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Preface

Quantum computing emerged at the intersection of classical computing and quantum mechanics.
While Alan Turing laid the foundations for programmable machines in 1936, it was the invention
of transistors in 1947 that got computers into our daily lives. In the 1960s, Gordon Moorepredicted
that the computational power will double every year for a constant cost. But as the electronics
got smaller and smaller, quantum effects began to hinder this progress. To efficiently simulate a
quantum process, Richard Feynman proposed using machines that follow the rules of quantum
mechanics. David Deutsch formalized the concept of a universal quantum computer. In 1994,
Peter Shor developed an algorithm capable of factoring large numbers exponentially faster than
classical system. Since then, quantum computing has evolved from theory into a rapidly advan-
cing field, with quantum processors now being developed by leading research institutions and
technology companies. This year, nearly a century after Turing’s foundational work, we celebrate
the International Year of Quantum Science and Technology.

The search for the best quantum computing platform has lead to numerous candidates among
which semiconductor spin qubits stand out for their scalability and coherence times. These spins
are governed by spin-orbit interaction (SOI) that can be used to manipulate them. The SOI could
also turn out to be detrimental for coherence effects. The g-factor is an important quantity which
gives us a direct access to the SOL In this thesis we provide a general introduction to quantum
computing in chapter 1. Chapter 2 establishes the basics of semiconductor physics and some cru-
cial concepts of group theory following closely the books ‘Fundamentals of Semiconductors’ by
Yu and Cardona, ‘Group Theory and its Applications in Physics” by Inui and ‘Group Theory: Ap-
plication to the Physics of Condensed Matter” by Dresselhaus. Chapter 3 explains the details of
semiconductor spin qubit architectures and follows the lecture notes of the Spin Qubit Platforms
by University of Basel.

The rest of the thesis is based entirely on the work done during this PhD and summarizes the
main results obtained during the course. In chapter 4, we present a theoretical framework for the
g-factor which is in fact a tensorial quantity. We show topological effects in bulk groups IV /III-IV
semiconductors such as silicon, germanium, gallium-arsenide which are guaranteed by the un-
derlying symmetry in a larger class of materials. Chapter 5 illustrates the figures showing these
topological effects. Both chapters 4 and 5 are based on the publication - g-factor symmetry and to-
pology in semiconductor and band states - that resulted from this work. Chapter 6 delves deeper

into the orbital effects and illustrates where they come from.
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Quantum Computing

1.1 Introduction

Quantum computing is an emerging field that applies the principles of quantum mechanics to
perform difficult computation. It exploits the quantum phenomena of superposition and entan-
glement to process information in new ways, offering exponential speedups for certain compu-
tational tasks. A variety of physical platforms - from superconducting circuits and trapped ions
to topological qubits - are being developed to realize these machines, each presenting its own
unique advantages and challenges. This chapter introduces the foundational concepts, mathem-
atical framework, and physical architectures that have shaped the rapid development of quantum

computing.

1.2 Qubits

Analogous to a classical bit, the fundamental unit of quantum information is the quantum bit, or
qubit. Unlike a classical bit which can be in only one of two states (0 or 1), a qubit can exist in a
linear superposition of the basis states |0) and |1):

) = a|0) +B[1), (1.1)

where a and B are complex probability amplitudes satisfying |a|> + |8|> = 1. These squared
magnitudes represent the probabilities of measuring the qubit in state |0) or |1), respectively. The

basis states are orthogonal and correspond to the two levels of a physical quantum system. We
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can also define these states on a Bloch sphere,

) = (cos (5) 100 +sin (3) 1)) (12)

with 6 and ¢ are the polar and the azimuthal angles of the vector representing the state. The
state |0) is shown in fig.1.1. Eq.1.1 shows a single qubit state. For a system with multiple qubits,

|0)

1)

Figure 1.1: The Bloch sphere representation of the state |0). This corresponds to = 0. The basis states |0)
and |1) lie on the poles of the Bloch sphere. The image was created using a Bloch sphere simulator [1].

the state space is a tensor product of the individual qubit state spaces, H, = C2". Forn = 2,
[¥) = 75 (101)102) + [11) [12)) = 5 (|00) + [11)).

The quantum states can also be represented in a matrix form, p = |} ¢| such that Trp = 1.
This is particularly useful for states that are mixtures of pure states. A mixed state can be identi-
fied as Tr p?> < 1. When two subsystems A and B make up the composite system AB described by
the density matrix p4p = pa ® pp, we can find the density matrices of each of the subsystem by
partially tracing out the other, Trg pap = pa or Trg pap = p5-

States that cannot be described independently of one another are said to be entangled. Entan-
glement is an exclusive feature of quantum mechanics. One way to measure the degree of entan-
glement of a single qubit is using the von Neumann entropy, S(p) = Tr (plog,(p)). Entanglement
in two-qubit and three-qubit systems is quantified using concurrence and tangle, respectively.

However, we will not delve into these measures in detail here.
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1.3

Quantum Gates and circuits

Quantum gates are the fundamental building blocks of quantum circuits, analogous to classical lo-

gic gates but they operate under the principles of quantum mechanics. They manipulate quantum

states through unitary operations, as a result they are reversible. Quantum gates can act on one,

two, or more qubits, allowing for operations such as superposition, entanglement, and interfer-

ence. In what follows, we introduce the basic single-, two-, and three-qubit gates that form the

basis of quantum computation.

1.3.1 Single qubit gate

Gates can be applied on a single qubit which amount to a rotation of the state. The most common

single qubit gates are:

The X gate, or the NOT gate which rotates the state around the x-axis, X |0) = |1).
The Y gate is a rotation by 7t around the y-axis. Y (\% (10) + |1>)) = \% (10) — |1)).
The Z gate which rotates the state by 77 around the z-axis such that, Z |1) = — |1).

The phase shift gate P(¢) modifies the phase of a quantum state, P(¢) |1) = ¢¥ |1). Some
specific examples of the phase shift gates are the S = P(7r/2) and T = P(7t/4) gates.

An important gate to bring a state in and out of superposition is the Hadamard gate, H (H |0)) =
1
H (5!

lowed by a rotation by 7t around an x-axis.

|0) + |1))> = |0). It can be summarized as a rotation around by 71/2 the y-axis fol-

| 0>

Figure 1.2: The X and Y gate actions on the state |0) along the Bloch sphere (image from [2]).
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[ 1> 1>

Figure 1.3: The Z and H gate actions on the state |0) along the Bloch sphere (image from [2]).

1.3.2 Two qubit gates

It is not enough to rotate the qubits around the Bloch sphere. To perform useful computation they

must also interact. The commonly used two qubit gates are:

¢ The controlled-NOT gate or the CX gate performs a NOT operation on the second qubit
when the first qubit is in the state [1), CNOT |10) = |11). The first qubit acts as a control.
The CNOT gate creates entanglement between the two states. Consider the control qubit to
be in a superposition and the target qubit to be in the 0 state, |¢) = % (10c0¢) + |1:0¢)) =
\L@ (100) + |10)), after applying CNOT we get a maximally entangled state also known as a
Bell-pair, CNOT |¢) = \/% (]00) + |11)).

* The controlled-Z gate or the CZ gate performs a z-rotation on the second qubit when the
first qubitis |1), CZ |11) = — |11).

e The SWAP gate is also an important gate which swaps two qubits, SWAP |10) = |01).

1.3.3 Three qubit gates

The quantum Toffoli gate or the CCNOT gate acts as a NOT gate on the third qubit only if the first
and the second qubits are in |1) state, CCNOT |110) = |111).

A universal gate set consists of quantum gates from which any quantum operation can be con-

structed. Some commonly used examples of such universal gate sets include,
e The rotations Ry (), Ry (), R;(8), phase shift P(¢) and CNOT.

¢ The Clifford set of gate + T gate.
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* The Toffoli gate + the Hadamard gate.

1.4 Quantum algorithms

A quantum algorithm is a step-by-step computational procedure executed on a quantum com-
puter that uses fundamental quantum phenomena such as superposition and entanglement. These
algorithms are typically represented using quantum circuits composed of qubits and quantum
gates. Quantum algorithms can be categorized based on the techniques they employ - such as
quantum phase estimation, the quantum Fourier transform, quantum walks, or amplitude amp-

lification - or by the classes of problems they aim to solve [3].

The Deustch-Jorzsa algorithm [4] is one of the earliest known quantum algorithm that demon-
strates a quantum speed-up [5]. The algorithm address the problem of determining whether a
function is constant e.g. for all inputs the function outputs either 0 or 1, or it is balanced i.e half of
the inputs are mapped onto 1 and the other half are mapped onto 0. A classical algorithm would
require 2" evaluations for an n-bit function to determine whether it is constant or balanced while

the Deutsch-Jorzsa predicts with only one evaluation.

Another example of a quantum algorithm is Shor’s algorithm [6] which finds the prime factors of
a composite number in polynomial time. It uses a technique called quantum Fourier transform
to find the period of a function which, along with other steps, leads to the factorization of the

number. It is also one of the earliest examples of computational advantage.

Grover’s algorithm [7] searches a database with N entries using only O (x/ﬁ ) queries as op-
posed to O (N) that a classical algorithm requires. This algorithm uses amplitude amplification.

1.5 Decoherence

One of the primary challenges in building practical quantum computers is decoherence. It refers
to the process by which a quantum system loses its quantum behavior due to interactions with
its surrounding environment. It marks the transition from a coherent quantum state to a classical
probabilistic mixture destroying the quantum information. There are two typical mechanisms
through which decoherence affects the qubits: relaxation and dephasing. Both of these processes

are irreversible unlike quantum gate operations.

1.5.1 Dephasing

Dephasing is a process in which a system loses its quantum coherence to the environment. The

qubit loses its ability to be in a state of superposition. The characteristic time scale for decoherence
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is Tz.

1.5.2 Relaxation

The process by which the qubit spontaneously relaxes from an excited state |1) to the ground state

|0) losing energy to the environment. The characteristic time to do so is called T; time.

1.6 The DiVincenzo criteria

Before examining the physical implementations of quantum computing, it’s important to under-
stand the criteria that a physical device must satisfy. These criteria were outlined by David DiVin-
cenzo in 1996 [8]. DiVincenzo summarized five key conditions for the quantum computer itself,
as well as two additional conditions for the implementation of quantum communication, which

are as follows (sr. Wikipedia):
1. A scalable physical system with well characterized qubits.
2. The ability to initialize the state of the qubits to a simple fiducial state.
3. Long relevant quantum coherence times.
4. A “universal” set of quantum gates.
5. A reliable measurement capability.
The other two conditions are:
1. The ability to interconvert stationary and flying qubits.
2. The ability to faithfully transmit flying qubits between specified locations.

The DiVincenzo criteria provide a comprehensive framework for evaluating whether a system
can be a candidate for quantum computing. Meeting these conditions is essential for building
reliable quantum computers that can perform meaningful computations on larger scales. While
significant progress has been made in implementing these criteria, challenges remain in realizing

them in practical applications.

1.7 Physical models

We have come a long way from conceptualising to realising quantum computers. In this section

we mention briefly the popular candidates for quantum computation.
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1.7.1 Superconducting qubits

In a superconducting quantum computer, the most popular type of qubit is a transmon [9], a
Josephson junction in parallel with a capacitance and a current-bias. This acts as an anharmonic
oscillator creating a two level system that can be controlled with microwave pulses. The operating
temperatures of a transmon are between 10 to 20 mK. Highest achieved T; relaxation time is 0.95
ms and T, dephasing time is 1.15 ms [10]. The gate execution times for superconducting qubits is
tens of nanoseconds. The fast gate operation times make them an attractable platform. This is the
architecture adopted by companies like Google, IBM, Rigetti.

1.7.2 Trapped ion quantum computing

There are two predominant ways to form qubits out of trapped ions (usually Ca™ or YbT): a
system of two groundstate hyperfine levels; or a system of a ground and an excited states [11].
These are controlled by lasers and operate at micro-Kelvin temperatures. Coherence times for
trapped ions can be in the order of a few minutes. But the gates times are slower, they are between
a few yus to a few ms. Trapped ions have very high gate fidelities and long coherence times but
their gates are slow and scaling a trapped ion system is non-trivial. Companies such as IonQ,

Quantinuum and Alpine Quantum Technologies are developing such architectures.

1.7.3 Semiconductor quantum computing

Another way to encode quantum information is using electron/hole spins in semiconductors.
These are controlled by microwaves and voltage pulses and operator between 10 and 100 mK.
The highest recorded T; times are 6.3s and highest recorded spin dephasing times T, are 803us
[12]. The gate operation times are about 10-100 ns. Some of the biggest advantages of this system
is the potential scalability into CMOS technology which has been advanced to a high level now,
and also the long coherence times. Some of the biggest challenges that this architecture faces
is bottleneck of control electronics and coupling qubits over larger distances. Intel, along with
other start-ups such as Diraq and Quobly are pushing to make it the leading path to quantum

computing.

1.7.4 Neutral atom quantum computing

A neutral atom quantum computer is built out of Rydberg states of neutral atoms which are con-
trolled by lasers and optical tweezers. These operate at micro-Kelvin temperatures. Both the T;
and T, times for neutral atoms are in the order of seconds [13]. Neutral atom platforms exhibit
a flexible geometry, high connectivity and good gate fidelities. Some of the key challenges faced
by this platform are atom loss and the effect of laser noise. Despite these hurdles, companies like

QuEra and Cold Quanta are actively pursuing this promising architecture for quantum comput-

ing.
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1.7.5 Photonic quantum computing

Two level systems formed by the polarization or by the path-encoding of a photon are used as
qubits in a photonic quantum computing platform [14]. These can be controlled with linear optics
and single-photon detectors. Such qubits operate at room temperatures. The coherence times for
photons are long enough not only for computation but also for communication. Photons are easily
transmissible and one need not worry about decoherence with them. Photonic quantum comput-
ing has an advantage when it comes to integration of quantum communication with quantum
computing. Photons can be lost easily and it is hard to build two-qubit gate operations. This

architecture has been adopted by companies like Xanadu, PsiQauntum, QuiX.

1.7.6 Topological qubits

Yet another platform which is robust to noise through topology is topological quantum comput-
ing which utilizes Majorana zero modes as qubits. This field is still in early stages of research,
much remains to be still explored and understood.

1.8 Conclusion

This chapter has provided a brief overview of the current state of quantum computing. Significant
progress has been made over the past two decades for each of the quantum computing platforms
mentioned earlier. This thesis will focus primarily on semiconductor spin qubits. Other important
characteristics, such as qubit and gate fidelities, and measurement times, have been intentionally
skipped from this discussion. The following chapters provide a detailed introduction to semi-
conductors (chapter 2) and spin qubits (chapter 3) which will prepare the reader for the main
topic of the thesis which is the g-factors that proves to be an important variable when it comes to

manipulation of electron/holes spins.
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Semiconductors

2.1 Introduction

Semiconductors possess properties intermediate between conductors and insulators, making them
indispensable in modern electronics. They are used in microchips, processors, transistors, diodes,
solar cells, lasers, LEDs, and sensors, among many other applications. Their ability to regulate
electrical flow is what makes them essential for technological advancements. This chapter ex-
plores the physics of semiconductors, providing insight into why they are fundamental to mod-
ern technology.

The most well-known semiconductor is silicon (Si). Both silicon and germanium (Ge) crystallize
in a diamond-like structure, where each atom is surrounded by four nearest neighbors, forming
a tetrahedral arrangement. In addition to elemental semiconductors, compound semiconduct-
ors can be formed by combining two or more elements, such as GaAs (gallium arsenide), ZnS
(zinc sulfide), HgTe (mercury telluride), and PbS (lead sulfide). Oxides like CuO (copper oxide)
are also well-known semiconductors. Furthermore, semiconductors can be composed of organic
compounds, such as (CHy),, or magnetic elements, as seen in materials like Cdy_,Mn,Te. This
thesis primarily focuses on group IV semiconductors (Si, Ge) and the III-V compound semicon-
ductor GaAs. This introductory chapter is based on the books [1, 2] and the first two chapters of

[3].

11
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2.2 General theory of semiconductors

To understand the physics of semiconductors, we rely on various mathematical models, some that
are semi-empirical such as the tight-binding method, the k - p method, the pseudopotential ap-
proach, the orthogonalized plane wave method, and even ab initio techniques. In this chapter, we
explore the structural properties of semiconductors and introduce key group theory techniques
that facilitate the analysis of their optical properties. We also provide a detailed discussion of the
tight-binding method, which forms the foundation of the present work. The k - p method, on
the other hand, is employed in chapter 4 to analyse the electronic band structure and to derive

analytical expressions for the inverse effective mass tensor as well as the g-tensor.

The Hamiltonian for a perfect crystal is

plz €2Z]' 1 2 P; 1 EZZ]'Z]-/

e
H= -y oy Y L4 ,
; 21’}’11' ]; 47T€0|1"l' - R]| 2 i,gi 47T€()|1‘i — 1"1'/’ ; ZM] 2 A 47T€0’R]' — R]/‘

2.1)

J

He

where r; is the position of the i electron with the momentum p; and mass m;, R; the position
of the jth nucleus with the momentum P;, mass M; and the atomic number Zj, —eis the electron

charge and ¢ is the permittivity of vacuum, we do not consider the spin-orbit interaction yet.

Here, we apply two key approximations. First, we assume that the core electrons (those in filled
orbitals) can be grouped together with the nuclei, effectively treating them as a single entity.
Second, we invoke the Born-Oppenheimer approximation, which exploits the fact that ions are
significantly heavier than electrons and thus move much more slowly. As a result, the electrons
perceive the ions as effectively stationary. In a crystalline solid, we further assume that each elec-
tron experiences the same average potential V(r) which is periodic in nature. This leads to the
following Schrodinger equation for individual electrons,

H1o®p(r) = (% + V(r)) ®, = E,. (2.2)

The potential can be obtained either from first-principles calculations or through semi-empirical
approaches, where it is parameterised based on experimental data. Given that this potential is

periodic, the wavefunction ®,, can be expressed as a Bloch function,

Oy (1) = ug(r)e*, (2.3)
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where k are the wave vectors and 1y, is a periodic function with the periodicity of the crystal. If
we translate r with a vector R which corresponds to the periodicity of V,

Tr®Pi(r) = @ (r + R) = up(r)e® R = @ (r)e* R, (2.4)
Thus, @i (r) is also an eigenfunction of Tg and Tg and H1, commute.

In periodic crystals, R is expressed in terms of the primitive lattice vectors, which define the
positions of all lattice points within the crystal. The primitive lattice vectors of a face-centered
cubic (fcc) lattice are,

40 4o 4o 4o 40 4o
a) = (E’ E!O> , a2 = (?/0/ E) , a3 = (0/ ?/ E) ’ (25)
where aj is the length of the unit cell. The reciprocal lattice vectors are defined by,

ajxak

b; =2 (2.6)

T
(a1 X 112) - as

Figure 2.1: Brillouin zone of an fcc lattice. The special points and the special directions (indicated by the
Greek letters with the exception of I') are shown in the figure.
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The wave vector k is represented as a point in reciprocal space. The first Brillouin zone is the
smallest polyhedron in k-space, defined by the Bragg planes. For an fcc lattice, the special points

of the first Brillouin zone are,

e I': the center of the Brillouin zone,

K: the midpoint of an edge connecting two hexagonal faces,

L: the center of a hexagonal face,

U: the midpoint of an edge connecting a hexagonal and a square face,

¢ W: a corner point,

X: the center of a square face.

The high-symmetry directions in the Brillouin zone include, A (between I' and X), X (between I’
and K), A (between I' and L). These directions are significant as they exhibit a high number of
symmetry operations and are also known as special directions. Fig.2.1 illustrates these special
points and the symmetry directions in the first Brillouin zone of a fcc lattice. If two wave vectors,
k and k' are related by a symmetry operation, the eigenenergies must be equal at these points.
For example, since an fcc Brillouin zone has six square faces with centers at X, the energy at all six
X points is identical.

In the next section, we examine the symmetry operations relevant to the crystal structures of
the semiconductors considered in this work. We introduce concepts from group theory, which
provide the framework for understanding how wavefunctions and operators transform under

the symmetries of the crystal lattice.

2.3 Groups and their representation

To develop a deeper understanding of semiconductors, we first introduce the fundamental con-
cepts of group theory. These group-theoretical methods will be essential in later chapters, where
they will be used to establish relationships between the g-factor (or more precisely, the g-tensor)
and quantum information—the central focus of this thesis. In this chapter, we emphasize the role

of underlying symmetries in physical systems.

2.3.1 Groups and symmetry

A symmetry is a transformation that maps an object onto itself preserving all of its structure. A
group is a collection of transformations that remains invariant under a set of same symmetric

operations. A group must satisfy the following four properties:
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1. Closure: let a,b € G, then any operation ‘0’ defined on the group must return aob € G.
2. Associativity: (aob)oc=ao(boc).
3. Identity: the group must admit an element e such thateoa = a,Va € G.

4. Inverse element: the group must admit an element such thata='oa =¢,Va € G.

2.3.2 Cosets and classes of a group

An element B of a group G is a conjugate element of A if there exist an element G such that
B = GAG™!. A is also said to be a conjugate of B. The set of all elements that are conjugate to

each other is called a class. The unit element E always forms a class by itself.

Similarly, if the elements of the subgroup H are transformations GHG ™! for an element G of
the group G, then H is called a conjugate subgroup. A subgroup may not contain all mutually
conjugate elements but if GHG~! = H for all G then H is an invariant subgroup of G. And there-
fore, invariant subgroups must consist of classes. Using a subgroup H, one is able to obtain a
right (left)-coset of a group G by multiplying the element G; that does not belong to H to its right
(left), HG1 (G1H). Multiplying another element G, which belongs to neither 7 nor H Gy, one can

obtain another right (left)-coset. One can thus create a right-coset decomposition,
Gg=HG +HGy + ...+ HG,, (2.7)

or a left decomposition,
G=GH+GH+..+GH. (2.8)

If the left and the right cosets of a group are equal to each other GH = HG, then H is an invariant
subgroup of G.

2.3.3 The SO(3) symmetry group

One of the simplest symmetry groups is the rotation group also denoted as SO(3). A rotation is
parametrized by an angle which determines the amount by which an object should be rotated and
an axis which passes through the origin around which the rotation must take places. It is isomet-
ric, preserves the origin and the orientation of the object. Since rotations are non-commutative,
they belong to the non-abelian group (groups whose elements are non-commutative). In other
words, the order in which a rotation is applied matters. Rotations are described by 3 x 3 or-
thogonal matrices acting on R®> whose determinant is 1. These are known as special orthogonal
matrices, hence the name SO(3). The most general form of a rotation matrix around an axis
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n = (ny, ny, nz) such that ni + nﬁ + n% = 1 by an angle 6 is [4],

n3(1—cosf) +cos®  nyny(l—cosf) —nysin® nun.(1—cos6)+ nysin
R(n,0) = | neny,(1—cos ) + n,sin 6 n§(1 —cos0) +cos®  nyny(1—cos) —nysinf
nynz (1 —cos0) —nysin @ nyn.(1—cos6) +nysin®  n2(1—cos6) + cos 6
(2.9)
Note that the eigenvalues of the rotation matrices are A = +1. The rotation group acts in the

spatial subspace of our semiconductors.

2.3.4 The SU(2) symmetry group

Another group acting on the vector space C? of an object is the special unitary group SU(2). The
action of this group on a complex vector is given by the unitary matrix of determinant 1,

U(x,y) = (_9; xy> , (2.10)

where x, y are two complex numbers with their complex conjugates, x*, y*, such that |x|? + |y|?> =
1.

We know that any matrix belonging to SU(2) can be written in terms of the Pauli matrices,

01 0 —i 1 0
ax:<1 0) oy = (i 0)(72: (0 _1>. (2.11)

One can then define a homomorphic mapping SU(2) — SO(3) : Uo;U" = 0jR;; [5] such that,

U(x,y)oU(x,y) = Re(x2 — yz)(fx — Im(x2 — yz)ay + 2Re(xif)0z,
U(x,y)oyU(x,y) = Im(x2 + yz)ax + Re(x2 + yz)ay + 2Im(x7)0,

U(x,y)o:U(x,y) = —2Re(xy)ox + 2Im(xy)oy + (|x|* — |y|*)c. (2.12)
or,
Re(x*> —y?)oy  Im(x*+y?)ox  —2Re(xy)oy
R(U(x,y)) = | —=Im(x*> —y*)o, Re(x*+y*)oy  2Im(xy)oy, |- (2.13)
2Re(xy)o: 2Im(xg)oz  (|x]> = |yl*)e=

This gives a direct relation between the matrices of SO(3) and SU(2). One can also see this
explicitly for a rotation in a Bloch sphere around an axis n = (1, ny, 1) by an angle § which is
given in terms of the generators of spin ([J,, J;] = i€up.J.) [6]. So for ] = o /2, the rotation is given
by U = e~3(n0) which, upto the first-order in Taylor expansion, is,

6 . :
U(n,0) =1cos= —i(n-0)sin= = S 0. . o
2 nysing —inysing  cos3 4 inysins

>

0 cos? —in,sin? —n,sin? —in,sin ¢
2 z 2 y 2 x 2. (2.14)



2. SEMICONDUCTORS 17

Recognising x = cosg —iny sin% and y = —(n, + iny) sin g, it is easy to recover Eq.2.9 by the

mapping defined in Eq.2.13.

