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Abstract

The manufacturing industry is undergoing a fundamental transformation, driven by the ongoing
digitalization of all stages and processes across value chains. The extensive collection and subsequent
automated analysis of data with the help of artificial intelligence (AI) not only enables a higher degree of
automation of manufacturing processes, but also a significant increase in their efficiency. Al pilot
applications are increasingly being brought into industrial settings, demonstrating the potential benefits of
adopting Al as a technology for production systems. However, pilots are primarily being trialed either by
major companies with access to vast resources or by research institutions. In contrast, small and medium-
sized companies are faced with the challenge of identifying the most beneficial uses of Al applications for
their individual production systems while facing limited resources for the actual implementation. An
objective assessment of the cost-benefit ratio is required to select and implement the most promising use
cases. In addition, interactions between decision-relevant parameters must be considered in the selection
process, which are often only recognized in the course of implementation. This paper aims to identify and
evaluate value contributions of current Al applications in production. A literature-based assessment using
the PRISMA method encompasses discriminative Al use cases in the manufacturing industry and highlights
distinct types of value contribution with a focus on the main dimensions time, costs, quality and flexibility.
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1. Introduction and Practical Relevance

The rapid development of artificial intelligence (Al) and its increasing integration into industrial production
processes presents companies with numerous challenges and at the same time opens up considerable
potential for optimization [1]. Al-based applications, in particular, promise significant improvements in
areas such as efficiency, cost reduction, and productivity [2]. However, small and medium-sized enterprises
(SMEs) in particular, are faced with the difficult task of selecting suitable Al applications and evaluating
their specific value contributions while simultaneously experiencing a lack of resources needed for the
implementation [3][4][5]. Potential types of value contributions of Al are mostly unclear, which makes it
difficult to make informed selections prior to implementation [6].

This paper seeks to identify, categorize, and evaluate the value contributions of Al applications in industrial
production, focusing on time, cost, quality, and flexibility. While generative Al models have shown promise
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in design and simulation applications, their integration into core production processes remains in its early
stages. Therefore, a focus is laid on discriminative models. By analyzing already implemented Al
applications, common use cases are categorized and examined for value contributions based on the basic
targets for value contribution in industrial production. The relationship between different types of Al use
cases and their achieved types of value contributions is quantified, and therefore a basis for implementation
decisions is aimed to be provided.

The structure of this work is based on the research procedure of applied science according to ULRICH, which
includes the practice-orientated development of inductive rules and models [7]. This ensures that the research
results are directly related to practice. The validation of these rules and models forms the conclusion of the
research process. As part of the objectives described above, a literature analysis is carried out to identify the
value contributions of Al systems. To this end, Al applications are differentiated and categorized.
Subsequently, distinct value contributions are identified and defined on the basis of the application. On this
basis, the value contributions are allocated to the Al systems and hypotheses about their allocation are
derived.

2. Fundamentals

The primary scientific domains of this work include the theory of manufacturing, and more specifically the
management of manufacturing processes. This chapter sets out the theoretical foundations for this paper and
addresses central aspects of production management, including the dimensions for value contribution of
production processes and the influence of digitalization on modern manufacturing. Subsequently, the
development of Al is briefly summarized.

2.1 Production management

Production is the systematic process of converting raw materials into finished products using manual or
mechanized techniques. The aim is to add value to the materials and ensure efficient production processes
[8]. Production management is responsible for controlling and monitoring production. Operational resources
are planned and controlled in order to manufacture products in the required quantity and quality. To this end,
quantitative and qualitative control variables are defined and passed on to the operative functions. Targets
are used to determine adjustment requirements for production. These are based on management variables,
the so-called overall objectives, which are specified from outside the production system [7]. A production
system consists of two main units: the control unit and the execution unit. While the steering entity is
responsible for planning and controlling operational resources, the execution entity carries out the actual
physical production. Both instances are embedded in an environment that is influenced by economic, legal
and political circumstances [ 7]. In the context of industrial production, three target categories are established:
Time, costs and quality, which are described as the “magic triangle” [9]. Time describes the intervals it takes
to manufacture a product or, for a more customer-centric approach, the end-to-end order to delivery time of
a product. Costs refer to the minimization of production costs, including the optimal use of resources such
as personnel, machines and materials. Quality encompasses compliance with production standards and the
reduction of defects [10]. In the development of manufacturing enterprises, methods for optimizing and
harmonizing these targets have been the focus of development and a means to achieve economic
competitiveness. Lean manufacturing, for example, is a user-specific methodical design principle which
aims to continuously optimize processes in production by eliminating wasteful activities (time), establish
process standardization (quality) and subsequently increase profitability of the production system (cost) [11].

