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Abstract
Woven fabrics have a long history of study across the fields of art, mathematics, and mechanics. While weaves with symmetries in R2 

have been extensively formalized, classified, and characterized, a systematic framework for representing and designing weaves in R3 

remains absent. Despite their relevance to engineering applications—particularly in composite materials—volumetric weaves are 
often designed in an ad hoc manner, typically by stacking planar weaves and introducing trivial thread connections along the 
stacking axis. In this article, we establish a formal framework for volumetric weaves by defining them through the isometries of 
Bravais lattices and their corresponding Voronoi cells in R3. This approach provides a structured description of the design space for a 
specific family of volumetric weaves, which we call volumetric Bravais weaves. As an example of volumetric Bravais weaves, we 
analyze, cubic primitive weaves (cP-weaves) in detail as the simplest example within the volumetric Bravais weave framework. This 
example demonstrates how volumetric Bravais weave structures naturally emerge from 3D lattice isometries. Furthermore, we show 
that all possible cP-weaves can be systematically generated using a set of cP lattice isometries and cube isometries. Our findings 
reveal that even just the space of cP-weaves is at least one order of magnitude larger than that of conventional two-way 2-fold 
weaves, highlighting the potential of our approach for expanding the design space of volumetric weaves.
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Introduction
Volumetric fabrics have been widely explored in engineering and 
material sciences, particularly in the context of fabric- 
reinforced composites, where woven or knitted binding threads 
secure structural elements such as rigid bars or fiber reinforce
ments. The uniquely interwoven geometry of these structures 

has enabled a wide range of material applications, from textile 
manufacturing (1) to engineering composites and tissue engin
eering (2). These studies often rely on numerical simulations to 
analyze mechanical properties and manufacturability con
straints (3–17). For a recent comprehensive review, see Hasan 
et al. (18).
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A critical knowledge gap in the utilization of volumetric woven 
geometries for architected materials and composites comes from 
the lack of principled approaches for the design of such geometries. 
As a result, the current state of the art, by and large, uses ad hoc de
sign principles to design volumetric woven structures and primarily 
focuses on the physical realization and mechanical characterization 
of volumetric fabrics. In contrast, our work takes a complementary 
perspective by examining volumetric weaves through the lens of dis
crete mathematics and symmetry and focuses on developing a 
framework to systematically classify these weaves using a subset 
of 3D lattice symmetries. This symmetry-based perspective enables 
us to identify structural patterns that may not be immediately evi
dent through purely physical or numerical approaches.

The primary contribution of this article is the development of a 
systematic and versatile representation for volumetric weaves, 
which we call volumetric Bravais weaves (Fig. 1). This representa
tion facilitates a broad range of applications, including the discov
ery of novel weave structures and the formalization of periodic 
volumetric weaving using combinatorial and algebraic principles. 
Our approach provides a unified framework for classifying, de
signing, and exploring volumetric weaving patterns in a struc
tured manner.

As a demonstration of the framework’s expressiveness, we 
enumerate specific volumetric weaves with minimal periodicity 
constraints and establish lower bounds on the number of possible 
volumetric weave structures. While these results are not the cen
tral focus of our work, they serve as evidence of the generality and 
scalability of our methodology. By leveraging this representation, 
we show that volumetric weaves can be systematically generated 
and classified, significantly expanding the scope of possible weave 
architectures. Beyond a mathematically grounded design meth
odology, this framework has broader implications for fields such 
as fiber arts, textile engineering, and computational design.

Background on volumetric weaves
Much of the earlier work on volumetric weaves implicitly relies on 
mathematical frameworks originally developed for planar 
weaves, such as isonemal fabrics (19–22). Consequently, existing 
approaches often extend planar weave symmetries by layering 
or stacking them in three dimensions, without establishing an in
dependent formalism for volumetric weaves (23). While recent 
studies have acknowledged the role of space groups and crystallo
graphic lattices in describing periodic entanglements (24, 25) and 
their embeddings in hyperbolic spaces (26, 27), explicit representa
tions that allow different local thread configurations (see Fig. 1b) for 
volumetric weaves remain absent. Additionally, modular design 
strategies have been explored (16, 28), yet a comprehensive math
ematical framework for representing the full weave configuration 
and design space is still lacking.

Mathematical studies of knots have long been well-developed, 
while weaving, despite its structural complexity, has received com
paratively less formal mathematical attention. One possible reason 
for this is the historical perception of weaving as a craft rather than a 
rigorous mathematical subject. However, recently, there has been 
strong interest in the crystallography community in the formaliza
tion of volumetric weaves, aiming to bridge this gap by providing a 
structured and systematic approach. For instance, there has been 
some exploration of the rod packing problem (29, 30) and the sym
metries of rod packings (31), which bear similarities to volumetric 
weaves (see Fig. 2). However, rod packings by definition do not con
sider local configurations, as the rod unit that tiles the space does 
not have different configurations.

Another recent discovery on periodic entanglements (26, 27, 32– 
34) proposes embedding weave strands in triply periodic surfaces 
and hyperbolic planes. In these works, the local embedding is deter
mined by mapping the hyperbolic plane (H2) to the triply periodic 
surface (E3), which defines the path that the strand follows. These 
structures, called entanglements, generate different classes of peri
odic volumetric structures, including invariant rod packings, inter
secting filament axes, tangled weaves, and looped filaments. These 
structures explore remarkable periodic entanglements and provide 
a way to parametrize periodic structures using a single hyperbolic 
plane. However, these works primarily focus on creating repeating 
unit structures. In fact, we observe that these resulting structures 
are derivable within the design space of our volumetric Bravais 
weaves, specifically cP-weaves (see Fig. 2b) and have a rich design 
space (see Fig. 2c). Moreover, these structures span only a limited 
subspace of what is possible within the larger design space. This 
is because they do not consider the local configuration of each 
thread and instead use the same unit structure generated by the 
mapping to define the geometry. In contrast, by assigning each 
unit cell different thread structures and allowing all Wigner–Seitz 
cells as unit cells, we significantly extend the design space.