2.3.5 Point groups and space groups

A point group is a collection of rotational operations that describe the symmetry both on a micro-
scopic level (as for a molecule) and on a macroscopic level (as for a crystal). These operations
leave a point fixed and the overall arrangement of a crystal unchanged. The total number of such
operations within the group is called the order of the group. Operations of the point group in the

Schoenflies notation are generally described as follows:

—

. E:identity operation

N

Cy: rotation through an angle 27”, the rotation axis is called an n-fold axis.

W

. I: space inversion, takes R to -R, R is the atom position.

4. ¢: mirror reflection, it has three kind of suffixes according to the properties of the mirror

plane.
5. 0y,: mirror reflection in the horizontal plane.
6. 0y: mirror reflection in the vertical plane.
7. 04: mirror reflection in the diagonal plane.
8. IC,: rotary inversion - rotation through 27” followed by inversion.

There are 32 crystallographic point groups in total. In this thesis, we focus on the cubic group,
which includes five crystallographic point groups: T, Ty, T;, O, and Oy,. These groups possess
the highest degree of symmetry and are particularly relevant to the crystallographic structures of
solids that play a crucial role in spin qubit fabrication.

Apart from the local rotation symmetry, crystalline solids also exhibit translational symmetry
i.e due to the periodic potential the electrons maintain the same wavefunction with respect to
all the lattice translations. The symmetry group of crystalline solids which includes both point
group symmetries and translation is known as a space group. Space groups can be classified into
two types - a symmorphic group consists of point group operations combined with primitive lattice
translations, a non-symmorphic group includes point group operations with fractional lattice trans-
lations. The space group of the diamond structure is non-symmorphic as it contains glide planes,

which involve a combination of reflection and fractional translation.
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2.3.6 Little groups

The little group, £ is a subgroup of the space group associated with a particular wavevector k
along a particular direction in the reciprocal lattice space. The operations of this group leave a
wavevector invariant (up to a reciprocal lattice vector). These include rotations, reflections and

possibly inversions.

2.3.7 Representations: reducible and irreducible.

Let G be a group with elements Gy, Gy, ..., G,. Then the set of matrices D(G1),D(Gy),..., D(Gy)
satisfying,
D(G;)D(G)) = D(Gy) (2.15)

for the corresponding relation between the group elements G;G; = Gy, is called a representation of
the group G and D(G;) is called a representation matrix. In other words a representation indicates

how the elements of a group act as matrices (or operators) on a vector space.

Representations are not unique. A new representation can be generated for example by a simple
unitary transformation UD(G)U~!. The representations D(G) and UD(G)U~! are said to be
equivalent. Another way of generating a representation is by combining two representations
DM(G;) and D G; in the following way,

= DI(G) @ DP(G)). (2.16)

D(G;) is a reducible representation. Note that the dimensionality of D(G;) is the sum of the
dimensionalities of DIY(G;) and DI (G;).
Basis of a representation
1, Y2, ..., P, is called a basis for a representation if
d
Gilpv = Z lpyDyv/ Gi€g, (2.17)
u=1

where 1, 1y, ..., P; are independent elements in a vector space.

Irreducible representations of a group

A representation that cannot be expressed in a block diagonal form, as shown in Eq. 2.16, or re-
duced through any similarity transformation, is called an irreducible representation. In Eq. 2.16,
the left-hand side represents a reducible representation, which has been decomposed into a direct
sum of two irreducible representations on the right-hand side. Unlike reducible representations,
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an irreducible representation cannot be further decomposed into smaller invariant subspaces.

Over the years, various notations have been adopted for representing group representations. The
Table.2.1 from [3] provides an example of the different notations used for the group T, In the

Koster notation | BSW notation | Molecular notation
'y It Aq
I I A
I's I'p E
Iy I'is Tz
I's I'>5 T;

Table 2.1: Conversion of different notations of single group representations from [3].

case of inversion symmetric groups, because of the parity of the wavefunction, sometimes the
notations can have a prime index, i.e. F’lz or a plus or minus sign, FZ ,I'7. In later chapters, we
will work with the Koster notation.

Let us consider the example of the group Oj,. At the I'-point, the representations are labeled as I';,
with an additional prime () or + sign indicating the parity of the wavefunction. Moving away
from the I'-point along the A-direction, the symmetry is reduced. In this case, the relevant little
group is C4,, meaning that the representation of Oj becomes reducible in this direction. It can be
decomposed into irreducible representations of Cy4,,, with the resulting representations labeled as
Aj,

[I‘;—doh = [Ay + A5]C4v .

Table.2.2 [1] shows the compatibility relations between these three representations for the group

(2.18)

Oy, using the BSW notation.

Iy T Tis T35 | Ty T T

AN VAV IR AV I A A+ As Ay +As | Ay | Ay | Ay +Ay | Ap+As Ay + As
A | Ao A A+ Az A+ A3 Ny | v A3 Ay + Az Ay + A3
Yq | g | X2y | XXzt (Lt XptXy | X | X3 | Xt X3 | Xotzt Xy | XXty

Table 2.2: The representation I'; decompose into the representation A;, A; and %; (in the BSW notation)
along the respective directions.

Unitarisation of Representations

A finite representation of the group G can always be transformed into a unitary representation,
which can then be used without loss of generality. This result is demonstrated in section 4.5.1 in
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the book [2]. Building on this along with the two key lemmas proposed by Schur, one can show
that the irreducible representations satisfy the following relation:

n

ZD}}") (G)*'DP(G) = ~-6,p04651 (2.19)
G

This is known as the “Wonderful Orthogonality Theorem”. Here 7 is the number of elements
in the group and d, is the dimension of the representation D). The xp on the right hand side
shows orthogonality for inequivalent representations as well. For proof, refer to section 4.5.4 [2].

2.3.8 Double group

So far, we have not taken spin into consideration. The double group is an extension of the point
group that accounts for half-integer spins (for example, electrons). The spins transform differently
under these group operations as they acquire a phase upon a rotation by 27 (c.f. Berry phase).
The operations acting on the spin elements of the SU(2) group can be determined by the mapping
shown in Eq.2.13. This will become important later on when we look at electrons (holes) of normal
semiconductors especially with a finite spin-orbit interactions. All the crystallographic point-
groups considered in this thesis are double-groups.

Irreducible representation of the double group

The double-valued representations show how spinors transform under the unitary operations of
the point group. The irreducible representation D(1/2) of the SU(2) rotation group has the matrix
form as described in Eq.2.14 of a rotation by an angle 6 around the axis n. A rotation R, by an
angle 6 and a rotation R by an angle 6 + 27t are physically the same but the two representations

are,
DI/2(R) = —DI/2(R), (2.20)

since a rotation by 27t changes the sign of the spin function as mentioned earlier. Hence this
representation is called double-valued representation. The unit element in this case is the pair {E, E}.
The group has twice the number of elements half of which are denoted by R = RE where R are
the elements of the original single group.

2.3.9 Characters and character tables

The character of a representation D is the trace of the representation matrix,

d
x(G) =Tr{D(G)} = }_ Dii(G). (221)
i=1

For example, the unit element is represented by the unit matrix, E. So its character x(E) is the

dimension of E. Due to its cyclic property, the trace remains invariant with respect to similarity
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transformations,

)
x(Gi) = x(Gj). (2.22)

As a result, the characters of equivalent irreducible representations are equal. Moreover, all rep-
resentations within the same equivalence class have the same characters. Characters of repres-
entations also obey the following orthogonality rules, the proof of which can be found in section
4.6.1 in the book [2].

1. For the characters x(*)(G), x(#)(G) of the irreducible representations D(*), D(F) respectively
with n group elements,

ZX(“)(G)*X(ﬁ)(G) = Nyp- (2.23)
G

One may also generalize this to hj elements in the class Cy, where n, is total number of
classes,

3" ™ (Co) " x B (Cr) = 1. (2.24)
k=1

2. The second orthogonality relation is for the character of the same representation but differ-

ent classes,
Ny

. n
Y xWe)x i) = Oijy. - (2.25)
a=1 1
The trace of a reducible representation, D = Y, ,DW is x(G) = ¥, qax (@) (G). n, is the number
of representations in the group and g, is the multiplicity such that g5, = dy, the dimenion of
the representation D(®),

A character table is formed with j columns which contain j number of symmetry classes and j
rows for j inequivalent irreducible representations of a group. Table.2.3 is the character table of
the double group T;. The above Eq.2.23, Eq.2.24, Eq.2.25 can be easily verified for the Table.2.3.
The character table has all the information needed for the discussion of the symmetries of rep-
resentation of a group. One can find the character tables for all other symmetry groups in [7].

2.4 Group representations in Quantum Mechanics

In the following, we explore quantum mechanical examples involving solids such as silicon, ger-

manium, and gallium arsenide to illustrate the group theory concepts introduced so far.
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Ty | {E} | {E} | {8Cs} | {8Cs} | 3{Ca} | {654} | {654} | {604} Bases

Iy 1 1 1 1 1 1 1 1 R or xyz

I, 1 1 1 1 1 -1 -1 -1 S+SyS:

I3 2 2 -1 -1 2 0 0 0 | (222 —x*—y?)

Iy 3 3 0 0 -1 1 1 1 V322 — )

Ts 3 3 0 0 -1 -1 -1 1 S+, Sy, S:

re | 2 | 2 | 1 1 0 | vZ | -v2| o0 #1/2,=172),
¢(1/2,1/2)

Ty 2 2 1 1 0 V2 | V2 0 T x Ty

$(3/2,-3/2),

rs | 4 | -4 | 4 1 0 0 0 o | P/HT2)
$(3/2,1/2)
¢(3/2,3/2)

2.4.1 Examples of group elements and little groups

Table 2.3: Character table for the double group Tj.

22

We show here the group elements of the point groups of silicon, germanium (Oy,) and gallium-

arsenide (Ty) in 2.4.1. Along the high-symmetry directions, the basis functions of T; transform

according to the representations of the corresponding little groups:

¢ A-direction: The basis functions belong to the little group Cy,.

¢ A-direction: The basis functions transform according to the little group Cs,.

¢ X.-direction: The basis functions follow the symmetry of the little group Cy,.

These little groups dictate the allowed symmetries of the electronic states along each direction.

The diamond and the zinc-blende structures

We will briefly outline the properties of the groups O, and Tj;. The zinc-blende structure consists

of an fcc where atoms of two different types are arranged alternately. This structure is illustrated
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in Fig.2.2, with the two atomic species represented as black and white atoms. The lattice constant

dly

Figure 2.2: Zinc-blende lattice with two types of atoms based on the four neighboring vectors.

is denoted by ay9. We characterize the atom arrangements based on the four nearest neighbor
vectors. For the black atoms, the four neighbors are located at

b _ a_Oa_Oa_O) b:<_a_0_”_0”_0) b:<_a_0”’_0_”_0> b:(”_o_”_o_@> 296
" <4’4’4 e 4 ara)™ 22 a) =\ 7)) @2

Similarly for the white atoms, the four neighbors are positioned at

w _ _a_o_a_o_a_o) w:(”_oa_o_a_o) w:<“_0_”_0”_0) b:<_”_0”_0”_0) 597
! ( 44 1) 47 4)™ 4’ 2 4) ™ 21 a) @)

The two atoms on every lattice site are separated by a quarter of the body-diagonal [111] rel-
ative to each other. They form a unit cell which is then repeated at every lattice site. Each atom is
surrounded by four nearest neighbors, this forms the tetrahedron. This crystal structure is adop-
ted by materials like gallium-arsenide. The point group symmetry of such structures, T, has the
twenty-four symmetry operations described below. These operations are defined with respect to
the origin placed at one of the atoms.
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1.

2.

3.

4.

5.

E: identity.

8Cj5: rotation by 27t/3 around the eight axes [111], [111],[111], [111], [111], [111], [111], [111]
respectively.

3C,: rotation by 7t around the [100], [010], [001] axes respectively.
6S4: improper rotations of 71/2 around [100], [010], [001], [100], [010], [001] axes.

60 reflections with respect to (110), (110), (101), (101), (011), (011) planes respectively.

The diamond structure is the same as the zinc-blende structure but the two atoms in the primitive

unit cell are identical. This crystal structure is adopted by materials like silicon and germanium.

The point group symmetry of such structures is Oy, with four-eight symmetry operations that are

described below. These operations are also defined with respect to the origin placed at one of the

atoms.

1.

2.

3.

8.

9.

10.

E: identity.
6Cy: rotation by 71/2 around [001], [010], [100], [100], [010], [001] axes.

8C5: rotation by 27t/3 around the eight axes [111], [111],[111], [111], [111], [111], [111], [111]

respectively.

. 6C;: rotation by 7t around the [100], [010], [001], [100], [010], [001] axes respectively.

. 3C}: rotation by 7t around the axes passing through the edges of the octahedron.

6S4: improper rotations, rotation by 7t/2 around [100], [010], [001], [100], [010], [001] axes fol-
lowed by reflections around planes perpendicular to each of them respectively.

8S¢: rotation by 77/4 around [111], [111], [111], [111], [111], [111], [111], [111] axes followed by
reflection around planes perpendicular to them respectively.

60,: reflections with respect to (110), (110), (101), (101), (011), (011) planes respectively.
307,: reflections with respect to the three planes perpendicular to the Cy axes.

i: inversion (R - —R+ (§+ §+ 1))

where a is the lattice constant.
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Representation Wavefunction
Ly /8 cos <2alox> cos (2(%) cos <2—Z>
Ly V/8sin 2ﬂ> sin <2i)
Ly V/8sin %) sin (%) cos

Table 2.4: A set of symmetrized wavefunctions of the group Tj.

2.4.2 Symmetrisation of the wavefunctions

Consider a nearly free electron in a zinc-blende crystal meaning that the crystal potential that loc-
alizes it is almost negligible. Its energy is E = Fi—r’f At the L point, k = (i—g) (£1,+£1,+£1) the

wavefunctions' are [3],

The linear combination of wavefunctions that transform according to the respective irreducible
representations can be obtained by using the projection operator as described in the following

section.

2.4.3 Projection operator

One can obtain the representation matrices from the basis functions, provided they are available.
Conversely, extracting the basis functions from the representation matrices requires a different
approach. This is where the projector operator proves to be invaluable, offering a powerful and
systematic formalism. The projection operator is defined as,

P! |Tal) = Tyk), (2.28)

where the operator Iskrl” transforms one basis vector |I';/) into another basis vector |I',k). We can

rewrite this operator as a linear combination of the symmetry operators P with some coefficients
oL : Al |

Akl/ Pkl |Fnl) = ZR Akl(R)pR \l"nl> = |1"nk> Then Pkl 1S,

A0 n " % A
By =7 ng (R)i1Pr- (2.29)

!t is also common to denote the representations of these wavefunctions by I'; instead of L;.
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If |T'nk) is a basis state of the representation I', then the projection operator acts trivially, 15,5{" ITnk) =
T k). The projection operator can project the k' partner of the irreducible representation I';, from
an arbitrary function F = Yr  }; f].r”' IT,.7),

N n r, £ A .
P F =1 130 ;" DU (R)Pr Do)
R Ty j
n Ly * ’ ; n
=4 £ Y DM (R)jg D' (R)jr |Tf) = fi" [Tuk) - (2.30)
T, j R

N

-~

Horar ,Odi'k

An example of this appears in Chapter 4, where the projector, as defined in Eq.2.29, is used to
extract the basis states of the little groups Cp, and Cj3, from the eigenfunction |§) and ‘§_> of a
crystal of the group T;. This allows us to derive the relationship between the degenerate band

states of T; along A ans A, the two high-symmetry directions.

2.4.4 Representations, operators and eigenfunctions

Electric-dipole interactions are crucial to understand the optical transitions of semiconductors.
These are governed by selection rules. We can define the selection rules in terms of the represent-

ations as explained in this section.

Let p be the momentum operator and |¥1) be the wavefunction belonging to the representa-
tion I'y in the group T;. The action of the operator on the wavefunction p [¥1) generate a set
of nine wavefunctions |¥3) with nine dimensional representation which can be reduced to the
irreducible representation I's & I'y & I's @ I';. We can look at the matrix element (¥;|p|¥1) with
another wavefunction |¥;) belonging to a representation B not in I's ® I'y ® I's @ I';. Since the
basis functions of different representations are orthogonal to each other, this matrix element is
zero. This matrix element will be non-zero only when the direct product of the representation of
p and |¥) contains the irreducible representation of |'¥;), this is the matrix element theorem. This
defines the selection rules for the crystal. The set of selection rules for the representation I'y are
shown below using the direct products and direct sums of the representations of Tj [3],

[T =1y,

I'y®I, — 1T,

I'y®@T3 = T48T5,

Lol > T4l 0T, @Iy,

[,@Ty = T4@Ts 0T @ (2.31)
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2.4.5 The pseudpotential method

We discussed the nearly free electron model but this does not predict the band gaps and the com-
plexities of the band structure well. The pseduopotential method captures this better. In silicon, the
3s and 3p shells are partially filled with valence electrons. These electrons are not affected by the
nucleus, but the core formed by the electrons in the 1s,2s,2p orbitals causes the wavefunction
of the valence electrons to oscillate rapidly. Using this method, the true potential is replaced by
a weaker potential that acts as a small perturbation overall and does not have an effect on the
smooth part of the electron wavefunction. A small number of the Fourier components of the
pseudopotential (also known as the pseudopotential form factors) help determine the band struc-
ture. We also include the spin-orbit interaction in this calculation. This thesis does not include
other details of this method but the reader can find them in [3].

2.4.6 k- p method

The k - p method is useful for interpreting optical spectra. However, we will not discuss it in
detail here, as this method is detailed in chapter 4 where it is used to calculate analytical forms of

the momentum matrix elements, the inverse effective mass, and the g-factor.

2.4.7 The tight binding method

In the tight-binding method we assume that the electrons are tightly bound to the nucleus. The
wavefunctions of such electrons overlap when the atoms come close together. Therefore it is also
known as linear combination of atomic orbitals (LCAO) method. This results in the formation of
bonding states (symmetric with respect to interchange of orbitals) and anti-bonding states (asym-
metric with respect to interchange of orbitals). Additionally, when the p-orbitals overlap along
their axis, they form ¢ bonds. When they overlap perpendicular to their axis, they form 7t bonds.
These interactions give rise to four linearly independent parameters, (s|H|s) = Vi, (s|H|pz) =
Vispo, (Pz|H|pz) = Vppo, (px|H|px) = Vppr. Table 1 in [8] shows the necessary parameters. With
this we can determine all the Hamiltonian matrix elements for a zinc-blende crystal lattice. The
following equation shows the matrix element between the s1 and s2 Bloch-state basis functions,

Hy o = (e”"dl 4 ik o pikeds e”"d4> (51| Hyt52) (2.32)



2. SEMICONDUCTORS 28

where dy = (,%, %), dy = (%, ~%, %) ,ds = (~%,%, %), ds = (~%,~%,%) are the

positions of the four nearest neighbors. The four parameters,

o = ek 4 gk | pikeds | pikeds
elkdy | gikedy _ gikeds _ gikeds

81 =
gy = kil _ gikeda | pikeds _ pikedy
g3 = el _pileds _ pikeds | piked (2.33)

arise from the direction cosines of the neighbors. We also include the spin-orbit parameters. The
have a non-zero contributions only between the |p;) states with the appropriate spins (details in
section 5.2). This is the Chadi-Cohen model [9].

This model can be easily extended to use sp>d°s* orbitals. The energy bands are the eigenen-
ergies of the Hamiltonian thus obtained form the above parameters and the eigenvectors are a
linear combination of the atomic sp3d°s* orbitals. The band structure is shown in Fig.5.1.

The time-reversal operator

Time reversal symmetry plays a crucial role in quantum mechanical systems [1, 2], particularly in
semiconductors with spin-orbit interaction. It is therefore essential to examine its properties and

understand its impact on the representations.

The time reversal operator describes an inverse time evolution, effectively reversing the direc-

tion of time, t — —t and altering the sequence of events. While some physical quantities remain

Reversed Preserved
Momentum: p — —p Position: g — g
Magnetic field: B — —B Electric Field: E — E
Spin: ¢ = —0 Kinetic energy: % — %
Position wavefunction: ¢(r) — ¥(r)* | Transition probability: | (p|¢) |> — | (¥|¢) |?

Table 2.5: Quantities that change and do not change under time-reversal operation.

unchanged under the time reversal operation, others change signs [10], summarized in Table.2.5.
In some literature, the operator is denoted as 8 or T with 8(T) = ioyk, where x denotes complex
conjugation. In this work, we adopt the former notation. # always acts towards the right. This
operator has the following properties:

1. Commutation relation: [8,H] = 0 when B = 0. This means that the eigenstates of the time

reversal operator are also the eigenstates of the hamiltonian.
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2. Anti-linear or Anti-unitary: i = —if or 9" = —1 for fermions.
3. Complex conjugation: since 8 is anti-linear, i (x) = p(x)*.

It’s effect on the energies of a Hamiltonian H with the eigenstates |y, i+ (r)) is as follow,

OH iy (r)) = HO [pusy (r)) = H |, 1, (r))
— Ep(k) = En ) (k). (2.34)

In this context, the representations are not necessarily real. The representations of the extended
group which contain unitary as well as anti-unitary operations are called corepresentations. They
are more generalized forms of representations as described so far. The time reversal operator
splits degenerate bands with high symmetries into sets of bands that may not be degenerate.
The following conditions determine the effect of the time reversal operator on the irreducible
corepresentation of these bands,

1. The corepresentation matrices D are real or can be made real by a unitary transformation.
The time reversal operator will leave these representation matrices unchanged and not cause
any extra degeneracies in E (k).

2. If the corepresentation matrices D and D™ are not related by a unitary transformation, then

they will form a time reversal symmetric pair and lead to a double degeneracy.

3. If the corepresentation matrices D and D" are related by a unitary transformation but are

not real, then also there is a double degeneracy causing these to be time reversal related.

The transformations of the representations of certain high symmetry bands for the crystallo-
graphic groups O, Oy, T, T; and T, is shown in Table.4.1 in chapter 4. The properties above
describe the transformation of an irreducible corepresentation with respect to the anti-unitary op-
eration, 0. We can generalize this to study the transformation of irreducible corepresentations
under a non-unitary transformation. This is discussed in section 13.2 of [2]. We will apply this

general formalism to the case of groups T and O (Appendix A).

Many other properties of semiconductors can be explored using the techniques introduced in
this chapter. By building on these foundations, one can study various interactions, including
electron-phonon coupling, defects, electrical transport, optical properties, and spectroscopy. We
will not delve into these topics further, interested readers may refer to comprehensive sources
such as [3]. However, we will now focus on the quantum confinement of electrons. In the next
chapter, we provide an overview of spin qubits, a technology that bridges quantum computing
and semiconductors.
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Spin Qubits

3.1 Introduction

Spin qubits form a two-level system of electrons with spins up and down that is naturally defined.
Among various physical realizations of qubits, spin qubits stand out because of their potential
scalability which results from their compatibility with semiconductor technology and longer co-
herence. The coherence times in purified silicon can extend to milliseconds [1] which is longer
than the coherence times of superconducting qubits. However, as we will see in this chapter,
controlling the spins, readout, spin-orbit interactions make it challenging to realize them experi-

mentally.

3.2 Physical implementation of spin qubits

Consider a GaAs/AlGaAs heterostructure where AlGaAs is grown over GaAs using molecular
beam epitaxy (MBE). We dope the ALGaAs layer with silicon which causes free electrons to ac-
cumulate in a thin sheet in the GaAs layer just below the interface. These electrons all have the
properties of GaAs. This sheet is called a two-dimensional electron gas (2DEG) and is filled with
the spin states that we require as carriers of information in our spin-based quantum computer. A
similar 2DEG can be formed by sandwiching a layer of Si between layers of SiGe. Since the bulk
Si has an indirect band gap, it admits a sixfold degeneracy in the A-direction. This degeneracy is
lifted by heterostructure and electrostatic confinement. Doping is not needed in this type of het-
erostructures as carriers can be accumulated using gates. In all three structures Si/SiGe, Ge/SiGe
and GaAs/AlGaAs, the charges carriers are confined in the out-of-plane (growth) directions [2—4].

