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A B S T R A C T

Advances in environmental technologies have improved indoor environmental quality (IEQ) by creating steady, 
uniform conditions. However, these often fail to meet individual thermal comfort and air quality needs, 
prompting a shift toward adaptive, personalized solutions. Personalized Environmental Control Systems (PECS) 
aim to enhance comfort, air quality, health, and productivity through user-centered designs. This paper sys
tematically reviews 324 journal articles on PECS from 1988-2023, focusing on thermal and indoor air quality 
(IAQ) domains. PECS are classified by mobility: building-attached, semi-attached, detached, and wearable. The 
review assesses their impact on thermal comfort, IAQ, health outcomes (e.g., Sick Building Syndrome, heat 
stress), and human performance (e.g., cognitive function, productivity). Results show that building-detached 
PECS often improve thermal sensation, comfort, and acceptability, with combined systems yielding better rat
ings. Personalized ventilation enhances IAQ by delivering clean air directly to the breathing zone, reducing 
contaminant exposure. Research on PECS effects on health is limited, mainly focusing on short-term, controlled 
studies. Evidence for benefits on human performance is sparse but promising. Key challenges include inconsistent 
performance metrics, limited real-world evaluations, and potential publication bias toward positive results. This 
review highlights the need for standardized evaluation methods, deeper understanding of combined PECS effects, 
real-world and long-term testing, and clearer quantification of human performance benefits to advance the field.

1. Introduction

1.1. Overview of reviews on personalized environmental comfort systems

Advances in building technologies, driven by industrialization 
throughout the 20th century, have significantly enhanced both living 
and working conditions by enabling improved control over indoor 
environmental quality [1]. Initially, indoor environments were designed 
based on assumptions of uniformity and steady-state conditions, as 
exemplified by the widely applied Predicted Mean Vote/Predicted Per
centage of Dissatisfied (PMV/PPD) thermal comfort model [2] and 

conventional Heating, Ventilation, and Air-Conditioning (HVAC) 
methods designed to uniformly condition and ventilate entire spaces 
[3]. Later in the century, extensive standardization efforts by organi
zations such as ASHRAE and ISO further promoted uniform indoor 
conditions, resulting in the homogenization of building environments 
worldwide [4]. Early initiatives to standardize indoor environments 
introduced stricter conditions than before, substantially improving 
comfort and environmental quality. However, by the end of the 20th 
century, new challenges had emerged. As evidenced by multiple field 
studies [5,6], buildings that are supposedly designed according to 
standardized requirements do not necessarily provide a satisfactory 
experience to all their occupants, most often, because of individual 

Nomenclature

ASHRAE American Society for Heating, Refrigeration, and Air- 
Conditioning Engineers

AT Air Treatment
ATD Air Terminal Device
BZ Breathing Zone
CFD Computational Fluid Dynamics
CRE Contaminant Removal Effectiveness
DV Displacement Ventilation
EBC Energy in Buildings and Communities
EEG Electroencephalogram
ER Exposure Reduction
HVAC Heating, Refrigeration, and Air-Conditioning
IAQ Indoor Air Quality
IEA International Energy Agency
IF Intake Fraction (-)
IoT Internet of Things
KPI Key Performance Indicator
MV Mixing Ventilation

OAS Outdoor Air Supply
PAQ Perceived Air Quality
PCG Personal Cooling Garment
PCM Phase Change Material
PE Personalized Exhaust
PECS Personalized Environmental Control System
PEE Personal Exposure Effectiveness
PMV Predicted Mean Vote
PPD Predicted Percentage Dissatisfied
PV Personalized Ventilation
RMP Round Movable Panel
SBS Sick Building Syndrome
TAV Thermal Acceptability Vote
TCV Thermal Comfort Vote
TSV Thermal Sensation Vote
UFAD Underfloor Air Distribution
VDG Vertical Desk Grill
VEE Ventilation Effectiveness
VOC Volatile Organic Compounds
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differences in environmental perception and evaluation [7–9]. 
Furthermore, buildings with conventional mechanical ventilation 
methods have proven to be inefficient in providing pollutant-free air for 
healthy breathing. Clean, typically cool air is delivered from distant 
supplies such as ceiling, wall, or floor diffusers, and mixes with room air, 
becoming warmer and potentially contaminated (including with 
airborne pathogens exhaled, coughed, or sneezed by infected in
dividuals) before reaching occupants [10]. These challenges highlighted 
the limitations inherent in uniform and steady-state approaches, 
prompting a shift toward more adaptive, personalized solutions. Dear 
et al. [11], in their overview of the developments in thermal comfort 
research between 1993 and 2013, emphasized not only the rise of the 
adaptive thermal comfort model but also the increased focus on 
non-uniform and non-steady-state thermal environments. Crucially, this 
shift included greater attention to human physiology and its influence 
on achieving effective comfort. Within the evolving context of research 
and development, characterized by diverse individual comfort needs, 
concepts such as personal comfort systems (PCS), personalized ventila
tion (PV) systems, personalized climatization systems, task/ambient air 
conditioning (TAC) systems, and localized conditioning systems 
emerged organically over the last few decades. The term “Personalized 
Environmental Control Systems” (PECS) was recently proposed within 
Annex 87 “Energy and Indoor Environmental Quality Performance of Per
sonalised Environmental Control Systems (PECS)” supported by the Energy 
in Buildings and Communities (EBC) Program of the International En
ergy Agency (IEA), and the term was accepted as a unified framework that 
broadly encompasses related concepts and terms found in previous 
literature.

The development of PECS can be traced back to the 1970s, with 
cooling garment systems being developed to mitigate workers’ heat 
stress [12] and the first systems designed for office workstations [13], 
demonstrating their applicability in various contexts. Additionally, 
PECS studies were motivated by aspirations to operate buildings in 
mixed mode [14], thereby offering occupants healthier, individually 
controlled micro-environments that reduce exposure to air contami
nants originating outdoors or indoors. Recent fundamental changes in 
building design and operation, accelerated by the pandemic [10,15,16], 
have further intensified interest in PECS, reinforcing the need for 
personalized environmental control solutions. The PECS concept per
tains not only to thermal and air quality domains, but it can also be used 
in a holistic approach to improve the visual and acoustic conditions. An 
example is the successful integration of task lighting with ambient and 
accent lighting in buildings [17–19]. There have been many 
peer-reviewed papers on the PECS in the recent past, focusing primarily 
on PECS effectiveness and feasibility for improving comfort and 
achieving energy efficiency in buildings and vehicles, and comparing 
with conventional HVAC systems [20–24]. Predominantly, assessment 
of thermal comfort is a recurring theme across multiple review papers, 
with some addressing localized comfort and associated energy perfor
mance [8,13,25–28]. Several review studies, such as [29,30], delve into 
thermo-physiological parameters and experimental frameworks for 
personal comfort modules. Few review studies, such as [31–34], focused 
on personal cooling garments (PCGs), categorizing them by cooling 
materials and techniques, working principles in terms of heat transfer 
modes, and performance metrics such as energy efficiency, energy use, 
and feasibility to operate in real-world scenarios. Expanding the scope of 
PECS from just thermal performance to energy performance, several 
papers reviewed studies centered on indoor air quality (IAQ). A review 
of air distribution systems by Yang et al. [34] marginally touches on the 
IAQ domain. At the same time, other studies, such as [35–38], explored 
the integration of PECS with ventilation systems, highlighting localized 
air distribution strategies and their effects on IAQ, pollutant removal 
efficiency, and thermal stratification. However, discussions on pollut
ants or health impacts like Sick Building Syndrome (SBS) are rather 
sparse and could potentially be envisaged as a future research direction. 
A comprehensive analysis that integrates these dimensions to assess the 

cumulative impact of PECS on thermal comfort, IAQ, health, and work 
performance is lacking; hence, the systematic literature review and 
meta-analysis outlining the strategies, advancements, and performance 
evaluation of PECS regarding personalized IAQ is also challenging to 
find and not available. It is worth noting that most of the IAQ integration 
within the PECS has been envisaged as part of a very controlled indoor 
environment and management of indoor air pollution or contamination; 
however, health and well-being are suggested mainly as future research 
areas by most review papers. It is also worth noting that, apart from the 
thermodynamic aspect of the PECS, few researchers have focused on 
controlling the PECS using electronics and communication systems. 
André et al. [39] reviewed many studies on the use of personal comfort 
models associated with environmental control for system automation, as 
well as the development of new technologies that facilitate data acqui
sition and the proposition of new personal conditioning systems. Liu 
et al. [40] examined control strategies for PECS, including manual 
controls, sensor-based automation, and AI-driven adaptive systems. 
They emphasize that integrating IoT (Internet of Things) technologies 
and control systems has become essential to PECS implementation.

Despite the breadth of information covered in existing review papers, 
several gaps remain. First, the current body of literature on Personalized 
Environmental Comfort Systems (PECS) is highly fragmented, with 
studies often confined to isolated research aspects. This absence of an 
integrated, holistic perspective hinders a complete understanding of 
PECS and their broader impacts. Second, while comfort and energy ef
ficiency have been widely addressed, the impact of PECS on other 
human-related effects such as cognitive performance and work pro
ductivity remains largely unexplored, despite their relevance to occu
pant well-being. Third, there is a notable absence of a comprehensive 
framework that connects PECS usage to measurable human outcomes, 
such as health, performance, and satisfaction. Such a framework is 
essential to assess the actual value of personalized environmental con
trols. Lastly, most existing reviews adopt a single-domain approach, 
focusing either on thermal comfort or indoor air quality (IAQ), even 
though these factors are often interrelated in real-world settings [41].

1.2. Objectives and research questions

As the primary aim of PECS is to provide better comfort and 
improved well-being to individuals, this review uniquely adopts a ho
listic approach by exploring how PECS affect human comfort, health, 
and performance. This particular work focuses on thermal and IAQ 
domains, often closely linked, and pursues the following main 
objectives: 

1) Systematically identify original studies on PECS that examine their 
effects on humans

2) Assess the extent to which previous research has addressed human 
comfort, performance, and well-being in relation to PECS

3) Apply the new categorization of PECS per their mobility and identify 
the PECS types and operational conditions providing human-related 
benefits

4) Identify existing knowledge gaps and propose future research di
rections in the field of PECS.