Volumetric Bravais weaves
In this article, we introduce volumetric Bravais weaves, a systemat
ic and formal approach to defining a specific family of volumetric 
weaves using 3D lattice structures. By formulating these weaves in
trinsically within 3D crystallographic lattices, we provide a rigorous 
framework that enables a structured exploration of their mathem
atical properties. Our primary focus is on establishing the funda
mental formalisms that describe the design space of volumetric 
weaves, rather than exhaustively characterizing their mechanical 
behavior. This framework enables us to use different 3D tessella
tions to construct volumetric weaves (see Fig. 1d and e). To illus
trate the power of this approach, we investigate cubic primitive 
weaves (cP-weaves) as the simplest example within this formalism. 
By doing so, we reveal a broad and previously underexplored design 
space, laying the groundwork for future investigations into the 
mathematical and physical properties of volumetric weaves. Our 
key contributions can be as follows:

1. Lattice-based mathematical framework: We introduce a 
mathematically constructive framework for defining volumet
ric weaves based on 3D Bravais lattices and Wigner–Seitz cells.

2. Using this framework, we analyze a specific subset of volu
metric Bravais weaves, namely, cP-weaves and plain 
cP-weaves, to demonstrate the power of overall framework.

3. Generality of framework: Our mathematical approach sub
sumes the space of 2D weaves and rod packings (Fig. 2), dem
onstrating its generality.

4. Bounds for the space of cP-weaves: We provide lower bounds 
for the number of possible cP-weave configurations given a 
defined number of elements in a domain.

5. Enumeration: We enumerate plain cP-weaves up to an 8 × 8 × 
8 domain.

6. Enumeration algorithm for plain cP-weaves: We develop a 
formal algorithm to enumerate plain cP-weaves efficiently.

7. Algorithms for designing cP-weaves: We present new com
putational design strategies for constructing cP-weaves.

Definition of volumetric Bravais weaves
A thread is the image of an embedding of R into R3. An entanglement 
is a disjoint union of possibly infinitely many threads and 
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loops in R3. There is rich literature on entanglements; see Refs. 
(26, 27, 32, 34). In this article, we consider very special entangle
ments, called weaves, as defined below.

Although it is possible to define volumetric weaves even more 
generally, here we focus on weaves in which the points where 
the threads meet (crossing points) are evenly spaced in R3, and 

a

c

d

e

b1 b2 b3 b4 b5

Fig. 1. Examples of volumetric Bravais weaves: a) Five topologically distinct Wigner–Seitz cells serve as the fundamental building blocks of volumetric 
weaves, allowing for variations in both cell types and thread counts. b) Demonstrates different possible arrangements of threads within each cell, 
defining local thread configuration. c) Presents the preassembly configurations of local structures for each cell, while d) illustrates the process of 
assembling these local threads. Finally, e) showcases large-domain examples, highlighting how threads aligned in the same direction are interconnected 
and smoothed.
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at each “crossing point” the number of threads meeting at this 
point is constant. Let B : = {v1, v2, v3} be the basis for R3. Define 
L({v1, v2, v3}) = {iv1 + jv2 + kv3 ∣ i, j, k ∈ Z}. Then, L(B) is a full 
Bravais lattice in R3 and, as usual, we denote a vector iv1 + jv2 + 
kv3 ∈ L({v1, v2, v3}) by (i, j, k). Given a lattice L(B), a cell containing 
exactly one lattice point, called the Wigner–Seitz cell or the Voronoi 
cell, can be defined by considering all points in R3 closest to the lat
tice point. The translated copies of these cells fill the entire space.

DEFINITION 1 Let B = {v1, v2, v3} be the basis for R3. Suppose that C 
is a Voronoi cell of L(B), and let ℓ ∈ Z be the number of configura
tions of n skew lines, where n is equal to the number of faces of C. A 
volumetric Bravais weave with basis B is a map V :L(B)→ {1, . . . , ℓ}. 
For (i, j, k) ∈ L(B), the value V(i, j, k) is called the configuration of the 
threads meeting in (i, j, k).

REMARK 1 Skew lines are a set of lines that do not intersect and are 
not parallel to each other (35). For example, the two lines through 
opposite edges of a regular tetrahedron are skew lines. Similarly, 
three nontouching edges of a cube define three skew lines.

REMARK 2 A volumetric Bravais weave with basis B can be thought 
of as an entanglement of threads obtained from lines that meet at 
lattice points by diverting the lines around the intersection point. 

1. Any line is parallel to a vector from the center of the Voronoi 
cell to the nearest lattice point. A line passes through exactly 
two faces of the Voronoi cell.

2. Any two different lines can only meet at a point in L(B).
3. For each (i, j, k) ∈ L(B), the number n of pairwise nonparallel 

lines meeting in (i, j, k) is equal to half of the number of faces 
of the Voronoi cell.

4. Observe that the Voronoi cell has the same symmetries as the 
lattice.

5. In a woven structure the lines are replaced by threads, and at 
the intersection points of lines the threads are diverted to be 
locally an arrangement of skew lines. The value V(i, j, k) al
lows us to arrange the n threads around (i, j, k) in a well- 
defined entanglement, see Proposition 1 for details.

