve a specific
problem [19]. The algorithm complexity behind each AP selection method can vary
significantly based on the number of UEs K, the number of available APs L, and
the size of the AP serving set G. This section formulates the algorithm complexity
associated with each AP selection method: G APs, Dynamic AP Request, Adaptive
AP Request, and Fair AP Request.

• "G APs": This method involves selecting the G nearest APs for each UE. For
each UE, the method requires sorting the distances to all L APs, which has
an algorithm complexity of O(L logL). After sorting, the nearest G APs are
selected, and the UE is assigned to these APs. The total computational cost for
all K UEs is therefore given by:

C = K · (L logL+G) (4.1)
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• "Dynamic AP Request": In this method, each UE initially requests service from
the nearest AP. The method involves sorting the distances to all L APs for each
UE, resulting in an algorithm complexity of O(L logL). After sorting, each UE
attempts to connect to the G closest APs that are not fully loaded. The total
computational cost for all K UEs can be expressed as:

C = K · (L logL+G) (4.2)

• "Adaptive AP Request": This method involves a more complex decision-making
process. Initially, the UE requests service from the nearest G APs. If the AP
is fully loaded, the method evaluates the UE with the worst channel gain and
may replace it if the new UE has a better channel gain. This process involves
sorting the distances to L APs, similar to the previous methods, but also includes
additional checks for channel gains, making it more computationally intensive.
The computational cost is given by:

C = K · (L logL+G · logK) (4.3)

• "Fair AP Request": Our method is designed to optimize the allocation of APs by
ensuring that each AP serves a fair number of UEs. This method initially uses a
similar process as the Adaptive AP Request method to allocate the G nearest APs
but then further refines the allocation by redistributing resources to the weakest
UEs. This additional refinement adds to the computational cost, making it the
most expensive in terms of computation. The total cost can be approximated by:

C = K · (L logL+G · logK +K logG) (4.4)

The computational costs for each AP selection method are summarized in the follow-
ing table 4.1:

AP Selection Method Computational Complexity

G APs K · (L logL+G)

Dynamic AP Request K · (L logL+G)

Adaptive AP Request K · (L logL+G · logK)

Fair AP Request K · (L logL+G · logK +K logG)

TABLE 4.1: Algorithm Complexity of AP Selection Methods
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RESULTS

This chapter deals with the detailed analysis of the performance of various AP selec-
tion methods within distributed Massive MIMO networks. The network design and
the challenges associated with it necessitate a thorough understanding of how AP
selection methods can be optimized for peak performance. Our study is structured
to solve these complexities, offering insights into the efficiency of these methods and
their practical implications. In Section 5.1, we begin by outlining the methodology
used for our simulations, highlighting the tools, setup, and parameters that form the
foundation of our analysis. An overview of the evaluation process is provided, detail-
ing the steps taken to assess the performance of AP selection methods under different
scenarios and constraints. Section 5.2 sets the stage for a comparative analysis of
the various AP selection methods, including a novel approach developed during this
research, demonstrating their efficacy in typical network scenarios. Section 5.3 studies
the trade-offs between performance gains and computational complexity, shedding
light on the balance that must be struck to optimize resource usage in real-world
applications. In Section 5.4, we then explore the influence of varying network con-
ditions, such as user density and pilot sequence length, on the performance of AP
selection methods. These examinations help to illustrate the resilience and adaptabil-
ity of different methods in dynamic environments. Finally, Moreover, we conduct
stress tests under extreme user densities to reveal the limitations and robustness of
the AP selection methods, offering a comprehensive view of their performance under
challenging conditions. The chapter concludes with a discussion of the results in
Section 5.5, highlighting key findings and their implications for future network design
and optimization.