By bridging the technical overview of PECS with human responses, 
this review aims to assess whether existing research provides enough 
insight to inform the design of more responsive and user-focused indoor 
environments.

This work is a result of a systematic literature review on PECS 
research over the past 2 decades, and it was conducted within Annex 87 
“Energy and Indoor Environmental Quality Performance of Personalised 
Environmental Control Systems (PECS)” supported by the Energy in 
Buildings and Communities (EBC) Program of the International Energy 
Agency (IEA). IEA EBC Annex 87 is organized into five Subtasks: fun
damentals (A), technologies (B), control and integration (C), 
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performance evaluation (D), and policy & market actions (E). This sys
tematic review, developed under Subtask A, offers a distinctive 
perspective by examining PECS through the lens of user experience and 
human performance outcomes, specifically within the thermal and IAQ 
domains. Complementary papers from other Subtasks examine tech
nologies (Subtask B), control strategies (Subtask C), and evaluation 
methods and standardizing KPIs in [42] (Subtask D), together providing 
a comprehensive and coordinated overview of PECS research and 
practical applications. As definitions and frameworks for visual and 
acoustic PECS are still emerging and less developed than those for 
thermal and IAQ domains, they are not included in this work and are 
addressed in separate review works, such as [43].

2. Methodology

2.1. Selection of papers and review

A systematic literature review search was conducted in April-May 
2023 using the databases Scopus, Taylor & Francis, PubMed, Google 
Scholar, and Web of Science. Initially, both peer-reviewed journal 
publications and conference papers published in English were consid
ered. The search targeted titles, abstracts, and keywords, with the search 
query developed to reflect our focus on specific space types, user cate
gories, levels of personalization, equipment types, and functionality. 
Following an initial application of the query, additional keywords 
relevant to comfort studies, such as comfort and quality, were incorpo
rated to refine the search scope. The wildcard symbol (*) was utilized 
within the query to capture term variations stemming from a shared 

root. Specific words used were the following: 

• Space type: (room) OR (build*) OR (built*) OR (indoor) OR (home) 
OR (school) OR (office) OR (work*) OR (residen*) OR (hospital) OR 
(car) OR (auto*)

• User type: (occupant) OR (human) OR (user)
• Level of personalization: (personal*) OR (individual) OR (local*)
• Equipment type: (system*) OR (device*) OR (hvac) OR (heating) OR 

(cooling)
• Functionality: (heating) OR (cooling) OR (ventilation) OR 

(condition*)
• Comfort relevance: (comfort) OR (quality)

This review was conducted in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines [44], with a flow diagram for screening and review phases 
shown in Fig. 1. After automatically removing duplicates, the selection 
was refined during the screening phase by applying three eligibility 
criteria: (i) studies unrelated to PECS (Reason 1), (ii) duplicate records 
(Reason 2), and (iii) review papers (Reason 3). To eliminate the papers 
during the screening phase according to Reason 1, the following pre
liminary definition of PECS was adopted: “PECS, related to thermal and 
IAQ, refers to a system with the functions of heating, cooling, ventilation 
which is designed to control the local climate conditions of the occupant by 
their preference instead of conditioning an entire room and/or affecting 
neighboring occupants”. Later, during the review phase, the definition of 
PECS applied was the one officially proposed by the IEA EBC Annex 87 
as follows: “A Personalized Environmental Control System (PECS) is a 

Fig. 1. PRISMA flow diagram for the systematic review of papers on PECS related to thermal and IAQ domains.
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system that provides individually controlled thermal, air quality, acoustic, or 
luminous environments in the immediate surroundings of an occupant, 
without directly affecting the entire space or other occupants’ environments”. 
Although the original studies use various terms such as personal comfort 
systems (PCS) and task/ambient air conditioning (TAC), this review 
refers to all of them as PECS.

Title pre-screening reduced the dataset to 1’268 potentially relevant 
publications, with nine more added through snowballing, totaling 
1’277. Abstract screening narrowed this to 592 studies, followed by a 
quality re-check that added nine more, resulting in 601 records for full- 
text review. Conference papers were later excluded due to limited 
methodological detail, though this may restrict insights into emerging 
technologies. Final screening removed remaining irrelevant and dupli
cate entries, yielding 324 journal publications focused on thermal and 
air quality environments. The information extracted from the 324 
original papers during the review phase was organized into the 
following categories: publication details, study details, PECS details, 
background system information during PECS testing, participant details, 
methodological details, an overview of measured personalized param
eters, subjective measurements, reference condition details, and a 
summary of findings. The focus domain of papers was classified into 3 
groups: (i) “Thermal” (studies focusing exclusively on thermal condi
tions); (ii) “IAQ” (studies focusing exclusively on air quality conditions); 
(iii) “Thermal+IAQ” (studies considering thermal conditions with in
door air quality). Consistently with the convention developed within 
IEA EBC Annex 87, the PECS devices were categorized into 5 groups per 
mobility type (e.g., deployment approach): (i) building attached 
(attached to the building and immobile), (ii) building semi-detached 
(mobile but requires connection to the building by ducts or pipes), (iii) 
building detached (mobile and can be positioned freely in a room), (iv) 
wearables (attached to the human body), and (v) others (related to ap
plications beyond buildings, e.g., vehicles, aircrafts). Additionally, the 
functionality for thermal management of PECS was categorized into 
three types: heating only, cooling only, and heating+cooling (dual 
management). The functionality for IAQ management of IAQ-related 
PECS was categorized into outdoor air supply (OAS), air treatment 
(AT), and the combination of the two (OAS+AT). Fig. 2 illustrates ex
amples of PECS (i)-(iv) commonly applicable in buildings. Human 
involvement in the studies was categorized as participation of actual 
humans, use of manikins, use of human numerical models (i.e., virtual 

thermal manikins), or no subject involvement. Study types were cate
gorized based on the level of control over environmental conditions and 
human behavior: climatic chamber studies (fully controlled), laboratory 
studies (semi-controlled), mixed studies (combining controlled and 
semi-controlled elements), field studies (conducted under real-life con
ditions), and simulations (virtual studies). Finally, to evaluate the effect 
of PECS, the question "Did PECS provide a better, worse, or the same 
environment compared to the reference condition?" was posed during the 
review with regards to the results of both thermal and IAQ-related 
studies, and responses were categorized as “better,” “circumstantial,” 
“same,” or “worse.” A reference condition refers to a condition without 
PECS, which serves as the control condition to show the improvement 
provided by installing or operating a PECS.

2.2. Analysis and reporting results

During the analysis phase, the papers underwent filtering and anal
ysis to assess the benefits of PECS concerning thermal comfort, indoor 
air quality, health, and human performance (i.e., cognitive performance 
and productivity). For thermal comfort analysis, only studies involving 
human participants were considered to directly assess the influence of 
PECS on the perception of people, excluding simulations and thermal 
manikin experiments. Analyses were performed in terms of findings 
based on thermal sensation vote (TSV), thermal acceptability vote 
(TAV), and thermal comfort vote (TCV). Additionally, the types of scales 
used for the above-mentioned subjective evaluation (without dis
tinguishing between the format of scales), the investigated local body 
parts when applicable, the air temperatures in which the studies were 
carried out, and the PECS design were extracted. Studies that reported 
an improvement in either TSV, TAV, or TCV were selected for further 
analysis. Due to inconsistency in the types of scales used for subjective 
evaluation, the findings were qualitatively assessed. For the IAQ 
domain, both simulation and experimental studies were included. Given 
that multiple types of KPIs were used (personal exposure effectiveness, 
ventilation effectiveness, contaminant removal effectiveness, intake 
fraction) for different study designs (i.e., different background HVAC 
and operation, pollution sources, location and strength, lack of stan
dardized evaluation locations of said KPIs), cross-comparability among 
studies was not straight-forward. Thus, similarly to thermal comfort, the 
objective and subjective IAQ impact of PECS were qualitatively assessed. 

Fig. 2. Illustration of the building-related PECS (thermal and IAQ) classified per mobility type: (a) building attached (e.g., ceiling fan), (b) building semi-detached (e. 
g., personalized ventilation with fresh air supply using the building system), (c) building detached (e.g., portable heater/cooler, backrest cover, floor mat, desktop- 
mounted personalized ventilation), (c) wearables (e.g., heated/cooled garment, wristbands, backpacks). The microenvironment around the person is depicted using 
colored bubbles (blue – cool, red– warm); “ON/OFF” labels indicate whether PECS are active or inactive; arrows indicate the direction of cooling (blue) and 
heating (red).
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Studies addressing the effect of PECS on Sick Building Syndrome (SBS) 
symptoms, heat stress, and human performance were relatively limited. 
Therefore, their findings were qualitatively summarized. Health-related 
benefits were evaluated based on physiological measures, reported SBS 
symptoms, and reductions in heat stress. Human performance-related 
findings encompass self-assessed performance, objective measures of 
work or cognitive performance, and psychological effects such as mood 
and motivation.

3. Results

3.1. General overview of selected papers

To illustrate how the papers selected for this review differ from 
previous studies, Fig. 3 presents an UpSet plot highlighting references 
shared among 26 earlier PECS reviews [8,11–13,20–22,24–40,45,46]. 
The references included in this work are listed in Appendix A (Table 1). 
The horizontal bars in Fig. 3 indicate the number of citations included in 
each review, while the vertical bars show how many references are 
shared among one or more of those reviews. A single black dot at the 
intersection of vertical and horizontal bars indicates that the associated 
references appeared in only one review, whereas a vertical line con
necting multiple dots shows that certain references were shared across 
multiple reviews, with the dots’ positions corresponding to the specific 
reviews involved. The most significant overlap is with Liu et al. [40], 
who share 21 references with this study, followed by Rawal et al. [28], 
André et al. [39], and Song et al. [30], each sharing only six references. 
Other studies share fewer than four references. These results underscore 
the comprehensive scope and broader thematic focus of this review.

