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What’s a Transition Pathway?

current production 
capacity: 3t/y of A
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What’s a Transition Pathway?

demand
install 1t 

capacity of  B,
A in part load

+1t cap. B

+3t cap. B, 
decomission A
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“Trivial” Time Considerations:

- at what timestep to 
install & operate 
how much of what?

- production = demand 
@ each point in time

- production limited by 
what was previously 
installed
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Impacts of a Transition Pathway?

aggregate supply & 
calculate impacts 
through LCA, e.g.:

GWP100 (        )∑

GWP100 (        )∑+

= 1234 kg CO2-eq
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Impacts of a Transition Pathway?

GWP100 (        )∑

GWP100 (        )∑+

= 1234 kg CO2-eq

Is this still a good idea if we’re talking 
about…

- power-to-x technologies?

- using short vs. long-rotation biomass?

- CO2-removal via direct air capture vs. 
biogenic uptake?

- needing to keep cumulative impact 
boundaries like the 2°C target?

timing might be 
crucial here!

aggregate supply & 
calculate impacts 
through LCA, e.g.:
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emissions = f (amount & timing of processes)
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concentration = f (amount & timing of emissions)
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Details: Joos et al., 2013.

absorbing 
energy over time
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process 
distribution 
& evolution

Finding the Optimal Transition Pathway

when to deploy how much of what,
considering:

21 3

emission
timing & 

accumulation

time-
dependent 

impacts



25

OptimizationTime-Explicit Transition Pathway

minimize (overall) impacts

s.t. production = demand

objective

constraint

s.t.: subject to
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OptimizationTime-Explicit Transition Pathway

minimize Q	⋅	B	⋅	s

s.t. A	⋅	s = f

s.t.: subject to

Building on top of Matrix-based LCA

Q characterization matrix
s scaling vector

A technology matrix 
B intervention matrix

f final demand vector

[1]

[1] Kätelhön et al., 2016.
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OptimizationTime-Explicit Transition Pathway

minimize    Qt	⋅	Bt⋅	st
s.t. At	⋅	st = ft t

A

∑
t

Q characterization matrix
s scaling vector

A technology matrix 
B intervention matrix

f final demand vector

Idea: adding time as an
explicit dimension

1D vectors -> 2D matrices 
2D matrices -> 3D tensors

s.t.: subject to

[1] Kätelhön et al., 2016.

minimize Q	⋅	B	⋅	s

s.t. A	⋅	s = f

[1]
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product system 
model

process-relative 
temporal 

distributions

time-specific 
databases

construct 
time-explicit 

tensors

formulate 
optimization 

problem

optimal 
transition 
pathway

objective

inputs:

additional 
constraints

built on brightway + pyomo

demand
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- open source & user friendly
- extensive documentation & examples

https://optimex.readthedocs.io/

Our new python package

https://optimex.readthedocs.io/
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optimex particularly shines, if…

- processes heavily depend on evolving 
sectors (e.g., power-to-x technologies)

- processes operate on different time scales 
(e.g., using short vs. long rotation biomass)

- timing of emission matters 
(e.g., landfill activities, or direct air carbon capture vs. 
biogenic uptake)

- cumulative impact boundaries must be kept 
(e.g., global warming < 2°C, resource extraction, …) https://optimex.readthedocs.io/

Our new python package

~ thanks for listening ✨

https://optimex.readthedocs.io/

