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 A B S T R A C T

In order to predict ductile damage initiation at the microstructure level, especially for multi-phase materials, it 
is essential to have high-fidelity crystal plasticity parameters. They need to accurately represent the evolving 
phase contrast, which implies that the initial phase contrast and the individual strain hardening of the 
phases has to be mapped precisely. This paper presents a methodology for calibrating the parameters of a 
phenomenological crystal plasticity model for a DP800 steel based on the critical resolved shear stress from in 
situ micropillar compression tests taken out of macroscopic tensile tests at various prestrain levels. Furthermore, 
the influence of mechanical size effects was incorporated through the inclusion of statistical relevant micropillar 
compression tests of varying prestrains and dimensions. The data were used to calibrate a model, which 
successfully predicted the homogenized macroscopic stress–strain curve from uniaxial tensile tests with a mean 
absolute error of only 20.7±7.7 MPa and a mean absolute percentage error of 3.3%. Furthermore, it was shown 
that the influence of the strain hardening of the martensite can be neglected under certain conditions, especially 
when predicting the homogenized stress response for low strains. This result demonstrates the importance of 
high-fidelity parameter calibration for damage prediction, when compared to a synthetic parameter set, which 
leads to a different stress and strain partitioning for the same homogenized stress–strain curve.
1. Introduction

The availability of high-fidelity material models is of particular 
importance for the accurate numerical prediction of material behav-
ior at different scales. This calls for not only the numerical models 
themselves, but also for validated parameter sets and identification 
strategies. In the case of material models that represent the homog-
enized mechanical behavior of a single phase polycrystalline bulk 
material, simple macroscopic tests, such as tension, compression, or 
similar can be employed, which are comparably easy to conduct and 
to be integrated in automated calibration schemes [1–3].

In the case of material models at the microstructural length scale, 
such as constitutive crystal plasticity (CP) models [4,5], it is nec-
essary to map the mechanical properties of individual phases. This 
presents a unique challenge, as the mechanisms of plasticity at the 
microstructural length scale are intricate and the extraction of crucial 
properties such as yield stress or strain hardening behavior is often 
not feasible without interference [6,7]. In particular, when assessing 
the micromechanical sources of damage, high-fidelity parameters are 
needed, as the local phenomena of damage initiation and evolution are 
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linked upon a variety of influencing variables. These include phase con-
trast, microstructure morphology and the strain hardening of individual 
phases [8–11]. Tian et al. [12] demonstrated that the discrepancy in 
damage behavior between two macroscopically equivalent dual-phase 
steels can be attributed to mechanical heterogeneity, which is primarily 
influenced by the hardening of ferrite and the initial phase contrast be-
tween ferrite and martensite. Furthermore, de Geus et al. [13] observed 
that the mechanical response of a material is predominantly governed 
by the phase contrast, especially if the phase contrast is comparably 
low. This underscores the call for high-fidelity material parameters to 
accurately quantify these effects.

There are multiple approaches for the calibration of CP models: For 
the majority of the approaches, representative volume elements (RVE) 
are typically employed to represent the polycrystalline material. An 
RVE is defined as a mapping of relevant microstructural features for 
which the following condition holds: 𝐿𝑚𝑖𝑐𝑟𝑜 ≪ 𝐿𝑅𝑉 𝐸 ≪ 𝐿𝑚𝑎𝑐𝑟𝑜 [14], 
where 𝐿𝑥 denotes the respective length scale. The data basis of these 
models is comprised of two- and three-dimensional microstructure 
images obtained through electron backscatter diffraction (EBSD) or 
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scanning electron microscopy (SEM) images of sufficient size [15]. A 
straightforward method for the subsequent calibration is the utilization 
of uniaxial, macroscopic tensile or compression tests in conjunction 
with RVE, accompanied by an iterative adjustment of the crystal plas-
ticity parameters to fit the global stress–strain curve [16–20]. A typical 
problem here is the non-uniqueness of the identified parameter sets. 
Sedighiani et al. [16] used genetic algorithms for the calibration of 
a phenomenological and a physics-guided dislocation density crystal 
plasticity model. The results demonstrated that the majority of model 
parameters exerts no unique impact, indicating that the effect of a 
particular parameter can be compensated for by the suitable selec-
tion of other parameters. This problem is further multiplied when a 
multi-phase material is examined. Here, the parameter selection also 
influences the local heterogeneity of the different phases.

A micromechanical testing method suitable for the calibration of 
crystal plasticity models is an instrumented nanoindenter. This method 
permits the examination of individual grains within a bulk sample. 
Generally, it is feasible to derive single-phase flow curves directly from 
nanoindentations conducted with a spherical indenter, as shown be 
Leitner et al. [21]. An alternative approach is to inversely calibrate the 
constitutive model parameters based on a Finite-Element (FE) model 
of the nanoindentation experiment. Zambaldi et al. and Tasan et al. 
employed a combination of nanoindentations, EBSD measurements, 
and atomic force measurements to identify the constitutive parameters 
of both hexagonal titanium [22] and the ferrite phase of a commercial 
dual-phase steel DP800 [23]. In the second case, the constitutive pa-
rameters of the martensite were determined by a subsequent inverse 
fit to the macroscopic stress–strain curve. In both cases, as well as in 
Chakraborty and Eisenlohr [24], the parameter sets were not validated 
with macroscopic tests. Thus, the transferability to RVE simulations 
is not fully proven. When calibrating multi-phase materials with the 
aid of the macroscopic stress–strain curves there is also no valida-
tion test available. An additional approach using nanoindentation was 
proposed by Gallardo-Basile et al. [25]. They utilized the discrepancy 
between the experimental and simulative post-mortem imprint of the 
nanoindent as the target value for the parameter identification. The 
critical resolved shear stress (CRSS) measured by in situ micropillar 
compression was employed as the upper bound for the corresponding 
material parameter, thereby stabilizing the parameter calibration. It 
was demonstrated that it is feasible to predict the macroscopic stress–
strain curve for a single-phase ferritic material. However, it was shown 
that in the absence of constraints on the CRSS from the micropillar, a 
considerable overestimation of the macroscopic flow curve occurs.

An additional approach for estimating the flow and hardening be-
havior is based on the local chemical composition [26,27]. This model 
is mostly empirical, although aspects of dislocation theories are in-
cluded. Vajraguta et al. [28] employed this methodology to model 
the individual flow curves of ferrite and martensite in a DP600 steel, 
resulting in a compelling approximation of the flow curve of the bulk 
material. However, a limitation of this approach is the larger number 
of parameters, necessitating careful selection, as well as the limited 
accuracy while solely relying on the chemical composition and not 
other factors like e.g. thermomechanical treatments.