The historical overview of publications selected for this review is 
shown in Fig. 4. Interest in thermal and IAQ-related PECS has grown 
steadily over the decades, peaking in 2018, followed by a slight decline 
over the next three years before rebounding in 2022. The earliest record 
dates to 1988, while data for 2023 is incomplete, as this review only 
includes publications up to May 2023. Despite being incomplete, the 
2023 data, with 36 publications, already exceeds the number of papers 
published in 2022. Historically, research on PECS has predominantly 
focused on the "Thermal" domain, and studies involving human partic
ipants were the most prevalent. The geographical distribution of the 
PECS studies is shown in Appendix A (Fig. 14).

The Sankey diagram shown in Fig. 5 further illustrates the distribu
tion of studies across environmental domains, human involvement (e.g., 
humans, manikins, human numerical models, no subject), test envi
ronment type (e.g., controlled experiments in climatic chambers, sim
ulations, mixed studies, lab studies, and field studies), mobility type (e. 
g., building attached, wearables, etc.), and application fields, high
lighting their interconnections. Studies focusing on the “Thermal” 
domain dominate the research, while those focusing on “Indoor Air 
Quality (IAQ)” alone represent a minor portion. A combination of both 
domains, referred to as “Thermal+IAQ,” is considered in nearly 1/5 of 
publications. Regarding test types, climatic chamber experiments were 
the most common, followed by simulations; testing PECS in more real
istic environments, such as living lab studies and field studies, is limited. 
Simulation studies were mainly conducted with computational fluid 
dynamics (CFD), using human numerical models (i.e., virtual thermal 
manikins). Regarding PECS mobility type (i.e., deployment), most were 
building-detached, followed by semi-dettached, wearables, and building 
attached. The designs related to car and airplane settings (category 

Fig. 3. Overview of shared references of this work and the previous review papers [8,11–13,20–22,24–40,45,46] (horizontal bars - number of citations each review 
paper included in their analysis, vertical bars - number of citations shared among one or more reviews). The plot was generated using the R programming language 
with the UpsetR package [47].
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“others”) appear the least frequently. Office buildings were the primary 
application field for PECS, with outdoor environments being the second 
most common. Various other applications accounted for less than 25 %.

3.2. Comfort benefits of thermal PECS

3.2.1. General overview of thermal PECS
Based on the 133 studies [17,18,31,48–177] on PECS related to the 

“Thermal” domain and 22 studies [178–199] on combined “Thermal
+IAQ” domains concerning only humans, the diagram in Fig. 6(a)
overviews the distribution of 197 thermal PECS entries (i.e., individual 
PECS tests) per mobility classification versus thermal functionality 
Fig. 6. The largest group consists of building detached devices, which are 
used for both heating (42 %) and cooling (44 %) in roughly equal pro
portions. The next largest category is wearables, mainly used for cooling 
(69 %) and less frequently for heating (24 %). Building semi-detached 
devices are primarily used for cooling (78 %), with a smaller portion 
serving both heating and cooling needs (19 %). The smallest category, 

building-attached devices, is predominantly used for cooling (86 %). The 
“others” category is the second least common, with an equal share of 
devices used for heating and cooling. Across all categories, the share of 
devices capable of both heating and cooling is relatively small, with a 
maximum of 19 %. Fig. 6(b) shows the number of reported PECS, 
grouped by whether they can provide a better thermal environment 
compared to a reference condition without PECS. A PECS was classified 
as providing a “better” thermal environment when TSV shifted towards 
neutral, TAV or TCV improved, or when physiological strain was 
reduced. When both better and worse results were reported, e.g., 
depending on room temperature, these PECS were classified as having 
“circumstantial” benefits. When the PECS was not compared against a 
reference condition, it was classified as “no comparison”. The primary 
objectives of such studies were to compare different operations of a 
PECS or to compare it with other devices. The “worse” results reported in 
the papers were often linked to tests where conditions were set by the 
experimenter rather than by the occupants themselves. The results in 
Fig. 6(b) show that the PECS reported in the selected studies were 

Fig. 4. Distribution of the papers per publication year according to the focus domains and subject type (“other” refers to human numerical models and cases with 
no subjects).

Fig. 5. Diagram detailing the distribution of studies per different domains, human involvement, study types, PECS mobility, and application fields.
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skewed towards either “better” (69 %) or “no comparison” (22 %). A 
summary of the studies, categorized by their effect on thermal comfort 
and PECS mobility types, is provided in Appendix A (Table 2).

Fig. 7 shows the trend of background air temperature investigated 
for different types of PECS, focusing on those that provide a better 
thermal environment. The investigated air temperature was binned in 2 
K intervals. When multiple temperatures were tested for a single PECS, 
each temperature was counted as a separate occurrence. Most of these 
occurrences fell within 13-33 ◦C, reflecting the PECS’s ability to extend 
the background setpoint temperature of indoor spaces without 
compromising occupants’ comfort. Heating solutions were commonly 
tested at 17–19 ◦C, and cooling solutions were commonly tested within a 
broader range of 23–33 ◦C. While there was more diversity in the type of 
PECS in cooling conditions, building detached devices were predomi
nantly used for heating. In terms of functionality, most PECS devices 
were explicitly developed for either heating or cooling. Those that serve 
both functions, such as chairs, were primarily reported in moderate 
temperature ranges of 18–28 ◦C. Studies involving temperatures outside 
the 13–33 ◦C range primarily assumed outdoor conditions or vehicles 

exposed to extreme environments. In these conditions, either wearable 
devices such as vests or building detached, conduction-based devices 
such as cushions and mats were studied.

The design of PECS devices that provide a better thermal environ
ment is shown in Fig. 8. When multiple PECS were combined and used at 
the same time, as in [53,91,92,184], they were classified as “Combined 
PECS.” Studies reporting building-attached devices were limited, and 
those reported were ceiling fans (e.g., [49,50]), air nozzles attached to 
the ceiling, or individually controlled localized active chilled beam (e.g., 
[199]). Configurations of ceiling fans that fall under the definition of 
PECS (i.e., those that offer personal control without directly affecting the 
entire space or other occupants) are taken into account. For building 
semi-detached PECS, nearly all occurrences were a type of PV (e.g., [152, 
153,200] or a combination of a PV with supplementary heating or 
cooling devices, such as chairs (e.g., [184]) and radiant panels (e.g, 
[181]). Hydronic radiant panels, such as in [56] implemented for both 
heating and cooling, are building semi-detached, while electric radiant 
panels (e.g., [86]) used solely for heating are building detached. Despite 
the wide range of configurations, the building-detached devices primarily 

Fig. 6. Overview of the reported PECS related to thermal domain: (a) distribution per classes (mobility vs. thermal functionality), (b) comparison of whether PECS 
can provide a better thermal comfort compared to a reference scenario without PECS.

Fig. 7. Investigated air temperature per thermal PECS type.
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included chairs (e.g., [61,68,87]), cushions (e.g., [65,73]), fans (e.g., 
[69,163]), personalized ventilation (PV) systems (e.g., [188,201]]), and 
surface temperature-controlled elements such as mats (e.g., [74,79]), 
panels (e.g., [78]), or desks (e.g., [90,92]). A building-detached PV (e.g., 
[85]) refers to a ductless system that draws conditioned air from a 
diffuse ventilation source via an intake located at floor level. Heated 
mats were placed either on the floor [62,74,79,93,94] or on the table 
[60,138,139]. Vests - ventilated [97,102,107,158], hydronic [48,96, 
117], or PCM packets [107,111] - were the most common wearable 
devices, including the combined PECS solutions (e.g., [122,142]). For 
PECS devices, such as in [125,129,132], classified as “others” (i.e., those 
developed for spaces other than typical indoor spaces), conduction was 
also the most dominant heat transfer mode.

3.2.2. Overview of thermal sensation, comfort, and acceptability 
improvements

The studies categorized as better evaluated the benefits of thermal 
PECS using various subjective metrics, including thermal sensation (TS), 
thermal comfort (TC), and thermal acceptability (TA). Appendix B 
summarizes the different scales used for these assessments and their 
frequency, highlighting inconsistencies in scale types. The choice of 
scale can influence survey responses, making it difficult to standardize 
results across studies; consequently, the literature review’s findings on 
thermal sensation, comfort, and acceptability were assessed 
qualitatively. 

• Thermal Sensation: Studies on building-attached PECS, such as 
ceiling fans, consistently show improved whole-body and local 
thermal sensation, with TSVs shifting toward neutrality. For 
example, He et al. [50] found that ceiling fan users reached thermal 
neutrality 5–10 minutes sooner and felt ~0.5 units cooler, even at 
slightly higher ambient temperatures. Semi-detached PECS like 
desk-based personalized ventilation (PV) also enhanced thermal 
comfort, with TSV improvements of –0.3 to –0.4 units at 27–29 ◦C, 
especially when users could control airflow [187]. Detached PECS, 
including heated/cooled chairs, cushions, and desk fans, similarly 
improved thermal comfort. Luo et al. [68] reported reductions in 
warm discomfort by 1.8 and cold discomfort by 1.2 TSV points, with 
greater local benefits. He et al. [67] found similar effects using a 
heated chair and leg warmer. Tang et al. [73] showed that desk and 
pedestal fans improved thermal sensation by about 1 TSV unit.

• Thermal Comfort: Among the 28 % of studies reporting TCV before 
and after using PECS, 64 % show improved outcomes, 21 % report 
circumstantial improvements, 11 % show no change, and 4 % report 
worse outcomes. Overall, PECS can often enhance thermal comfort, 
though effectiveness depends on ambient conditions and device 
performance. Building-detached PECS (e.g., heated/cooled chairs) 
show the most consistent benefits: 70 % report improved TCV, 12 % 
circumstantial, 10 % no change, and 6 % worse outcomes. Luo et al. 
[68] found a 1.7-point whole-body TCV improvement in both heat
ing and cooling, with local gains at the face (cooling) and foot 
(heating). Semi-detached PECS (e.g., desk-mounted PV) have 50 % 
better TCV outcomes, 21 % circumstantial, 14 % unchanged, and 7 % 
worse. Yang et al. [55] observed significant TCV improvements at 
25–29 ◦C with user-controlled PV, most notably at 29 ◦C (~1-point 
increase, p < 0.001). Wearable PECS (e.g., wrist-worn devices) show 
58 % better outcomes, 31 % circumstantial, 8 % unchanged, and 4 % 
worse, reflecting limited capacity and sensitivity to environmental 
context. Due to the small sample size (n = 7), building-attached PECS 
(e.g., ceiling fans) were not analyzed separately. Still, He et al. [50] 
reported 80–90 % comfort votes under most tested conditions.