However, this traditional approach, which strives to attain the greatest economies of scale through mass
production, is no longer aligned with contemporary market realities, as customers are still looking for the
lowest possible costs with high demands in terms of quality and availability, but at the same time
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customization [12]. In addition, industrial production and its environment are characterized by volatility,
uncertainty, complexity and ambiguity, which is also referred to as a VUCA environment [13]. To include
these challenges, flexibility is increasingly recognized as a critical fourth dimension in volatile and
customized production environments [14]. Flexibility expresses the ability of production systems to adapt to
changes in requirements and external factors, e.g. market requirements and product specifications [11].

2.2 Digitalization of industrial production

In addition to optimizing efficiency through Lean manufacturing, the digital networking of production in the
form of Industry 4.0 plays a pivotal role for further efficiency increases. Industry 4.0 describes the horizontal
and vertical integration of machines, people and objects for the dynamic control of complex systems as real-
time capable and intelligent networking [ 15]. The core of the Industry 4.0 is the complete networking of the
entire value chain, which enables optimization through largely self-organizing production. The technical
basis for this is connecting production machines and stakeholders on all levels through digital technology.
At full implementation, machines, systems, products, and people are envisioned to communicate and
cooperate directly with one another [16]. At this level of automation, all internal and external elements of
the value chain are connected in real time [17]. These elements include ordering, development, production
and the provision of customized product requirements. Based on real-time monitoring of the relevant
information of all integrated objects in the value chain, precise forecasts of capacity and requirements are
enabled. This makes it possible to determine the optimum value flow along the entire value chain. On the
basis of these predictions, processes can be optimized according to management criteria such as costs,
availability and resource consumption [18,19].

2.3 Artificial intelligence

The vast amount of additional process and product data generated by networked systems in the Industry 4.0
framework requires new and effective methods for making these forecasts. Traditional, manual data analysis
methods are often inefficient and time-consuming, as identifying patterns in large datasets can be difficult
or too complex for human operators to manage [20]. Al refers to the ability of machine systems to perform
tasks that traditionally require human intelligence [21]. The term was first introduced by John McCarthy in
1956 [22]. Modern Al systems are distinguished by their ability to process vast amounts of information
efficiently and identify patterns that enable optimization across various domains [23]. This makes them
particularly valuable in industrial production. A key area of Al is machine learning (ML). ML enables Al
systems to learn from experience by recognizing patterns in data and making predictions from them [23].
An advanced sub-area of ML is deep learning (DL), which is based on artificial neural networks that mimic
the structure of the human brain [22]. Discriminative models, such as support vector machines (SVMs) or
decision trees, are mainly used for classification and regression of data [24].

3. Methodology

This section outlines the methodology on which the research work is carried out with. A literature research
of scientific publications was carried out, based on the PRISMA method according to MOHER ET AL [25].
The method comprises defining research criteria, presenting sources, describing the search strategy, selecting
procedures for identifying relevant studies, and detailing methods for extracting pertinent data [25].