5.1 METHODOLOGY

5.1.1 Simulation Environment

To conduct our analysis comprehensively, we utilized MATLAB to run 1000 Monte
Carlo simulations. These simulations provide a robust statistical basis for our find-
ings, allowing us to capture a wide range of potential network conditions and user
distributions. Recognizing the computational intensity of these simulations, we in-
corporated parallelization into our MATLAB code. This optimization significantly
reduced the computational time, allowing us to run extensive simulations more ef-
ficiently. The simulation was set up to reflect realistic network conditions, ensuring
that our findings are applicable to real-world distributed massive MIMO networks.
This includes considerations of various network parameters, such as the number of
APs, user densities, and the different constraints that can impact performance. The
network environment was set up with careful consideration of several critical factors,
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including the network topology, architecture, and user density. The topology was
configured to represent a typical distributed massive MIMO setup, with uniform grid
distributed APs strategically deployed to provide broad coverage. For the channel
model and the SE model, we utilized the models introduced in Chapter 3. These
models were selected to provide a detailed and accurate representation of the wireless
communication environment, accounting for various factors such as path loss, fading,
and interference. The SE model, in particular, was used to evaluate the system’s
ability to deliver high data rates under different network conditions and constraints.
By combining these elements, a realistic network environment, an accurate channel
and SE model, and extensive, optimized simulations, we ensured that our analysis is
not only thorough but also directly applicable to the challenges faced by real-world
distributed massive MIMO networks.

5.1.2 Overview of Evaluation Process

To frame our analysis, we established two baseline scenarios for reference. The first
baseline scenario represents our upper bound, where each user in the network is
served by all 64 APs. This scenario serves as a benchmark for the highest achievable
performance. The second baseline scenario represents our lower bound, modeled
after a traditional cellular network where each UE is served only by the nearest AP.
This scenario provides a benchmark for the minimum expected performance.

Our thesis conducts a detailed comparative performance analysis of various AP se-
lection methods across multiple potential scenarios. By evaluating these methods,
we aim to identify how each one performs in terms of spectral efficiency. Beyond
performance metrics, we also examine the system cost associated with each AP selec-
tion method. This analysis helps to demonstrate the trade-offs between performance
and computational complexity, providing insights into the practical viability of each
method. Moreover, we assume the network is static, as mobility introduces additional
challenges like handovers and complex beam management, which are beyond the
scope of this thesis.

Furthermore, our analysis adheres to the constraints outlined in Chapter 3, particu-
larly that each AP can serve a maximum of τp UEs. By maintaining this constraint, we
ensure that the network doesn’t suffer from pilot contamination. This comprehensive
approach allows us to offer a balanced assessment of each AP selection method, con-
sidering both their benefits and their resource requirements.

Table 5.1 summarizes the network configuration used in the simulations. The network
area covers a 200 m × 200 m region with 64 APs arranged in a grid pattern, each
positioned at a height of 5 meters. The UEs are randomly distributed according
to a PPP, with the number of UEs varying between 25, 40, 64, and 200 to assess
different network densities. The carrier frequency is set at 3.5 GHz, with maximum
transmission powers of 200 mW for APs and 100 mW for UEs. The system operates
with a channel bandwidth of 100 MHz and a noise figure of 9 dB. The coherence
block length is 200 time slots, and the pilot sequence length is varied among 10,
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Parameter Value

Network area size 200 m × 200 m

AP distribution grid
AP number, L 64 APs
AP height, hBS 5 m

UE distribution random PPP
UE Number, K {25, 40, 64, 200}

Carrier frequency, fc 3.5 GHz
Max AP power, PAPmax

200 mW
Max UE power, PUEmax

100 mW
Channel bandwidth, B 100 MHz
Noise figure, NF 9 dB

Coherence block length, τc 200
Pilot sequence length, τp {10, 15, 20}

TABLE 5.1: Network configuration.

15, and 20 slots to evaluate the impact on network performance under different pilot
contamination scenarios.

5.2 MOTIVATION AND INITIAL OBSERVATIONS

5.2.1 Sufficiency of AP Selection

In this section, we aim to demonstrate the effectiveness and efficiency of AP selection
methods. Unlike the scenario where each UE is served by all available APs, which
leads to significant resource waste and increased system complexity, AP selection
methods allocate a subset of APs to each UE. This approach not only conserves re-
sources but also maintains high performance levels.

We will compare the performance of these AP selection methods against the baseline
scenarios: the ideal case where each UE is served by all APs and the traditional
cellular case where each UE is served by only one AP. Our objective is to show that
AP selection methods can achieve near-peak performance for small AP serving set
sizes while significantly reducing the system’s resource consumption and complexity.
This comparison will highlight the practical benefits of using AP selection methods in
scalable distributed massive MIMO networks, which shows their potential to allow
for scalability in distributed architectures.