Representation of cP-weaves as GF(2)3 group 
on lattice cells
This definition is very general and allows us to define very inter
esting volumetric Bravais weaves. In this article, we focus on 

one particular Wiegner–Seitz cell, namely the cube. The reason 
for this focus is that this cell is easy to understand, allowing us 
to highlight the difference between volumetric and plane weaves. 
Already with this example, we are able to demonstrate the vast 
potential volumetric Bravais weaves possess. We will consider 
other Wiegner–Seitz cells in a forthcoming publication. Suppose 
henceforth that the basis B consists of the 3 unit vectors of R3, 
and thus our lattice is Z3 and a Voronoi cell C is a cube. This lattice 
corresponds to the primitive cubic lattice in the crystallography 
context, and we call these weaves primitive cubic weaves 
(cP-weaves). In this case, the configurations of skew lines passing 
through two faces of C each can be parameterized by choosing 
three edges of C such that no two have a common vertex (35). 
We can therefore identify V(i, j, k) with a cube C with three distin
guished edges. These configuration of skew lines are closely re
lated to the invariant cubic rod packings (31) in a sense that the 
tiling of these skew lines in the space would create a basis for 
rod packings as can be seen in Fig. 2a. This formulation of the 
volumetric weaves subsumes the rod packing definition and cre
ate different structures from the initial rod packing (see Fig. 2).

We are particularly interested in weaves that display some non
trivial symmetry. When considering different symmetric weaves 
that can be obtained by Definition 1, we need to distinguish two dif
ferent types of symmetry, the first type of symmetry is the group of 
isometries of the unit cell, as the cell geometry helps us to identify 
the local configurations (see Figs. 3 and 4). The second type of sym
metry is the symmetry group of the Bravais lattice, which supports 
the translation of the weave to obtain itself again.

A cP-weave consists of skew lines arranged in a cP lattice 
(Fig. 1a) where each group of skew line segments defines the local 
configuration of the threads (Fig. 1b1) within the Voronoi cell, i.e. 
cube. Each pair of threads in the cube has an order. When all the 
rank orders are combined, we get a configuration of the cell. From 
the definition of cP-weave, the configurations of a cell can be iden
tified with three distinguished edges no two of which share a ver
tex, which leads to eight different cell configurations (see Fig. 3).

Representing a volumetric Bravais weave involves three steps: 
(i) Establishing an initial rank-order representation of threads 
within the unit cell. (ii) Encoding all possible configurations of 
the threads in the unit cell. (iii) Defining a lattice system to encode 
and represent local configurations for each cell. If the encoding in 
(ii) is consistent with the symmetry operations of the unit cell, it 
enables the development of a simple and elegant method for rep
resenting line configurations within a given unit cell.

In the case of cP-weaves, the mirror symmetries of the 
cube naturally generate all possible line configurations. Mirror 

a b c

Fig. 2. Our volumetric Bravais weaves encompass rod packings as a special case, as shown in a), while maintaining full local control over individual 
thread configurations, as shown in b). This approach enables a significantly expanded design space for volumetric weaves, allowing for diverse and 
customizable local configurations, as shown in c).
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operations can be represented using mirror matrices of the follow
ing form:

M(x,y,z) =
( − 1)x 0 0

0 ( − 1)y 0
0 0 ( − 1)z

⎛

⎝

⎞

⎠, (1) 

where x, y, z ∈ {0, 1} and the multiplication of two mirror matrices 
can be expressed as:

M(x1,y1,z1)M(x2,y2,z2) = M(x1+x2,y1+y2,z1+z2), (2) 

where + is modulo 2 addition. Notably, this set of matrices forms a 
group with identity M(0,0,0) that is isomorphic to the additive group 

GF(2)3, where matrix multiplication corresponds to element-wise 
addition modulo 2.

We assume that the initial thread configuration is chosen arbi
trarily and corresponds to the identity matrix M(0,0,0). The other 
configurations, obtained by applying the mirror matrix M(x,y,z) to 
this initial configuration, can be labeled accordingly, as illustrated 
in Fig. 3. By exploiting the group isomorphism mentioned above, 
we can thus represent the possible thread configurations of a 
cP-weave using the elements of GF(2)3.

Since each Bravais lattice point can be assigned a distinct con
figuration, a general cP-weave can be viewed as a mapping from 
lattice points to elements of GF(2)3, formally expressed as: 
V : Z3 → GF(2)3

.

Construction of cP-weaves in translation cells
The key idea in the construction of cP-weaves is to identify config
uration changes from one cell to another in all three directions. 
This approach is fundamentally different from planar weaves, 
where such changes do not need to be explicitly identified. To fa
cilitate this, we introduce the concept of a discrete derivative. 
Given a cP-weave V : Z3 → GF(2)3, we can now define discrete de
rivatives in all three, i.e. x, y, and z, directions as 
δxV = V(n + 1, m, k) − V(n, m, k), δyV = V(n, m + 1, k) − V(n, m, k), 
and δzV = V(n, m, k + 1) − V(n, m, k), respectively. The discrete de
rivatives for the derivatives in the x direction are shown in Fig. 5.

PROPOSITION 1 Let there be a cP-weave V with N × M × K a transla
tion cell W. Then the geometry of the V, i.e. the configuration of 
the skew lines, can be constructed from an N × M × K cubic array 
with entries in the vector space GF(2)3.

