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A B S T R A C T

This study investigates the flexural behaviour of the laminated composite shells in the framework of Higher- 
Order Shear Deformation Theory (HSDT) and Peridynamic Differential Operator (PDDO), namely PD-HSDT, 
for the first time. Laminated composite shell structures are widely used in aerospace, automotive, and marine 
industries due to their high strength-to-weight ratio and design flexibility. Therefore, understanding their me
chanical behavior under various loading conditions is crucial for ensuring structural reliability and performance 
optimization. However, such structures may possess complex curvatures and highly heterogenous laminate 
stackings, leading to inaccurate numerical stress analyses. The HSDT successfully captures displacement and 
stress distributions as well as cross-sectional warping through higher-order functions exist in the kinematics. 
Moreover, the PDDO represents the local derivatives in their nonlocal form, making it well-suited for problems 
involving higher-order derivatives and discontinuities. The governing equations and boundary conditions of the 
HSDT are solved by using the PDDO to accurately achieve the stress and displacement fields in the laminated 
composite shells. The robustness of the PD-HSDT is established by considering various loading and boundary 
conditions. The proposed approach demonstrates high accuracy in stress and displacement predictions when 
validated against reference solutions available in existing literature. This indicates strong potential for extending 
the methodology to more complex loading scenarios and damage mechanisms in future studies.

1. Introduction

Composite structures are crucial in industries such as aviation, nu
clear power, military, automotive, construction, marine, and aerospace 
due to their ability to integrate various materials for diverse design 
objectives [1]. These structures consist of layers with distinct material 
properties, which can lead to stress concentrations at their interfaces, 
resulting in crack formation and propagation. Understanding their me
chanical behavior under different loading conditions during the design 
phase is essential. However, experimentally assessing laminated com
posite structures is often costly and time-consuming [2]. Consequently, 
numerical modeling methods provide a more efficient and cost-effective 
alternative for analyzing the structural behavior of composite shells 
under diverse loading. Thick laminated and sandwich composites, 
which are essential in primary load-bearing applications, can suffer 
damage in fiber-rich or resin-rich layers depending on the type of 

loading [3]. Accurate prediction of stress and strain distributions is 
crucial for designing reliable composite structures and enhancing their 
performance. Given the time-consuming and expensive nature of 
structural testing and analysis, advanced and precise computational 
tools are indispensable for evaluating the strength of composite 
structures.

The finite element method is commonly employed in both academia 
and industry for analyzing laminated composite structures [2,4]. While 
traditional 3D finite element models are suitable for complex geome
tries, laminated composites, with their layered material properties, 
require high-fidelity meshes for accurate representation. Consequently, 
using 3D meshes for these structures can be impractical, leading to 
challenges in computation time and result accuracy, particularly in 
damage and nonlinear analysis.

Equivalent Single Layer Theories (ESL) and Layer-wise Theories 
(LWT) are widely preferred for analyzing laminated composite beams, 
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plates, and shells due to their efficiency in computation and precision, 
and to avoid issues associated with 3D FE meshes. LWT offers higher 
accuracy by calculating variables for each layer, but it can become 
computationally intensive with many layers. ESL, by computing the 
displacement field for a single equivalent layer, provides significant 
efficiency in computation time. The subcategories of ESL theories 
include Classical Laminate Theory (CLT) which follows Kirchhoff hy
pothesis, First-order Shear Deformation Theory (FSDT), Higher-order 
Shear Deformation Theory (HSDT) introduced by Reddy [5], and 
Zigzag theories (ZZ). CLT is convenient for homogeneous thin shells 
because it ignores the transverse shear strains. On the other hand, FSDT 
determines an average rotation of the cross-section to account for shear 
strains along the beam thickness and produces more realistic strain and 
stress results for relatively thick beams than CLT. The FSDT needs a 
shear correction factor to address the errors inherent in the theory. This 
factor is influenced by the problem’s geometry, layer arrangement, 
boundary conditions, and loading scenarios [6,4]. Consequently, the 
FSDT can encounter challenges, particularly in stress analysis of thick 
structures (where length/thickness < 10) and those with heterogeneous 
properties.

HSDT overcomes the displacement and stress shortcomings of CLT 
and FSDT and describes the kinematic relations in terms of higher-order 
expressions such as polynomial, exponential, or trigonometric (also 
other types) functions, to better reflect the cross-sectional shear defor
mation. ZZ theories also provide a realistic description of in-plane de
formations by introducing additional section warping functions, and the 
number of kinematic variables in the ZZ theory is independent of the 
number of material layers in the structural section.

Various forms of higher-order theories for beams [7], plates [8], and 
shells [9] have been extensively studied by researchers. Ermis [10] 
investigated curved beams applying warping included mixed Finite 
Element Method (FEM). Recently, Bab and Kutlu [9] summarized the 
researchers who worked on static or dynamic analysis of laminated 
composite shells applying FSDT or HSDT. Zhao et al. [11] performed 
static and dynamic analysis of functionally graded 
magneto-electro-elastic porous (FG-MEEP) cylindrical shells applying 
FEM and FSDT. Tornabene et al. [12] investigated the 
thermo-magneto-mechanical behaviour of curved laminates applying 
the generalized differential quadrature method and HSDT. Gupta et al. 
[13] presented a FEM using in-house MATLAB codes to implement si
nusoidal shear deformation theory with Murakami’s ZZ function for 
laminated composites and investigated the active damping behavior of 
laminated multiscale hybrid fiber-reinforced composite (HFRC) smart 
shells. Ly et al. [14] introduced an advanced cell-based smoothed 
discrete shear gap method (CS-DSG3) using ZZ theory combined with a 
hybrid control mechanism to analyze the smart damping control of 
laminated functionally graded carbon nanotube reinforced composite 
(FG-CNTRC) shells. Gao et al. [15,16] and Zhang et al. [17] applied the 
Refined Zigzag Theory (RZT) proposed by Tessler et al. [18–21] for 
laminated composite shells. Recently, Ermis et al [22] combined RZT 
with machine learning to analyse laminated composites.

Parallel to these developments, the Carrera Unified Formulation 
(CUF) [23,24] has emerged as a robust and versatile framework that 
unifies ESL and LWT, enabling the systematic derivation of refined 
structural models for various configurations. In recent advancements, 
Mir et al. [25] employed a higher-order CUF-based approach to inves
tigate the mechanical buckling behavior of stiffened cylindrical struc
tures, while Mohammed et al. [26] applied CUF in conjunction with a 
cohesive zone modeling strategy to analyze delamination phenomena in 
functionally graded beams.

To solve CUF-based formulations or ESL theory equations, the FEM is 
commonly employed through weak form implementations, relying 
heavily on mesh discretization to approximate spatial derivatives. 
However, FEM may face challenges when dealing with problems 
involving discontinuities, sharp gradients, or evolving geometries, as its 
accuracy and stability are highly dependent on mesh quality. On the 

other hand, mesh-free methods like radial basis function [27], Peridy
namics (PD) [28–32], and nonlocal operator methods (NOM) [33] 
improve the handling of complex geometries and sharp gradients by 
using nonlocal derivatives. These methods approximate derivatives 
through integration within each material point’s interaction domain 
[34,35]. In meshless methods, each material point interacts within its 
domain, enabling derivative approximations through integration within 
this domain. This approach aligns with recent advances in nano
mechanics and gradient elasticity, where nonlocality is essential to 
capture small-scale effects, as discussed in Zur and Faghidian [36].