Subsequently, the approach for this work is laid out along three consecutive steps, which are visualized in
Figure 1. Firstly, the literature analysis is conducted according to the PRISMA-method, secondly identified
applications are categorized according to their type of Al use case and target criteria for value contributions
in production are specified. Lastly a quantitative evaluation of the results is carried out.
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Figure 1: Approach for the analysis of value contributions of artificial intelligence use cases in production

3.1 Literature search

The literature search was conducted systematically based on the PRISMA method [25] in order to identify
relevant research results that serve as a basis for analyzing Al systems and their value contributions. First,
relevant scientific databases such as Google Scholar, IEEE Xplore and ScienceDirect were searched. A
special focus was placed on current studies in the field of Al in production. The search terms included topics
such as “artificial intelligence use cases”, “machine learning use cases in production”, “Al models in
production” and “production optimization artificial intelligence”. The time frame was limited to the years
2019 to 2024 to ensure that recent advancements in the technology are included. It is important to note, that
compilating studies could include more than one case of an Al application.

The identification step included a total 580 studies from above stated databases. After an initial elimination
of duplicates, 480 studies where screened (see Figure 2). The aim of the screening was to confirm the domain
affiliation of identified Al applications to production.
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Screening ¥ ¥
Studies for full text screening Duplicates

n =480 n=100
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Studies for suitability screening Excluded studies
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Figure 2: Included literature according to the PRISMA approach

After screening for duplicates, 72 studies remained. In the following test for suitability, the extent to which
the studies systematically record and describe value contributions was analyzed. The filtering of relevant



studies is visualized in Figure 3. In the 24 included studies, a total of 127 implemented applications have
been identified. The in-detail analysis of each study and application was conducted subsequently.

3.2 Analysis

For the further analysis of the studies, differentiating classes of the subject matter must be established — types
of Al use cases in production and their value contribution.

3.2.1 Classification of Al use cases in production

The classification of Al use cases in production is necessary to ensure a rough classification of the original
objective of the applications. Relevant approaches already exist in the literature and industry. However, a
standardized classification of Al use cases in production is not yet available. In order to be able to classify
them nevertheless, the authors considered common works for typifying Al use cases in production
[14,26,27,28]. Additionally, differences in classification within the approaches were considered. The
approach with the most comprehensive structure by SCHOLZ derives use cases from the comparison of two
dimensions: the goals of Industry 4.0, environmental perception, exploration, forecasting, reorganization and
self-organization as well as the goals of lean management — the reduction of waste caused by waiting time,
transportation, unnecessary processing steps, movements, scrap or rework, overproduction and inventories.
This comparison results in 16 use cases, which are shown in Table 1 [14].

Table 1: Overview of assessed types of Al use cases [14]
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322 Assessment of value contribution criteria

For evaluating the value contribution of Al applications, a distinct range of evaluation criteria is introduced.
As highlighted in section 2.1, the target dimensions of time, cost and quality, supplemented by flexibility,
provide the basis for this range. However, individual criteria within the dimensions must be selected for a
more in-depth analysis. It is obvious that multiple effects and qualitative, hard to measure, value
contributions, e.g. knowledge gains or strategic gains, are also achieved through Al use cases [29]. In order
to objectify the present analysis, the focus lies on distinct target variables given in the present target system
of time, cost, quality and flexibility. To define a manageable evaluation system, distinct criteria for each of
the dimensions are established. However, as described in section 2, the individual criteria can influence each
other. For example, a measure to increase product quality can have a negative impact on the manufacturing
costs of a product. For this assessment, value contributions are only assessed in terms of their primary effect,
which is being mentioned foremost by the authors of the specific application. For example, a reduction in
the processing time of a product mentioned in the literature is not rated as an additional reduction in
manufacturing costs, although a decreased throughput time usually also leads to lesser manufacturing cost,
due to hourly rates of production resources. In Figure 3, an overview of all categories and criteria for value
contributions is shown.
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Figure 3: Overview of categories and criteria for value contribution in production [19-30]

The definition of production throughput time describes all individual times needed for the manufacturing
of a product, including manufacturing times, set-up times, process times and tool change times [30]. By
production resource availability, an accelerated provision of production resources, e.g. through improved
maintenance effects is denoted. Machine and worker availability are included within the criterion, with the
focus being on operational availability [32].