31
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By applying negative gate voltage we are able to deplete regions in the 2DEG thus isolating cer-
tain number of electrons. These regions that trap the electrons are known as quantum dots (QDs)
[2, 5, 6]. They behave as artificial atoms as they admit occupied and unoccupied energy levels
[7]. Spin qubits are the spins of these trapped electrons. We classify them based on the number of

spins that are confined together to represent them.

3.2.1 Loss-DiVincenzo qubit

The Loss-DiVincenzo qubit was the first ever proposal of a semiconductor spin-qubit [8]. The
confinement of one electron per quantum dot is described by the Heisenberg exchange Hamilto-
nian,

H(t) = % Y Jij(t)ei-oj+ % ZginBi .o, (3.1)

{ij} i

where B;, g; are the effective magnetic field and the g-factor at site i. Initialization and spin meas-
urements for such qubits is carried out by spin-selective tunneling effects using sensitive charge
sensors. Single-qubit gates can be applied using static or oscillate magnetic fields [9-11] along
with the time-dependent control of B; or g;. Two-qubit gates can be implemented by adjusting
exchange interactions [12, 13]. These will be elaborated further on.

3.2.2 Donor based qubit

Another proposal made by Kane [14] involves the spin of an electron bound to a phosphorous
donor in silicon. Such spins can have exceptionally long coherence times as the electron is shiel-
ded from external noise sources and is more localized. One of the major challenges of this type of
qubit is the placement of the donor atoms in the silicon lattice.

3.2.3 Charge qubit

Consider a single electron shared between two quantum dots. This is called a charge qubit. When
the dots are far apart, the electron can be either on the left dot, Qr or on the right dot, Qr. The
ground states of these two dots are |L),|R) with the energies €1, er respectively. The tunnel-
ing rate between the two dots is ¢, the detuning between the two dots is € = €1 — eg with the
Hamiltonian,

e = 5 (L)L = IRXR]) ~¢ ([LXR| + |R)(L]). (32)

~"

Ty Ty

€
2

The charge qubit is very sensitive to charge noise and is therefore not such a good qubit.

3.2.4 Singlet-triplet qubits

A multi-spin qubit can also be created by confining two electrons in two quantum dots (a double
quantum dot, DQD) [15, 16]. Since the overall wavefunction must be anti-symmetric, we have
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the following basis states,

_ ILR) +|RL) _ [T) — 1) _ ) = 1) _ [t = )
|S0) = 7 ® 7  SeL) = [LL) ® — Srr) = [RR) —
’T()> — |LR>\;§|RL> ® |T¢>\-/|_§|¢T>’ TT> _ |LR>\;§|RL> ® ’TT>/ Tii> — |LR>\;§|RL> ® |¢$> )

(3.3)

Here, the state |Sp) has unpolarized spin and is de-localized in the two dots whereas the states
|Srr) and |Sgr) have unpolarized spins but they are localized in left and the right dots respect-

ively. The states |To) , | T4 ),

T|,) are de-localized in the two dots and the states | T} ),

T|,) have
polarized spins.

The Hamiltonian describing the orbital interactions in the {Sr1, Sgr, So, Ttt, T}, To} basis is,

Hypy = Hﬁ) + Hﬁ) = €< ISLLXSLL] — [SRR)(SRR] ) - ﬁt( |SLL)(So| + |SRR><SO|> +h.c., (3.4)

where t is the tunneling parameter and (S;|H,;|T;) = 0 because either their spin parts or their
orbitals are orthogonal. There is also a Coulomb interaction between the electrons sitting in the
same dots,

Heoy = U |Spr)Ser| + U |Srr)(SRR| (3.5)

where U describes the potential that the electrons is subjected to. The dots are weakly coupled so
the largest contribution comes from U, also known as addition energy. The DQD has the following

Zeeman interaction,

B, —iB
Hzeeman = 8VBBz( | Tre X Trt| — ’THXTM) +8us——— T X Tol + gus

~ 8#832( | Tr X Tap| = [T XTy ) (3.6)

@ ‘T¢¢><T0’ + h.c.

we rotate the magnetic field to be aligned with the z-direction.
Hence, the Hamiltonian of the full system in the basis {S;1, Srr, So, Tt1, T} |, To} is,

U+e 0 —vV2t 0 0 0
0 U—€e —vV2t 0 0 0
Hoon — —V2t =2t 0 0 0o 0 67)
0 0 0  gugB. 0 0
0 0 0 0 —gugB, 0
0 0 0 0 0 0

The states | Sy 1) and |Sgr) are higher in energy. We consider only the states which are de-localized
in the two dots. This is equivalent to considering the block of Hamiltonian corresponding to the
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basis {Sy, Ty, Ty, To}. This is the regime where the magnetic field is small, the tunneling, t, and
the detuning, €, are much smaller than U. In this case, the energy of the state |Sp) is reduced by

Jr 1+ &40 (&)

—J 0 0 0
0 B 0 0
Hgp — SHBL: . (3.8)
0 0 —gupB; 0
0 0 0 0

J is the exchange interaction parameter. We re-write the Hamiltonian in the computational basis,’

SupB; 0 0 0
B 0 —Jj/2 /2 0 _8WBBz (1), &MBB: 2 ] 1) 2
Hyo = . 2 i 0 =S50 +—2 o, —|—ZU' o 7 (3.9)
0 0 0 —gﬂBBz

3.3 g-factor renormalization

Consider an electron in 1D with a Rashba-type spin-orbit interaction, ag Exp.0y, [17] with a charac-
teristic length scale, Isp which is inversely proportional to the strength of the spin-orbit parameter,

agr. We can define a local spin rotation,

U(z) = eov2/lso — [ €O (z/1so0)  sin(z/Iso) (3.10)
—sin (z/lsp) cos(z/ls0)
whose effect on spin is,
oy = U (2)0:U(z) = 0y cos (2z/150) — 0 sin (22/1s0),
7, = U (2)o,U(z) = 0, cos (2z/150) + oy sin (2z/150) - (3.11)

When we take into account the complete Hamiltonian, including the spin-orbit interaction, the

Zeeman term and a harmonic confinement in the lab frame,

2

2

B
g.u]23 ZUZ+ m;UZZZ’

(3.12)

!The basis change of Hsr involves first rearranging the Hamiltonian in the basis {Tt+, So, To, T} | } then applying
1 0 0 0
: 0 1/v2 -1/v2 0

h =
the matrix M 0 1/v2 1/vV2 0
0 0 0 1

, Hyo = MTHgT M.
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the application of the local unitary operation, as shown in Eq.3.10, gives it the following spin-
independent form,

. 2 B 2z . [ 2z mw?
Hip = 2p_m — arExp.0y + gyzB z [Cos (E) 0, + sin <E) O'x:| + > 22, (3.13)
202
The groundstate for the harmonic oscillator is |¢(z)) = %]i with Eg = hw,/2 and character-
AT

istic length I, and therefore,

~ B,o:

(3.14)
where the g-factor has been renormalized, § — ge_lg /50 [18-21]. Note that in this frame of
reference, the spin is no longer rotating as was the case in the lab frame but the magnetic field
seems to be rotating with respect to the static spin.

3.4 Readout

Consider a single electron transistor (SET) where a quantum dot with capacitance C is weakly
coupled to source and drain contacts via tunnel barriers. The source and the drain have chem-
ical potentials us and pp respectively with a bias ys — pup. If the dot has N electrons and its
chemical potential does not lie in the bias window then the energy required to add a dot will be
AE = % + An41 where Ay is the difference between the energy levels of electrons in level N
and N + 1. At low temperatures (kT << e?/C), the transport of electrons is blocked. By apply-

f ™ M1 |
N -
\ \
—e sy ¢ ﬂg L o —— e M)
I~ .. °D -
Uy 2

HN-1f

o

Gate Voltage (V)
Gate Voltage (

o

N
o

50 0 50

-50 0 50 -
Bias Voltage (mV) Bias Voltage (mV)

0 05 1.0 0 100 200
dildV (nS) di/dV (nS)

Figure 3.1: The images show the transport of a charge thorough a single electron transistor and a resulting
Coulomb diamond from [22].

ing a negative voltage, the chemical potential of the dot can be raised at the level of or above yp
so that one electron can tunnel out. In addition, if ys 2 un 2 yp then the population of the dot

fluctuates between N and N — 1 and a current flows. This is called the Coulomb blockade, shown
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in Fig.3.1. This results in a Coulomb diamond (Fig.3.1) where current is blocked inside the dark
diamonds. The conductance peaks occur at the points where the diamonds connect (shown along
the direction of the gate voltage axis). This is where the transition from N to N + 1 occurs.

When we have a DQD with two spins, because of the Pauli exclusion principle, electron trans-
port becomes spin-dependent. Fig.3.2 shows examples of possible spin transport. For a small
tunnel coupling between the two dots, the charge stability diagram looks like a checker box pat-
tern rather than the simple diamond shape observed in the case of a single electron quantum dot.
Because of the capacitive coupling between the dots and the plunger gates, the charge stability

diagrams become a honeycomb. For strong coupling, we see parallel diagonal lines.

INCREASING INTER-DOT TUNNEL COUPLING .
L

(a) (b) c) dl/dVsd (nS)

3. { ’,

‘W 's\
2|} \
2. 1 ¢ \. \_\ _ 1 .
25 Vpa(V) ’6 7§ Vpa (V) Z.(w 7\ Vpa (V) 2.6

0.8

Figure 3.2: Pauli spin blockade and its charge stability diagrams as the tunnel coupling is increased (from
left to right, [23]).

3.5 Quantum control of spin qubits

Once spin qubits have been created and initialized, the next step is to implement gate operations
to manipulate them. As discussed in section 1.6, a functional quantum computer must at least
support a universal set of gate operations. In this section, we explore the physical realizations
of single- and two-qubit gates, as well as measurement schemes for spin qubits. As we will see,

these operations can be implemented using combinations of electric and magnetic fields.

A gate operation can be represented by a unitary time-evolution, |¢(t)) = U(t) |¢(0)), where
|(0)) is an initial quantum mechanical state and U(t) is a unitary time-dependent operator.

3.5.1 Time-evolution using a static magnetic field

A simple way of physically implementing a single qubit rotation is by applying a static external
magnetic field. Recall the time-dependent Schrédinger equation, i [¢(t)) = H(t) |[(t)), where
H(t) is the Hamiltonian that describes the system with eigenstates |(t)). Consider the qubit to
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be in a static magnetic field, B;, applied in the z-direction described by the Hamiltonian,

A A
H:_UZ:E

> (10)0] = J1){1]) - (3.15)

The 0 operation is a Pauli-Z operator with eigenstates |0), |1) and eigenenergies Ey = +%. The
magnetic field splits the spin-degenerate states with a splitting A = gugB,. The initial state at
t = 0is [y(0)) = « |0) + B |1), such that |x|? + |8|?> = 1. The state at time ¢ is,

() = xe™ 3 |0) + Be [1) = ( ) . (3.16)

pe

We identity the unitary time-evolution as,

__iAt __iAt )
Y =0 O (F) e [t N (Y. (3.17)
Be2n 0 em B 0 en B

N——
ut)

The time evolution of our initial state in the Bloch-vector form is,

p(6) = U ]p(0) =05 | TN (9>) ~ (3.18)

This is essentially a rotation of the Bloch state around the z-axis by angle 6 and a change in phase

top — %. Similar examples can be shown for 0y and ¢, rotations.

A general Hamiltonian for a magnetic field, B, applied in a direction given by the vector n is,
H = B (ny0x + nyo, + n,0;) = Bn - o and its time-evolution operator is, U(t) = e~ "7 Eyen
though this is a pretty straight-forward application of rotations, it is practically not feasible. We
mentioned in chapter 1 that the gate operations must be much faster than the decoherence times

of the states. In this case, it is not possible to turn large magnetic fields on and off quickly enough.

3.5.2 Electron spin resonance (ESR)

One way to avoid switching of large magnetic fields is by applying oscillating fields such as

microwaves to qubits in a static external field. The Hamiltonian has two parts,

A
H — EO-Z + B COSs (wdct + (Pac) (Tx, (3.19)
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with an oscillation frequency, w,.. We get a set of differential equations which do not have a

simple analytical solution,

muﬂzéuﬂ+3mq%J+%gmm

mMQ:Bmﬂmﬂ+%QMﬂ—%mw (3.20)

Using the initial condition «(0) = 1, 8(0) = 0,¢ac = 0, = A = 1, we can vary B and fiw,.. We
observe clean oscillations when,

e |B| << 1: oscillating coupling is much weaker than the splitting,

* Niwye ~ A: oscillating frequency is near or at resonance with the splitting, also known as the

resonance condition.

This is explained by the rotating wave approximation (RWA) where the fast oscillating terms can
be neglected.

Consider that we are working in the rotating frame with frequency w. We go to this reference-

frame using U = ewtoz/2 The Hamiltonian in this reference-frame is,

() = URO R UR(E) — i (UR(0) G Ux(1))
A — hw B <ei(w+wuc)t + ei(wfw,w)t>
1
N ~ J/ (& ~ N e’
fast term slow term energy shift
Neglecting the fast terms and choosing the frame w = wy,,
- 1(6 B h
H(t) = > (B _(5> = EQRWAnR -0, (3.22)

where 6 = A — hwye, Qr = —“52;32, ng = <h0§vm’ 0, hQiWA)' Setting detuning to 0, «(0) = 0, the
probability of |0) is, po(t) = |a(t)|* = sin? (t). One can define a time T, = G- Where this
probability is 1. Thus applying a microwave pulse for the time Tfj;, one can switch states thus
completing a rotation. Similarly, away from resonance one observes a Chevron pattern as shown

in Fig.3.3.



3. SPIN QUBITS 39

Figure 3.3: Chevron pattern of a single qubit measurement with Rabi-oscillations on application of X gate
from [24].

3.5.3 Electron dipole spin resonance (EDSR)

Consider the 1D Hamiltonian of an electron with spin-orbit and Zeeman interactions trapped in
a harmonic potential as described in section 3.3 with a time dependent electric field, E.()?,

2

2 2 2
Hyp = 2?’_;1 N 8?‘1233.z0Z 4 m;;z 22 eE,(t)z = Zp_m —aRExp-0y + g#;sBZUZ n mwz Z— d(t)]z,
(3.23)
where d(t) = ef;()? . The Hamiltonian in the orbital rest frame given by a time-dependent transla-
tion operator, T, [d(t)] = exp(—ip.d(t)/h),
Hypoo = P2 agE grpBz,  mwE o, 3.24
orb,rest o RExpPz0y + 5 0+ 5 Z Pzdt ( ) (3.24)

Moving to the spin-rest frame (by a transformation as described in section 3.3), the Hamiltonian
is,

2 2
pz , §HpB: 2z . [ 2z mw? , h d
Hpin,rest = ﬁ + Ty [COS (@) 0 + sin (E Ox| + 5 225 — |p. + an Ed(t)f (3.25)
where [5( is the characteristic spin-orbit length. When the Zeeman and the driving frequencies
are much smaller than w;, the average of Hyiy rest OVer the groundstate of the harmonic oscillator

with the characteristic length, [, gives an effective Hamiltonian?,

h d B, 2/
Heff = EO - Uy@%d(t) + O—Z%elz”ﬂj' (326)

In Eq.3.26, we see the appearance of the renormalized g-factor with a dynamic energy term. Es-
sentially, because of the spin-orbit coupling the electron’s motion gets coupled to its spin. On
applying an electric field we shake the quantum dot and thus the trapped electron, following
which the spin flips. At resonance, w,c = gupB-exp(12/13,)/h, the shaking of the dot induces

2Here we “complete the square” and drop the resulting energy term which is equivalent to an overall energy shift.
3The order of first going to orbital rest frame and then to the spin rest frame is important otherwise the driving
term would not show and it would seem like there is no EDSR.
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Rabi oscillations[25, 26],

UB

2712
Hres — EO + Tgelz/lso [BZUZ - BSO COS (wdct) Uy:| . (3.27)

This is known as electron dipole spin resonance (EDSR) [25, 27, 28]. The Rabi frequencies in
silicon are typically small due to its weak spin-orbit coupling. However, effective spin-orbit inter-
actions can be engineered by introducing magnetic field gradients into the system, often by using

micromagnets.

3.6 Two qubit gates

Two qubit gates can be described as a time-evolution of the Hamiltonian, Hgr, from Eq.3.8 which
describes the singlet-triplet system in a DQD with the unitary?,

_;8ppBat

et n 0 0 0
] It
Uye = MTe—iHstt/ipp — 0 €% cos (Jt/2h)  —ie'2n sin (Jt/2h) 0 (3.28)
- - - Jt - Jt 7 .
© 0  —iei%sin(Jt/2h) eFcos(Jt/2h) O
0 0 0 o
with the exchange interaction, |, where,
o~ 0 0
_ilt
pitsrtm— |0 e 00 (3.29)
1 0
0 0 0 "

3.6.1 SWAP gate

From Eq. 3.28, it becomes clear that a pure SWAP gate cannot be directly applied to two qubits.
However, by turning on the exchange interaction | for a duration t = Tsyap = ”Th, the resulting

unitary evolution,

_;8mpBat
7

e 0 0
0 01 0 gupBT (1) _ .gupBzT, @)
UZQ(TSWAP) _ . . . _ —iStBPIswAp ;{ e_lgﬂB SWAP 5 { SWAP, (3.30)
0 00 &N

is closely related to a SWAP operation, effectively acting like a 7r-pulse, up to some single-qubit
rotations.

“The basis transformation using M has been described in section 3.2.4.
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Similarly, vV SWAP operator can also be implemented by turmng on the interaction [ for T, /gpap =

S1BPT swap (1) 8MBP=T swap
r ] , such that Uxo (T spp) = e i % e AL o2 \/ . The exchange interac-

tion naturally leads toa SWAP /+/ SWAP gate. One needs to keep in mind that the exchange inter-
action cannot be switched on and off instantaneously. The error caused by this can be minimized

by correcting the shape of the pulse [29]. Calibrating gate times can also minimize non-adiabatic
effects [30].

3.6.2 CZ gate

The unitary evolution for CNOT and CZ gates can be written in terms of the SWAP gates,

1
671402( )6140'2 u\/ie
itelV _izg? o3 0’
e 4 e 47z u\/i z u\/i luCZ/
) oV
e i Ucze 1z’ = UcnoT- (3.31)

(1) )
ZUZ UW = —ZUCZI

But since two qubit gate fidelities are lower than single qubit gate fidelity, we would like to min-
imize the number of two qubit gates to 1.

Consider the Ising type of interaction, Hysjng = —;{aé”é” + ﬁ. The unitary evolution for this
Hamiltonian is,
1 0 0 O
0 ezt 0 0
uising(t) = i1t (3.32)
0 0 ezt 0
0 0 0 1
Then we can get the CZ gate by applying a single two-qubit unitary [31],
_3n _m <1) _ingy
CZ=e"2¢713% 7137 Ulsmg(nh/]) (3.33)

3.6.3 CNOT gate

One way to apply the CNOT gate is by creating a g-factor difference between the two dots such
that the two qubits have different Zeeman energies rather than applying many SWAP gates [32-
36],

(1) (2)
H3g = %Uz(l) + E; O’Z(Z) + 4{ <0(1) co® 1) + @ cos(wt)aggz). (3.34)
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In the limit where, | << |E§1) — E§2)|,

M g2
EAET y@ cos(wt) 0 0
(1) _g(2)
w v® cos(wt) B 0 0
Hio = g, @ (3.35)
0 0 “E B A () cos(wt)
M _g2
0 0 v® cos(wt) “EEC
The upper and the lower blocks of Hy, have different resonant condisiton:
_rM (2) _pM _ g2 2) _
ho— —tz the ) Zh 2B BT lower,
2 2
(1) (2) 1 _ @ _ 2
ha):EZ +E; _Ez z ]: z +]:upper. (3.36)

2 2 2

So we drive on resonance in the lower block 3.36 and remain off-resonant in the upper one, we

see the CNOT gate emerging. Turning on v(?) for a time T, = %, we get the CNOT gate.

In the previous approach, the effect of spin-orbit interaction was not included. The spin-orbit
interaction induces a strong anisotropy in the exchange interaction. We maintain that the two
dots have different g-factors, g g = g &+ g. This leads to the following single electron Hamilto-
nian (recall this is an extension of the charge qubit Hamiltonian from Eq.3.2),

€ B ogupB
Hie = ;T — foTx + S 0, + sFB2:

5 > > T,07 — ts0Ty0y. (3.37)

with tunneling rate tp, the detuning between the dots € and the spin-orbit strength tsp. From
this, we extract the double dot Hamiltonian, Hpgp, as done at the start of this section. As shown
in section 3.3, we apply a local spin rotation U = exp(iLt.0y/2ls0), Hpop = U*HDQDU with
the inter-dot distance L. Identifying and eliminating the high energy states that involve both the
electrons on the same QD and writing this Hamiltonian in the computational basis,

(1) (2)
E; E; 2L
Ha = =5 otV 4+ — ot + 4110'(1) “Ry <—E> c?). (3.38)

The term ;{0'(1) Ry ( 2L ) o) shows the anisotropy in the exchange interaction [36]. This allows

Iso

for more direct application of the controlled gates and we can avoid the SWAP and v SWAP gates
altogether.
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3.7 Coherence and noise in spin-qubits

One of the major challenges in realizing large scale quantum computers is noise. The effects of
noise on spin qubits is characterized by two phenomena: dephasing and relaxation. In this section

we explore the effects of dephasing in depth and discuss possible ways to mitigate them.

3.71 Dephasing

The dephasing of a qubit can be determined by letting the qubit evolve freely in time. We start
with a qubit in the |0) (or |1)) state. We bring it into a superposition |+) = 3 (]0) + [1)) <0r|—> =

2|0y — 1)) ) by applying a 71/2-pulse for Tr/» = 57 using a microwave. We then let the state

time evolve freely,

iy At L (AR o)+ )
lp(t)) =e |+) = cos (Zh) |+) —isin (2?1)’ ) =e 5 (3.39)

In the ideal case the probability of finding state in one or the other state oscillates and must be a

2
cosine or a sine function, P; = cos (%) . But in reality we see that the probability decays [37].
This is due to the fluctuations in the splitting A with time which can be caused by other effects
such as charge noise, phonons or nuclear spins. Since we are averaging over many measurements

to obtain the fidelity, we see a decay over the average of the oscillations.

We can model these time-dependent random contributions to the energy gap into the Hamilto-

nian,

BHR(H)
2 Zs

such that (R(t)) = 0 but the correlation function Grr(t — ') = (R(t)R(#')) # 0. The form of this

correlation function determines the kind of decay that the probability suffers. We generally look

H = (3.40)

at the spectral function which is a Fourier transform of the correlation function,

—+o0 —+o0

dte’“tGrr(t) = / dte’* (R(t)R(0)) (3.41)

—0o0

Sgr(w) = /

—00

because it is the spectral function that can be experimentally measured. We consider the noise to
be classical Sgr(w) = Sgr(—w). The time-evolved state would then have the coefficients,

A ] 1D (4!
B(t) = Bo exp <12—£ + ﬁ [ar'r(t )) , (3.42)



3. SPIN QUBITS 44

where ¢ = 1 fot dt'R(#'). This changes the probability,

1 1 At
Py = E + E COS (? + 5(P) . (3.43)
This is the probability for a single-shot measurement. We assume that over a large set of meas-
_ a7

urements the phase d¢ is normally distributed with the distribution psp = \/2;—‘7&#6 59, The

expectation value of the probability over many measurements is,

P = 1—Fle_(%%cos Al
Y272 n)’
Tsp = L /tdt’/tdt” /+OO dwe @) g g (w). (3.44)
27Th2 J0 0 —00 ,
F(wl’):fj;o dw4sinzu()¢zut/2)

F(wt) is called a filter function and depends on the experiment (in the case of Ramsey, it is free
evolution). This function peaks at zero frequency and is close to maximum for low frequen-
cies. The table below 3.1 shows the correlation functions of a set of noise commonly considered,
Quasi-static noise arises primarily from hyperfine interactions, pink noise typically originates

Type of noise Correlation function
2
Quasi-static noise | Sgrr(w) = fﬁ—*h)zé(w)
. . _ K2
Pink noise Srr(w) = AL
2
White noise Srr(w) = %
2

Table 3.1: Types of noise and their correction functions.

from charge fluctuations, and white noise represents uncorrelated noise. T, is called the deph-
asing time or the time at which the decay envelop reaches 1/e of its original value. It is usually
much larger than the T;' << T, decoherence time since it is almost an average of the latter over
large number of experiments. The decoherence rate is le = 2171 + le* where T relaxation time is
the time a higher energy state takes to relax to a lower energy one), T, << 2Tj.