Lastly, micropillar compression experiments can be employed.
Ghassemi-Armaki et al. [29] conducted a parameter identification for a 
dislocation-based CP model for a fully martensitic steel. They observed 
that the yield stress of the material was not affected by the size of the 
micropillar, which they attributed to the presence of multiple marten-
site blocks inside the individual pillars. In contrast to this finding, 
significant size effects are frequently observed in micropillar tests on 
single-crystals based on experiments and molecular dynamics [30,31] 
or discrete dislocation dynamics simulations [32,33]. These size effects 
and the fact that the stress–strain curve is influenced by free surfaces, 
especially in single-phase micropillar tests, make it almost impossible 
to calibrate classical CP models on these tests.
2 
In general, the majority of calibration approaches do not consider 
the impact of size effects, which have been empirically validated for 
polycrystalline steels through the well-known Hall–Petch relationship 
[34,35]. To model these size effects in micropillar or polycrystalline 
simulations as well, mechanism-based, gradient-extended CP models 
can be employed [36–39]. However, due to the high computation 
times of these models, Wu et al. [40] utilized an approach based on 
the Hall–Petch relationship to scale the critical resolved shear stress 
parameter 𝜏0 using the corresponding grain diameter in the RVE. The 
parameters of the Hall–Petch equation were determined through the 
use of nanoindentations on grains of varying sizes.

All presented approaches have different disadvantages in the cali-
bration of parameters, which are necessary for the accurate modeling 
of local mechanical heterogeneity of multi-phase materials. Therefore, 
this paper presents a novel methodology for parameter identification 
that can be applied to a multi-phase material without data from the 
macroscale, which is then used for the validation of the calibrated 
parameters. The chosen use case is to calibrate model parameters 
of a phenomenological CP model for a dual-phase steel DP800. The 
methodology is capable of accurately mapping the phase contrast and 
the hardening of the ferrite, two variables that are of significant impor-
tance for the damage tolerance of the material. The data used in this 
study is based on in situ micropillar compression tests on prestrained 
tensile specimens conducted by Tian et al. [12]. Section 2.1 presents 
the experimental data basis, followed by the utilized CP model in 
Section 2.2 and the presentation of the RVE 2.3 and the calibration 
strategy 2.4. Section 3 shows the results, while Section 4 discusses the 
most important findings. Finally, an outlook and summary are given.

2. Experimental and numerical methodology

2.1. Material properties

The material used in this study is a standard commercially avail-
able DP800 dual-phase steel. Further details on the material can be 
found for example in Wollenweber et al. [41],Kusche et al. [42]. The 
microstructure consists of ferrite and martensite, with average grain 
sizes of approximately 6.5 ±0.1 μm and 1.0 ±0.1 μm, respectively. 
The macroscopic mechanical properties were determined through qua-
sistatic, uniaxial tensile testing of specimen oriented along the rolling 
direction (RD). Five specimens were tested, and the strain data was 
obtained without contact using a video extensometer. The raw data is 
not shown in this paper, but can be found alongside the other data at: 
https://github.com/ibf-RWTH.

To measure the CRSS of ferrite and the yield strength of marten-
site, micropillar compression tests were used (Fig.  1a)). As it is not 
possible to quantify the strain hardening of ferrite from single-crystal 
micropillar compression as this is skewed by the free surfaces of the 
single-phase micropillar [6], it was measured employing in situ SEM 
micropillar compression on several differently prestrained macro sam-
ples [12]. Micropillars with diameters ranging from 1–3 μm for ferrite 
and up to 800 nm for martensite were fabricated using a dual-beam 
focused ion beam (FIB) on an OPS-polished sample surface. They were 
milled employing a three-step milling process using 30 𝑘𝑒𝑉  Ga+ ions: 
rough milling with 16 𝑛𝐴, intermediate milling with 2 𝑛𝐴, and final 
polishing with 240 𝑝𝐴. The resulting micropillars had an aspect ratio 
(height/diameter) ranging from 2 to 4. In situ compression tests were 
conducted at a loading rate of 0.001 𝑠−1. The CRSS of ferrite was 
determined using the measured 0.2% offset yield strength and the 
Schmid factor of the activated slip system. With a sufficiently large 
number of these experiments, the empirical cumulative density function 
(ECDF) of the CRSS for different prestrain levels (see Fig.  1b)), as well 
as the mean hardening of the ferrite, can be approximated. Due to the 
limited plasticity of martensite, its yield strength at 0.2% offset was 
determined instead of CRSS. These investigations build the foundation 
for the parameter identification strategy in this paper.

https://github.com/ibf-RWTH
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Fig. 1. Micropillar compression experiments for assessing the critical resolved shear stress. (a) Representative stress–strain curve from pillar compression experiment, (b) ECDF of 
the ferrite CRSS at different prestrain levels.
2.2. Crystal plasticity modeling

To map the experimentally determined hardening to numerical 
models and predict macroscopic behavior, a crystal plasticity model 
is needed. In this study, the open-source, multi-physics framework 
DAMASK [43] is used. DAMASK offers a variety of models for the 
description of plasticity, damage and thermal effects at the micro level, 
which are integrated with a diverse palette of numerical solvers. In 
this study, a phenomenological crystal plasticity model in combination 
with a Fast Fourier transformation (FFT) backed spectral solver was em-
ployed. The original formulation of phenomenological crystal plasticity, 
which dates back to the 1970s, was developed by Rice, Hutchinson, and 
Peirce [44–47]. The fundamental principle of the model family is the 
decomposition of the deformation gradient 𝐹  into its constituent parts:
𝐹 = 𝐹𝑒𝐹𝑝𝐹𝑖 (1)

𝐹̇𝑝 = 𝐿𝑝𝐹𝑝 (2)

Here, 𝐹𝑒 is the elastic, 𝐹𝑝 the plastic and 𝐹𝑖 the inelastic part of the 
deformation gradient. The inelastic part is mainly caused by effects 
such as crack opening or thermal expansion [48] and not further con-
sidered in this study. The evolution of the plastic deformation (Eq. (2)) 
is controlled by the plastic velocity gradient 𝐿𝑝, which is calculated as 
follows: 

𝐿𝑝 =
𝑁
∑

𝛼=1
𝛾̇𝛼(𝑚⃗𝛼 ⊗ 𝑛𝛼) (3)

𝑁 is the number of active slip systems, 𝛾̇𝛼(𝜉𝛼) the shear rate on slip 
system 𝛼. 𝑚⃗ and 𝑛 are the unit vectors for the slip direction and the 
normal of the slip plane. The shear rate 𝛾𝛼 is calculated based on the 
resolved shear stress 𝜉𝛼 (𝜉 is the notation in DAMASK, often 𝜏 is used 
instead): 

𝛾̇𝛼 = 𝛾̇0
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𝜉𝛼 denotes the slip resistance on a slip system 𝛼. The reference shear 
rate ̇𝛾0 and 𝑚 are material parameters which have to be calibrated. The 
effect of the hardening in slip system 𝛽 on the hardening of slip system 
𝛼 can be written as follows:

𝜉̇𝛼𝑐 =
𝑁
∑

𝛽=1
ℎ𝛼𝛽

|

|

|

𝛾̇𝛽 ||
|

(5)

ℎ𝛼𝛽 = 𝑞𝛼𝛽

[

ℎ0

(

1 −
𝜉𝛽𝑐
𝜉∞

)𝑎]

(6)

Eq. (6) captures the micromechanical interaction in different non-
parallel slip systems empirically [5]. ℎ0, (initial hardening rate) 𝜉∞
(saturation slip resistance) and 𝑎 (hardening exponent) are material 
parameters that render the hardening behavior of the single crystal. 
3 
The matrix 𝑞𝛼𝛽 is a measure for latent hardening with a value of 1 
for co-planar slip and 1.4 otherwise. Since the original formulation 
is only valid for face-centered cubic (𝑓𝑐𝑐) crystals, an extension for 
body-centered cubic (𝑏𝑐𝑐) crystals is needed, which reads as follows: 

𝜉𝛼𝑐,𝑏𝑐𝑐 = 𝜉𝛼𝑐 + 𝑎𝛼𝜉𝛼𝑛𝑔 (7)

where 𝑎𝛼 is a coefficient to account for the net effect of nonglide (ng) 
stress on the effective resistance. 𝜉𝛼𝑛𝑔 is the resolved shear stress on 
the nonglide plane. A comprehensive overview of CP modeling can 
be accessed in Roters et al. [49]. In addition to the phenomenological 
models, several models based on dislocation movement are available, 
which have a larger parameter space but have the advantage that many 
parameters are known, at least in their order of magnitude. A thorough 
description of such models can be found in Roters et al. [50] and Ma 
et al. [51].