• Thermal Acceptability: The use of PECS consistently improves 
thermal acceptability in indoor environments, often exceeding the 
80 % threshold set by comfort standards and sometimes reaching 100 
%, especially when users have control over the device. Across all 
PECS types, thermal acceptability increases significantly. For 
building-attached PECS, such as ceiling fans, user control leads to 
nearly 100 % acceptability, especially at higher temperatures [50]. 
Semi-detached PECS also perform well when personalized. Yang 
et al. [52] found over 88 % acceptability at 26–28 ◦C with 
user-controlled airflow, but it dropped to 31 % at 30 ◦C without 
control. Similarly, personal control increased acceptability from 0 % 
to 63 % at 14 ◦C, 38 % to 88 % at 16 ◦C, and up to 100 % at 18–20 ◦C 
[53]. Detached PECS showed varying results based on device type 
and combinations. Combining devices boosted acceptability to over 
80 % in both cold and hot conditions [68]. For instance, a heated 
chair alone improved acceptability at 16 ◦C, but at 14 ◦C, combining 
it with a leg warmer was necessary to exceed 80 % [71]. In warm 
conditions, desk fans and ventilated cushions raised acceptability 
above 90 % at 28 ◦C but fell short at 30 ◦C [67]. Notably, participants 
who lacked but desired PECS reported lower acceptability than those 
who either had or didn’t want them [202]. Wearable PECS also 

Fig. 8. Overview of the designs of PECS that provide a better thermal environment.

D. Khovalyg et al.                                                                                                                                                                                                                               Building and Environment 286 (2025) 113541 

9 



enhanced comfort. Ventilated clothing raised acceptability by ~20 % 
at 28–30 ◦C and over 30 % at 32 ◦C [203]. Comparisons between 
PECS types yielded mixed results: the study [159] found heated 
jackets to be more acceptable than radiant panels and heated chairs, 
while the study [158] found no difference between air-ventilated 
clothing and desk fans, although both performed better at 30 ◦C 
than at 28 ◦C or 32 ◦C.

3.3. Benefits of PECS targeting indoor air quality

3.3.1. General overview of IAQ-related PECS
This overview includes 135 individual PECS tests from 98 papers. 

Appendix A (Table 3) summarizes the studies by their impact on IAQ, 
grouped by PECS mobility types. Fig. 9(a) shows the distribution of PECS 
by mobility classification and IAQ functionality. IAQ functionality refers 
to how PECS manages IAQ: through outdoor air supply (OAS), air 
treatment (AT), or both (OAS+AT). OAS dilutes contaminants in the 
breathing zone while AT involves filtration, irradiation or local exhaust, 
to clean or prevent the spread of polluted air. OAS+AT combines both 
approaches, including the filtration of the outdoor air in the air handling 
unit. Most experimental studies fall in this group. Simulation studies 
assuming zero particle concentration at the PECS inlet were also clas
sified as OAS+AT. OAS and OAS+AT were more commonly used 
compared to AT. The number of PECS relying solely on AT was limited 
and were either air recirculation with HEPA filters [204,205] or local
ized exhaust [206–208]. Fig. 9(b) shows the number of reported PECS, 
grouped by whether they can provide better indoor air quality compared 
to a reference condition without PECS.

Half showed that PECS provided better IAQ compared to a reference 
case with no PECS, and the other half did not have a reference. The 
largest group consists of building semi-detached devices (73 %), followed 
by building attached (8 %) and building detached (6 %). Wearables and 
other devices constitute only 13 %. The PECS design providing better IAQ 
is shown in Fig. 10. Building semi-detached desk-based PVs (e.g., in [205, 
209–211]) was the most studied PECS. Building detached desk-based (e. 
g., in [212–214]) and seat-based (e.g., in [215]) personalized ventilation 
(PV) relied on air supplied from the room displacement ventilation 
system as a source for clean air. Building attached PECS were all overhead 
localized ventilation systems (e.g., in [216,217]), in some cases assisted 
with chair or desk fans (e.g., in [209,217]). While being classified on 
their own as detached PECS, the chair and desk fans mentioned in this 

categorization were used as assistive secondary devices aiding in sta
bilizing the primary PV jets by pulling them towards the breathing zone 
of the occupant. Thus, their categorization followed the primary PECS (i. 
e., overhead personalized ventilation).

3.3.2. Overview of IAQ performance
The 98 studies assessing PECS and IAQ, focus mostly on PV. Using 

CFD simulations or experiments with thermal manikins or human sub
jects (for subjective evaluation), they examine how PECS affects the 
inhaled air quality at the breathing zone. Various KPIs and metrics assess 
changes in exposure to non-infectious pollutants (e.g., tracer gas) and 
infectious aerosols from indoor sources. These studies explore how in
door parameters influence PECS performance and its implications on 
design, operation, and spatial layouts in offices, hospitals, aircraft 
cabins, and vehicles. Performance is consistently benchmarked against a 
reference case using a standalone total volume system with equivalent 
air change rates. The studies examined various factors affecting PECS 
performance, including PV design aspects (e.g., air terminal device 
shape, size, placement, and supply conditions), interactions with 
different background HVAC systems (e.g., mixing, displacement, or 
radiant systems), and integration with assistive devices like desk fans or 
personalized exhaust. They also assessed the effects of background and 
supply air temperatures, pollutant source location and intensity, occu
pant differences in response to airflow rates, relative seating positions, 
and disturbances caused by occupant movement or posture changes.

PV has consistently shown IAQ improvement in the breathing zone. 
Wearable PV (headsets and seat-integrated nozzles), positioned within a 
few centimeters of the breathing zone, supplying as low as 0.2 l/s, 
achieve up to 60 % improvement in personal exposure effectiveness 
(PEE – amount of clean PV air being inhaled) compared to cases without 
PV [218]. In contrast, a desk-mounted PV situated 80 cm from the user 
requires a supply rate of 20 l/s to achieve the same level of PEE. At such 
close distances, the clean PV air is directly inhaled with minimal mixing 
between the PV jet and the background. Therefore, the IAQ performance 
of wearable PV surpasses that of desk-mounted (30-80 cm from the 
breathing zone) [184,196,204,219,220] and ceiling-mounted PVs (>1 
m from the breathing zone) [221]. The lowest improvement was noted 
for PV located at 1 m from the user (e.g., ceiling PV), due to greater 
entrainment of background polluted air (e.g., only 20 % improvement in 
PEE at 10 l/s). This is lower than the PEE achieved by all desk-mounted 
PV for the same flow rate.

Fig. 9. Overview of the reported PECS related to the IAQ domain: (a) distribution per IAQ management (OAS: outdoor air supply, AT: Air treatment), (b) comparison 
of whether PECS can provide a better IAQ compared to a reference scenario without PECS.
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PE can strengthen and guide the PV jet core [222–224]. It effectively 
penetrates the occupants’ rising convective boundary layer and exhaled 
air to deliver clean air. Thus, PE can enhance PV IAQ performance. Chair 
or desk fans can perform the same function as PE [206,207,225]. The 
only difference is their mobility. While PE is ducted and building 
semi-detached or attached, chair fans are detachable. Adding an assis
tive device results in approximately a 10-20 % increase in the achieved 
PEE of all PV having the same design. For example, chair fans were able 
to enhance the performance of building-attached ceiling PV by 20 %. 
Assisted PECS can perform better than standalone PECS in the same 
distance from the BZ at even lower PV flow rates. However, this does not 
imply an improvement in energy performance given the additional 
operation of PE fans. The PE flow rate of PE influences the PEE. If it 
exceeds that of the PV, it can result in a deteriorated performance. For 
example, at 10 l/s, a PV associated with a PE at 10 l/s resulted in a PEE of 
40-50 %, while that at 20 l/s resulted in a PEE of 10 %. Consequently, the 
use of assistive devices needs to be carefully designed.

The improvement of Perceived Air Quality (PAQ) through PECS was 
a substantial area of research, with 20 papers identified in this review 
[72,84–86,133,153,182–184,186,187,189,190,193,195,198,226–229]. 
Reported benefits ranged from 15 % to 60 % decrease in the share of 
occupants dissatisfied with PAQ, or the equivalent of feeling the air ≈
2–4 K “cooler” without actually lowering the room temperature, which 
improved perception of air freshness. One of the key findings is that 
increased air movement, associated with PECS, significantly enhances 
PAQ [86,182,186,190,226]. For instance, the introduction of air 
movement at a velocity of 1 m/s at the breathing zone was found to 
elevate PAQ to levels comparable to those in cooler and neutral condi
tions [86]. This improvement is attributed to the disruption of the 
thermal plume around the body and the association of air movement 
with outdoor breezes, which are typically perceived as “fresh”. Higher 
face-level air velocity systematically improved freshness scores, espe
cially when the room air was warm, humid, or polluted [226,227]. The 
most beneficial is the supply of personalized air that is cool, dry, and 
non-polluted. Delivering air warmer than room temperature would 
result in a decrease in PAQ [133]. Furthermore, the use of PV has been 
shown to improve PAQ by providing clean, cool air directly to occu
pants, confirming the results of tracer gas and CFD studies. This 
approach also reduces the intensity of Sick Building Syndrome symp
toms [186]. However, those benefits rely on the personalized airstream 
being at least as clean as room supply – recirculated, polluted local air 

will not deliver the same PAQ and health improvements [190,226].