There are several strategies to mitigate the effects of noise in spin qubits. Quasi-static noise arising
from hyperfine interactions can be significantly reduced in materials like silicon and germanium
by isotopic purification. Another effective approach is to operate the system at “sweet spots”
which are specific regimes where the energy splitting A loses sensitivity to fluctuations in con-

trol parameters, thus enhancing coherence. Additionally, since the filter function depends on
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the experimental pulse sequence, noise can be suppressed by shaping this function to minimize
sensitivity at low frequencies. This technique, known as dynamical decoupling, is particularly

effective against slow noise.

The Hahn experiment allows to obtain such a filter function In this experiment, similar to Ram-
sey, we bring the initial state |0) into a superposition — (|0> +|1)) using a 7r/2-pulse. Now,
instead of waiting for the state to evolve, we apply a 7- pulse This pulse refocuses the state. We

then let the system freely evolve and apply a 7r/2-pulse to measure the outcome.

iAt

1 1
WW:EM+M%WKﬂ>—ﬂWMMDﬂW=W=TOHMM)

HS

iA(t—27)

%w»wzﬁGm“>ﬁw07ﬁ@Hehm)ﬂwm=7mwm>
(3.45)

with the probability, (P;) = 1 + Jexp (——"’ cos (2%7» and 05y = 5o7 [*e dww(wr)SRR( )
where Fygp, (w) = 16 sin* ( 1 ) which is zero at zero-frequency. A list of other filter functions that

can be used is given in [38].

3.8 Challenges and future perspectives

Spin qubits face several technical challenges when it comes to scaling. One of the major issues for
silicon is the valley degeneracy where the electrons in silicon occupy multiple conduction band
valley states which have the same energies. The confinement of electrons lifts this degeneracy
in a way that the amount of valley splitting depends on the length of the confinement. But the
splitting between these states is similar to the size of the Zeeman splitting and could interfere
with the spin-degree of freedom and cause decoherence [39]. Small valley splitting also makes
it difficult to read out the qubits. Furthermore, it can thermally excite the qubits [40] and also
results in valley dependent g-factor. One way around this problem is by using strain and electric
tields together to induce larger valley splitting [41]. By introducing a certain concentration of
germanium in the silicon sandwiched between the two other layers, one creates a wiggle well ar-

chitecture which makes it possible to couple different valley states in the z-direction together [42].

Other challenges faced in scaling up spin qubits is the amount of control electronics needed for
each qubit. This can be countered by using a crossbar architecture which involves using hori-
zontal and vertical control lines where qubits can be addressed at the intersection. This allows for
a parallel control and readout. One needs to be careful of crosstalk between the lines and of reach-
ing the intended qubit. This, along with the CMOS architecture, that leverages the way in which

the classical chips are currently mass-produced, makes it easier to adopt to large scale industry
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Fig. 1: The Wiggle Well.
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Figure 3.4: The figure shows the wiggle well architecture. a) shows a Si/SiGe heterostructure with 15% Ge
concentration in the Si layer, b) shows the appearance of wiggles in the quantum well with a wavelength
A due to the 15% Ge, c) shows the coupling of the valley states in the z-direction for the respective
wavevector g = 27t/ A: for a short wavevector the valley states in different BZ are coupled whereas for
a long wavevector valley states in the same BZ are coupled. Image from [42]

fabrication. But it is challenging to maintain qubit coherence and control. With the crossbar tech-
nology, a 16 qubit array has also been demonstrated [43].

No doubt that semiconductor spin qubits are the leading candidate for scalable quantum comput-
ing, but before implementing advanced quantum algorithms, it is important to develop a robust
and high-performing qubit architecture. Among the parameters that influence the performance
of these qubits is the electron g-factor. As seen so far, it plays a significant role in gate operations,
qubit control, and sensitivity to noise. In this thesis, and in the following chapters, we focus on
developing a comprehensive understanding of the g-factor and its microscopic origins, so that

informed strategies can be implemented to optimize device performance.



BIBLIOGRAPHY 47

Bibliography

[1] Paul Steinacker, Nard Dumoulin Stuyck, Wee Han Lim, Tuomo Tanttu, MengKe Feng, An-
dreas Nickl, Santiago Serrano, Marco Candido, Jesus D. Cifuentes, Fay E. Hudson, Kok Wai
Chan, Stefan Kubicek, Julien Jussot, Yann Canvel, Sofie Beyne, Yosuke Shimura, Roger Loo,
Clement Godfrin, Bart Raes, Sylvain Baudot, Danny Wan, Arne Laucht, Chih Hwan Yang,
Andre Saraiva, Christopher C. Escott, Kristiaan De Greve, and Andrew S. Dzurak. A 300
mm foundry silicon spin qubit unit cell exceeding 99 2024. URL https://arxiv.org/abs/
2410.15590.

[2] Tsuneya Ando, Alan B. Fowler, and Frank Stern. Electronic properties of two-dimensional
systems. Rev. Mod. Phys., 54:437-672, Apr 1982. doi: 10.1103/RevModPhys.54.437. URL
https://link.aps.org/doi/10.1103/RevModPhys.54.437.

[3] Richard Arthur Abram and Milan Jaros. Band Structure Engineering in Semiconductor Micro-
structures, volume 189. Springer Science & Business Media, 2012.

[4] Gérald Bastard, JA Brum, and R Ferreira. Electronic states in semiconductor heterostructures.
In Solid State Physics, volume 44, pages 229-415. Elsevier, 1991.

[5] Leo P Kouwenhoven, DG Austing, and Seigo Tarucha. Few-electron quantum dots. Reports
on progress in physics, 64(6):701, 2001.

[6] Wilfred G Van der Wiel, Silvano De Franceschi, Jeroen M Elzerman, Toshimasa Fujisawa,
Seigo Tarucha, and Leo P Kouwenhoven. Electron transport through double quantum dots.
Reviews of modern physics, 75(1):1, 2002.

[7] Marc A Kastner. The single-electron transistor. Reviews of modern physics, 64(3):849, 1992.

[8] Daniel Loss and David P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev.
A, 57:120-126, Jan 1998. doi: 10.1103/PhysRevA.57.120. URL https://link.aps.org/doi/
10.1103/PhysRevA.57.120.

[9] F. H. L. Koppens, K. C. Nowack, and L. M. K. Vandersypen. Spin echo of a single electron
spin in a quantum dot. Phys. Rev. Lett., 100:236802, Jun 2008. doi: 10.1103/PhysRevLett.100.
236802. URL https://link.aps.org/doi/10.1103/PhysRevLett.100.236802.

[10] Jarryd J Pla, Kuan Y Tan, Juan P Dehollain, Wee H Lim, John JL Morton, David N Jamieson,
Andrew S Dzurak, and Andrea Morello. A single-atom electron spin qubit in silicon. Nature,
489(7417):541-545, 2012.

[11] M Veldhorst, JCC Hwang, CH Yang, AW Leenstra, Bob de Ronde, JP Dehollain, JT Muhonen,
FE Hudson, Kohei M Itoh, A t Morello, et al. An addressable quantum dot qubit with fault-
tolerant control-fidelity. Nature nanotechnology, 9(12):981-985, 2014.


https://arxiv.org/abs/2410.15590
https://arxiv.org/abs/2410.15590
https://link.aps.org/doi/10.1103/RevModPhys.54.437
https://link.aps.org/doi/10.1103/PhysRevA.57.120
https://link.aps.org/doi/10.1103/PhysRevA.57.120
https://link.aps.org/doi/10.1103/PhysRevLett.100.236802

BIBLIOGRAPHY 48

[12] KC Nowack, M Shafiei, M Laforest, GEDK Prawiroatmodjo, LR Schreiber, C Reichl, W Weg-
scheider, and LMK Vandersypen. Single-shot correlations and two-qubit gate of solid-state
spins. Science, 333(6047):1269-1272, 2011.

[13] Menno Veldhorst, CH Yang, JCCea Hwang, W Huang, JP Dehollain, JT Muhonen, S Sim-
mons, A Laucht, FE Hudson, Kohei M Itoh, et al. A two-qubit logic gate in silicon. Nature,
526(7573):410-414, 2015.

[14] Bruce E Kane. A silicon-based nuclear spin quantum computer. nature, 393(6681):133-137,
1998.

[15] Jeremy Levy. Universal quantum computation with spin-1/2 pairs and heisenberg exchange.

Phys. Rev. Lett., 89:147902, Sep 2002. doi: 10.1103/PhysRevLett.89.147902. URL https://
link.aps.org/doi/10.1103/PhysRevLett.89.147902.

[16] Semiconductor Quantum Dots. Coherent manipulation of coupled electron spins in.
condensed-matter physics, 5:6. URL https://qudev.phys.ethz.ch/static/content/courses/
QSIT10/pdfs/Petta2005 . pdf.

[17] Yu A Bychkov and E I Rashba. Oscillatory effects and the magnetic susceptibility of carriers
in inversion layers. Journal of Physics C: Solid State Physics, 17(33):6039, nov 1984. doi: 10.
1088/0022-3719/17/33/015. URL https://dx.doi.org/10.1088/0022-3719/17/33/015.

[18] Olesia Dmytruk, Denis Chevallier, Daniel Loss, and Jelena Klinovaja. Renormalization of
the quantum dot g-factor in superconducting rashba nanowires. Phys. Rev. B, 98:165403,
Oct 2018. doi: 10.1103/PhysRevB.98.165403. URL https://link.aps.org/doi/10.1103/
PhysRevB.98.165403.

[19] E N. M. Froning, M. J. Ran¢i¢, B. Hetényi, S. Bosco, M. K. Rehmann, A. Li, E. P. A. M. Bakkers,
E. A.Zwanenburg, D. Loss, D. M. Zumbiihl, and F. R. Braakman. Strong spin-orbit interaction
and g-factor renormalization of hole spins in ge/si nanowire quantum dots. Phys. Rev. Res.,
3:013081, Jan 2021. doi: 10.1103/PhysRevResearch.3.013081. URL https://link.aps.org/
doi/10.1103/PhysRevResearch.3.013081.

[20] M. A. Toloza Sandoval, J. E. Leon Padilla, A. Ferreira da Silva, E. A. de Andrada e Silva,
and G. C. La Rocca. Mesoscopic g-factor renormalization for electrons in iii-v interacting
nanolayers. Phys. Rev. B, 98:075312, Aug 2018. doi: 10.1103/PhysRevB.98.075312. URL
https://link.aps.org/doi/10.1103/PhysRevB.98.075312.

[21] E. A. Zhukov, V. N. Mantsevich, D. R. Yakovlev, N. E. Kopteva, E. Kirstein, A. Waag, G. Kar-
czewski, T. Wojtowicz, and M. Bayer. Renormalization of the electron g factor in the degen-
erate two-dimensional electron gas of znse- and cdte-based quantum wells. Phys. Rev. B, 102:
125306, Sep 2020. doi: 10.1103/PhysRevB.102.125306. URL https://link.aps.org/doi/10.
1103/PhysRevB.102.125306.


https://link.aps.org/doi/10.1103/PhysRevLett.89.147902
https://link.aps.org/doi/10.1103/PhysRevLett.89.147902
https://qudev.phys.ethz.ch/static/content/courses/QSIT10/pdfs/Petta2005.pdf
https://qudev.phys.ethz.ch/static/content/courses/QSIT10/pdfs/Petta2005.pdf
https://dx.doi.org/10.1088/0022-3719/17/33/015
https://link.aps.org/doi/10.1103/PhysRevB.98.165403
https://link.aps.org/doi/10.1103/PhysRevB.98.165403
https://link.aps.org/doi/10.1103/PhysRevResearch.3.013081
https://link.aps.org/doi/10.1103/PhysRevResearch.3.013081
https://link.aps.org/doi/10.1103/PhysRevB.98.075312
https://link.aps.org/doi/10.1103/PhysRevB.102.125306
https://link.aps.org/doi/10.1103/PhysRevB.102.125306

BIBLIOGRAPHY 49

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

K. I. Bolotin, F. Kuemmeth, A. N. Pasupathy, and D. C. Ralph. Metal-nanoparticle single-
electron transistors fabricated using electromigration. Applied Physics Letters, 84(16):3154—
3156, 04 2004. ISSN 0003-6951. doi: 10.1063/1.1695203. URL https://doi.org/10.1063/1.
1695203.

NS Lai, WH Lim, CH Yang, FA Zwanenburg, WA Coish, F Qassemi, A Morello, and
AS Dzurak. Pauli spin blockade in a highly tunable silicon double quantum dot. Scientific
reports, 1(1):110, 2011. URL https://www.nature.com/articles/srep00110.

Thorsten Last, Nodar Samkharadze, Pieter Eendebak, Richard Versluis, Xiao Xue, Amir Sam-
mak, Delphine Brousse, Kelvin Loh, Henk Polinder, Giordano Scappucci, Menno Veldhorst,
Lieven Vandersypen, Klara Maturova, Jeremy Veltin, and Garrelt Alberts. Quantum inspire:

Qutech’s platform for co-development and collaboration in quantum computing. page 17,
03 2020. doi: 10.1117/12.2551853.

Vitaly N. Golovach, Massoud Borhani, and Daniel Loss. Electric-dipole-induced spin reson-
ance in quantum dots. Phys. Rev. B, 74:165319, Oct 2006. doi: 10.1103/PhysRevB.74.165319.
URL https://link.aps.org/doi/10.1103/PhysRevB.74.165319.

Erika Kawakami, Pasquale Scarlino, Daniel R Ward, FR Braakman, DE Savage, MG Lagally,
Mark Friesen, Susan N Coppersmith, Mark A Eriksson, and LMK Vandersypen. Electrical
control of a long-lived spin qubit in a si/sige quantum dot. Nature nanotechnology, 9(9):666—
670, 2014. URL https://www.nature.com/articles/nnano.2014.153.

Emmanuel I. Rashba. Theory of electric dipole spin resonance in quantum dots: Mean
field theory with gaussian fluctuations and beyond. Phys. Rev. B, 78:195302, Nov 2008.
doi: 10.1103/PhysRevB.78.195302. URL https://link.aps.org/doi/10.1103/PhysRevB.
78.195302.

Julian D. Teske, Friederike Butt, Pascal Cerfontaine, Guido Burkard, and Hendrik Bluhm.
Flopping-mode electron dipole spin resonance in the strong-driving regime. Phys. Rev. B,
107:035302, Jan 2023. doi: 10.1103/PhysRevB.107.035302. URL https://link.aps.org/doi/
10.1103/PhysRevB.107.035302.

Ming Ni, Rong-Long Ma, Zhen-Zhen Kong, Xiao Xue, Sheng-Kai Zhu, Chu Wang, Ao-Ran Lji,
Ning Chu, Wei-Zhu Liao, Gang Cao, Gui-Lei Wang, Guang-Can Guo, Xuedong Hu, Hong-
Wen Jiang, Hai-Ou Li, and Guo-Ping Guo. A swap gate for spin qubits in silicon, 2023. URL
https://arxiv.org/abs/2310.06700.

Stefano Bosco, Pasquale Scarlino, Jelena Klinovaja, and Daniel Loss. Fully tunable longitud-
inal spin-photon interactions in si and ge quantum dots. Phys. Rev. Lett., 129:066801, Aug
2022. doi: 10.1103/PhysRevLett.129.066801. URL https://link.aps.org/doi/10.1103/
PhysRevLett.129.066801.


https://doi.org/10.1063/1.1695203
https://doi.org/10.1063/1.1695203
https://www.nature.com/articles/srep00110
https://link.aps.org/doi/10.1103/PhysRevB.74.165319
https://www.nature.com/articles/nnano.2014.153
https://link.aps.org/doi/10.1103/PhysRevB.78.195302
https://link.aps.org/doi/10.1103/PhysRevB.78.195302
https://link.aps.org/doi/10.1103/PhysRevB.107.035302
https://link.aps.org/doi/10.1103/PhysRevB.107.035302
https://arxiv.org/abs/2310.06700
https://link.aps.org/doi/10.1103/PhysRevLett.129.066801
https://link.aps.org/doi/10.1103/PhysRevLett.129.066801

BIBLIOGRAPHY 50

[31] David P. DiVincenzo. Topics in quantum computers, 1996. URL https://arxiv.org/abs/
cond-mat/9612126.

[32] David M Zajac, Anthony ] Sigillito, Maximilian Russ, Felix Borjans, Jacob M Taylor, Guido
Burkard, and Jason R Petta. Resonantly driven cnot gate for electron spins. Sciernce, 359(6374):
439-442,2018. URL https://www.science.org/doi/full/10.1126/science.aao5965.

[33] Luca Petit, HGJ Eenink, M Russ, WIL Lawrie, NW Hendrickx, SGJ Philips, JS Clarke, LMK
Vandersypen, and M Veldhorst. Universal quantum logic in hot silicon qubits. Nature, 580
(7803):355-359, 2020. URL https://www.nature.com/articles/s41586-020-2170-7.

[34] Nico W Hendrickx, William IL Lawrie, Maximilian Russ, Floor van Riggelen, Sander L
de Snoo, Raymond N Schouten, Amir Sammak, Giordano Scappucci, and Menno Veld-
horst. A four-qubit germanium quantum processor. Nature, 591(7851):580-585, 2021. URL
https://www.nature.com/articles/s415686-021-03332-6.

[35] Akito Noiri, Kenta Takeda, Takashi Nakajima, Takashi Kobayashi, Amir Sammak, Giord-
ano Scappucci, and Seigo Tarucha. Fast universal quantum gate above the fault-tolerance
threshold in silicon. Nature, 601(7893):338-342, 2022. URL https://www.nature.com/
articles/s41586-021-04182-y.

[36] Simon Geyer, Bence Hetényi, Stefano Bosco, Leon C. Camenzind, Rafael S. Eggli, Andreas
Fuhrer, Daniel Loss, Richard ]J. Warburton, Dominik M. Zumbiihl, and Andreas V. Kuhl-
mann. Anisotropic exchange interaction of two hole-spin qubits. Nature Physics, 20(7):
1152-1157, May 2024. ISSN 1745-2481. doi: 10.1038/s41567-024-02481-5. URL http:
//dx.doi.org/10.1038/s41567-024-02481-5.

[37] Dohun Kim, Daniel R Ward, Christie B Simmons, Don E Savage, Max G Lagally, Mark
Friesen, Susan N Coppersmith, and Mark A Eriksson. High-fidelity resonant gating of a
silicon-based quantum dot hybrid qubit. Npj Quantum Information, 1(1):1-6, 2015. URL
https://www.nature.com/articles/npjqi20154.

[38] Lukasz Cywinski, Roman M. Lutchyn, Cody P. Nave, and S. Das Sarma. How to enhance
dephasing time in superconducting qubits. Phys. Rev. B, 77:174509, May 2008. doi: 10.1103/
PhysRevB.77.174509. URL https://link.aps.org/doi/10.1103/PhysRevB.77.174509.

[39] E Borjans, D.M. Zajac, T M. Hazard, and ].R. Petta. Single-spin relaxation in a synthetic spin-
orbit field. Phys. Rev. Appl., 11:044063, Apr 2019. doi: 10.1103/PhysRevApplied.11.044063.
URL https://link.aps.org/doi/10.1103/PhysRevApplied.11.044063.

[40] Chih Heng Yang, RCC Leon, JCC Hwang, Andre Saraiva, Tuomo Tanttu, Wister Huang,
Julien Camirand Lemyre, Kok Wai Chan, KY Tan, Fay E Hudson, et al. Operation of a silicon
quantum processor unit cell above one kelvin. Nature, 580(7803):350-354, 2020. URL https:
//www.nature.com/articles/s41586-020-2171-6.


https://arxiv.org/abs/cond-mat/9612126
https://arxiv.org/abs/cond-mat/9612126
https://www.science.org/doi/full/10.1126/science.aao5965
https://www.nature.com/articles/s41586-020-2170-7
https://www.nature.com/articles/s41586-021-03332-6
https://www.nature.com/articles/s41586-021-04182-y
https://www.nature.com/articles/s41586-021-04182-y
http://dx.doi.org/10.1038/s41567-024-02481-5
http://dx.doi.org/10.1038/s41567-024-02481-5
https://www.nature.com/articles/npjqi20154
https://link.aps.org/doi/10.1103/PhysRevB.77.174509
https://link.aps.org/doi/10.1103/PhysRevApplied.11.044063
https://www.nature.com/articles/s41586-020-2171-6
https://www.nature.com/articles/s41586-020-2171-6

BIBLIOGRAPHY 51

[41] Floris A. Zwanenburg, Andrew S. Dzurak, Andrea Morello, Michelle Y. Simmons, Lloyd
C. L. Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N. Coppersmith, and Mark A. Eriks-
son. Silicon quantum electronics. Rev. Mod. Phys., 85:961-1019, Jul 2013. doi: 10.1103/
RevModPhys.85.961. URL https://link.aps.org/doi/10.1103/RevModPhys.85.961.

[42] Thomas McJunkin, Benjamin Harpt, Yi Feng, Merritt P Losert, Rajib Rahman, JP Dodson,
MA Wolfe, DE Savage, MG Lagally, SN Coppersmith, et al. Sige quantum wells with oscil-
lating ge concentrations for quantum dot qubits. Nature Communications, 13(1):7777, 2022.
doi: 10.1038/s41467-022-35510-z. URL https://doi.org/10.1038/s41467-022-35510~-z.

[43] Francesco Borsoi, Nico W Hendrickx, Valentin John, Marcel Meyer, Sayr Motz, Floor
Van Riggelen, Amir Sammak, Sander L De Snoo, Giordano Scappucci, and Menno Veldhorst.
Shared control of a 16 semiconductor quantum dot crossbar array. Nature Nanotechnology, 19
(1):21-27,2024. URL https://www.nature.com/articles/s41565-023-01491-3#citeas.


https://link.aps.org/doi/10.1103/RevModPhys.85.961
https://doi.org/10.1038/s41467-022-35510-z
https://www.nature.com/articles/s41565-023-01491-3#citeas




The Theory of g-factors

4.1 Introduction

For a charged particle such as an electron, the intrinsic spin along with the charge contribute to its
magnetic moment. The magnetic moment helps determine the strength and direction of the mag-
netic field of the particle, thus giving an insight into its behavior in an external field. The g-factor
helps quantify the coupling of the particle’s intrinsic spin to an external field. In particle physics,
it is known that the Standard Model theory is incomplete. The magnetic moment (g-factor) is
precisely measured and is one of the accurately verified predictions of the standard model. These
measurements are exciting because they have a potential role in the search of theories beyond the
Standard Model [1].

In solid state physics also the electron g-factor is an important quantity which can predict the
behavior of electrons in specific quantum setups and to some extent even help control its spin. In
section.3.5 of chapter 3, we saw that in spin-qubit quantum computer, single qubit gates can be
implemented using static fields and oscillating fields [2—4]. The effect of this can be directly noted
by measuring the g-factor. The modulation of the g-factor leads directly to spin-manipulation
[5]. In the case of a double quantum dot (DQD) as well, single-qubit gates involves the g-factor
difference between the two dot [6-9]. The sensitivity of the g-factor to the shape of a quantum dot
(QD) can help understand the QD properties, the device physics and thus the qubit performance
[10]. We saw in chapter 3 that the g-factor can also be informative about the noise.

In this chapter, we discuss a general theory of the g-tensor and provide explicit analytical meth-

ods to obtain the g-tensor and thereby the g-factor. We start by considering the bulk case of the
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usual semiconductors (silicon, germanium and gallium-arsenide) and highlight the effects of the
spin-orbit interaction on the g-factor. We also show that the underlying symmetries of our crys-
tals lead to certain quantum information implications. In the subsequent chapters we will show

the implementation of our theory.

4.2 The g-tensor formalism

In relativistic quantum mechanics, one may use the Dirac equation,
(ih’yyay - E’yVAV - mc) Y(x) =0, (4.1)

to describe an electron in an electromagnetic field with a four-potential A, = (¢, —A). ¥ : R1® —
ct represents a field and y* with u = 1, 2, 3,4 are the complex matrices,

I 0 : 0 O'i
0 2 i

, | ) 42
7 (0 I[2> 7 (—01 0) (4.2)

where ¢ are the usual Pauli matrices.

In the non-relativistic limit, we consider the free-electron wavefunctions,

¥ _ (eiEt/hqr+> 43

e iEt/ng
which gives rise to the coupled equations,

(E—mc—§¢>‘{’++a- (iV+§>‘I’_:0,

<E+mc—§<p> Y, 4o (iV+§) ¥_ -0 (4.4)

Making the approximation E — mc — £¢ ~ 2m and solving for ¥, one gets a time-independent

Schrodinger equation,

L (—iv+fA>2+f — o B| ¥~ (E—mo)¥ (4.5)

2m c " om - +' '
by replacing B = V x A. The term — 50 - B can be re-written with the spin-angular momentum
operator S = 5§ as ——S-B = —pu - B describing the energy of the interaction of the magnetic

moment p with the external field B. Since y = g55-.S, g5 = 2 is the vacuum value of the g-factor.