In order to model the mechanical behavior of martensite, an
isotropic plasticity model was utilized, which is also available in 
DAMASK [43]. This model is analogous to the phenomenological CP 
model with regard to its parameters and state variable kinetics. It differs 
in that it does not consider orientations or slip systems, rendering 
the model direction-independent. Rendering martensite as a purely 
elastic phase is not sufficient, as significant plasticity in martensite has 
been observed in micropillar compression [52]. Since the substructures 
of martensite are not spatially resolved in the sRVE used (at this 
resolution, several hundred RVEs would be necessary), the homoge-
nized structures of martensite can be assumed to be isotropic. The 
isotropic behavior of the martensite is also in line with the experimental 
data [52].

It should be noted that in order to avoid ambiguity, the experi-
mental and corresponding simulative values are designated by speci-
fied nomenclature. In accordance with the conventions established by 
DAMASK, the notation employed for simulative values is as follows: 
The material parameter 𝜉0 represents the critical resolved shear stress 
within the model, whereas 𝜉 denotes the evolving shear stress. The 
Hall–Petch equation for grain size scaling is expressed in the form 
𝜉𝑠𝑡𝑎𝑟𝑡 +

𝑘
𝑑𝑚 , whereas 𝑚 is a size scaling exponent.

2.3. Creation of statistically representative volume elements

To map the microstructure morphology, statistically representative 
volume elements (sRVE) are employed. These sRVE are generated with 
the self-developed RVE generator DRAGen [53]. DRAGen is capable 
of mapping intricate microstructural characteristics, including grain 
shapes and sizes, banded structures, and martensitic or bainitic sub-
structures [53,54]. The specifications of the sRVEs utilized in this 
study are largely consistent with those described by Pütz et al. [55], 
and thus, a detailed re-examination of the generation process is not 
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provided. The phase fraction of the martensite was determined to 
around 0.3–0.32 based on analysis of SEM images which were imaged 
using both secondary and backscattered electrons. The images were 
binarized using the open-source software ImageJ [56], enabling the 
calculation of the martensite content. Other phases, such as retained 
austenite or bainite do not exist in this material [57]. EBSD images were 
taken from all three faces of the sheet material, namely RDxTD, RDxND 
and TDxND. (ND = normal direction, TD = transverse direction). Using 
the Matlab toolbox MTEX [58], the morphological grain parameters 
were calculated by assuming all orientation differences greater than 10◦
as grain boundaries [58] and then fitting ellipses to the grains. Such an 
ellipse can be fully described by the area, the aspect ratio and the tilt 
with respect to the 𝑥-axis resp. the rolling direction [54]. This data is 
used as input for DRAGen. In a two-step process, the grains are first 
shrinked to 0.4 of their original size and placed randomly in the empty 
volume. Then, the grains are allowed to grow to their original volume 
until the sRVE is completely filled. With this, complex microstructural 
morphology can be reproduced accurately [53]. In addition to the 
morphological properties of the grains, the crystallographic orientation 
of the grains is also correctly reproduced in DRAGen. However, the 
DP800 does not exhibit a strongly pronounced rolling texture due to 
the intercritical annealing following cold rolling. It should also be 
noted that grain boundaries are not explicitly present in the approach 
used. Grain boundaries are only modeled in the form of the orientation 
differences.

An edge length of 32 μm was selected for the sRVE, which was 
then discretized into 64 grid points on each edge, resulting in an 
sRVE with 643 points. The size results from the fact that the spectral 
solver in use is particularly suitable at handling grids of size 2𝑛, which 
allows for faster calculations. In accordance with the results outlined 
by Tian et al. [52], all 48 slip systems were considered active within 
the simulation framework, but no distinct input distributions of the 
CRSS were postulated for the various slip systems. To ensure accurate 
reproduction of the measured statistics, 10 sRVE (comprising 2,953 
grains in total, of which 1,000 are ferrite) were generated. Each sRVE 
is simulated three times with different sets of 𝜉0, that were drawn from 
the distribution already presented in Fig.  1b), resulting in a total of 30 
simulations. All sRVE simulations were performed under quasistatic, 
uniaxial conditions with a strain rate of 0.001 𝑠−1. Unless otherwise 
specified, the mean and standard deviation of all simulation results are 
provided in the sections below.

The material parameters of the martensite were also estimated using 
micropillar tests from [52]. From these experiments, a yield stress of 
around 3000 MPa was chosen for martensite and reproduced using the 
aforementioned isotropic plasticity model. A comprehensive calibration 
of the hardening was not conducted. It is hypothesized that, due to 
the enormous phase contrast between ferrite and martensite, the effect 
of the strain hardening of the martensite with respect to the global 
stress–strain curve is negligible, as the plastic deformation is almost 
exclusively localized in the ferrite.

2.4. Calibration approach

A two-stage algorithm was employed for the calibration of the CP-
model parameters. As the experimentally measured data cannot be 
transferred directly to the model due to the absence of interface effects, 
the calibration approach is also an inverse approach. No automatic 
optimization algorithm is employed; instead, parameter identification 
is conducted ‘‘by hand’’ using a trial-and-error approach.

Initially, the parameters for the hardening of the ferrite were cal-
ibrated: 𝜉0-values, which were drawn from the experimentally deter-
mined CRSS distribution were assigned to the individual ferrite grains 
in the sRVE (see Fig.  2a, left part), rendering the model parameter 𝜉0 is 
distinct for each grain. Fig.  2b illustrates this concept by presenting 
a cross-sectional view of an sRVE. The martensite is represented by 
a gray color, while the different colors indicate the various 𝜉 -values 
0

4 
assigned to the ferrite grains. Subsequently, the sRVE were strained 
up to 0.15 strain, and the values for 𝜉 (the resolved shear stress) 
were averaged over the individual grains at a strain level of 0.096 
and 0.146, yielding a SCDF of 𝜉 for each prestrain-level. These can be 
compared to the experimentally determined data from the micropillar 
at the respective prestrain levels of 0.096 and 0.146 (see Fig.  2a, right 
part). By means of an iterative adjustment of the model parameters 
𝑎 (hardening exponent), ℎ0 (initial hardening) and 𝜉∞ (saturation slip 
resistance, as a multiple of 𝜉0), the hardening in the sRVE was adjusted 
in such a way that both the mean 𝜉 value (homogenized over the sRVE) 
and the 𝜉 distributions at both 0.096 and 0.146 are mapped with high 
accuracy.

