
Master Thesis

Effective Quantifier-Based Reasoning for
Quantitative Deductive Verification

by

Emil Beothy-Elo

First Examiner:

Prof. Dr. Ir. Dr. h.c. Joost-Pieter Katoen

Second Examiner:

apl. Prof. Dr. Thomas Noll

Supervisors:

Philipp Schroer
Darion Haase

Communicated by Joost-Pieter Katoen

Abstract

Caesar is a deductive verifier for probabilistic programs. It builds on modern SMT solvers to automatically check
if probabilistic programs conform to their specification. This high degree of automation sometimes comes at the
cost of brittle verification. Seemingly unrelated changes in the input program can cause the verifier to hang and
verification to fail. These instabilities are often caused by quantifiers that are used in axioms to describe the
relevant theories for verification. A common problem here are matching loops – an ill-behaved set of quantifiers
that can cause an infinite number of quantifier instantiations by themselves. A large contributor of matching
loops are user-defined recursive functions.
A common approach taken by other verifiers is to encode such functions as limited functions, limiting the number
of recursive instantiations and avoiding matching loops by construction. While they have been proven to be
effective, there is little information available about them and they lacked a formal treatment. We present and
formally define different limited function encodings used by other verifiers, and subsequently prove that these
transformations are sound. Furthermore, we examine how one of the encodings can be modified to obtain finite
and constructible counterexamples involving recursive functions.
The presented encodings are implemented in Caesar. We provide guidance on the subtleties that are required for
the encodings to work well in practice. Our evaluation shows that the implemented encodings are very effective
in eliminating brittleness for problematic programs in Caesar’s test suite.

ii

Contents

1 Introduction 1

2 Background 4

2.1 Deductive Verification and Caesar . 4
2.1.1 Probabilistic Programs and HeyVL . 4
2.1.2 From HeyVL to SMT . 5

2.2 Many-sorted FOL . 7
2.2.1 Equality with Uninterpreted Function . 12

2.3 Quantifier Instantiation . 13
2.3.1 E-matching . 13
2.3.2 MBQI . 17

3 Limited Functions 20

3.1 The Encodings . 21
3.1.1 Default Encoding . 22
3.1.2 Fixed Fuel Encoding . 23
3.1.3 Variable Fuel Encoding . 24
3.1.4 First Comparison and Analysis . 25

3.2 Soundness . 26
3.2.1 Equisatisfiability under SMT-LIB Semantics . 26
3.2.2 High-level Soundness . 33
3.2.3 Incompleteness under E-matching Semantics . 35
3.2.4 Termination under E-matching Semantics . 36

3.3 Enabling Unbounded Computations . 38
3.3.1 Literal Terms . 38
3.3.2 Fuel Encodings with Computation . 39
3.3.3 Soundness and Termination . 40

4 Counterexamples 42

4.1 Using unknown-models . 42
4.2 Using a Fixed Depth Encoding . 44

4.2.1 Why not to use the Variable fuel encoding? . 46
4.3 Using a Fixed Depth Encoding and Bounded Inputs . 47

4.3.1 Case Study: Counterexample for arp . 48

5 Implementation 50

5.1 General . 50

iii

CONTENTS

5.2 Disabling MBQI . 51
5.3 Lit-marker . 51
5.4 Determining Literal Terms . 52

5.4.1 Which Terms to Lit-mark . 54
5.5 Quantifier IDs and Weights . 55

6 Evaluation 56

6.1 Methodology and Benchmark Set . 56
6.1.1 Measuring Brittleness . 56
6.1.2 The Integration Tests . 56
6.1.3 Required Modifications to Programs . 57

6.2 Previous Brittleness . 57
6.3 Comparing the Encodings . 59
6.4 Impact of Lit-Marking . 60

6.4.1 Brittleness Introduced by Lit-Marker . 61
6.5 Optimal Fuel Value, Fuel Ramping and Hybrid Approaches . 61
6.6 Case Study: Coupon Collector . 62
6.7 Conclusion . 63

7 Related Work 65

7.1 Related Work . 65

8 Conclusion 67

8.1 Future Work . 67

iv

1. Introduction

Many systems, such as systems performing network communication, inherently include uncertainty. These can
be modelled using probabilistic models. For example, the ZeroConf protocol [11] is a dynamic configuration
protocol for assigning IP addresses. Among others, it has to deal with the possibility that an assigned IP address
is already used in the network and that messages that are sent to perform address resolution might get lost
during transmission. The protocol was well studied by the model checking community [4, 10, 25], including
probabilistic models such as probabilistic timed automata [27], before its standardization.
ZeroConf can also be modelled as a probabilistic programs. These are programs that can additionally sample from
probability distributions. Due to their similarity to classical programs, they are an interesting option to express
probabilistic models. When analysing probabilistic programs, new questions arise like “what is the expected
runtime?” or “what is the expected value of a variable after termination?” Answering and verifying the results
to such questions requires different formalisms and tooling than for the classical setting.
The problem of verifying probabilistic programs is even more undecidable than in the classical setting [26]. So
one cannot expect to always get an answer. Still, modern SMT solvers like Z3 [15] and cvc5 [5] can often find
solutions using sophisticated heuristics. This sparked the development of a number of deductive verification
infrastructures for classical programs (including Boogie [29], Viper [35], and why3 [20]) and prove oriented
programming languages (including Dafny [28], and F* [43]). Caesar [39] aims to be the probabilistic extension.
Caesar is a quantitative deductive verifier for probabilistic programs. It can automatically formally verify prob-
abilistic programs. Figure 1.1 shows a probabilistic program written in HeyVL, the input language for Caesar.
ARP stands for Address Resolution Protocol [3] and is internally used as part of the ZeroConf protocol. For
now, we focus on the arp procedure. The procedure is taken from a larger HeyVL program that is part of the
Caesar test suite, which analyses the probability of ZeroConf successfully assigning a new IP address to a device
in one attempt. We are interested in the expected probability of successfully sending an ARP message given a
certain number of retries. Therefore, the procedure only contains the retry logic and sending a network message
is modelled as sampling from a probability distribution. The procedure sends multiple messages until either a
message was successfully transmitted or the number of retries are exhausted. The probability of a message loss
is modelled as a constant (zero argument function). Whether a message is lost is determined by the probability
distribution flip(p). It returns true with probability p and false with probability 1-p.
Caesar verifies upper and lower bounds of random variables of probabilistic programs. The random variable is
specified in the post and the bound in the pre. In the case of proc, Caesar verifies a lower bound. So in the
example, we verify a lower bound for the success probability. The Iverson notation in the post-expectation maps
success to 0 or 1 depending on if success is false or true. Together with the pre-expectation, the specification
therefore requires that 1 - exp(probMessageLost(), triesRemaining) is a lower bound of the expected value
of success after executing arp. This is indeed the case, since exp(probMessageLost(), triesRemaining) is the
probability that all triesRemaining messages are lost, i.e. success being false. Hence, the converse probability
is success being true. The power of deductive verification is that the claim is not established for a single or finite
set of inputs or message loss probability, but for all infinite number of inputs and probabilities.
Figure 1.1 also shows another interesting feature of HeyVL. Similar to classical deductive verifiers [29, 35], users
can specify custom theories. The underlying SMT solver (in our case Z3 [15]) does not support exponential
functions [21]. Hence, the exponential function is not provided as a built-in function, but it must be defined
as an uninterpreted function exp together with three axioms (exp_base, exp_step, exp_bounded). The first two
axioms make up the standard recursive definition for exponentiation with integer exponents. The third axiom
states that exponentiation with a base from the interval [0, 1] always produces a value from the same interval.
This is something that the underlying solver cannot derive from the definition itself, but it is required to verify
the program.
Using the current Caesar release, the procedure verifies. But after only updating the Z3 solver (the underlying
SMT solver used by Caesar) from version 4.12.1 to 4.12.5 the motivating program from Figure 1.1 goes from
successfully verifying in well under 1 second to timing out after 5 minutes. The underlying issue here is a so-

1

1. Introduction

1 domain Constants {
2 func probMessageLost (): UReal
3 axiom messageLostProb probMessageLost () <= 1
4 }
5
6 domain Arith {
7 func exp(b: UReal , i: UInt): UReal
8 axiom exp_base forall b: UReal. exp(b, 0) == 1
9 axiom exp_step forall b: UReal , i: UInt. exp(b, i + 1) == b * exp(b, i)
10 axiom exp_bounded forall b: UReal , i: UInt. (b <= 1) ==> (exp(b, i) <= 1)
11 }
12
13 proc arp(triesRemaining: UInt) -> (success: Bool)
14 pre 1 - exp(probMessageLost (), triesRemaining)
15 post [success]
16 {
17 if triesRemaining == 0 {
18 success = false
19 } else {
20 var messageLost: Bool = flip(probMessageLost ())
21 if messageLost {
22 success = arp(triesRemaining - 1)
23 } else {
24 success = true
25 }
26 }
27 }

Figure 1.1: Modelling ARP sub procedure of ZeroConf in HeyVL. It verifies that the success probability is at least
1 − probMessageLosttriesRemaining.

called matching loop. Instantiating the exp_step axiom to learn something about exp introduces a new exp-term,
which can be again instantiated to obtain more information. Such loops can degrade solver performance to the
extent that timeouts occur. The heuristics successfully circumvented the problem in the earlier Z3 version, but
not in the later one.
Unexpectedly failing verifications after changing seemingly unrelated parts of the program, updating the version
of a tool, or changing the seed of the SMT solver is known as verification brittleness [45] or the butterfly effect

[31]. It is a major usability concern. Often quantifiers, like the ones used in the axiomatization of the exponential
function in Figure 1.1, are responsible for the brittleness. There has been extensive research [2, 30, 31, 34] for
developing encoding techniques that stabilize the behaviour of quantifiers for program verification, and tool
support was developed to help with debugging quantifier related problems in SMT queries [8].
In theory, deductive verifiers like Caesar can provide counterexamples in the case that verification fails. For
simpler programs, the SMT solver is complete on the logic fragment that Caesar encodes the problem into.
Examples are programs that only contain linear expressions. In these cases, the solver can always either verify
the program or provide a counterexample. Verifying more complicated programs requires quantifiers such as
in Figure 1.1. This makes the problem in general undecidable. Using the wrong specification from Figure 1.2
Caesar times out, producing no counterexample or a hint of what the problem could be.

1 proc arp(triesRemaining: UInt) -> (success: Bool)
2 pre exp(probMessageLost (), triesRemaining) // <- not converse probability
3 post [success]
4 {
5 // body ommited
6 }

Figure 1.2: Wrong specification for the arp procedure from Figure 1.1.

These are two examples of the currently suboptimal user experience of using quantifiers in Caesar.

2

• Quantifiers are required for encoding constructs that are not natively supported, but then verification
often just hangs, failing to verify correct programs.

• If the program is actually wrong and contains quantifiers. Then the verification also often hangs and
produces no counterexample.

Both of these cases look the same to the user. They are left guessing whether the program is actually correct
and the SMT solver was just unable to construct a proof, or whether there is an actual error in the program.
These problems cannot be solved in general, since the underlying problem is undecidable. Still, improvements
are possible in practice. For example, Dafny ultimately suffers the same problems but, from experience, they
occur way less often. The goal of this thesis is to improve the experience of using quantifiers in Caesar by
transferring approaches from classical deductive verifiers. Specifically, we focus on an encoding for recursive
user-defined functions called limited functions. It was originally implemented in Dafny [2] but is also used in
other tools like F* [1]. The idea is to guide the SMT solver during the proof search by limiting its options. To gain
a better theoretical understanding, we also examine the semi-decision procedures to learn why they sometimes
produce unsatisfactory results and the formal properties of the encoding.
We start by giving the required background in Chapter 2, stating howCaesar transforms the verification problem
into an SMT query, introducing the logic used by SMT solvers and examining the heuristics used by SMT solvers
to deal with quantifiers. Chapter 3 introduces the limited function encodings. We subsequently examine the for-
mal properties of the encodings. Most importantly, we prove that they are sound. Furthermore, an extension of
limited functions is introduced that allows for unbounded evaluation of certain safe applications. Counterexam-
ples are examined in Chapter 4. Both the common approach of using potentially unsound unknown-models and
a modified limited function encoding for obtaining finite models are explored. The limited function encodings
were implemented in Caesar. We detail their implementation in Chapter 5 and evaluate their implementation in
Chapter 6. We close out in Chapter 7 by mentioning related work and conclude this thesis in Chapter 8 while
also exploring future work.

3

2. Background

This chapter gives an overview and introduction to the topics of interest. It starts at a high level in Section 2.1
with a crash course in deductive verification and Caesar in particular. Then, in Section 2.2, the first-order logic
is introduced, into which Caesar encodes the verification problem. This is then passed to an SMT solver. Finally,
Section 2.3 discusses the semi-decision procedures that SMT solvers use for quantifiers.

2.1 Deductive Verification and Caesar

We give a brief introduction to probabilistic programs (specifically the language HeyVL) and quantitative deduc-
tive verification. Formal definitions and details can be found in [39]. Ultimately, Caesar reduces the verification
problem to determining the validity of a first-order logic (FOL) formula. This task is then passed on to an SMT
solver. We outline the process of transforming it into this final formula. The subsequent work is then concerned
with the problem on this lower SMT layer.

2.1.1 Probabilistic Programs and HeyVL

Probabilistic programs are a kind of stochastic model that are particularly interesting due to their relative famil-
iarity to programmers. They are an extension of classical programs that can additionally sample from probability
distributions. For example, decisions can be made based on the outcome of a coin flip or by uniformly choosing
a value at random from a set of options. Therefore, when starting in an initial state, there is no single final state
but a probability distribution of final states.
HeyVL is a programming language for expressing probabilistic programs and Caesar’s intermediate verification

language (IVL). We have already encountered the Bernoulli distribution, fromwhich samples are taken in HeyVL
using the flip expression. (Figure 1.1). Caesar also supports sampling from other distributions, like uniform dis-
tributions or hypergeometric distributions.1 Since HeyVL is an IVL, it features additional constructs for verifi-
cation like assert and assume statements, syntax to specify pre- / post-expectations of procedures and to specify
loop invariants, and the ability to define custom theories. A HeyVL program consists of a number of domain
declarations and procedures. The example program from Figure 1.1 consists of two domain declarations and
one procedure. Here, each domain declaration, declares a new function and provides axiom(s) for that function.
Axioms are logical statements that are assumed to always hold.
Similar to classical programs, the states of a probabilistic program are mappings from variables to values, i.e.

States := { 𝜎 : Vars→ Vals } .

The arp procedure in Figure 1.1 attempts to send a message which may be lost during transmission. If this
happens, we try again until all retries have been used up. We are now going to examine the distribution of
final states of the arp procedure in more detail. Specifically, we are interested in the probability of terminating
in a state 𝜎 with 𝜎 (success) = true. To this aim, we make an inductive argument using the hypothesis that
the probability of arp resulting in a state with 𝜎 (success) = true is 1 − exp(𝑃messageLost, triesRemaining) (using
𝑃messageLost for probMessageLost()).

• If we start in an initial state 𝜎𝑖 with 𝜎𝑖 (triesRemaining) = 0, then the resulting final state 𝜎𝑓 has always
𝜎𝑓 (success) = false. Therefore, reaching a final state with 𝜎𝑓 (success) = true has probability 0. The
hypothesis also evaluates to 0 in this case.

• If we start in an initial state 𝜎𝑖 with 𝜎𝑖 (triesRemaining) > 0, then we lose the message with probability
𝑃messageLost when we send it.

1https://www.caesarverifier.org/docs/stdlib/distributions

4

https://www.caesarverifier.org/docs/stdlib/distributions

2.1. Deductive Verification and Caesar

– So, with probability 𝑃messageLost we reach the then case and with probability
1 − exp(𝑃messageLost, triesRemaining − 1),true is assigned to success. Here, we use our hypothesis
with triesRemaining − 1 to reason about the recursive call of arp.

– Conversely, with probability 1− 𝑃messageLost the else case is reached and true is assigned to success.

The total probability of reaching a final state with 𝜎𝑓 (success) = true is thus:

probability of then case︷ ︸︸ ︷
𝑃messageLost · (1 − exp(𝑃messageLost, triesRemaining − 1)) +

probability of else case︷ ︸︸ ︷
(1 − 𝑃messageLost) · 1

= 𝑃messageLost − 𝑃messageLost · exp(𝑃messageLost, triesRemaining − 1) + 1 − 𝑃messageLost
= 1 − exp(𝑃messageLost, triesRemaining)

Therefore, starting in any initial state, the probability of ending in a final state with 𝜎𝑓 (success) = true is 1

- exp(probMessageLost(), triesRemaining). This gives an idea how one can reason about expected values of
probabilistic programs.
Such manual reasoning can quickly become tedious and error-prone. As a deductive verifier, Caesar aims to
provide a solution with a high degree of automation. Caesar can prove the above statement automatically. The
shown statement is almost the same as the one stated by the specification in Figure 1.1. Since Caesar always
verifies bounds, Figure 1.1 states that 1 - exp(probMessageLost(), triesRemaining) is a lower bound for the
success probability. Caesar can also show that it is an upper bound by using the dual co-constructs. Together,
establishing that it is precisely the success probability.