The relativistic Dirac equation predicts the value of the g-factor as 2. But corrections to this value,

seemingly of a universal nature, arise from the interaction of the electron with virtual particles
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(quantum fluctuations),

2
¢=2 (1+2i+ (%*% - —log( )+Z§(3)) (%)ZJF) (4.6)

where « is the fine structure constant.

We proceed to show that in solid-state physics the corrections to the g-factor are much larger
and have origins in the spin-orbit interaction. Consider a crystal electron in an external magnetic
tield. It is described by the following Schrédinger equation:

1 AT’ h 1

H(B) = o {p— T] +V(r)+ 12 2(VV( r) X p) o+ igyBU-B. (4.7)
The first term is the kinetic term part of the energy. The next term, V (r), is the crystal potential
and does not directly cause any changes to the g-factor. But as will be shown below, some other

factors do cause the g-factor to deviate from its value of 2.
We identify the spin-orbit Hamiltonian,

o2

T (VV xp)-o. (4.8)

h
Hso = 15 5 (VV xp) o=

The last part is written in atomic units where the base units are the electron rest mass, the mag-
nitude of the electron charge, the Planck constant and the permittivity, introducing the fine struc-
ture constant . The spin-orbit interaction causes a splitting of degenerate energy bands. In
certain cases, as will also be shown later, when inversion operation is involved, this splitting is
forbidden. When spin-orbit interaction is involved, a wavefunction and its time reversed partner
will have the same energy (sec.2.4.7),

E(k,1) = E(—k ). (4.9)

When inversion is involved,

E(k,1) = E(=k,1); E(k,{) = E(—k, ). (4.10)

Combining Eq.4.9 and Eq.4.10, E(k, 1) = E(k, {).

Note that the momentum operator in the presence of spin-orbit interaction takes on additional

Here the states |1) and ||) are not pure spin-up and spin-down states but are used to indicate pseudo-spins.
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terms

2
p: h
1 HO)] = |1, 2=+ V(1) + 155 (¢ X V) p,

2
= |1 ;_TZTZ + V(T)

h
s (0 X VY[ p).

[ri, p;] = [ri, —ihoy,| p = —ihri0p P + ih0y, (rip) = —ihiri0pp + ihri0p Y + ihp = ihyp

2 .
p; - ih
P;ﬂ=[w]” Pilpyr) = [rp) 25+ Lo ir,p) = Zp,
)

2m 2m  2m

2 h
= [r, H(0)] = [ri,zp—m + 1202 (VV x a)ipi]

_im il in?
P a2

h
= (Pﬂrm(vv X 0)1)

_ (4.11)

(VV x 0);

1 hcz (e xVV(r)).? (4.12)

The spin-orbit term, which correspond to relativistic effects, causes changes to the g-factor from
the value of 2. Since this term is dependant on the crystal potential and the moment, the deviation
of the g-factor value from 2 is crystal specific and band specific. This deviation can be quite large,
as we shall see. In this chapter we will revisit the analytical form of the g-factor as a tensorial

quantity and quantify the deviation from its vacuum value for semiconductors of our interest.

Luttinger [11] first described the charged particles in the topmost valence band. An electron in
a periodic potential of a crystal moves as a free electron in vacuum with a wave-vector k and an
effective mass m*. The effects of the forces acting on it are captured by this effective mass. The ef-
fective mass is a tensorial quantity as it described by the curvature of the energy bands. In certain
semiconductors such as silicon, this curvature is not symmetric and has a significant dependence
on the x-, y- and z-directions. The wave-vector or the quasi-momentum of the electron takes a

gauge-invariant form as can be seen in Eq.4.7, p = hk — m = hk = p — %. The wavevector no

2In general, (rr) ~ (p) is a good approximation as the matrix element of
interest, is quite small. We, therefore, use these two inter-changeably.

ym 20’ x VV(r), for many materials of
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longer commutes,

eB

(ki kil = —ilki, oy, ]9 — %[ki,h’]l/]
) B, 6 . ) .
= —i (ki () — 9, (ki)yp — kior, () —;—C(—lan(ﬁ)lpjﬂiari(lp) +iri9r, ()
0 0
.eB
= lh—cll)
— [k k)] = %(i x 7) - B. (4.13)

Consequently, the effective mass has a non-vanishing asymmetric part,
1\* 11 1
— = |——-—1, 4.14
( m* ) 2 [m:‘] m;‘l] (419)

and is proportional to B. For any band n, the asymmetric term has the operator form [12, 13]

(4.15)

( 1 )AS _ i Z us |un’k><un’k| Tt B 1 Z Tt |un/k><un/k| T
=

% En - En/ W 7’1’7&7’1 En - En/ !

1 n'#n

where |u,) is the Bloch wavefunction of the band electron. This operator acts within the space of
two (spin-degenerate) Bloch wave-functions |u,) of band n. The Zeeman splitting of band state
at energy E,; in magnetic field B is given by the eigenvalues of the 2 x 2 spin Hamiltonian

h? 1\ /ieB,
Hyje = Enie + —-€iji <%)ij (%> +pupo - B (4.16)

(using the Einstein summation convention). The splitting of the spin-degenerate eigenvalues
around the zero-field value E, has the form

AEnk = UBA/ BZGZ]B] (417)

This defines the symmetric tensor G;;, from which the band g-tensor is obtained 3
G=g-g. (4.18)

Note that the definition of g is not unique, leaving open the question of whether it should be
considered symmetric or not. Later on, we define g in terms of the magnetization of the band
state, but the non-uniqueness in that case arises from the choice of basis of the pair of band states

|tyr). Some previous work has used the non-symmetric form of the g-tensor [15, 16]. We will

3Note that we use the convention of Abragam and Bleaney [14] in Eq.4.18; other, more recent work (e.g., [15]) uses
a transposed convention, i.e., G = gTg.
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adopt a convention for which g is not necessarily symmetric; but our discussion will depend on
certain invariants such as the singular values of g or the determinant of g, which are uniquely

determined by definition Eq.4.18.

In Eq.4.16 one may notice that g has two distinct contributions, g = g, + g¢. If spin orbit is
zero, only the last, pure spin term will contribute, in this case with the value 2. For finite spin
orbit its contribution, which we denote g, will be modified. There will also be a nonzero orbital
magnetization contribution g; from the middle term of Eq.4.16. Further, g; is directly determ-
ined by the antisymmetric part of the inverse effective mass tensor. We proceed to define the two

contributions, g¢ and g;, separately.

4.2.1 The spin g-tensor, g

As mentioned earlier, the Bloch-state |u,) of band n has two orthogonal partners which we de-
note as |¢) and |{). These states are spin-degenerate at wavevector k in the limit of no spin-orbit
interaction. They may have different energies when the spin-orbit interaction is non-zero. In
some cases, as will be seen later on, these states are related by time-reversal followed by a unitary

operation, u that takes k to —k (for example, u can be inversion),

&) = ioyu |g), (4.19)

where « is a complex conjugation followed by a ¢, Pauli rotation. We refer to these states “pseudo-

Kramers”.

We can then write the spin-matrix,

(€|oi|€) <§|01]§>>
o / 4.20
<<é‘\<leé> (&|oil&) (4.20)

and a simple expression for the spin contribution to the g-tensor,
1 ~

Note that we are working with atomic units. From the usual magnetic moment formula, M =

L + 2§, the appearance of 28§; is correct. ; is a Pauli-operator acting on the subspace of |),

and is not the same as ¢ above that acts on the electron-spin Hilbert space |1), ||).

4.2.2 The orbital moment contribution to the g-tensor, g;.

A different point of view about the magnetic moment of band electrons has emerged much later.
Consider the electron state as the coherent transport of a localized wave-packet moving in k-space
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[17-19]. The wave-packet is considered to be spread over a small portion of the Brillouin zone
and is affected only by the local band properties. The rotation around its center of mass causes

this wavepacket to have an orbital magnetic moment given by*

L(k) = i% (Vittn| % [H(k) — €n(k)] | Vittn) , (4.22)

where we see the appearance of the Berry curvature |Viu,,). Though at first it may seem dif-

\ L(k)
TC \

Figure 4.1: Orbital angular momentum, L(k), of a wave-packet around its center of mass along ..

ferent, this alternative formulation is completely equivalent to the Luttinger result Eq.4.15. The
gradient of the Bloch wave-function can equivalently be written using the position-Hamiltonian

commutator [20],
w|[x, H]|ttm)

_ (|
\a]‘”m>——ﬁl;\uz> e (4.23)

The orbital magnetic moment operator takes the form

A ie [xj, H]|”p><”p|[xk/ H]
Li(k) = o Zk €ijk Eum — E, : (4.24)
i

L; is an operator acting on the states |1, ) and |u,,). Recall that these are assumed to be degenerate
if the spin-orbit interaction is zero, but in general may not be exactly degenerate with finite spin

orbit interaction[19]. Here E,,;;, = @

If bands n and m are degenerate, so that @ = E, = Ej, then indeed the asymmetric mass

“The sign of Eq.4.22 is the opposite of the sign found in the general literature. The sign of Eq.4.25 corresponds to
the atomic limit of the Landé g.
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term is the magnetization operator; since ﬂn] =[x, H] <~ % p),

mtjlup) (uplme  —ie 1\%

JI7p P
- Y e = e —) . 425
Li 2751m2 T Eum — Ep n Cik (m*) (425)

jk
#n m

A similar expression as to Eq.4.20 can be written for the orbital angular momentum matrix for
states |¢) and |¢),

€k ( (&lmjlur) (il &) <§|7T'|Ml><uz|7fk|5>)
L=y —F [\ Al ap 4.26
%Egé_E <<C\ﬂj!“1><uz!ﬂk|5> (&l mjlur) (up| el &) (26

Note this is in atomic units, e = i = m = 1. Then, similarly to Eq.4.21,

1

4.3 Topological and entanglement properties of the g-tensor

For materials where the spin-orbit coupling is weak, such as silicon, one might expect g5 to be 2
and g; to have negligible contribution. We find that this is true for certain bands in certain parts
of the Brillouin zones. In other parts of the Brillouin zones, this is far from true. In the following
sections we show that symmetry guarantees that the eigenvalues of g or the singular values of
G must differ from 2 and cross regions of maximal spin-orbit entanglement. We first present the

necessary tools to understand this and then discuss the connection to entanglement.

4.3.1 Linear algebra of the g-tensor

From the definition of g (Eq.4.17. and Eq.4.18), the eigenvalues of G are the square of the singular
values of g. The singular value decomposition of g is,

g=UxV. (4.28)

Since g(k) is a real matrix, U and V are also two k-dependent real orthogonal symmetric matrices,
unique except sign changes columnwise for U and rowwise for V. ¥, a positive semidefinite diag-
onal matrix of the singular values of g, also k-dependent, has three scalar elements on its diagonal
Yyx > Lyy > Xz arranged in descending order. These three scalars are commonly know as g-

factors.

The columns of U give the principle axes of the external B field, so the Zeeman splitting can
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be re-written using the singular values as,

AE = ug \/zng,% +32,B2 +¥2,B. (4.29)

The magnetic moment vector of the ground state is,

252
ground _ VBZZ'Z'BZ' 4
M A (4.30)

4.3.2 The relation to entanglement

The expression for the g-tensor, (formed using Eq.4.21 and Eq.4.27) involves the eigenvectors of
the Hamiltonian, H (k). Since H(k) can be chosen to vary continuously with the wavevector k,
the eigenvectors can also be chosen to be continuous in k. Thus the g-tensor must be a continuous

quantity with respect to k and consequently, its determinant det(g¢) must also be continuous.

We provide a proof of why the g-tensor must differ from 2 in Theorem.1 using the linear algebra
of this quantity that has been discussed above. But before that we must define the band pair, B(k)
and B(k) for which any accidental degeneracy is absent and to which this theorem applies.

Recall the expression for the spin-orbit Hamlitonian in Eq.4.8 in Hartree atomic units,

o2

Here « is the fine structure constant but for the sake of definition 1 and theorem. 1, we treat it as

a running constant.

Consider the table 4.1 as shown below. For no spin-orbit interaction, the bands that we will focus
on are labeled according to the irreducible representations in blue as shown in table 4.1. When
the spin-orbit interaction is turned on (« > 0), the bands with the blue labels split into bands with
the double group irreducible representations in red and black. The bands in red have two-fold

degeneracy whereas the bands in black may have a different degeneracy.
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T F4®D1/2:F5@F6@F7 —

Iy ®Dyp=Ts &Tf @I}

T, VOA

[, ®Dyjp=0; @, T,

OA|A € {(0,0,k,),
[4®Dy/p=Ts®Ts

Ty (kx,0,0), (0,ky,0),
I5®@Dyp=17®Ts

(ky Ky, ko) }

[4®Dy/p =Ts®Ts

Is®Dy=17®T%

I, ®Dyp=TI, &g
T2 ®Dyjp=T17 ®&T4

I, ®Dy,=T, ®Tg

Ty @Dy =T, ®Tg

Table 4.1: Band labels for which det(gs) is guaranteed to pass through 0 along the ray O—>A Groups of bands
are labeled according the irreducible representations of the states in the set of bands at k = 0 as given in
[21],[22]. The left-most column of this table indicates the points groups. In the central columns, the bands
denoted in blue are bands without spin-orbit interactions. These bands split into the red and black bands
when spin-orbit couplings are taken into account. The red bands are the bands with Kramers degeneracy

at I for which def(gs) changes its sign along any ray OA. The right-most column of the table contains the
directions in which a maximal spin-orbit entanglement is guaranteed for the degenerate red bands of the
corresponding symmetry group.

It is required that there be no accidental degeneracies involving the band pair B(k), B(k) dis-
persing from the states belonging to irrep. I'; (red irreps. from Table.4.1). This pair is degenerate
at k = 0, and sometimes degenerate elsewhere (for some point groups and some directions in
k-space). Furthermore, this pair of bands is degenerate as & — 0 with the other bands B,;,;; (k)
associated with the accompanying irrep I'; in the table, i.e., in the pair [';&I';. Besides these, it is

required that no other degeneracies occur, as captured by this definition (a, > 0 is some fixed
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spin-orbit strength):

Definition 1. Non-degeneracy of Bands.

Band pair B(k), B(k) is non-degenerate if Vo such that 0 < a < a,, Ikyp and AE > 0 and all three con-
ditions are true: 1)Vk, |k| < knp, VB'(k) & {B(k), B(k), Byu:(k)}, VB" (k) € {B(k), B(k), By (k)},
|B'(k) — B"(k)| > AE. 2) Vk, |k| < knp, B(k) and B(k) are nowhere degenerate with B,,,;; (k). 3)
vk, |k|:kND/ |B(k) - Bmult(k)l > AE and |B(k) - Bmult(k)| > AE.

The conditions of our definition can be easily checked for any band-pair in a particular crystal,
and are seen to be true for the materials studied later in the paper. We can now proceed directly

with the first main result:

Theorem 1. Given a crystal with any of the cubic point group symmetries: O, Oy, T, Ty, or T;. Consider
any pair of energy bands belonging to the irreducible representations of the symmetry group of the crystal,
indicated in red from Table.4.1, which have come from states with the blue irreducible representation for
zero spin-orbit coupling. We consider band pairs that are nondegenerate in the sense of Definition 1. Then
for sufficiently small spin-orbit coupling, there exists a surface in k-space, enclosing the I' point, on which
det(g¢(k)) = 0, where g¢(k) is the spin contribution to the g-tensor.

Proof. Consider the bands that occur in the band structure of crystals with the point groups O, Oy,
T, Ty, T;, that belong to the irreducible representations in red in Table.4.1 at k = 0. The condition
that the spin-orbit interaction is nonzero implies that these states are only doubly degenerate,
and not higher (accidental degeneracies are excluded by assumption). This two-fold degener-

ér)

acy is precisely the Kramers degeneracy. We denote these Kramers-degenerate pairs as |ir),
where I is any of the red labels of Table.4.1.

Using Eqs.4.20,4.21, we calculate the spin g-tensor of these doubly degenerate bands. Atk = 0
and infinitesimal spin-orbit coupling « = 07 the eigenvectors of these bands belonging to red

irrep I'; are built up from the so-called [13] “p-like states” | X) ,|Y) , | Z), mutually orthogonal, nor-
malized orbital states. The term “p-like” refers to the orbital states often being predominantly
composed of atomic p-orbital states. Due to symmetry (cf. [13], and spin harmonics tabulated in

[21]), the eigenstates of all the red irreducible representations I" have the form

) =|53) = 75 (2 +10 W+,
&)= |3-3) = 75 (2 =0 M i D). 432)

For a finite non-zero « all states of irrep I'; are mixed. Some may not have the form of (4.32)
because they arise from different non-relativistic states, e.g.. for group T;, one hasI'y ® Dy, = T’.
For « = 07 these additional states always have the simple form |S) 1), |S) |}). These states could
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be mixed and so the eigenstates will have the more general form

) = |33) + o),
|8r) = %—%> + |6Cr) - (4.33)

But because of the non-degeneracy condition, these corrections |d¢) can be calculated using per-
turbation theory”. The denominators E;(f,)) — E,SO) are guaranteed to have a magnitude no less than
a finite constant AE by definition 1. We conclude from this that norm(|6¢)) = O(a/AE). With

this, an explicit calculation of the spin-contribution (Eqs.4.20,4.21) for any pair of states of the

form (4.33) gives
2.0 0
gs=10 3 0] +0(a/AE), (4.34)
0 0 —%

Thus det(gg(k = 0)) = —2 + O(a/AE), so that det(g5(k = 0)) < 0 for sufficiently small a.

Note that gs = —2/3 coincides with the application of the Landé expression with quantum num-
bers L = 1,5 = %, ] = % [23]. The Landé expression for gg can be seen from eq.31.37 of [23],
p. 654. This equation shows the two contributions to the g-tensor in the atomic limit. It is in-
teresting to note that while it is common to say that these band states have quantum numbers
L=1S= %, J = %, the symmetries that this statement implies are only partially in force. In
particular, while symmetry dictates that s is indeed exactly the Landé value —% fora — 0. g1 is
not fixed to its Landé value +3.

Let us now consider the calculation of g¢(k) for |k| = knp (see Definition 1). We need the Bloch
eigenvectors of bands B(k), B(k) to evaluate Eq.4.20, we denote this pair as |u,(k)) and |u,(k)).

Again using perturbation theory:

(0) (0)
2 u,(k)((vap)-au (k) 4
O ) (4 n/m ©) -
s (K)) = [, (6)) = =, O _E0) () +0 <16AE2>'

(4.35)
Again, we use the fact that all energy denominators are by assumption greater than AE. Thus, the

states |u,,/,,(k)), for sufficiently small «, are arbitrarily close to the eigenvectors with no spin orbit

(0)

n/m
Since det (g¢) is continuous in k and changes sign between the origin and the sphere of radius

u

coupling (k) > For these the three eigenvalues of g are +2, and thus det(gs(knp)) = +8.

knp, there must be a closed surface within this sphere on which det(gs(knyp)) = 0. O

>We assume the convergence of this perturbation, which is essentially the same as the issue of the convergence of
the k - p perturbation calculations as in egs. (4.15) and (4.23), which is well established.
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Note that the g-factors describe an isotropic quantity at k = (0,0,0). Equation 4.34 does not

contradict this, as changing the phase convention of one state, C_r> — — ‘5r>/ gives, for o = o+,

(4.36)

O W O

2
3

8s = 0 —
0

Wy O© O

whose determinant is also —%, and whose magnetic moment M is also identical, as seen from
Eq.4.30. A similar change of sign convention causes the eigenvalues of gs at kyp to be (-2, —2,2),
but with det(gs) = +8 unchanged.

The Theorem.l may seem to contradict the seemingly obvious assertion that gg = 2 if there is
no spin-orbit coupling, which would mean that det(gs) = +8. But the actual statement is more
subtle: as « — 0, det(g¢(k)) = +8 for almost all k. When « = 0, k = 0 is special because of the
emergent 6-fold degeneracy of the multiplets. Thus, the order of limits « — 0, k — 0 is important,
and it is permitted that a surface det(g¢(k)) = 0 always exists, but this surface must collapse onto

the origin as « — 0.

Having shown that the def(gg) must go to zero, we noticed that along the directions OA shown
in the third column of Table.4.1, states in these bands exhibit maximum entanglement at the point
where det(gs) = 0. We will now proceed to prove this interesting fact and show the relation
of det(g5) = 0 to the spin-orbit entanglement. For this, we need to show the general relation
between the reduced density matrices of the electron spin, ps and ps of the states |¢) and |&)
respectively.

Lemma 1. Consider the reduced density matrices, ps and ps of the Kramers-paired bands corresponding
to the irreducible representations in red in Table.4.1 along the directions OA. Then,

ps = oypsoy (4.37)

Proof. Consider the eigenstates |¢) and |¢) of Kramers-paired bands corresponding to the irre-
ducible representations of inversion-symmetric groups Oy, T, and the group T;. The proof is
distributed in three parts as the underlying symmetry for each of these cases is different. The first
part deals with the inversion-symmetric groups. For the group T;, degenerate eigenstates occur
only along the A- and the A- directions. The second and the third parts deal with these two cases
of Ty.
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1. The eigenstates |¢) and |&) of bands in the inversion-symmetric groups are related by an
inversion followed by the time-reversal operation 6 [22, 24], having the form,

=Y u(r)e®, |&) =Y 0(u(—r))e*" (4.38)

, The reduced density matrices of these two states are, ps = Try,p = Tryp (|C){(E]) and
s = Trom p = Trom (|E)E|). Note that inversion is a space operation and therefore does not
affect the spin part. Since ps is hermitian, ps = oyxpskoy = oyploy (k indicating complex
conjugation)[25].

2. In the A-direction of Ty, the states |¢) and |{) belong to the irreducible representation A4
[26] and are given by linear combinations of the basis states of the little group Cs,. The basis
states of Cz,, for the first partner of the irreducible representation A4, can be chosen to be
the following combinations involving the s-like and p-like (cf. Eq. 4.32) mutually orthogonal

states (a way to obtain this is shown in section.2.4.3),

B) = |s> 1),
BYY) = 7 (1) 1) + YD 1) +12) [1)),
B = 7<|X><|¢>+z‘|¢>>—|¥><|¢>—|¢>>>,
- 7. (439)

Using the projection operator formalism detailed in section.2.4.3 and also as defined in sec-
tion 4.4 of [27], Pkrl”, by definition, transforms one basis vector |/} into the basis vector |k)

BYY) + s | BYY)

of the representation Ay is transformed using the projector into |{) = PA4 |C). We see that

of the same representation I',. That is, the eigenstate |{) = a; ‘Bi\ 4> + ap

this transformation involves a reversal of spin directions in these basis states Indeed, direct
calculation, starting from

~ _ phAy pAgt
where § is the density matrix corresponding to the state ¢, shows that this leads to the

reduced density matrices ps = Tr,,4(p) and ps = Tr,,;(0) being related as

ps = ( Ps22  —pPs12 ) (4.41)

—pPs21 0511

which is the component-wise form of Eq.4.37. It is interesting to note that this derivation
makes no use of the time reversal symmetry.

3. The relevant representation As of the little group Cy, of T; has four basis states formed out
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of the s- and p-like mutually orthogonal states (the details of obtaining the basis states is
shown in chapter 2, section.2.4.3):

BY") = 15) 1),
BY™) = [X) 1),
B*) = ) |4,
BfS> =1[2)11) (4.42)

Note the alternation of spin directions! The projector ng , following the definition of [27],

transforms the state |§) = a3 ’BlA5> + ap ‘B2A5> + a3 ‘B3A5> + 0y ‘Bf5> into ‘§> = PA5 1&).
Given the form of the eigenvector |¢), its spin density matrix is diagonal,

0
ps = (pS” ) . (4.43)
0 ps22
Using the projector, we arrive at the state,

s sast) _ (Ps2 0

ps = Tron, ( Pz 0P ) = , (4.44)
or ( ¢¢ ) ( 0 p511>

consistent with Eq.4.37. O

Note that Eq.4.44 implies the satisfaction of the condition Eq.4.37 for any choice of the partners
of the representation: for an arbitrary SU(2) rotation

v () (445
VsV c| X — (1 —¢)|Y|? (1—2c)XY
(1-20)X*Y*  —(c—1D|X> +c|Y|?
=0, (VpsV")Tay, (4.46)

where ¢ = pg11 of Eq.4.43.

With the help of the lemma, we can show that these two states are maximally spin-orbital en-
tangled when det(gs) = 0.