Algorithm 1 Algorithm employed for the grain size scaling of 𝜉0
Require: Mean CRSS at 1, 2 and 3 𝜇𝑚 𝜉1, 𝜉2, 𝜉3, Mean and Standard 
deviation of CRSS-Distribution  (𝜇, 𝜎2), List of grain diameters in 
sRVE 𝑀 , CRSS at 2 𝜇𝑚 𝜉2𝜇𝑚
Calculate Hall–Petch Parameters 𝜉𝑠𝑡𝑎𝑟𝑡, 𝑘 using least squares regres-
sion
𝑁 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑀)
for 𝑘 ← 1 to 𝑁 do
 Get grain diameter 𝑑 ← 𝑀[𝑘]
 Calculate x-value 𝑥 ← 1

√

𝑑
 Sample 𝜉 ∼  (𝜇, 𝜎2)
 Shift y-intercept 𝜉𝑠𝑡𝑎𝑟𝑡 ← 𝜉𝑠𝑡𝑎𝑟𝑡 + (𝜉 − 𝜉2𝜇𝑚)
 Calculate new 𝜉 ← 𝜉𝑠𝑡𝑎𝑟𝑡 + 𝑘𝑥
 Assign to grain in sRVE
end for

In order to predict the macroscopic stress–strain curve from the 
uniaxial tensile test, it is necessary to take into account the effects 
of grain size on the CRSS and thus the parameter 𝜉0 in the model. 
To this end, an algorithm was formulated that considers both the 
effects of grain size, employing a Hall–Petch-type scaling approach, and 
the statistical nature of the CRSS. The methodology is illustrated in 
Algorithm 1 and Fig.  3. Since Tian et al. [52] have not quantified an 
individual size scaling law for this steel, the Hall–Petch assumption was 
used. The question of the transferability of these size-scaling effects is 
addressed in Section 4. The estimation of these effects was based on 
the analysis of CRSS-data from micropillar experiments with diameters 
of 1, 2 and 3 μm. Testing micropillars significantly smaller than the 
grain size were not part of the previous work, instead, to gain more 
statistics, a higher number of 3 μm sized pillars was tested. A Hall–
Petch regression was then calculated based on the mean CRSS values 
using least squares regression. To construct the sRVE material input, 
the previously drawn 𝜉0-values assigned to the grains in the sRVE are 
used to shift the Hall–Petch regression line. This means that for each 
grain, at first the 𝜉0-parameter was taken from the experimentally-
determined distribution function, before at second the correction was 
made to consider the grain size effects according to the Hall–Petch 
relationship. Fig.  3a shows five different Hall–Petch regression lines as 
examples, and Fig.  3b illustrates the procedure for a single grain. It 
should be noted that in this approach, the slope of the individual Hall–
Petch regression lines remain constant. The calibration process, which 
comprises three steps – namely, "Calibration of the strain hardening 
behavior’’, "Accounting for grain size effects’’, and "Validation based 
on macroscopic data" – is illustrated in a schematic overview in Fig.  4.

Two further parameter studies are conducted using the calibrated 
model, with a focus on the size scaling exponent 𝑚 and the hardening 
of the martensite. The objective of this is to examine the impact of these 
quantities on the global stress–strain curve and strain localization and 
partitioning. To this end, sets of sRVE with scaling exponents 𝑚 = 0.3
and 𝑚 = 0.7 were generated and calculated by modifying the grain 
size scaling approach. The aforementioned investigations allow for the 
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Fig. 2. Approach to map the experimental CRSS-distribution onto the sRVE-model. (a) Experimentally measured CRSS for the ‘‘as received’’ state as input for the sRVE-model 
(left). CRSS-distributions at the different prestrain levels (right), (b) Slice through an exemplary sRVE. The martensite is shown in gray, while the ferrite grains are shown in 
different colors due to the different initial 𝜉0 value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Graphic description of the grain size scaling algorithm based on the Hall–Petch-relation. (a) Schematic depiction of the shifting of the Hall–Petch regression lines based 
on the 2 μm pillar CRSS-distribution, (b) Schematic depiction of the calculation of the grain size adjusted 𝜉0 material parameter (cf. alg. 1).
Table 1
Calibrated CP-Parameter for ferrite and model parameters for martensite. (* - Fitting 
parameter for both phases, ** - fitting parameter only for martensite).
 𝑁(−) 𝑛(−) 𝑎∗(−) ℎ∗

0 (MPa) 𝜉∗∗0  (MPa) 𝜉∗∞ (MPa) 
 Ferrite 48 20 2.0 230 Sampled 5 × 𝜉0  
 Martensite – 20 3.25 5000 1000 2000  

substantiation of the assumption of 𝑚 = 0.5, which is typically made in 
the context of the Hall–Petch relation 𝜉𝑠𝑡𝑎𝑟𝑡 + 𝑘

𝑑𝑚 . This power law like 
behavior is also observed in micropillar compression experiments [30].

To investigate the strain hardening of the martensite, simulations 
were carried out with a 𝜉∞ (see Eq. (6)) value of either 1000 or 
3000 MPa. Modifying this parameter alters the strain hardening of 
the martensite, but keeps the linear nature of the strain hardening of 
the martensite. This serves to examine the sensitivity of the presented 
approach with regard to the strain hardening of the martensite and 
to substantiate the aforementioned hypothesis on the effect of the 
parameters.

To underline the significance of a high-fidelity parameter set, a 
synthetic parameter set which produces the same macroscopic stress–
strain curve as the calibrated was generated. A parameter set for ferrite 
from the literature by Liu et al. [59] was employed, and the martensite 
parameters were fitted based on the stress–strain curve of the DP800. 
Selected sRVE simulations with both parameter sets demonstrate the 
impact on the local stress and strain distribution.
5 
3. Results