Proof. Each cell of W encodes a unit cube with three distinct skew 
line segments that lie parallel to the principal axis of the cubic 
primitive Bravais lattice; these three skew lines are treated as a lo
cal portion of the threads in W. We may assume that the specific 
embeddings of these skew lines are the following: 

1. x = X0X1, X0 = ( − 0.5, − y0, − z0), X1 = (0.5, − y0, − z0)

2. y = Y0Y1, Y0 = ( − x0, − 0.5, z0), Y1 = ( − x0, 0.5, z0)

3. z = Z0Z1, Z0 = (x0, y0, − 0.5), Z1 = (x0, y0, 0.5).

This constitutes the base configuration of threads where the 
pairwise rank orders are given as r(x,y) = 1 denoting that the x 
thread has a higher rank than y within the xy plane projection, 
r(y,z) = 1 denoting that the y thread has a higher rank than z within 
the yz plane projection and r(x,z) = 1 denoting that the x thread has 
the higher rank than z within xz plane projection.

As shown in Ref. (35), there are two distinct configurations of 
these three skew line segments if we only have one set of three 
skew lines. But in our cP-weaves we use different sets of three 
skew lines at different places in space, e.g. lattice points, which 
distinguishes the orientation of the threads and results in eight 
different configurations, since each r(i,j) ∈ GF(2) giving 2 × 2 × 2 = 8.

Then in each cell C = W(i, j, k), we can use a binary triplet 
(r(y,z)(i, j, k), r(x,z)(i, j, k), r(x,y)(i, j, k)) ∈ GF(2)3 to represent the pair
wise ranking orders which span the entire configuration space 
for the local thread configuration. This rank-order representation 
can be realized with the mirror matrix applied to the base 
configuration as discussed before. Thus creating a unique re
presentation of the cP-weave as the collection of all W(i, j, k) = 
(ryz(i, j, k), r(xz)(i, j, k), r(xy)(i, j, k)) resulting in a GF(2)3 valued cubic 
array.

a

b

Fig. 3. Using the thread configurations in a) and b), we can construct a variety of cP-weaves as can be seen from Fig. 1d and e. Configurations can be 
separated into two groups where each group only consists of thread configurations that can be obtained with rotations from one configuration of the 
same group. Take group a) as an example, each of the configurations are just a rotation of other thread configurations from group a).
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REMARK 3 The resulting virtual construction consists of piecewise 
linear curves, as shown in Figs. 5 and 1c. Any two line segments be
tween two neighboring cubes are connected with short line seg
ments at the interface of the two neighboring cubes. These short 
line segments do not intersect with other skew lines, since the others 
do not intersect with the face separating the two cubes. This guaran
tees that the resulting threads do not intersect with each other.

REMARK 4 There is still a caveat, since we smooth these piecewise 
linear curves for virtual construction as shown in Fig. 6. For 
smoothing, it is better to use a parametric formula that satisfies 
partition of unity such as B-splines and Bezier curves (36, 37), 
then we can use piecewise linear curves as control points of this 
parametric system. Since the resulting smooth curves always 
stay in the convex hull of local control points, it is easy to avoid in
tersections. In our implementations, we used Non-Uniform 
Rational B-Spline curves (38).

Design space of cP-weaves
Recall that the group of isometries that leave a Bravais lattice in
variant is a crystallographic group G and as such is a discrete 

subgroup of the Euclidean group E(3). The Voronoi cell is a trans
lation cell of the lattice and is mapped by elements of G to another 
translation cell. The symmetry group of the orthogonal lattice 
with standard basis (i.e. the cubic primitive lattice) and cubic 
Voronoi cell C is Z3⋊O(C), where O(C) denotes the symmetry group 
of the cube and has order 24.

DEFINITION 2 Let V be a cP-weave with lattice L(B). An automor
phism of V is a lattice isometry α of L(B) such that V(α(i, j, k)) = 
α(V(i, j, k)) for all (i, j, k) ∈ L(B), where α(V(i, j, k)) is the image of 
the cube V(i, j, k) under α. We denote the group of automorphisms 
of V by Aut(V).

Isometric properties of cP-weaves
To study the isometric properties of cP-weaves, we used a specific 
subset, which we call regular cP-weaves.

DEFINITION 3 A regular cP-weave is a cP-weave such that there is a 
M × M × M cubic translation cell W such that V is generated from 
W by translations along vectors of length M along the standard ba
sis. In this case, Aut(W) denotes the set of lattice isometries fixing 
W and Aut(W) ≤ Aut(V).

a c

b

d

Fig. 4. One of the Voronoi cell from the eight fundamental cubes in Fig. 3 is given in (a). After a rotation operation along the principal axes in R3, each cell 
is transformed into the cells in (b) which corresponds to another configuration in Fig. 3 that is shown in (c). Using this property we can map a configuration 
in regular cP-weave V1 to the rotated V1 and find an isometry between the weaves.
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The most important property of the regular cP-weaves for our 
purposes is that they can be rotated in all three directions, which 
makes it easier to study isometry properties.

DEFINITION 4 A regular plain cP-weave is a regular cP-weave for 
which any two-way 2-fold weave in a plane orthogonal to any of 
the coordinate axes is a plain weave with respect to the remaining 
two coordinates (see Fig. 7).

We are also interested in regular plain cP-weaves and their rep
resentations. Our aim is to show that volumetric weaves facilitate 

a far larger design space than two-way 2-fold weaves. Although 
two-way 2-fold weaves only admit one type of plain weave, we 
show that the number of regular plain cP-weaves grows exponen
tially in the size of a cubic translation cell.

We begin by introducing a very convenient and compact way of 
representing regular plain cP-weaves.