Theorem 2. Consider the reduced density matrices of the spin subsystem, ps, ps, of the Kramers-paired
bands corresponding to the irreducible representations in red along the directions OA as indicated in
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Table.4.1. Then
det(gs) =0 = S(ps) =S(ps) =1, (4.47)

where S(ps) = — Tr(pglog pg) is the entanglement entropy of the reduced density matrix of the spin

subsystem.

Proof. The spin g-tensor of these states can be decomposed according to Eq.4.28 as g = UXV. We
go to the coordinate system of the Bloch sphere such that in this transformed basis V' is rotated
away, i.e., go = UX. This necessitates a change of basis of |) and |¢) into |¢') and |¢’) by an

{)-(: D)

where X and Y are complex amplitudes such that |X|?> + |Y|> = 1. Equation 4.46 shows that for

SU(2) transformation,

any X and Y this rotation does not affect the relation between ps and ps. We choose X, Y to reflect
the mapping SU(2) — SO(3) [28],

Re(X? —Y?) Im(X?+Y?) —2Re(XY)
Vi=| —Im(X2—Y?) Re(X2+Y?) 2Im(XY) |. (4.49)
2Re(XY*) 2Im(XY*)  |X|?—|Y|?

The total density matrices of the time-reversal pair |¢') and [¢') are p = |&'}&'|, p = |&'X{].
Tracing out the orbital degrees of freedom leaves us with the reduced density matrices of the

spin-subsystem, ps = Tropp = ‘Cg ><Ci§ , 0s = Trppp = “f/s ><‘f/s|
The spin matrix from Eq.4.20 can be re-written as

_ (Tr|<:'><c'|o-,- Tr\a:’><¢"\ai>
! Tr\g"><g'\ai Tr\g")(é’\ai, ’

and the spin g-tensor has the form

(4.50)

Te (|6 | ox +[§'XE [ ow) i Te(|&7 )& o = [&'NE [ x)  Tropin(ps0x — Ps0x)
8s = | Te(|g")¢"[ oy +[E)¢ [ oy)  iTe(|&")¢ [ oy — [E) [ oy)  Trspin(psoy — Psoy)

Te([6/ )& o=+ [E)0E oz) T (|6")E"| o= = [8')X¢"| ez) Trspm(psffz—ﬁscfz)( |
4.51

The eigenvectors from Eq.4.48 along with the transformed spin matrix of Eq.4.50 give us the spin
g-tensor in Eq.4.51. Recall that g¢ = UX which means that up to a sign factor, det(gs) = det(X).

Recall also that X is the diagonal matrix of singular values in descending order. Since we have
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then at least 2., = 0, so that all the entries of the third column of gs) are zero. Thus,

Trspin(0s0x — Psox) =0,
Tt (ps0y — fscy) = 0,
Trspin (0502 — Ps0z) = 0,
= ps —ps = 0. (4.53)

Now, combining ps = ps with gg = 0pL0y (lemma 1) gives

s = ps = 51, (4.54)

so that
S(ps) = S(ps) = 1. (4.55)
O]

It should be noted that Theorem.2 applies not only to the three cubic point groups Oy, Tj, and Ty,
but also to various other non-cubic groups. We do not look at any other groups here since we are
interested in applications of this theory to materials that belong to Oy, and T;. As can be noticed
in Table.4.1, Theorem.2 does not apply at all to the groups T and O, because they do not have any
directions in which pairs of states are degenerate, even taking time reversal into account. This has
been verified using the method described in section 13.2 of [24]. We provide the analysis of this
in the appendix.A.

We have shown that, due to Theorem.1, bands with certain symmetries necessarily have sur-
faces surrounding the I'-point where det(gs) = 0. In the next chapter, we discuss the application
of the theory of the g-tensor to the important semiconductors silicon (5i), germanium (Ge) and
gallium arsenide (GaAs). We also show the complex topologies of the surfaces of both g5 and
g = g1 + gs for important valence and conduction bands with the relevant symmetry in each of

the three cases mentioned in the lemma. 1 above.



Analysis of groups T and O

As mentioned in [24], we would like to see if the irreducible representations of the groups T and
O admit symmetry preserving transformation under the nonunitary group G which involves the
operations u; of the unitary group G and anti-unitary operations, 6u; where 6 is a time-reversal
operation. To refresh aspects of group theory, refer to chapter 2 section.2.3. Here we briefly re-
mind the reader about the transformation of the representations under operations belonging to

the non-unitary group.

A.1 Transformation of the representations under non-unitary op-

erations

The transformation of the irreducible representations of the groups T and O under the unitary
operations u;, of the unitary group G, as well as under the anti-unitary operations 0u; (where
0> = —1), determines whether they satisfy Theorem.2 (in chapter 4). In this section, we examine
these transformations. As mentioned in the introduction, G = G + G, the non-unitary group
comprising both unitary and anti-unitary operations. If we denote a as a general anti-unitary op-
erator, then according to eq.13.22 of [24], the following equations must hold for the representation

matrix D,
L uuodr = 1 P [D(”l)D(MZ)Lkr
2. uagy = Y;¢; [D(u)D(a)]
3. augy = Y ¢; [D(a)D(u)"],

70
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4. marpe = ). ¢ [D(‘Zl)lj(@)*}jk

where ¢; are the basis of the representation D. The representation matrices of au and aja, are
not equal to the product of the matrices a, u and ay, ay respectively. Such representations are
called corepresentations of a non-unitary group. Two corepresentations D and D’ are said to be

equivalent if there exists a matrix T for which they satisfy:

D'(u) = T 1D(u)T,
D'(a) = T7'D(a)T*. (A.1)

for all u and a. To construct an irreducible corepresentation D of G given an irreducible repres-
entation A with dimension d of the unitary subgroup G, we consider the basis ¥;(j_1,._ 4) such that
uypy = Z}i:l il (u). If ¢ = ag where ag is an anti-unitary operator, then uy; = 2}1:1 l[)]/-Ajk(u)
and we define A as (eq.13.26 of [24])

[

(u) = A (aalua())* . (A.2)

A is also an irreducible representation of G. To get the irreducible corepresentation D of G, we

must consider the following cases.

1. If A and A are equivalent then there exists a unitary U such that z(u) = U 'A(u)U. We
define a quantity A as UU* = AA(a3). The irreducible corepresentation D of the non-unitary
group G is related to A in the following way,

2. If A(u) and A(u) are inequivalent, the irreducible corepresentation D of G is given by,

~  (Aw) 0 A (0 A(ap)
o= (300 0 )0t (0 360 s

The derivations of the above cases have been discussed extensively in [24] on pages 297-298.
If ay = 0, the time reversal operator then, following Eq.A.2,
Aw) = A (eflue)* — Adu)*, (A4)

In the cases of the groups T and O, finding representations that satisfy Eq.A.2 such that A and A

are equivalent, would imply these representations would be equivalent under an operator vy that
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takes k to —k unitarily and returns to k by a succeeding time-reversal operation. The wavefunc-
tions of the bands of these representations would then be related by the overall operation 84y and
would admit maximal spin-orbit entanglement as per theorem. 2. This would also prohibit the
bands from splitting.

A.2 Non-unitary operations on little groups

To determine whether Theorem 2 applies to the groups T and O, we focus solely on the spin
density matrix of charge carriers in specific directions of k-space. This requires a non-unitary
transformation that acts only on the spin subspace of the representations of the little groups Cp,
C3, and Cy, as defined in Section 2.3.6. Therefore, it is sufficient to verify the SU(2) form of Eq.A 4.
The SU(2) representation of ag must be the time reversal operation = iy, that takes k to —k and

i 0
then brings it back to k by a unitary 7r-rotation vy = (O ) around the z-axis,
—i

apg = vpb = ((l) i)z) i (? BZ) K= (? é) K. (A.5)

The SU(2) matrix form of vy is easily obtained from subsection.2.3.4, Eq.2.14 . Since we want to
understand how ag acts on the elements of the little groups, which, for the basis states ¢(1/2,1/2)
and ¢(1/2,—1/2) are diagonal matrices, we will look at the transformation of a general 2 x 2

0
diagonal matrix, U = g . first.

0 —i 0\ (0 i
ay Wag =« , : v i ! K
-1 0 0 b i 0
0 —i 0 1 b 0 b* 0
=K , : _ = K = . (A.6)
-1 0 ib 0 0 a 0 a*
Note that the transformations a; 1Eag and ay 1Eqg are trivial so we do not explicitly show them.

We look at these little groups individually,

1. Little group Cy:
The character table for the little group C; is [26],

i

E Cy | Gy | Time Inv. Bases
Ty 1|1 i |—i| b ¢(1/2,1/2)
Ty | 1] 1] i i b | ¢(1/2,-1/2)
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We recognize that the unitary elements U of C, are:

i 0 - —1 0
cn (D) en (7). n

The matrix C; can be obtained for the spin direction vector, nc, = (0,0,1) and angle ¢c, = 7,

using the method described in subsection.2.3.4, eqn.2.14. We identify a and b for each of the

case.
U= a0 a | b |a"|Db" ao_lllao = b0
0 b 0 a*

C | —i| —i]| 1 Co
G —i| 1 i | =1 G

The representations I's and I'y map onto themselves after the operation 4y and are not equi-
valent. Therefore the corepresentation matrix of G = 6C; as shown in A.1.2 will be,

. (T3 0
D_<0 m)' (A.8)

The character table for the little group Cs is [26],

2. Little group Cs:

E|E| G | G | Cy 1 Gy 1| Time Inv. Bases

Ty(1]-1 w | ~w|—-w?| &? b ¢(1/2,1/2)
511 -w?| «®| w | ~w b ¢(1/2,-1/2)

We recognize that the unitary elements U of Cs are:

w 0 | - 4 |—w? 0 44 .
C3 - [O —(4]2] /C3 - _C3/ C3 - [ O w] /C3 - _C3 7 (A9)

where w = ¢/"/3. The matrix C3 can be obtained for the spin direction vector, nc, = (0,0,1)

and angle ¢c, = &, using the method described in subsection.2.3.4, eqn.2.14. We identify a
and b for each of the case.

U= a0 a b a* b* a61Ua0: b0
0 b *

0 a

Cs w | —w?| —w?| w Cs
=—1 2 2 ~1
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The representation I'y and I's are inequivalent as a, T4y = Ty and ay T4y = T's.Therefore
the corepresentation matrix of G = 6C; as shown in A.1.2 will be,

D= <r4 0) : (A.10)
0 Ts

The character table for the little group Cy is [26],

3. Little group Cy:

E|E| C | G |C|C|Ct | Ct | Timelnw. Bases
511 w | ~w| i|—i|—-&? b ¢ (1/2,1/2)
T |11 —?| &®|—i|i| w |- b ¢(1/2,-1/2)

We recognize that the unitary elements U of Cy4 are:

w 0 . 3 —w® 0\ -4 . —i 0\ -
C4=<0 —w3>'c4:_c4'c4 =< 0 w>,C4 =-C, = 0 i ,C = —Co.

1

(A.11)
where w = ¢4, The matrix C4 can be obtained for the spin direction vector, nc, = (0,0,1)

and angle ¢c, = 7, using the method described in subsection.2.3.4, eqn.2.14. We identify a
and b for each of the case.

0 *
u= “ a b a* b* ao_lbmo = b0
0 b 0 a*

a
Cy w | —w?| -] w Cy

C;l —? | w w | —wd C’;l

The representations of the ¢-spinors are inequivalent, a, Tsay = T's and ay Teag
Therefore the corepresentation matrix of G = 6C4 as shown in A.1.2 will be,

. (Ts 0©
D—<0 F6>' (A.12)

In conclusion, we see that the spinor states are not doubly degenerate in any of the little groups
C,, C3, C4. This means that we see k i) N k, in other words Eq.4.10, along no directions for

the groups T and O and the representations do not admit maximal spin-orbit entanglement.

= T
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Application of the g-tensor formalism to

semiconductors

5.1 Introduction

The g-factors of important semiconductors such as silicon (5i), germanium (Ge) and gallium-
arsenide (GaAs) have already been calculated long ago [1-3]. We consider here these three semi-
conductors not just because they are important for classical computation but also because they
have become materials of interest for quantum computation. Here we show these results for
the g-factors again but with an emphasis on the topological features of the g-factor zeros in differ-
ent important bands and the resulting spin-orbit entanglement properties of the band eigenstates.
The topological aspects of silicon have been explored earlier [4]. We work within the tight-binding
formalism. Since we are only concerned with the topology, the ab-initio accuracy is not necessary.

5.2 Model Hamiltonian

We use the sp’d°s* tight-binding Hamiltonian [5-7] which is quite an accurate model for fitting
the energy bands of Si and Ge. But it is an open question whether this model is equally accurate
for other purposes. This is a twenty-band model, ten orbitals for each atom in the unit cell each
with two-spins. For the bulk semiconductors, as shown by Chadi [8], this Hamiltonian has on-
site energies along the diagonal and has off-diagonal interaction terms. The spin-orbit interactions
occurs between p, , and p, , orbitals of the same spin 7, (px,

Hso |py,s) and between p,/, - and
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po of different spins {c, 0"}, (px/y0

Hso |p2o),

(pet 1Hsolp, 1) = (p, T Hsolp, 1) = iAe
(p. T [Hsolp, 1) = = (p. T [Hsolp, T) = Ac,
<Py T [Hsolp, ¢> = - <Pz T |Hsolp, ¢> = —ik, (5.1)

where A, is the Chadi spin-orbit parameter. The spin-orbit interacting between the d-orbitals is
usually much smaller than that between the p-orbitals and is therefore neglected. We use the
parameters as given in [9]. The band structures for both Si and Ge are quite precise as can be seen
in Fig.5.1.

a)

iy iy |

Figure 5.1: (a) The band-structure of silicon. (b) The band-structure of germanium. The red labels are the
irreducible representations of the band states at I, taking spin-orbit coupling into account; see Table 4.1.
Energies are in atomic Hartree units.
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In Fig.5.1, one can see all the band labels clearly. For silicon, at the T-point, bands I's and I';
split into Kramers-degenerate pairs s — I') @ Ty and I, — I, ® I . Recall that I'; and I,
are spin-degenerate Kramers-pair bands, the other bands may have multiple degeneracy. Since
the spin-orbit interaction is quite small, these splittings are barely noticeable. As for germanium,
the spin-orbit interaction, though small, is still larger than silicon. The splitting of the bands is
more obvious in this case. Notice that the band I'; is isolated from the other bands but it does not
belong to any of the symmetry classes as described in lemma.1. The band of our interest is still

the band labeled I';, it does not have any other accidental degeneracy than Kramers-degeneracy.

5.3 Treatment of the momentum matrix element

As seen before, we need to calculate the momentum matrix elements in order to determine the
g-tensor. The relation between the momentum matrix element and the Hamiltonian has been
discussed in [10]. It is important to take into account the non-zero contributions of the intra-

atomic term,

(1 () | ¢ 4 Zaa* |H|ﬁ+Z[;,a“*am WdIf) (Fa—En).  (52)

Eq.5.2 shows the momentum matrix element between the Bloch states |u,(k)) = Y}, a% |a) and
jum(k)) =Yg ab, |3) where a, B are orbital indices and d is the position operator. Notice that the
second term in Eq.5.2 cannot be ignored as that would imply that in a periodic system of well-
separated atoms, the momentum matrix elements are zero as the gradient term vanishes because

of no overlap between orbitals.

To calculate the orbital magnetic moment contribution g; we must have values for the matrix
elements d,g = («|d|B) with the orbital indices «, B. d,p is generally not diagonal in the orbital
index [10]. The non-zero cases are determined by symmetry. From the Al = +1 selection rule we
know that the principal off-diagonal contribution will be between s and p orbitals. These matrix
elements are needed for describing the intra-atomic transitions. In previous tight-binding studies,
these have been fit to the optical properties of the bulk semiconductors [11].

We choose to fit the position matrix elements to the Landé g-factor in the atomic limit. The g-
factor expression for isolated atoms is given by the Landé theory,

1 <1+L(L+1)—S(S+1)> L% (1_L(L+1)—S(S+1)> 2 63

8= 3 U+ 1) 2 U+ 1) IR

where g is the vacuum electron g-factor. Recall that the bands we consider here are the bands
dispersed by L = 1,5 = %, ] = % states. Within our tight binding model in the atomic limit, this
value of g; = +% occurs when (s|d|p;)s; = 2.788 for an isolated Si and (s|d|p;)s, = 2.535 for an
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isolated Ge. This is shown in Fig.5.2.a) for Si and Fig.5.2.b) for Ge. Values are given in respective
atomic units (ag) in both cases. Notice that at (d) = 0, the singular value of g¢ + g;, 2., = —i—% but
det(gs + &) < 0. The appearance of the kink in both cases is connected to the change in the sign
of the determinant as mentioned previously. We choose the value of (d) such that ¥,, = +% and
det(gs +g;) > 0.

We do a similar fit for GaAs. In this case, each of the two atoms, Ga and As, has its own intra-

atomic contribution; fitting again to the Landé value gives (s|d|p;)s, = 2.891, (s|d|p;) 4, = 2.455.

a) s}
20.0

16 A

14 4 Si 17.5 1

12 15.0 4 Ge

104 12.5 1

g S 10.0

G5+ g
gs +

4 5.0 1
24 2.5

eod T —

<d= =d=>

Figure 5.2: Intra-atomic terms for Si(a) and Ge(b) fit according to the atomic limit. At (d) = 0, the singular
value of gg + g;, X.. = +3 but det(gg+g,) < 0. We choose the value of (d) which corresponds to a
positive value of the determinant.

5.4 Calculation of the g-factor

Now that we have all the components, we proceed to calculate the two contributions to the total
g-tensor according to Eq.4.21 and Eq.4.27 for bulk silicon, germanium as well as for gallium-
arsenide. As mentioned earlier, the choice of g, , is not unique so we instead choose to look at the
eigenvalues of G which was first introduced in Eq.4.17.

5.4.1 Singular values of the g-tensor

We remind the reader that the important eigenstate pairs for which the results of theorems 1 and
2 can be seen are ‘éjr; >"‘§1"7+> (the split-off valence band) and "ng >"5Fg> (a low lying conduc-
tion band). Such bands show that the g-factor changes its sign as we move away from the I'-point.
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o)

states. We plot the singular values of g¢ and g, , for silicon (shown in Fig. 5.3 ), which we have

Let us consider the lowest conduction band in the case of silicon as it disperses from the ‘ @rg > p

now calculated, in an arbitrary direction going outward from the I'-point. We see a high aniso-
tropy in the g-factor values as we do not go along a specific symmetry direction.

At the T'-point, g4 (Fig. 5.3) must have isotropic singular-values, ¥,y = %, = ¥, and they
are indeed X, = %, Yy = %, 2y = % Note that the singular values are by construction always
positive. In Fig.5.3, we see at least one value X, goes to 0 which means a sign change has oc-
curred. In order to determine the sign of the g-factors, we must look at the determinant. As
discussed before, the determinant of the g-tensor is an invariant quantity. The red dashed curve
shows that det(gg) starts at —2%, crosses zero at the point where at least one singular value goes
to zero (exactly one, in this case), and asymptotes eventually to +8.

5.4.2 Determining the zero-crossing surface

Let us call the point at which at least one singular value of gg, ., goes to 0 as k — k., assuming
that the spin-orbit interaction is “small enough” (as shown in thm.1). This may happen an odd
number of times. In Fig.5.3, we have shown this for one direction but we observe that this occurs
in all k directions starting at the I'-point, forming one or more smooth surfaces surrounding it. As
we know, the singular value going to 0 is directly related to det(gg) = ZyxLyyXzz = 0. For any
band n as described in def.1, these surfaces are given by det (g5 (kc)) = 0. These can be as com-
plex as fermi surfaces E, (kp) = Er and will have the same cubic symmetry. Similar techniques as
the ones used to find the Fermi surfaces can be employed to find these surfaces of zero-crossings

of the determinant. In the following, we will discuss one such method that we implemented.

Fig.5.3 shows the singular values plotted as the blue curves and the determinants of g¢ and g,,,
plotted are the red dashed curves. In Fig.5.3.a), at the I'-point 1.e |[k| = 0, Xyy = Xy = X, = %
and det(gg) = —2% and further away, Xy, = X,y = X, = 2 and det(gg) = 8. Similarly, Fig.5.3.b)
shows the singular values and the determinant of g, ;. One thing to notice here is that two of
the singular values go to 0 resulting in det(g,,,) = 0 multiple times. This is because for g, , we
have now taken into account two contributions g¢ and g; . The bands approaching each other can
also cause the energy denominator in Eq.4.23 and Eq.4.24 to become quite small and the Berry

curvature contributions to shoot up.

Connection to linear algebra

We refer back to the singular-value decomposition of the g-tensor in Eq.4.28. The g-tensor is a real
square matrix, U and V can be chosen to be real orthogonal matrices. The singular value matrix

¥ is a positive diagonal matrix which means det(X) > 0. This means that the information of the
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Figure 5.3: Occurrence of zeros in g-factors, as seen in the singular values of the g-tensor (blue), for the first
conduction band of Si. These singular values (by definition non-negative) are calculated in an arbitrary
direction to highlight the anisotropy. The red dashed curve is the evolution of the determinant of the g-
tensor. Panel a) shows the singular values and the determinant of only the spin contribution to the g-tensor,
gs. The singular values start at 2/3 and converge to 2 which is what we must observe for Si. Panel b) shows
the singular values and the determinant of gt = g1 + gs. The change in the sign of the determinant is a
clear indication of the change in the sign of the g-factors. |k| is given in inverse atomic units, a; .

sign of the g-tensor comes from U and V,

sgn(det(gg)) = det(U) - det(V). (5.4)
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The determinants det(U) and det(V) are either —1 or +1. Thus, the change in the sign of the
g-tensor is determined by the product of the two determinants of these real orthogonal matrices
U and V. We leverage this and simplify this further by making a change of basis as described in
thm.2 and set V = I. Eq.5.4 then becomes sgn(det(gs)) = det(U). Note that the form in Eq.5.4 is

the most generic form for any direction in k-space.

Binary search method

One way to come arbitrarily close to k. would be by using a fast converging algorithm such as
the binary search. The binary search algorithm works by halving the intervals of search, thus re-
ducing the compute times. In our case, we provide the algorithm with an interval with a starting
point, ks and an ending point, k,,,;. The algorithm would then compute the middle point of
this interval, k,,;; and calculate the sign of det(g¢(kyq)) at this point. The new starting or ending
point would be chosen based on which of the two det(g¢(kstart)) or det(g¢(kenq)) have the same
sign as det(g¢(kyiq)). The interval is then halved. Remark that it is only possible to get to a value
of k. with a certain cut-off precision. In our case, it is not necessary to determine k. extremely pre-
cisely because we are only interested in the topology of the surfaces formed by k.. The starting
interval must be chosen carefully: there must be only one zero crossing in an interval otherwise

there are chances of the other zero crossings to be missed or the algorithm to fail.

We provide a pseudocode, algorithm.1, which was used in this work. Here, funcgg refers to a
function that calculates the determinant of g5 and € an arbitrary value of how close we’d like the
determinant to be to 0:

Note that we have calculated k. at which |def(gs(k.))| < € where € is arbitrarily close to 0 but we
will continue to call this point as the point where def(gq(k.)) = 0.

5.4.3 Determining the entanglement

Now that we have the points k. at which det(g¢) = 0, we will proceed to determine the entangle-
ment of the states |¢) and |¢) at this point.

To calculate the entanglement entropy of the band-pair with the eigenstates ‘Cr; (kc)> , “51‘7* (k) >,
we would like to ensure that we are working with the states that are on the poles of the Bloch
sphere. For this we rotate the states according to Eq.4.48 such that V = I from Eq.4.49. We
calculate the reduced spin-density matrices of the rotated states,

o5 = Trons (|1 (kc) )& (ko)

)05 = Trom (| & Oec) )& (ko)

) : (5.5)
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Algorithm 1 A binary search for k.

function BINARY SEARCH (kstart, kepg, funcgs, €)
kuia = (Kstart + Kena) /2
detgs,. < funcgs(Kstart)
detgs,, < funcgs(kena)

detgs, <« funcgs(kyiq)
if sgn(detgs, ) = sgn(detgs, ) then

new
kstart <~ kmid

Kend < Kend
else if sgn(detgs, ) = sgn(detgs, ) then

new
end

new
start < kStWt

end if

if |detgs, | < € then return k4

else BINARY SEARCH(kf,;, kpri, funcgs, €)
end if

end function

<~ kmid

The entanglement entropy is simply S(ps) = — Tr (ps log (ps) ). Numerically, we see that S(ps) =
S(ps) = 1.