3.1. Strain hardening behavior of the polycrystalline ferrite in the dual 
phase sRVE

Table  1 presents the inversely calibrated parameters for the ferrite 
and the martensite. As outlined in the preceding section, the martensite 
parameters were solely estimated and will be discussed in greater detail 
in the parameter study in Section 3.3. The mean calibrated strain 
hardening, i.e. the change in the CRSS is illustrated in Fig.  5a as a 
solid orange line, alongside the experimental data (dashed black line), 
plotted against the mean shear strain. This is calculated by multiplying 
the global strain by a Taylor factor of 2.75, based on the pencil glide 
slip in 𝑏𝑐𝑐 crystals (𝛤 = 𝑀𝜀) [12]. The orange crosses represent the 
grain-averaged 𝜉 value of a single sRVE simulation, demonstrating the 
occurring scatter. The plot over the shear stress is used due to the 
comparability with Fig.  9b from Tian et al. [12]. It is evident that 
the modeling approach can be utilized to map the strain hardening, 
including its linear nature. In the range up to an average shear strain 
of 0.264, the strain hardening is almost perfectly matched with very 
little constant underestimation. In the subsequent range up to 0.402, 
the simulated slope is slightly lower than the experimentally measured 
slope. The slope of the mean strain hardening of the ferrite is 233 ± 9 
MPa in the simulation, in comparison to 242 MPa in the experimen-
tal measurements. The standard deviation is calculated based on the 
minimal possible hardening and the maximum possible hardening. This 
represents a deviation of the mean strain hardening values of less than 
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Fig. 4. Schematic workflow for the calibration scheme, consisting of the (1.) calibration of the hardening, (2.) the incorporation of the grain size effects and (3.) the final validation 
based on macroscopic data.
Fig. 5. Results for the strain hardening model. Comparison for mean CRSS vs 𝜉 left, distributions right. (a) Mean ferrite hardening in sRVE compared to experimental data (black). 
Dashed line indicates the extrapolated mean, the crosses mark the mean 𝜉-values for the individual sRVE, (b) Comparison of CRSS-distributions (exp. vs. sim) at different (pre)-strain 
levels. Solid lines indicate the analytical CDFs, the dots the measured data. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
3.5%. Only three parameters (𝑎, ℎ0 and 𝜉∞) have to be fitted for the 
ferrite, with 𝑛 being excluded from the fitting process since it controls 
the strain rate sensitivity, which is not needed in this study since 
all experiments and simulations being conducted under quasistatic 
conditions. 𝜉0 is given from the distributions as stated before.

In Fig.  5b, the ECDF of the CRSS is compared to the 𝜉-SCDF, which 
is the density calculated based on every grain-averaged 𝜉-value in every 
simulation (orange curve). Each of the two simulative distributions con-
sist of 3000 data points, 1000 ferrite grains in 10 sRVE 𝑥 3 simulations 
per sRVE. Overall, there is convincing agreement between simulations 
and experiments. However, the SCDFs are slightly broader, i.e. have a 
higher standard deviation, resulting in more very small or very large 
grain-averaged 𝜉 values. In addition to the agreement at the different 
(pre)strain levels, the leftmost orange distribution demonstrates that 
the input distribution (black) is accurately represented by the distri-
bution that has been reversely drawn from all the sRVE at a strain of 
0.0. This underscores that the sample of 30 simulations is sufficient 
to capture the distribution of the CRSS and is therefore statistically 
representative.

Table  2 presents a summary of the results obtained from the strain 
hardening model and offers a comparison with the experimental data 
provided by Tian et al. [12], Table  2. The simulative standard deviation 
represented in the table is the average of all the individual sRVE 
standard deviations of 𝜉. Similar to the visual depiction in Fig.  5b, the 
greater width of the SCDF is evident in the form of the higher standard 
deviation at 0.096 and 0.146 (pre)strain. Compared to the experimental 
data, where the standard deviation of the ECDF decreases, there is an 
increase of the width of the density function in the simulation data. 
The contraction, i.e. the reduced standard deviation, is apparently not 
reflected in the strain hardening model.
6 
Table 2
Results for the strain hardening model. The experimental values are taken from [12], 
table 2. ± denotes the standard error of the respective quantity.
 Strain (%) Mean (MPa) Std (MPa)
 Sim. Exp. Sim. Exp.  
 0.0 225 ± 4 226 ± 9 37 ± 3 39 ± 2 
 9.6 290 ± 5 292 ± 8 46 ± 5 32 ± 4 
 14.6 319 ± 6 323 ± 11 50 ± 6 32 ± 2 

3.2. Prediction of homogenized stress–strain curve using grain size scaling

The calibrated material parameters from Table  1 were coupled with 
algorithm 1 to include grain size effects on the CRSS in order to predict 
the macroscopic stress–strain curve. The grain size scaling yields a 
modified distribution of 𝜉0 values. The estimated Hall–Petch parameters 
are 𝜏𝑠𝑡𝑎𝑟𝑡 = 77.84 MPa and 𝑘 = 183.94 MPa, with a 𝑅2-value of 0.88. 
No standard deviation is given for these parameters, as the fit of the 
Hall–Petch regression was only carried out using the three mean values 
of the CRSS.

Given that the grains in the sRVE are on average larger than 2 μm
(3.76 μm ±3.04 μm), the center of mass of the density function is shifted 
to the left. However, the width of the function is also increased, since 
it is the product of two marginal distributions (grain size distribution 
and 𝜉0-distribution). The mean value of 𝜉0 shifts from 226 ± 40 MPa to 
209 ± 53 MPa.

The true stress–strain curve from the sRVE-simulations, is depicted 
in Fig.  6 and is compared with the true stress–strain curve from the 
uniaxial tensile test. Since the stress–strain curves for the individual 
tensile tests are homogeneous, one representative experimental curve 
is depicted. The solid orange line delineates the mean value, while the 
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Fig. 6. Comparison of exp. true stress–strain curve with the sRVE-Simulations. The shaded area denotes the 95% confidence interval. The strain hardening rate denoted on the 
right 𝑦-axis.
shaded area represents the 95% confidence interval (see inset in Fig. 
6). In order to enable the calculation of both quantities, the data points 
obtained from the simulations were piecewise linear interpolated, with 
the objective of establishing a comparison between the stresses at iden-
tical strain values across all curves, whether experimental or simulated. 
Given the considerable number of simulations conducted, the confi-
dence interval is relatively narrow. Overall, there is good agreement 
between the simulated and experimental data. The simulations exhibit 
a slight tendency to overestimate the experimental stress level, particu-
larly evident in the range of 0.005 to 0.015 and for strains higher then 
0.07. For the rest of the value range, the experimental datapoints fall 
inside the confidence interval, underpinning that there is no statistically 
significant difference between the experimental data and the numerical 
prediction. The mean absolute error (MAE) was calculated between the 
experimental curve and the simulated mean value, yielding a value of 
21±8 MPa, with ± denoting the averaged width of the shown confidence 
interval. The resulting mean absolute percentage error (MAPE) is 3.3%. 
It can be reasonably deduced that the major portion of the deviation 
are caused by the deviation at higher strains. For the regime up to 0.05 
global strain, the error is only 12 ± 7 MPa (MAPE: 3.7%).

In addition to the high degree of agreement observed with regard 
to the stress–strain curve, there is also a high consistency between the 
numerically estimated and experimentally measured strain hardening 
rates (Fig.  6, right y-axis), which can be defined as the derivative of the 
stress–strain curve (in this example, more precisely, the numerical gra-
dient of both curves). The favorable mapping of this important material 
parameter demonstrates that the mapping of the strain hardening in the 
ferrite (Fig.  5) also results in a favorable mapping of the homogenized 
strain hardening of the entire dual-phase sRVE. The good agreement of 
the curves also leads to a favorable agreement in yield strength. The 
𝑅𝑝,0.2 measured in the uniaxial tensile test is 477 ± 10 MPa, whereas 
in the simulation, the value is 491 ± 22 MPa. The higher deviation is 
attributed to the greater scatter of the sRVE compared to the tensile test 
samples, which contain way more grains and martensite islands than a 
single sRVE.
7 
3.3. Effect of the martensite strain hardening on the macroscopic stress–
strain curve