2.1.2 From HeyVL to SMT

HeyVL Program VC Generator

HeyVL-AST

HeyLo Formula (VC)

Parser

FOL Encoder

FOL Formula

SMT Solver

Declarations

Verified

Unknown

Cex

Figure 2.1: Caesar’s verification pipeline.

Caesar’s architecture resembles that of classical deductive verifiers, like Boogie [29] or Viper[35]. An overview
of the relevant parts of the verification pipeline is given in Figure 2.1. First, the input program is parsed, resulting
in an abstract syntax tree (AST) for HeyVL. Then a verification condition is generated for it. This verification
condition is encoded into a first-order formula that is passed to an SMT solver. Depending on the answer of
the SMT solver, Caesar then concludes that the program verified, produces a counterexample (cex), or that no
judgment can be made.
HeyVL is the IVL of Caesar and acts as a common interface. Every verification problem is given to Caesar in
the form of a HeyVL program, like the one we saw in Figure 1.1. The HeyVL input program is parsed into an
abstract syntax tree (AST) before it is further analysed (type checked, etc.).
The main difference from classical deductive verifiers is the use of expectations instead of logical conditions for
expressing the specification. Expectations map program states to extended unsigned reals R∞≥0 = R≥0 ∪ {∞ }
instead of truth values. The complete lattice of expectations (E, ⊑) is given by

E :=
{
𝑋 : States→ R∞≥0

}
with 𝑋 ⊑ 𝑌 iff for all 𝜎 ∈ States : 𝑋 (𝜎) ≤ 𝑌 (𝜎) .

The value 0 can be thought of as meaning entirely false and ∞ meaning entirely true. HeyLo is a quantitative
logic for expressing expectations. In HeyVL, each procedure must be annotated with a quantitative pre and a
post expectation written in HeyLo.

5

2. Background

In the setting of classical deductive verification (using the Boolean lattice (States → B,⇒)), a procedure ver-
ifies if the pre-condition in the initial state implies (⇒) the post-condition in the final state. This perspective
generalises to the quantitative setting, using the lattice of expectations (E, ⊑). A HeyVL procedure verifies if
the pre-expectation evaluated in the initial states is a lower bound (⊑) for the post-expectation evaluated in the
final states.
Analogous to theweakest pre-condition in classical deductive verification, there exists theweakest pre-expectation.
The weakest pre-expectation wp⟦𝑆⟧(post) maps each initial state 𝜎 to the expected value of post after executing
𝑆 on 𝜎 . In the case of a proc, the pre-expectation must then be a lower bound of the weakest pre-expectation
for the procedure to verify. A technical note: Caesar does not directly use the weakest pre-expectation, but the
verification pre-expectation transformer (vp) which is a computable approximation. The verification condition
(VC) is therefore

pre ⊑ vp⟦𝑆⟧(post).

This inequality is generated by the VC generator for each procedure and subsequently encoded into a FOL
formula by the FOL encoder.
We use the small program in Figure 2.2 to illustrate these two steps of the pipeline. The procedure coin takes a
natural number and adds 1 to it if a fair coin flip succeeds. We want to verify that in + 0.5 is a lower bound of
the expected return value, i.e. the result is increased by at least 0.5 on average.

1 proc coin(in: UInt) -> (out: UInt)
2 pre in + 0.5
3 post out
4 {
5 var x: Bool = flip (0.5)
6 out = in + [x]
7 }

Figure 2.2: Adding 1 to a variable if a fair coin flip succeeds increases its expected value by 0.5.

The verification condition for this procedure is

in + 0.5 ⊑ vp⟦var x: Bool = flip(0.5); out = in + [x]⟧(out).

The result of the verification pre-expectation transformer can be computed backwards through the sequence of
HeyVL statements, starting with the post-expectation [39, Figure 14]. It is again a HeyLo formula. We sketch
for the coin procedure from Figure 2.2 how the verification pre-expectation is computed. We start with the
post-expectation out. The assignment in line 6 then replaces out with in + [x]. In line 5, x is assigned with a
probability of 50% true andwith a probability of 50% false. Thus, we get 0.5· (in + [true])+0.5· (in + [false]).
Inlining the conversion by the Iverson brackets, we end up with

0.5 · (in + 1) + 0.5 · (in + 0) .

Hence, the final computed verification condition is

in + 0.5 ⊑ 0.5 · (in + 1) + 0.5 · (in + 0)

which is equivalent to the first-order formula

in + 0.5 ≤ 0.5 · (in + 1) + 0.5 · (in + 0)

being valid. For the small example program from Figure 2.2, which does not include any other declarations, the
VC is the only component of the final FOL formula. In general, the encoding also includes additional information
from the declarations in the HeyVL program, like the exp function in Figure 1.1 together with the axioms.
For the validity check, Caesar uses the SMT solver Z3 [15]. SMT solvers take first-order logic formulas as input,
such as the one we generated. However, they only check for satisfiability, i.e. whether there exists an assignment
that satisfies the formula. We are interested in validity, i.e. whether the program is correct for all possible
assignments (think states). Thus, the VC is first negated, and we check for unsatisfiability instead. So for the
example procedure, it is checked that

in + 0.5 ≰ 0.5 · (in + 1) + 0.5 · (in + 0)

6

2.2. Many-sorted FOL

is unsatisfiable. If the negation is unsatisfiable (the solver reports unsat), then there exists no state such that the
program is wrong. Therefore, it must be correct. This approach also has the effect that a satisfying model (the
solver reports sat) represents a counterexample to the verification problem that can be presented to the user. As
discussed before, the satisfiability of the generated formulae is often undecidable. The result is that the solver
can also report unknown due to the solver heuristics giving up or the exhaustion of resource limits. In this case,
we cannot conclude anything. The program might be correct or wrong.
For our purposes, the key takeaway is that the whole verification problem is reduced in many steps to the
(un)satisfiability checking of a FOL formula. The quantitative parts have been encoded into a Boolean logic. We
will analyse the problem from this lower level.
Since the usual quantifier reasoning is very similar to the classical case, we will sometimes resort to non-
probabilistic (Boolean) examples. Boolean formulas can be embedded into HeyLo with the embed expression
?(b). It maps b to 0 if b is false and to∞ if b is true.2

2.2 Many-sorted FOL

As we have seen in the previous section, Caesar transforms the verification problem into a satisfiability problem
of a classical Boolean first-order logic (FOL) formula. This satisfiability problem is dispatched to an underlying
SMT solver. In the following, we will work with/transform these generated FOL formulas. Thus, the semantics
of this logic are of key interest. The following section formally introduces the many-sorted first-order logic
that underpins all considerations in the rest of the work. It is closely based on the SMT-LIB logic defined by
the SMT-LIB Standard Version 2.6 [6]. The standard defines the input language for all major SMT solvers. Some
simplifications have been applied to areas that are not necessary for the purposes of this thesis. These differences
are highlighted at the end of the section.
To better illustrate the introduced constructs, we will use the formula

𝜉 := square(𝑎) − square(𝑏) ≈ 7 ∧ ∀𝑥 : Int. square(𝑥) ≈ 𝑥 ∗ 𝑥

as a running example.
We assume a fixed but arbitrary finite set of variables denoted by Vars := { 𝑥,𝑦, 𝑧, . . . } and B := { true, false }
denotes the set of Boolean values. A many-sorted logic is not limited to Boolean terms but can have terms of
many different sorts. A term can also contain function symbols. A signature defines the sorts and function
symbols with their possible types that can be used in a term.

Definition 2.3. Signatures

A signature is a tuple Σ =
〈
ΣS, ΣF, ΣFS

〉
where

• ΣS is a set of sorts, with Bool ∈ ΣS,

• ΣF is a set of function symbols, with ¬,∧,≈ ∈ ΣF,

• ΣFS ⊆ ΣF× (ΣS)+ is a left-totala relation that assigns a set of possible types to each function symbol such
that

– (¬,Bool Bool) ∈ ΣFS,
– (∧,Bool Bool Bool) ∈ ΣFS, and
– (≈, 𝜎 𝜎 Bool) ∈ ΣFS for all 𝜎 ∈ ΣS.

A ranked function symbol with arity 𝑛 is a pair (𝑓 , 𝜎1 · · ·𝜎𝑛 𝜎) ∈ ΣF × (ΣS)+ written 𝑓 : 𝜎1 · · ·𝜎𝑛 𝜎 and a sorted
variable is a pair (𝑥, 𝜎) ∈ Vars × ΣS written 𝑥 : 𝜎 . We write 𝑓 : 𝜎1 · · ·𝜎𝑛 𝜎 ∈ Σ for 𝑓 : 𝜎1 · · ·𝜎𝑛 𝜎 ∈ ΣFS.

aA relation 𝑅 ⊆ 𝑆 × 𝑇 is left-total iff for every 𝑠 ∈ 𝑆 there exists a 𝑡 ∈ 𝑇 such that (𝑠, 𝑡) ∈ 𝑅.

For convenience, a ranked function symbol with arity 0 is called a constant. In this formalism, there is no
distinction between functions and constants. Neither is there a distinction between terms and formulae. Each

2https://www.caesarverifier.org/docs/heyvl/procs/#embedding-boolean-specifications

7

https://www.caesarverifier.org/docs/heyvl/procs/#embedding-boolean-specifications

2. Background

signature always contains a special Bool sort and the set of functions

{ ¬ : Bool Bool,∧ : Bool Bool Bool }

(with fixed meaning) that make up a functionally complete set of logical connectives. For brevity, we will some-
times specify signatures only as Σ =

〈
ΣFS

〉
. ΣS and ΣF then include all sorts/function symbols mentioned by

ΣFS.

Example 2.4. Signature of 𝜉

A possible signature of our running example is Σex =
〈
ΣS
ex
, ΣF

ex
, ΣFS

ex

〉
with

ΣS
ex

= { Int,Bool }
ΣF
ex

= { ¬,∧,≈,−, ∗, square, 𝑎, 𝑏 } ∪Z
ΣFS
ex

= { ¬ : Bool Bool,∧ : Bool Bool Bool,≈ : Bool Bool Bool,≈ : Int Int Bool }
∪ { − : Int Int Int, ∗ : Int Int Int, square : Int Int, 𝑎 : Int, 𝑏 : Int }
∪ { 𝑧 : Int | 𝑧 ∈ Z } .

Besides the functions required byDefinition 2.3, it also includes integer subtraction, multiplication and a square
function. All the integers (0, 1,−1, . . .) are included as integer constants and 𝑎, 𝑏 are also constants of sort Int.

Definition 2.5. FOL-terms
Given a signature Σ, the set of Σ-terms TermΣ is defined by the following grammar:

𝑡 ::= 𝑥 (variable)
| 𝑓 (𝑡1, . . . , 𝑡𝑛) (function application)
| ∃𝑥1 : 𝜎1 . . . 𝑥𝑛 : 𝜎𝑛 𝛼∗ . 𝑡 (𝑛 > 0) (existential quantification)
| ∀𝑥1 : 𝜎1 . . . 𝑥𝑛 : 𝜎𝑛 𝛼∗ . 𝑡 (𝑛 > 0) (universal quantification)

𝛼 ::= {𝑡1, . . . , 𝑡𝑛} (𝑛 > 0) (trigger annotation)

where 𝑥, 𝑥1, . . . , 𝑥𝑛 are variables from Vars, 𝑓 is a function symbol from ΣF and 𝜎1, . . . 𝜎𝑛 are sorts from ΣS.
For clarity, the parenthesis for function applications with zero arguments are omitted, and some functions are
written in infix notation (like, ∧,≈). Additional parenthesis are used to resolve resulting ambiguities.

We assume that all terms are well-sorted3 and it is unambiguous from the context which version of a function
symbol is meant.4 With these restrictions, each well-sorted term 𝑡 belongs to exactly one sort 𝜎 . We say the
term 𝑡 has/is of sort 𝜎 , also written 𝑡 : 𝜎 . For further details, refer to [6, Section 5.2.2].
A term of sort Bool is also called formula. Free variables are variables that are not bound by any surrounding
quantifier. A term without free variables is called closed. A closed formula is called sentence. The set of all Σ-
sentences is denoted by SentenceΣ. Looking at our running example, 𝜉 is a well-sorted Σex-term of sort Bool.
Since 𝜉 has no free variables, it is also a Σex-sentence.
The trigger annotations that can be associated with quantifiers have no semantic meaning in this first-order
logic. Instead, they help the SMT solver deal with quantification. These will be discussed in more detail in
Section 2.3.1.
One operation we will frequently perform on terms is replacing a function application with another term.

Definition 2.6. Substituting function applications

Substituting function applications of the ranked functions symbol 𝑓 : 𝜎1 · · ·𝜎𝑛 𝜎 in a term 𝑡 with another term
𝑡 ′ : 𝜎 , written

𝑡 [𝑓 (𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛) ↦→ 𝑡 ′],

3Loosely speaking, function applications have the correct number of arguments of the correct sort as dictated by ΣFS.
4Namely, we forbid that two ranked function symbols differ only in their result sort, i.e. both 𝑓 : 𝜎1 · · · 𝜎𝑛 𝜌, 𝑓 : 𝜎1 · · · 𝜎𝑛 𝜌 ′ ∈ ΣFS with

𝜌 ≠ 𝜌 ′ is not permitted.

8

2.2. Many-sorted FOL

is inductively defined by

𝑥 [𝑓 (𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛) ↦→ 𝑡 ′] = 𝑥

𝑓 (𝑡1, . . . , 𝑡𝑛) [𝑓 (𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛) ↦→ 𝑡 ′] = (if 𝑡𝑖 of sort 𝜎𝑖 for 𝑖 = 1, . . . , 𝑛)

𝑡 ′ [𝑥1 : 𝜎1 ↦→ 𝑡1 [𝑓 (𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛) ↦→ 𝑡 ′], . . . , 𝑥𝑛 : 𝜎𝑛 ↦→ 𝑡𝑛 [𝑓 (𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛) ↦→ 𝑡 ′]]
𝑔(𝑡1, . . . , 𝑡𝑘) [𝑓 (𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛) ↦→ 𝑡 ′] =

𝑔(𝑡1 [𝑓 (𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛) ↦→ 𝑡 ′], . . . , 𝑡𝑘 [𝑓 (𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛) ↦→ 𝑡 ′])
(Q𝑦1 : 𝜎 ′1 . . . 𝑦𝑘 : 𝜎 ′

𝑘
. 𝑡) [𝑓 (𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛) ↦→ 𝑡 ′] = (where Q ∈ { ∀, ∃ })

Q𝑦1 : 𝜎 ′1 . . . 𝑦𝑘 : 𝜎 ′
𝑘
. 𝑡 [𝑓 (𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛) ↦→ 𝑡 ′]

where 𝑡 [𝑥1 : 𝜎1 ↦→ 𝑡1, . . . , 𝑥𝑛 : 𝜎𝑛 ↦→ 𝑡𝑛] denotes substituting the sorted variables 𝑥1 : 𝜎1, . . . 𝑥𝑛 : 𝜎𝑛 with terms
𝑡1, . . . , 𝑡𝑛 in the term 𝑡 in a capture avoiding manner and is defined as usual. Further, we assume that substitut-
ing function applications is also capture avoiding, meaning 𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛 and the free variables of 𝑡 ′ are
distinct from the variables 𝑦1, . . . , 𝑦𝑘 of the quantifiers.

Note that thematched arguments can be used in the substituted term 𝑡 ′. This enabled us to swap out the functions
called in a term.

Example 2.7. Substituting + for ∗
With [∗(𝑦 : Int, 𝑧 : Int) ↦→ +(𝑦, 𝑧)], we can replace every application of ∗ : Int Int Int with an application of
+ : Int Int Int (∗ and + written in prefix notation):

𝜉 ′ = 𝜉 [∗(𝑦 : Int, 𝑧 : Int) ↦→ +(𝑦, 𝑧)]
= square(𝑎) − square(𝑏) ≈ 7 ∧ (∀𝑥 : Int. square(𝑥) ≈ ∗(𝑥, 𝑥)) [∗(𝑦 : Int, 𝑧 : Int) ↦→ +(𝑦, 𝑧)]
= square(𝑎) − square(𝑏) ≈ 7 ∧ ∀𝑥 : Int. square(𝑥) ≈ ∗(𝑥, 𝑥) [∗(𝑦 : Int, 𝑧 : Int) ↦→ +(𝑦, 𝑧)]
= square(𝑎) − square(𝑏) ≈ 7 ∧ ∀𝑥 : Int. square(𝑥) ≈ +(𝑦, 𝑧) [𝑦 : Int ↦→ 𝑥, 𝑧 : Int ↦→ 𝑥]
= square(𝑎) − square(𝑏) ≈ 7 ∧ ∀𝑥 : Int. square(𝑥) ≈ +(𝑥, 𝑥)

The resulting term 𝜉 ′ is no longer a Σex-term but a Σ′
ex
-term where

Σ′FS
ex

= (ΣFS
ex
\ { ∗ : Int Int Int }) ∪ { + : Int Int Int } .

A structure attaches meaning to the sorts and functions symbols introduced by the signature. It defines the
universe of possible values, which sorts map to which parts of the universe and gives an interpretation to the
functions.