Figure 5.1 (a-d) illustrates the SE performance of various AP selection methods across
different AP serving set sizes (G), compared to the two baseline scenarios: "All APs"
and cellular. The analysis is based on the CDF of the SE of the network with a UE den-
sity of K = 25 UE and τp = 10. For each AP selection method, we analyze the Sum SE,
SE per UE and 95% likely SE performance for different G values. Notably, for all AP
selection methods except "Fair AP Request" we observe that performance consistently
improves as G increases. When G reaches 10, the performance closely approaches that
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of the upper bound, represented by the "All APs" scenario. Additionally, across all AP
selection methods, there is a significant enhancement in performance (approximately
60% better) compared to the cellular scenario. This demonstrates the effectiveness of
using a subset of APs to achieve near-peak performance, highlighting the advantages
of AP selection methods in optimizing network efficiency. The increase in SE with
larger G values is due to the greater diversity and spatial resources available when
more APs are involved in serving the UEs. As G grows, more APs contribute to
the signal quality, increasing the overall spectral efficiency. The convergence towards
the ’All APs’ scenario at G = 10 suggests that involving more than 10 APs per UE
does not significantly improve performance. This is because the additional APs are
farther away, resulting in weaker signals. Consequently, the desired signal strength is
lower, leading to a reduced SINR, which in turn diminishes throughput and spectral
efficiency.

The "Fair AP Request" method exhibits consistent performance across different G
values, achieving peak performance regardless of the initial AP serving set size. This
is because this method initially allocates APs based on the given G value and sub-
sequently redistributes any unallocated APs to the UEs with the weakest channels,
effectively maximizing resource utilization and ensuring that even the weakest UEs
receive sufficient support. This redistribution leads to peak Sum SE performance even
with smaller G values.

As a result of our observations in Figure 5.1, we assume for our subsequent analysis
a value of G = 10 for "G APs", "Dynamic AP Request" and "Adaptive AP Request".
For "Fair AP Request" we assume a value of G = 5, since "Fair AP Request" already
achieves peak performance with this value.



5.2. MOTIVATION AND INITIAL OBSERVATIONS 45

(a) G APs - Sum SE (b) G APs - SE per UE (c) G APs - 95% Likely SE

(d) Dynamic AP Request - Sum
SE

(e) Dynamic AP Request - SE per
UE

(f) Dynamic AP Request - 95%
Likely SE

(g) Adaptive AP Request - Sum
SE

(h) Adaptive AP Request - SE
per UE

(i) Adaptive AP Request - 95%
Likely SE

(j) Fair AP Request - Sum SE (k) Fair AP Request - SE per UE (l) Fair AP Request - 95% Likely
SE

FIGURE 5.1: SE performance of different AP Selection Methods for different G values
- K = 25 UEs, τp = 10.

5.2.2 Comparative Analysis of AP Selection Methods

In this section, we conduct a comparative analysis of the different AP selection meth-
ods to evaluate their performance under usual network conditions. By comparing the
Sum SE, average SE, and 95% likely SE performance metrics, the analysis will help us
to understand how these methods perform relative to the upper bound "All APs" and
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why certain methods, like Fair AP Request, consistently outperform others. Through
this comparison, we will highlight the efficiency of each AP selection method, pro-
viding valuable insights for optimizing distributed Massive MIMO networks. It is
important to note that we are looking at the constrained AP selection. This means that
each AP can serve a maximum of K = τp UEs in order to avoid pilot contamination, as
we have already explained in Chapter 3.

Figure 5.2 shows the Sum SE, SE per UE and 95% likely SE performance of various
AP selection methods with UE = 25, G = 10 (G = 5 for Fair AP Request), and τp =
10. For comparison, we use "All APs" as the upper bound, omitting the lower bound
"cellular" scenario to avoid scaling issues and because we’ve already established that
all AP selection methods significantly outperform the cellular scenario.

Especially in Sum SE and SE per UE, we can see that the Fair AP Request method
outperforms the others, nearly matching the performance of the upper bound in Sum
SE. The other AP selection methods show similar performance levels to each other.
This superior performance of the Fair AP Request method is due to its superior design
which maximizes the resource utilization, i.e., allocated all underutilized APs to weak
UEs in the network compared to the other methods. A similar trend is observed in SE
per UE. The Fair AP Request method continues to lead, demonstrating its advantage
in SE performance.

In 95% likely SE, we notice that all AP selection methods, including the "Fair AP
Request", perform almost identically and close to the upper bound. This indicates
that under typical network conditions, all the methods achieve nearly optimal perfor-
mance, with the Fair AP Request method maintaining a slight edge. This once again
has to do with the fair design of this method, where all possible remaining resources
after the initial UE-AP allocation are assigned to the weakest UEs.

