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• A multi-parameter approach is proposed to assess machine detectability (MD) of road markings.

• Retroreflectivity predicts MD under certain conditions; diffuse light is less effective.

• Findings emphasise the importance of assessing MD across diverse driving conditions.

• Insights support the development of demand-oriented standards for road markings.
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a b s t r a c t

This paper investigates the machine detectability (MD) of road markings under various

environmental conditions, crucial for the definition of operational design domains (ODD) of

automated driving systems as well as the assessment of operational domains (OD). By

analysing the correlation between MD parameters, specifically contrast, gradient, and edge

detectability, and common photometric properties of road markings currently used for

maintenance management (retroreflectivity and daytime visibility), the paper aims to

bridge the gap in current road marking detectability research and OD assessment. The

methodology encompassed a detailed examination of road markings on a motorway under

different lighting and weather conditions, employing both camera and LiDAR sensors for

data collection. The findings reveal that the retroreflectivity is a consistent predictor for MD

in camera images during nighttime and for LiDAR contrast in dry and moist conditions,

whereas the daytime visibility fails to reliably predict MD in daytime conditions. Moreover,

the study introduces a multi-parameter approach that transcends sole contrast analysis as

well as the usage of off-the-shelf machine vision systems, proposing a new set of MD

parameters for a broader and transparent evaluation of road marking detectability. This

comprehensive assessment highlights the need for quality standards for road markings

that would accommodate varying environmental impacts on MD of road markings.
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Ultimately, this research provides valuable insights and recommendations on research

approaches to find demand-oriented minimum standards for MD of road markings,

enabling comprehensive OD assessments, and facilitating safer navigation for automated

vehicles.

1. Introduction

Road markings significantly contribute to safe traffic guidance

(Calvi, 2014; Carlson et al., 2013; Han et al., 2023). They may

indicate lanes or other rules of traffic. Not only human

drivers use the information road markings are providing.

Their consistent presence at almost all roads has also led to

their adoption as a guidance system for automated vehicles

(Yang et al., 2023).

In terms of highly automated driving systems, operational

design domains (ODD) define theoretical ranges of driving

conditions for which a specific automated driving system is

designed to operate in. In contrast, operational domains (OD)

describe the actual road and its conditions for which an

automated system applies for an authorisation to operate.

When matching ODD to specific OD in approval procedures for

highly automated vehicles, assessing the condition of physical

infrastructure like road markings plays an important role

(Pappalardo et al., 2022). To detect and recognise road

markings, automated vehicles use sensors, such as cameras

or light detection and ranging (LiDAR), which capture and

process the images or point clouds of the road scene

(Katzorke et al., 2022; Muckenhuber et al., 2021; Yeong et al.,

2021).

As it is true for every detection task, the quality of signal

processing results and the benefits in terms of existing and

further vehicle functions not only depend on the quality of the

sensor and signal processing but also on machine detect-

ability (MD) of road marking. In this paper, MD is understood

as the manifestation of physical and photometric properties

of road markings on the expression of features that are

extracted and used to classify image segments or objects in

sensor data.

Road markings are physical entities with measurable

photometric properties, not just digital representations. These

properties are described by the coefficient of retroreflected

luminance RL (mcd/lx/m2) and the luminance coefficient in

diffuse illumination Qd (mcd/lx/m2). Qd measures diffuse

transmitted light reflected from a horizontal surface to the

position of a driver, while RL measures retroreflective quality

for nighttime visibility (Br�emond, 2019). To fit photometric

requirements, certain material properties can be adjusted.

Road marking systems are composed of different materials

and subproducts. Common materials include paints, non-

prefabricated cold and hot plastics, and prefabricated tapes

in white, yellow, or orange colours, allowing for better

detection on darker surfaces or differentiation from

differently coloured markings. To ensure headlight

retroreflection, glass or ceramic beads are integrated in the

plastics surface (Pocock and Rhodes, 1952). Macrotexture can

be added to the plastics and tapes to ensure drainage and

thus preserve retroreflection in wet conditions (Schnell

et al., 2003). However, road markings are subject to wear and

degradation over time due to traffic loads, making it crucial

to monitor their properties on the road and ensure

minimum quality standards (Burghardt et al., 2021a; Wenzel

et al., 2022).

The current monitoring practices utilise photometric sys-

tems to evaluate the functional characteristics relevant to

human driver requirements. This raises the question of

whether the existing measurements enable us to infer the MD

property of road markings, given the potential disparities be-

tween sensor-based detection and human perception. Similar

concerns arise when establishing minimum standards.

Previous studies on the detection of road markings in

camera images or LiDAR point clouds have focused on

different aspects of markings, such as retroreflectivity, line

width, contrast ratio, clarity, and uniformity (Burghardt et al.,

2020). Some studies have been conducted on public roads

(Babi�c et al., 2021; Li et al., 2021; Pappalardo et al., 2021, 2022;

Pike et al., 2018a; Storsæter et al., 2021a), while others have

taken place in controlled environments like laboratories and

closed test tracks (Burghardt et al., 2021b, 2023; Marr et al.,

2020; Pike et al., 2018b, 2019; Storsæter et al., 2021b). These

studies have investigated not only dry surfaces but also wet

surfaces (Burghardt et al., 2023; Marr et al., 2020; Pike et al.,

2018b, 2019), rainy or foggy conditions (Burghardt et al.,

2021b; Storsæter et al., 2021a), backlight and glare (Burghardt

et al., 2023; Marr et al., 2020; Pike et al., 2018b, 2019), or even

snow (Storsæter et al., 2021b). However, most of the studies

conducted so far utilised black box machine vision systems,

off-the-shelf, or machine learning methods. Moreover, some

of the studies have used basic classical machine vision

techniques, but only in laboratory settings (Burghardt et al.,

2023; Pike et al., 2019; Storsæter et al., 2021b).

A major drawback of off-the-shelf machine vision systems

is that they do not reveal the specific image features that

enable them to detect road markings. This lack of trans-

parency leads to inconsistent findings and recommendations

(Pike et al., 2018a) and adds complexity to assessing MD of

road markings. Therefore, as suggested in Marr et al. (2020),

a more detailed understanding of road marking detectability

is needed.

Using classical machine vision techniques and image

processing methods offer the possibility for transparent and

differentiated evaluation to accurately quantify MD proper-

ties. For objects with lower feature complexity, such as lon-

gitudinal road markings, feature learning and feature

engineering yield comparable results (O'Mahony et al., 2019).

Lim and Braunl (2019) provided a comprehensive overview
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of conventional methods, learning methods, and practical

implementations for road space detection. Veit et al. (2008)

discussed longitudinal markings in particular.

This paper aims to address the gap in the research of road

marking detectability and propose a transparent signal pro-

cessing metric to determine MD of road markings. This metric

includes a new set of MD parameters that evaluate the input

quality for common feature extraction methods, such as

thresholding, edge detection, and ridge detection.

This metric will be used to investigate two research ques-

tions related to the MD of road markings.

(1) Can a correlation be established between MD parame-

ters and common photometric road markings parame-

ters, i.e., retroreflectivity (RL) and daytime visibility (Qd)?

(2) Is a multi-MD-parameter approach necessary to reveal

effects on the MD of road markings that cannot be

described by sole image contrast analysis?