While meshless methods have clear benefits, implementing bound
ary conditions, particularly essential ones, can be challenging. Madenci 
et al. [37–39] recently introduced the Peridynamic Differential Operator 
(PDDO) to overcome these issues. This operator transforms local dif
ferentiation into a unified nonlocal integral form, effectively handling 
jump discontinuities and singularities. The PDDO can compute any 
order of derivatives through integration, maintaining nonlocal in
teractions [40]. Such nonlocal differential frameworks resonate with the 
formulations explored in Barretta et al. [41], where dissipative processes 
are modeled beyond the local continuum assumption, and with wave 
propagation studies based on unified gradient theories [42]. The PDDO 
introduces an internal parameter to define interactions within a finite 
range. As this parameter approaches zero, PDDO approximates local 
differentiation. It facilitates solving linear and nonlinear differential 
equations by connecting differentiation and integration. Recently, 
Dorduncu [43] and Ermis et al. [44] investigated the stress analysis of 
beams applying PDDO. A comprehensive review of PD formulations, 
including the implementation and advantages of PD operators, has been 
presented by Dorduncu et al. [28]. Additionally, generalizations of 
nonlocal gradient and micromorphic theories have been proposed in 
Challamel et al. [45], reinforcing the role of higher-order and two-phase 
nonlocality in structural modeling.

Previous research on the flexural analyses of laminated composite 
shells using nonlocal approaches remains limited, particularly in 
conjunction with higher-order theories. In this study, a novel compu
tational framework is developed by integrating the PDDO with the 
HSDT, referred to as the PD-HSDT formulation, to investigate the 
bending response of laminated composite shells. This work marks the 
first attempt to combine these two approaches to overcome the limita
tions of existing methods in capturing both higher-order kinematics and 
nonlocal effects.

HSDT represents a refined form of the ESL modeling approach and 
offers significantly improved accuracy and computational efficiency 
compared to LWTs. However, its applications have traditionally been 
confined to local formulations. To address this, the proposed PD-HSDT 
method incorporates nonlocal behavior within the HSDT framework 
by utilizing PDDO. This method is applied to composite shells with a 
variety of geometries which are doubly curved, spherical, and cylin
drical forms, and accommodates layer-wise variation in orthotropic 
material properties, making it suitable for a wide range of engineering 
applications.

HSDT ensures improved accuracy in capturing transverse shear ef
fects without requiring shear correction factors, while the PDDO facili
tates the nonlocal integral formulation, enabling the treatment of 
discontinuities and complex geometries without the need for mesh 
connectivity or special boundary treatments. Unlike traditional meshless 
methods, it eliminates the requirement for symmetric kernels or ghost 
particles at boundaries, simplifying implementation and enhancing ac
curacy. The proposed PD-HSDT model provides a balance between 
computational efficiency and high-fidelity stress representation. Nu
merical implementation is performed through an in-house FORTRAN 
code, and the accuracy of the method is verified against established 
benchmark solutions, validating its effectiveness across a range of 
boundary and loading conditions.

The remainder of this paper is structured as follows: Section 2 out
lines the peridynamic concept, while Section 3 focuses on the 
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peridynamic differential operator. Section 4 summarizes the imple
mentation of higher-order shear deformation theory. Section 5 presents 
several numerical analyses to evaluate the robustness of the proposed 
formulation under various material and lamination configurations, 
boundary conditions, and aspect ratios. Section 6 provides a summary 
and conclusion. Finally, Section 7 includes discussion and future work.

2. Concept of peridynamics

The idea of PD approach assumes that the variation of a scalar field f 
= f(x), (f is valid in domain D) defined at point x, is under the influence 
of the current interaction of that point with other points x′ (see Fig. 1), 
[46,47]. The relative position vector directed from x to x′ is denoted as ξ 
= x′ − x. Each material point occupies a finite region—volume in 3D or 
area in 2D—and interacts with all other points lying within its pre
defined neighbourhood x′, referred to as the interaction domainHx.

The characteristic length scale that defines the spatial extent of 
nonlocal interactions in the peridynamic formulation is commonly 
known as the horizon. This parameter, denoted by δ, determines the size 
of the family—i.e., the set of neighbouring material points with which a 
given point interacts. The horizon size quantitatively governs the degree 
of nonlocality: as δ decreases, the interaction domain shrinks, and the 
model behavior approaches local continuum mechanics. Therefore, the 
family size plays a fundamental role in controlling the nonlocal char
acter of the PD approach. Additionally, the intensity of interaction be
tween material points is modulated by a normalized scalar weight 
function w(|ξ|), which depends on the relative position vector ξbetween 
interacting points.

3. Peridynamic differential operator

The Taylor series expansion (TSE) can be generalized for a multi
variable scalar field f(x′) = f(x þ ξ) in M − dimensional space up to Nth 
order, where ni = 0, ..., N, as [37,39]: 

f(x+ ξ) =
∑N

n1=0

∑N− n1

n2=0
⋅⋅⋅

∑N− n1 ⋅⋅⋅− nM− 1

nM=0

1
n1!n2!⋯nM!

ξn1
1 ξn2

2 ⋅⋅⋅ξnM
M

∂n1+n2+⋅⋅⋅+nM f(x)
∂xn1

1 ∂xn2
2 ⋅⋅⋅∂xnM

M

+ R(N, x)
(1) 

which R(N, x) represents the remainder of the series expansion. Thus, 
partial derivatives of any order can be expressed by using the orthogonal 
function gp1p2 ⋅⋅⋅pM

N (ξ) through the nonlocal PD approach: 

∂p1+p2+⋅⋅⋅+pM f(x)
∂xp1

1 ∂xp2
2 ⋅⋅⋅∂xpM

M
=

∫

Hx

f(x+ ξ)gp1p2 ⋅⋅⋅pM
N (ξ)dV. (2) 

Here, the contribution of the remainder is neglected. In Eq. (2) pi 
stands for the order of differentiation with respect to variable xi (i = 1, 
…, M), and V is the volume of the material point x′. The orthogonal PD 
functions gp1p2 ⋅⋅⋅pM

N (ξ) involves the feature of 

1
n1!n2!⋯nM!

∫

Hx

ξn1
1 ξn2

2 ⋅⋅⋅ξnM
M gp1p2 ⋅⋅⋅pM

N (ξ)dV = δn1p1 δn2p2 ⋯δnM− 1pM− 1 δnMpM , (3) 

and δij is the Kronecker delta. The orthogonal PD functions can be 
generated as 

gp1p2 ⋅⋅⋅pM
N (ξ) =

∑N

q1=0

∑N− q1

q2=0
⋅⋅⋅

∑N− q1 ⋅⋅⋅− qM− 1

qM=0
ap1p2⋯pM

q1q2⋯qM
wq1q2⋯qM (|ξ|)ξ

q1
1 ξq2

2 ⋅⋅⋅ξqM
M , (4) 

where the weight functions wq1q2⋯qM (|ξ|) are associated with each term 
ξq1

1 ξq2
2 ⋅⋅⋅ξqM

M in the polynomial expansion. The weight function indicating 
the degree of interaction for each term in the Taylor series expansion 
may be the same or different, being related to the nature of the non
locality.