Definition 2.8. Structures

Let Σ be a signature. A Σ-structure is a pair 𝔄 =
〈
A, 𝔄

〉
consisting of

• a set A, called the universe of 𝔄, that contains B, and

• a mapping 𝔄 that interprets

– each sort symbol 𝜎 ∈ ΣS as a subset 𝜎𝔄 ⊆ A, with Bool𝔄 = B,
– each constant 𝑓 : 𝜎 ∈ Σ as an element (𝑓 : 𝜎)𝔄 ∈ 𝜎𝔄 , and
– each ranked function symbol 𝑓 : 𝜎1 · · ·𝜎𝑛 𝜎 ∈ Σ with 𝑛 > 0 as a function

(𝑓 : 𝜎1 · · ·𝜎𝑛 𝜎)𝔄 :
(
𝜎𝔄

1 × · · · × 𝜎𝔄
𝑛

)
→ 𝜎𝔄,

where ¬,∧,≈ are assigned their canonical meaning.

StructureΣ denotes the set of all Σ-structures.

The extra side conditions ensure that we always have the required buildings blocks for a Boolean logic.

9

2. Background

Example 2.9. Σex-structure

A possible Σex-structure 𝔄ex =
〈
Aex,

𝔄ex

〉
is defined by

Aex = Z ∪B
Int𝔄ex = Z Bool𝔄ex = B

(𝑎 : Int)𝔄ex = 4 (𝑏 : Int)𝔄ex = 3
(𝑧 : Int)𝔄ex = 𝑧 for 𝑧 ∈ Z (square : Int Int)𝔄ex (𝑧) = 𝑧 ∗Z 𝑧

with the remaining functions being given their canonicalmeaning. Elements of sort Int aremapped to elements
of Z. All the integer constants are mapped to themselves. ∗Z denotes standard multiplication on Z.

A structure alone is not yet enough to evaluate terms. It only covers the static parts of a term (constant/functions)
but we must also be able to evaluate variables. Therefore, an interpretation additionally includes a function that
tracks the values of variables.

Definition 2.10. Interpretations

Let Σ be a signature. A Σ-interpretation is a pair ℑ = ⟨𝔄, 𝔳⟩ consisting of

• a Σ-structure 𝔄 with universe A, and

• a function 𝔳 : (Vars× ΣS) → A that assigns each sorted variable a value that is compatible with its sort,
i.e. for all 𝑥 : 𝜎 ∈ Vars × ΣS it holds that 𝔳(𝑥 : 𝜎) ∈ 𝜎𝔄 .

We write 𝑓 [𝑑1 ↦→ 𝑟1, . . . , 𝑑𝑛 ↦→ 𝑟𝑛] for the function that maps 𝑑𝑖 to 𝑟𝑖 and is otherwise identical to 𝑓 , i.e.

𝑓 [𝑑1 ↦→ 𝑟1, . . . , 𝑑𝑛 ↦→ 𝑟𝑛] (𝑑) =
{
𝑟𝑖 , if 𝑑 = 𝑑𝑖 for some 𝑖 = 1, . . . , 𝑛
𝑓 (𝑑), otherwise

The notation ℑ[𝑥1 : 𝜎1 ↦→ 𝑎1, . . . , 𝑥𝑛 : 𝜎𝑛 ↦→ 𝑎𝑛] stands for ⟨𝔄, 𝔳[𝑥1 : 𝜎1 ↦→ 𝑎1, . . . , 𝑥𝑛 : 𝜎𝑛 ↦→ 𝑎𝑛]⟩ with 𝑎𝑖 ∈ 𝜎𝔄
𝑖
.

Definition 2.11. Term evaluation

Let Σ be a signature and ℑ = ⟨𝔄, 𝔳⟩ a Σ-interpretation. The mapping ⟦ ⟧ℑ maps each term 𝑡 of sort 𝜎 into
𝜎𝔄 . ⟦𝑡⟧ℑ is inductively defined by

⟦𝑥⟧ℑ = 𝔳(𝑥 : 𝜎)

⟦𝑓 (𝑡1, . . . , 𝑡𝑛)⟧ℑ = (𝑓 : 𝜎1 · · ·𝜎𝑛 𝜎)𝔄 (⟦𝑡1⟧ℑ, . . . , ⟦𝑡𝑛⟧ℑ) if 𝑡𝑖 has sort 𝜎𝑖 for 𝑖 = 1, . . . , 𝑛

⟦∀𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛 . 𝑡⟧ℑ = true iff

⟦𝑡⟧ℑ
′
= true for all (𝑎1, . . . , 𝑎𝑛) ∈ 𝜎𝔄

1 × · · · × 𝜎𝔄
𝑛 , ℑ

′ = ℑ[𝑥1 : 𝜎1 ↦→ 𝑎1, . . . , 𝑥𝑛 : 𝜎𝑛 ↦→ 𝑎𝑛]
⟦∃𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛 . 𝑡⟧ℑ = true iff

⟦𝑡⟧ℑ
′
= true for some (𝑎1, . . . , 𝑎𝑛) ∈ 𝜎𝔄

1 × · · · × 𝜎𝔄
𝑛 , ℑ

′ = ℑ[𝑥1 : 𝜎1 ↦→ 𝑎1, . . . , 𝑥𝑛 : 𝜎𝑛 ↦→ 𝑎𝑛]

Since formulas are sentences of sort Bool, the evaluation of terms immediately gives us the satisfiability relation
as well.

Definition 2.12. Satisfiability

The Σ-interpretation ℑ = ⟨𝔄, 𝔳⟩ satisfies the Σ-formula 𝜑 , written ℑ |= 𝜑 , iff ⟦𝜑⟧ℑ = true. Otherwise, ℑ
falsifies 𝜑 , written ℑ ̸ |= 𝜑 . If there exists no Σ-interpretation ℑ such that ℑ |= 𝜑 , then 𝜑 is unsatisfiable.

In a Σ-sentence 𝜓 , all variables are bound by quantifiers. When evaluating 𝜓 , the value of a variable is always
set by the evaluation rule for quantifiers before it is accessed. Hence, the satisfiability of𝜓 is independent of the
variable assignment 𝔳 and only depends on the Σ-structure 𝔄. We therefore lift the notion of satisfiability from

10

2.2. Many-sorted FOL

interpretations to structures and directly write 𝔄 |= 𝜓 or 𝔄 ̸ |= 𝜓 . The Σ-structure 𝔄 is called a model of 𝜓 if
𝔄 |=𝜓 .

Example 2.13. Satisfiability of 𝜉

𝔄ex is a model of 𝜉 . This can be validated by checking that evaluating 𝜉 with ℑex = ⟨𝔄ex, 𝔳⟩ results in true for
any 𝔳 : (Vars × ΣS

ex
) → Aex :

⟦square(𝑎) − square(𝑏) ≈ 7 ∧ ∀𝑥 : Int. square(𝑥) ≈ 𝑥 ∗ 𝑥⟧ℑex = true

iff ⟦square(𝑎) − square(𝑏) ≈ 7⟧ℑex = true and ⟦∀𝑥 : Int. square(𝑥) ≈ 𝑥 ∗ 𝑥⟧ℑex = true

iff (square : Int Int)𝔄ex ((𝑎 : Int)𝔄ex) −Z (square : Int Int)𝔄ex ((𝑏 : Int)𝔄ex) = (7 : Int)𝔄ex

and ⟦square(𝑥) ≈ 𝑥 ∗ 𝑥⟧ℑex [𝑥 : Int↦→𝑧] for all 𝑧 ∈ Z
iff (square : Int Int)𝔄ex (4) −Z (square : Int Int)𝔄ex (3) = 7

and (square : Int Int)𝔄ex (⟦𝑥⟧ℑex [𝑥 : Int↦→𝑧]) = ⟦𝑥⟧ℑex [𝑥 : Int↦→𝑧] ∗Z ⟦𝑥⟧ℑex [𝑥 : Int↦→𝑧] for all 𝑧 ∈ Z
iff 4 ∗Z 4 −Z 3 ∗Z 3 = 7 and (square : Int Int)𝔄ex (𝑧) = 𝑧 ∗Z 𝑧 for all 𝑧 ∈ Z
iff 7 = 7 and 𝑧 ∗Z 𝑧 = 𝑧 ∗Z 𝑧 for all 𝑧 ∈ Z

In the following, we only consider satisfiability of sentences because every formula can be converted into an
equivalent sentence by either binding any free variables by an outermost existential quantifier, or replacing free
variables with constants. This restriction means that we do not need to separately specify the sort of variables
in the formula. This approach is identical to that adopted by SMT-LIB and SMT solvers.
Somewhat surprisingly,

𝜉 ′ = square(𝑎) − square(𝑏) ≈ 7 ∧ ∀𝑥 : Int. square(𝑥) ≈ 𝑥 + 𝑥

from Example 2.7 is also satisfiable. We can construct a model 𝔄′
ex

=
〈
Aex,

𝔄′
ex

〉
for 𝜉 ′ by interpreting + as

multiplication on Z, i.e. (+ : Int Int Int)𝔄′ex (𝑥,𝑦) = 𝑥 ∗Z 𝑦, and otherwise copying 𝔄ex . This interpretation is
counterintuitive, but nothing in the current formalism forces us to choose addition as the meaning of +. The
constant 7 : Int could also be interpreted as 0, even the fact that terms of sort Int are evaluated to elements of Z
is currently arbitrary.
This degree of freedom is usually undesirable. It makes it impossible to know what a formula is talking about.
We therefore restrict the allowed models through the concept of theories to the subset that match our intended
meaning.

Definition 2.14. Theory

Let Σ be a signature. A Σ-theory is a set of Σ structures. These structures are called a model of the theory.

Most theories consist of exactly one model, such as the theory of integers (+ is addition, ∗ is multiplication, the
integer constants are themselves, ...). Another common possibility is that all the models must satisfy a set of
axioms characterizing the theory. Two compatible theories T1,T2 can be combined. Each model of the combined
theory must be isomorphic to a model of T1/T2 when projected to the signature of T1/T2. More details can be
found in [6, Section 5.4].

Definition 2.15. Satisfiability modulo theory

A Σ-sentence 𝜑 is satisfiable modulo the Σ-theory T iff there exists a structure 𝔄 ∈ T such that 𝔄 |= 𝜑 .

We are only interested in satisfiability modulo our chosen background theories. Common theories include equal-
ity with uninterpreted functions (EUF), which we will cover next, and various arithmetic theories. For program
verification, and Caesar in particular, EUF and nonlinear integer/real arithmetic (NIA, NRA) with quantifiers are
relevant. The complexity of the satisfiability problem depends on the chosen theories. On its own, NRA is decid-
able [44] but NIA is undecidable [33]. Therefore, The decision problem using the combination of these theories
with quantifiers is, in general, undecidable. However, modern SMT solvers are often able to find solutions using
sophisticated heuristics.
Readers familiar with the SMT-LIB standard will miss some features and constructs. Parts that are not the
focus of this work were simplified. Theses are mainly concepts related to sorts. Sorts with arity other than 0,

11

2. Background

1 domain Pair {
2 func pair(x: Int , y: Int): Pair
3
4 func select0(p: Pair): Int
5 axiom select0_def forall x: Int , y: Int. select0(pair(x, y)) == x
6
7 func select1(p: Pair): Int
8 axiom select1_def forall x: Int , y: Int. select1(pair(x, y)) == y
9 }

Figure 2.18: Axiomatization of a pair data structure with two associated operations select0 and select1.

parametric sorts and algebraic data-types are omitted. The well-sortedness of terms is assumed, but not checked.
The constructs let and match are also omitted.

2.2.1 Equality with Uninterpreted Function

The theory of equality with uninterpreted functions (EUF) allows for encoding custom theories, which makes
it very powerful. In the following it is assumed, that EUF is always included as a base theory. It consists of a
finite number of uninterpreted sorts and uninterpreted function symbols with arbitrary arity, that can be flexibly
added. It also includes ≈ (equality) for each sort, as defined previously in Definition 2.3. Additionally, ≈must be
a congruence relation, meaning it behaves nicely with function application.

Definition 2.16. Congruence

An equivalence relation � is called a congruence relation if it is preserved by function application, i.e. for all
function symbols 𝑓 : 𝜎1 · · ·𝜎𝑛 and terms 𝑡1, 𝑢1 : 𝜎1, . . . , 𝑡𝑛, 𝑢𝑛 : 𝜎𝑛

𝑡𝑖 � 𝑢𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 iff 𝑓 (𝑡1, . . . , 𝑡𝑛) � 𝑓 (𝑢1, . . . , 𝑢𝑛) .

Definition 2.17. Congruence closure

Let 𝑠, 𝑡 be terms, 𝑓 a function symbol, and � an equivalence relation. The congruence closure �∗ is the smallest
relation closed under congruence that contains �. Equivalently, �∗ is the smallest relation satisfying

1. if 𝑠 � 𝑡 , then also 𝑠 �∗ 𝑡 ,

2. if 𝑠 = 𝑓 (𝑠1, . . . , 𝑠𝑛) and 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑛) with 𝑠𝑖 �∗ 𝑡𝑖 for all 1 ≤ 𝑖 ≤ 𝑛, then also 𝑠 �∗ 𝑡 ,

3. and if 𝑓 (𝑠1, . . . , 𝑠𝑛) �∗ 𝑓 (𝑡1, . . . , 𝑡𝑛), then also 𝑠𝑖 �∗ 𝑡𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.

The congruence closure extends an equivalence relation to a congruence relation. We use the notion of the
congruence closure ≈∗ to explicitly express when congruence or transitivity is used in an argument. That ≈
must be congruence relation is the only restriction given by EUF. Therefore, the sorts and functions from EUF
are called uninterpreted. The theory does not restrict how they can be interpreted. In contrast, the sort Int and
function + : Int Int Int from NIA are interpreted. The theory fixes their meaning.
The absence of any predefined concepts makes EUF very flexible. Many custom theories can be encoded into EUF
with the help of axioms. We already saw this in our running example. The formula 𝜉 contains the uninterpreted
function square : Int Int, which is defined by the axiom ∀𝑥 : Int. square(𝑥) ≈ 𝑥 ∗ 𝑥 to be the square of integers.
Like other deductive verifiers (e.g. Viper [35] and [28]), Caesar exposes this functionality to its users, providing
a flexible extension point that allows users to provide the axiomatisation of custom theories required for their
use case.

Example 2.19. Encoding a pair ADT using EUF

Consider the HeyVL code in Figure 2.18 that is an encoding of a pair of integers. The code declares a new
uninterpreted sort Pair, three uninterpreted functions (pair, select0, and select1) and two axioms. The
domain Pair block introduces a new uninterpreted sort named Pair. This sort contains all values of our pair
ADT. The constructor of the pair is represented by the function pair.

12

2.3. Quantifier Instantiation

The operations are always defined in two steps. First, the function with its signature is declared. Second, an
axiom is added, that states a fact that the function has to always fulfil. In Caesar, an axiom declaration has the
form axiom <name> <body>. The name is only for documentation, and the body usually starts with a universal
quantifier. Here, the axiom select0_def states that applying select0 to the pair constructor is the same as
the first element of the pair. Analogously, select1_def does this for select1. Note that, although these are
uninterpreted functions, the given axioms fully define the operations in this example. There is always an axiom
that specifies the result for each possible argument. This fact must not necessarily hold for other examples.

2.3 Quantifier Instantiation

This work focuses on quantifier reasoning. We have observed that quantifier handling is often the reason for
non-termination in Caesar and we believe that it can be significantly improved. The following section gives a
brief primer on how SMT solvers support universal quantifiers (in the following often just called quantifiers).
The core satisfiability procedure only works with closed quantifier-free formulae, also called ground terms. At
opportune moments, information from the quantified formulae is incorporated into the ground terms. This
operation is called quantifier instantiation. We focus on two strategies for quantifier instantiation:

E-matching. E-matching-based quantifier instantiation is a syntax-guided heuristic that attempts to find relevant
values for the quantified variables. It can only prove unsatisfiability.

MBQI. Model-based quantifier instantiation is a heuristic that attempts to extend partial models for the quantifier-
free part to also include the quantifiers. It can be used to prove satisfiability as well as unsatisfiability.

By default, both are used in parallel by Z3. Many deductive verifiers disableMBQI5 and rely solely on E-matching
for quantifier reasoning. We investigate the role that MBQI plays for verification in Caesar in Section 5.2 and
how to leverage it for counterexamples in Chapter 4.