Fig. 1 — Examples of the road surfaces examined. (a) Dashed and solid markings. (b) Nighttime conditions. (c) Work zones

with temporary yellow markings. (d) Wet surface conditions. (e) High-contrast asphalt patches. (f) Wet surfaces at night with

traffic sign reflections and faint markings.
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Addressing these questions through experimental data

collected from a public road under various lighting and

weather conditions will provide insights on whether common

photometric properties are suitable measures to describe the

MD of road markings. Furthermore, the study aims to offer

recommendations for the most relevant image features for

road marking detection.

2. Methodology

2.1. Road and road markings examined

The study examined road markings on nine 100 m segments

of a German motorway's right lanes (3.75 m wide), selected for

varied materials that include cold spray plastic, tape, and cold

plastic agglomerates, and diverse states and styles such as

solid, dashed, worn, and work zone markings, along with

patched areas. Road geometry wise, the segments have

limited curvature, ensuring consistent viewing angles across

all segments. Observations were made in varying conditions

including wet, dry, and different lighting. Fig. 1 shows

additional details.

To differentiate the road markings, they have been labelled

in this paper as S for solid stripes, D for dashed stripes, and W

for temporary markings in work zones. Table 1 shows

additional information on the road marking samples.

Dashed white markings were always on the left side of the

lanes while solid ones were on the right side. Each label in

Table 1 had a matching number that indicated its location.

For instance, the road markings D1 and S1 were on the

opposite sides of the same lane. Yellow markings W1 and

W3 correspond for left and right side of the first work zone

while W2 and W4 are located on a second work zone.

2.2. Photometric properties

The photometric properties, meaning luminance coefficients

RL and Qd, were measured according to standard EN 1436 and

averaged for every section. RL was measured with static and

dynamic measurement systems according to Babi�c et al.

(2017). While the dynamic measurements provided a

continuous result of how the road marking reflects the light

from the head beam at exactly 30-m distance, static

measurements operate on a spot-check basis. Qd was

measured only with static systems, since dynamic

measurement systems cannot measure Qd. To calculate the

contrast between road markings and adjacent road surface

additional static Qd and RL measurements where conducted

on the road surface. Qd could not be measured in the work

zones, because they were not accessible on foot. It was

observed that Qd values of the pavement changed a lot,

while RL values changed only slightly. To compare

photometric parameters with MD parameters that

considered image contrast, Qd-contrast between the Qd value

of the marking (Im) and the Qd value of the pavement (Ip)

was calculated. Weber contrast was used, which is a

common way to measure luminance differences.
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Weber contrast=
Im − Ip

Ip

(1)

2.3. Weather data and light conditions

The visibility and detectability of road markings may depend

on external factors such as weather, time of day, and surface

wetness. To examine these factors, four surveys on each

section under different conditions were conducted, which

were labelled by daytime and surface wetness in Table 2. The

sections were close to each other, so that the conditions

studied were not only consistent within the sections, but

also across all of the sections.

At night, the road was neither illuminated by streetlights

nor by other notable light sources such as nearby buildings.

However, apart from the test vehicle's own lighting and its

reflections, the street was lit by nearby cars. To ensure com-

parable measurements, the speed has been adjusted when

approaching a road segment to ensure no other cars were

nearby. Backlight was minimized due to the distance between

the rightmost lane and the lanes in the opposite direction, as

well as the physical barrier separating them.

Rainfall intensities were extracted from the RADOLAN

dataset, provided by the German meteorological service

(DWD). The RADOLAN dataset offers 5-min radar precipitation

data, calibrated with meteorological station measurements, at

a spatial resolution of 1 km × 1 km. These data were matched

to the 100 m segments and specific time of the survey. The

survey under night/wet condition took place during a 30 min

rain event with an extrapolated precipitation intensity of

1 mm/h, which can be described as heavy drizzle or light rain.

The surface however was wet already due to a 15 min rain

event (2 mm/h). It was assumed that all sections had adequate

drainage properties, so they were equally wet.

2.4. Vehicle used to inspect the sections

The test vehicle used was developed for level 1—5 automation

functions (Fig. 2). It was equipped with an InCar-PC, a NVIDIA

Drive PX2, a dSPACE Microautobox II, and an OxTS RT3000

RTK-GNSS system for localisation. The camera system was

attached to a camera bracket installed behind the

windshield. The bracket ensures that a common angle and

position of the camera system is applied. The LiDAR system

was installed on the roof rack of the car that secured the

sensor in place. Camera and LiDAR system were connected

to the PC-systems via an Ethernet cable for data transfer and

control. During the test drives the data was stored locally.

Later the data spatially related to the section was extracted.

2.5. Technical characteristics of the camera system

An Allied Vision Manta G-235 camera system was used to

collect image data. This camera has a compact and light-

weight body with a 2.4 megapixel CMOS sensor. It can capture

high-resolution images and videos in various lighting condi-

tions with a dynamic range of 15 stops and a range of 100-

51,200, as defined by ISO 12232. The system also supports 4 K

video recording at up to 30 fps with HDR and Dolby vision. The

Manta G-235 has a compact lens with a focal length of 12 mm

and an aperture range of F1.4-16. The image sensor format

equals 1/1.2′′ and the sensor provides a pixel size of

5.86 μm × 5.86 μm, resulting in an image resolution of

1936H × 1216V (2.4 megapixels). The lens has a field of view of

approximately 48◦, which covers the area of interest for the

experiments.

2.6. Technical characteristics of the LiDAR system

The LiDAR system used was the Robosense RS-LiDAR-32,

which is a 360◦ surround-view sensor that uses a laser with a

wavelength of 905 nm and a maximum range of 200 m. It has

an optical aperture angle of 360◦ horizontally and 40◦ verti-

cally. The system is equipped with 32 layers, allowing for

detailed data capture of the surrounding environment. The

system has a high accuracy of ±3 cm. The LiDAR system was

chosen because it offers a high-performance and reliable so-

lution for autonomous driving applications, as it can provide a

comprehensive and accurate 3D representation of the road

scene with a high update rate of 20 Hz.

Table 2 — Characteristics of the four data collection runs.

Survey Weather condition Temperature/humidity

Day/moist Overcast 15 ◦C/88%

Day/dry Overcast 15 ◦C/82%

Night/dry Clear 12 ◦C/82%

Night/wet Rain 12 ◦C/94%

Fig. 2 — Test vehicle and equipment used in the surveys.
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2.7. Road marking labelling of the images in camera images

Pictures of the road were taken every 10 m, resulting in 10

pictures per 100 m section. The pixels that belonged to the

road markings were manually segmented and manually

labelled, as shown by the green area in Fig. 3(a). The road

markings in 10—30 m distance from the camera were

analysed. It was made sure that no cars obstructed the view.

A 5 m wide evaluation area on the road was also selected,

with a margin of road surface (equal to the width of a road

marking) on both sides of each image. For work zones, the

evaluation area was reduced to 4 m due to the narrower lanes.

2.8. Road marking labelling of the LiDAR point clouds

The LiDAR system produced a point cloud comprised of distinct

data points. Each of these points was distinguished by its return

intensity and three spatial dimensions, all relative to the loca-

tion of the test vehicle, as shown in Fig. 3(b). The analysis focused

on data points collected in the direction of travel between the

locations where the initial and final images were obtained.

Labels manually embedded in the images facilitated the

analysis of the LiDAR data. Given the established relative

orientation among the camera, LiDAR, and road surface, these

labels were modified for usage in marking the LiDAR data

points. Any minor inconsistencies caused by irregularities in

the road surface were addressed by implementing a refined

labelling technique for the LiDAR data. This technique involved

strategically expanding the dimensions of the labels to exactly

twice their original width. One can think of these labels as

bounding boxes utilized to classify the LiDAR points, as depicted

by the green areas in Fig. 3(b). This expansion guaranteed the

thorough capture of data points representing road markings.