PROPOSITION 2 Let W be an M × M × M translation cell for a regular 
plain cP-weave V. Let v0 = (x0, y0, z0) = W(1, 1, 1). Then, there are 
vectors dx, dy, dz ∈ GF(2)M such that W, and thus also V, is uniquely 
determined by (v0, dx, dy, dz).

Fig. 5. All possible δxV values for a neighborhood visualized with the single initial configuration V(0, 0, 0) = (0, 0, 0) (rightmost cell in each cell pair) and 
V(1, 0, 0) = V(0, 0, 0) + δxV (leftmost cell in each cell pair). Note that the connections here are not postprocessed to show the initial geometry of local 
weaves and how connections are formed between cells. These connections ensure that the threads do not intersect each other.

Fig. 6. Smoother versions of threads in Fig. 5 with all possible δxV values for a neighborhood visualized with a single initial configuration V(0, 0, 0) = 
(0, 0, 0) (rightmost cell in each cell pair) and V(1, 0, 0) = V(0, 0, 0) + δxV (leftmost cell in each cell pair). Note that the connections are smoothed to show 
how the final connections are formed between the cells. These smoothed curves do not intersect since we become sure that the convex hulls of the local 
control points do not intersect.

Yildiz et al. | 7
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/4/8/pgaf219/8206111 by guest on 21 August 2025



Proof. Note that a regular plain cP-weave has to satisfy that in 
transitioning from W(i, j, k) to a neighboring cube, say to 
W(i + 1, j, k), the two pairs of threads in the x, y-plane as well as 
in the x, z-plane change ranking order. In other words, 
δxW(i, j, k) = W(i + 1, j, k) − W(i, j, k) = (a, 1, 1) for some a ∈ GF(2). 
This means for the derivatives and i, j, k ∈ {1, . . . , M − 1}

δxW(i, j, k) = W(i + 1, j, k)) − W(i, j, k) = (aijk, 1, 1),
δyW(i, j, k) = W(i, j + 1, k) − W(i, j, k) = (1, bijk, 1),
δzW(i, j, k) = W(i, j, k + 1) − W(i, j, k) = (1, 1, cijk),

(3) 

for aijk, bijk, cijk ∈ GF(2).

We now show that aijk = aij′k′ for all i, j, k, j′, k′ ∈ {1, . . . , M}. In 
other words, the derivative δxW(i, j, k) only depends on i, the de
rivative δyW(i, j, k) only depends on j, and the derivative 
δzW(i, j, k) only depends on k.

Let i, j, k ∈ {1, . . . , M}. We compare two ways of reaching W(i + 
1, j + 1, k) from W(i, j, k), namely

W(i, j, k) + (ai,j,k, 1, 1) + 1, bi+1,j,k, 1)

= W(i + 1, j, k) + (1, bi+1,j,k, 1) = W(i + 1, j + 1, k),

W(i, j, k) + (1, bi,j,k, 1) + (ai,j+1,k, 1, 1)

= W(i, j + 1, k) + (ai,j+1,k, 1, 1) = W(i + 1, j + 1, k).

Subtracting these two equations we obtain

(ai,j,k, 1, 1) + (1, bi+1,j,k, 1) = (1, bi,j,k, 1) + (ai,j+1,k, 1, 1) 

or (ai,j,k, bi+1,j,k, 1) = (ai,j+1,k, bi,j,k, 1). This shows that ai,j,k = ai,j+1,k 

and bi+1,j,k = bi,j,k. An analogous argument shows that the 

same holds for ci,j,k. Therefore, we denote ai,j,k simply by ai and 

the derivatives are δxW(i, j, k) = (ai, 1, 1), δyW(i, j, k) = (1, b j, 1), 

and δzW(i, j, k) = (1, 1, ck), where i, j, k ∈ {1, . . . , M − 1} and 
ai, bj, ck ∈ GF(2). Furthermore, define aM, bM, and cM in GF(2) by 

W(M, j, k) − W(1, j, k) = (aM, 1, 1), and W(i, M, k) − W(i, 1, k) = 
(1, bM, 1), W(i, j, M) − W(i, j, 1) = (1, 1, cM).

Since the cP-weaves are regular, translating V along any of the 
axes M steps leaves V invariant. A translation of V along the x-axis 

by one step corresponds to applying the cyclic permutation 
(1, . . . , M) to dxW. This shows that 

􏽐M−1
i=1 ai = aM, 

􏽐M−1
i=1 bi = bM, 

􏽐M−1
i=1 ci = cM, since W(M, j, k) + dxW(aM, 1, 1) = W(1, j, k).
The cP-weave V is therefore uniquely determined by v0 : = 

W(1, 1, 1) and the three vectors dx = (a1, . . . , aM), dy = (a1, . . . , aM), 
and dz = (a1, . . . , aM).

Design space for repeating GF(2)3 vector space
The following propositions shows that volumetric weaves open 
up a huge design space. Considering regular cP-weaves with an 
M × M × M translation cell, allows to design a number of different 
weaves that grow exponentially in M. This is true even for regular 
plain cP-weaves, where in the 2D case we have only one weave up 
to automorphisms. The following propositions provide a lower 
bound for the design space. To obtain a lower bound, we consider 
the threads of different kinds in cP-weaves (three orthogonal 
threads) to be same such that we can use the automorphisms of 
the cube to map one kind of thread to another.

PROPOSITION 3 The number of regular cP-weaves generated by an 
M × M × M translation cell is at least 1

48 23(M3−log2 (M)).