2.3.1 E-matching

E-matching-based quantifier instantiation (often just called E-matching) is a procedure used by SMT solvers to
check if a first-order formula is unsatisfiable. It gets a sentence in conjunctive normal form with only universal
quantifiers as an input. Existential quantifiers can be eliminated by Skolemisation [16, Section 5.3]. It either
determines that the sentence is unsatisfiable (returning unsat), gives up with no result (returning unknown), or
does not terminate. It uses the sub procedure E-match to find instantiations such that the newly added terms
already existing mention ground terms. This increases the chance of producing a contradiction and therefore
proving unsat.
Algorithm 1 is a high-level overview of E-matching-based quantifier instantiation. It is simplified to only expect
sentences with a single conjunct and quantifier.
The conjuncts without a quantifier are the initial ground terms (line 1). If these ground terms are already un-
satisfiable, the complete formula is unsatisfiable (lines 3-5). Otherwise, the ground terms might be unsatisfiable
if we also consider the quantified formulae. The first step of incorporating universally quantified formulae is
the observation that ∀𝑥 : 𝜎. 𝜑 can be thought of as the infinite conjunction

∧
𝑡 : 𝜎̄ 𝜑 [𝑥 : 𝜎 ↦→ 𝑡]. Here, 𝜑 denotes

a quantifier-free formula and 𝑡 ranges over all possible substitutions of 𝑥 . To reduce the conjunction to a finite
one, only instances of 𝜑 [𝑥 : 𝜎 ↦→ 𝑡] are considered that are “relevant” to the current set of ground terms (line
6). The term 𝜑 [𝑥 : 𝜎 ↦→ 𝑡] is called an instantiation of the quantifier and is quantifier-free. It is added as a new
conjunct to the ground terms (line 10) and the satisfiability procedure can again check if the new set of ground
terms is unsatisfiable in the next loop iteration. If the heuristic is unable to determine a new instantiation, then
it is unable to make any further progress and terminates with unknown (line 7-9).
During the proof search, the ground terms are stored in an E-graph. A data structure that exploits the congru-
ence closure to efficiently store large numbers of terms and (dis)equalities between them [16, 46]. The E-match
procedure searches for a pattern 𝑝 with variables 𝑥 : 𝜎 in the E-graph. A resulting match comes with a substi-
tution [𝑥 : 𝜎 ↦→ 𝑡] that specifies how the variables need to be substituted, such that 𝑝 [𝑥 : 𝜎 ↦→ 𝑡] appears in the
E-graph (modulo equality) [14].

5See Boogie (Dafny backend) https://github.com/boogie-org/boogie/blob/6d8896fa476d0b623a08e887cbc11d3b56e9ec4d/
Source/Provers/SMTLib/Z3.cs#L63 or Silicon (one of the Viper backends) https://github.com/viperproject/silicon/blob/
19bbbb524c4d2555abdbde68870a52f5abec49b4/src/main/resources/z3config.smt2#L23

13

https://github.com/boogie-org/boogie/blob/6d8896fa476d0b623a08e887cbc11d3b56e9ec4d/Source/Provers/SMTLib/Z3.cs#L63
https://github.com/boogie-org/boogie/blob/6d8896fa476d0b623a08e887cbc11d3b56e9ec4d/Source/Provers/SMTLib/Z3.cs#L63
https://github.com/viperproject/silicon/blob/19bbbb524c4d2555abdbde68870a52f5abec49b4/src/main/resources/z3config.smt2#L23
https://github.com/viperproject/silicon/blob/19bbbb524c4d2555abdbde68870a52f5abec49b4/src/main/resources/z3config.smt2#L23

2. Background

Algorithm 1: E-matching-based quantifier instantiation (sketch), based on [16, Section 5.1]
Input : A sentence of the form𝜓 ∧ ∀𝑥 : 𝜎. 𝜑 , where𝜓,𝜑 are quantifier free
Output: Either unsat if the unsatisfiability of the sentence could be established or unknown otherwise

1 𝐺 ← {𝜓 };
2 while true do
3 if 𝐺 is unsatisfiable then
4 return unsat;
5 end
6 𝑡 ← E-match(∀𝑥 : 𝜎. 𝜑,𝐺) such that 𝜑 [𝑥 : 𝜎 ↦→ 𝑡] is not in 𝐺 ;
7 if no such terms 𝑡 exists then
8 return unknown;
9 end

10 𝐺 ← 𝐺 ∪ {𝜑 [𝑥 : 𝜎 ↦→ 𝑡] };
11 end

For E-match to work, each quantifier is associated with a non-empty set of triggers. A trigger consists of one or
more patterns. A trigger matches if all of its patterns match, and a quantifier can be initiated if one of its pattern
matches. The terms used as patterns can be arbitrary, the only restrictions being that a pattern may not be just
a variable and that the free variables of all patterns belonging to a trigger must be precisely the variables of the
quantifier. A quantifier often has a single trigger with a single pattern. Hence, these terms are sometimes used
interchangeably.
If no trigger is specified for the quantifier, the SMT solvers have heuristics to select triggers themselves, usually a
sub-term of 𝜑 mentioning all quantified variables. It is generally advisable to annotate quantifiers with triggers
to have more control over the quantifier instantiation and to stabilize behaviour [31]. In logic formulae, we
denote triggers in curly braces after the quantified variables (compare Definition 2.5) like

∀𝑥 : Int 𝑦 : Int {pair (𝑥,𝑦)}. sel0 (pair (𝑥,𝑦)) ≈ 𝑥

and in HeyVL they are specified with the @trigger annotation like
1 axiom select0_def forall x: Int , y: Int @trigger(pair(x, y)).
2 select0(pair(x, y)) == x

The introduction and application of a second formal semantic that models the effect of the triggers on the SMT
solvers [23, 18] was outside the scope of this thesis.

Example 2.20. E-matching and congruence

We build on a variant of the program from Figure 2.18 that encodes a pair data type. In this example, we write
sel0 instead of select0. The signature we are considering is

Σ𝑃 = ⟨{ pair : Int Int Pair, sel0 : Pair Int, 𝑎 : Int, 𝑏 : Int, 𝑐 : Int, 𝑑 : Int }⟩ .

Our goal is, given the axiom

𝐴1 := ∀𝑥 : Int 𝑦 : Int {pair (𝑥,𝑦)}. sel0 (pair (𝑥,𝑦)) ≈ 𝑥︸ ︷︷ ︸
𝐹

to prove that
𝐶1 := pair (𝑎,𝑏) ≈ pair (𝑐, 𝑑) =⇒ 𝑎 ≈ 𝑐

is valid using E-matching. Proving that the implication is valid given the axiom is the same as proving that
𝐴1 ∧ ¬𝐶1 is unsatisfiable.

• Since ¬𝐶1 is equivalent to pair (𝑎, 𝑏) ≈ pair (𝑐, 𝑑) ∧𝑎 0 𝑐 and there are no other quantifier-free formulae,
the initial ground terms are 𝐺1 = { pair (𝑎, 𝑏) ≈ pair (𝑐, 𝑑), 𝑎 0 𝑐 } (line 1).

• Loop iteration 1:

– 𝐺1 by itself is not yet unsatisfiable (lines 3-5).

14

2.3. Quantifier Instantiation

– E-matching the trigger pair (𝑥,𝑦) of 𝐴1 against 𝐺1 yields the possible match pair (𝑎, 𝑏) with the
substitution 𝜃1 = [𝑥 : Int ↦→ 𝑎,𝑦 : Int ↦→ 𝑏] (line 6).

– Adding the found instantiations to the ground terms results in (line 10)

𝐺2 =𝐺1 ∪ { 𝐹𝜃1 }
= { pair (𝑎, 𝑏) ≈ pair (𝑐, 𝑑), 𝑎 0 𝑐, sel0 (pair (𝑎, 𝑏)) ≈ 𝑎, }

• Loop iteration 2:

– 𝐺1 by itself is not yet unsatisfiable (lines 3-5).
– Matching the same trigger results in another match 𝜃2 = [𝑥 : Int ↦→ 𝑐,𝑦 : Int ↦→ 𝑑] (line 6).
– Adding the instantiations to the ground terms results in

𝐺 ′3 =𝐺2 ∪ { 𝐹𝜃2 }
= { pair (𝑎, 𝑏) ≈ pair (𝑐, 𝑑), 𝑎 0 𝑐, sel0 (pair (𝑎, 𝑏)) ≈ 𝑎, sel0 (pair (𝑐, 𝑑)) ≈ 𝑐 }

Since ≈ is a congruence relation, we can conclude additional equalities (line 10):

pair (𝑎, 𝑏) ≈ pair (𝑐, 𝑑)
implies sel0 (pair (𝑎, 𝑏)) ≈∗ sel0 (pair (𝑐, 𝑑))
implies 𝑎 ≈∗ 𝑐 (by sel0 (pair (𝑎, 𝑏)) ≈ 𝑎 and sel0 (pair (𝑐, 𝑑)) ≈ 𝑐))

The ground terms are extended with these equalities, such that ≈ remains a congruence relation,
resulting in

𝐺3 =𝐺 ′3 ∪ { sel0 (pair (𝑎, 𝑏)) ≈ sel0 (pair (𝑐, 𝑑)), 𝑎 ≈ 𝑐 }
= {pair (𝑎,𝑏) ≈ pair (𝑐, 𝑑), 𝑎 0 𝑐, sel0 (pair (𝑎, 𝑏)) ≈ 𝑎, sel0 (pair (𝑐, 𝑑)) ≈ 𝑐,

sel0 (pair (𝑎, 𝑏)) ≈ sel0 (pair (𝑐, 𝑑)), 𝑎 ≈ 𝑐}

• Loop iteration 3:

– 𝐺3 is now inconsistent, since it contains 𝑎 0 𝑐 as well as 𝑎 ≈ 𝑐 . Hence, unsat is returned (line 4).

Therefore, 𝐴1 ∧ ¬𝐶1 is unsatisfiable and 𝐴1 =⇒ 𝐶1 is valid.

Matching loops

The chosen triggers play a crucial role in determining the effectiveness of E-matching based quantifier instanti-
ation. For example, if the trigger of 𝐴1 from Example 2.20 is replaced with sel0 (pair (𝑦, 𝑥)) we get

∀𝑥 : Int 𝑦 : Int {sel0 (pair (𝑦, 𝑥))}. sel0 (pair (𝑥,𝑦)) ≈ 𝑥

implies pair (𝑎, 𝑏) ≈ pair (𝑐, 𝑑) =⇒ 𝑎 ≈ 𝑐

The initial ground terms are still 𝐺1 = { pair (𝑎, 𝑏) ≈ pair (𝑐, 𝑑), 𝑎 0 𝑐 } but the new trigger does not match any
of these ground terms. Therefore, the algorithm terminates with unknown and the proof fails.
Besides proofs failing because the required instantiations do not happen due to overly restrictive triggers, they
can also fail if the triggers are too liberal and toomany instantiations are performed. First, if the solver is occupied
with E-matching, it cannot perform other necessary tasks like theory solving. Second, each instantiation adds
more ground terms, slowing down all operations. This can lead to poor verification performance and eventually
timeouts.
A common problem in this regard are so-called matching loops. In its simplest form, a matching loop occurs
when the new terms produced by an instantiation match the trigger of that quantifier, potentially resulting in
another match and instantiation. These new terms also match again and so on. In general, the loop can consist
of multiple instantiations of different quantifiers and use equalities between terms.

15

2. Background

Example 2.21. Matching loop

Matching loops are easily introduced when encoding recursive structures. For example, the exponential func-
tion frequently occurs in the probabilistic setting but is currently not provided by Caesar. As we have already
seen in Figure 1.1, it can be encoded as a user-defined function. The following code shows a slightly simpler
encoding using the ite (if-then-else) expression such that only a single defining axiom is required.
1 func exp(b: UReal , x: UInt): UReal
2 axiom exp_def forall b: UReal , x: UInt @trigger(exp(b, x)).
3 exp(b, x) == ite(x == 0, 1, b * exp(b, x - 1))

The ite expression takes three expressions. If the first Boolean expression evaluates to true, then it yields the
second expression; otherwise the third expression is yielded.
Using this axiomatisation of exp we want to show that

𝑛 > 0 =⇒ exp(𝑎, 𝑛) ≈ exp(𝑎, 𝑛 − 1) ∗ 𝑎

is valid, i.e. 𝑛 > 0 ∧ 𝑒𝑥𝑝 (𝑎, 𝑛) 0 exp(𝑎, 𝑛 − 1) ∗ 𝑎 is unsatisfiable. The initial ground terms are

𝐺1 = {𝑛 > 0, exp(𝑎, 𝑛) 0 exp(𝑎, 𝑛 − 1) ∗ 𝑎 } .

From here, we examine two different scenarios.

Senario 1 (matching loop). The solver matches exp(𝑎, 𝑛 − 1) with the pattern and thus increases the ground
terms to

𝐺1
2 =𝐺1 ∪ { exp(𝑎, 𝑛 − 1) ≈ 𝑖𝑡𝑒 (𝑛 − 1 − 1 ≈ 0, 1, 𝑎 ∗ exp(𝑎, 𝑛 − 1 − 1)) } .

Such an instantiation always adds a new exp-term which the solver can match in the next iteration.
Repeatedly applying this creates the sets of ground terms:

𝐺1
3 =𝐺1

2 ∪ { exp(𝑎, 𝑛 − 1 − 1) ≈ 𝑖𝑡𝑒 (𝑛 − 1 − 1 − 1 ≈ 0, 1, 𝑎 ∗ exp(𝑎, 𝑛 − 1 − 1 − 1)) }
𝐺1

4 =𝐺1
3 ∪ { exp(𝑎, 𝑛 − 1 − 1 − 1) ≈ 𝑖𝑡𝑒 (𝑛 − 1 − 1 − 1 − 1 ≈ 0, 1, 𝑎 ∗ exp(𝑎, 𝑛 − 1 − 1 − 1 − 1)) }

...

This chain can continue indefinitely, resulting in non-termination. The proof fails.

Senario 2 (successful proof). The solver matches the term exp(𝑎, 𝑛) and adds the resulting instantiation to the
ground terms, resulting in

𝐺2
2 = {𝑛 > 0, exp(𝑎, 𝑛) 0 exp(𝑎, 𝑛 − 1) ∗ 𝑎, exp(𝑎, 𝑛) ≈ 𝑖𝑡𝑒 (𝑛 ≈ 0, 1, 𝑎 ∗ exp(𝑎, 𝑛 − 1)) } .

Using theory solving, the solver concludes that exp(𝑎, 𝑛) ≈ 𝑎 ∗ exp(𝑎, 𝑛 − 1) must hold, which makes the
ground terms unsatisfiable. The proof succeeds.

The presence of a matching loop alone is not enough to cause non-termination. The solver heuristics must
choose this “bad” path of instantiations. Solver developers are aware of the problem and solvers have heuristics
that try to avoid the problem [16, Section 5] but from the perspective of a general purpose SAT solver, deep
instantiations chains might be necessary so they cannot be ruled out. We already saw that in the motivating
example (Figure 1.1) which has a matching loop slumbering in the exp axiomatisation. The previous Z3 version
did not run into the loop, but after updating with slightly changed heuristics, the newer Z3 version does.
As a result, matching loops can easily go undetected in a program until the program is slightly changed, affecting
how the heuristics work, or a different version of the SMT solver is used. This makes them difficult to debug.
Matching loops are a common reason for verification bitterness [31].

SMTscope

The SMTscope6 tool (based on the Axiom Profiler [8]) was developed to detect matching loops and generally
help to debug poor solver performance. It works by analysing traces generated by Z3 during the proof search.
The GUI presents different information regarding the solver run, including in what order quantifiers are initiated

6https://github.com/viperproject/smt-scope

16

https://github.com/viperproject/smt-scope

2.3. Quantifier Instantiation

Figure 2.22: Screenshot showing a part of the SMTscope GUI. On the left is part of the instantiation graph and
on the right the generalisation of a matching loop.

and the instantiation graph. The screenshot in Figure 2.22 shows part of the tools GUI. There, a trace from a
non-terminating verification run of the program in Figure 1.1 was loaded. On the left-hand side, part of the
instantiation graph is shown. It is a graph where an edge goes from a quantifier (box) to a term (grey ellipse)
if the term was produced by the instantiation of the quantifier, and an edge goes from a term (grey ellipse) to a
quantifier (box) if it was matched by the quantifier trigger, causing an initiation. Every quantifier gets a different
colour for easy identification. From the small section shown, we can already spot repeating behaviour. The
blue quantifier is instantiated by a term that was previously created by instantiating the blue quantifier. This
graphical representation helps to identify matching loops.
The tool also comes with functionality to automatically find and generalize matching loops. This can be seen
on the right-hand side of the screenshot (Figure 2.22). A term that has the shape shown in the input box causes
an instantiation, which creates a new term that has the shape shown in the output box. The shape of the output
term also matches the input shape. Thus, we have a matching loop.
SMTscope is useful for determining if a matching loop might be the reason for non-termination. In such a case, it
also helps to determine which quantifiers and triggers are to blame. It was invaluable for analysing and tracking
down quantifier-related problems while working on this thesis.

2.3.2 MBQI

Model-based quantifier instantiation (MBQI) is a procedure used by SMT solvers to find models for FOL formulae
containing quantifiers or to show that they are unsatisfiable. It gets a sentence in conjunctive normal form
with only universal quantifiers as an input. MBQI either determines that the sentence is unsatisfiable (returning
unsat), finds a model that satisfies the sentence including the quantifiers (returning sat with the model), or
does not terminate. It works by checking if a model for the ground terms (ground term model) also satisfies the
quantifier. This is done by checking that it does not permit a counter example. If a counter example is found, it
is added to the ground terms, such that a new ground term model is found on the next iteration.
Algorithm 2 is a high-level overview of model-based quantifier instantiation. It is simplified to only expect
sentences with a single conjunct and quantifier.
The conjuncts without a quantifier are the initial ground terms (line 1). If these ground terms are already unsat-
isfiable, the complete formula is unsatisfiable (lines 3-5). Otherwise, there must exist a model that satisfies the
current ground terms (line 6). This model of the ground terms need not be a model of the whole input formula.
It is only guaranteed to satisfy the ground terms and might violate the quantifier ∀𝑥 : 𝜎. 𝜑 . To check if the model
also satisfies the quantifier, the body of the quantifier 𝜑 is partially evaluated with the model (everything gets
fixed by 𝔄, except the variables 𝑥 : 𝜎), here written 𝜑𝔄 . If the negation of the resulting formula is unsatisfiable,
then it must hold for all 𝑥 : 𝜎 , i.e. 𝔄 also satisfies the quantifier. Therefore, the complete formula is satisfiable
with 𝔄 and the algorithm returns sat (lines 7-9). If ¬𝜑𝔄 is not unsatisfiable, then there exists again a model
that satisfies it (line 10). It is a counterexample that specifies for which 𝑥 the ground term model 𝔄 violated the
quantifier. By instantiating the quantifier with these values and adding it to the ground terms, it is guaranteed
that in the next loop iteration the ground term model will not violate the quantifier for the same 𝑥 (lines 11-12).