In addition, the intensity value of each LiDAR data point

could be understood as its reflectance attribute. Because the

labels are exactly double the width of the road marking and

the density of the data points remain constant, the median

intensity value within the expanded labels functioned as a

threshold to distinguish between data points corresponding to

road markings and those indicating the road surface.

2.9. Preprocessing

The pictures with white road markings were converted to

greyscale. However, for yellow markings in work zones the

colour is relevant. Thus, a special setting was applied, using

the positive range of the b-channel of the lab-colour space.

Additionally, a normalization process is applied to the night-

time images, taking into account the horizontally varying

lighting intensity of the head lights, and facilitating a

comparative analysis of the markings on the left and right

side. Moreover, a Gaussian filter with σ = 3 was used to smooth

the pictures and enhance the edges (Amaradi et al., 2016).

2.10. Machine detectability of road markings: contrast

analysis

To investigate whether a correlation exists between machine

detectability (MD) parameters and common photometric road

markings parameters, MD needs to be derived from labelled

sensor data. A straightforward approach is to analyse contrast,

using two parameters: MDContrast,Cam, produced using camera

images, and MDContrast, LiDAR, produced using LiDAR images. In

image and point cloud processing, contrast is essential for

segmentation, especially when thresholding techniques like

Otsu's method (Otsu, 1979) are applied. Higher contrast leads to

a larger range of possible thresholds, generally making

threshold selection more robust (Kim et al., 2019). The

contrast parameters are computed by calculating the mean

values of pixel or data point intensities of the markings,

using the same Weber contrast definition (1) as for the

photometric properties. The affiliation of the pixels and data

points is determined by the labels described earlier.

2.11. Machine detectability of road markings: gradient

and edge analysis

To further explore whether solely analysing image contrast is

adequate for describing machine detectability (MD), two new

parameters, MDGradient and MDEdge, have been introduced.

These are derived from image processing metrics like Sobel

Fig. 3 — Camera image and LiDAR point cloud labelling. (a) Labels for contrast detection in the camera image. (b) LiDAR point

cloud with highlighted data inside the expanded label.
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and Canny algorithm. Table 3 gives an overview over the MD

parameters defined in this work. In the following, Table 4 is

used to illustrate the image processing metric behind

MDGradient and MDEdge for three sample images.

MDGradient is calculated by applying a Sobel filter

(Kanopoulos et al., 1988) to the blurred images, as shown in

Table 4, row 2 (gradient image). In image processing,

intensity gradients between pixels serve as input for robust

and binarising edge detection methods, such as the Canny

algorithm (Canny, 1986). High gradients are crucial for

creating binary edge images (Amaradi et al., 2016). MDGradient

quantifies the quality of the marking with respect to edge

feature extraction. It is defined as the mean of gradient

values along the marking edges, where the marking edges

are identified as the maximum gradient pixel in the

horizontal direction, as suggested in the studies of Lim and

Braunl (2019), Veit et al. (2008), and Haloi and Jayagopi (2015).

MDEdge quantifies the suitability of marking edges for

extraction of ridges as a feature. Popular ridge detection al-

gorithms are Hough transform (Duda and Hart, 1972), RANSAC

(Fischler and Bolles, 1981), and polynomial fitting. To fit the

marking to a ridge model, Bezier curves (Huang et al., 2013)

and straight lines (Amaradi et al., 2016) are commonly used.

Here, high-intensity edges at the markings edge positively

impact edge detection, while high-intensity edges associated

with non-marking objects limit ridge detection applicability.

MDEdge reflects both effects.

The Canny operator is commonly used to generate input

for ridge detection by thinning and binarising the edges of the

gradient image (Canny, 1986). Canny algorithm is applied with

minimum T1 and T2 = 1/28 (8 bit image) showing all potential

Canny edge pixels, as presented in Table 4, row 3 (Canny

image). The maximum gradient information is used to label

the edge pixels.

To calculate MDEdge, Canny algorithm is used in reverse.

(1) The sensitivity was set at 80%, while the specificity was

set at 99%. These levels of sensitivity and specificity

were chosen to represent about the same number of

pixels: on average, the evaluated road surface had about

20 times more potential Canny edge pixels than the

marking edges in the analysed data.

(2) The thresholds (TSEN, TSPE) needed to realise the binary

classifiers (setting T1 = T2 in both cases) were applied to

the Canny image, as visualised in Table 4, row 4 (TSEN)

and row 5 (TSPE).

(3) By dividing the two thresholds, MDEdge was estimated.

MDEdge =
TSEN80

TSPE99

(2)

In Eq. (2), MDEdge > 1 means that a sensitivity of 80% and a

specificity of 99% is possible. The higher MDEdge, the wider is

the span for possible thresholds that fulfil these conditions.

2.12. Regression analysis and quotient comparison

The MD results are determined for every image and then

averaged for every section. To address research question A, if

a correlation between MD and common photometric road

marking parameters (RL, Qd) can be established, a linear

regression was conducted between common photometric

parameters and MDContrast parameters. Linear regression was

found suitable because the photometric parameters (Qd and

RL) have been designed to quantify visibility by human drivers

under small inclination angles from a car seat perspective in

specified lighting scenarios. Specifically, the MDContrast,Cam

parameter derived from daytime images is correlated with Qd-

contrast. Additionally, the MDContrast,Cam parameter from

nighttime images and MDContrast, LiDAR from all LiDAR-point

clouds were correlated with RL.

To assess the quality and reliability of the linear regression

models in this study, several statistical diagnostics were

conducted.

(1) Normality of residuals (NoR) is examined using Ander-

son-Darling test, where a low p-value <0.05 indicates a

departure from normality. If the distribution of the re-

siduals is departing from normality the linear regres-

sion is not valid. A p-value >0.05 is not challenging the

validity of the model.

(2) Significance of slope: if the p-value associated with the

slope coefficient (m) is < 0.05, it indicates a statistically

significant difference from a model with a constant,

zero slope, suggesting that the photometric road

marking parameter (such as RL and Qd) has a significant

effect on the MD parameter.

(3) Positive slope requirement: m has to be greater than

zero. This requirement, combined with a statistically

significant p-value (<0.05), confirms a meaningful and

Table 3 — MD parameter overview.

Sensor MD parameter Description

Camera MDContrast,Cam Suitability of the marking for image segmentation methods (e.g., Otsu's
method)

MDGradient Quality of the marking with respect to edges as a feature (e.g., Sobel

algorithm)

MDEdge Suitability of marking edges for extraction of ridges as a feature (e.g.,

Canny algorithm)

LiDAR MDContrast, LiDAR Suitability of the marking for point cloud segmentation methods (e.g.,

Otsu's method)
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Table 4 — Image processing metric applied to a specific road scene in three different conditions.

Day/dry Night/dry Night/wet

Original 

image

Gradient 

image 

MDGradient

Medium gradients on marking edges 

and asphalt patch
Low gradients and high gradients on 

marking edges

Medium gradients low gradients on 

reflections on marking edges

Canny image 

(T = 0)

Canny image 

(TSEN80) 

MDEdge

False positive edges (red) on asphalt 

patch

No false positive edges False positive edges (red) on reflection

Canny image 

(TSPE99)

MDEdge

True positive edges (green) cover all 

road marking edges
True positive edges (green) cover all 

road marking edges

True positive edges (green) rarely 

cover road marking edges
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Table 5 — RL and MD parameters for the markings evaluated (nighttime).