The unknown parameters ap1p2⋯pM
q1q2⋯qM shown in Eq. (4), can be obtained 

from the solution of the set of linear algebraic equations established as 
follows: 

∑N

q1=0

∑N− q1

q2=0
⋅⋅⋅

∑N− q1 ⋅⋅⋅− qM− 1

qM=0
A(n1n2⋯nM)(q1q2⋯qM)ap1p2⋯pM

q1q2⋯qM
= bp1p2⋯pM

n1n2⋯nM
, (5) 

where qi = 0, ..., N. The terms of the coefficient (shape) matrix are 
calculated as follows. 

A(n1n2⋯nM)(q1q2⋯qM) =

∫

Hx

wq1q2⋯qM (|ξ|)ξ
n1+q1
1 ξn2+q2

2 ⋅⋅⋅ξnM+qM
M dV, (6) 

while the constant vector on the right-hand side of Eq. (5) is given by 

bp1p2⋯pM
n1n2⋯nM

= n1!n2!⋯nM!δn1p1 δn2p2 ⋯δnMpM . (7) 

According to the concept of the PDDO, the degree of nonlocality can 
be controlled either by reducing the family size Hx or by increasing the 
number of terms in the Taylor Series Expansion (TSE). Selecting an 
optimal horizon size is therefore essential to ensure numerical conver
gence and maintain acceptable accuracy within a reasonable computa
tional cost. A comprehensive derivation of the peridynamic operators for 
two-dimensional scalar fields is presented by Dorduncu et al. [48].

4. Field equations of higher-order shear deformation theory

The kinematical formulation of shear-deformable shells can be 
rigorously deduced from the elasticity solution of the Saint-Venant 
bending problem, as comprehensively discussed in Faghidian [49]. 
The displacement field of a laminated composite spherical shell (Fig. 2a) 
based on the higher-order shear deformation theory is expressed as 
follows, with Reddy and Liu [50] pioneering the application of the 
third-order theory to shell structures and Sayyad and Ghugal [51] 
providing a generalized formulation that can include different 
higher-order functions: 

u*(x, y, z) =
(

1 +
z

Rx

)

u(x, y) − z w,x(x, y) + f(z)θx(x, y),

v*(x, y, z) =
(

1 +
z
Ry

)

v(x, y) − z w,y(x, y) + f(z)θy(x, y),

w*(x, y, z) = w(x, y).

(8) 

In this context, u*(x, y, z) and v*(x, y, z) represent the axial 
displacement field, while w*(x, y, z) indicates the transverse displace
ment field of the shell. Here, u(x, y) and v(x, y) are the axial displace
ments, and w(x, y) is the mid-surface deflection of the shell, with x and y 
being curvilinear orthogonal coordinates at the mid-surface and z is the 

Fig. 1. Interaction of peridynamic points x and x′ with arbitrary family size 
and shape.
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coordinate in the shell’s thickness direction (Fig. 2b). The section’s 
rotation of a transverse normal about the x-axis is θy(x,y), and about the 
y-axis is θx(x,y). Rxand Ry are the radii of curvature for the spherical 
shell. In the cylindrical shell case, Rx = ∞, so only Ry remains as the 
curvilinear coordinate, and x becomes a straight axis. Therefore, in 
Fig. 2b, only y expresses the curvilinear coordinate. Additionally, f(z) is 
known as the shear function, shaping the stress and strain distribution 
through the structure’s thickness (h). These functions can take poly
nomial, exponential, or trigonometric forms. In this research, Reddy’s 

[5] shear function z
(

1 − 4z2

3h2

)

is applied to all the examples, due to its 

ability to satisfy the zero transverse shear stress conditions at the top and 
bottom surfaces of the shell, and is a widely accepted function for 
benchmarking in the literature. Furthermore, Bab and Kutlu [8,9] also 
included Reddy’s function in their comparative study of different shear 
functions for laminated composite plates and shells.

In an orthogonal curvilinear coordinate system, the engineering 
normal and shear strain components are given as [4]: 

εi =
∂

∂ξi

(
ui

Ai

)

+
1
Ai

∑3

k=1

uk

Ak

∂Ai

∂ξk

γij =
1

AiAj

[

A1
2 ∂
∂ξj

(
ui

Ai

)

+ Aj
2 ∂
∂ξi

(
uj

Aj

)]

(i ∕= j),

(9) 

where 

ξ3 = ζ,A1 = a1

(

1+
ζ

R1

)

,A2 = a2

(

1+
ζ
R2

)

(10) 

and aα (α = 1, 2) represents the square root of the surface metric tensor 
(gαβ (α,β = 1, 2)) given as 

gαβ = gα.gβ, aα =
̅̅̅̅̅̅
gαα

√
. (11) 

Eq. (11) shows g1 and g2as the tangents to the ξ1 and ξ2 axes, 
respectively. Eq. (9) can be reformulated by adapting Reddy’s [4] no
tation to the present framework as follows: 

ξ1→x, u1→u, ε1→εxx, γ12→γxy,

ξ2→y, u2→v, ε2→εyy, γ13→γxz,

ζ→z, u3→w, ε3→εzz, γ23→γyz .

(12) 

The Eq. (13) summarizes the linear strain components from the 
above equations: 

εxx = u,x − z w,xx +
w
Rx

+ f(z)θx,x,

εyy = v,y − z w,yy +
w
Ry

+ f(z)θy,y,

γxy = u*
,y + v*

,x = u,y + v,x − 2z w,xy + f(z)
(
θx,y + θy,x

)
,

γyz = v*
,z + w*

,y = f,z(z)θy(x, y),

γxz = u*
,z + w*

,x = f,z(z)θx(x, y) .

(13) 

The stress-strain relations for the k’th layer of the laminated com
posite shell are given by Hooke’s law [2] as follows: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σxx
σyy
σxy
σyz
σxz

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(k)

=

⎡

⎢
⎢
⎢
⎢
⎣

Q11 Q12 Q16 0 0
Q12 Q22 Q26 0 0
Q16 Q26 Q66 0 0
0 0 0 Q44 Q45
0 0 0 Q45 Q55

⎤

⎥
⎥
⎥
⎥
⎦

(k)⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εxx
εyy
γxy
γyz
γxz

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(k)

. (14) 

Herein, Qij represents the transformed and reduced material stiffness 
coefficients, while σ(k)

ii and σ(k)
ij represent the normal and shear stress 

components, respectively, within the kth layer.

4.1. Governing equations for laminated composite shells

To obtain the governing equations of a laminated composite shell 
according to HSDT, Hamilton’s principle [4,52] is revealed as 

δU − δV = 0. (15) 

Here,δUand δV define the virtual strain energy and virtual work of 
external loads, respectively. The virtual strain energy of the laminated 
composite shell is stated through the strain and stress fields: 

δU =

∫

A

(
σ(k)

xx δε(k)xx + σ(k)
yy δε(k)yy + σ(k)

xy δγ(k)xy + σ(k)
yz δγ(k)yz + σ(k)

xz δγ(k)xz

)
dA. (16) 

Here corresponds the shell cross-sectional area. Inserting the varia
tion of the strain field from Eq. (13), the expression for the virtual strain 
energy becomes 

δU=

∫

A

⎛

⎜
⎜
⎜
⎝

Nxxδu,x+Mxx,xδw,x+Mf
xx,xδθx,x+Nyyδv,y+Myy,yδw,y+

Mf
yy,yδθy,y+Nxyδu,y+Nxyδv,x+Mxy,xδw,y+Mxy,yδw,x+

Mf
xyδθx,y+Mf

xyδθy,x+Qyzδθy+Qxzδθx+
(
Nxx

/
Rx+Nyy

/
Ry

)
δw

⎞

⎟
⎟
⎟
⎠

dA.