Note that the change of basis is an important step. In the following, we look at the von Neu-

mann entropy of all the other states around the Bloch-sphere. These states can be written as,
|05, pp) = cos (0p) /r+> + €8 sin (0p) | &
7

Iy
ers of the orthogonal states ’§}+> , _}+
7 7

as for the states at the poles, the entropy can be computed for these states as well. We notice

> with 0p and ¢p defining the navigation paramet-

> along the Bloch sphere. Following the same procedure

S(|68, ¢8)(0B, ¢5|) < 1. For example, the entanglement entropies of the cardinal states,

)= | 75 (e = [ )) ] b = [ 5 (e ) 1)) co
N S(Trop | £)(E|) = 0.810, S(Tr,yp |£i)(+i|) = 0.824, (5.7)

which are obviously far from the maximal value.

Recall that Eq.4.50 shows a different way to calculate the spin matrix. This can be done using



5. RESULTS 87

the density matrix formalism discussed above. For a density matrix p and its Kramers pair p,

| Trleo) T (|g)S]e)
” (Tr(|5><é‘}0i) Tr (poy) > (5.8)

The off-diagonal terms of this matrix involve terms like |¢)(¢| and |¢)(¢| which do not corres-
&)/ |+s) =
\/LE (18)+12)) . |—-8) = % (|¢) +1i|¢)) using the quantum process tomography (QPT) method
as defined in sec.8.4.2 of [12]. The QPT method can be used to describe the how the input state
|&)(¢| can be transformed into the output state which is a linear combination of the density matrix

pond to a density matrix. These operators can be obtained from the states, |{),

representations, and vice versa. The statevectors |+5) and |—p) are defined in a non-conventional
manner, but here we follow the convention of the authors of [12]. We combine these operators in
the following manner,

I 5)(p] + i~ B)(~ B\—iwéxa—imu |¢ @+ 2 |5><¢}+ 1E)E] + 5 1EX@

ENE|+ 5 \c><<3\ -5 !¢><¢| +5 |€><€|

-5 |5><c\ ~ 210l ~ 5 1EXEl - & 18X
= !c><c| : (5.9)

Thus we see that the off-diagonal terms can be re-written using the original density matrices. In
the same way, we can use the QPT method to obtain an expression for | )| as a linear combin-
ation the density matrices. In the latter case, we must redefine |—p) = % (1gy —i ‘C_ )). In this
section we have shown the entanglement dynamics for the state I’} ). The same can be done for

all the other states that have been discussed in lemma.1.

5.5 Topology of det(g) = 0 surfaces

So far we have shown that the points k. in the momentum-space, at which det (g) = 0 exist all
around the I'-point, creating one or multiple surfaces around it. This is guaranteed by symmetry.
We have shown a method to obtain these points and a method to also quantify the entanglement
of the spin-states at these points. In the rest of the chapter, we will focus on the topology of the
surfaces formed out of these points.

The surfaces in k-space determined by the equation det(g(k)) = 0, which may be calculated
using the method described in Sec. 5.4.2, can have complex topology. In the following, we show
some of these surfaces for the first conduction and split-off (valence) bands for Si, the second con-
duction and split-off bands for Ge and the split-off bands of GaAs. These are the bands belonging

to the interesting representations as discussed in lemma 1. The calculations for GaAs have been



5. RESULTS 88

done using an sp3-band model [13, 14], which has been fitted to match valence-band properties.
We also observe a multiplicity of these surfaces for both Si and Ge in various directions.

5.5.1 Maximal Entanglement Surfaces

Silicon: first conduction band

We start by looking at the surface of silicon first conduction band. As we know this is the band of
interest for most of electronics. Fig.5.4 shows the surface that encloses det (g5) < 0. Recall from
the result of theorem.2 that this is also the surface at which the spin and orbital subspaces are

maximally entanglement.

Figure 5.4: MES of silicon for the first conduction bands, with Brillouin zone boundary shown. The inset

in the top right corner shows the innermost surface; grid spacing here is 10724, !. This surface closely

resembles a cuboid, and it is surrounded by flattened toruses in the X (110) directions. The inset in the
bottom left corner is a zoom of this structure, with grid spacing here being 1072 a1

In the main part of Fig.5.4, the blue region indicates the entire Brillouin zone. As can be seen
this region extends in [—0.6, 0.6] interval in the k, ky, k- directions. The scale is in atomic units. At
the center of the Brillouin zone, is a smooth cuboid with concave faces whose magnified version
is shown in the upper inset. This is the main surface at which det(g;) = 0 and we note that it
is topologically spherical. We call this surface a maximal entanglement surface (MES). As men-
tioned earlier, we do not concern ourselves too much with the accuracy of the locations of these
points, but you may notice that this surface is very close to the I'-point, extending to rather small
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fraction of the distance to the Brillouin zone boundaries.

Fig.5.4 also shows twelve smaller toruses, all of which lie along the £(110)-direction.! The bot-
tom inset shows a zoomed in version of these toruses. They are mostly flat. These toruses are
examples of the aforementioned “multiple surfaces”. They occur because the bands with a differ-
ent degeneracy (corresponding to the black representations in table.4.1) have anti-crossings with
the Kramers bands represented by the red labels of table.4.1 in the X-direction.

Germanium: second conduction band

The germanium MES surface is different than the “simpler” silicon one. The band that has the
symmetry as mentioned in lemma.1 is in fact the second conduction bands. We show, in Fig.5.5,

the zoomed-in version of the splitting of this band Fig.5.1,

H

Figure 5.5: Splitting of bands I'; and I'J. The band with the symmetry of lemma.l are these two bands
which can be seen here to be isolated in the sense of definition.1 from chapter.4.

The first thing to notice in Fig.5.6 is that the cuboid-like object (the MES of Ge) in the center
of the blue region of the Brillouin zone is very similar to the one in Fig.5.4. The difference is
that, this cuboid has now holes in its eight vertices (A(111)-direction) which lead to tube-like
structures extending all the way to the next BZ. We see that the topology of this surface is similar
to the Fermi surface of copper, except that the tubes that connect to the second BZ are longer and
narrower. In Fig.5.6 the thickness of the tubes has been exaggerated by a factor of 2 because of the
size of the point plotting. The reason for the occurrence of these tube-like structures is also the
same, the adjacent bands approach the Kramers bands in these directions.

Split-off bands

The conduction bands were the important bands for silicon and germanium. But since we prom-
ised that these surfaces are guaranteed for other set of bands as well, we will now discuss the
topology of the split-off bands for all three semi-conductors, silicon, germanium and gallium-

arsenide.

IThe figure.5.4 as one of the torus seems to be on the red line demarcated along the A(111)-direction. but this only
because of the prespectve in which the figure is shown.
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Figure 5.6: The germanium MES for the second conduction bands, with Brillouin zone boundary shown.
The surface resembles a cuboid with openings at the vertices. These openings connect to the central sur-
faces of the neighboring zones via long tube like structures, whose thickness is exaggerated by a factor of
2 for visualization.

Fig.5.7, shows the surfaces on which det(gg) = 0 for the split-off bands of the three semicon-
ductors. As we can see from Fig.5.1, the split-off bands are well-isolated. This is also reflected in
Fig.5.7: we do not see multiple surfaces in any of the three cases. All three surfaces are topologic-
ally spheres.

For silicon and germanium, Fig.5.7.a) and b), the spin-orbit entanglement on the entire surface
is maximal for the split-off bands. For gallium-arsenide, notice that the surface itself is signific-
antly larger than the one for silicon and germanium. This is because the spin-orbit interaction is
much larger in this case. As GaAs belong to the Point group T}, according to lemma.l, there are
only 14 points where the spin-orbit entanglement is maximum. These points occur along the A

and the A directions. These are indicated as blue points on Fig.5.7.c).

5.5.2 Zero-crossing surfaces of det(g, ,) =0

The surfaces where det(g,,,) = 0 are significantly different than the ones where det(gs) = 0.
Recall that g, , = g¢ + g;. The contributions coming from the orbital magnetic moment have
drastic effects on the singular values of g,,, and subsequently on the surfaces. We have discussed
some instances earlier where the Berry curvature contribution can become quite large and even

dominate over the spin-contribution.
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Figure 5.7: MES surfaces of split-off bands (valence bands). (a) The surface of Si. (b) The surface of Ge.
These surfaces are topologically spherical. (c) The split-off bands of GaAs exhibit maximum spin-orbit
entanglement only along the A and A directions. The grey surface is the surface where det(gs) = 0. The
spin-orbit entanglement is maximal only at the blue points on this surface.

Split-off bands

b) L

N C
a ooy 007 o060 060 !

Figure 5.8: Panels (a), (b), (c) show surfaces on which det(g;,:) = 0 of the split-off bands for Si, Ge and
GaAs respectively. Si and Ge surfaces are of comparable scales whereas the GaAs surface almost covers
half of the BZ.

For the split-off bands, Fig.5.8, we notice a similarity from the previous case. The bands are
isolated and well-behaved. The surfaces turn out to be are topologically spherical. The surface
for silicon, Fig.5.8.a), is more pointed in the A-direction and does not extend very far out.

The surface of germanium Fig.5.8.b), on the other hand, is a bit more rounded but similar in
size to that of silicon, once again, accounting for the comparable magnitude of the spin-orbit in-
teraction in the two cases.

The surface of gallium-arsenide extends out in different directions than silicon or germanium.
This surface is also much larger as compared to the other two for the same reason as mentioned
in 5.5.1. In general, all of these surfaces are slightly larger than the g¢ surfaces because of the extra
contributions coming from g; .
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Silicon: first conduction band

The surface of det(g,,,) = 0 for silicon is more complex then the previous case. Here, we have
double surfaces that join together at certain points. Fig. 5.9 shows how far the entire surface ex-
tend in the Brillouin Zone which is demarcated by the blue region.

The central surface is made of two concentric cuboids that touch in the A and the A-directions.
This is seen more clearly from the inset. The inset displays a cross-section of the double cube. In
the A-direction we also see four red satellite regions. In the X-directions we see longer satellite re-

gions. This is also again a feature of the adjacent bands and Kramers bands coming close together.

The touching of the central double surfaces is due to symmetry reasons. Remark that this occurs
in the two directions along which we expect Xy, X, = X, = 0 since we know that at least two
values must go to 0. These touchings are known as Lifshitz critical points [15]. When approaching
high symmetry directions, we say that the surfaces pinch together, giving rise to touching conical
structures as in the Fermi surfaces of semi-metals such as graphite [16, 17].

We see that the touchings are a typical feature of def(g,,,) = 0. At a different value of det(g,,,), we
see what is known as a Lifshitz transition: for det(g,,,) < 0, the surfaces separate away from the
symmetry direction causing the symmetry axes to pass through the gaps now formed between
the surfaces. This causes the surface to have a non-trivial topology as it then has thirteen holes:
eight along the A-directions and five along the A-directions. We count the two holes in the z-
direction as a single one, this is analogous to a torus have a single hole. The genus of the surface

for det(g,,;) < 0is therefore 13. For a more pictorial example, this surface would look like a wiffle
ball with 14 holes.

For a slightly positive value of det(g,,;), the bands separate along the symmetry directions, caus-
ing gaps open longitudinally. That leaves two separate cubes, one inside the other. This causes
the surface to have an overall genus 0 for det(g,,;) > 0. We do not discuss the satellite surfaces
here as they only shrink or appear enlarged in size as we consider slightly positive or negatives

values of the determinant, their topology does not change.

Germanium: second conduction band

The surface of germanium for det(g,,;) = 0 is even more complex than that of silicon. Fig. 5.10
shows a cross section of the figure in the diagonal plane across the BZ. As can be seen, the central
part of the surface is topologically spherical. The second surface has a rugged form and has
openings in the six A-directions. The dashed lines are additional surfaces connecting into the
next BZ. The points where the dashed lines connect to the second surface are not special points.
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Figure 5.9: Visualization of the surfaces defined by det(g::) = 0 for the first conduction band of Si. The
central part is a double surface. The inset shows the cross-section of this central region and four spher-
ical satellites in the A-directions. One can clearly note the conical touchings in the A and A symmetry
directions. The Lifshitz transition at det(g,:) = 0 involves a change of genus of this surface from 0 to 13.
Additional surfaces are present as elongated satellites in the X and A directions.

The part which we refer to as the second surface appears as two separate pieces on either side of
the central surface in the cross-section. But in the full 3D picture, these two pieces are connected
all around the central sphere and have holes along the x, the y and the z-axes. Overall the surface
has a genus 5.

Notice that, as in the case of silicon, germanium too admits conical touchings along the A-
direction. Four of these can be seen in the cross-section of Fig.5.10, on either side of the central sur-
face. Contrary to the case of Si, the gaps open away from the symmetry axes when det(g,,;) < 0
1.e the axes pass through the gap. Now the surface has eight more holes in the A-directions along
with the five holes that it already had in the A-directions. The genus of the total surface has
changed to 13.
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Figure 5.10: Cross section of the det(g::) = 0 Ge surface for the second conduction band. This cross section
is informative because it shows four conical touching points (close to the central spherical surface) along
the A directions. In this case as well, the Lifshitz transition changes the genus of the surface from 5 to 13.

The gaps open along the symmetry directions for a slightly positive value of the determinant,
det(g;,;) > 0. This only makes the second surface a double sphere with five holes, or more
pictorially, a double layered wiffle ball with five holes. The transition of the determinant from
a positive to a negative value changes its genus from 13 to 5, thus changing the topology of the

surface.

The appearance of gaps in the conical structures with the change of the surface genus is per-
haps indicative of a quantum phase transition. The next step is to apply this theory to spin qubits
in Si/SiGe hetero-structures. The momentum matrix element approach is designed to be accurate
in the atomic limit. For systems with more complex behavior and where other external factors
have a significant influence through the orbital contribution, we may need to consider a different
approach which is discussed in the succeeding chapters.
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Current Density Formalism

6.1 Introduction

In this chapter, we study the orbital contributions to the g-factors of electrons in more complex
systems such as quantum dots. Since the potential presumably varies over large lattice distances,
we assume that it varies locally in a negligible manner. This means that quantum dot wavefunc-
tion is made up of a part which almost does not change over small distance. Approximating
the wavefunction in this way is commonly known as the envelope-function approximation[1]. The
eigenfunctions of the quantum dot electrons are a superposition of the product of the envelope-
function at a given lattice point and the corresponding valley states.

Recall that for silicon, the valley states are the six Bloch states at the band minimum which lie
in the six A-directions. This means that the spin g-tensor, g¢, can be calculated based on Eq.4.20
and Eq.4.21 with the appropriate choice of ¢ and ¢ as quantum dot eigenstates. We mentioned
that the momentum matrix elements are enhanced by the intra-atomic term which acts as second-
order correction in the overlap, S[2]. This violates gauge invariance. In this chapter we discuss a
formalism in which a local and stronger form of conservation holds. This is the current density
formalism. The current density relates directly to the magnetic moment, L = [ r x J(r)dr. With
this formalism we are able to visualize the origins of the magnetic moment contribution to the
g-factor.

97
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6.2 The current density

In this formalism we look at the current density operator which is related to the momentum

operator as ![3],
A 1 N N
J(R) = 5 (p6(R'—R)+46(R' —R)p) . (6.1)

The expectation value of the current density operator holds the information about the orbital con-
tributions to the g-factor. Consider now a system described by a Hamiltonian H and eigenvectors
. The Schrodinger equation of ¥ in the discrete basis is,

L d

ih i = Y Hyyj,
j
J

Consider the probability density of the state, Y;c, |)|> where s is the spin-orbital index. We look

at its time evolution,

%ZW”Z = ﬁZ%’Pi =) [(ﬁll’i) Y + i (ﬁlpi)]

i€s i€s i€s
1
i€s j j

This is an important conservation law also known as the continuity equation. Physically this means
that our system may admit flow of currents but locally these must cancel each other out.

6.3 Current operator and symmetry

In the case of bulk semiconductors, specifically the ones with high symmetries, the currents pre-
serve these symmetries. In the case of diamond structure crystals, the current densities of the
time-reversal pairs and the inversion pairs hold specific relations. These relations can be used

later on to draw further conclusions.

In real space, at a position r, we write the spin-mixed eigenvectors as a linear combinations of
the pure spin-up and spin-down states, |(r)) = ¢4 [1) + ¢, |[1). Then the current operator for
| (r)) must be,

Up(1) =~ 1m (§10)99 (1) + 7 1) V9, ) (64

Here we show the operators using the - symbol to distinguish between the position operator R and the position
vector R’ but we will drop the * notation later on.
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When we apply the time reversal operation to the eigenvector,

TIp(r) = 9i(1) 1) — 91 (1) 1)
— (Jrglr)) =~ 1m (91 (1) V5 (r) + 91 V()

=~ (43() Vi () + 91 (D V(1)

= P am (§5) V1) + 91 () V(1)) = — (Jglr)). 65)

Applying the inversion operator, we get P |¢(r)) = |¢p(—r)). The gradient at —r results in an
overall negative sign, %(j)(—x) = —d(%x)q‘)(—x) = —%(p(yﬂy:_x.

(Jpy(r)) = —%Im (‘P%k(—f)v%(—r) +¢I(—V)V<P¢(—r)> = —(Jyp(=1)). (6.6)

We can now write the overall relation between the current densities of partners that are related

by time-reversal and by inversion,

(Jpry(r)) = — (Jpy(r)) = (Jy(—1)). (6.7)

6.4 Current density in silicon

6.4.1 Current density in bulk silicon

The current density operator upto this point has been defined as a function of a position r (refer
to Eq.6.4). In the case of bulk silicon, we define the current to flow between an atom and its
neighbors. In a discretized model such as the tight-binding formalism, we consider only nearest
neighbor interactions to be non-zero. As a result, the operator is defined between an atom and its
nearest neighbor and depends on the positions of these two atoms placed at two different lattice
sites [4, 5]. We call the line connecting an atom and its nearest neighbor as a bond. Fig.6.1 indicates
the four bonds of a silicon atom and its four nearest neighbors in red. The eigenfunctions of the

atom at position R; and of its neighbor at R; are,

4

Pk(R;)) = e i Jug(R;))
_ ). 6.8)

R;
|r(R;)) = ™ [ug(R))

The current flow between these states would be?,

(R R))) = = (9l T 1) 69)

2] can be defined as a vectorial quantity since it is along the direction of the unit vector between the point R; and

R;
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Figure 6.1: The current flow is described to occur along the red bonds between the central “white” atom
and its four immediate “black” neighbors.

Here J (R;, R;) describes an off-diagonal matrix similar to the sub-Hamiltonian of the entire crys-
tal Hamiltonian involving the interaction terms between atoms at only positions R; and R; whose
upper half is multiplied by i and the lower half by —i. The entire crystal Hamiltonian, for a million
atoms, is approximately a million times million matrix and for convenience, can be divided into
smaller blocks of matrices which contain the non-zero interactions for the purpose of studying

the expectation values of the local operators.

The band minimum of silicon is a region of interest for many practical purposes in the usual
semiconductors. We analyse the current at this point. Consider the wavepacket moving with a
group velocity v,. In R-space, the charge density is the square of the amplitude of the wavepacket
(blue curve in Fig.6.2). This charge density admits a finite current density which is proportional

to the group velocity [6].

The wavevector k = (ky,0,0) such that at ky, VxE = 0 is a special point. Recall that at this
point Vi E = v(k) = 0. The current vanishes where the charge density is zero or where the group
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Current density, [j| = 0 Current density, [jl = 0 v,

Figure 6.2: As the wavepacket moves in R-space, it has a finite current density overall. At the band-
minimum, v, = 0 and so (J) = 0. The charge density drops at the tails of the curve in the figure and so
does the current density.

velocity is zero. At the band minimum, the wavepacket has no group velocity, implying that the
expectation value of the current density must be zero for all bonds. In other words, while there
may be current flow along the bond between positions R; and Rj, the net current remains zero.
This is consistent with the fact that in bulk silicon the g-factor of the Bloch-states at the band min-
imum within the Chadi-Cohen tight-binding formalism [7] is almost +2 (not exactly +2 because of
spin-orbit effects) which comes from only the spin-contribution. There is not orbital contributions
for the Bloch states.

Fig.6.3 shows the variation of the current density in the { |k (R;)),

9e(R;)) | and {PT[yx(R)),
PT |1/Jk(Rj)> } Bloch basis of the lowest conduction band I', between the orbitals at an arbitrary
R; and the orbitals of one neighbor at R; along the A-direction (i.e. from the I' to X point). Both the
currents (orange curve for (J(R;, R;)) and blue curve for ((PT)'J(R;, R;)PT)) are 0 at k = (0,0,0)
since the group velocity here is also zero. The curves have the same magnitude but are opposite
in signs for all k,. Additionally, the current densities also approach zero at the band minimum,
which is located near k, = 0.5 (in atomic units), approximately 85% of the Brillouin zone (BZ).

There is another zero crossing of the currents close to the I'-point as can be seen in Fig.6.3. It

is evident that the currents represented by the orange and blue curves do not increase immedi-
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ately in a linear fashion as k increases. The the orange curve is initially negative slightly away
from the I'-point before turning positive, while the blue curve exhibits the opposite behavior. The
close proximity of the I'; and I'y bands causes interactions that alter their dispersion, deviating
from expected behavior. This interaction is a result of a band extremum which is also the reason

why the velocity and, consequently, the current densities change sign.

le—6

1.0
0.5 -

i

== 0.0 4

W
0.5 1
1.0 -

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.3: A plot of (J(Ro, R1)) and ((PT)*J(Ro, R1)PT) between the atom at Ry and its neighbor at R; vs
k. (A-direction). The net current at the band minimum along the (R;, R;) bond is zero. The orange currents
are negative and the blue currents are positive close to the I'-point. Upon crossing a band extrema, the
currents change sign.

6.4.2 Current density for quantum dot eigenstates

As discussed earlier in chapter.3, the electrons are confined in a potential whose effects are more
mesoscopic rather than atomic in nature. Therefore, we use the envelope-approximation to de-
scribe these electrons wherein F(R) captures the effects of the potential at the spatial level. Con-
sider a large volume of a substrate within which we trap electrons using a potential well. The full
wave-function of such an electron can be expressed as a product of the function F that captures
the mesoscopic variations and a superposition of the periodic Bloch part of the underlying lattice
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(refer to chapter 14 eq.78 in [1]),

r) =Y ¢u(r) /dr’Fn(r’)e_ik"l = Zunk(r)eik'r/dr'Fn(r')e_ik'r/. (6.10)
k k
The conversion of wavevector sum into integrals involves a volume element [1],
Q N
= 2 k= / dk, 6.
oy | = 7; e4Y
where the direct volume () contains N primitive cells, V' = (2‘7; " is the volume of the primitive

cell in the reciprocal lattice and V; = a - b X c is the volume of the primitive cell in the direct
lattice.

At a point k away from ko,

3 | | |
Yu(r) = % /dk (”nk(")lk:ko + (k — ko) - Vk(unk(f))|k=k0>61k'r/dr'Fn(r’)e_l(k—ko)'r

(6.12)
The first term in Eq.6.12 can be resolved easily,
/dk unko zkr/dr/F i(k—ko)r' _ unko /d?‘ Pn /dk elkr —i(k—ko)-7’
= Uk, (7 /dr'Fn v /dk gl (r=1') giko:t!
%/_/
\/%5(1‘71")
]' ik()-r 1
= —\/%”nko (r)e™ T Fy(r) = \/T—ncpnko(r)Fn(r)-
27)3N ,
— ‘Fn(r) = ( V) \/—gbnko( ) +/dek unk( ))|k . zkr k kO /drF ) —z(k—k0)~r].
C
(6.13)

We notice that the integral in the second term of Eq.6.12 can be resolved using integration by
parts,

/dr Fa(#') (k — ko)e~'tk—ko)r /drV pn ¢ i(k—ko)r /drV Fn i(k—ko)-r’].
(6.14)
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Inserting Eq.6.14 back into the second part of 6.13,

/dk Vk(unk(r))|k=koeik.r - (k — ko) /dr/Fn(r/)e—i(k—ko).w

= i[vk(”nk(r))\k:ko /dk eik-r{/dr/vr/ (Fn(r’) —i(k—ko)-r /df' v, Pn *i(k*ko)ﬂ‘l}]

= iV (1)), - [ [ Ve (Far) [ake*rebor) - [ara,( Fn(r )) [ ket ko
L(5(”*”/) L 5(r—1")

V2n
\ (unk |k ko lkor)dr [vk(unk(r))\kzkoeikolr ’ vr(Fn(T)>}

-

V2

¢ (Fn(r)Vk(unk(r))\kszeik0’> -ds=0

(i (1), - Vr(Falr) ) ™o, (6.15)

i
27T

The boundary term is a volume integral ([ dr) over all space. u,(r); . €07 is a constant vec-

k=Ko

tor such that V; - u(r), bty ek We apply Gauss-divergence theorem for volume integral of a

gradient field.