In the upcoming sections, we will dive deeper into the network performance of vari-
ous AP selection methods across a range of scenarios and conditions. We will explore
how these methods hold up under higher UE densities and varying pilot sequence
lengths, revealing insights into their robustness and adaptability in more demanding
environments. But first let’s take a look at the computational cost of the different AP
selection methods in Section 5.3.
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(a) Sum SE (b) SE per UE (c) 95% Likely SE

FIGURE 5.2: SE Performance of AP Selection Methods for UE = 25, G = 10 (G = 5 for
Fair AP Request), τp = 10.

5.3 ALGORITHM COMPLEXITY ANALYSIS

In this section, we perform a detailed analysis of the algorithm complexity associated
with the different AP selection methods introduced earlier. We evaluate the algorithm
complexity of each method, defined as the ratio of algorithm cost to the median SE
achieved by each method. This approach allows us to compare the relative merits of
each method. For clarity, the summary table of the algorithm costs of each AP selection
method is presented again in Table 4.1.

AP Selection Method Computational Cost

G APs K · (L logL+G)

Dynamic AP Request K · (L logL+G)

Adaptive AP Request K · (L logL+G · logK)

Fair AP Request K · (L logL+G · logK +K logG)

TABLE 5.2: Algorithm Cost of AP Selection Methods

We now perform a comparative analysis of the computational efficiency for a system
with K = 25 UEs, L = 64 APs, and an AP serving set size G = 10 (except for Fair
AP Request, where G = 5). The efficiency is calculated as eff = C

SEm
, where C is

the computational cost and SEm is the median spectral efficiency achieved by each
method. For the "G APs" method:

C = 25 · (64 log 64 + 10) = 9850 Operations (5.1)

With a median SE of SEm = 1.30 bit/s/Hz, the efficiency is:

eff =
9850

1.30
≈ 75.77% (5.2)

For the "Dynamic AP Request" method:

C = 25 · (64 log 64 + 10) = 9850 Operations (5.3)
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With a median SE of SEm = 1.30 bit/s/Hz, the efficiency is identical to G APs:

eff =
9850

1.30
≈ 75.77% (5.4)

For the "Adaptive AP Request" method:

C = 25 · (64 log 64 + 10 · log 25) = 10760 Operations (5.5)

With a median SE of SEm = 1.305 bit/s/Hz, the efficiency is:

eff =
10760

1.305
≈ 82.44% (5.6)

For the "Fair AP Request" method, where G = 5:

C = 25 · (64 log 64 + 5 · log 25 + 25 log 5) = 11630 Operations (5.7)

With a median SE of SEm = 1.385 bit/s/Hz, the efficiency is:

eff =
11630

1.385
≈ 83.95% (5.8)

The Fair AP Request method has an algorithm cost approximately 18% higher than
the G APs method (11630−9850

9850 × 100 ≈ 18% more). However, it achieves a median SE
that is 6.54% higher (1.385−1.30

1.30 × 100 ≈ 6.54% more). The efficiency of the Fair AP
Request method is therefore justified by the significant improvement in SE, making
it the better option despite the increased computational cost. Similarly, compared
to Dynamic AP Request, Fair AP Request incurs an 18% higher computational cost.
The SE improvement remains 6.54%, making Fair AP Request more efficient. The
Adaptive AP Request method has a 10.44% lower computational cost than Fair AP
Request (11630−10760

10760 × 100 ≈ 8.1% more). However, the Fair AP Request achieves a
6.13% higher SE (1.385−1.305

1.305 × 100 ≈ 6.13% more), which justifies its use.

In summary, while the Fair AP Request method incurs a slightly higher algorithm cost,
its superior median SE results in the highest efficiency among the evaluated methods.
This makes it the optimal choice, especially in scenarios where achieving higher spec-
tral efficiency is critical, even at the expense of minimally increased algorithm cost.
The trade-off between cost and performance is well-balanced, affirming the Fair AP
Request method’s value in distributed massive MIMO systems.