Marking type Marking RL↓ Night/dry Night/wet

MDContrast,Cam MDGradient MDEdge MDContrast, LiDAR MDContrast,Cam MDGradient MDEdge MDContrast, LiDAR

Dashed and solid white flat marking S2 531 8.310 0.1120 38.950 6.650 2.770 0.0080 2.670 0.910

S3 374 8.580 0.1060 26.250 5.920 0.940 0.0080 0.480 0.570

D1 296 5.280 0.0770 33.510 4.710 1.580 0.0060 2.060 0.400

S1 111 3.760 0.0490 18.220 1.520 0.690 0.0030 0.950 0.780

D3 40 1.990 0.0400 8.540 0.140 0.350 0.0020 0.040 0.340

D2 38 1.980 0.0310 9.370 0.180 0.630 0.0030 0.700 1.010

Mean 232 4.980 0.0690 22.470 3.190 1.160 0.0050 1.150 0.670

p-value NoR NoR (>0.05) 0.200 0.5400 0.410 0.700 0.210 0.4000 0.210 0.600

p-value m (<0.05) 0.000 0.0000 0.010 0.000 0.020 0.0100 0.100 0.860

m (>0) 0.014 0.0002 0.059 0.014 0.004 0.0000 0.004 0.000

p-value b (>0.05) 0.060 0.0000 0.050 0.800 0.450 0.0400 0.580 0.030

b (≈0) 1.750 0.0300 8.880 ¡0.120 0.260 0.0020 0.300 0.640

R2 0.910 0.9600 0.880 0.960 0.780 0.8800 0.540 0.010

Dashed and solid white structured marking S5 265 5.900 0.0880 30.380 3.540 6.800 0.0220 8.450 0.850

D5 245 5.820 0.1190 41.070 2.170 6.130 0.0260 10.070 0.470

S4 227 5.970 0.0710 29.380 2.530 6.440 0.0230 8.340 1.100

D4 213 5.720 0.0660 24.670 1.730 3.380 0.0130 4.770 0.420

D7 113 5.290 0.0630 23.040 1.680 1.830 0.0060 1.990 0.880

S7 107 4.850 0.0560 22.470 2.220 4.160 0.0110 3.570 1.030

D6 67 2.910 0.0420 11.850 0.550 1.180 0.0050 1.420 0.820

S6 59 2.520 0.0320 8.830 1.600 1.900 0.0050 1.650 0.780

Mean 162 4.870 0.0670 23.960 2.000 3.980 0.0140 5.030 0.790

p-value NoR (>0.05) 0.800 0.4500 0.140 0.570 0.840 0.9700 0.830 0.990

p-value m (<0.05) 0.000 0.0100 0.000 0.030 0.000 0.0000 0.000 0.520

m (>0) 0.014 0.0003 0.107 0.008 0.024 0.0001 0.038 − 0.001

p-value b (>0.05) 0.010 0.1200 0.180 0.180 0.890 0.6400 0.330 0.000

b (≈0) 2.550 0.0230 6.560 0.770 0.130 ¡0.0010 ¡1.180 0.920

R2 0.760 0.7100 0.770 0.550 0.780 0.8400 0.860 0.070

Workzone yellow marking W1 62 7.300 0.0080 1.140 — 1.980 0.0100 0.640 —

W2 36 14.630 0.0050 0.550 — 2.410 0.0030 0.070 —

W3 35 7.400 0.0070 1.730 — 1.740 0.0020 0.040 —

W4 35 9.230 0.0070 1.480 — 4.140 0.0020 0.080 —

Mean 42 9.640 0.0070 1.230 — 2.570 0.0040 0.210 —

p-value NoR (>0.05) 0.540 0.1400 0.480 — 0.700 0.1400 0.610 —

p-value m (<0.05) 0.580 0.3600 0.850 — 0.630 0.0000 0.000 —

m (>0) − 0.109 0.0001 − 0.006 — − 0.030 0.0003 0.022 —

p-value b (>0.05) 0.190 0.2000 0.340 — 0.240 0.0100 0.000 —

b (≈0) 14.220 0.0040 1.460 — 3.830 ¡0.0080 ¡0.700 —

R2 0.180 0.4000 0.020 — 0.140 0.9900 1.000 —

Note: several regression analyses were conducted for each marking type and every MD parameter, under both night/dry and night/wet conditions; ↓ indicates that the data is sorted by RL; however, not

all regression results are valid because some did not meet the requirements of the preceding results (given in brackets); bold entries signify valid results that are analysed and discussed.
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Table 6 — Qd-contrast (camera)/RL (LiDAR) and MD parameters for the markings evaluated.

Marking type Marking Qd-contrast ↓ Day/dry Day/moist

MDContrast,Cam MDGradient MDEdge MDContrast, LiDAR MDContrast,Cam MDGradient MDEdge MDContrast, LiDAR

Dashed and solid white flat marking D1 2.75 0.550 0.0490 6.070 5.080 0.550 0.0490 6.070 5.080

D2 2.35 0.540 0.0460 5.910 0.180 0.540 0.0450 5.210 0.190

D3 2.22 0.600 0.0490 4.930 0.140 0.570 0.0470 5.390 0.170

S3 1.25 0.740 0.0550 5.390 6.350 0.730 0.0560 6.130 6.210

S2 1.21 0.810 0.0590 7.010 6.690 0.780 0.0580 6.640 6.680

S1 0.86 0.760 0.0570 6.860 1.560 0.760 0.0570 6.860 1.560

Mean 1.77 0.670 0.0530 6.030 3.330 0.650 0.0520 6.050 3.310

p-value NoR (>0.05) 0.570 0.2200 0.120 0.600 0.470 0.8900 0.450 0.440

p-value m (<0.05) 0.000 0.0200 0.330 0.000 0.000 0.0200 0.090 0.000

m (>0) ¡0.145 ¡0.0058 − 0.512 0.015 ¡0.142 ¡0.0063 − 0.642 0.015

p-value b (>0.05) 0.000 0.0000 0.000 0.900 0.000 0.0000 0.000 0.920

b (≈0) 0.920 0.0630 6.940 ¡0.070 0.910 0.0630 7.190 ¡0.060

R2 0.900 0.7900 0.230 0.940 0.920 0.7600 0.560 0.940

Dashed and solid white structured marking D4 2.00 0.620 0.0530 6.960 1.800 0.620 0.0530 6.700 1.810