3.4. Health Benefits of PECS

According to the World Health Organization (WHO), health is 
defined as “a state of complete physical, mental, and social well-being and 
not merely the absence of disease or infirmity” [230]. Here, we refer to this 
definition to analyze the health benefits of PECS in terms of both 
non-clinical and clinical symptoms. Non-clinical health symptoms are 
often grouped under the Sick Building Syndrome (SBS) umbrella. While 
no universally accepted clinical definition of SBS exists, and objective 
physiological abnormalities are generally absent in patients with SBS 
symptoms, SBS typically encompasses nonspecific complaints such as 
upper respiratory and eye irritations, headaches, fatigue, and rashes 
[231]. From our literature review, we could identify only 12 studies [51,
81,85,98,133,181,186,187,189,190,226,232] that systematically 
examined the relationship between PECS and SBS symptoms. Fig. 11(a)
provides an overview of these studies (references provided in Table 4, 
Appendix A), comparing whether PECS improved or failed to improve 
SBS-related complaints. As shown, the results are not univocally positive 
regarding the SBS performances of PECS. A discussion of the main SBS 
findings from the reviewed studies, along with the various metrics and 
exposure times used to analyze them, is provided in Section 3.4.1. 
Fig. 11(b) provides an overview of whether PECSs improved or failed to 
improve participants’ physiological state (references provided in 
Table 4, Appendix A). Most reviewed studies perform only one unique 
physiological measure (Fig. 12a). The most commonly used physiolog
ical or clinical measures to assess benefits of PECS, as depicted in Fig. 12 
(b), can be categorized as follows: body temperature metrics (e.g., skin 
temperature and core temperature), cardiovascular response metrics (e. 
g., heart rate, heart rate variability, and blood pressure), and metabolic 
response metrics (e.g., energy expenditure and heat losses/gains). The 
studies focusing on the thermal domain employ these physiological 
metrics more often than IAQ studies (Fig. 12b), and the skin temperature 
is the most assessed physiological parameter. Most of the studies that 
consider the human physiological state focus on moderate environ
mental conditions. To better analyze the health benefits of PECS in 
clinical terms, we discuss in Section 3.4.2 only those PECS studies 
investigating heat stress conditions characterized by air temperatures of 
35 ◦C or higher, such as [48,96,102,104,106,120,177].

Fig. 10. Overview of the designs of PECS that provide a better indoor air quality.
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3.4.1. SBS Symptoms
All studies [51,81,85,98,133,181,186,187,189,190,226,232] con

cerning SBS symptoms used self-administered questionnaires to assess 
the relationship between PECSs and the intensity of SBS symptoms. 
Some studies used a continuous scale coded from 0 to 100 % to assess the 
severity of symptoms such as difficulty concentrating and thinking, se
vere headache, ability to work, well-being, fatigue, and dizziness [85,
181,186,189,190,226]. Other studies used continuous scales with 
different degrees of intensity (e.g., from “no” = − 1 to “overwhelming” =
1) so the participants could rate their level of irritation, comfort, or 
dryness of eyes, nose, throat, lips, and skin [51,81,187]. Some studies 
used “Yes/No” questions regarding whether symptoms such as irritation 
of the eyes [85,133], cold hands/feet, shivering, dizziness, eye 
discomfort, runny or stuffy nose, and dry throat [98] were experienced. 
Another study used questions about the occurrence of symptoms such as 
headache, fatigue, difficulty concentrating, irritation of the eyes, nose, 

throat, and skin, and musculoskeletal and respiratory problems [232]. 
Despite differences in how the questions were formulated, all studies 
captured recurring symptoms like upper respiratory, eye, and skin irri
tations, headaches, and fatigue, highlighting a common recognition of 
key SBS indicators. Except for Menzies et al.[232], all reviewed studies 
examined the human response to PECSs in a controlled laboratory 
environment resembling an office room. The duration of the exposure 
times used in the studies varied from 60 min to a maximum of 240 min. 
Menzies et al. [233] conducted their research in real-world office set
tings, with a study duration of one year. They found that under 
long-term use conditions, headache and irritative symptoms of the skin, 
eyes, nose, and throat were significantly lower among the employees 
who had a workstation equipped with individually controlled overhead 
personal ventilation (PV) compared to those without it. Given that the 
occurrence and severity of SBS symptoms appear to be influenced by 
exposure duration [133], short-term experiments lasting 60 to 140 

Fig. 11. The health performance of PECS compared to the reference condition (according to the focus domain of the study) for: (a) SBS symptoms, and (b) human 
physiological state.

Fig. 12. Number of occurrences of studies (based on the focus domain of the study) according to (a) the number of physiological measures in PECS studies, and (b) 
the type of physiological measures.
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minutes may not adequately assess the effectiveness of PECSs in 
reducing SBS symptoms [51,181].

The reviewed studies show that the use of PECS generally improve 
thermal comfort compared to no PECS conditions, but have varying 
impacts on health-related symptoms, particularly SBS symptoms. Some 
studies show no impact on SBS symptoms [81]. Others show that per
sonal convective cooling and ventilation systems require careful airflow 
calibration and air velocity control to balance airflow benefits with 
discomfort risks, which are not only due to draught risk but also to 
SBS-related complaints [51,85]. Particularly in warm conditions, 
facially applied high air movement can increase eye dryness, headaches, 
eye, nose, and throat irritation, visual fatigue, and concentration over 
time [51,85,133,187,189]. At high air velocities, discomfort is also 
perceived due to the increased pressure of the airflow. In polluted en
vironments, there is the additional risk of generating movement of 
polluted room air in the breathing zone of occupants [85]. Compared to 
mixing ventilation, the SBS symptoms, such as the intensity of headache 
and the ability to think clearly and to concentrate, do not improve when 
the supplied personalized air is recirculated with polluted room air [186,
226]. However, participants generally prioritize thermal comfort over 
health impacts, possibly because thermal comfort effects are more im
mediate, and the studied exposure times are limited. Indeed, SBS 
symptoms are generally found to increase over time [133]. Providing 
individual control is essential to prevent discomfort among the most 
sensitive occupants [81,133,181,187,232]. Other important parameters 
that affect the intensity of SBS symptoms are the temperature, relative 
humidity, and cleanliness of the inhaled air. Personalized ventilation, 
which supplies clean, drier, and cooler air than room air towards the 
face, provides the greatest improvement in SBS symptoms [186,226]. 
On the contrary, personalized ventilation, which supplies warm air 
directly to the occupant’s face, causes an increased perception of nose 
dryness and eye irritation [133].

3.4.2. Heat stress
In addition to SBS, heat stress is one of the most relevant and 

commonly studied topics related to the health benefits of PECS. Heat 
strain refers to the physiological and psychological responses of the body 
to heat stress [234]. Exposure to excessive heat can increase mortality 
and morbidity, affect adverse mental health, and affect pregnancy and 
birth outcomes [235]. Heat stress creates high-intensity thermal 
discomfort, pushing the body beyond its thermal allostasis, such as 
elevated sweating [236], cardiovascular responses [237,238], and core 
body temperature [239]. By delivering cooling directly to the in
dividual’s body, PECS have been shown to effectively reduce heat stress 
in both indoor and outdoor environments. Personal type garments [48,
97,102,104,106,177] or other wearable devices like helmets [170] and 
T-shirts embedded with cooling modules [203]. Additionally, a few 
studies have explored the use of furniture-embedded air movement for 
cooling, such as those by Melikov et al. [190] and Zhang et al. [132]. The 
effects of PECSs on heat stress have been evaluated through self-reported 
surveys and physiological measurements, as demonstrated in various 
studies [48,96,97,102,104,106,120,177]. In general, the reviewed 
studies have shown that PECSs can significantly reduce skin tempera
ture, sweating, and heart rate when cooling is adequately delivered, 
with a few exceptions reported in certain studies. For instance, a cooling 
vest was found to reduce mean skin temperature by 1.9 ◦C in [48]. 
Additionally, a vest with phase change material (PCM) lowered the local 
skin temperatures of the frontal and back torso segments by up to 5.4 ◦C 
and 4.6 ◦C, respectively [106]. Sweating loss was reduced by 26 % with 
the use of a liquid cooling garment for firefighters, while sweat evapo
ration efficiency increased by 11.9 % to 13.7 % [97]. Heart rates were 
slightly lower (89–99 bpm) with a PCM vest compared to the baseline of 
105 bpm [106]. However, the effectiveness of wearable PECSs in 
reducing core temperature can vary depending on the intensity of heat 
stress and the cooling capacity of the device. Choudhary & Udayraj [97], 
Ni et al. [102], and Ouahrani et al. [106] reported a reduction in core 

temperature with wearable cooling devices, though other studies [48,
96,104] observed no significant effect. Moreover, even if the cooling 
power of PECSs is insufficient to significantly impact physiological sig
nals, their use can still alleviate psychological thermal discomfort and 
reduce negative emotions [240].

3.5. Human performance benefits of PECS

Studies evaluating human performance with PECS can be grouped 
into those focusing on cognitive performance, work productivity, and 
psychological effects such as mood and motivation. Cognitive perfor
mance primarily refers to an individual’s ability to process information, 
think logically, recall information, and complete cognitive tasks with 
speed and accuracy [241]. On the other hand, productivity relates to 
measurable work output, efficiency, and task completion, which may or 
may not require intense cognitive engagement [242]. As the number of 
PECS studies considering human performance benefits is limited, a 
qualitative overview is provided.

Cognitive performance: A total of only three papers explored the 
effect of PECS on occupant cognitive performance, and all of them 
focused on thermal PECS, including a radiative footwarmer [75], 
standing fans [81], and a device combining PV ATD with a horizontal 
desk grill with a foot heating coil [53]. Su et al. [53] investigated both 
subjective self-evaluated work performance and cognitive performance, 
while Yan et al. [75] and Schiavon et al. [81] only focused on cognitive 
performance tests. Regarding seasons, a study [81] was conducted with 
fans in a summer background, and the other two [53,75] were set in a 
winter background. The cognitive performance tests used in these 
studies included choice reaction time, finger tapping, Stroop, N-Back, 
typing, proofreading, creative thinking, math exercises, and logical 
thinking. In a warm and humid climate (Singapore), the best cognitive 
performance was observed at 26 ◦C, where the presence of a fan did not 
enhance performance. However, increasing the temperature to 29 ◦C 
reduced performance on speed-related tests, and using a fan partially 
mitigated this decline [81]. In winter, the combined PECS presented in 
[53] significantly improved cognitive performance, including 
self-evaluated work performance, math (mental performance), and 
typing performance (dexterity). Additionally, the “cool head, warm 
feet” effect, achieved through localized thermal stimulation using foot
warmers at low room temperatures, was found to enhance cognitive 
performance, particularly in logical thinking and mental performance 
[75].