(17) 

Fig. 2. a) Spherical shell coordinate system, b) Cylindrical shell coordinate system.
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For the cross-section, normal forces (Nxx , Nyy , Nxy), moments 
(

Mxx, Myy, Mxy, Mf
xx, Mf

yy, Mf
xy

)
, and shear resultants (Qyz , Qxz) 

appearing in the Eq. (17) are given in terms of the stress integrals as 
follows: 

N=
{

Nxx Nyy Nxy
}T

=

∫h/2

− h/2

{
σxx σyy σxy

}Tdz

M=
{

Mxx Myy Mxy
}T

=

∫h/2

− h/2

{
zσxx zσyy zσxy

}Tdz

Mf =
{

Mf
xx Mf

yy Mf
xy

}T
=

∫h/2

− h/2

{
f(z)σxx f(z)σyy f(z)σxy

}Tdz

Q=
{

Qyz Qxz
}T

=

∫h/2

− h/2

{
fʹ (z)σyz fʹ (z)σxz

}Tdz .

(18) 

Eq. (19) implicitly and Eq. (20) explicitly illustrate the relationship 
between strain measures and stress resultants through sectional 
compliance terms (such that A íjB íj..H íjA ś

ij), which are the inverses of (S 

= C− 1) sectional stiffness terms 
(

Aij Bij ..Hij As
ij

)
. 

eP = SP or

⎧
⎪⎪⎨

⎪⎪⎩

εm
κ0
κ1
εs

⎫
⎪⎪⎬

⎪⎪⎭

=

⎡

⎢
⎢
⎣

Aʹ Bʹ Eʹ 0
Bʹ Dʹ Fʹ 0
Eʹ Fʹ Hʹ 0
0 0 0 Aʹs

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

N
M
Mf

Q

⎫
⎪⎪⎬

⎪⎪⎭

, (19) 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u,x + w
/
Rx

v,y + w
/
Ry

u,y + v,x
− w,xx

− w,yy

− 2w,xy

θx,x

θy,y

θx,y + θy,x

θy

θx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A’11 A’12 A’16 B’11 B’12 B’16 E’11 E’12 E’16 0 0
A’12 A’22 A’26 B’12 B’22 B’26 E’12 E’22 E’26 0 0
A’16 A’26 A’66 B’16 B’26 B’66 E’16 E’26 E’66 0 0
B’11 B’12 B’16 D’11 D’12 D’16 F’11 F’12 F’16 0 0
B’12 B’22 B’26 D’12 D’22 D’26 F’12 F’22 F’26 0 0
B’16 B’26 B’66 D’16 D’26 D’66 F’16 F’26 F’66 0 0
E’11 E’12 E’16 F’11 F’12 F’16 H’11 H’12 H’16 0 0
E’12 E’22 E’26 F’12 F’22 F’26 H’12 H’22 H’26 0 0
E’16 E’26 E’66 F’16 F’26 F’66 H’16 H’26 H’66 0 0
0 0 0 0 0 0 0 0 0 A’s

44 A’s
45

0 0 0 0 0 0 0 0 0 A’s
45 A’s

55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nxx

Nyy

Nxy

Mxx

Myy

Mxy

Mf
xx

Mf
yy

Mf
xy

Qyz

Qxz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (20) 

Fig. 3. PDDO flowchart for solving HSDT equilibrium equations.

Y. Bab et al.                                                                                                                                                                                                                                     Engineering Analysis with Boundary Elements 179 (2025) 106384 

5 



in which the sectional rigidity terms are calculated as follows: 

(
Aij Bij Dij

)
=

∑N

k=1

∫z(k)

z(k− 1)

Q(k)
ij
(

1 z z2)dz

(
Eij Fij Hij

)
=

∑N

k=1

∫z(k)

z(k− 1)

Q(k)
ij
(

f(z) zf(z) f(z)2)dz

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

; i, j = 1,2, 6

As
ij =

∑N

k=1

∫z(k)

z(k− 1)

Q(k)
ij (f (́z))2dz ; i, j = 4, 5 .

(21) 

Hence, the virtual strain energy of the laminated composite shell is 
indicated by 

δU =

∫

A

δεTDεdA. (22) 

Consequently, the virtual work done by the distributed load q(x, y) is 
stated as: 

δV =

∫

A

q(x, y)δwdA. (23) 

Applying Eqs. (17) and (23), the Hamilton principle (15) generates 
the motion equations for the laminated shell based on HSDT: 

qx + Nxx,x + Nxy,y = 0 ; qy + Nxy,x + Nyy,y = 0,

qz + Mxx,xx + Myy,yy + 2Mxy,xy −
Nxx

Rx
−

Nyy

Ry
= 0,

Mf
xx, x + Mf

xy, y − Qxz = 0 ; Mf
yy, y + Mf

xy, x − Qyz = 0 .

(24) 

Finally, the boundary conditions for the laminated shell based on 
HSDT are derived from the Euler-Lagrange equations: 

Nxxnx + Nxyny = 0 or δu = 0,
Nxynx + Nyyny = 0 or δv = 0,
Mxx,xnx + Myy,yny + 2Mxy,xny = 0 or δw = 0,
Mf

xxnx + Mf
xyny = 0 or δθx = 0,

Mf
xynx + Mf

yyny = 0 or δθy = 0 .

(25) 

The equilibrium equations, using the kinematic and constitutive re
lations, take the form 

δu : A11u,xx + 2A16u,xy + A66u,yy + A12v,xy + A16v,xx + A26v,yy + A66v,xy + E11θx,xx

+2E16θx,xy + E66θx,yy + E12θy,xy + E16θy,xx + E26θy,yy + E66θy,xy − B11w,xxx

− B12w,xyy − 3B16w,xxy − B26w,yyy − 2B66w,xyy + A11
w,x

Rx
+ A12

w,x

Ry
+ A16

w,y

Rx
+ A26

w,y

Ry
= 0,

δv : A16u,xx + A66u,xy + A12u,xy + A26u,yy + 2A26v,xy + A66v,xx + A22v,yy + E16θx,xx

+E66θx,xy + E12θx,xy + E26θx,yy + E26θy,xy + E66θy,xx + E22θy,yy + E26θy,xy − B12w,xxy

− B16w,xxx − 2B66w,xxy − B22w,yyy − 3B26w,xyy + A16
w,x

Rx
+ A26

w,x

Ry
+ A12

w,y

Rx
+ A22

w,y

Ry
= 0,

δw : B11u,xxx + 3B16u,xxy + B12u,xyy + B26u,yyy + 2B66u,xyy + (B12 + 2B66)v,xxy + B16v,xxx+

B22v,yyy + 3B26v,xyy + F11θx,xxx + 3F16θx,xxy + (F12 + 2F66)θx,xyy + (F12 + 2F66)θy,xxy+