D5 2.00 0.510 0.0490 7.040 2.120 0.570 0.0510 7.500 2.320

D7 1.97 0.630 0.0550 9.430 1.960 0.580 0.0520 7.770 2.070

D6 1.82 0.620 0.0540 7.860 0.670 0.570 0.0520 6.630 0.890

S5 1.16 0.670 0.0520 7.290 3.740 0.670 0.0510 7.390 3.830

S7 1.14 0.730 0.0570 9.180 2.290 0.710 0.0560 7.750 2.370

S6 0.97 0.640 0.0530 7.300 1.610 0.630 0.0520 6.360 1.730

S4 0.80 0.610 0.0480 6.010 2.530 0.590 0.0470 5.640 2.620

Mean 1.48 0.630 0.0530 7.630 2.090 0.620 0.0520 6.970 2.210

p-value NoR (>0.05) 0.580 0.5600 0.190 0.490 0.620 0.4300 0.710 0.810

p-value m (<0.05) 0.220 0.6800 0.500 0.050 0.190 0.4400 0.260 0.050

m (>0) − 0.059 0.0009 0.630 0.007 − 0.051 0.0015 0.668 0.007

p-value b (>0.05) 0.000 0.0000 0.000 0.140 0.000 0.0000 0.000 0.090

b (≈0) 0.720 0.0510 6.700 0.890 0.690 0.0500 5.980 1.040

R2 0.240 0.0300 0.080 0.510 0.260 0.1000 0.200 0.510

Workzone yellow marking W1 — 33.170 0.0330 8.570 — 25.830 0.0340 8.780 —

W2 — 6.460 0.0290 6.550 — 8.130 0.0300 6.650 —

W3 — 4.060 0.0280 4.240 — 4.060 0.0280 4.240 —

W4 — 22.830 0.0260 4.820 — 22.830 0.0260 4.820 —

Mean — 16.630 0.0290 6.050 — 15.210 0.0290 6.120 —

Note: several regression analyses were conducted for each marking type and every MD parameter, under both day/dry and day/moist condition; ↓ indicates that the data is sorted by Qd-contrast;

however, not all regression results are valid because some did not meet the requirements of the preceding results (given in brackets); bold entries signify valid results that are analysed and discussed.
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positive relationship between the MD parameters and

standard photometric parameters.

(4) Analysis of intercept (b): an intercept approximately

equal to 0 or with a p-value >0.05 suggests that the

intercept does not significantly differ from zero, which

is essential to ensure that the model does not have a

bias due to a non-zero intercept.

(5) Model fit (R2): after the above criteria are met, the overall

fit of the model to the data is evaluated using the coef-

ficient of determination (R2). A higher R2 value indicates

a better fit of the model to the observed data.

For research question B, which investigates whether a

multi-MD-parameter approach can reveal effects on the MD of

road markings, which are not captured by image contrast

analysis alone, quotients (MD1/MD2) are calculated. These

demonstrate the relationship between specific MD1 and MD2

parameters under varying environmental conditions. Practi-

cally, MDContrast,Cam/MDGradient and MDGradient/MDEdge will be

compared under night/dry, night/wet and day/dry conditions

to draw further insights.

The quotients are analysed as followed: If the parameters

MD1 and MD2 perform the same way in different conditions,

the quotient MD1/MD2 would be the same in all conditions. In

that case, one parameter would be enough to describe ma-

chine detectability (MD). But if MD1/MD2 are varying when

looking at different condition one parameter is not enough

and research question B is answered negatively.

3. Results

3.1. Qualitative results

Before comparing the MD parameters to conventionally

measured parameters and among each other on a quantita-

tive basis, the process of MD analysis is imaged qualitatively

in Table 4. All pictures in Table 4 show the very same scene

and the exact same road markings under varying conditions.

Because of the transparent and differentiated approach

defined in the previous chapter different qualitative

phenomena can be spotted during the analysis of contrast,

gradients, and edges. The approach evaluates the input

quality for common feature extraction methods listed in

Table 3.

The following effects are highlighted in Table 4: high and

low gradients are highlighted with different levels of

brightness in row 2 (gradient images). In row 3 Canny

algorithm with a threshold of 0 is applied to the gradient

images, showing all potential edges that Canny algorithm

can detect. Row 3 and 4 show only a part of these potential

edges, depending on the threshold applied (row 3: TSEN80,

row 4: TSPE99). In row 4, the gradient-threshold TSEN80, which

realises a sensitivity of 80%, is applied to the full Canny

image (row 3), leaving potential false-positive edges

displayed in red. In row 5, on the other hand, the gradient-

threshold TSPE99, which realises a specificity of 99% is

applied, showing only marking edges (labelled green) that

raise above the threshold TSPE99 and show a good potential

for true-positive detection labelled green.

This paper aims to address the gap in road marking

detectability and propose a transparent signal processing

metric to determine MD of road markings. This metric in-

cludes a new set of MD parameters that evaluate the input

quality for common feature extraction methods, such as

thresholding, edge detection, and ridge detection.

In Table 4, specifically in row 4 (TSEN80), the presence of red

edges highlights the issue of potential false-positive

detections: If an intensity threshold is determined to detect

80% of the marking edges (TSEN80), non-marking edges exist,

which have a risk of being false-positive detected. For

instance, asphalt patches (column 1) or reflections on wet

surface (column 3) could significantly interfere with the

accurate detection of road markings, primarily due to the

increased likelihood of false-positive detections.

Furthermore, it is worth noting that the asphalt patch is

not visible during nighttime, whether the road is dry (column

2) or wet (column 3). Similarly, there are no reflections from

the traffic sign under dry conditions, during either daytime

(column 1) or nighttime (column 2). Without even analysing

MD parameters, this already indicates that it is not possible to

infer results from one condition to another, even when the

very same section is assessed.

3.2. Quantitative results

Tables 5 and 6 show the MD results of the sections. The MD

results are listed alongside the corresponding common

photometric road marking parameters (RL- and Qd-contrast).

To facilitate a quick analysis of a linear correlation, the table

entries are arranged in ascending order based on RL- and Qd-

contrast, as indicated by the arrow in each table header. The

expectation was that as RL- and Qd-contrast values decrease,

the MD values would proportionally decrease.

Table 7 — Established correlations between MD parameters and common photometric road marking parameters.

Sensor MD

parameter

Environmental condition and marking type

White flat marking White structured marking Yellow marking

Night/

dry

Night/

wet

Day/

dry

Day/

moist

Night/

dry

Night/

wet

Day/

dry

Day/

moist

Night/

dry

Night/

wet

Day/

dry

Day/

moist

Camera MDContrast,Cam ✓ ✓ × × ✓ ✓ × × × × — —

MDGradient ✓ ✓ × × ✓ ✓ × × × × — —

MDEdge ✓ × × × ✓ ✓ × × × × — —

LiDAR MDContrast, LiDAR ✓ × ✓ ✓ ✓ × ✓ ✓ — — — —

Note: ✓ indicates research question A is verified, × indicates research question A is not verified, — indicates the condition was not analysed.
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Moreover, road markings were categorised into three

distinct types: flat, structured, and yellow. For each type, a

detailed linear regression analysis was conducted to evaluate

their performance characteristics under various conditions.

The analysis focused on five key aspects to assess the

robustness and relevance of the regression models. If an

aspect was not fulfilled, the remaining aspects are not ana-

lysed anymore because in such cases the research question

was already answered negatively. Only the aspects that were

analysed are shown in bold in Tables 5 and 6

Firstly, it was validated that the residuals derived from the

regression models follow a normal distribution, which con-

firms the applicability of linear regression to the datasets. It

was concluded that all categories of road markings met this

fundamental criterion (p-value >0.05), thereby affirming the

appropriateness of employing linear regression in the study.

Secondly, the analysis compared the linear model to a simple

constant model (m = 0). To proof a significant influence of

common photometric parameters (RL and Qd) on MD, the linear

model needs to supersede the constant benchmark signifi-

cantly. In several cases, the linear model did not significantly

outperform the constant model. (1) MDContrast, LiDAR under night/

wet conditions. (2) MDEdge for flat markings under night/wet

conditions. (3) MDEdge under daytime conditions. (4) MDContrast

and MDGradient for structured markings under daytime condi-

tions. (5) MDContrast and MDGradient in most cases with yellow

markings. This suggested that, in these specific cases, the

common photometric parameters might not be the primary

influencers on MD. This result could imply that other, unmea-

sured variables might be playing a more significant role, or that

the relationship between was not linear, as hypothesised. Such

cases should be the subject of future investigations.