For the definition of a positive contribution to the cost structure of the user, the perception of costs of a
product manufacturer or producing company and not of a product user is established. Depending on the
company’s definition, cost of goods sold can be viewed from different perspectives [33] . In order to separate
the effect of an Al system on production costs from the effect on production times, cost subcategories are
established. The material consumption criterion aims at the reduction in the use of materials and
consumables by increasing efficiency in the production process. Cost reduction induced by primary
optimization of maintenance and servicing of machines is also included. Energy efficiency entails
applications in which Al systems have accomplished a reduction of the energy consumption per unit of
output in production [34]. Miscellancous production costs cover overall aspects of cost reduction [35,36].
Finally, the production resource utilization criterion describes applications in which Al models are used
to bring the utilization of production resources closer to their capacity limits [35].

ISO 9001:2015 defines quality as the degree to which a set of inherent characteristics of an object fulfils
product requirements [36]. The main elements of the Total Quality Management approach are employees,
processes and customers [37]. In our assessment of Al systems, we simplified these three categories into
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production quality and product quality. Therefore, product quality describes Al-enabled measures to reduce
the defect rate, rework requirements or increase the detection rate of product failures [11]. The production
quality criterion describes Al-enabled measures to improve production parameters and their variance [36].
The criterion work safety is especially relevant in human-machine collaborative environments and describe
ways to use Al to enhance work safety, thus driving production quality [38].

In the category of flexibility, the capability of production systems to adapt to changing boundary conditions
within a short time frame at reasonable cost is evaluated [39]. Adaptability to product changes is
understood as the ability of any components of the production system to change in response to the
introduction and modification of the goods to be produced. Adaptability to market changes in contrast,
describes the ability of production systems to make extended changes in production in response to changing
external factors, e.g. ramping up or manufacturing an entirely new product in a new production environment
[40]. Lastly, employee qualification covers all aspects of how Al can increase the flexibility of the human
resources, e.g. through knowledge transfer or trainings [41].

Subsequently, these four categories of value contributions with 13 distinct criteria are used for the
quantitative analyses of the identified literature.

4. Results

In the following section, the results of the literature analysis are shown using the types of Al use case
established in section 3.2. First, the frequency of use case types analyzed are evaluated. Subsequently, the
types that appear most frequently in the literature selection are subjected to a more detailed analysis of their
value contribution types.
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Figure 4: Literature frequency analysis for Al applications

Figure 4 shows the distinct types of use cases which were included in the literature analyses. The comparative
analysis highlights the types, which are mentioned most often in the literature. An individual analysis of the
types in each capability field that were mentioned most frequently in their field and therefore have a higher
significance is conducted: Detection of product defects, Increase in process understanding, Predictive
Maintenance, Production Procedure Planning and Process Optimization.



In the first capability field, Detection of product defects is the most cited application type (18 out of 149
applications) next to anomaly detection and wear and tear assessments, concluding a focus on perception-
based use cases on products (next to process anomalies and production machinery). In the context of
production, Al enabling technologies such as machine vision are used to automatically label a product as
faulty [42]. Considering the advanced technological maturity of vision systems as indicated in the analysis
of Al-centered technologies by GARTNER [43], which is a prerequisite for the application in real-life
production environments, the high number of applications of this type shown in this paper’s analysis is
deemed plausible. Figure 5 displays the result of the first capability field. For comprehensiveness, the inner
circle diagram depicts the total mentions of each value contribution category (time, cost, quality and
flexibility), the outer circle displays the in-detail view of the distinct criteria.

Production costs

Work safety

Costs

Product quality Production quality

Quality
17

Figure 5: Detailed analysis of the use case type 3) Detection of product defects

As demonstrated in Figure 5 the main value contribution of these Al use cases is on improving production
and product quality rather than decreasing overall production costs. The analyzed applications in literature
focus on the increase of production quality as the main value contribution. Secondary achievements in cost
reduction are considerable, although the main driver of cost reduction of this use case type is the replacement
of manual quality checks. Notable examples for Al applications in this use case type include MCMAHON ET
AL. [44], who cite an up to 90% higher error detection rate in Al systems compared to error checking done
fully manually. Other sources cite that an Al-based system is already achieving an 88 to 98% error detection
rate in raw material analysis and in one example of rail production [45,46].