The absence of a comparable calibration methodology for marten-
site is based on the assumption that the martensite strain hardening 
is insignificant with respect to the stress–strain response of the bulk 
material due to the significant phase contrast. To test the validity of 
this assumption, two additional synthetic stress–strain curves and cor-
responding material parameter sets were generated for the martensite. 
The first set was constructed with 𝜉∞ = 1000 MPa, which reduces the 
strain hardening to almost 0 and leads to a yield-to-tensile stress ratio 
of approximately 1.0. The second curve was generated with 𝜉∞ = 3000 
MPa, which results in a more pronounced strain hardening then the 
base set with 𝜉∞ = 2000 MPa. It should be noted that the modifications 
only affect the strain hardening, with the yield point remaining at 
a constant value of approximately 3000 MPa, which was determined 
by Tian et al. using micropillar compression experiments in the bulk 
regime [52]. Fig.  7a depicts the three resulting stress–strain curves. It 
is evident that the curves exhibit a significant degree of divergence from 
one another for strains up to 0.14. With 𝜉∞ = 1000 MPa, a stress value 
at 0.14 global strain 𝜎0.14 = 3046 MPa is achieved, which is very close 
to the yield strength. For 𝜉∞ = 2000 MPa this is 3604 MPa, and with 
𝜉∞ = 3000 MPa 4360 MPa.

All 30 sRVE simulations were replicated with the revised marten-
site material parameters. The extensive number of simulations was 
primarily employed to quantify the scatter resulting from local fluc-
tuations in the ferrite based on the statistical nature of the material 
parameters. Fig.  7b illustrates the resulting true stress–strain curves 
averaged over all 30 simulations with the varying stress–strain curves 
for the martensite. For the sake of simplicity, the experimental stress–
strain curve was not included. Substantial discrepancies between the 
three curves emerge only at strains exceeding approximately 0.06. 
While a divergence is noticeable at higher elongations, it is minimal in 
comparison to the pronounced variations in the stress–strain curves for 
the single-phase martensite. This phenomenon can be attributed to the 
fact that martensite exhibits predominantly elastic deformation, with 
very little plastic deformation. Table  3 shows the number of grid points 
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Fig. 7. Results for parameter study on the martensite hardening. (a) Three different stress–strain curves for the martensite phase (𝜉∞ = 3000 MPa, 𝜉∞ = 2000 MPa, 𝜉∞ = 1000 MPa). 
Yield strength stays constant, only the hardening changes, (b) Aggregated stress–strain curves with 𝜉∞ = 3000 MPa, 𝜉∞ = 2000 MPa, 𝜉∞ = 1000 MPa. Shaded area shows the 
confidence interval averaged over 30 simulations.
Fig. 8. Individual stress–strain curves extracted from the dualphase sRVE for different strength martensite, aggregated over all sRVEs. In orange, dashed, the curve of the ferrite 
is shown as a comparison.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Fraction of martensite grid points exceeding the yield strength of 3000 MPa at a 
homogenized global strain of 0.05, depending on the martensite strain hardening.
 Parameter set Fraction of martensite grid points exceeding the yield strength (–) 
 𝜉∞ = 1000 0.05 ± 0.015  
 𝜉∞ = 2000 0.06 ± 0.019  
 𝜉∞ = 3000 0.08 ± 0.024  

of the martensite phase which exhibit plastic deformation, i.e. having a 
stress exceeding the yield strength of 3000 MPa. The grid points were 
averaged over all 30 sRVE simulations. It is evident that a negligible 
proportion of elements undergo plastic deformation (less than 10%), 
thereby rendering the hardening of the flow curve solely significant for 
these specific points.

The significant phase contrast between martensite and ferrite, as 
illustrated in Fig.  8, is predominantly accountable for this deformation 
behavior. The stress–strain curves for the martensite and ferrite are 
displayed here, aggregated over all sRVE simulations and for all three 
distinct martensite curves. The global strain of each sRVE is 0.05. For 
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the sake of simplicity, a single ferrite curve is incorporated. The distinc-
tion between martensite and ferrite is evident, with ferrite exhibiting 
strain values that are more than six times higher than those observed 
in martensite. The three distinct martensite curves exhibit minimal 
deviation, and the mean stress of the martensite is distinctly lower than 
the martensite’s yield point for all three different martensite strength 
levels.

The results demonstrate that the varying stress–strain curves of 
martensite exert a similar, albeit modest, impact on the macroscopic 
stress–strain curve and the martensite stress–strain curves in the sRVE. 
This implies that due to the considerable divergence in strength be-
tween the two phases, the hardening of the martensite exerts a negli-
gible influence on the strain partitioning.

3.4. Effect of the size scaling exponent 𝑚 on the macroscopic stress–strain 
curve

Subsequent to the investigation of the influence of martensite hard-
ening, an analysis was conducted on the influence of the size scaling 
exponent 𝑚. The true stress–strain curves of the simulations with 𝑚 =
0.3 and 𝑚 = 0.7 are presented in Fig.  9a. The base curve (Fig.  6) can 
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Fig. 9. Results for the parameter study on the size scaling exponent 𝑚. (a) Aggregated flowcurves with 𝑚 = 0.3. Solid blue line shows the mean value with 𝑚 = 0.5, which 
corresponds to the classical Hall–Petch-assumption, (b) Aggregated flowcurves with 𝑚 = 0.7. Solid blue line shows the mean value with 𝑚 = 0.5, which corresponds to the classical 
Hall–Petch-assumption. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Comparison of the strain hardening rates for different size scaling exponents 
𝑚. The experimental slope was omitted due to better visibility.

be seen as a solid blue line, corresponding to 𝑚 = 0.5. Again, all 30 
simulations were repeated using the different 𝑚-values for the grain 
size scaling. Since the size scaling exponents directly affects the ferrite, 
the effect has to be investigated using all 30 sRVE-sample.

The different size scaling exponents lead to a modified Hall–Petch 
regression. For 𝑚 = 0.3, we have 𝜏𝑠𝑡𝑎𝑟𝑡 = −19.45 MPa and 𝑘 = 281.29 
MPa, for 𝑚 = 0.7 𝜏𝑠𝑡𝑎𝑟𝑡 = 119.15 and 𝑘 = 142.52 MPa. Although 
a negative value for 𝜏𝑠𝑡𝑎𝑟𝑡 is physically impossible, simulations were 
nevertheless conducted for the sake of completeness. In contrast to 
the influence of the hardening of the martensite, the influence of the 
size scaling exponent and the modified size scaling on the bulk stress–
strain response is markedly pronounced, with 𝑚 = 0.3 resulting in 
an underestimation of the entire curve and 𝑚 = 0.7 leading to an 
overestimation. The corresponding MAE is 46.6 ± 6.7 MPa for 𝑚 = 0.3
and 41.4 ± 8.2 MPa for 𝑚 = 0.7, more than 4x the MAE compared to 
𝑚 = 0.5. The discrepancy in the stress–strain curve can be attributed to 
the alteration in the slope of the Hall–Petch regression, which in turn 
affects the degree to which grain size exerts an influence. A decrease in 
𝑚 results in a greater slope, which in turn leads to an underestimation 
of the stress–strain curve due to a stronger consideration of the grain 
size. Conversely, an increase in 𝑚 has the opposite effect.