Thirdly, m in those linear models that significantly outper-

form a constant model was analysed. Most of the cases

demonstrated a positive slope. This was the expected because a

positive slope indicates that MD improves along with the com-

mon photometric parameters (RL and Qd). However, some cases

were expectation: MDContrast and MDGradient for flat markings in

daytime conditions. A negative slope implies that the impact is

marginaland that unmeasured variables have a stronger impact

on MD than the common photometric parameters.

Fourthly, b of the linear models was studied. Ideally, for a

valid model, the intercept should be near zero or not signifi-

cantly different from zero. This occurs when p-value b > 0.05

or when b ≈ 0. While this was true in most cases, exceptions

were noted in cases involving yellow road markings in both

and dry conditions, particularly for the models concerning

MDGradient and MDEdge. This could indicate a baseline level of

visibility or effectiveness that is inherently different for yellow

markings compared to others.

Lastly, the effectiveness of the linear models was evaluated

using the coefficient of determination R2. Among the remaining

cases, where the linear models have a positive slope, intercept

the vertical axis near 0 and differ significantly from a constant

model, R2 was always >0.50: (1) MDContrast,Cam for white mark-

ings in nighttime conditions (R2 from 0.76 to 0.91), (2) MDGradient

for white markings in nighttime conditions (R2 from 0.71 to

0.96), (3) MDEdge for white, structured markings in nighttime

conditions (R2 from 0.77 to 0.86), (4) MDEdge for white, flat

markings in night/dry conditions (R2 = 0.88), (5) MDContrast, LiDAR

for white, flat markings in dry or moist conditions (R2 from 0.94

to 0.96), and (6) MDContrast, LiDAR for white, structured markings

in dry or moist conditions (R2 from 0.51 to 0.55).

4. Discussions

4.1. Research question A

As mentioned above, research question A explores whether

there is a correlation between MD parameters and common

photometric road marking parameters, namely retrore-

flectivity (RL) and daytime visibility (Qd). The previous section

presented the outcomes of testing the efficiency and consis-

tency of a linear regression model linking the MD parameters

with these photometric road marking parameters. Table 7

summarises the conditions under which a correlation

between MD parameters and standard photometric road

marking parameters can be established.

Under certain conditions, a correlation was found between

MD parameters and the standard photometric road marking

parameters in the data collected in this study. Research

question A was verified in various cases. In nighttime condi-

tions, RL, the determinator for retroreflectivity, was found to

be a consistent predictor for both contrast and edge intensity

of white road markings captured in camera images, regardless

of the road's condition being dry, moist, or wet. The results

regarding the contrast-based parameters align with findings

from closed track tests. In Burghardt et al. (2023) and Pike et al.

(2019), RL also proved to be a consistent predictor for image

contrast. Additionally, RL was effective in predicting contrast

in the studied LiDAR point clouds under dry or moist

conditions, applicable during both day and night.

This confirms the results found in Burghardt et al. (2021b),

which also noted that LiDAR systems struggle to distinguish

wet road markings from the road surface. This consistent

finding underscores the need for further improvements in

LiDAR technology or complementary methods to enhance

detectability under wet conditions.

However, there were limitations to the correlation asked

for in research question A. Under wet conditions, RL proved to

be an inconsistent predictor for contrast in LiDAR point

clouds, as evidenced by the linear model's lack of significant

deviation from a constant model. This indicates that the

LiDAR technology used is more negatively influenced by

wetness than the camera employed in the investigation. This

conclusion concurs with Burghardt et al. (2021b), where LiDAR

also showed weaknesses at distinguishing wet road markings

from road surface. One should observe here that RL measured

under the conditions of wetness (usually referred to as RW)

could provide more valid parameter; it was not assessed

within the scope of this study.

It is important to note that these results are based on tests

conducted on straight road segments. The results may not be

applicable to curved roads, where altering viewing angles can

significantly affect detectability. Furthermore, the study did

not account for adverse weather conditions beyond light rain,

such as heavy rain or snow, nor did it consider adverse

lighting conditions like glare from other vehicles, low sun, or

streetlights.
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Additionally, it was noted that Qd-contrast, the contrast of

the determinant for daylight visibility, is an unreliable pre-

dictor for camera contrast or other camera-based MD pa-

rameters. This is unexpected considering that Qd is also

measured with the 30 m-geometry and uses the same prin-

ciple and unit of a luminance coefficient. A likely explanation

for Qd-contrast being an unreliable predictor is that the

maximum pixel intensity of the imaged road markings was

reached across the entire dataset, which agrees with the

outcome from unrelated research (Burghardt et al., 2023). This

implies that beyond a certain threshold of the camera

settings, increasing Qd does not enhance contrast in a

daytime camera image. It is plausible that this threshold of

saturation has been surpassed within the dataset of this

study. Considering that the lowest Qd value in the dataset

was 124 mcd/lx/m2, which is well above the recommended

threshold value for renewal according to German guidelines

(104 mcd/lx/m2), it is suggested to repeatedly apply the

method for road markings with lower Qd values, which are

closer to the renewal threshold, in future research.

Yellow markings were exclusively analysed in nighttime

conditions due to the absence of Qd data. However, under the

environmental conditions analysed and based on the dataset

used, no correlations could have been established for any of the

MD parameters applied. One potential explanation for this

outcome is that the MD parameters were assessed based on the

positive range within the b-channel of the lab-colour space.

This implies that the retroreflectivity of yellow road markings

may not necessarily correlate to their colour intensity, which

agrees with the findings in Burghardt et al. (2019).

4.2. Research question B

4.2.1. Understanding road marking detectability through

MDGradient and MDEdge analysis

Research question B focused on the necessity of a multi-

parameter approach, featuring MDGradient and MDEdge, to

address the limitations of relying solely on image contrast

analysis and off-the-shelf machine vision systems for detect-

ing road markings. While off-the-shelf systems offer realistic

analyses (Marr et al., 2020; Pappalardo et al., 2021; Pike et al.,

2018a, 2018b), their complex image processing and

ambiguous feature utilization make results hard to interpret,

as highlighted in Marr et al. (2020). Image contrast analysis

(Burghardt et al., 2021b, 2023), despite its transparency, lacks

procedural depth by analysing only contrast as a feature.

MDGradient and MDEdge were introduced to bridge this

knowledge gap. MDGradient uses a unique image processing

method to assess road marking visibility against the sur-

rounding surface, similar to MDContrast,Cam but with a different

approach. Additionally, MDEdge extends the assessment

beyond just the marking's edge intensity to include compari-

sons with non-marking elements on the road to encompass

the entire road surface, providing a comprehensive view of

marking detectability. This multi-parameter approach aimed

to complement MDContrast,Cam and uncover aspects of MD of

road markings not captured by sole contrast analysis or the

use of off-the-shelf machine vision systems.

It can be observed that the correlation between MDEdge

and RL in night and dry conditions was similar to that of

MDGradient with RL. This pattern also held for night and wet

conditions when looking at structured road markings.