Proof. Observe first that the full automorphism group of the 
primitive cubic lattice is Z3⋊Oh, where Oh denotes the full octahe
dral group, which is also the group of isometries of a cube. Now 
suppose that W is an M × M × M translation cell and define 
G = (CM × CM × CM)⋊Oh, where CM denotes the cyclic group of order 
M. Then, the automorphism group of the weave generated by W is 
the subgroup Aut(W) of G consisting of all weave automorphisms. 
The action of an element in CM × CM × CM on W corresponds to a 
translation of the translation cell W. Let Ω denote the set of all pos
sible configurations in GF(2)3 that W can take. In the case of a regu
lar cP-weave, |Ω| = 8M3

.

Given two such configurations, the weaves they generate might 
lie in the same orbit under G. In fact, the different weaves are in 

a1 a2 a3 a4

b1 b2 b3 b4

Fig. 7. One interesting subset of cP-weaves is regular plain cP-weaves (see Definition 4). In these weaves, threads are always changing their rank orders 
from one cell to the other. The number of different regular plain cP-weaves depends on the size of the domain(see Proposition 4). In a1–a4), we show all 
possible regular plain cP-weaves for 2 × 2 × 2 cellular domain. b1–b4) are extended version of the a1–a4) respectively, i.e. 2 × 2 × 2 domain is repeated to 
get 4 × 4 × 4 cP-weave. Note that counting different weaves depends on the allowed symmetry operations as well. Here, we grouped the weaves based on 
cellular translation, rotation and mirror operations which allows for four different 2 × 2 × 2 regular plain cP-weave. If we remove mirror operation then 
the group a4) separates into two groups(right and left images), this means that all weaves in a1–a3) are self-chiral.
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bijection to the orbits of G on Ω. The action of an element of Oh on 
W corresponds to applying a cube symmetry to W.

We obtain the lower bound for the number of regular cP-weaves 
by dividing |Ω| by the length of the longest orbit of G on Ω. Since the 
length of any orbit divides |G|, it is less than |G|, whence a lower 
bound for the number of different weaves is |Ω|

|G| . For regular 

cP-weaves this yields the lower bound 8M3

M3 ·48 = 1
48 23(M3−log2 (M)).

PROPOSITION 4 The number of regular plain cP-weaves generated 
by an M × M × M translation cell is at least 1

48 23(M−log2 (M)).

Proof. The proof is similar to the one provided for Proposition 3. 
We will utilize the full automorphism groups of cubic primitive 
lattice and the full octahedral group. By Proposition 2, a regular 
plain cP-weave with translation cell W is uniquely described by 
a tuple (v0, dx, dy, dz), where v0 ∈ GF(2)3 and dx, dy, dz ∈ GF(2)M 

such that 
􏽐M−1

i=1 ai = aM, 
􏽐M−1

i=1 bi = bM, 
􏽐M−1

i=1 ci = cM, hence in this 
case |Ω| = 8 · 23(M−1) = 23M.

Given two such configurations, the weaves they generate might 
lie in the same orbit under G and different weaves are in bijection 
to the orbits of G on Ω.

We obtain the lower bound for the number of regular plain 
cP-weaves by dividing |Ω| by the length of the longest orbit of G 
on Ω. Since the length of any orbit divides |G|, it is less than |G|, 
whence a lower bound for the number of different weaves is |Ω|

|G| .

For regular plain cP-weaves it yields 23M

M3 ·48 = 1
48 23(M−log2 (M)).

Our enumeration of periodic volumetric weaves and the de
rived lower bounds should be understood as applications of our 
representation rather than as standalone results. These findings 
validate the expressiveness of our framework, demonstrating its 
ability to systematically encode a vast number of volumetric 
weaves within a structured combinatorial space.

The lower bound we establish on the number of possible volu
metric weaves confirms that our representation provides access 
to a significantly larger design space than previously considered. 
By applying our systematic encoding, we illustrate how the classi
fication and discovery of volumetric weaves become more struc
tured and computationally feasible.

Designing weaves based on primitive 
cubic lattices
A weave based on primitive cubic lattices (cP-weave) with an M × 
N × K translation cell can be represented by 8MNK values in GF(2). 
The design space of these cP-weaves increases exponentially 
with each number increase in the domain size as shown in 
Proposition 3. With this many number of parameters, it is not 
feasible to determine each configuration of the cell in the lattice 
with manual entries. In this section, we will provide different 
strategies that can be employed to design cP-weaves such that 
configurations can be generated with an algorithm.

Design of the cP-weaves with constraints
For some weave types, we can further constrain the representation. 
Constraints can be introduced with a neighborhood definition which 
could be expressed in terms of derivative definitions as shown in (3). 
The constraint given in Eq. 3 results in a plain cP-weave and the sim
ple representation of a regular plain cP-weave has been proved in 
Proposition 2. Note that each cell in this representation has a triplet 
of values which can be treated as a binary number. Also note that 
each variable in this array (not the entries), determines whether 
the layer of fabric is mirrored in the direction of the variable, i.e. x1 

is controlling the y–z mirror of second y–z planar weave in the struc
ture. Then a compact representation of an M × N × K plain cP-weave 
is the following collection of binary variables:

Table 1. Representatives of orbits on 2 × 2 × 2 regular plain cP-weaves under full lattice isometry group Z3⋊Oh

Orbit Representative W Visualization of W |Aut (W)| Orbit Length

[10 : 00 : 10] 16 24

[00 : 01 : 00] 16 24

[01 : 10 : 01] 48 8

[11 : 11 : 00] 48 8

Total 64
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W = [x0. . .xM−1 : y0 · · · yN−1 : z0 · · · zK−1]. (4) 

This reduces the number of parameters from 3(M∗N∗K) to M + N + K 
for plain cP-weaves. Similar constraint definitions can be used to de
fine different cP-weaves such as twills, this approach can be empow
ered with cellular automata (39) by defining a behavior for a 
neighborhood of p × q × t and this domain can generate different 
configurations to define the cP-weaves.