5.4 INFLUENCE OF NETWORK CONDITIONS

In this section, we look at various network conditions that impact the performance
of different AP selection methods within a distributed Massive MIMO network. The
most important conditions we focus on are UE density and pilot sequence length,
which both play critical roles to evaluate the efficiency of the different AP selection
methods.
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Understanding the influence of network conditions is crucial for optimizing network
performance and ensuring reliable communication, particularly in dynamic and high-
demand environments where we have limited resources. High UE densities can lead
to increased interference and competition for the limited network resources, which af-
fects the capability of AP selection methods to maintain high performance. Moreover,
pilot sequence length affects the accuracy of channel estimation, which is critical in
effective AP selection and overall network performance.

In this section, we firstly investigate the effect of pilot sequence length, exploring its
implications on the resulting network performance. Next, we analyze the impact of
UE density on the performance of various AP selection methods, providing insights
into how these methods scale with increasing numbers of users. By examining these
factors, we aim to highlight the robustness and adaptability of different AP selection
strategies under varying network conditions, ultimately contributing to the develop-
ment of more efficient and scalable distributed Massive MIMO systems.

5.4.1 Impact of Pilot Sequence Length

One of the most important parameters to study is the length of the pilot sequence.
There are certain scenarios where it makes sense to sacrifice a part of the data trans-
mission phase in order to increase the length of the pilot phase or the pilot sequence.
In massive MIMO systems where we have a very large number of antennas, the
base station needs more accurate CSI to perform effective beamforming and spatial
multiplexing. Longer pilot sequences can provide more accurate CSI, which is crucial
for maintaining system performance. For applications requiring stringent QoS, longer
pilot sequences ensure more accurate channel estimation, which is essential for main-
taining the required performance levels. Short pilot sequences reduce the overhead,
potentially increasing spectral efficiency. However, channel estimation accuracy is
decreased, leading to poorer performance in scenarios with high interference or user
density [14].

Let’s take a look at Figure 5.3. In this figure, we compare the Sum SE performance
of the AP selection methods for increasing lengths of the pilot sequence for a UE
density K = 25 UE and G = 10. With longer pilot sequences, the all methods exhibit a
reduction of about 12% in spectral efficiency due to increased overhead. The longer
pilot sequences occupy more of the limited coherence interval, leaving less time for
data transmission, which directly impacts the overall system throughput.

Despite this general slight decline in performance, the "Fair AP Request" method
demonstrates a remarkable resilience compared to the other AP selection methods.
As the pilot sequence length increases, the SE performance of the "Fair AP Request"
method steadily converges towards that of the "All APs" approach, while significantly
outpacing the other AP selection strategies. This trend highlights the exceptional
resilience of the "Fair AP Request" method, especially in challenging scenarios where
pilot contamination becomes a critical concern. The underlying reason for this supe-
rior performance lies in how pilot contamination limits each AP to serving only X = τp
UEs. By reallocating the remaining resources of underutilized APs after the initial AP-
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UE allocation process, the "Fair AP Request" method directs those resources to support
the weakest UEs, thus fully exploiting the available AP capacity of the network.

The superior performance of "Fair AP Request" in the context of longer pilot sequences
can be explained by its design, which carefully balances load and optimizes the se-
lection of APs based on the channel conditions of UEs. By prioritizing fairness and
ensuring that even the weakest UEs are served by APs with the best available channel
conditions, "Fair AP Request" effectively mitigates the negative impacts of pilot con-
tamination. This allows it to maintain a higher level of SE even as the conditions for
accurate channel estimation deteriorate.

In contrast, the other methods fall short of the performance achieved by the "Fair AP
Request" method due to a fundamental difference in resource allocation, especially
with longer pilot sequences. Unlike "Fair AP Request", these methods do not make
use of the remaining available pilots after the initial AP assignments. As a result,
significant network resources remain underutilized, leading to suboptimal overall
performance. The "Fair AP Request" method, by contrast, strategically reallocates
these unused resources to ensure that even the weakest UEs are supported, maxi-
mizing network efficiency and enhancing spectral efficiency across the board. This
comprehensive utilization of available resources is what gives "Fair AP Request" its
edge over the other methods.

These findings highlight the critical importance of selecting an appropriate AP se-
lection method in distributed massive MIMO networks, particularly in environments
where pilot contamination is a significant concern. The ability of "Fair AP Request"
to maintain superior performance under challenging conditions makes it an attrac-
tive option for network deployments that must contend with varying pilot sequence
lengths and high UE densities. As we delve deeper into the analysis, it becomes
clear that the choice of AP selection method can significantly influence the overall
network performance, especially in terms of spectral efficiency and resilience to pilot
contamination.