17

2. Background

Algorithm 2:Model-based quantifier instantiation (sketch) [9, Section 6.1.4]
Input : A sentence of the form𝜓 ∧ ∀𝑥 : 𝜎. 𝜑 , where𝜓,𝜑 are quantifier free
Output: Either sat with a model satisfiying the sentence or unsat if the sentence is unsatisfiable

1 𝐺 ← {𝜓 };
2 while true do
3 if 𝐺 is unsatisfiable then
4 return unsat;
5 end
6 𝔄 ← model satisfying 𝐺 , i.e. 𝔄 |=𝐺 ;
7 if ¬𝜑𝔄

is unsatisfiable then
8 return sat with model 𝔄;
9 end

10 𝔄′ ← model satisfying ¬𝜑𝔄 ;
11 𝑡 ← terms with value of 𝑥 : 𝜎 in 𝔄′;
12 𝐺 ← 𝐺 ∪ {𝜑 [𝑥 : 𝜎 ↦→ 𝑡] };
13 end

The algorithm loops and tries again with the new set of ground terms.

Example 2.23. MBQI

Considering again the Σex-sentence that was used as a running example throughout Section 2.2:

𝜉 := square(𝑎) − square(𝑏) ≈ 7 ∧ ∀𝑥 : Int. square(𝑥) ≈ 𝑥 ∗ 𝑥︸ ︷︷ ︸
𝐹

MBQI might proceed as follows to construct a model for 𝜉 modulo NIA and EUF.

• The initial set of ground terms is 𝐺1 = { square(𝑎) − square(𝑏) ≈ 7 } (line 1).

• Loop iteration 1:

– 𝐺1 is not unsatisfiable (line 3)
– A possible model for the ground terms is 𝔄1 with

(𝑎 : Int)𝔄1 = 7 (𝑏 : Int)𝔄1 = 0 (square : Int Int)𝔄1 (𝑧) = 𝑧

and the remaining functions and sorts being interpreted as required by the theories (line 6).
– Using this model to partially evaluate the quantifier body yields the term 𝐹𝔄1 = (𝜆𝑧. 𝑧) (𝑥) ≈ 𝑥 ∗Z𝑥 .

The negation ¬𝐹𝔄1 = 𝑥 0 𝑥 ∗Z 𝑥 is satisfiable with 𝑥 = 2 (lines 7-11).
– Therefore, the term 𝐹 [𝑥 : Int ↦→ 2] is added to the ground terms resulting in the new set 𝐺2 =

{ square(𝑎) − square(𝑏) ≈ 7, square(2) ≈ 4 } (line 12).

• Loop iteration 2:

– 𝐺2 is also not unsatisfiable (line 3)
– Assume the core satisfiability procedure returns the following model 𝔄2 of 𝐺2 (line 6):

(𝑎 : Int)𝔄2 = 4 (𝑏 : Int)𝔄2 = 3 (square : Int Int)𝔄2 (𝑧) = 𝑧 ∗Z 𝑧.

– Partially evaluating and negating the quantifier body results in

¬𝐹𝔄2 = ¬((𝜆𝑧. 𝑧 ∗Z 𝑧) (𝑥) ≈ 𝑥 ∗Z 𝑥)
= 𝑥 ∗Z 𝑥 0 𝑥 ∗Z 𝑥

which is unsatisfiable (line 7).
– Hence, 𝔄2 = 𝔄ex is a model for 𝜉 and the algorithm returns sat (line 4).

18

2.3. Quantifier Instantiation

MBQI is not guaranteed to terminate. If the quantifiers range over infinite domains, then MBQI can never list all
counterexamples and add them to the ground terms. Thus, the model for the ground terms can always violate
the quantifiers. The set of ground terms may also never become unsatisfiable, as is the case if the input sentence
if satisfiable.
For Caesar, MBQI is relevant because it theoretically provides the ability to construct models in the presence of
quantifiers. These models are required for displaying verification counterexamples to the user. Counterexamples
are discussed in Chapter 4. We also observed one case where MBQI was required to verify a program, i.e. proof
unsat (Section 5.2).

19

3. Limited Functions

Frequently, user-defined functions are used in procedure specifications. The definitions of user-defined func-
tions always require quantifiers. Many relevant functions, such as for harmonic numbers, general sums, and
exponential functions (see Figure 1.1), are recursive. Here we face a problem. By the nature of recursive func-
tions, the recursive function symbol appears on both sides of the equality sign. Therefore, the default encoding
of recursive functions introduces a matching loop. We already saw that in Example 2.21 with the exponential
function. We want to give another example with the factorial function, that is slightly simpler since it has only
a single argument. The function is defined in Figure 3.1.

1 func fac(n: UInt): UInt
2 axiom fac_def forall n: UInt @trigger(fac(n)).
3 fac(n) == ite(n == 0, 1, n * fac(n - 1))

Figure 3.1: HeyVL code defining the factorial function 𝑛!.

Again, the trigger allows the solver to instantiate the axioms if it sees a term of the form fac(n’). Doing so,
it learns that this term is equal to ite(n’ == 0, 1, n’ * fac(n’ - 1)). Effectively unfolding the definition of
fac once. We again have a matching loop since the instantiation produced the new term fac(n’ - 1) which the
solver can unfold once more.
These deep instantiations are necessary if we want to correctly and completely model the recursive function.
In the context of verification, very few recursive unfoldings (often just one) are usually sufficient to verify a
program. This is due to the structure of the proof rules for loops and procedure calls, which resemble a proof by
induction. In this case, a single unfolding is usually sufficient to allow the application of the induction hypothesis.
This sparks the idea to artificially limit the number of recursive unfoldings, introducing incompleteness on
purpose to guide the solver during the proof search. We want to further motivate the idea that this is not a big
restriction in practice and better than the current incompleteness caused by non-termination.

Example 3.2. Inductive proof rules

Consider the following factorial procedure.
1 proc factorial(n: UInt) -> (res: UInt) post ?(fac(n) == res) {
2 res = 1
3 var i: UInt = 0
4
5 @invariant (?(res == fac(i)))
6 while i != n {
7 i = i + 1
8 res = res * i
9 }
10 }

It uses a while loop to compute the 𝑛-th factorial. The loop is annotated with an invariant. The invariant is
used by Caesar when computing the verification pre-expectation to approximate the loop semantics. Looking
at the while rule in Hoare logic

{{ 𝐼 ∧ b }} C {{ 𝐼 }}
{{ 𝐼 }} while b { C } {{ 𝐼 ∧ ¬b }}

we can see that the invariant 𝐼 must hold initially and must be preserved by the loop body. This idea is also

20

3.1. The Encodings

present in the (Boolified) verification condition (VC) generated by Caesar:

1 ≈ fac(0)∧
}

induction base
(𝑟𝑒𝑠 ≈ fac(𝑖) =⇒ (assume invariant - I.H.)  induction step𝑖𝑡𝑒 (𝑖 0 𝑛, (switch on loop condition)

𝑟𝑒𝑠 ∗ (𝑖 + 1) ≈ fac(𝑖 + 1), (invariant must be preseverd)
𝑟𝑒𝑠 ≈ fac(𝑛))) (post-condition must hold)

We quickly examine how many unfoldings of fac are required to prove the VC. The induction base follows
immediately from unfolding fac(0) once and the base case of fac:

1 ≈ fac(0)
iff 1 ≈ 𝑖𝑡𝑒 (0 ≈ 0, 1, fac(0 − 1)) (unfold fac(0))
iff 1 ≈ 1 (simplify)

For showing that the invariant is preserved in the induction step, we can assume the invariant holds for 𝑖 , i.e.
𝑟𝑒𝑠 ≈ fac(𝑖):

𝑟𝑒𝑠 ∗ (𝑖 + 1) ≈ fac(𝑖 + 1)
iff 𝑟𝑒𝑠 ∗ (𝑖 + 1) ≈ 𝑖𝑡𝑒 (𝑖 + 1 ≈ 0, 1, (𝑖 + 1) ∗ fac(𝑖)) (unfold fac(𝑖 + 1))
iff 𝑟𝑒𝑠 ∗ (𝑖 + 1) ≈ (𝑖 + 1) ∗ fac(𝑖) (𝑖 + 1 cannot be 0)
iff fac(𝑖) ∗ (𝑖 + 1) ≈ (𝑖 + 1) ∗ fac(𝑖) (𝑟𝑒𝑠 ≈ fac(𝑖))

When the loop condition is false (𝑖 ≈ 𝑛) the post condition must hold. We can additionally use that the
loop invariant also holds after the loop execution. The post-condition 𝑟𝑒𝑠 ≈ fac(𝑛) follows directly from
𝑟𝑒𝑠 ≈ fac(𝑖) and 𝑖 ≈ 𝑛.
Proving the VC required two unfoldings, but no recursive unfoldings. Something similar can be observed for
procedure calls.

The SMT solver, being a general purpose solver, cannot rule out that deep unfoldings are not required and must
explore them. But we know how the usual structure of a program correctness proof looks, and can limit the
number of possible recursive instantiations by adjusting the encoding of the functions.
The technique of artificially limiting the number of instantiations was used by Leino andMonahan to axiomatize
comprehensions1 in Spec# [30]. Later, Amin et al. developed an encoding for user-defined functions based on the
above idea [2] and implemented it in Dafny [28]. We call functions encoded in such away limited functions. Other
proof oriented programming languages like F* also adopted limited functions [1]. The verification-condition-
generation-based verifier for Viper [35] (Carbon) also uses limited functions.2 Limited functions are also very
relevant for Caesar, due to the aforementioned matching loop problem. There is nothing inherently probabilistic
or quantitative about functions in Caesar. This justifies using the same encoding as classical deductive verifiers.
We formally define the encodings in the next section before giving a soundness proof in Section 3.2.

3.1 The Encodings

Limited functions are (recursive) functions encoded in such a way that the number of possible (recursive) instan-
tiations (with E-matching) are limited (usually to once or twice). This prevents matching loops by construction.
We will examine two different encodings that systematically create limited functions. Both encodings should be
sound:

1. Wrong programs should not verify

2. and no spurious counterexamples should be produced.
1Comprehensions are a family of expressions that are reduced using an operator. Examples are sum { 𝑎[𝑖] | 0 ≤ 𝑖 < 𝑎.length } and

count { 𝑎[𝑖] mod 2 = 0 | 0 ≤ 𝑖 < 𝑎.length }.
2https://github.com/viperproject/carbon/blob/e6d2393f85b5d8b53639b0f22e59c84004379ee7/src/main/scala/viper/

carbon/modules/impls/DefaultFuncPredModule.scala

21

https://github.com/viperproject/carbon/blob/e6d2393f85b5d8b53639b0f22e59c84004379ee7/src/main/scala/viper/carbon/modules/impls/DefaultFuncPredModule.scala
https://github.com/viperproject/carbon/blob/e6d2393f85b5d8b53639b0f22e59c84004379ee7/src/main/scala/viper/carbon/modules/impls/DefaultFuncPredModule.scala

3. Limited Functions

Additionally, they should ensure termination. These properties are proven in the next section. Regarding com-
pleteness, we have to expect to be able to prove strictly fewer programs. We argued above that the usually
generated verification conditions are still provable, but we are still trading completeness for efficiency. In prac-
tice, this can actually mean that we can verify more programs since we do not run into timeouts. An evaluation
is done in Chapter 6.

Figure 3.3: Overview of the relation between the default and the fuel encodings. They are equivalent under SMT-
LIB semantics. Under E-matching semantics, the fuel encodings are less complete than the Default encoding but
they do not introduce matching loops.

Figure 3.3 summarizes these points. On the left is the Default encoding (the canoncial reference encoding)
and on the right are the fuel encodings which create the limited functions. Under the previously described FO
semantics defined by SMT-LIB (cf. Section 2.2), the encodings are equisatisfiable. Either they are all satisfiable or
all unsatisfiable. If the fuel encodings are unsatisfiable, this means that the Default encoding is also unsatisfiable.
This guarantees us that the verifier remains sound. The reverse direction (after negating both sides) ensures that
if the encoding with the limited functions is satisfiable, the Default encoding is too. This ensures that we do
not produce any spurious counterexamples. When considering a more operational semantics in the form of
E-matching, then the fuel encodings are less complete. A proof being constructible for the fuel encodings only
implies that the same can be done for the Default encoding. The reverse is not true. Instead, we get the guarantee
that the user-defined functions, encoded as limited functions, did not introduce any matching loops.
The functions that we are encoding are defined by a body that is a single expression. Figure 3.4 demonstrates
the associated HeyVL syntax by defining the previously seen factorial function. This function definition is used
as an example throughout the next section.

1 func fac(n: UInt): UInt = ite(n == 0, 1, n * fac(n - 1))

Figure 3.4: Defining the fac function directly with a body.

The encodings will introduce both new function/sort symbols and alter the existing formulae. Therefore, each
encoding consists of two functions. The first function Esig (Σ, 𝑔 : 𝐷̄ 𝑅) performs alterations to the signature Σ
that are necessary for encoding the function 𝑔 : 𝐷̄ 𝑅 ∈ Σ. The second function Eterm (𝜑, def𝑔) transforms the
Σ-term 𝜑 (usually referencing 𝑔) into a Esig (Σ, 𝑔 : 𝐷̄ 𝑅)-term, also fixing the meaning of 𝑔 : 𝐷̄ 𝑅 by incorporating
the defining body def𝑔. Here, def𝑔 is a Σ-term of sort 𝑅 with only the free variables 𝑑 : 𝐷̄ .
For the function definition in Figure 3.4 the function is fac : UInt UInt and the defining body deffac is the right
side of the definition 𝑖𝑡𝑒 (𝑛 ≈ 0, 1, 𝑛 ∗ fac(𝑛 − 1)).

3.1.1 Default Encoding

Before coming to the limited function encodings, we need a base case that we can compare them to. The Default
encoding directly corresponds to the definition of the define-fun and define-fun-rec commands from the
SMT-LIB standard [6]. We will use it as our canonical reference encoding.

22

3.1. The Encodings

The Default encoding adds a single definitional axiom that states that for all arguments, the function is equal to
its definition. For our fac example, the result can be seen in Figure 3.1.

Definition 3.5. Default encoding

The default encoding is given by the encoding functions:

Esig (Σ, 𝑔 : 𝐷̄ 𝑅) = Σ

Eterm (𝜑, def𝑔) = 𝛿𝑔 ∧ 𝜑

where the definitional axiom 𝛿𝑔 is

𝛿𝑔 := ∀𝑑 : 𝐷̄ {𝑔(𝑑)}. 𝑔(𝑑) ≈ def𝑔 (def-axiom)

3.1.2 Fixed Fuel Encoding

As previously stated, the idea is to limit the number of times the universal quantifier of the defining axiom is
instantiated with E-matching. There are several ways of encoding this idea, but they all introduce the notion of
fuel. A fuel value, representing a natural number 𝑛 ∈ N0, is associated to every function application. Each in-
stantiation of the defining axiom burns one fuel (𝑛 is decremented). If the fuel reaches 0, no further instantiations
are possible. One parameter common to all fuel encodings is the number mf ∈ N>0 of allowed instantiations.
This parameter is usually set to 1 or 2.
In the Fixed fuel encoding mf + 1 function symbols are introduced, one for each possible fuel value. For our
example with mf = 1, this would mean the two functions fac0 and fac1 (compare Figure 3.6). fac1 should be
unfoldable once and fac0 should not be unfoldable. This is achieved by providing a definitional axiom for fac1
that uses fac0 in the body and providing no axiom for fac0 (lines 4-5). Note that the trigger enables us to read
the axiom from left to right. There is no matching loop this time, since unfolding fac1 only introduces a new
fac0 term, which cannot be unfolded further. We split the original function into two functions, but these are
not independent of each other. They are different versions of the same function. This fact is captured by the
synonym axiom that states that fac1 and fac0 always have the same result. Again, the trigger only allows the
fuel to be reduced. The existence of fac0-term cannot be used to instantiate the axiom and create a fac1-term.

1 func fac1(n: UInt): UInt
2 func fac0(n: UInt): UInt
3 axiom fac_syn1 forall n: UInt @trigger(fac1(n)). fac1(n) == fac0(n)
4 axiom fac_def1 forall n: UInt @trigger(fac1(n)).
5 fac1(n) == ite(n == 0, 1, n * fac0(n - 1))

Figure 3.6: fac from Figure 3.4 encoded as a limited function with fixed fuel and mf = 1.