In the capability field Exploration, which serves the primary purpose of reducing uncertainty about the
modes of action and dependencies within a production system, the use case Increase in process
understanding was mentioned most often [47]. The use case of increasing process understanding (9 of 149
applications analyzed) concerns the utilization of Al to permeate complex production processes, thereby
providing insights that may inform potential reductions in process inefficiencies. The aggregation of data
across multiple production facilities can also contribute to the generation of new insights into value
generation processes.



Production throughput time Production quality

Material consumption

Employee qualification 2

Energy and eco efficiency

1

Adaptability to market Production resource utilization

C: Costs | F: Flexibility | Q: Quality | T: Time
Figure 6: Detailed analysis of the use case type 4) Increase in process understanding

The analyzed literature contains a notable example by KREUTZER ET AL. [48] for this use case type. In this
application, the industrial manufacturer BOSCH reports a doubling in productivity through enhancing process
understanding with Al and subsequent sharing of knowledge in facilities around the world. Internal company
knowledge management can also significantly be enhanced using Al, increasing productivity by 100%. The
distribution in different types of value contribution shown in Figure 6 indicates a heterogenous effect of this
type, ranging from cost reduction in energy and eco efficiency to flexibility improvements.

Predictive maintenance, the application of Al to monitor production machinery and equipment to predict
potential failures before they occur represents a key use case, is represented with a large number of mentions
in our analysis (23 out of 149 applications). According to the analysis, this use case type mostly aims to
minimize downtime and secondarily, maintenance costs (see Figure 7) [49]. Typically, methods for detecting
carly signs of wear and tear or operational inefficiencies are employed [49]. Starting from this and by
aggregating data from multiple machines across various facilities, organizations can anticipate failures and
therefore optimize maintenance schedules and extend the life of their assets, moving from preventive
maintenance schedules based on experience to predictive schedules. Predictive maintenance is particularly
valuable in industries with complex machinery, where unplanned downtime can lead to substantial losses
[50].
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Production resource G
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Figure 7: Detailed analysis of the use case type 8) Predictive maintenance

Notable examples of Predictive Maintenance are presented by CHRYSSOLOURIS ET AL., who show that Al-
enhanced predictive maintenance can reduce machine downtime by 15 hours per week with an average cost
saving of $20,000 per minute [1]. Other sources cite a reduction in machine downtime by up to 50% while
decreasing maintenance cost by 40% [46].



In the context of the application of this paper, Production procedure planning describes the decision making
process about the order in which products are produced as well as the order in which certain production jobs
are scheduled [51]. In the capability field Reorganization, which enables a production system to adapt to its
environment [52], it is the most mentioned type, before Process planning and Planning of movements.

Production resource availability =~ Material consumption
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Production throughput time
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Figure 8: Detailed literature frequency analysis for the use case type /2) Production procedure planning

As shown in Figure 8, this use case shows a diverse profile in terms of value contribution, enabling mostly
improvements in terms of cost, flexibility and production time with a minor majority on time savings (10 of
24 mentions), mainly in production throughput time (5 mentions). This is due to the overall impact that such
scheduling decisions have on the entire production process. The product or production quality is not affected
by the procedure planning use cases. Notable applications include using Al to build a dynamic real-time
decision-making system, that schedules orders based on a continuous update of production parameters
[53,54]. In the capability field Self organization, the use case type Process optimization refers to ways in
which Al is used to optimize the processes needed in all stages of manufacturing (see Figure 9). This field
also shows a diverse profile in terms of value contribution type, with a slight emphasis on cost-related value
contribution (38.9 % of mentions).