Due to space constraints, you’ll find the detailed results for SE per UE and the 95%
likely SE included in the Appendix A in Figure A.1 and Figure A.2 respectively. Fur-
thermore, since all AP selection methods perform better for τp = 10, we will continue
with this value for the pilot sequence length in subsequent analysis in this chapter.
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(a) τp = 10 (b) τp = 15 (c) τp = 20

FIGURE 5.3: The Sum SE performance of AP Selection Methods for UE = 25, G = 10 (G
= 5 for Fair AP Request) with different τp values.

5.4.2 Impact of UE Density

Now let’s investigate how the density of UE affects the performance of AP selection
methods in a distributed Massive MIMO network. UE density is a critical factor in
network design, as it directly influences interference levels, resource allocation, and
overall network performance. In this analysis, we will compare the performance of
various AP selection methods across different UE densities to observe the changes in
spectral efficiency and overall network performance. This comparison will provide
valuable insights into which AP selection methods are most effective in densely pop-
ulated environments and how they can be optimized to maintain high performance
under such conditions.

Firstly, let’s take a look at Figure 5.4 (a-d), which illustrates the impact of the UE
density on the selection of G for the different AP selection methods with τp = 10.
We can see that for higher UE densities, increasing G does not significantly improve
performance. This is because, with more users, the inter-UE interference between
their signals increases, which negatively impacts performance. Therefore, the benefits
of using a larger G diminish as UE density rises. This highlights the need to manage
inter-UE interference carefully, especially in dense network environments. Due to
space constraints, you’ll find the detailed results for SE per UE and the 95% likely SE
included in the Appendix A in Figure A.3 and Figure A.4 respectively.
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(a) G APs
UE = 40

(b) G APs
UE = 64

(c) G APs
UE = 200

(d) Dynamic AP Request
UE = 40

(e) Dynamic AP Request
UE = 64

(f) Dynamic AP Request
UE = 200

(g) Adaptive AP Request
UE = 40

(h) Adaptive AP Request
UE = 64

(i) Adaptive AP Request
UE = 200

(j) Fair AP Request
UE = 40

(k) Fair AP Request
UE = 64

(l) Fair AP Request
UE = 200

FIGURE 5.4: Sum SE performance of different AP Selection Methods for different G
values and for increasing UE Densities - τp = 10.

Now let’s take a look at Figure 5.5, where we analyze the Sum SE performance of
various AP selection methods under different UE densities (40, 64, 200), with a fixed
pilot sequence length τp = 10 and G = 10. This analysis provides valuable insights into
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how increasing UE density affects the performance of these methods, revealing both
their strengths and limitations in high-density environments.

As the UE density increases, both the "G APs" and "Dynamic AP Request" meth-
ods exhibit a noticeable decline in Sum SE performance. This decline is particularly
pronounced at higher densities, such as K=200 UEs. The primary reason for this
performance drop lies in the inherent limitations of these methods in managing high
UE loads.

In the "G APs" method, each UE is connected to a fixed number of the nearest APs,
without considering the overall network load or the inter-UE interference caused
by neighboring UEs. As the number of UEs increases, this static approach leads to
significant inter-UE interference among UEs sharing the same APs, thus degrading
the SE. Similarly, the "Dynamic AP Request" method, while more flexible than "G
APs," still struggles under high UE densities because it does not adequately address
the dynamic load balancing needed to mitigate interference and optimize resource
allocation in such scenarios.

In contrast to those methods, both "Adaptive AP Request" and "Fair AP Request"
demonstrate remarkable resilience to increasing UE densities. As the number of UEs
rises, these methods maintain a Sum SE performance nearly on par with the "All
APs" baseline. However, it is important to mention, that the Fair AP Request method
requires a smaller G value for the initial UE-AP allocation, which makes it faster and
computationally less demanding.

The key to the success lies of Fair AP Request in its ability to adapt to the network’s
challenging conditions. Fair AP Request, prioritizes fairness, ensuring that weaker
UEs are still served optimally. This dual focus on load balancing and fairness allows
it to sustain high SE levels, even as the network becomes increasingly congested.

At the extreme density of K=200 UEs, we effectively stress-test the AP selection meth-
ods, pushing the network to its limits. Under these conditions, all methods, including
"All APs," struggle to maintain high SE due to severe interference and the limited
availability of resources. The high UE density exacerbates the competition for re-
sources, leading to significant degradation in SE across the board.