Productivity: Two studies [177,243] examined the physical pro
ductivity of labor workers wearing cooling vests outdoors, and six 
studies [85,86,92,141,186,244] investigated the effects of desk-based 
PV on occupant productivity. At a background temperature of 35 ◦C, 
the cooling vest tested in [177] significantly increased the workers’ 
allowable exposure time by lowering the body’s heat strain. Study [243] 
evaluated the cooling vest’s effects on productivity with a second-order 
relationship between productivity loss and PMV, and it also reported 
improved productivity at a background temperature of 27 ◦C. The 
desk-based PV, IAQ-oriented in [85,186,244], provided non-isothermal 
airflow to the occupants at room temperature ranging from 23◦C to 28 
◦C. Thermal-oriented PECS in [86,92,141] were studied in room tem
peratures between 14-30 ◦C. PECS typically employed convective 
cooling aimed at the occupants’ upper body in the summer case, and a 
foot warmer in the winter case. In addition, a personalized heating 
system studied by Zhang et al. [86] targeted feet and forearms and 
revealed a higher success rate while completing math exercises. Luo 
et al. [92] used a similar heating system, which was found to improve 
self-assessed productivity. The results showed that the non-uniform 
environment produced by PECS did not significantly impair productiv
ity; furthermore, productivity of some tasks was improved with the use 
of PECS, e.g., math (addition), Sudoku, and self-reported productivity. 
Overall, the effects of PECS on productivity varied depending on the 
tasks, with no consistent improvements observed across all measures. 
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Giving control to users improved occupant self-estimated productivity. 
Whereas, when occupants needed to concentrate, such as on a math test, 
occupants performed better with PECS at fixed control [53,86].

Psychological performance: A review of 10 papers on psycholog
ical aspects of PECS use covers four applications: cooling vests for pro
tective clothing users (e.g., firemen) [52,177]; sleep-focused PECS like 
cooling blankets and fresh air supply [124,245]; personalized ventila
tion (PV) for office workers [141,156,244]; and personalized heaters for 
office workers [73,149,161]. Psychological effects were mainly assessed 
via subjective questionnaires, sometimes paired with physiological 
measures. Cooling vests monitored perceived exertion using the Borg 
scale [246] and estimated perceptual strain index using the Tikuisis 
equation [247]. Sleep-related PECS studied sleep quality through 
questionnaires and physiological measures like EEG and actigraphy. 
Cooling blankets improved sleep quality in hot conditions [124], while 
PV had no significant effect [245]. Face-directed PV improved mood and 
reduced fatigue better than ankle-directed PV in summer [244]. For 
office workers, psychological assessments included stress and motiva
tion self-reports [141,149], PECS preferences via questionnaires or focus 
groups [73,161], and standardized fatigue, mood, and workload scales 
(Grandjean, NASA TLX) [141,244]. Psychological benefits are often 
correlated with improved thermal comfort [141]. Office PECS accep
tance depends on thermal performance and usability factors like ergo
nomics and convenience [73,161], influencing psychological 
acceptance.

4. DISCUSSION

This discussion addresses research objectives (2) through (4) out
lined in the Introduction, offering an overview of how thoroughly 
existing studies have examined the effects of PECS on thermal comfort, 
inhaled air quality, cognitive and psychological performance, produc
tivity, and health. These impacts are discussed through the lens of both 
isolated benefits and integrated effects. It further uses a mobility-based 
classification of PECS to evaluate which types and operational condi
tions best support human well-being. The section concludes by high
lighting current knowledge gaps, proposing directions for future 
research, and outlining the limitations of this review.

4.1. Unidimensional Benefits of PECS

Thermal comfort benefits: Overall, the reviewed studies indicate 
that using thermal PECS consistently leads to better thermal evaluation. 
Compared to background systems alone, PECS generally enhance ther
mal sensation, comfort, and acceptability. While TSV, TCV, and TAV 
metrics focus on individuals or an average person, other comfort metrics 
might be suitable for evaluating the comfort benefits of PECS in terms of 
a large group of building occupants, such as the thermal dissatisfaction 
rate or the thermal acceptability rate. Without PECS, and, according to 
standards ASHRAE-55 [248] and ISO 7730 [249], at least 80 % of oc
cupants should deem thermal conditions acceptable. In contrast, the 
typical dissatisfaction rate in actual buildings is about 40 % [250,251]. 
Many studies reported improved acceptability rates surpassing 80 % and 
sometimes reaching 100 % when users had control over settings [50,81]. 
However, the effectiveness of PECS in improving thermal perception 
largely depended on background conditions and the type of PECS used. 
In environments where temperature control was already optimized, 
additional PECS provided only marginal benefits. Similarly, PECS 
seemed to be less effective at extreme temperatures, such as 
cooling-focused PECS at 30 ◦C or heating solutions below 14 ◦C, unless 
multiple devices were used in combination [252]. Building-detached 
systems (e.g., heated/cooled chairs, desk fans) led to the highest 
improvement rates, with some studies reporting whole-body comfort 
improvements of up to 1.8 units on the thermal sensation scale [68]. 
Further, these systems often showed greater effectiveness when 
combining multiple devices. Similarly, building semi-detached PECS, 

like desk-mounted PV, effectively enhanced comfort, especially in 
warmer conditions, with notable increases in thermal acceptability at 
temperatures 26-28 ◦C [52]. However, their impact started to decline 
under more extreme conditions, such as 30 ◦C, where acceptability 
drops below 65 % when user control was restricted. Building attached 
PECS, like ceiling fans, also generally improve perception, but the results 
are highly dependent on airflow rates and ambient temperatures. Some 
studies showed only limited improvements through ceiling fans at 
higher temperatures [49]. In both cases of using air movement, PV and 
ceiling fans, user control over these PECS significantly improved satis
faction levels. Wearable PECS had the most variable outcomes due to 
their limited heating and cooling capacities, but they still provided 
meaningful localized comfort improvements in selected studies [98,109,
112]. In this review, we also examined the overall impact of PECS on 
specific body areas. As shown in Fig. 13, which focuses solely on PECS 
improving the thermal environment, they appeared to be most effective 
when applied to three key areas: the feet, head, and hands. For the 
heating case, this is in line with earlier findings, such as [253]. In the 
reviewed studies on cooling PECS, the neck, arms, thighs, and back were 
identified as the most frequently targeted body areas for local cooling. 
Since Fig. 13 focuses only on studies where PECS improved the thermal 
environment, the apparent effectiveness of specific body regions, such as 
the neck, arms, and thighs, may be overstated because a dispropor
tionate number of studies specifically targeted these areas. This might 
lead to overlooking the effectiveness of other regions that were less 
frequently studied.

Benefits for indoor air quality: IAQ-focused PECS, especially PV, 
improve inhaled air quality by delivering clean air directly to the 
breathing zone, reducing exposure to contaminants from both the 
occupant (e.g., bio-effluents, CO2) and the environment (e.g., office 
equipment). This helps increase occupant satisfaction, reduce Sick 
Building Syndrome (SBS), and lower the risk of infection by limiting the 
spread of airborne viruses. Its effectiveness depends on the background 
HVAC system air distribution (i.e., a stratified environment like the one 
established with displacement ventilation (DV) [219,218]), rather than 
mixing ventilation (MV), the design of the air terminal device (i.e., 
vertical desk grills reduce re-inhalation of exhaled air and is preferred 
for infection control, while round movable panels improve comfort but 
may disperse contaminants [254], wearable PV devices benefit from 
larger nozzles and optimal positioning to balance air quality and comfort 
[224], small outlets (e.g., 10 cm) are more prone to wake flow that 
draws contaminants into the breathing zone [255,256]), occupant 
behavior (i.e., in reality, indoor environments are not static, movement, 
fidgeting, and interactions disrupt airflow, reducing PV and ventilation 
effectiveness [212,257,258], while varied PV use affects protection 
levels, with low flow increasing cross-infection risk [223]). Further
more, most PV studies focus on improving users’ inhaled air quality, 
with limited research on background IAQ [259,223,227,211,260,261]. 
PV can spread exhaled contaminants in shared spaces, influenced by 
supply conditions, jet direction, pollution sources, and air distribution. 
Assistive devices like desk or chair fans and co-axial jets can be a solu
tion but add complexity [67,69,216,262]. Many studies assume clean 
outdoor air with high filtration, often in areas with good air quality, 
ignoring polluted urban environments where outdoor pollutants (NOx, 
Ozone, CO, etc.) can worsen PECS performance. Future research should 
test PECS in real-world polluted settings and evaluate filtration methods 
to ensure effectiveness and comfort across diverse conditions.

Impact of PECS on human health: Health encompasses more than 
the absence of disease, involving physical, mental, and social well-being 
in interaction with the environment, yet current PECS research focuses 
mainly on short-term effects like thermal strain and Sick Building Syn
drome (SBS) in controlled settings, with long-term health impacts 
largely unexplored. Most studies are short (under 4 hours), limiting in
sights into sustained effects, though some, like Menzies et al. [232], 
suggest potential year-long benefits. Furthermore, health outcomes from 
PECS are complex and influenced by interrelated factors; for instance, 
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airflow balance is key to reducing SBS without causing discomfort, and 
poor air quality can negate thermal comfort gains [186,226]. While 
PECS show consistent benefits in lowering skin temperature, sweating, 
and heart rate, their effectiveness on core body temperature varies based 
on heat stress intensity and cooling capacity. Some studies report sig
nificant core temperature reductions [97,102,106], but others show 
minimal or no effect [48,96,263]; this suggests that PECS with limited 
capacities may have limitations in fully mitigating extreme heat. Even 
without major physiological changes, psychological benefits of PECS, 
such as improved comfort and reduced distress, as in [240], are notable. 
Additionally, many PECS devices serve primary or complementary 
functions beyond IEQ, such as ergonomic support (e.g., 
furniture-embedded systems) or wearable comfort (e.g., wearable 
PECS), with consequent health implications. For instance, heated chairs, 
especially those with backrest heating elements, can offer therapeutic 
benefits in addition to thermal comfort, as shown in [163]. Overall, 
research on the health effects of PECS is limited due to a lack of field 
implementation and insufficient available data.