Delivery time

Production resource availability Production costs

Production throughput time Energy and eco efficiency

Product quality

Work safety 1 3 Production resource utilization

Production quality 3

Adaptability to new product specifications
C: Costs | F: Flexibility | Q: Quality | T: Time

Figure 9: Detailed analysis of the use case type 15) Process optimization

Notable examples include a 45% reduction in energy consumption in carbon fiber production [2]. In a paper
published in 2022, TRUMPF reported that through their Al-enhanced platform called “Axoom”, they were
able to supervise 15 machines with just two people [48]. Special emphasis is also laid on the potential of Al
to improve on real-time decision-making by using the data collected by the Internet of Things (IoT) [55].
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5. Study limitations

While this study provides valuable insights into the value contributions of Al applications in industrial
production, several limitations should be acknowledged to contextualize the findings and guide future
research. The literature analysis was confined to studies published between 2019 and 2024, which ensures a
focus on recent advancements but may omit valuable earlier works or long-term data on Al implementation
effects. Furthermore, the analysis is limited to 127 Al applications across 24 studies. Although these were
selected systematically using the PRISMA methodology, the sample size remains a subset of the broader
body of Al research in production.

The evolving nature of Al technologies means that new applications or refinements to existing ones may not
yet be represented in the analyzed literature. The categorization of Al use cases and value contributions relies
on frameworks derived from existing literature and expert judgment. Given the absence of a universally
accepted taxonomy for Al applications in production, the classifications applied here may oversimplify
complex, multidimensional use cases. Furthermore, value contributions were assessed based on their
primary effects as reported by the authors of the studies, potentially overlooking secondary or indirect
impacts. For instance, while throughput time reductions were not additionally classified as cost savings, in
practice, such effects are interrelated.

The identified Al applications predominantly stem from larger enterprises or research collaborations with
substantial resources. Small and medium-sized enterprises (SMEs), which often face unique operational
constraints, might exhibit different implementation patterns or value contributions that are underrepresented
in this analysis. As such, the generalizability of the findings to SMEs or specific industrial sectors may be
limited. Al technologies and their industrial applications are rapidly evolving. The findings presented here
reflect the current state of research and industrial deployment but may quickly become outdated as new
algorithms, hardware, and integration strategies emerge. For instance, while this study focuses on
discriminative Al models, the increasing adoption of generative Al in production environments is likely to
introduce new value contributions and implementation challenges not covered here.

6. Summary and outlook

This paper highlights the transformative potential of Al in enhancing the efficiency and automation of
production processes. A systematic literature review was conducted, identifying 127 implemented Al
applications from 24 studies, categorized into 16 types based on their objectives and value contributions.
The analysis revealed that Al applications contribute to improving production and product quality, reducing
costs, and increasing production flexibility. Notable use case types include defect detection, process
understanding, predictive maintenance, production procedure planning, and process optimization. Detailed
insights into the most frequently mentioned use cases, such as defect detection and predictive maintenance,
highlight their specific value contributions and real-world examples from the literature. This retrospective
analysis, methodological frameworks for evaluating Al applications prior to implementation can be refined
to better target specific areas of analysis. For future research the authors focus on exploring the potential of
generative Al models in manufacturing, as well as developing standardized frameworks for evaluating Al
use cases. Standardized frameworks for evaluating Al use cases are crucial to ensure consistency and
comparability across different applications. The proposed frameworks aim to consider various dimensions,
including technical feasibility, economic impact, and implementation complexity.
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Finally, future research should emphasize scalability of pilot applications for Al. Scalability encompasses
not only the expansion of Al pilot applications to full-scale production environments but also the adaptation
of models to diverse production settings, ensuring interoperability with existing systems, and addressing
infrastructure and workforce readiness. Research should address strategies for managing the transition,
including the adaptation of Al models to larger datasets, integration with existing IT infrastructure, and
training of personnel. By focusing on these areas, research can provide valuable insights that will help
manufacturing companies of all sizes leverage Al to its full potential.
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