However, for flat markings in wet conditions, RL was not a

reliable indicator for MDEdge, though it continued to accu-

rately predict MDGradient outcomes; as mentioned earlier,

correlation with RL measured in wet conditions could be

more accurate. This is supported by data in Table 4, which

shows that specular reflections, like those from traffic

signs, mainly occur in night and wet conditions, as seen in

row 3 of Table 4. In contrast, during night and dry

conditions, see row 2 of Table 4, there is a minimal

presence of specular reflection sources, as it has been

described in reference (Saint-Jacques and Br�emond, 2023).

Road markings at night stand out from their surroundings

due to its retroreflection properties, a fact noted in

Burghardt et al. (2020). Yet, as Table 4 and Burghardt et al.

(2023) showed, cameras face challenges distinguishing

between specular and retroreflective reflections. This

difficulty in differentiating reflections in wet conditions

highlights the need for a parameter like MDEdge, which

Table 8 — Ranked MD parameter performance in different environmental conditions.

Sensor MD

parameter

Environmental condition and marking type

White flat marking White structured marking Yellow marking

Night/

dry

Night/

wet

Day/

dry

Day/

moist

Night/

dry

Night/

wet

Day/

dry

Day/

moist

Night/

dry

Night/

wet

Day/

dry

Day/

moist

Camera MDContrast,Cam ▼▼

▼▼

▼▼

▼

▼▼ ▼▼ ★★

★★

★★

★

★★ ★★ ▲▲ ▲ ▲▲

▲▲

▲▲

▲▲

MDGradient ★★

★★

★ ★★

★

★★

★

▲▲

▲▲

▲ ▲▲

▲

▲▲

▲

●● ● ●●

●●

●●

●●

MDEdge ▲▲

▲▲

▲ ▲▲

▲

▲▲

▲

●●

●●

● ●●

●

●● ▼▼ ▼ ▼▼

▼▼

▼▼

▼▼

LiDAR MDContrast, LiDAR ●●

●●

● ●●

●●

●●

●●

▼▼

▼▼

▼ ▼▼

▼▼

▼▼

▼▼

— — — —

Note: conditions are ranked within every MD parameter for each marking type; four identical symbols denote the best-performing condition, one

symbol denotes the worst-performing condition, and a dash (—) shows that the condition was not analysed; to prevent confusion between marking

types, the symbol assignment changes with the marking type; for the white flat marking, ▼ = MDContrast, Cam, ★ = MDGradient, ▲ = MDEdge, ● =

MDContrast, LiDAR; for the white structured marking, ★ = MDContrast, Cam, ▲ = MDGradient, ● = MDEdge, ▼ = MDContrast, LiDAR; for the yellow marking, ▲

= MDContrast, Cam, ● = MDGradient, ▼ = MDEdge, as the LiDAR parameter was not analysed, no symbol is shown; symbol counts show relative

performance only within the same MD-parameter and marking type group; do not compare counts across different rows or columns.
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quantifies the problems specular reflections add to the task

of road marking detection.

4.2.2. Performance of MD parameters in different conditions

To consequently investigate into research question B, the

performances of the MD parameters obtained under different

environmental conditions were compared among each other

in different environmental conditions. Given that research

question B states that MD performance for road markings

could not be fully captured by image contrast analysis alone, it

was expected that the performance of the MD parameters

would differ under various environmental conditions.

The performance of MD parameters is ranked in Table 8,

which compares the mean values from Tables 5 and 6. For

every combinations of MD parameter and marking type

separate comparisons were conducted between the MD

performances in different environmental conditions. The

ranking was explicitly not applied between the MD

parameters, nor between the marker types. The condition

were the MD parameter performed best was given a 4-

symbol rating, while the lowest received a 1-symbol rating.

If two conditional mean values differed to a maximum of 5%

from the common average, they were assigned the same

rating to account for marginal differences. The validity of

these rankings will be explored in the subsequent paragraphs.

The analysis of MDContrast,Cam showed that white road

markings, either structured and flat ones, were more visible

against the road at night than during the day, regardless of the

weather being rainy or dry. This outcome was expected for dry

conditions, as RL typically augments the contrast that is usu-

ally achieved with Qd. This was expected because asphalt and

concrete, which compromise road surfaces, are not designed

to retroreflect light and appear black; in daylight conditions,

road surfaces rather appear grey. To best of our knowledge,

there are no standards that would define maximum or even

any photometric properties of road surfaces. However, most

international and national standards suggest similar mini-

mum levels for RL and Qd. Furthermore, MDContrast,Cam

confirmed that road markings are more easily detected at

night in dry conditions than in wet conditions or during

daylight in dry conditions.

In terms of MDContrast,Cam, yellow markings outperform

white ones, as observed in Tables 5 and 6, despite yellow

markings having significantly lower RL. The reason for this is

that the yellow markings were assessed based on the positive

range of the b-channel of the lab-colour space. In other words,

the yellowness of the marking is compared to the yellowness

of the road surface. Since road surfaces usually do not have

colour components, coloured markings make a very good

contrast, as already suggested in Storsæter et al. (2021b).

Yellow road markings show a distinct contrast advantage

during the day, which diminishes at night, as indicated by their

MDContrast,Cam performance shown in Table 8. As highlighted in

Storsæter et al. (2021b), the retroreflected light of many yellow

marking products appears less yellow compared to their

appearance under diffuse illumination. One possible

explanation for this is that only the colour appearance under

diffuse illumination is standardised by a standardised

colorimetric locus. Following the principle of subtractive colour

mixing, colouring a surface basically reduces its brightness

compared to a white surface, which reflects all part of the

light. Since there is no standard for colour appearance of

retroreflected light, but requirements for total brightness (RL)

still apply, yellow markings are often only coloured yellow at

the top surface of the plastic. They lack colour at the surface

areas below the embedded glass beads, which are mainly

responsible for retroreflection. Given that yellow markings

strongly contribute to MD due to the enormous contrast in the

lab-color space, standards lacking requirements of a

colorimetric locus in retroreflective scenarios should be

reconsidered. With nothing else on the road surface but road

markings being coloured, resulting in very high contrasts,

coloured markings become a viable alternative to white

markings, especially for daytime detectability.

Thus far, MDContrast,Cam has been discussed in detail. To

address research question B, the findings regarding MDContrast,

Fig. 4 — Comparative quotients of MD parameters for flat and structured white marking. (a) Ratio of MDContrast,Cam to

MDGradient. (b) Ratio of MDGradient to MDEdge.
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Cam are now opposed to those of MDGradient, MDEdge, and

MDContrast, LiDAR. The data indicates that daytime is the most

challenging condition to detect white markings, as shown in

Table 8, with night and wet conditions being less

challenging, and night and dry conditions presenting the

least difficulty. When examining Table 8 for MDGradient and

MDEdge, the order of performance changes compared to

MDContrast,Cam. Daytime conditions generally allow for better

camera detectability than night/wet conditions, but are

surpassed by night/dry conditions. This shift in ranking can

be explained by examining the results and images more

closely. Notably, night/wet conditions fall behind day/dry

conditions mainly because wetness tends to blur the edges

of markings, making them appear less sharp in camera

images.

Proceeding to the LiDAR sensor, MDContrast, LiDAR, shows

consistent performance in both night/day and dry/wet con-

ditions. It benefits from the retroreflective properties of road

markings during the day as well as at night, leading to its

performance being roughly three times higher than that of

MDContrast,Cam in daytime conditions, as shown in Tables 5 and

6 However, under wet conditions, the LiDAR performs at a

similar level to the camera in daytime. Concurrently, the

camera performs significantly better in night/wet conditions,

three to five times higher than the LiDAR. This difference is

significant even considering that MDContrast,Cam is by far the

best performing camera based parameter. LiDAR addresses

the camera's limitations by enhancing marking detection

during the day and complements the camera well in night/dry

conditions. However, in wet conditions, the LiDAR might

struggle to contribute to road marking detection, meaning

that the focus in wet conditions is on camera detectability.