In Table 1, we show one representative W for each orbit of the 
group Z3⋊Oh of lattice isometries on the set of 2 × 2 × 2 translation 
cells of regular plain cP-weaves with together with the order of the 
automorphism group Aut(W) of W.

Shifting strategy
The shifting strategy has been used for designing 2D weaves be
fore (see Fig. 8), which requires a binary local configuration encod
ing and three parameters to generate entries for the 
representation. a/b/c notation for 2D weaves consists of a binary 
representation of the local rank order (0 or 1) and three parame
ters a, b, c. Then, the planar weave is given by the following equa
tion:

W(i, j) = 0 i + j∗c mod(a + b) < a
1 i + j∗c mod(a + b) ≥ a.

􏼚

(5) 

To apply the same shifting strategy to cP-weaves, we reduce the 
number of configurations from 8 to 2 by choosing two configura
tions such that c1 − c2 = (1, 1, 1) where c1, c2 ∈ GF(2)3. This enables 
us to use the shifting strategy to determine the crossings as this 
strategy uses only two configurations and it ensures that the 
crossing happens in every direction at the location specified by 
the shifting strategy. a/b/c can define only a single layer; however, 
to be able to define multiple layers we need to add another shift 
variable for the layer index, let that shift variable be d. Then, we 
can populate the M × N × K array that represents the cP-weave 
W with the following equation:

W(i, j, k) = c1 i + j∗c + k∗d mod(a + b) < a
c2 i + j∗c + k∗d mod(a + b) ≥ a

􏼚

(6) 

which uses two independent shifts in y and z directions. This en
able us to design weaves that has different type of planar weaves 
in three different constant planes of the cP-weave (see Fig. 9).

Generalization of shifting strategy for volumetric weaves
Now, let us assume that a square N × M two-way 2-fold weave is 
given. Now, note that this two-way 2-fold fabric is given by a ma
trix of ones and zeros. Let us assume that this matrix is in the z = 0 
plane. To obtain the z = k plane, we cyclically shift this matrix in 
x-direction ks0 amount and y-direction ks1 amount. Our corollary 

is that if two number pairs are relatively prime, then the cP-weave 
will consist of x-constant, y-constant, and z-constant planes. 
These two number pairs are (a) N and s0 + s1; and (b) M and 
s0 + s1. For such types of fabrics, we can use the notation (N, s0) × 
(M, s1) following Grunbaum and Shephard’s notation of (n, s) (see 
Figs. 10 and 11).

Pattern generation for other volumetric Bravais 
weaves using cubic arrays of configurations
We represent M × N × K translation cells of cP-weaves using a cu
bic array with entries. This digital representation with a cubic ar
ray of configurations allows for a structured approach to modeling 
any volumetric Bravais weaves. In other words, this representa
tion extends beyond cP-weaves. Any of the other four distinct 
cases of volumetric Bravais weaves (i.e. hP, cI, cF, and oF) can 
also be effectively described using cubic arrays of configurations, 
where the cubic arrays still correspond to translational M × N × K 
cells. This capability comes directly from the core strength of the 
Bravais-based framework, as every lattice point in a Bravais lattice 
can be expressed—by definition—through a set of discrete trans
lation operations in 3D space: p = a0􏿻v0 + a1􏿻v1 + a2􏿻v2, where the 
ai’s are arbitrary integers and 􏿻v0, 􏿻v1, and 􏿻v2 are three linearly inde
pendent vector in R3.

The only distinction with cP-weaves is that for the four other 
Wigner–Seitz cases, the configurations will not be represented 
by GF(2)3. Nevertheless, shifting strategies remain applicable to 
all cases, regardless of the specific nature of the mathematical 
representations of configurations. In other words, shift operations 
can be universally employed to generate repeating patterns that 
correspond to any volumetric Bravais weave.

An additional advantage of shift operations is that they estab
lish connections with familiar planar weave structures, such as 
plain, twill, and satin. However, it is crucial to recognize that 
this connection is not a necessity. For volumetric weaves, there 
is no fourth dimension into which they could “fall off,” meaning 
that 2D patterns hold no fundamental significance beyond their 
historical legacy and familiarity. In reality, the choice of patterns 
can be entirely arbitrary.

Furthermore, we anticipate that statistical distributions of con
figuration variations will have a direct impact on the physical 
properties of these weaves, making this an important avenue for 
future investigation.

Discussion
A fundamental question in volumetric weaving is why 2D weaving 
is universally present across cultures, while 3D weaving remains 
largely absent in traditional practices. This asymmetry likely 
stems from human dexterity constraints, as weaving in two 

Fig. 8. a/b/c notation(1) is one of the simplest representation for biaxial weaves. Satins(2) and Twills(3) can be represented by this notation.
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dimensions allows for the use of the third dimension to manipu
late threads, whereas full-3D weaving requires simultaneous 
interlacing in a way that exceeds manual coordination. 
However, modern fabrication technologies, can provide an alter
native means of constructing volumetric woven structures with
out the need for direct thread manipulation. This perspective 
highlights the relevance of our approach, which formalizes 3D 
weaving as a mathematical framework, independent of fabrica
tion constraints, offering new opportunities for computational 
fabrication, composite materials, and advanced manufacturing 
techniques.