Human performance benefits: Overall, PECS have shown the po
tential to maintain or enhance cognitive performance and productivity, 
as measured through both objective tasks and subjective assessments. 
However, most PECS research has been carried out in controlled 
experimental environments. Only two known studies [177,243] have 
examined PECS effects in field conditions, specifically among outdoor 
labor workers. The impact of PECS on productivity is highly dependent 
on the surrounding environmental conditions. For instance, the use of a 
fan at 26 ◦C did not result in any measurable productivity gains. In 
contrast, at a higher temperature of 29 ◦C, performance on speed-related 
cognitive tasks declined, but the use of a fan helped to offset this decline 
partially [81]. Moreover, the influence of PECS on productivity varied 
across different types of cognitive tests, with no consistent improve
ments observed. This variability is likely because different tests engage 
distinct cognitive functions. Interestingly, in some studies, participants 
who had control over their PECS reported improved subjective perfor
mance even as their objective performance declined, such as in tasks 
involving math [53,86]. A possible explanation is that the need to adjust 
or interact with the PECS manually may be a cognitive distraction, 
reducing concentration and task performance. From a psychological 
perspective, improving thermal comfort through PECS can positively 
influence mood and well-being. Currently, the body of research on how 
PECS affect human performance remains limited. There is a clear need 

for the development of standardized procedures to systematically eval
uate work performance in the context of PECS use.

4.2. Integrated Effects of PECS

Combined effects of thermal and IAQ-focused PECS on comfort, 
health, and human performance: The integration of thermal and IAQ- 
focused PECS has demonstrated potential to enhance the microenvi
ronment around the person by addressing temperature regulation and 
air quality simultaneously. Studies have shown that PV can enhance the 
cooling effect of localized airflow, reduce thermal discomfort, and lower 
the required cooling intensity of thermal PECS [30,39]. Similarly, local 
air purification systems can improve perceived air quality, further 
enhancing overall comfort levels even in thermally optimized environ
ments [32]. A key finding in recent literature is that combining PECS for 
temperature control and IAQ can create a cumulative improvement in 
user satisfaction. For example, heating PECS can be complemented by 
humidification or filtered air distribution, reducing the perception of dry 
air discomfort and improving respiratory comfort [35,39]. Some studies 
on the integration of thermal and IAQ-focused PECS have investigated 
health and performance outcomes, going beyond comfort responses. 
Most studies examining the health effects of these devices have focused 
on SBS symptoms, such as eye irritation, headaches, and fatigue, rather 
than heat stress, which has been primarily analyzed in relation to 
wearable heating and cooling devices (i.e., thermal-only PECS). Most 
studies on SBS symptoms have investigated the effect of combined 
thermal and IAQ devices compared to thermal-only and IAQ-only sys
tems and have yielded mixed but promising results in mitigating SBS 
symptoms. However, their effectiveness depends on factors such as 
temperature, air speed, cleanliness of the distributed air, and overall 
environmental conditions. Specifically, PV delivering clean, drier, and 
cooler air with balanced airflow has been found to provide the most 
positive health outcomes [133,226]. Conversely, facial ventilation in 
warm conditions or exposure to warm, high-speed, and recirculated 
polluted air can worsen eye dryness, respiratory irritation, and overall 
discomfort, potentially negating the benefits of these systems in terms of 
comfort [51,85,133,187,189]. From a performance perspective, 
research on the impact of combined thermal + IAQ PECS remains 
limited. While most studies investigating occupant performance have 
focused on thermal PECS, such as foot warmers, desk fans, and wearable 
devices, only one study, Melikov et al. [52], has specifically investigated 

Fig. 13. Overview of local body parts reported as providing a better thermal environment.
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the performance effects of a combined thermal + IAQ PECS. The find
ings suggest that integrating thermal and IAQ control positively in
fluences cognitive function, particularly in terms of concentration and 
overall work performance.

Multi-sensory effects of PECS: Only a handful of studies, such as 
those by Al Assaad et al. [264], Zhao et al. [265], and Tan et al. [72], 
have explicitly examined the multi-sensory effects of PECS when used in 
combination or isolation (i.e., thermal-only or IAQ-only). Existing 
studies tend to evaluate single effects (e.g., comfort only), overlooking 
the potential synergies or trade-offs on more than one response that may 
arise when PECS are deployed. However, understanding multi-sensory 
responses is critical, as indoor environmental conditions are inherently 
interconnected, with multiple parameters influencing various human 
responses simultaneously [266,267]. The effects of PECS could be 
one-directional, where improvements in one domain, such as enhanced 
thermal comfort, lead to better health outcomes and increased produc
tivity. For instance, a device that optimizes local thermal conditions 
might reduce discomfort and cognitive strain, allowing occupants to 
focus better and maintain efficiency over extended periods. However, 
these effects could also be conflicting. A device that improves thermal 
comfort may unintentionally compromise health or productivity, 
depending on its design and operating parameters. For example, 
convection-based devices that direct airflow toward an occupant’s face 
may help regulate perceived temperature, enhancing comfort in warm 
environments. However, prolonged exposure to air movement near the 
face can lead to eye dryness and irritation, potentially increasing SBS 
symptoms such as eye discomfort, headaches, and concentration diffi
culties. Similarly, PV that recirculates indoor air instead of supplying 
fresh, filtered air might inadvertently increase exposure to indoor pol
lutants, affecting respiratory health while still providing localized 
thermal relief. These examples highlight the need to study the combined 
influence of multiple environmental parameters affected by PECS, such 
as air flow, temperature, humidity, and air quality, on a range of human 
responses, including comfort, performance, and health. A holistic 
approach is needed to determine whether these systems truly optimize 
the indoor environment without unintended negative consequences.

4.3. Knowledge gaps and future research directions

The domain of PECS is still in the nascent development phase, and 
more so in practice. However, it holds immense importance in the 
contemporary and future world due to its promises of providing better 
IEQ, comfort, human productivity, and health benefits. This paper re
views the current body of literature on PECS from multiple perspectives. 
However, as an emerging field, it has yet to address several critical areas, 
which are outlined below: 

• The method and guidelines to design, integrate, and control PECS for 
optimum human benefits need to be developed: For thermal PECS, 
research needs to enhance design and heating/cooling capacity to 
perform effectively across various conditions, including heat stress, 
by accounting for different heat transfer modes and ensuring proper 
integration with background HVAC systems. For IAQ-focused PECS, 
especially personalized ventilation (PV), design improvements 
should enhance air delivery and comfort while accounting for real- 
world factors like occupant movement, airflow direction, and 
cross-contamination in shared spaces.

• Standardized procedures to systematically evaluate human perfor
mance in the context of PECS use need to be developed: Further 
research is needed to better understand the impact of PECS on 
human performance, for instance, to objectively measured work 
productivity under realistic work tasks, extended exposure 

durations, and with optimized control strategies, as the current 
literature on this topic remains limited.

• Better understanding inter-individual variability in human responses 
to PECS: Most of the reviewed studies focused predominantly on 
participants in their 20’s-30′s, with only two studies [50,90] cate
gorizing participants by age groups and comparing their subjective 
responses. Since a core aim of PECS is to accommodate individual 
differences, it is essential to evaluate how effectively these systems 
address variability across diverse users.

• Better understanding of the combined use of different PECS: 
Exploring the combined use of thermal and IAQ-focused PECS is 
essential, as their interaction can impact occupant comfort, health, 
and performance. Poor coordination, such as PV airflow disrupting 
localized heating or cooling, may create uneven microclimates. 
Simultaneous operation can also cause conflicting controls; further 
research is needed to optimize their balance, considering user 
adaptability.

• Investigation of multi-sensory effects: The influence of PECS beyond 
comfort and perception and the potential trade-offs should be 
investigated not only for PECS used in combination but also for PECS 
used in isolation.

• Study of multi-domain effects: Due to the lack of studies on the topic, 
future research should investigate the multi-domain effect of PECS, 
more specifically their cross-effect, to understand broader implica
tions. For instance, future studies should investigate how a PV system 
affects not only thermal comfort and air quality (i.e., same-domain 
effect) but also acoustics (i.e., cross-domain effect).

4.4. Limitations of the review

This work provides a systematic analysis of literature up to mid- 
2023, offering a foundation for understanding recent trends in PECS 
research. Future studies published from 2024 onward are expected to 
expand on these findings and help address the identified gaps. In addi
tion, this review presents a qualitative synthesis, with a detailed meta- 
analysis for a subset of the papers screened in this review, currently in 
progress as part of IEA EBC Annex 87. The upcoming publication will 
establish a more quantitative link between PECS performance, their 
technical features, and associated human benefits.

5. Conclusions

This systematic review highlights the extensive progress made over 
the past 25 years (up to mid-2023) in the field of Personalized Envi
ronmental Control Systems (PECS) and their potential benefits for 
enhancing thermal comfort, indoor air quality (IAQ), health, and human 
productivity. It explores existing studies on human-centered PECS, 
evaluates how previous research has addressed comfort and well-being, 
identifies the types of PECS that offer human-related benefits, and 
highlights key knowledge gaps to inform future research in personalized 
environmental quality. While previous reviews on PECS have predom
inantly focused on a single environmental domain, this review empha
sizes the importance of addressing the effect of both thermal and IAQ 
domains, which are often interrelated. Findings suggest that PECS, 
particularly building detached ones, can often improve thermal sensa
tion, comfort, and acceptability; a frequent combination of various PECS 
also leads to better ratings. Enhanced IAQ through personalized venti
lation systems has also demonstrated potential for improving air quality 
in the breathing zone, thereby reducing exposure to contaminants. 
However, the variability in study designs, subjective scales, performance 
metrics, and the lack of consistent evaluation frameworks across 
different PECS types highlight the need for more standardized research 
methodologies. Moreover, as just a few studies in our review only 
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reported short-term improvements (i.e., within a day) in health and 
productivity associated with PECS, there is a clear lack of research 
exploring their long-term health impacts (i.e., effects observed over 
periods of several months or more) and applicability across diverse built 
environments. Future research should work toward building a more 
comprehensive framework for evaluating how PECS affect human per
formance, considering both thermal comfort and indoor air quality 
(IAQ) under realistic, long-term conditions. It is also important to 
expand studies into multi-sensory environments, such as visual and 
acoustic factors, and explore the interactions between these domains. 
Developing standardized metrics for human performance will be crucial 
for linking PECS use to measurable outcomes. Furthermore, under
standing the connections between thermal comfort, IAQ, health, and 
human performance is key to creating holistic, human-centered PECS 
solutions that truly enhance well-being. As the PECS field continues to 
evolve, future work should also incorporate and build upon studies 
published from 2024 onward.
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APPENDIX A: Overview of studies included in the systematic review

Table 1 
References to studies considered in the systematic review.