F26θx,yyy + F16θy,xxx + F22θy,yyy + 3F26θy,xyy − D11w,xxxx − (2D12 + 4D66)w,xxyy − 4D16w,xxxy

− D22w,yyyy − 4D26 w,xyyy + B11
w,xx

Rx
+ B12

w,xx

Ry
+ B12

w,yy

Rx
+ B22

w,yy

Ry
+ 2B16

w,xy

Rx
+ 2B26

w,xy

Ry

+p −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

A11u,x − B11w,xx + E11θx,x + A11
w
Rx

+ A12v,y − B12w,yy + E12θy,y + A12
w
Ry

+A16u,y + A16v,x − 2B16w,xy + E16
(
θx,y + θy,x

)

⎞

⎟
⎟
⎠

1
Rx

⎛

⎜
⎜
⎝

A12u,x − B12w,xx + E12θx,x + A12
w
Rx

+ A22v,y − B22w,yy + E22θy,y + A22
w
Ry

+A26u,y + A26v,x − 2B26w,xy + E26
(
θx,y + θy,x

)

⎞

⎟
⎟
⎠

1
Ry

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0,

δθx : E11u,xx + 2E16u,xy + E66u,yy + E12v,xy + E16v,xx + E26v,yy + E66v,xy + H11θx,xx+

2H16θx,xy + H66θx,yy − As
55θx + H12θy,xy + H16θy,xx + H26θy,yy + H66θy,xy − As

45θy

− F11w,xxx − F12w,xyy − 3F16zw,xxy − F26w,yyy − 2F66w,xyy + E11
w,x

Rx
+ E12

w,x

Ry
+ E16

w,y

Rx
+ E26

w,y

Ry
= 0,

δθy : E16u,xx + (E12 + E66)u,xy + E26u,yy + 2E26v,xy + E66v,xx + E22v,yy + H16θx,xx+

(H66 + H12)θx,xy + H26θx,yy − As
45θx + 2H26θy,xy + H66θy,xx + H22θy,yy − As

44θy − F16w,xxx − 3F26w,xyy

− 2F66w,xxy − F12w,xxy − F22w,yyy + E16
w,x

Rx
+ E26

w,x

Ry
+ E22

w,y

Ry
+ E12

w,y

Rx
= 0 .

(26) 
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Utilizing Madenci et al. [39], up to forth-order derivatives in Eq. (26)
are reformulated in terms of their corresponding nonlocal representa
tions within the PD theory as: 

∂p1+p2

∂xp1 ∂yp2
f(x(k), y(k)) =

∑N(k)

j=1

(
f
(

x(j), y(j)

)
− f(x(k), y(k))

)
gp1p2

4
(
ξ(k)(j)

)
A(j) (27) 

where gp1p2
4

(
ξ(k)(j)

)
denotes the PD function defined according to Eq. (1). 

The term A(j) = ΔxΔy corresponds to the area associated with PD point j. 
The indices p1and p2, each taking values between 0 to 4, indicate the 
order of the partial differentiation with respect to the spatial coordinates 
x and y, respectively. The field variable f(x(k),y(k)) represents the 
displacement components used in the HSDT, namely u , v , w , 

θx , θy.

4.2. Calculation of transverse shear stress distributions

Accurate calculation of transverse shear stress in laminated shells is 
essential to prevent issues like delamination. Applying Hooke’s law (Eq. 
(14)) often results in discontinuous shear stress distributions at material 
interfaces and on free surfaces. To get more realistic stress distributions, 
equilibrium equations from elasticity theory [53] are utilized: 

τxz = −

∫z

− h

(
σxx,x + σxy,y

)
dz, (28) 

τyz = −

∫z

− h

(
σxy,x + σyy,y

)
dz, (29) 

where z is a dummy variable for integral calculation. This approach 
ensures a more accurate representation of shear stresses across layers, 
thereby enhancing the reliability of the stress analysis in laminated 
composite shells.

At each layer of the shell, the first-order spatial derivatives of the 
axial and in-plane stress components are expressed through their cor
responding PD formulations as follows [39]: 

∂
∂x

σxx(x(k), y(k)) =
∑N(k)

j=1

(
σxx

(
x(j), y(j)

)
− σxx(x(k), y(k))

)
g10

1
(
ξ(k)(j)

)
A(j), (30) 

∂
∂y

σyy(x(k), y(k)) =
∑N(k)

j=1

(
σyy

(
x(j), y(j)

)
− σyy(x(k), y(k))

)
g01

1
(
ξ(k)(j)

)
A(j), (31) 

∂
∂x

σxy(x(k), y(k)) =
∑N(k)

j=1

(
σxy

(
x(j), y(j)

)
− σxy(x(k), y(k))

)
g10

1
(
ξ(k)(j)

)
A(j), (32) 

∂
∂y

σxy(x(k), y(k)) =
∑N(k)

j=1

(
σxy

(
x(j), y(j)

)
− σxy(x(k), y(k))

)
g01

1
(
ξ(k)(j)

)
A(j) . (33) 

Fig. 3 presents the flowchart illustrating the implementation of 
PDDO for solving the HSDT equilibrium equations and applying the 
boundary conditions, which is composed of PDDO from Sections 2-3, 
HSDT from Section 4, and the numerical implementation from Dor
duncu et al. [48].

Table 1 
Mechanical properties of materials used in the examples, including Young’s 
moduli, Ei, and shear moduli Gij, with i , j = 1 − 3.

Engineering Constants Materials

A B

E1 25 [GPa] 132.38 [GPa]
E2 1 [GPa] 10.76 [GPa]
E3 1 [GPa] 10.76 [GPa]
υ12 0.25 0.24
υ13 0.25 0.24
υ23 0.25 0.49
G12 0.5 [GPa] 5.65 [GPa]
G13 0.5 [GPa] 5.65 [GPa]
G23 0.2 [GPa] 3.61 [GPa]

Table 2 
Non-dimensional cross-ply spherical shell center deflection under sinusoidal loading.

Theory R/a Cross-ply Relative error (%)

0◦/90◦ 0◦/90◦/0◦ 0◦/90◦/90◦/0◦ 0◦/90◦ 0◦/90◦/0◦ 0◦/90◦/90◦/0◦

PD-HSDT (Present) 5 11.0779 6.7510 6.7834 0.79 0.26 0.05
FSDT (Reddy and Liu) ​ 11.429 6.4253 6.3623 2.36 5.07 6.25
HSDT (Reddy and Liu) ​ 11.166 6.7688 6.7865 ​ ​ ​
PD-HSDT (Present) 10 11.7985 7.0136 7.0508 0.82 0.27 0.04
FSDT (Reddy and Liu) ​ 12.123 6.6247 6.5595 1.91 5.80 7.00
HSDT (Reddy and Liu) ​ 11.896 7.0325 7.0536 ​ ​ ​
PD-HSDT (Present) 20 11.9887 7.0825 7.1209 0.87 0.27 0.04
FSDT (Reddy and Liu) ​ 12.309 6.6756 6.6099 1.78 6.00 7.21
HSDT (Reddy and Liu) ​ 12.094 7.1016 7.1237 ​ ​ ​
PD-HSDT (Present) 50 12.1317 7.1021 7.1408 0.15 0.27 0.04
FSDT (Reddy and Liu) ​ 12.362 6.6902 6.6244 1.74 6.05 7.27
HSDT (Reddy and Liu) ​ 12.150 7.1212 7.1436 ​ ​ ​
PD-HSDT (Present) 100 12.0474 7.1049 7.1437 0.91 0.27 0.04
FSDT (Reddy and Liu) ​ 12.370 6.6923 6.6264 1.74 6.06 7.28
HSDT (Reddy and Liu) ​ 12.158 7.1240 7.1464 ​ ​ ​