A key advantage of our approach is that it introduces a gener
alized representation that makes the classification, design, and 
discovery of volumetric weaves significantly more accessible. 
Unlike previous methods that rely on manually defined weave 
types, our methodology provides a formal structure for analyzing 
volumetric weaves as combinatorial objects. This structured re
presentation not only offers an improved way to study existing 
volumetric weaves but also provides a systematic approach for 
identifying previously unknown configurations.

We would like to emphasize that our approach provides a new 
algebraic alternative to the well-established representation of 
2D fabrics introduced by Grünbaum and Shephard (19–22). Our 

formulation allows for a structured and mathematically rigorous 
treatment of woven structures. Specifically, our method enables 
the representation of two-way 2-fold and three-way 3-fold weaves 
by utilizing 2D Bravais lattices. These weaves can be classified 
based on their underlying symmetry properties, where tetragonal 
primitive (tp) lattices correspond to two-way 2-fold weaves, while 
hexagonal primitive (hp) lattices are used to define three-way 
3-fold weaves. This distinction highlights the fundamental role 
that lattice structures play in the mathematical characterization 
of fabric patterns. By leveraging algebraic techniques, our ap
proach not only provides an alternative perspective but also ex
tends the applicability of lattice-based fabric representations. 
This allows for a more systematic exploration of fabric designs 
while maintaining consistency with classical textile classifications.

We also want to point out that there still exist a significant differ
ence in 2D and 3D woven structures. One of the main contributions of 
Grünbaum and Shephard was to observe that weaving patterns that 
appear to be perfectly linked by visual inspection may not produce 
links that can make the woven structure hang together (19–22, 40– 
42). In other words, the resulting structures could come apart in 
pieces. They called a weaving structure a fabric only if it is hanging 
together. We want to point out that the concept of “hanging together” 
is not relevant for volumetric weaves since there is no fourth 

a b

c d

Fig. 9. Volumetric fabrics can be designed with a/b/c/d notation. We have used volumes that are larger than the fundamental region to visually 
demonstrate differences in periodic structures.
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a b

c d

Fig. 10. This figure provides some volumetric fabrics that can be given in (N, s0) × (M, s1) notation. We have used volumes that are larger than the 
fundamental region to visually demonstrate differences in periodic structures.

a b

c d

Fig. 11. This figure shows the internal structure of these 3D volumetric fabrics. a–c) are slices for ABC notated fabrics and d) is the slicing for shift 
constructed volumetric fabric 8-5-2 in (8, 2) × (8, 3) configuration.
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dimension into which it could fall off. While it is intuitively observed 
that removing a thread from a volumetric weave requires pulling it 
lengthwise, we do not formally claim that volumetric weaves “hang 
together” in the same sense as 2D fabrics. Instead, we limit our dis
cussion of this property to cases where it applies within 2D slices of 
volumetric structures.

The interplay between weaving and mathematical structures 
extends beyond volumetric weaves. Related work on fiber arts, 
such as hyperbolic crochet pioneered by Daina Taimina, high
lights how topological principles can be physically realized 
through structured materials (43). Similar to hyperbolic crochet, 
volumetric weaves provide a tangible way to explore mathematic
al properties through textile structures, reinforcing the deep and 
often overlooked connection between mathematics and fiber arts.

Conclusion and future work
In this article, we present a constructive mathematical frame
work for the effective representation of a special class of volumet
ric weaves. Our framework provides access to a vast and scalable 
design space, enabling algorithmic exploration and potential opti
mizations for various engineering applications. The enumeration 
and lower bounds presented in this article demonstrate the versa
tility of our approach, showcasing its applicability beyond 

established weave families. Future research can build upon this 
representation to facilitate automated design, classification, and 
refinement of all volumetric Bravais weaves, with significant po
tential in computational design and materials science.

In practical applications, this work has the potential to contrib
ute to various engineering fields. We envision applications in en
gineered structures such as convective heat exchangers (44), 
composites (45, 46), and lattice materials (47). Another promising 
research direction is exploring alternative methods beyond enu
merating topologically distinct cases to achieve desired proper
ties. For instance, coloring threads can generate a wide range of 
patterns. In twill alone, patterns such as herringbone, hounds
tooth, serge, sharkskin, flannel, cavalry, chino, covert, denim, 
drill, and gabardine can be obtained (48). This approach can also 
be leveraged to create diverse textures (48–50) (see Fig. 12 for ex
amples of planar and volumetric weaves).

Volumetric fabrics have been explored in various engineering 
applications to enhance the strength and mechanical perform
ance of composite materials. For example, volumetric weaves 
can be embedded as reinforcements in concrete structures, acting 
as a rebar-like framework to improve load distribution and frac
ture resistance. Similarly, volumetric fabrics are used in aero
space and wind energy applications, where their lightweight yet 
strong properties contribute to structural efficiency in aircraft 

a b

c d

Fig. 12. This figure demonstrates the effect of coloring for the same weave. In this case, we used a relatively simple, 3/3/1 twill, and corresponding 
3/3/1/1 cP-weave just to demonstrate how the number of possibilities increases by using different materials.
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components and wind turbine blades. While this article primarily 
focuses on the geometric construction and classification of volu
metric weaves, the presented framework has the potential to be 
extended for engineering applications where mechanical proper
ties play a critical role.

By establishing a formalized approach to volumetric weaves, 
this research not only contributes to mathematical and compu
tational design but also opens avenues for broader engagement 
in material sciences, engineering, and textile arts. The mathem
atical study of woven structures holds significant potential for 
public engagement, bridging abstract mathematical principles 
with real-world applications in an intuitive and visually compel
ling way.
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