This scenario underscores the need for advanced scheduling strategies in distributed
massive MIMO networks. When UE density reaches such high levels, merely relying
on AP selection methods is insufficient to manage the resulting interference and re-
source constraints. Effective scheduling of UEs becomes critical to ensure that network
performance remains within acceptable bounds. By strategically timing the service of
UEs and optimizing resource allocation, scheduling can help alleviate the stress on the
network and improve the overall SE, even in extremely dense environments.

Due to space constraints, you’ll find the detailed results for SE per UE and the 95%
likely SE included in the Appendix A in Figure A.5 and Figure A.6 respectively.
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(a) UE = 40 (b) UE = 64 (c) UE = 200

FIGURE 5.5: The Sum SE Performance of AP Selection Methods for different UE
densities with τp = 10 and G = 10 (G = 5 for Fair AP Request).

5.5 RESULTS DISCUSSION: IMPLICATIONS ON NETWORK DESIGN

Our findings provide a comprehensive understanding of how different AP selection
methods perform under various network conditions, including varying pilot sequence
lengths, UE densities, and stress testing scenarios. These results are significant for
the design and optimization of distributed massive MIMO networks, particularly in
balancing performance, scalability, and resource management.

One of the key insights from our study is that the "Fair AP Request" method signifi-
cantly outperforms all other methods under typical network conditions, such as low
UE density. This superior performance is primarily due to its design, which allocates
all underutilized APs to the weakest UEs, ensuring that even the UEs with the poorest
channel conditions receive sufficient resources. In contrast, other methods like "G
APs" and "Dynamic AP Request" do not prioritize this redistribution of resources,
leading to suboptimal performance in comparison.

The results further demonstrate that the "G APs" and "Dynamic AP Request" methods
tend to fail under challenging network conditions, such as high UE densities and ex-
tended pilot sequences. Their performance significantly degrades due to their inabil-
ity to dynamically balance the load across the network. This underscores the necessity
of employing more advanced methods, such as "Adaptive AP Request" and "Fair AP
Request," which have shown resilience and superior performance even in demanding
scenarios. Among these, the "Fair AP Request" method stands out, not only for its
ability to maintain high performance for weaker UEs but also for its computational
efficiency, making it the optimal choice for environments with high user densities or
limited network resources.

Additionally, the analysis of pilot sequence length reveals a trade-off between pilot
overhead and SE performance. While longer pilot sequences are necessary to mitigate
pilot contamination and improve channel estimation accuracy, they reduce effective
data transmission time, leading to lower SE across all methods. However, the "Fair
AP Request" method shows a remarkable ability to mitigate this trade-off, maintaining
performance close to the "All APs" baseline even as pilot sequence length increases.
This suggests that in scenarios requiring extended pilot sequences, using a robust
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AP selection method like "Fair AP Request" can help sustain high SE while ensuring
accurate channel estimation.

Stress testing at extreme UE densities (e.g., K = 200) highlights the scalability chal-
lenges faced by distributed massive MIMO networks. Even the most advanced AP
selection methods struggle under such conditions, primarily due to increased interfer-
ence and limited resources. This scenario emphasizes the need for additional mech-
anisms, such as scheduling, where not all UEs are served simultaneously but rather
in subsets at each time stamp. Scheduling can distribute the load more evenly across
time, reducing the instantaneous demand on network resources and mitigating inter-
ference, thus playing a crucial role in sustaining performance in dense urban areas or
large-scale IoT deployments.

Lastly, the superior performance of the "Fair AP Request" method, especially in high-
density scenarios, underscores the importance of fairness and load balancing in net-
work design. By ensuring that even the weakest UEs are allocated sufficient resources,
this method not only improves overall network performance but also enhances user
experience, particularly for those in less favorable conditions. Designing networks
with fairness as a core principle can lead to more equitable service distribution, re-
ducing disparities between users and ensuring a more consistent quality of service,
which is particularly important in heterogeneous environments with varying channel
conditions.