Fig. 4. Relative error (%) of the deflection for 0◦/90◦/90◦/0◦ lamination and 
R/a = 5 under sinusoidal loading.
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5. Numerical examples

To evaluate the accuracy and computational performance of the 
proposed PD-HSDT formulation, several numerical studies are per
formed under static loading conditions with particular emphasis on 
displacement fields and stress resultants. The numerical solutions are 
obtained using a Fortran-based program developed by the authors. To 
validate the proposed formulation and implementation, results are 
compared with the exact HSDT solutions by Reddy and Liu [54], 
analytical results by Khdeir et al. [55], and closed-form solutions from 
Sayyad and Ghugal’s generalized higher-order theory [51]. The analysis 
includes various loading and boundary conditions. Uniform and sinu
soidal loads are adopted as they sufficiently represent both overall and 
localized structural responses, while also enabling straightforward 
validation against existing literature. Two different materials are 
considered with their elastic properties summarized in Table 1. These 
materials, referred to as A and B, represent anisotropic composites with 
directional mechanical properties and are commonly used and 
compared in the literature, enabling a comparative analysis of how 
variations in stiffness, shear, and Poisson characteristics affect the 
bending response of laminated shell structures.

5.1. Simply Supported cross-ply spherical shells under sinusoidal loading

Cross-ply (0◦/90◦, 0◦/90◦/0◦, and 0◦/90◦/90◦/0◦) laminated spher
ical shells are analyzed based on the geometric conditions shown in 
Fig. 1a, where a and b represent the arc lengths of the shell in the x and y 

directions, respectively, with a = b = 1. The shells are under the influ
ence of a transverse load of function p(x, y) = p0sin (πx/a)sin (πy/b) 
distributed over their outer surface. The curvatures in the spherical shell 
are denoted as Rx = Ry = R. Each layer of equal thickness is considered to 
be formed with material A. The ρ = a/h = 10 is considered the shell 
length-thickness ratio. The boundary conditions in this example are 
simply supported along all four edges (SSSS) and are defined based on 
Eq. (25), which imposes zero transverse displacement and bending 
moments at the boundaries. This formulation ensures that the plate 
edges can freely rotate while preventing out-of-plane deflections, 
thereby satisfying both the mathematical structure and the physical 
interpretation of simply supported conditions, as detailed below [4]: 

Fig. 5. Non-dimensional deflection distribution along x − y surface for R/a = 10 and a/h = 10a) 0◦/90◦ lamination b) 0◦/90◦/0◦ lamination.

Table 3 
Non-dimensional cross-ply spherical shell center deflection under uniform loading.

Theory R/a Cross-ply Relative error (%)

0◦/90◦ 0◦/90◦/0◦ 0◦/90◦/90◦/0◦ 0◦/90◦ 0◦/90◦/0◦ 0/90◦/90◦/0◦

PD-HSDT (Present) 5 17.5640 10.2315 10.6202 0.01 0.97 1.38
FSDT (Reddy and Liu) ​ 19.944 9.794 9.825 13.54 5.21 6.21
HSDT (Reddy and Liu) ​ 17.566 10.332 10.476 ​ ​ ​
PD-HSDT (Present) 10 18.7167 10.6481 11.0573 0.15 0.97 1.41
FSDT (Reddy and Liu) ​ 19.065 10.110 10.141 1.71 5.97 7.00
HSDT (Reddy and Liu) ​ 18.744 10.752 10.904 ​ ​ ​
PD-HSDT (Present) 20 19.0165 10.7574 11.1720 0.25 0.96 1.41
FSDT (Reddy and Liu) ​ 19.365 10.191 10.222 1.58 6.18 7.22
HSDT (Reddy and Liu) ​ 19.064 10.862 11.017 ​ ​ ​
PD-HSDT (Present) 50 19.2539 10.7884 11.2046 0.52 0.96 1.41
FSDT (Reddy and Liu) ​ 19.452 10.214 10.245 1.55 6.23 7.28
HSDT (Reddy and Liu) ​ 19.155 10.893 11.049 ​ ​ ​
PD-HSDT (Present) 100 19.1048 10.7929 11.2092 0.33 0.96 1.41
FSDT (Reddy and Liu) ​ 19.469 10.218 10.294 1.54 6.24 6.87
HSDT (Reddy and Liu) ​ 19.172 10.898 11.053 ​ ​ ​

Table 4 
Non-dimensional symmetrical spherical shell deflection and stresses under si
nusoidal loading.

R/a Theory w σxx σyy τyz τxz

5 Sayyad & Ghugal 0.6769 0.5218 0.0352 0.1109 0.3508
PD-HSDT 0.6772 0.5251 0.0352 0.1094 0.3642

10 Sayyad & Ghugal 0.7032 0.5515 0.0374 0.1152 0.3645
PD-HSDT 0.7037 0.5551 0.0374 0.1137 0.3784

20 Sayyad & Ghugal 0.7102 0.5617 0.0381 0.1163 0.3681
PD-HSDT 0.7106 0.5653 0.0382 0.1148 0.3821

50 Sayyad & Ghugal 0.7121 0.5662 0.0385 0.1167 0.3691
PD-HSDT 0.7126 0.5698 0.0385 0.1151 0.3832

100 Sayyad & Ghugal 0.7124 0.5674 0.0386 0.1167 0.3692
PD-HSDT 0.7128 0.5710 0.0386 0.1152 0.3833
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x = 0, a v = w = θy = Nxx = Mxx = Mf
xx = 0.

y = 0, b u = w = θx = Nyy = Myy = Mf
yy = 0.

(34) 

To evaluate the results presented in Table 2 in a general structure, 
the non-dimensional form is carried out according to Eq. (35) for α =
− 103 . 

w =
αE2h3w(a/2, b/2)

p0a4 . (35) 

To ensure computational efficiency while maintaining solution ac
curacy, a convergence study is carried out to identify the optimal 
combination of horizon size (δ = mΔ) and grid spacing (Δ). As illustrated 
in Fig. 4, the PDDO solutions exhibit convergence toward the corre
sponding analytical solution as both δ and Δ are reduced. This behavior 
aligns with the theoretical basis of nonlocal formulations, where 
decreasing δ and refining Δ improve the accuracy of stress and strain 
predictions. For instance, for a fixed horizon ratio m = δ/Δ = 4, the use 
of Δx = Δy = a/80 and a/50 results in relative differences of only 0.0287 
% and 0.0041 %, respectively, compared to the analytical solution. 
These small discrepancies confirm that sufficient convergence is ach
ieved. Therefore, in the present study, the combination of δ = 4Δ and Δx 
= Δy = a/50 is considered optimal, offering a balance between 
computational cost and solution fidelity.

According to Table 2, the PD-HSDT results are in good agreement 
with the exact HSDT solutions of Reddy and Liu [41] and provide more 
converged values compared to the exact FSDT of Reddy and Liu [41]. 
The relative error between the present values and the exact HSDT, as 
well as between the exact FSDT and the exact HSDT, can also be 
observed in Table 2. The most converged results (0.05 % difference) are 
obtained for the 0◦/90◦/90◦/0◦ lamination.