Definition 3.7. Fixed fuel encoding

The fixed fuel encoding is defined by the encoding functions:

Effsig (Σ, 𝑔 : 𝐷̄ 𝑅) =
〈 ΣS

ff︷︸︸︷
ΣS ,

ΣF
ff︷ ︸︸ ︷

(ΣF \ {𝑔 }) ¤∪
{
𝑔0, . . . , 𝑔mf

}
,

ΣFS
ff︷ ︸︸ ︷

(ΣFS \
{
𝑔 : 𝐷̄ 𝑅

}
) ¤∪

{
𝑔0, . . . , 𝑔mf : 𝐷̄ 𝑅

}〉
Effterm (𝜑, def𝑔) = 𝛿

ff

𝑔1 ∧ · · · ∧ 𝛿
ff

𝑔mf
∧ 𝜎ff

𝑔1 ∧ · · · ∧ 𝜎
ff

𝑔mf
∧ 𝜑 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔mf (𝑑 ′)]

with the axioms

𝛿
ff

𝑔𝑖
:= ∀𝑑 : 𝐷̄ {𝑔𝑖 (𝑑)}. 𝑔𝑖 (𝑑) ≈ def𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖−1(𝑑 ′)] for 𝑖 = 1, . . . ,mf (ff-def-axiom)

𝜎
ff

𝑔𝑖
:= ∀𝑑 : 𝐷̄ {𝑔𝑖 (𝑑)}. 𝑔𝑖 (𝑑) ≈ 𝑔𝑖−1 (𝑑) for 𝑖 = 1, . . . ,mf (ff-syn-axiom)

The original function 𝑔 : 𝐷̄ 𝑅 is replaced with mf + 1 fuelled versions. A ff-def-axiom and ff-syn-axiom is added
for each 𝑔𝑖 except 𝑔0. The Σ-term def𝑔 is transformed into a Effsig (Σ, 𝑔 : 𝐷̄ 𝑅)-term by replacing recursive calls to 𝑔
with calls to the function that has one less fuel. In the remaining formula𝜑 , the function𝑔mf is used instead of the

23

3. Limited Functions

original function 𝑔. The Fixed fuel encoding makes matching loops impossible, as instantiating the quantifiers
only introduces function symbols with a smaller fuel value, creating a chain 𝑔mf > · · · > 𝑔1 > 𝑔0. The SMT
solver is still able to learn something about the structure of the recursive function (to the depth mf), while the
rest is hidden behind the uninterpreted and unconstrained symbol 𝑔0.

3.1.3 Variable Fuel Encoding

The Variable fuel encoding was originally developed in [2] for use in Dafny [28]. Rather than introducing a new
function symbol and axioms for each fuel value, only a single function is introduced, with the fuel value added as
an additional parameter of type Fuel. This drastically reduces the number of declarations and axioms required
for higher maximal fuel values. The extra fuel parameter keeps track of the number of remaining instantiations.
Since the fuel parameter must be available during E-matching, it must be entirely syntactic and cannot contain
interpreted symbols such as 0 or 1. Therefore, values of sort Fuel are represented as Peano numbers by using two
auxiliary ranked function symbols 𝑍 : Fuel (representing zero) and 𝑆 : Fuel Fuel (representing the successor of
another fuel value).3

1 domain Fuel {
2 func Z(): Fuel
3 func S(prev: Fuel): Fuel
4 }
5 domain Factorial {
6 func fac(fuel: Fuel, n: UInt): UInt
7 axiom fac_syn forall fuel: Fuel, n: UInt @trigger(fac(S(fuel), n)).
8 fac(S(fuel), n) == fac(fuel , n)
9 axiom fac_def forall fuel: Fuel, n: UInt @trigger(fac(S(fuel), n)).
10 fac(S(fuel), n) == ite(n == 0, 1, n * fac(fuel , n - 1))
11 }

Figure 3.8: Dynamic fuel encoding for fac from Figure 3.4. The enclosing domain declarations are also shown,
as they are required to define the Fuel sort.

Applying this to our running example (Figure 3.8) means that we need to declare the Fuel sort (line 1-4) and
add another parameter to the declaration of fac. A synonym axiom states again that the result of fac does not
depend on the extra fuel parameter, i.e. it is the same for all fuel parameter values. Since the triggers for the
definitional and synonym axiom require a non-zero fuel value (S(fuel)) the fuel value can once again only be
reduced. In the remaining formula 𝜑 , fac would be used with a fixed fuel value of mf (encoded as a Peano
number).

Definition 3.9. Variable fuel encoding

The variable fuel encoding is defined by the encoding functions:

Evfsig (Σ, 𝑔 : 𝐷̄ 𝑅) =
〈 ΣS

vf︷ ︸︸ ︷
ΣS ¤∪ { Fuel },

ΣF
vf︷ ︸︸ ︷

(ΣF \ {𝑔 }) ¤∪ {𝑔fuel, 𝑍, 𝑆 },

(ΣFS \
{
𝑔 : 𝐷̄ 𝑅

}
) ¤∪

{
𝑍 : Fuel, 𝑆 : Fuel Fuel, 𝑔fuel : Fuel 𝐷̄ 𝑅

}︸ ︷︷ ︸
ΣFS
vf

〉
Evfterm (𝜑, def𝑔) = 𝛿

vf

𝑔 ∧ 𝜎
vf

𝑔 ∧ 𝜑 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (mf , 𝑑 ′)]

with the axioms

𝛿
vf

𝑔 := ∀fuel : Fuel, 𝑑 : 𝐷̄ {𝑔fuel (𝑆 (fuel), 𝑑)}. 𝑔fuel (𝑆 (fuel), 𝑑) ≈ def𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (fuel, 𝑑 ′)]
(vf-def-axiom)

𝜎
vf

𝑔 := ∀fuel : Fuel, 𝑑 : 𝐷̄ {𝑔fuel (𝑆 (fuel), 𝑑)}. 𝑔fuel (𝑆 (fuel), 𝑑) ≈ 𝑔fuel (fuel, 𝑑) (vf-syn-axiom)

3For brevity, we assume that values of sort Fuel andN0 are automatically converted into each other, as required by the context.

24

3.1. The Encodings

3.1.4 First Comparison and Analysis

The two fuel encodings are quite similar. The extra fuel parameter is a compact way of introducing multiple
function symbols plus axioms, with 𝑔𝑖 (𝑑) being equivalent to 𝑔fuel (𝑖, 𝑑). The synonym axioms are vital for
verification. Intuitively, their effect is to bundle the different functions so that they all describe the same single
function.

Example 3.10. Importance of the synonym axiom

Consider the following program. It is the Fixed fuel encoding of the factorial function from Figure 3.4 but
without the (ff-syn-axiom).
1 domain Fac {
2 func fac1(n: UInt): UInt
3 func fac0(n: UInt): UInt
4
5 axiom fac_def forall n: UInt @trigger(fac1(n)).
6 fac1(n) == ite(n == 0, 1, n * fac0(n - 1))
7 }
8
9 proc factorial(n: UInt) -> (res: UInt) post ?(res == fac1(n)) {
10 if n == 0 {
11 res = 1
12 } else {
13 var temp: UInt = factorial(n - 1)
14 res = temp * n
15 }
16 }

The factorial procedure should verify. It is a direct implementation of the factorial function as defined by
Figure 3.4. But the presented program produces a counterexample:

fac1(𝑥) =


0, if 𝑥 = 2 (2 · fac0(1) = 2 · 0)
2, if 𝑥 = 1 (1 · fac0(0) = 1 · 2)
1, if 𝑥 = 0 (base-case)
𝑥 · fac0(𝑥 − 1), else

fac0(𝑥) =
{

2, if 𝑥 = 0
0, else

n = 2
temp = 2
res = 4

The counterexample is spurious, since the produced model for fac1 does not actually represent the facto-
rial function except for the base case. But it is correct in the sense that all axioms are fulfilled and that the
factorial procedure does not implement the chosen version of fac1. Adding the synonym axiom makes the
counterexample invalid (e.g. fac1(0) = 1 ≠ 2 = fac0(0)) and is enough to successfully verify the example.

Another closely related approach was used in [30] to encode comprehensions. Comprehensions are a family of
expressions that are reduced using an operator. Examples are sum { 𝑎[𝑖] | 0 ≤ 𝑖 < 𝑎.length } and
count { 𝑎[𝑖] mod 2 = 0 | 0 ≤ 𝑖 < 𝑎.length }. They used a synonym function (a new function that is equivalent
to the first one), that is not mentioned by the body of any axiom, in the triggers to control the instantiations.
The result of applying this technique to the fac function is shown in Figure 3.11. As usual, fac1 would be used
in the remaining program.
The fac_def axiom is formulated only in terms of fac0 but the trigger only mentions fac1. The matching loop
is broken because the body only generates new fac0-terms that do not match the trigger. It relies on the pattern
in the trigger to prevent the solver from instantiating the axiom again. The SMT solver can learn something
about fac1 by using its existence to insatiate the definitional axiom, learning something about fac0, and then
concluding with the synonym axiom that the same must hold for fac1.

25

3. Limited Functions

1 func fac1(n: UInt): UInt
2 func fac0(n: UInt): UInt
3 axiom fac_syn forall n: UInt @trigger(fac1(n)). fac1(n) == fac0(n)
4 axiom fac_def forall n: UInt @trigger(fac1(n)).
5 fac0(n) == ite(n == 0, 1, n * fac0(n - 1))

Figure 3.11: Encoding fac as a limited function using the synonym pattern encoding.

This synonym pattern encoding is a variant of the Fixed fuel encoding with mf = 1. The (ff-def-axiom) is
changed to (also using 𝑔0 on the left-hand side):

∀𝑑 : 𝐷̄ {𝑔1 (𝑑)}. 𝑔0 (𝑑) = def𝑔 [𝑔0 (¯𝑑 ′ : 𝐷̄) ↦→ 𝑔(𝑑 ′)] (synp-ff-def-axiom)

This encoding can be more flexible. When encoding other constructs that require multiple axioms (such as
comprehensions), it is possible to specify on a per-pattern basis whether the instantiation should be limited (by
using 𝑔1) or unlimited (by using 𝑔0).
The same idea can also be applied to the Variable fuel encoding, by only requiring the non-zero fuel value in
the trigger:

∀fuel : Fuel, 𝑑 : 𝐷̄ {𝑔𝑓 𝑢𝑒𝑙 (𝑆 (fuel), 𝑑)}. 𝑔fuel (fuel, 𝑑) = def𝑔 [𝑔(¯𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (fuel, 𝑑 ′)]
(synp-vf-def-axiom)

3.2 Soundness

We now formally motivate the previously presented encodings. Most importantly, we show that Caesar does
not become unsound by implementing any of the fuel encodings.
The statements made in Figure 3.3 are proven in this section. In Section 3.2.1 we prove that all the presented
encodings are equisatisfiable under the SMT-LIB semantics introduced in Section 2.2 which ignores triggers.
This means if there does not exist a satisfying model for the Default encoding then there also exist no satisfying
model for the fuel encodings and vice versa. The unsatisfiability of a fuel encoding implies the unsatisfiability
of the Default encoding, which ensures the verifier’s soundness, i.e. that no wrong programmes are verified.
The opposite direction ensures that we do not get spurious counter examples. More details can be found in
Section 3.2.2.
Since the fuel encodings were designed specifically with E-matching in mind, we also examine how the encod-
ings behave in practice when E-matching used for quantifier reasoning, i.e. under E-matching semantics, in
Section 3.2.4 and Section 3.2.3. If E-matching can be used to show that a fuel encoding is unsatisfiable, the same
can be done for the Default encoding. The reverse is not necessarily the case due to the more restrictive triggers.
Therefore, when using a fuel encoding, it is theoretically expected to get unknown more often. On the other
hand, the fuel encodings are guaranteed to terminate (or at least not to introduce new matching loops), which is
again relevant in practice where E-matching with the Default encoding can run into matching loops and timeout
instead of proving unsat.

3.2.1 Equisatisfiability under SMT-LIB Semantics

First, we show that both the Fixed fuel encoding and Variable fuel encoding are equisatisfiable to the Default
encoding. In this section, we focus on the SMT-LIB semantics. Under the standard first-order (FO) semantics, the
triggers are ignored. While they provide additional information for the SMT solver’s heuristics, which is very
relevant in practice, they play no role when determining if a model theoretical exists. Due to the role heuristics
play, the fuel encodings are generally not equivalent to the Default encoding in practice. We discuss the practical
implications afterwards in Section 3.2.2 and following.

26

3.2. Soundness

Theorem 3.12. Equisatisfiability of encodings

Let Σ by a signature, 𝑔 : 𝐷̄ 𝑅 ∈ Σ a ranked function symbol from Σ, def𝑔 a definitional body for 𝑔 : 𝐷̄ 𝑅, mf ∈
N>0, and 𝜑 a Σ-sentence. The Default encoding, Fixed fuel encoding, and Variable fuel encoding (with above
parameters) are logically equivalent. Formally:

there exists a Esig (Σ, 𝑔 : 𝐷̄ 𝑅)-structure 𝔄 such that 𝔄 |= Eterm (𝜑, def𝑔)

iff there exists a Effsig (Σ, 𝑔 : 𝐷̄ 𝑅)-structure 𝔄ff such that 𝔄ff |= Effterm (𝜑, def𝑔)

iff there exists a Evfsig (Σ, 𝑔 : 𝐷̄ 𝑅)-structure 𝔄vf such that 𝔄vf |= Evfterm (𝜑, def𝑔).

We prove the equivalence by showing three implications. From the Default encoding to the Fixed fuel encoding,
from the Fixed fuel encoding to the Variable fuel encoding, and back from the Variable fuel encoding to the
Default encoding. In each step, the existence of the model is shown by transforming the given model into a
model for the other encoding. To improve readability, we define the following abbreviations:

Σ = Esig (Σ, 𝑔 : 𝐷̄ 𝑅) (default signature) 𝜓 := Eterm (𝜑, def𝑔) (default term)

Σff
:= Effsig (Σ, 𝑔 : 𝐷̄ 𝑅) (fixed fuel signature) 𝜓ff := Effterm (𝜑, def𝑔) (fixed fuel term)

Σvf
:= Evfsig (Σ, 𝑔 : 𝐷̄ 𝑅) (variable fuel signature) 𝜓 vf := Evfterm (𝜑, def𝑔) (variable fuel term)

The convention is that constructs associated with the Default encoding have no additional subscript/superscript.
The equivalent constructs for the Fixed fuel encoding have a ff subscript/superscript and the equivalent con-
structs for the Variable fuel encoding have a vf subscript/superscript.

Default encoding to Fixed fuel encoding

Assuming there exists a Σ-structure 𝔄 with 𝔄 |= 𝜓 , we show there exists a Σff -model of 𝜓ff by explicitly con-
structing it from the Σ-model.

Definition 3.13. Fixed fuel structure

Let𝔄 =
〈
A, 𝔄

〉
be a Σ-structure such that𝔄 |=𝜓 . The corresponding Σff -structure𝔄ff =

〈
A, 𝔄ff

〉
is defined

by (notice that ΣS = ΣS
ff
):

𝜎𝔄ff = 𝜎𝔄 for 𝜎 ∈ ΣS
ff

(𝑓 : 𝜎 𝜌)𝔄ff =

{
(𝑔 : 𝐷̄ 𝑅)𝔄, if 𝑓 : 𝜎 𝜌 = 𝑔𝑖 : 𝐷̄ 𝑅 for some 𝑖 = 1, . . . ,mf

(𝑓 : 𝜎 𝜌)𝔄, otherwise
for 𝑓 : 𝜎 𝜌 ∈ Σff

It remains to show that 𝔄ff is a model of𝜓ff . The central observation is that the two structures assign the same
value to all the different 𝑔-functions (𝑔,𝑔0, . . . , 𝑔mf), so that we can replace applications of 𝑔 with applications of
𝑔𝑖 without changing the value of a term. This fact is shown in the following lemma. Since we consider arbitrary
terms, it does not suffice to discuss structures, but we must consider interpretations. The structures are extended
to interpretations by attaching identical variable assignments to them.

Lemma 3.14. Preservation of value (fixed fuel)

Given two interpretations ℑ = ⟨𝔄, 𝔳⟩ ,ℑff =
〈
𝔄ff , 𝔳

〉
, and 𝑖 = 0, . . . ,mf , then for every Σ-term 𝑡 , and Σff -term

𝑡ff := 𝑡 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)], we have
⟦𝑡⟧ℑ = ⟦𝑡ff ⟧ℑff .

In particular, for a Σ-sentence 𝜙 it holds that, 𝔄 |= 𝜙 if and only if 𝔄ff |= 𝜙 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)].

Proof. By structural induction on 𝑡 .

Case 𝑡 = 𝑥 = 𝑡ff . The claim directly follows from ⟦𝑥⟧ℑ = 𝔳(𝑥) = ⟦𝑥⟧ℑff .

27

3. Limited Functions

Case 𝑡 = ∀𝑥 : 𝜎. 𝑡 ′ and 𝑡ff = ∀𝑥 : 𝜎. 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)].