6

CONCLUSION AND FUTURE WORK

This thesis systematically explored the performance of various AP selection methods
in distributed massive MIMO networks under diverse conditions. The results high-
light the critical role of advanced AP selection strategies, particularly our "Fair AP
Request" method, which significantly outperforms others, even in low UE density
scenarios. This superior performance is due to its design that reallocates underuti-
lized APs to the weakest UEs, ensuring those with poor channel conditions receive
sufficient resources. In contrast, simpler methods like "G APs" and "Dynamic AP
Request" performed adequately under less demanding conditions but faltered as UE
density increased and pilot sequence lengths extended. The "Fair AP Request" method
consistently maintained spectral efficiency close to the "All APs" baseline, even in chal-
lenging scenarios with limited APs and high UE density. This study also emphasized
the impact of pilot sequence length on network performance, demonstrating how dif-
ferent AP selection methods respond to longer pilot sequences. Overall, the research
contributes valuable insights into designing scalable distributed massive MIMO net-
works, particularly in managing load and interference in dense environments.

However, this study has limitations. The system model, while effective for comparing
AP selection methods, does not fully capture the complexities of real-world networks,
such as mobility, dynamic channel conditions, and varying traffic loads. Additionally,
fixed parameters, like the number of APs and pilot sequence length, limit the gener-
alizability of the findings. The focus on spectral efficiency as the primary metric also
leaves other important aspects, such as energy efficiency and latency, less explored.

Future research could address these limitations by enhancing the "Fair AP Request"
method with adaptive algorithms that respond to real-time network conditions and
by incorporating machine learning techniques to improve AP selection efficiency. Ex-
panding the system model to include user mobility, variable traffic loads, and energy
efficiency would offer a more accurate representation of real-world networks and lead
to more robust AP selection strategies.

The scalability challenges identified in this study also underscore the need for effective
scheduling mechanisms. By serving subsets of UEs at different time stamps, schedul-
ing could help manage high-density environments more effectively, reduce inter-UE
interference, and ensure adequate service for all users. Future work should explore in-
tegrating scheduling with advanced AP selection methods to achieve greater network
efficiency, especially as the number of UEs and interference levels increase.
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APPENDIX

(a) τp = 10 (b) τp = 15 (c) τp = 20

FIGURE A.1: The SE per UE performance of AP Selection Methods for UE = 25, G =
10 (G = 5 for Fair AP Request) with different τp values.

(a) τp = 10 (b) τp = 15 (c) τp = 20

FIGURE A.2: The 95% Likely SE performance of AP Selection Methods for UE = 25, G
= 10 (G = 5 for Fair AP Request) with different τp values.
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(a) G APs
UE = 40

(b) G APs
UE = 64

(c) G APs
UE = 200

(d) Dynamic AP Request
UE = 40

(e) Dynamic AP Request
UE = 64

(f) Dynamic AP Request
UE = 200

(g) Adaptive AP Request
UE = 40

(h) Adaptive AP Request
UE = 64

(i) Adaptive AP Request
UE = 200

(j) Fair AP Request
UE = 40

(k) Fair AP Request
UE = 64

(l) Fair AP Request
UE = 200

FIGURE A.3: SE per UE performance of different AP Selection Methods for different
G values and for increasing UE Densities - τp = 10.
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(a) G APs
UE = 40

(b) G APs
UE = 64

(c) G APs
UE = 200

(d) Dynamic AP Request
UE = 40

(e) Dynamic AP Request
UE = 64

(f) Dynamic AP Request
UE = 200

(g) Adaptive AP Request
UE = 40

(h) Adaptive AP Request
UE = 64

(i) Adaptive AP Request
UE = 200

(j) Fair AP Request
UE = 40

(k) Fair AP Request
UE = 64

(l) Fair AP Request
UE = 200

FIGURE A.4: 95% Likely SE performance of different AP Selection Methods for
different G values and for increasing UE Densities - τp = 10.
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(a) UE = 40 (b) UE = 64 (c) UE = 200

FIGURE A.5: The SE per UE Performance of AP Selection Methods for different UE
densities with τp = 10 and G = 10 (G = 5 for Fair AP Request).

(a) UE = 40 (b) UE = 64 (c) UE = 200

FIGURE A.6: 95% Likely SE Performance of AP Selection Methods for different UE
densities with τp = 10 and G = 10 (G = 5 for Fair AP Request).
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ABBREVIATIONS

MIMO Multiple-Input Multiple-Output

APs Access Points

UE User Equipment

UEs User Equipments

SINR Signal-to-Interference-plus-Noise Ratio

SE Spectral Efficiency

PPP Poisson Point Process

TDD Time Division Duplexing

CPU Central Processing Unit

IoT Internet of Things

BS Base Station

BSs Base Stations

CSI Channel State Information
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