The contour plots above (Fig. 5) visualize the deflection of two 
laminated composite shells with the same loading and BC’s. The left plot 
shows a 0◦/90◦ stacking sequence, while the right shows a 0◦/90◦/ 
0◦ sequence. The x/a and y/b axes represent normalized shell co
ordinates, and the color scale and contours display normalized deflec
tion values. The maximum normalized deflection observed in the 0◦/90◦

laminated shell is approximately 11 units, while for the 0◦/90◦/ 
0◦ laminated shell, it is about 7 units. For both laminations, the 
maximum deflection is concentrated in the central region of the shell. 
The shape of the contour lines explains that the shell exhibits more 
noticeable bending in the center under loading. In the 0◦/90◦ laminate 
configuration, the deflection distribution exhibits denser contour gra
dients concentrated around the center, indicating a broader but less 
localized deformation pattern. In contrast, the 0◦/90◦/0◦ laminate 
shows a more concentrated deflection peak at the center, suggesting 

enhanced resistance to bending. The inclusion of the 0◦ layer signifi
cantly increases the flexural stiffness of the laminate, resulting in 
reduced overall deflection and a more confined deformation profile.

5.2. Simply supported cross-ply spherical shells under uniform loading

In this problem, the same shell geometry, length the thickness ratio 
and boundary conditions as presented in Section 5.1 are considered; 
however, the structure is now subjected to a uniform (p(x, y) = p0) 
transverse loading instead of the previously applied load type. The non- 
dimensional form is also followed by Eq. (35) for α = − 103 .

According to Table 3, all the deflection values obtained from the 
current PD-HSDT are highly compatible with the reference exact HSDT 
solutions of Reddy and Liu. The relative error between PD-HSDT and 
exact HSDT decreases as the R/a ratio decreases for 0◦/90◦ and 0/90◦/ 
90◦/0◦ laminations. On the other hand, the difference remains almost 
the same for the 0◦/90◦/0◦ lamination across various R/a ratios.

5.3. Symmetric spherical shells with simply supported conditions under 
sinusoidal loading

In this example, material A from Table 1 is selected to evaluate the 
deflection and stress responses of spherical shells with a 0◦/90◦/ 
0◦ lamination scheme, considering various R/a ratios. The results are 
compared with the closed-form solutions derived from the generalized 
higher-order theory proposed by Sayyad and Ghugal [51] under simply 
supported boundary conditions. The ρ = a/h = 10 is considered as the 
shell length-thickness ratio. The comparisons are made based on the 
Parabolic Shear Deformation Theory (PSDT) described by Sayyad and 
Ghugal [51], which corresponds the Reddy’s third-order shear defor
mation theory. The non-dimensional form in terms of deflection, 
normal, and transverse shear stresses is given in their publication [51].

As seen in Table 4, the present PD-HSDT solutions are consistent with 
the reference results of Sayyad and Ghugal in terms of both deflection 
and stress values. The smallest percentage differences are observed for 
deflection (w) and normal stress (σyy) values. Examining the distribution 
of σxxat (a/2, b/2, z/h) through the thickness for different R/a values 
reveals variations near the top and the bottom surfaces of the shell, 
especially for lower R/a ratios (Fig. 6a). This behavior can be attributed 
to the curvature-induced effects and the laminate’s stacking sequence, 
which together influence the bending stress distribution across the 
thickness. In contrast, the distribution of σyy at (a/2, b/2, z/h) through 
the thickness shows noticeable differences near the mid-plane of the 
section depending on the R/a ratio (Fig. 6b). These differences are 
particularly evident in the central 90◦ ply when R/a is small, i.e., when 

Fig. 6. Non-dimensional normal stress distributions along the normalized thickness (z/h) of the laminated composite shell a) σxxb) σyy.
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the curvature is more pronounced. The increased curvature introduces 
an asymmetry in the stress distribution, leading to a shift where the 
stress is higher at h/3 and lower at -h/3 within the 90◦ layer. In both the 
current PD-HSDT solution and the reference solution, transverse shear 
stresses are calculated as explained in Section 4.2. The results ensure 
interlaminar continuity, as shown in Fig. 7a for τyz at (a/2, 0, z/h) and 
Fig. 7b for τxz at (0, b/2, z/h). For both stress distributions presented in 
Figs. 6 and 7, increasing the R/a ratio—indicating a transition from 
shell-like to plate-like behavior—results in more symmetric profiles 
through the thickness. However, the transverse shear stress distributions 
in Fig. 7 are more sensitive to curvature effects compared to the normal 
stresses in Fig. 6. This is because transverse shear stresses are strongly 
influenced by the shell’s curvature, which alters the orientation of the 
material sections and amplifies the contribution of shear deformation. 
Even in symmetric laminates such as 0◦/90◦/0◦, the through-thickness 
variation of transverse shear stresses becomes asymmetric when cur
vature is high, primarily due to the non-uniform rotation along the 
thickness and the resulting shear strain gradients. As a result, the sym
metry of shear stress profiles is more severely disrupted in curved ge
ometries than that of the normal stresses.

5.4. Symmetric spherical and doubly-curved shells with various boundary 
conditions under sinusoidal loading

In this example, the material is selected as B from Table 1, the 
deflection values of spherical shells are obtained for 0◦/90◦/0◦ lamina
tion under various R/aratios, and the results are compared to the 
analytical HSDT solution of Khdeir et al. [55] under mixed boundary 
conditions (SCSC). According to the SCSC boundary condition, the two 
edges of the shell in the x-axis direction are simply supported, while the 
other two edges in they-axis direction are clamped. In this condition, the 
edges along the x-axis allow rotation but restrict transverse displace
ment and bending moment, while the edges along the y-axis prevent 
both displacement and rotation. These conditions physically represent a 
shell with differing edge restraints and are mathematically expressed 

through constraints on displacement and its derivatives within the HSDT 
framework, as presented below [4]. 

x = 0, a u = v = w = w,x = θx = θy = 0.
y = 0, b u = w = θx = Nyy = Myy = Mf

yy = 0. (36) 

The ρ = a/h = 10 is considered as the shell length-thickness ratio. 
The non-dimensional form is carried out according to Eq. (35) for α =
102 .

According to Table 5, the present results are compatible with the 
analytical HSDT of Khdeir et al. [55] and converge more closely than the 
analytical FSDT values of Khdeir et al. values. The relative errors in
crease with the increasing R/a ratio for both PD-HSDT and FSDT values.

In this section, all properties remain identical to those of the spher
ical shell, with the sole variation being the geometry, which is repre
sented by a doubly-curved shell in two configurations: the first 
configuration with Rx /a = 10 and Ry /a = 5 , and the second config
uration withRx /a = 10 and Ry /a = 20. Furthermore, the simply sup
ported (SSSS) boundary condition is incorporated.

Upon examination of Table 6, it is evident that the PD-HSDT 
formulation yields significantly improved results compared to the 
exact FSDT across all support and curvature conditions, demonstrating 
closer agreement with the exact HSDT. Furthermore, for both support 
conditions where Ry /a = 5 , the PD-HSDT results exhibit a higher 
degree of accuracy relative to the exact HSDT than in cases where Ry /a 
= 20.