⟦𝑡⟧ℑ = ⟦∀𝑥 : 𝜎. 𝑡 ′⟧ℑ = true

iff ⟦𝑡 ′⟧ℑ[𝑥 : 𝜎̄ ↦→𝑎]
= true for all 𝑎 ∈ 𝜎𝔄 (by def. of ⟦ ⟧ℑ)

iff ⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff [𝑥 : 𝜎̄ ↦→𝑎]
= true for all 𝑎 ∈ 𝜎𝔄 (induction hypothesis)

iff ⟦𝑡ff ⟧ℑff = true (by def. of ⟦ ⟧ℑff)

Case 𝑡 = ∃𝑥 : 𝜎. 𝑡 ′ and 𝑡ff = ∃𝑥 : 𝜎. 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]. analogous

Case 𝑡 = 𝑔(𝑡 ′) with 𝑡 ′ : 𝐷̄ and 𝑡ff = 𝑔𝑖 (𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]).

⟦𝑡⟧ℑ = ⟦𝑔(𝑡 ′)⟧ℑ

= (𝑔 : 𝐷̄ 𝑅)𝔄 (⟦𝑡 ′⟧ℑ) (by def. of ⟦ ⟧ℑ)

= (𝑔 : 𝐷̄ 𝑅)𝔄 (⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff) (induction hypothesis)

= (𝑔𝑖 : 𝐷̄ 𝑅)𝔄ff (⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff) (by def. of 𝔄ff)

= ⟦𝑡ff ⟧ℑff (by def. of ⟦ ⟧ℑff)

Case 𝑡 = 𝑓 (𝑡 ′) with 𝑡 ′ : 𝜎 , 𝑓 ≠ 𝑔 or 𝜎 ≠ 𝐷̄ and 𝑡ff = 𝑓 (𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]).

⟦𝑡⟧ℑ = ⟦𝑓 (𝑡 ′)⟧ℑ

= (𝑓 : 𝜎 𝜌)𝔄 (⟦𝑡 ′⟧ℑ) (by def. of ⟦ ⟧ℑ)

= (𝑓 : 𝜎 𝜌)𝔄 (⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff) (induction hypothesis)

= (𝑓 : 𝜎 𝜌)𝔄ff (⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff) (by def. of 𝔄ff)

= ⟦𝑡ff ⟧ℑff (by def. of ⟦ ⟧ℑff)

□

Building on the previous point, we can also interchange any 𝑔𝑖 with any other 𝑔 𝑗 without affecting the value.

Lemma 3.15. Fuel value is irrelevant (fixed fuel)

For all 𝑖, 𝑗 = 0, . . . ,mf , Σff -term 𝑡 , and ℑff =
〈
𝔄ff , 𝔳

〉
⟦𝑡⟧ℑff = ⟦𝑡 [𝑔𝑖 (𝑑 : 𝐷̄) ↦→ 𝑔 𝑗 (𝑑)]⟧ℑff

Proof. By structural induction on 𝑡 , similar to the proof of Lemma 3.14. The statement follows directly from the
definition of 𝔄ff (Definition 3.13) – Omitted. □

With these preliminaries done, we now show that we have successfully constructed a model for𝜓ff .

Lemma 3.16. Fixed fuel model

The constructed Σff -structure 𝔄ff is a model of𝜓ff , i.e. 𝔄ff |=𝜓ff .

Proof. We show that 𝔄ff satisfies 𝜓ff by showing that 𝔄ff satisfies each conjunct of 𝜓ff . Let ℑ = ⟨𝔄, 𝔳⟩ and
ℑvf =

〈
𝔄vf , 𝔳

〉
denote some interpretations with structures 𝔄/𝔄vf and identical variable assignments 𝔳. Let

𝑖 = 1, . . . ,mf .

28

3.2. Soundness

𝔄ff |= 𝛿
ff

𝑔𝑖 = ∀𝑑 : 𝐷̄ . 𝑔𝑖 (𝑑) ≈ def𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖−1 (𝑑 ′)]. The definitional axioms are satisfied, since all 𝑔 𝑗 are in-
terpreted like 𝑔.

⟦𝛿ff𝑔𝑖⟧
ℑff

= ⟦𝛿ff𝑔𝑖 [𝑔𝑖−1(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff (by Lemma 3.15)

= ⟦𝛿𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff (term equality)

= ⟦𝛿𝑔⟧ℑ (by Lemma 3.14)
= true (𝔄 is model of 𝛿𝑔)

𝔄ff |= 𝜎
ff

𝑔𝑖 = ∀𝑑 : 𝐷̄ . 𝑔𝑖 (𝑑) ≈ 𝑔𝑖−1(𝑑). The synonym axioms are satisfied, since 𝔄ff assigns all 𝑔 𝑗 the same value.

⟦𝜎ff

𝑔𝑖⟧
ℑff = true

iff ⟦𝜎ff

𝑔𝑖 [𝑔𝑖−1 (𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff = true (by Lemma 3.15)

iff ⟦𝑔𝑖 (𝑑) ≈ 𝑔𝑖 (𝑑)⟧ℑff [𝑑 : 𝐷̄ ↦→𝑎]
= true for all 𝑎 ∈ 𝐷̄𝔄ff (by def. of ⟦ ⟧ℑ)

iff true = true (by def. of ≈)

𝔄ff |= 𝜑 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔mf (𝑑 ′)]. Follows from 𝔄 |= 𝜑 using Lemma 3.14. □

Fixed fuel encoding to Variable fuel encoding

Assuming there exists a Σff -structure 𝔄ff with 𝔄ff |=𝜓ff , we show there exists a Σvf -model of𝜓 vf by explicitly
constructing it from the Σff -model. The central idea is again to ensure that all 𝑔-functions (𝑔fuel, 𝑔0, . . .) are
assigned the same value by the two structures. We will see that the synonym axioms ensure that 𝑔0, . . . , 𝑔mf

are interpreted the same. This is important as otherwise Theorem 3.12 does not hold, and we can get spurious
counterexamples (cf. Example 3.10).

Definition 3.17. Variable fuel structure

Let𝔄ff =
〈
A, 𝔄ff

〉
be a Σff -structure such that𝔄ff |=𝜓ff . The corresponding Σvf -structure𝔄vf =

〈
Avf , 𝔄vf

〉
is defined by:

Avf = 𝔄 ∪N0

𝜎𝔄vf =

{
N0, if 𝜎 = Fuel

𝜎𝔄ff , if 𝜎 ∈ ΣS
ff

for 𝜎 ∈ ΣS
vf

(𝑓 : 𝜎 𝜌)𝔄vf =


𝜆fuel, 𝑑 . (𝑔0 : 𝐷̄ 𝑅)𝔄ff (𝑑), if 𝑓 : 𝜎 𝜌 = 𝑔fuel : Fuel 𝐷̄ 𝑅

0, if 𝑓 : 𝜎 𝜌 = 𝑍 : Fuel
𝜆fuel. fuel + 1, if 𝑓 : 𝜎 𝜌 = 𝑆 : Fuel Fuel
(𝑓 : 𝜎 𝜌)𝔄vf , else

for 𝑓 : 𝜎 𝜌 ∈ Σvf

The Variable fuel encoding introduces the new sort Fuel. Consistent with the intuition given when defining
the encodings, it is interpreted as the set of natural numbers. The additional function symbols 𝑍 and 𝑆 are
interpreted as 0 and incrementing by 1 respectively. 𝑔fuel is mapped to 𝑔0 ignoring the fuel parameter. The
next lemma shows that we could have chosen any 𝑔𝑖 , since 𝔄ff has to satisfy the synonyms axioms and thus all
𝑔𝑖 are interpreted the same.

Lemma 3.18. Fuel functions coincide (fixed fuel)

If 𝔄ff |=𝜓ff , then 𝑔∗ := (𝑔0 : 𝐷̄ 𝑅)𝔄ff = (𝑔𝑖 : 𝐷̄ 𝑅)𝔄ff for all 𝑖 = 0, . . . ,mf .

Proof. By induction on 𝑖 . For 𝑖 = 0, the claim holds by definition. Assuming that the claim holds for 𝑖 < mf , we
show that it also holds for 𝑖 + 1. To this end, assume that the claim is false, i.e. (𝑔𝑖+1 : 𝐷̄ 𝑅)𝔄ff ≠ 𝑔∗ = (𝑔𝑖 : 𝐷̄ 𝑅)𝔄ff .
But then clearly, 𝔄ff ̸ |= 𝜎

ff

𝑖+1 and hence 𝔄ff ̸ |= 𝜓ff . We arrive at a contradiction. Therefore, (𝑔𝑖+1 : 𝐷̄ 𝑅)𝔄ff = 𝑔∗

must hold. □

29

3. Limited Functions

It immediately follows that, for any 𝑖, 𝑗 ∈ { 0, . . . ,mf }, Σff -term 𝑡 , model 𝔄ff of𝜓ff , and ℑff =
〈
𝔄ff , 𝔳

〉
⟦𝑡⟧ℑff = ⟦𝑡 [𝑔𝑖 (𝑑 : 𝐷̄) ↦→ 𝑔 𝑗 (𝑑)]⟧ℑff

holds. With our definition of 𝔄vf , the same holds for Σvf -terms. Meaning, we can change the fuel parameter
without affecting the term’s value.

Lemma 3.19. Fuel value is irrelevant (variable fuel)

Let 𝑡 be a Σvf -term and ℑvf =
〈
𝔄vf , 𝔳

〉
an interpretation with structure 𝔄vf . For any term 𝑡fuel of sort Fuel, it

holds that
⟦𝑡⟧ℑvf = ⟦𝑡 [𝑔fuel (_ : Fuel, 𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf .

Proof. By structural induction on 𝑡 . The claim directly follows from the definition of 𝔄vf – Omitted □

The main step towards showing that 𝔄vf is a model of 𝜓 vf is realizing that 𝑔0, . . . , 𝑔mf and 𝑔fuel can be inter-
changed and the two structures (packaged into interpretations) assign the same values to the resulting terms.

Lemma 3.20. Preservation of value (variable fuel)

Given two interpretations ℑff =
〈
𝔄ff , 𝔳

〉
,ℑvf =

〈
𝔄vf , 𝔳

〉
, 𝑖 ∈ { 0, . . . ,mf } and some term 𝑡fuel of sort

Fuel, then for every Σ-term 𝑡 , Σff -term 𝑡ff := 𝑡 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)] and Σvf -term 𝑡vf := 𝑡 [𝑔(𝑑 ′ : 𝐷̄) ↦→
𝑔fuel (𝑡fuel, 𝑑 ′)], it holds that

⟦𝑡ff ⟧ℑff = ⟦𝑡vf ⟧ℑvf .

In particular, if these are sentences it holds that, 𝔄ff |= 𝑡ff if and only if 𝔄vf |= 𝑡vf .

Proof. By structural induction on 𝑡 .

Case 𝑡ff = 𝑥 = 𝑡vf . The claim directly follows from ⟦𝑥⟧ℑff = 𝔳(𝑥) = ⟦𝑥⟧ℑvf .

Case 𝑡ff = ∀𝑥 : 𝜎. 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)] and 𝑡vf = ∀𝑥 : 𝜎. 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)].

⟦𝑡ff ⟧ℑff = ⟦∀𝑥 : 𝜎. 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff = true

iff ⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff [𝑥 : 𝜎̄ ↦→𝑎]
= true for all 𝑎 ∈ 𝜎𝔄ff (by def. of ⟦ ⟧ℑff)

iff ⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf [𝑥 : 𝜎̄ ↦→𝑎]
= true for all 𝑎 ∈ 𝜎𝔄ff (induction hypothesis)

iff ⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf [𝑥 : 𝜎̄ ↦→𝑎]
= true for all 𝑎 ∈ 𝜎𝔄vf (none of the 𝜎 can be Fuel)

iff ⟦𝑡vf ⟧ℑvf = true (by def. of ⟦ ⟧ℑvf)

Case 𝑡ff = ∃𝑥 : 𝜎. 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)] and 𝑡vf = ∃𝑥 : 𝜎. 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]. analogous

Case 𝑡ff = 𝑔𝑖 (𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]) with 𝑡 ′ : 𝐷̄ and 𝑡vf = 𝑔fuel (𝑡fuel, 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]).

⟦𝑡ff ⟧ℑff = ⟦𝑔𝑖 (𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)])⟧ℑff

= (𝑔𝑖 : 𝐷̄ 𝑅)𝔄ff (⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff) (by def. of ⟦ ⟧ℑff)

= (𝑔𝑖 : 𝐷̄ 𝑅)𝔄ff (⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf) (induction hypothesis)

= (𝑔0 : 𝐷̄ 𝑅)𝔄ff (⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf) (by Lemma 3.18)

= (𝑔fuel : Fuel 𝐷̄ 𝑅)𝔄vf (⟦𝑡fuel⟧ℑvf , ⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf) (by def. of 𝔄vf)

= ⟦𝑡vf ⟧ℑ (by def. of ⟦ ⟧ℑvf)

30

3.2. Soundness

Case 𝑡ff = 𝑓 (𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]) with 𝑡 ′ : 𝜎 , 𝑓 ≠ 𝑔𝑖 or 𝜎 ≠ 𝐷̄ and 𝑡vf = 𝑓 (𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]).

⟦𝑡ff ⟧ℑff = ⟦𝑓 (𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)])⟧ℑff

= (𝑓 : 𝜎 𝜌)𝔄ff (⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]⟧ℑff) (by def. of ⟦ ⟧ℑff)

= (𝑓 : 𝜎 𝜌)𝔄ff (⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf) (induction hypothesis)

= (𝑓 : 𝜎 𝜌)𝔄vf (⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf) (by def. of 𝔄vf)

= ⟦𝑡vf ⟧ℑvf (by def. of ⟦ ⟧ℑvf)

Note that by the construction of the terms 𝑓 is neither 𝑍 nor 𝑆 . □

We can now show that we have actually constructed a model for𝜓 vf .

Lemma 3.21. Variable fuel model

The constructed Σvf -structure 𝔄vf is a model of𝜓 vf , i.e. 𝔄vf |=𝜓 vf .

Proof. We show that 𝔄vf satisfies𝜓 vf , by showing that 𝔄vf satisfies each conjunct of𝜓 vf . Let ℑff =
〈
𝔄ff , 𝔳

〉
and

ℑvf =
〈
𝔄vf , 𝔳

〉
denote some interpretations with structures 𝔄ff /𝔄vf and identical variable assignments 𝔳.

𝔄vf |= 𝛿
vf

𝑔 = ∀fuel : Fuel, 𝑑 : 𝐷̄ . 𝑔fuel (𝑆 (fuel), 𝑑) ≈ def𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (fuel, 𝑑 ′)]. All𝑔-functions are assigned
the same values. Since,

𝔄ff |= 𝛿
vf

𝑔1 and 𝔄ff |= 𝜎
vf

𝑔1

we also have

𝔄ff |= ∀𝑑 : 𝐷̄ . 𝑔1 (𝑑) ≈ def𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔1 (𝑑)] (*)

and can conclude

⟦𝛿vf𝑔 ⟧ℑvf

= ⟦∀fuel : Fuel, 𝑑 : 𝐷̄ . 𝑔fuel (𝑍,𝑑) ≈ def𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑍,𝑑 ′)]⟧ℑvf (by Lemma 3.19)

= ⟦∀𝑑 : 𝐷̄ . 𝑔fuel (𝑍,𝑑) ≈ def𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑍,𝑑 ′)]⟧ℑvf (fuel does not occur)

= ⟦𝛿𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑍,𝑑 ′)]⟧ℑvf (by term equality)

= ⟦𝛿𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔1 (𝑑)]⟧ℑff (by Lemma 3.20)
= true (*)

𝔄ff |= 𝜎
vf

𝑔 = ∀fuel : Fuel, 𝑑 : 𝐷̄ . 𝑔fuel (𝑆 (fuel), 𝑑) ≈ 𝑔fuel (fuel, 𝑑). The synonym axiom is satisfied, since 𝔄vf

ignores the fuel parameter when interpreting 𝑔fuel.

⟦𝜎vf

𝑔 ⟧ℑvf = true

iff ⟦𝜎vf

𝑔 [𝑔fuel (_ : Fuel, 𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (fuel, 𝑑 ′)]⟧ℑvf = true (by Lemma 3.19)

iff ⟦𝑔fuel (fuel, 𝑑) ≈ 𝑔fuel (fuel, 𝑑)⟧ℑvf [fuel↦→𝑓 ,𝑑 : 𝐷̄ ↦→𝑎]
= true

for all 𝑓 ∈ Fuel𝔄vf , 𝑎 ∈ 𝐷̄𝔄vf (by def. of ⟦ ⟧ℑvf)
iff true = true (by def. of ≈)

𝔄vf |= 𝜑 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (mf , 𝑑 ′)]. Directly follows from 𝔄ff |= 𝜑 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔mf (𝑑 ′)] using Lemma 3.20.
□

Variable fuel encoding to Default encoding

Assuming there exists a Σvf -structure 𝔄vf with 𝔄vf |= 𝜓 vf , we show there exists a Σ-model of 𝜓 by explicitly
constructing it from the Σvf -model. As previously, the construction relies on the fact that all 𝑔-functions are
interpreted the same.