PECS focus 
domain

Classification of papers per human involvement

Humans Manikin Human model No subject

Thermal [17,18,31,48–177] [48,200,264,268–301] [302–325] [326–347]
Thermal+IAQ [178–199] [348,219,349,350,259,220,222,225,254,212,211,265,351,213, 

352,353,354,355,214,356]
[215,357,257,209,207,358–360, 
208,361–363]

[364–367]

IAQ [368,226,227,233,232,244,245, 
260,369,370]

[371,216,204,221,218,255,210,223,224,205,372,373,374,375, 
376,377,378]

[379,206,380,217,381] [256, 
382–384]
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Fig. 14. Geographical distribution of the studies considered in the systematic review (the number indicates the number of original research publications).

Table 2 
References to PECS studies (with humans) according to their effect on thermal comfort.

PECS 
mobility 
types

Categories of the effect of PECS compared to no PECS conditions (reference)

Better Circumstantial Same Worse No comparison

Building attached Thermal [18,49,50], Thermal+IAQ 
[199]

- - - Thermal [147], Thermal+IAQ [55,193]

Building semi- 
detached

Thermal [51–59], Thermal+IAQ 
[178–186]

Thermal+IAQ 
[192]

Thermal [135] - Thermal [148–156], Thermal+IAQ 
[194,195]

Building detached Thermal [31,60–95], Thermal+IAQ 
[187–191]

Thermal [133] Thermal [17,73,
136–141]

Thermal 
[144–146]

Thermal [157–166] Thermal+IAQ 
[196]

Wearable devices Thermal [48,79,96–122] Thermal [134] Thermal [142,143] - Thermal [158–161,168–172]
Others Thermal [123–132] - - - Thermal [173–176], Thermal+IAQ 

[197,198]

Table 3 
References to PECS studies according to their effect on indoor air quality.

PECS 
mobility 
types

Categories of the effect of PECS compared to no PECS conditions (reference)

Better Circumstantial Same Worse No comparison

Building 
attached

IAQ [216,217], Thermal+IAQ [209] - - - IAQ [385,256,261], Thermal+IAQ [193,348,199,
257,355]

Building 
semi- 
detached

IAQ [204,218,210,226,233,260,205,373,375,377, 
380–382], Thermal+IAQ [179,181–186,190,191, 
195,357,349,259,225,207,254,211,265,353,208, 
361]

IAQ [376], 
Thermal+IAQ 
[254]

Thermal+IAQ 
[364]

- IAQ [369,260,223,221,368,374,383,244,370,346, 
232], Thermal+IAQ [351,178,359,352,360,365, 
180,257,356,194,366,219,222,195,367,362]

Building 
detached

Thermal+IAQ [212–215] - Thermal+IAQ 
[363]

- IAQ [372,255,384,245,227], Thermal+IAQ [187, 
188,181,196,220]

Wearable 
devices

IAQ [371,224], Thermal+IAQ [191] - - - -

Others IAQ [206, Thermal+IAQ [256,354,198] - - - IAQ [379], Thermal+IAQ [197,350]
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Table 4 
References to PECS studies according to their effect on human health.

Domain Categories of the effect of PECS compared to no PECS conditions (reference)

Better Circumstantial Same Worse

Studies concerning SBS symptoms:
Thermal [98] [51] - [85]
Thermal+IAQ [81,181,190] [186,189] - [187,189]
IAQ [[232] [226] - -
Studies concerning physiological state:
Thermal [48,62,70,73,79,97,103,106,107,112,115,120,121,124,132,[134,140,161,171] [68,72,98,99,102,158] [50,64,94,96,143] -
Thermal+IAQ [190] - - -
IAQ - [245] - -

APPENDIX B: Overview of voting scales used in thermal PECS studies

An overview of the most commonly used metrics for subjective assessment of thermal PECS, in relation to the background air temperatures of the 
studies, focusing exclusively on PECS that delivered “better” thermal conditions, is presented hereafter.

Thermal Sensation Votes (TSV): The TSV is the primary subjective measure used to evaluate whole-body thermal sensation in the reviewed studies. 
Notably, 77 % of these studies employ TSV as a key indicator of PECS performance. Regarding the scales used, as shown in Fig. 15(a), the ASHRAE 7- 
point scale (-3: “cold,” -2: “cool,” -1: “slightly cool,” 0: “neutral,” +1: “slightly warm,” +2: “warm,” +3: “hot”) is the most commonly applied (e.g., in 
[63,73,109]), appearing in 52 % of studies (e.g., in [65,84,110]) assessing whole-body thermal sensation. Meanwhile, approximately 19 % of studies 
(e.g., [68,86,159]) adopt the 9-point scale introduced initially by Zhang et al. [86]. Less frequently used alternatives include the 5-point scale (e.g., in 
[125,163]), asymmetric 7-point scale (in [79,130]), and 10-point scale (in [120]) or 13-point scale (in [177]). A significant portion of the reviewed 
studies, 45 %, assess local thermal sensation by focusing on specific body parts. Among these, the use of scale varies slightly: the 7-point scale again is 
dominant, applied in 68 % of the studies (e.g., in [73,74,85]), while the 9-point scale is used in the remaining 32 % (e.g., in [65,68,83]). The top five 
local body parts most frequently studied are feet, hands, head, back, and arms, as illustrated in Fig. 16. Notably, for feet and hands, being among the 
most sensitive and influential on overall comfort in cool-cold conditions [386,387,203], the more granular 9-point scale is used in most cases (e.g., in 
[68,83,103,127]), reflecting a focus on capturing the nuanced thermal sensation of these highly sensitive areas.

Thermal Comfort Votes (TCV): While the most used subjective index for evaluating thermal comfort is TSV, it might not be able to demonstrate the 
benefit of PECS, especially in air-conditioned buildings, where the TSV of the background environment is usually within +1 (slightly warm) and -1 
(slightly cool). After having the PECS, the thermal sensation vote could be close to 0 (neutral) or still close to -1 (slightly cool); thus, the difference 
before and after having the PECS is usually insignificant. The local-body TSV has the same issues as the whole-body. For example, a field study by 
Bauman et al. [388] was conducted at the ambient air temperature ranges between 20 ◦C and 27 ◦C throughout the year. In the summer season, the 
average TSV is close to +1 (slightly warm) before having PECS and is close to 0 (neutral) after having PECS. In the winter season, the average TSV is -1 
(slightly cool) without PECS and is still -1 (slightly cool) after having PECS. Thermal Comfort Vote (TCV) is a more direct, thus appropriate metric for 
evaluating the comfort benefit of PECS. Fig. 15(b) provides an overview of thermal comfort vote (TCV) scales used in the PECS investigations, and it 
illustrates that only 28 % of studies adopt the TCV metric. The 7-point and 6-point scales are the most used ones, appearing in 11 % of studies (e.g., in 
[60,86,158,161]). The 7-point scale has an explicit 0 (neutral) point, while the 6-point scale lacks the central “neutral” category. The 4-point scale is 
also commonly used, appearing in 7 % of studies (e.g., in [59,74,160]), which ranges from -2 (very uncomfortable) to 2 (very comfortable).

Thermal Acceptability Votes (TAV): Approximately 30 % of the studies investigating PECS evaluated thermal acceptability, employing a variety of 
scales (Fig. 15(c)). These include 2-point, 3-point, 4-point, 6-point, 7-point, and 9-point scales, and results based on thermal sensation and comfort 
rates, such as votes for “cold but comfortable” or “warm but comfortable.” Among the studies reporting thermal acceptability, the great majority (65 %) 
used a 4-point scale (e.g., in [52,53,55,203]), followed by 10 % using a 7-point scale (e.g., in [137,158,159]), 8 % each a 9-point scale (e.g., in [68,71]) 
and a 6-point scale (e.g., in [50,67,69,76]), 5 % a 2-point scale (e.g., in [62,87,138]), and about 1.5 % each employing a 3-point scale (e.g., in [115,
152,180]), 5-point scale (e.g., in [60]) or deduce the response from thermal sensation and comfort responses (e.g., in [389]). Fig. 15(c) illustrates that 
the use of different response scales is generally evenly distributed across the investigated background air temperature range. However, notable ex
ceptions include the 9-point scale, which is more frequently employed in out-of-comfort conditions (i.e., at 18 ◦C and 30 ◦C), and the 2-point scale, 
which is absent within the comfort range (20–25 ◦C). The most frequently used scale, the 4-point scale, typically ranges from “clearly unacceptable” 
(− 1) to “clearly acceptable” (+1) and is sometimes presented as either a continuous or discrete scale. The design and presentation of the scale often 
compel subjects to clearly distinguish between acceptable and unacceptable conditions, dividing the acceptability scale into two distinct parts: one 
ranging from “clearly unacceptable” to “just unacceptable,” and the other from “just acceptable” to “clearly acceptable.” Sometimes studies associate "just 
acceptable" and "just unacceptable" with a value of 0, but most often with a value of +/–0.1. Rarely used scales include the 3-point acceptability scale 
(+1, 0, -1) (e.g., in [152]) and a 5-point scale (e.g., in [60]) categorizing acceptability into “acceptable,” “barely acceptable,” “neutral,” “barely un
acceptable”, and “unacceptable.” While most studies focused on whole-body thermal acceptability, a few evaluated acceptability for individual body 
parts, including the head, chest, back, and extremities (e.g., in [72,85,133,322,323]). 
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Fig. 15. Overview of scales used in the analyzed studies: (a) Thermal Sensation Vote (TSV), (b) Thermal Comfort Vote (TCV), (c) Thermal Acceptability Vote (TAV).

Fig. 16. Overview of local body parts analyzed and the TSV scales used in the respective studies: The analysis highlights a strong focus on the extremities, 
particularly the feet and hands, as they are the most sensitive to changes in the thermal environment.

Data availability

Data will be made available on request.
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