Regarding research question B, a clear advantage of a multi-

parameter or multi-sensor approach was demonstrated.

4.2.3. Quantitative analysis of MD parameters in different

conditions

To further investigate whether a multi-MD-parameter can

reveal more about road marking detectability than just ana-

lysing image contrast alone, MDContrast,Cam and MDGradient as

well as MDGradient and MDEdge are compared across night/dry,

night/wet, and day/dry conditions in Fig. 4(a) and (b).

Specifically, Fig. 4(a) displays the quotient of MDContrast,Cam

and MDGradient in different conditions for flat and structured

white markings. In contrast, Fig. 4(b) illustrates the quotient

of MDGradient and MDEdge under the same variable conditions.

These figures are crucial in evaluating whether the MD

parameters exhibit differences when image contrast is not

the sole factor considered in the analysis.

The quotient analysis has been conducted as follows: if the

parameters exhibit identical performance across different

conditions, the resulting quotient will remain constant, indi-

cating that a single parameter is sufficient to characterise MD.

However, the data shows otherwise, with two observations

emerging from Fig. 4(a).

(1) The ratio of MDContrast,Cam to MDGradient is higher in

nighttime conditions than in daytime.

(2) Wet conditions register a higher quotient than dry

conditions during the night.

These observations lead to two conclusions from Fig. 4(a)

that contribute to the conclusions drawn from Table 8 thus

far. Firstly, when relying solely on contrast values and not

considering the intensity gradient between road marking

and road surface, the camera's detectability of road

markings is overestimated during the night compared to the

day. Secondly, this overestimation is more pronounced in

wet conditions than in dry conditions, particularly for

structured markings. Both conclusions can be explained by a

difference in the sharpness of the marking edges in the

camera images. The higher the quotient in Fig. 4(a), the

blurrier the markings edges appear in the camera images.

Relative to the contrast, the least sharp edges are found in

night/wet conditions, followed by night/dry. The sharpest

edges are found in daytime conditions.

Contrast is often used to measure how well camera images

can detect the edges of road markings, as mentioned in

Burghardt et al. (2020, 2023). However, the findings reveal

that relying solely on contrast does not always work well

across different conditions. This is because the detectability

of a road marking edges in an image depends not just on

contrast but also on how clear or blurry the edge looks.

Considering that the gradient intensity of a marking's edge

is not solely determined by its contrast but also by the

blurriness of the edge's appearance in the image, the quality

standards for image contrast required for safe detection vary

significantly with changing environmental conditions

analysed in this study. Following the discussion, night/wet

conditions demand the highest camera contrast to realise

the same gradient intensity of marking edges, succeeded by

night/dry, day/dry, and day/moist conditions.

Now that the advantage of MDGradient is discussed, the

benefit of MDEdge is analysed next. As previously stated,

MDEdge provides a more comprehensive analysis by encom-

passing the entire road surface, whereas MDGradient concen-

trates exclusively on the edges of the markings. If the ratio of

MDEdge to MDGradient remained constant across different con-

ditions, it would imply that the edge intensities of non-

marking objects change in correlation with those of road

markings, making it unnecessary to consider the wider road

surface. However, the data demonstrates that this is not the

case, leading to two observations from Fig. 4(b).

(1) The ratio of MDEdge to MDGradient is higher in nighttime

conditions than in daytime.

(2) This ratio is lower for flat markings when evaluated in

wet conditions.

Accordingly, two conclusions can be drawn from Fig. 4(b).

By solely looking at the marking and its closest surroundings

rather than at the whole street, camera detectability is (1)

overestimated in daytime conditions compared to nighttime

conditions and (2) overestimated in wet conditions

compared to dry conditions at night, especially for flat

markings. Both conclusions can be explained by a varying

presents of non-marking edges in the camera images. The

lower the quotient in Fig. 4(b), the more a marking detection

in the camera image might be distracted by false positive

detection. The most distracting non-marking edges are

found in daytime conditions, followed by night/wet
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conditions. Hardly any non-marking edges can be found in

images taken under night/dry conditions.

The common approach of assessing marking detection in

images by focusing solely on the marking and its adjacent area

has proven to be inadequate when environmental conditions

vary. This explains why different studies show inconsistent

recommendations, as highlighted in Pike et al. (2018a). Since

detectability is contingent on factors beyond the properties

of the road marking itself, the established quality standards

of road markings seem to require significant adjustment to

accommodate different environmental conditions and

roadway surfaces.

5. Conclusions

The study investigated into the MD of road markings under

varying conditions. It proposed a transparent signal process-

ing metric to determine the MD of road markings. This metric

includes a new set of MD parameters that evaluate the input

quality for common feature extraction methods, such as

thresholding, edge detection, and ridge detection. The

following specific conclusions could be drawn.

• Research question A, which asked for correlations between

MD parameters and common photometric road markings

parameters, was partly verified. In nighttime conditions, RL

was proved as a reliable predictor for MD in camera images,

regardless of surface wetness.

• In addition, RL has also been found to be a good predictor

for contrast in LiDAR point clouds under dry or moist

conditions, during both nighttime and daytime. However,

in contrast to its performance with camera-based detec-

tion, RL is an unreliable predictor for LiDAR contrast in wet

conditions; it is likely that the use of RL measured under

wet conditions would be more appropriate.

• Additionally, Qd of road markings could not have been

proven as a predictor for MD in daytime conditions, which

might be explained by a saturation effect where increasing

Qd does not correspond to increased contrast in camera

images. This suggests that the research into Qd may need

reevaluation, using low Qd road markings.

• The study demonstrated that different parameters, such as

contrast, gradient, and edge detectability, perform variably

under diverse environmental conditions. This highlights

the advantages of using multiple MD parameters to assess

road marking detectability comprehensively.

• Relying solely on one parameter, like image contrast, can

lead to inaccurate assessments, either overestimating or

underestimating the MD of road markings. This helps

explain the inconsistencies in recommendations for min-

imum quality levels across different studies, underscoring

the need for a multi-parameter approach.

• Furthermore, the proposed multi-parameter approach

provides a more consistent and realistic method for

advancing research into minimum standards for road

marking quality. Such approach not only facilitates the

investigation of various effects and phenomena relevant to

safe road marking detection, including false-positive

detections, but also offers practical implications for future

research and application.

• To establish robust and demand-oriented road marking

standards, it is recommended to apply to apply the multi-

parameter approach to a broader and more diverse

dataset, incorporating more challenging scenarios such

as curved roads with altering viewing angles and limited

viewing distances; severe weather conditions, such as

heavy rain, swirling spray from vehicles, fog, and snow;

and the influence of adverse lighting conditions,

including glare from other vehicles, low sun, and

streetlights.

Ultimately, the study advocates adjusting quality stan-

dards of road markings to match specific environmental and

road surface conditions, ensuring road markings are effec-

tively detectable. For the safe integration of automated

driving systems, car manufactures and road operators need

to collaborate further on defining ODDs in a manner that

enables demand-oriented and validated operation of roads

ODs for automated vehicles. The study emphasises the ne-

cessity of situational and dynamic standards over static

ones to accurately reflect the complexities of real-

world driving environments and maintain consistent

detectability.
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