Vk(u”k(r))\k:ko ./drVan(r)eiko.r _ /Vr' <Fn(”)vk(”nk(1’))|k:koeik0'7) dr

= [ Far) O (Falaaa () 07

-~

=0
— f (Pn(V)Vk(Mnk(r))|k:koeiko.r> s

= (Vi (), €507 ﬂ{ Fy(r) - dS. (6.16)
I

—
=0

At infinity the envelope functions F,(r) fall to zero. And therefore the boundary term is zero.

After resolving the integrals, Eq.6.12 becomes

(27)3N

) = am

lunko(”)Fn(f)eiko‘r = iVi(unk (1))}, - Vi (ﬁ(r))e”‘""] . (6.17)

Notice that the envelope contribution F,(r) acts as a scaling factor. The expectation value of the
current density operator at the band minimum will have no contributions coming from the term
that is of zero-order in V, and V. The concept behind this has already been discussed in detail
in the section.6.4.1. However, there may be a finite amount of current at the band minimum due
to the first order gradients of the wavefunction as can be seen in Eq.6.17. This is also consistent
with the Berry curvature effects that we have discussed in the bulk case in chapter.4 section.4.2.2
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Eq.4.22.

We can easily extend this analysis to include the valley states and discuss the full quantum dot
wavefunction. This shows that the effects of the spatial variations in the quantum dot will lead to
the deviation of the g-factor value from +2.

6.5 Graphene

Graphene has become an interesting material in the last two decades to study not only from the
perspective of material science and condensed matter theory but also from the perspective of
quantum technology. Graphene admits many unusual and interesting properties as will be seen.
Because it comprises predominantly of 2C and has a low spin-orbit coupling, it is predicted to
have long coherence times and can prove to be another promising candidate for quantum com-
puting.

Bilayer graphene offers improved control over qubits and is more popularly used in quantum
computing architectures. Numerous studies have been carried out to determine the effective g-
factor in bilayer graphene [8-10]. The valley g-factors have also been measured experimentally
[11, 12]. We proceed to look at the physical properties of monolayer graphene using the tight-

binding formalism in order to understand the origins of the orbital contributions better.

Graphene is a 2D topological material which means that its energy bands admit Dirac cones [13]
due to spin-orbit coupling. To see this, consider a lattice of monolayer graphene where atoms
are arranged in a honeycomb pattern as shown in Fig.6.4. Any two atoms connected with a ho-
rizontal bond form a unit cell with a length ay. The nearest neighbor hoppings of strength ¢; are
defined between atoms of different types (between white and black atoms as in Fig.6.4) indicated
as the red vectors denoted by a;. We introduce the second neighbor hoppings indicated as the
black vectors, denoted by b;. These hoppings are defined between atoms of the same type, are
purely imaginary in nature and have a chirality as is shown in Fig.6.4.
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Figure 6.4: A honeycomb lattice of 2D graphene with two atoms forming a unit cell. Here, the atoms shown
in white and black sharing a horizontal bond form a unit cell. The two types of bonds are shown in red
and black. The nearest-neighbor interactions are the red arrows denoted as the vectors @; and the second-

_>
neighbor interactions are the black dashed arrows denoted by b; . Note the chirality of the second neighbor
hoppings.
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Figure 6.5: The band structure of graphene and its Brillouin zone. The blue curves are the conduction and
valence bands of monolayer graphene. For a finite value of t, (Eq.6.18), we see gaps at points K and K'.
The rotated hexagon in k-space is the first Brillouin zone of graphene and shows the location of the six
valleys states. As t, decreases the gaps close at only K and K'.

The Hamiltonian describing this system is:

H(k) = <t1 Zcos(k : ai)> oy + (—tl Zsin(k : ui)> oy + <2t2 Zsin(k : bi)> 0. (6.18)
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Here the action of the Pauli matrices, o; is not on spin but on the atomic p,-orbitals of the black
and the white atoms. The Hamiltonian in Eq. 6.18 is defined solely within the spin-up subspace,
while in the spin-down subspace, the sign of the ¢, term is reversed. The energies of this Hamilto-

nian are,

Ey = i\/?,t% + Z (eik(ui—uj) + e—z’k(m—uj)) t% + 4%251“ (k-b;). (6.19)
i#] i

Atty # 0, the band structure admits a gap. Furthermore, for t, = 0, these gaps close only at

points K = 3a0 ( , f) and K’ =

_ 3&0

(1 — %> These are the Dirac cones.

6.6 Current density in Graphene

To study the orbital contributions in graphene, we employ the current density formalism. We
define current flows between the atoms at different lattice sites, as was the case of silicon. Notice
that because we have two types of hoppings, we have two different kinds of currents. First type
of currents are the ones that flow between atoms of different types (such as currents between the
black and the white atoms in Fig.6.4) along the red bonds. The second types of currents are the
ones flowing between the second neighbors (atoms of the same kind such as between the black
atoms in Fig.6.4) along the black bonds.

We decompose the Hamiltonian as a product of the Pauli matrices o where o = {0y, 0,,0;} and a
vector v = (rsin(6) cos(¢), rsin(0) sin(¢p), r cos(0)), such that H = v - o and

rsin(0) cos(¢) = t1 (cos(k - a1) + cos(k - ap) 4 cos(k - a3)) = x,
rsin(0) sin(¢) = —t1 (sin(k - a1) + sin(k - ap) + sin(k - a3)) v,
1)

rcos(6) =t (sin(k - by) + sin(k - by) +sin(k - b3)) = (6.20)
= r=/x2+y?+22

= cos(0) = ;,

x , y
= CO0S = —,sin = —\ 6.21
Then we can easily define its eigenstates as Bloch vectors which lie along v,
lux(R)) = cos ( ) |B;) + €' sin ( ) W)
_ S gy i ; W) (6.22)
- 2 1 e 1/ .

where |B;) and |Wj> are the basis vectors describing the black and white atoms respectively.
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6.6.1 Nearest neighbor currents

As mentioned earlier, graphene exhibits two types of currents: first, which is related to the nearest
neighbor hoppings and second, which occurs due to the second neighbor hoppings. Since the
former type involves the three nearest neighbors of a given atom, we need not look at the entire
Hilbert space. We only look at a subspace of the pair of concerned atoms.

The eigenvector defining the subspace corresponding to the atoms of different types can be ex-
pressed in the general form as given in Eq.6.22,

b pwy\ _ ,ik-RY 1+7 ik-RY ip 1-7
uk(Ri,R]-)>—e i T|Bi>+e Ie 5 |W;). (6.23)

Here, R!? is the position of the B; type of atom and R;" is the position of the W; type of atom in
its vicinity. For example, if B; is the black atom of Fig.6.4 at R} = (—”0 \/§a0) then W; would

2772
be one of its three nearest neighbors at R;-” € {Rg + ay, Rg + ay, R(b) + a3}. This vector forms the
sub-density matrix,

142 eﬂ'k-(R;”fR?)egb [1—Z [1+2
b RV = b Rw b RYY| = 2 2 2
P (Ri’Rf ) B ‘”"(RI’RJ )><”"(R1’RJ )‘ ik-(RY-RY) iy [12 [14% 1- |
e/ e 7 2
(6.24)

The expectation value of the current density operator is defined in terms of the interaction matrix,

[~ |

i
2
The current between nearest neighbor atoms is,

0 —it
b pw _ b pw 1
)= (o) (1 3))
—ik- w__ b . _Zz z z
ity (e *{ Rl)g_l(P\/ = V 127) —ity (1?>
z ik.(RV_RV) . _z z
ity <1?> —ity (elk (RF =R i > 1;)

I , _z z o (ow , _z z
=ih <_elk'(Rj 7R?) 614’\/1 5 r \/HTY> + e*Zk'(Rj *R?> el(P\/l 5 r \/HTT

2
_ _itllT_i_z (eik.<R;u_R?) bit e—ik.(R;ﬂ—Rf?) ei(p)

2

— /1= s i (7 <) +9) | 629
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The above expression of the current density operator is with a double index. We can simplify this
by writing it in terms of a single bond index corresponding to the bond a;,

<wa> =—ty/1— i—i [sin(k-ai—i—(l))

6.6.2 Second neighbor currents

(6.26)

The second neighbor currents are defined between the same types of atoms, so between B; and B;
or between W; and W;. We consider these two cases separately.

Current between black atoms

The Bloch vector defined for the atoms B;, B; at positions RY, R;’ respectively is,

. 1 + b + 2
(R RY) ) = ¢RI [ =L |By) ey [ (B, (6.27)

for which the sub-density matrix is,

142 —ik-(RU—RY) /142
] 1 r
2 € ( ) 2

ik-(RE—RV z z
ezk (R] Rl) (14?) 1+2

2

o(RY,RY) = (6.28)

We define the current density operator in terms of the vectors a;, R;’ — R? = a, — ag, in order to
capture the chirality,

b b _ 0 sgn (2 (ax X —ag)) t
J (RER)) = (sgn (- (a0 x —ag)) t 0 | ©2)

Therefore, the expectation value is,

(J(RRY)) = Tr <p (R, RY) (Sgn( ok e sgn (2 (aaox —ag)) t2)>

[ (5 (a < —ap)) 0™ 2 (1?) sgn (2 (ax x —ag)) 2 (57
sgn (2 (a x —ag)) 12 (57) sgn (2 (a0 x —ap)) e () (152)
— sgn (2 (au x —ag)) (1 . ) ( (Rj-x) fk~(R?R?))
= sgn (2 (ax x —ap)) t2 (14 ) cos (k- (R! = R) ). (6.30)
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Similar to the previous case, we can re-write the current density using a single bond index b;,
<]ibb> =sgn (2 (ax X —ag)) ta (1 + ;) cos (k- b;). (6.31)

Current between white atoms

The Bloch vector defined for the atoms W;, W; at positions RY’, R]Z-" respectively is,

; wo 1—Z ik-R%Y ; 1—Z
)uk(R?’,R;")>:elk'Ri ey~ W;) + KRV ity / W), (6.32)

whose sub-density matrix has the form,

—

[~ 1

2

o (1) (152)

P(RERF) = | (R%U_Rz?”) 1-: 1z (633)
e i i ( 5 r ) > r
The hopping matrix is defined exactly as it was the case for B;, B; atoms,
(RY,RY) = ’ sanElaoca)) ) 6
—sgn (2- (an x —ag)) t 0

The expression for < i (Rf-" , R;") > is,

(= () =1 (0 ) (Lo oy )

=Tr —sgn (2 (aa x —ag)) tzeik'<R]w_R}U> (1; ) —sgn (2- (an x —ag)) b (1;%)

—sgn (2 (ay x —ag)) t (1_%> —sgn (2- (ay x —ag)) tze_ik'<RfZ'v_R§U> (1;%)
= —sgn (2 . (a,x X —aﬁ)) t (1 ; %) <eik-(R§UR§0) n eik~(R;UR§”)>
= —sgn (2- (an X —ag)) b (1 - ;) cos (k- (R;" — Rf")) . (6.35)

Or the expectation value in terms of the bond index b; is,

() = —sgn (2 (ag x ~ag)) b2 (1 2) cos (k- b). (6:36)

Note that each type of current is dependent on the orientation of the bond and not the position
of the atom. Therefore, we see a periodicity of the current flow in the lattice. Note also that the

values of (J%%) and (J*“) may differ from each other not only because of the overall negative sign

3The cross product (a, x a p) can be expressed in terms of R; — R; = b;
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but also because the former is multiplied by the weight (1 + 2) whereas as the latter is multiplied
by (1-3).

In Fig.6.6, we show the variation of the current density of the Bloch states in the interval k, =
[—27m,27], ky = 0 for t; = 1 in Hartree units and t, = 0.1 in Hartree units. We do this only
for illustration, as the actual t; is known to be much smaller relative to t;. We show the plot of
currents for only one type of atom but a similar plot can be constructed for the other type.

0.03 - / “\\K =) /N

0.02 / "‘nﬂ /
/ \ /
I IlI f
0.01 - f \ f
|III III' |III
T 000{ == . _— : —
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-0.02 - ‘ \ /I
‘\// \/

Figure 6.6: Current densities between an atom at R! and its nine neighbors. The orange, green and blue
curves are the (J’). Notice that along the (0,k,) direction, one of the nearest neighbor current (the blue
curve) is 0 for all k,. Atk = (0,0), (J*) = 0 Vi. The smaller curves are the same atom contributions (J**).

The larger contributions in the Fig.6.6, shown by the orange and the green curves are from (J%%
and (J%%) where a, and a3 are shown in Fig.6.4. The third (J5*) contribution is 0 for all k, (blue
line) as the current flow is perpendicular to the direction of k. Looking back at the analytical
expression for currents Eq.6.26, if the current flow is in the x-direction then its sine component
will be 0. The fact that at k = (0,0) all three nearest neighbor currents are 0 also checks from the
analytical expression as sin(0) = 0.

Fig.6.6 shows that the second neighbor currents are much smaller than the nearest neighbor cur-
rents. This difference is explained by the expression of Eq.6.31 where we can see that (] f’b> ~ t,
t; is 10 times smaller than t;. We do not show (J*“) in the figure but for every (J%) there is a

corresponding (J*“™). These currents are even functions of k which is also what the expression
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Eq.6.31 shows. This does not violate the continuity equation as we can see that }_; (] by = 0.

Hence we may also conclude that the continuity equation must guarantee that Y_; (J**) = — y_; (J*b) =
0, Y (JP*) = 0and ¥; (J®¥) = 0i.e the three types of currents must all sum to zero individually.
Physically this means that our solid remains electrically neutral and that the currents leaving and

entering a surface that surrounds any atom within the solid must all sum to zero.

6.6.3 Current density for valley states in Graphene

As discussed earlier the quantum dot states are formed out of a superposition of the valley states
with the corresponding envelope function. For graphene, the valley states are at the points K =
2 1 /! 2 1 . . . . .

ﬁ (1, %) and K" = ﬁ (1, —%) as mentioned earlier in this chapter. These are the points at
which the band gap closes as t; = 0. In this section we derive the expressions for all the different
types of currents for the valley states which are a superposition of the K and K’ states. We do not

take into account the envelope functions.

Nearest neighbor currents of the valley states

Our valley states are now a superposition of the Bloch states at the two Dirac points mentioned
earlier. We redefine k = K and —k = —K = K’ for consistency. K and K’ are not directly
related by any reciprocal lattice translation but K’ = —K + G1 + G, where G = 577;(1, V3),Gy =
%(1, —+/3) are the reciprocal lattice vectors of the hexagonal graphene lattice. This also mean
that the states at K’ and —K belong to the same representation. The valley state is,

) = ((uk(R?,R;”)> + ‘u_k(Rf’,R;")» . (6.37)

V2
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We calculate the expectation value using the eigenvectors and not the sub-density matrix as the

former method allows for certain direct simplifications.4

() -

(RS ) -+ (R, RE) (R, RE) + (R ) )

. N b 1_5
o~ kR [1+7 o KR i 1-2 0 —ify e R\ E,
27 2 it; 0 oIk RY i 1+Z

N[~

N[~

AAAA/—\

. o b 142
+ 1 kR /1—-2 R RY it 1+2 0 —it oik-R! /T,,
2 2 2 ity, 0 AR R ig 1;§
/ . —ikRY _ip [142
_1 p—ik'R! 147 o~ ikRY i 1-— %) —itie "N e[ 1,
2 2 2 it;e— kR 1;?
. ik-RY .. [1-%
+ 1 zk Rb 1- % eik-Rw i¢p 1+ ': —ltlel ] el‘P Tr,
2 2 2 itleik'R? \/ HT?
_ |k <Rw+Rb>e—i¢1 +7 ik (R}”+Rb> 11—z
2 2
i bt Gl
2 2
] 1 w b ] i w b .
-7 (elk’(Rj et o] o (RF R g -t ;D

= —itlé (e_ik'<R;'”+R?>e—i¢ _ eik'(R}”wLRf’) ei(p)
= ity [sin(k- (R +RY) +9)]. (6.38)

(JP%) of the valley states

The valley state vector for second neighbor black atoms is,
1 k (pb b —k (b pb R S 1+7 .,
T () ot () ) = 1)

—ik-RY 1_% B: —ik-Rf7 1_% B
+e R — B;) +e 5 1Bj) |. (6.39)

“In the second step we have skipped the diagonal terms as <uk(R§’,R;")Ui|uk(Rf’,R]‘-")>
— (u*(RE RO (RE R) ).

1+2
> |Bi) + kR
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The current operator between the black valleys states is,
(J(RLRY)) = ( (uk(RY, RY)| 1k (RY, RE) ) + (u* (RY, RE)| ™ ju = (RE, RY) )

+ (uk (RE, R [u*(RE RD) ) + (™ (RE, RY) |k <Rf,R§’>>)

:%g (2 (aa x ap))t> cos (k' (be'_Rib>> (1+§>
1
2

A _ i1 RV 1-2
12 iR 1-7 Jik-R! 1-3 0 sgn(2- (ay x ag))ty\ (e FRi\/ =z
27 2 sgn(2- (an x aﬁ))tz 0 e—ik.Rf’ 125
_ikRb [1-Z
+ 1 e—ik~R? 1+ % e—lk R;’ 1+ % 0 Sgn( (a,x X u‘B)) ) e ik-R; 27
2 2’ 2 sgn(2- (aq X ag) )t 0 kR #
. b 142
_’_1 eik-R? 1_% eszj’ 1_% 0 sgn( (aoc X “ﬁ)) elkRz +7
2 27 2 sgn(2- (ay x ag)) 0 ik-R! 1;%
_1 5 b b z
= Esgn(z (ax x ag) )ty cos <k (R] — Rl>> (1 + ;)
+1 <eika 1—§’eikR§? 1-%) sgn(z - (aaxal; tze 2?
2 2 2 sgn(z- (ax x ag))te FR 12?
. 1—z
N T Y
2 2 2 sgn(2- (an x ag) e R /T3
A ik-RY /142
+1 (eik VRS Y %> sgn(Z- (aq x ag))tae™ 5/ 5 (6.40)
' 5 k. 1+:2 ’
2 2 2 sgn(2- (an x aﬁ))tzeZkR Jz”
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<] (R?,R}’>> = %sgn(ﬁ- (aq % aﬁ))tzlcos (k- <R§-) —Rf)) (1 + ;) + cos (k- (R]b —Rﬁ-’)) (1 _z

N (eik'<R§?+R§’> _{_efik-(R;#Rﬁ?) +€ik-(R§?+R§?> +eik.(Rj?+Rf?>> \ %]

2

_ %Sgn(g. (aq X aﬁ))tzlcos (k- (RI-RY)) (142 +1-2)

n (e—ik-(Rj?Jer’) +e—ik-(R§’+R§’) n eik-(R§?+R§’) +eik-(R]b+R?>> 1= i_;]

= %sgn(i- (aq x ag))t [2(:05 (k‘ (Rf — Rf’)) + (eik'<R;‘7+R?) 4 eik-(Rj?+R?>) 1-%2

s (o)t s (ke () o i () ) 12|

(J¥) of the valley states

The valley state in the sub-space of two second-neighbor white atoms is,

1 Kk —k B B T kRY o [1—7F
S o () o (me ) ) = (om0 [

142
2

| o ikRY =i

2
(6.42)

The current operator for the second-neighbor is,

(r(ReRY)) =3 ( (uk (R, R T [k (R, RE) ) + (™ (RE, R [ | (RY, Ry )

+ (" (RY, R [ (R, RY) )+ (™ (R, RY) | |uk (RY, RY) ) ) (6.43)

r

1 pw . 1 z
W) + e R i i \Wj>>'

)
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<] (R‘-" Rw>> = —lsgn(ﬁ- (ay x ag))ts cos <k~ (Rl-’ — Rﬁ’)) (1 — E)

r

= | ok RY ch,/ % SE R} ch,/ % sgn(2- (ax X ag))t2
g sgn(Z- (aq x ag))t 0

—ik- W — 7

ik-R; i 2

—lk Rw o—i¢ 1+Z

( —ik-R¥ el

( o—ik-RY i /%)

*IN

—lk~Rw 71(}5

—ik- Rw Z(P 1+Z

1 lk Rw 14) 1 + 1Ty Zk Rw Z(P sgn(i . (ap( X a‘B))tz
V ¢ V sgn(2- (aq x ag))t 0
( ik-Rf"eiqb\/l»Z)

N

ik R] 14) 7

— ——sgn( (ax x ag))ts cos (k' (R?) - Rg”)) (1 B E>

r

A _ikRY i [14Z
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<] (R?’,R}">> = —sgn(2- (a, X ag))t [cos (k- (R;" — Rf’)) + cos <k- (R]w +Rf"> +2cp) \/1-— j—i :

(6.45)
The above expression can be further simplified by replacing the parameters such as k, —k by their
actual values. We will not show any further simplification but we will discuss how these current
look. We plot a lattice with sufficient number of atoms which helps us visualize the current

pattern.

30 |

20 |

—
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1 Gy
T O
peieza

Figure 6.7: Plot of (J’*) and (J”) currents on a large lattice in the R, R, plane. The nearest neighbor current
flow of valley states is circular and occurring with some periodicity. This is indicated by the dark purple
vectors. The second neighbor currents in a lighter purple (in reality an order of magnitude smaller than
(Jb@) are plotted large here) also seem to move in a circular pattern. Here, for reasons of clarity, three out
of six second neighbor currents are shown.
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In Fig.6.7, the navy blue arrows are the currents produced by the valley states. The domin-
ating nearest neighbor currents flow counter-clockwise in a circular direction along the honey-
comb. This pattern creates a superlattice formed out of three hexagons whose lattice vectors are
S1 = 3ap(1,v/3) and Sy = 3ay(1, —v/3). The occurrence of this superlattice is a direct result of
the phase difference between the orbital states of the wavefunctions. The second neighbor cur-
rent ( ]f’b ) are small but also flow in loops. In Fig.6.7, the dark vectors are plotted to have the
same length as the distance |R;" — RY| and the pink vectors are plotted to have the same length as
|R§~’ — Rf’ | to emphasize the flow of the current. In reality, (J**) is an order of magnitude smaller
than (J") and | (J*“) | = | (J?*) |. Here we show only three out of six (J**) for reasons of clarity.
The star indicates the origin R = (Ry, R,) = (0,0).

The time-reversed states will have current flows in the opposite directions as shown by Eq.6.46.
In addition to the symmetry relations from section.6.3, we see < J(—R?, —R]Z.")> = — <](R?, R;")>
for the valley states at the Dirac point in Fig.6.7. This gives the following relation between the
states that are related by time-reversal and parity,

((PT)'J(R, RY)PT) = — (PYJ(R!,RY)P) = (J(~RE,—RY)) = = (J(RL,RY)).  (646)

For a quantum dot state, the envelope function will break this regularity by modulating both the
dark and the light vectors of Fig.6.7 by the corresponding F(R?) and F(RY) factor. Nonetheless,
we may conclude that <]f’w ) are the predominant contributions to the orbital part of the g-factor.
Smaller corrections will show up with the (J?*) and (J*“) contributions. Though smaller by

many orders of magnitude they may be significant.
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Conclusion

As established thus far, the g-factor is an important quantity when it comes to dealing with spin
states in external fields. We have shown a theoretical framework that established the deviation
of the g-factor from the vacuum value of 2. This deviation can be extremely large (negative) and
results from orbital contributions that have origins in the spin-orbit interaction. This involves
looking at the momentum matrix elements of the Kramers states of the valence and conduction

bands. We also show that the intra-atomic must not be neglected in the orbital contributions.

For semiconductor valence and conduction band states, we illustrate the topology of the g-factors
in k-space which include surface of maximal spin-orbit interactions. Such surfaces are guaranteed
by symmetry. Using group theoretical approaches, we generalize our results to the point groups
0,0y, T, Ty, T;,. These can be easily applied to a large class of materials. We also show that the
surfaces where det(g::) < 0 alter in topology as det(gt:) > 0. These surfaces are by no means

trivial to analyze.

To investigate the source of orbital contributions to the g-factor, we consider an alternative form-
alism by defining the current flows along bonds connecting two neighboring atoms on a lattice.
The conduction band states have a homogeneous current flow throughout the crystal following
its symmetries. In the case of silicon, we understand that current flows do occur at the band
minimum and it is the net current that has no contribution overall. Graphene is an interesting
material as it has different types of orbital contributions coming from its nearest and its second
neighbor interactions. The contributions of the second neighbor interactions can be controlled by
the t, parameter. We see loops of currents emerging across the lattice of Graphene with a period-
icity of a superlattice for the first neighbor currents. This is very different from the case of silicon

and could make the det(g) surfaces more complex.

The connection between symmetries and the g-factor opens up new ways to exploit both of them
in the context of quantum information. We may take this further and apply the envelope approx-
imation to theoretically determine the g-factors of spin states at positions where it is experiment-
ally difficult to probe them. We believe this work might pave the way to further investigation on
this topic, in close connection with existing and new experimental platforms.
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