5.5. Symmetric cylindrical shell with various boundary conditions under 
sinusoidal loading

This example employs the same material properties, loading condi
tions, boundary constraints, and non-dimensional parameters as 
Example 5.4. The sole distinction is in the geometry, which is cylindrical 
herein. Specifically, the curvature of the cylindrical shell is oriented 
along the axial direction, such that Rx = ∞.

In Table 7, the non-dimensional deflection values are compared to 

Fig. 7. Non-dimensional transverse shear stress distributions along the normalized thickness (z/h) of the laminated composite shell a) τyzb) τxz.

Table 5 
Non-dimensional symmetrical spherical shell center deflection under sinusoidal loading.

BC’S R/a PD-HSDT (Present) Analytical FSDT 
(Khdeir et al.)

Analytical HSDT 
(Khdeir et al.)

Relative error (%)

PD-HSDT FSDT

SCSC 5 0.4007 0.3925 0.4034 0.67 2.70
10 0.4353 0.4264 0.4396 0.98 3.00
50 0.4477 0.4386 0.4526 1.09 3.09
plate 0.4482 0.4391 0.4532 1.10 3.11
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the analytical HSDT by Khdeir et al. [55], as well as other methods, and 
their relative errors with Khdeir et al.’s analytical HSDT are provided. 
One of the other methods is called MRZT-S, which represents Bab et al. ’s 
[56] Mixed Refined Zigzag Theory for shells. In their theory, the refined 
zigzag theory is implemented in the mixed finite element method. 
Another method is called MHST, which stands for Mixed Higher-order 
Shell Theory. In that theory, Bab and Kutlu [9] implemented the 
HSDT into the mixed finite element method. According to Table 7, for all 
boundary conditions and R/aratios, the current theory provides the 
closest results to the analytical HSDT compared to the other theories. 
Among all theories, the SSSS condition shows more convergent values to 
the analytical HSDT than the SCSC condition.

6. Conclusion

In this study, the flexural behavior of laminated composite shells is 
analyzed using a novel PD-HSDT framework, which combines the ki
nematics of HSDT with the PDDO to efficiently solve the equilibrium 
equations for static analysis. The principle of virtual work is employed to 
construct the governing equations and boundary conditions. This work 
represents the first application of PD-HSDT to analyze the bending 
response of laminated composite shells. Moreover, PD-HSDT produces 
better results than analytical FSDT solutions across various shell cur
vatures, boundary conditions, and loading scenarios. The key findings of 
this study can be summarized as follows. 

• The capability of the current model is validated by comparing 
displacement, deflection, normal and transverse shear stress results, 
obtained with high convergence, against analytical and numerical 
methods available in the literature. Convergence analyses are con
ducted to determine suitable grid spacing and horizon size 
parameters.

• The static analysis results obtained via PD-HSDT successfully capture 
the expected behavior of laminated shells under sinusoidal and 
uniform loading conditions, considering doubly-curved, spherical, 
and cylindrical geometries, with simply supported and mixed 
boundary conditions. It is also observed that results for mixed 
boundary conditions exhibit less convergence compared to simply 
supported cases.

• The laminated shells analyzed consist of orthotropic materials with 
both symmetric and antisymmetric layering configurations. By 
examining stress distributions, the effect of curvature is investigated, 

showing that transitioning from plate to shell behavior increases 
asymmetry in stresses.

• The success of the approach is attributed to PDDO, which transforms 
local spatial derivatives in the HSDT equilibrium equations into a 
nonlocal form, maintaining the validity of these equations even in 
the presence of discontinuities. This operator eliminates the need for 
mesh generation, symmetric kernels, or ghost particles at bound
aries, thus simplifying implementation and enhancing numerical 
robustness.

7. Discussion and future work

The integration of HSDT within the PDDO framework offers a 
powerful approach that combines the accuracy of higher-order theories 
with the nonlocal and mesh-free advantages of peridynamics. The cur
rent formulation enables accurate flexural analysis of laminated com
posite shells, effectively capturing transverse shear effects without 
requiring shear correction factors. This is particularly important for 
shear stress distributions, which are more sensitive than normal stresses 
and tend to exhibit abrupt variations due to changes in material prop
erties and lamination sequences. These sharp transitions are effectively 
captured by the higher-order functional behavior inherent to HSDT, 
which aligns with the nature of such variations. PDDO complements this 
by enabling efficient handling of such high-order derivatives through its 
integral-based formulation. Its ability to model multi-layered and 
anisotropic composite shells demonstrates strong potential for complex 
structural applications.

Nonlocality is highly dependent on internal length scale parameters 
and discretization between material points. Hence, a proper conver
gence study ought to be carried out accordingly. Moreover, the present 
study considers only static bending analysis with linear elastic material 
behavior, and cylindrical, spherical and doubly-curved geometries. 
Future research can handle to extend the formulation for the linear/ 
nonlinear dynamic analyses of regular/complex geometries, including 
conical [57], hyperbolic, and elliptic paraboloid shells. Shell structures 
play a crucial role in various engineering applications, such as aircraft 
wings, ship hulls, and pressure vessels, making accurate modeling 
essential for ensuring structural integrity. It is also worth noting that the 
nonlocal structure of the PDDO makes it suitable for incorporating 
progressive damage, delamination, and interlaminar failure mecha
nisms in composite structures. Moreover, coupling this framework with 
data-driven approaches, such as surrogate models or neural networks 
trained on PD-HSDT data, could enable efficient design optimization 

Table 6 
Non-dimensional symmetrical doubly-curved shell center deflection under sinusoidal loading.

BC’S Rx/a Ry/a PD-HSDT (Present) Analytical FSDT (Khdeir et al.) Analytical HSDT (Khdeir et al.) Relative error (%)

PD-HSDT FSDT

SSSS 10 5 0.9347 0.9432 0.9328 0.21 1.11
​ 10 20 0.9621 0.9504 0.9597 0.25 0.97
SCSC 10 5 0.4324 0.4235 0.4365 0.93 2.98
​ 10 20 0.4361 0.4272 0.4405 0.99 3.02

Table 7 
Non-dimensional symmetrical cylindrical shell center deflection under sinusoidal loading.

BC’S R/a PD-HSDT (Present) MRZT-S MHST Khdeir et al. 
(Analytical HSDT)

Relative error (%)

8 × 8 8 × 8 PD-HSDT MRZT-S MHST

SSSS 5 0.9548 0.9392 0.9354 0.9524 0.26 1.38 1.78
10 0.9674 0.9503 0.9473 0.9644 0.31 1.47 1.77
50 0.9714 0.9538 0.9512 0.9683 0.32 1.49 1.77

SCSC 5 0.4448 0.4410 0.4178 0.4495 1.05 1.90 7.05
10 0.4474 0.4435 0.4203 0.4523 1.09 1.95 7.08
50 0.4482 0.443 0.4211 0.4532 1.11 1.96 7.09
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and real-time predictions. This potential has been demonstrated in 
recent studies by Balkrishna Tandale et al. [58] and Stoffel et al. [59], 
which focus on intelligent stiffness estimation and structural dynamics 
using artificial neural networks, respectively. These works highlight the 
growing role of artificial intelligence in enhancing numerical methods 
for structural mechanics.
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