Fig.  10 depicts the mean strain hardening rates for all three sets 
of simulations. Only in regions of very low strain (𝜀 ≤ 0.01) there is 
a visible difference, whereupon the curves become almost identical. 
This demonstrates that the size scaling exponent, 𝑚, exerts an influence 
solely on the level of the stress–strain curve, with nearly no impact on 
strain hardening. Consequently, from a phenomenological perspective, 
𝑚 acts as some kind of scaling factor on the overall stress level.
9 
3.5. Case study: Influence of different parameter sets on the stress and strain 
partitioning

To illustrate the significance of accurate material parameters, a 
parameter study was conducted using two sets of parameters with 
distinct characteristics. For the sake of simplicity, only a single sRVE 
was selected for this case study. Fig.  11 depicts the numerically pre-
dicted stress–strain curves in conjunction with the experimental ones, 
alongside the stress–strain curves for the individual phases. Both pa-
rameter sets replicate the homogenized macroscopic behavior well and 
exhibit comparable MAE of 9 MPa (set 1) and 10 MPa (set 2). As 
this is merely a single simulation, there is no confidence interval for 
either MAE value. In set 1, characterized by a high phase contrast, 
the ferrite carries the majority of the applied deformation, resulting 
in an average strain in the ferrite that is more than twice as high as 
for the martensite and a large difference in the final stress. In set 2, 
both phases exhibit comparable strength, leading to a markedly more 
homogeneous deformation and a notable reduction in the deviation in 
the stress values.

The distinction is also apparent at the local level within the sRVE, as 
illustrated in Fig.  12. This figure illustrates an exemplary slice through 
the sRVE, wherein the von-Mises equivalent plastic strain (PEEQ) is 
visible in the upper row. Set 1 is illustrated on the left, and set 2 is 
illustrated on the right. While the magnitude of the plastic strain differs 
between the two sets (please note that the colorbars are different for 
the sake of comparability), a strain localization can be observed at the 
same location (red circle) within a ferrite grain, encapsulated between 
two martensite islands. However, an examination of the principle stress 
(𝜎1) reveals a markedly different distribution between the sets. In set 
one, there is a pronounced stress localization with stress values reach-
ing around 5000 MPa at the narrowest point of a larger martensitic 
structure (white circle, left), which extends over half the width of the 
section through the sRVE. In contrast, no stress localization can be 
identified at the same location (white circle, right) for parameter set 
2. In this set, the stress hotspots are at different position in the sRVE. 
This indicates that this material model predicts the stress localization 
at completely different points in the microstructure, which will likely 
lead to a different prediction of the damage initiation hotspots. This 
underlines the importance of a correct prediction of the stress–strain 
curves of the individual phase with high-fidelity model parameters.

4. Discussion

The objective of the discussion is to gain insight into the advantages 
and limitations of the proposed approach for calibrating CP model 
parameters. Furthermore, the impact of diverse influencing variables 
and the implications on microstructural modeling on small scales is 
discussed.
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Fig. 11. Global stress–strain curves and stress–strain partitioning for two different parameter sets. (a) Exemplary stress–strain comparison and partitioning for a single sRVE using 
the calibrated parameter set (Set 1), (b) Exemplary stress–strain comparison and partitioning for a single sRVE using an artificial parameter set (Set 2).
Fig. 12. Plastic strain and principle stress localization for two different material models in a slice through an exemplary sRVE. The left column corresponds to the model from 
this study, the right one to a synthetic model with an artificially lowered phase contrast.
4.1. Comparison with other calibration approaches

In comparison to alternative techniques for CP parameter identifi-
cation, the key benefit of the proposed methodology is the ability to 
obtain quasi-unique parameter sets through the incorporation of a di-
verse set of data from the microscale. In contrast, Sedighiani et al. [16] 
demonstrated that calibration via macroscopic tensile testing frequently 
yields non-unique results for most of the model parameters. It can 
be stated that the model parameters from the proposed approach are 
much more unambiguous than parameters obtained by simple uniaxial 
tensile tests, since both the distributions of the CRSS and the mean 
strain hardening are incorporated as target functions. For example, the 
10 
linear nature of the ferrite strain hardening model at very low strains 
is only displayable with a low value for the initial hardening ℎ0 and 
cannot be obtained otherwise. To quantify the reduction in uncertainty 
for the approach presented, many parameter sets could be generated 
and compared using computer-aided optimization techniques, such 
as genetic algorithms [16] or Bayesian optimization [60]. Given the 
considerable number of simulations that would be required, this was 
not included in the study. In comparison with other approaches for 
calibration, which involve nanoindentation and a subsequent fit of the 
second phase based on tensile test results, the macroscopic stress–strain 
curve can be excluded from the calibration process in the approach 
presented here. In addition, with these different approaches, there 
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is always the possibility that an error in the calibration of the first 
phase will be compensated by a subsequent error in the second phase 
calibration and will still result in a good macroscopic stress–strain curve 
despite a wrong stress–strain partitioning. As shown in Section 3.5, Fig. 
12, this quickly leads to a clearly erroneous prediction of local material 
properties. As shown in Gallardo-Basile et al. [25], the calibration with 
nanoindentations is complex and quickly leads to an overestimation 
of the macroscopic material behavior without exact consideration of 
the boundary conditions or additional data such as micropillar com-
pression. It should be noted that during nanoindentaton, a complex 
stress state with steep gradients is present. The interaction of the 
plastic zone size of the indent with neighboring grains and interfaces is 
another challenge. To the best of our knowledge, most nanoindentation 
based approaches have not been validated for a two-phase material on 
the macroscale. As mentioned in the introduction, calibration of the 
strain hardening directly from the micropillar stress–strain curve is not 
possible due to the free surfaces of the micropillar and the fact that the 
apparent strain hardening does not represent the strain hardening of a 
material [6,12].

4.2. Mapping properties from the micro- to the macroscale

The findings of Section 3 show that the homogenized macroscopic 
stress–strain curve can be accurately predicted by the developed cali-
bration approach, even in the absence of data from macroscopic tests. 
The slight overestimation of the stress–strain curve in the low strain 
regime (around 0.01 - 0.015) may be attributed to the presence of 
residual compressive stress within the ferrite phase, which is a conse-
quence of the phase transformation that occurs during the intercritical 
annealing and subsequent quenching [61]. Khadkhodapour et al. [62] 
were able to determine the varying hardness of the ferrite grains in ac-
cordance with their distance from the martensite, which was attributed 
to a heterogeneous dislocation structure caused by the martensitic 
transformation. Therefore, a ferrite grain cannot be regarded as ho-
mogeneous but rather exhibits a certain degree of inhomogeneity. 
However, the induced residual stresses are presumably already de-
pleted at relatively low global strains and, therefore, this effect can be 
regarded as negligible at higher plastic strain values. For the overes-
timation of the experimental curve for strains higher then 0.07, one 
possible explanation is the nature of the CP-model, which renders the 
simulated stress–strain curve linear from relatively low strains on. In 
addition, no effects like for example damage-induced softening are 
included in the model. Another influencing factor is the hardening of 
the martensite, which will be discussed later.

The scaling of the CRSS of individual grains based on the sample 
size effect observed in the in situ micropillar compression experiments 
is critical for the correct transfer of properties from the micro to the 
macroscale. Since no separate size scaling law was derived in Tian 
et al. [52] due to the limited pillar diameter variations, the assumption 
of 𝑚 = 0.5 from the Hall–Petch equation was used. The size effects 
in these small-volume compression tests can often be described by a 
power law 𝜎𝑦 ∼ 𝑤−𝑚 like the Hall–Petch relationship [63]. The effect of 
the size scaling exponent on the macroscopic stress–strain data is very 
pronounced, as can be seen for the simulations conducted for 𝑚 = 0.3
and 𝑚 = 0.7, however, 𝑚 only influences the overall level of the curve, 
the strain hardening remains unaffected (see strain hardening rates in 
Fig.  9). Therefore, the specific choice of 𝑚 is not critical for the correct 
mapping of the strain hardening using the presented approach.

Many values for 𝑚 can be found in the literature, ranging from 0.22 
up to 1 [64,65]. Kraft et al. [66] were able to show, however, that 
there is no uniform, material-specific size scaling exponent, but that 
𝑚 varies for different sample size 𝑑 ranges. They defined three distinct 
regimes with different underlying mechanisms: Regime III (‘‘bulk-like’’) 
starts from around 𝑑 > 1 μm and therefore covers the micropillar used 
in this work. According to Kraft et al. [66], 𝑚 = 0.5 can be assumed 
for this regime, which is why this was also used in this study. For a 
real validation, however, an individual 𝑚 would have to be derived, 
for which further micropillars of different sizes are necessary.
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4.3. Influence of the martensite strain hardening behavior

The experimental data from the micropillar compression tests from 
Tian et al. [12] do not show pronounced apparent strain harden-
ing, however, pillar compression is not well-suited to measure the 
strain hardening [6]. To model the possible impact of strain hardening 
behavior of martensite, two assumptions were made. Firstly, it was 
assumed that due to the considerable number of interfaces present 
in the martensite pillars, the properties are analogous to those of the 
martensite, without size effects. Consequently, both the yield strength 
and strain hardening are deemed to be transferable. The results of both 
the calibration and the parameter study on the martensite hardening 
(Fig.  10) indicate that the yield strength is transferable, and that size 
effect does not appear to be a significant factor. The second assumption, 
that the strain hardening of the martensite plays a secondary role in 
the overall material’s strain hardening, due to the significant phase 
contrast, is also underpinned by the parameter study (see Fig.  8). 
Visible deviations in the predicted stress–strain curve are observable 
only from larger strains of 0.06–0.07 or more, with a variation in 
the strain hardening parameters of the martensite. In addition, the 
martensite deforms almost exclusively elastically, more than 90% of 
the elements remain below the yield strength of 3000 MPa at a global 
strain of 0.05 (see Table  2), only minimally influenced by the hardening 
of the martensite. Nevertheless, the strain hardening of the martensite 
is undoubtedly a crucial factor in enhancing the prediction quality at 
elevated strains. When strains are high globally, the deformation at the 
local level no longer occurs almost exclusively in the ferrite; rather, 
the martensite must also carry part of the applied deformation. In 
conclusion, the findings indicate that an exact characterization of the 
martensite may be dispensable under specific boundary conditions. Fur-
thermore, the hardening of the martensite could be calibrated inversely 
using the data from the macroscopic tensile test, but then these results 
would only be available as validation data to a limited extent. However, 
if the second phase is markedly softer than the present martensite, the 
approach may be inadequate. In such a scenario, it may be necessary 
to calibrate both phases using micropillar compression on prestrained 
samples.

It is also important to note that the martensite considered in this 
analysis exhibits significantly higher strength than the ferrite phase. 
Consequently, the global homogenized stress–strain curve does not 
follow a ‘‘rule of mixture’’-like principle based on the phase fractions. 
For the present material, a similar approach would likely result in an 
overestimation of the macroscopic stress–strain curve by a factor of x2 
- x3, or alternatively, an estimation of the martensite to be significantly 
softer than its actual mechanical properties. Likely, the high phase 
contrast alters the local deformation and stress partitioning within the 
virtual microstructure in a manner that renders the ‘‘Rule of Mixture’’ 
inapplicable.

4.4. Implications on damage behavior and modeling

Although high-fidelity information on strain hardening and flow 
behavior do not directly correspond to the damage behavior of the 
material, it is a first step towards understanding the damage behavior of 
a material. Further material parameters such as the fracture toughness 
of individual phases [67–69] are required for a true modeling of the 
initiation and especially the evolution of ductile damage. For instance, 
the fracture toughness of individual phases can be determined through 
the implementation of microscopic fracture mechanics tests. However, 
the transfer of the fracture mechanics parameters into a numerical 
model is not trivial due to the crack assumptions required in the general 
concepts of fracture mechanics.

As shown by Yan et al. [9] damage is a phenomenon that is 
highly dependent on local heterogeneities caused by microstructure 
and material properties, which is why a correct prediction of the 
macroscopic stress–strain curve is insufficient to predict damage. In 
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particular, the locally massively different stress distribution observed 
in Fig.  12 underlines the importance of a realistic calibration of the 
mechanical behavior of all phases, as performed in this work. Since the 
maximum principal stress acts as the driving force for crack initiation 
and propagation, it is a good indicator of the damage behavior of the 
material. In contrast to that, the strain distribution is at least qual-
itatively similarly predicted by both considered parameter sets. This 
is important because the strain distribution can be determined using 
e.g. 𝜇DIC [70], even though these measurements are inherently 2D. 
However, the stress distribution cannot be measured in a comparable 
way.

5. Conclusion

The objective of this study was to develop a novel methodology 
for calibrating crystal plasticity models using micropillar compression 
experiments. This approach was specifically designed to identify ma-
terial parameters that accurately predict local heterogeneity caused by 
the phase contrast and strain hardening in multi-phase materials and, 
consequently, damage behavior. To achieve this, we employed sRVE 
and crystal plasticity simulations. Based on the findings, we can draw 
the following conclusions:

1. The parameters of a crystal plasticity model were successfully 
calibrated and validated using the macroscopic stress–strain 
curve. Size effects could also be derived from the micropillar 
tests and successfully transferred to the grains in the RVE.

2. The hardening of the martensite only shows an influence at 
higher strains and can therefore be neglected.

3. The effect of the assumed size-scaling exponent on the level of 
the stress–strain curve of the bulk is much more pronounced. The 
assumption of 𝑚 = 0.5 similar to the Hall–Petch relation could 
be validated.

4. In summary, the calibrated parameters can predict the phase 
contrast between hard and soft phase at any global strain, as the 
initial phase contrast and the strain hardening of the ferrite are 
correctly modeled. This is the first step of accurately modeling 
damage initiation and evolution in subsequent studies.

5. This admittedly very complex approach can also be used to 
determine the macroscopic stress vs strain behavior if (a) the 
material volume to be tested does not allow for standardized 
samples or (b) if it is not possible to remove more material from 
a structure to be examined

To further develop the approach, the quantification of the uniqueness of 
the calibrated parameters should be addressed by means of computer-
aided optimization. This can ensure even better comparability with 
other approaches.
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