31

3. Limited Functions

Definition 3.22. Default structure

Let 𝔄vf =
〈
A, 𝔄vf

〉
be a Σvf -structure such that 𝔄vf |= 𝜓 vf . The corresponding Σ-structure 𝔄 =

〈
A, 𝔄

〉
is

defined by (notice ΣS ⊆ ΣS
vf
):

𝜎𝔄 = 𝜎𝔄vf for 𝜎 ∈ ΣS

(𝑓 : 𝜎 𝜌)𝔄 =

{
𝜆𝑑. (𝑔fuel : Fuel 𝐷̄ 𝑅)𝔄vf (⟦𝑍⟧ℑvf , 𝑑), if 𝑓 : 𝜎 𝜌 = 𝑔 : 𝐷̄ 𝑅

(𝑓 : 𝜎 𝜌)𝔄vf , otherwise
for 𝑓 : 𝜎 𝜌 ∈ ΣF

The fact that the universe A contains values of sort Fuel, which is not present in ΣS, is not a problem. These
parts simply remain unused by 𝔄. The next lemma is based on the observation that, at least for fuel values that
are only constructed from 𝑍 and 𝑆 , the fuel parameter is irrelevant for the result of 𝑔fuel : Fuel 𝐷̄ 𝑅.

Lemma 3.23. Fuel functions coincide (variable fuel)

Let ℑvf =
〈
𝔄vf , 𝔳

〉
be an interpretation that satisfies𝜓 vf (⟦𝜓 vf ⟧ℑvf = true), then for a closed term 𝑡fuel of sort

Fuel and a tuple of argument values 𝑎 ∈ 𝐷̄𝔄vf

(𝑔fuel : Fuel 𝐷̄ 𝑅)𝔄vf (⟦𝑍⟧ℑvf , 𝑎) = (𝑔fuel : Fuel 𝐷̄ 𝑅)𝔄vf (⟦𝑡fuel⟧ℑvf , 𝑎).

Proof. By induction on the closed fuel term 𝑡fuel. Notice that it must have either the form 𝑍 or 𝑆 (𝑡 ′fuel), for some
other closed term 𝑡 ′fuel of sort Fuel.

Case 𝑡fuel = 𝑍 . Holds by term equality.

Case 𝑡fuel = 𝑆 (𝑡 ′fuel). Assuming that the claim is false, i.e.

(𝑔fuel : Fuel 𝐷̄ 𝑅)𝔄vf (⟦𝑍⟧ℑvf , 𝑎)

= (𝑔fuel : Fuel 𝐷̄ 𝑅)𝔄vf (⟦𝑡 ′fuel⟧
ℑvf , 𝑎) (induction hypothesis)

≠ (𝑔fuel : Fuel 𝐷̄ 𝑅)𝔄vf (⟦𝑡fuel⟧ℑvf , 𝑎) (assuming the claim is false)

= (𝑔fuel : Fuel 𝐷̄ 𝑅)𝔄vf (⟦𝑆 (𝑡 ′fuel)⟧
ℑvf , 𝑎) 𝑡fuel = 𝑆 (𝑡 ′fuel),

we arrive at a contradiction. The statement clearly violates 𝜎vf

𝑔 but ⟦𝜎vf

𝑔 ⟧ℑvf = true. □

Similar to before, the two structures (lifted to interpretations with the same variable assignment) assign the same
value to terms when interchanging 𝑔 : 𝐷̄ 𝑅 and 𝑔fuel : Fuel 𝐷̄ 𝑅.

Lemma 3.24. Preservation of value

Given two interpretations ℑvf =
〈
𝔄vf , 𝔳

〉
,ℑ = ⟨𝔄, 𝔳⟩ and some closed term 𝑡fuel of sort Fuel, then for every

Σ-term 𝑡 , and Σff -term 𝑡vf := 𝑡 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)], it holds that

⟦𝑡vf ⟧ℑvf = ⟦𝑡⟧ℑ .

In particular, if 𝑡 is a sentence it holds that, 𝔄vf |= 𝑡vf if and only if 𝔄 |= 𝑡 .

Proof. By structural induction on 𝑡 .

Case 𝑡vf = 𝑥 = 𝑡 . The claim directly follows from ⟦𝑥⟧ℑvf = 𝔳(𝑥) = ⟦𝑥⟧ℑ.

Case 𝑡vf = ∀𝑥 : 𝜎. 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)] and 𝑡 = ∀𝑥 : 𝜎. 𝑡 ′.

⟦𝑡vf ⟧ℑvf = ⟦∀𝑥 : 𝜎. 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf = true

iff ⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf [𝑥 : 𝜎̄ ↦→𝑎]
= true for all 𝑎 ∈ 𝜎𝔄vf (by def. of ⟦ ⟧ℑvf)

iff ⟦𝑡 ′⟧ℑ[𝑥 : 𝜎̄ ↦→𝑎]
= true for all 𝑎 ∈ 𝜎𝔄vf (by induction hypothesis)

iff ⟦𝑡 ′⟧ℑ[𝑥 : 𝜎̄ ↦→𝑎]
= true for all 𝑎 ∈ 𝜎𝔄 (none of the 𝜎 can be Fuel)

iff ⟦𝑡⟧ℑ = true (by def. of ⟦ ⟧ℑ)

32

3.2. Soundness

Case 𝑡vf = ∃𝑥 : 𝜎. 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)] and 𝑡 = ∃𝑥 : 𝜎. 𝑡 ′. analogous

Case 𝑡vf = 𝑔fuel (𝑡fuel, 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]) with 𝑡 ′ : 𝐷̄ and 𝑡 = 𝑔(𝑡 ′).

⟦𝑡vf ⟧ℑvf = ⟦𝑔fuel (𝑡fuel, 𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)])⟧ℑvf

= (𝑔fuel : Fuel 𝐷̄ 𝑅)𝔄vf (⟦𝑡fuel⟧ℑvf , ⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf) (by def. of ⟦ ⟧ℑvf)

= (𝑔fuel : Fuel 𝐷̄ 𝑅)𝔄vf (⟦𝑡fuel⟧ℑvf , ⟦𝑡 ′⟧ℑ) (by induction hypothesis)

= (𝑔fuel : Fuel 𝐷̄ 𝑅)𝔄vf (⟦𝑍⟧ℑvf , ⟦𝑡 ′⟧ℑ) (by Lemma 3.23)

= (𝑔 : 𝐷̄ 𝑅)𝔄 (⟦𝑡 ′⟧ℑ) (by def. of 𝔄)

= ⟦𝑡⟧ℑ (by def. of ⟦ ⟧ℑ)

Case 𝑡vf = 𝑓 (𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]) with 𝑡 ′ : 𝜎 , 𝑓 ≠ 𝑔fuel or 𝜎 ≠ 𝐷̄ and 𝑡 = 𝑓 (𝑡 ′).

⟦𝑡vf ⟧ℑvf = ⟦𝑓 (𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)])⟧ℑvf

= (𝑓 : 𝜎 𝜌)𝔄vf (⟦𝑡 ′ [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑡fuel, 𝑑 ′)]⟧ℑvf) (by def. of ⟦ ⟧ℑvf)

= (𝑓 : 𝜎 𝜌)𝔄vf (⟦𝑡 ′⟧ℑ) (by induction hypothesis)

= (𝑓 : 𝜎 𝜌)𝔄 (⟦𝑡 ′⟧ℑ) (by def. of 𝔄ff)

= ⟦𝑡⟧ℑ (by def. of ⟦ ⟧ℑ)

□

We finish, by showing that we have successfully constructed a model for𝜓 .

Lemma 3.25. Default model
The constructed Σ-structure 𝔄 is a model of𝜓 , i.e. 𝔄 |=𝜓 .

Proof. We show that 𝔄 satisfies𝜓 , by showing that 𝔄 satisfies each conjunct of𝜓 .

𝔄 |= 𝛿𝑔 = ∀𝑑 : 𝐷̄ . 𝑔(𝑑) ≈ def𝑔. Since, 𝔄vf |= 𝛿
vf

𝑔 and 𝔄vf |= 𝜎
vf

𝑔 we also have

𝔄vf |= ∀fuel : Fuel, 𝑑 : 𝐷̄ . 𝑔fuel (fuel, 𝑑) ≈ def[𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (fuel, 𝑑 ′)] .

In particular,
𝔄vf |= ∀𝑑 : 𝐷̄ . 𝑔fuel (𝑍,𝑑) ≈ def𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑍,𝑑 ′)] (*)

Letℑ = ⟨𝔄, 𝔳⟩ andℑvf =
〈
𝔄vf , 𝔳

〉
denote some interpretationswith structures𝔄/𝔄vf and identical variable

assignments 𝔳.

⟦𝛿𝑔⟧ℑ

= ⟦∀𝑑 : 𝐷̄ . 𝑔(𝑑) [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑍,𝑑 ′)] ≈ def𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (𝑍,𝑑 ′)]⟧ℑvf (Lemma 3.24)
= true (*)

𝔄 |= 𝜑 . Directly follows from 𝔄vf |= 𝜑 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (mf , 𝑑 ′)] using Lemma 3.24. □

3.2.2 High-level Soundness

Theorem 3.12 (Equisatisfiability of encodings)might suggest that one can arbitrarily choose any encoding (prefer-
ably the Default encoding as it is the simplest) since they are all logically equivalent. Although true in theory, this
is not the case in practice, where we rely on semi decision procedures. Remember that we initialy motivated the
fuel encodings as a strategy for preventing matching loops — a problem related to E-matching. E-matching is the
primary heuristics used by SMT solvers to show unsatisfiable in the presence of quantifiers. The fuel encodings
are designed to work well with E-matching. It is therefore also required to turn off other quantifier instantiation
heuristics, namely MBQI. The triggers used by the encodings were ignored in the proof. This is because they

33

3. Limited Functions

1 func g(𝑑:𝐷̄): 𝑅 = def𝑔
2 proc 𝑃 pre pre post post 𝑆

Figure 3.28: Procedure with a function declaration.

carry no logical meaning in the reference SMT-LIB semantics, meaning they are irrelevant for determining the
theoretical existence of a model. But in practise we rely on heuristics to find models, or in our case to show the
absence of a model. For E-matching, good triggers are vital for guiding the search.
Theorem 3.12 is interesting because it lets us directly prove, that Caesar remains sound when using a fuel en-
coding for user-defined functions. This is done in the remainder of this section. Since Caesar heavily relies on
SMT solvers, we first define more precisely what an SMT solver does.

Definition 3.26. SMT solver
An SMT solver implements the following families of functions,

SMT Σ : SentenceΣ × TheoryΣ → { sat } × StructureΣ ∪ { unknown, unsat } ,

i.e. given a Σ-sentence and a Σ-compatible theory it either returns sat together with a model, unknown, or
unsat. Situations where the solver stops due to exceeded resource limits are grouped with the unknown case.

Assumtion 3.27. Soundness of SMT solvers
An SMT solver is sound. Meaning for a signature Σ, a Σ-sentence 𝜑 and a Σ-compatible theory T

SMT Σ (𝜑,T) = (sat,𝔄) implies 𝔄 ∈ T and 𝔄 |= 𝜑

SMT Σ (𝜑,T) = unsat implies there exists no 𝔄 ∈ T such that 𝔄 |= 𝜑

SMT Σ (𝜑,T) = unknown implies nothing in perticular

If the SMT solver returns sat, then the returnedmodel should satisfy the formula modulo T . If the solver returns
unsat, then the formula should not be satisfiable modulo T . Given the result, unknown we did not learn any
new information. It was neither possible to prove satisfiability nor unsatisfiability.
We also assume that Caesar was previously sound using the Default encoding.

Assumtion 3.29. Soundness of the Default encoding

Given a HeyVL program with the procedure 𝑃 and the user-defined function 𝑔 : 𝐷̄ 𝑅 in the form of Figure 3.28.
If the user-defined function 𝑔 : 𝐷̄ 𝑅 is internally encoded using the Default encoding, then

1. if Caesar verifies 𝑃 , it holds that pre ⊑ vp⟦𝑆⟧(post), and

2. if Caesar finds a counterexample ℭ for 𝑃 , then pre(ℭ) > vp⟦𝑆⟧(post) (ℭ).

With these preliminaries, we show that Caesar remains sound when using one of the fuel encodings. The sound-
ness follows directly from the Equisatisfiability of encodings theorem (Theorem 3.12), stating that the results for
the fuel encodings are always the same as for the default encoding.

Theorem 3.30. Soundness of Caesar
Given a HeyVL program with the procedure 𝑃 and the user-defined function 𝑔 : 𝐷̄ 𝑅 in the form of Figure 3.28.
If the user-defined function 𝑔 : 𝐷̄ 𝑅 is internally encoded using a fuel encoding, then

1. if Caesar verifies 𝑃 , it holds that pre ⊑ vp⟦𝑆⟧(post), and

2. if Caesar finds a counterexample ℭ for 𝑃 , then pre(ℭ) > vp⟦𝑆⟧(post) (ℭ).

Proof. We will only consider the Fixed fuel encoding for the proof, but the exact same argument works for the
Variable fuel encoding as well. Previously, Caesar used the Default encoding where the final formula that is SAT
checked is

𝜌 := Eterm (pre ≰ vp⟦𝑆⟧(post), def𝑔).

34

3.2. Soundness

This encoding is assumed to be sound (cf. Assumtion 3.29). The final formula produced by Caesar with the Fixed
fuel encoding is

𝜌ff := Effterm (pre ≰ vp⟦𝑆⟧(post), def𝑔).

This is dispatched to an STM solver.

Case 1. If Caesar verified 𝑃 , then the SMT solver returned unsat, i.e. SMT Σff (𝜌ff ,T) = unsat for a suitable
background theory T (EUF + NRA + NIA). By the assumption that the SMT solver is sound (Assumption
Assumtion 3.27) this means that there exists no 𝔄 ∈ T such that 𝔄 |= 𝜌ff . According to Theorem 3.12,
this is equivalent to the non-existence of a model for 𝜌 . Since the Default encoding is assumed to be sound
pre ⊑ vp⟦𝑆⟧(post) must be valid.

Case 2. If Caesar produced a counterexample for 𝑃 , then the SMT solver returned sat with a model ℭff , i.e.
SMT Σff (𝜌ff ,T) = (sat,ℭff). By Assumtion 3.27, this means that ℭff |= 𝜌ff . According to Theorem 3.12,
this means there also exists a model ℭ for 𝜌 . The proof of Theorem 3.12 also gives us a way to con-
struct ℭ from ℭff . By assumption, the model ℭ for 𝜌 is a correct counterexample, such that pre(ℭ) >
vp⟦𝑆⟧(post) (ℭ) holds.

□

The previous theorem gives us the requested soundness guarantees. Namely, the first point ensures that wrong
programs do not verify and the second point ensures that a reported counterexample is not spurious.

3.2.3 Incompleteness under E-matching Semantics

The fuel encodings will not have the intended effect when other quantifier instantiation techniques besides
E-matching are used. Therefore, MBQI must be disabled. Otherwise, MBQI instantiations can introduce new
ground terms that have a higher fuel value, which defeats the point of the fuel encodings. When only E-matching
is used andMBQI is disabled, onewill never get a sat response from the solver if the formula contains quantifiers.
E-matching can never return sat, see Algorithm 1. We ignore this shortcoming that is related to the heuristic
selection for now and return to it in Chapter 4 when discussing how we could obtain counterexamples.
In the context of a deductive verifier, showing unsat is generally more interesting, since this means that the
program fulfils its specification. When it comes to showing unsatisfiability with E-matching, the Fixed fuel
encoding and Variable fuel encoding are less complete than the Default encoding, since they allow for fewer
instantiations. This leads to situations where the solver can theoretically prove unsat for the Default encoding,
with only E-matching, but not for the other two (resulting in unknown).

Example 3.31. Fuel encodings cannot perform computation

The fuel encodings were specifically designed to only allow for mf instantiations. We can exploit this fact by
constructing an assertion that requires mf + 1 instantiations.
Consider the Fixed fuel encoding of the factorial function with mf = 1 given in Figure 3.6. Proving the
assertion assert ?(fac1(1) == 1) fails. The initial set of ground terms is 𝐺ff

1 = { fac1(1) != 1 }. The term
fac1(1)matches both the trigger of the fac_syn1 and the fac_def1 axiom. Instantiating both axioms yields the
new set of ground terms

𝐺
ff

2 =𝐺1 ∪ { fac1(1) == fac0(1), fac1(1) == 1 * fac0(0) }
= { fac1(1) != 1, fac1(1) == fac0(1), fac1(1) == 1 * fac0(0) } .

The set of ground terms is not inconsistent, but the patterns do not match any of the new terms. Therefore,
no new instantiations that can be performed. Pending a result, but also with no way to proceed, E-matching
has to give up with unknown.
This failure is only due to the triggers preventing the required instantiations. Increasing the maximum fuel
valuemf to 2wouldmake the above assertion provable butwould fail again for fac2(2). In general, fac

mf
(mf) ≈

mf ! is never provable. Everything above also applies to the Variable fuel encoding.

35

3. Limited Functions

Example 3.32. Default encoding can perform computation

Using Default encoding (Figure 3.1) to prove assert ?(fac(1) == 1) similarly works without problems. The
initial set of ground term is𝐺1 = { fac(1) != 1 }. After instantiating the fac_def axiom with fac(1) and then
again with the resulting fac(0) term we get the sets

𝐺2 = { fac(1) != 1, fac(1) == 1 * fac(0) }
𝐺3 = { fac(1) != 1, fac(1) == 1 * fac(0), fac(0) == 1 } .

This simplifies to
𝐺 ′3 = { fac(1) != 1, fac(1) == 1, fac(0) == 1 } .

Which is clearly inconsistent. Thus, E-matching returns with unsat and we have shown that fac(1) == 1

must be true.

Generally, if a quantifier instantiation is possible in the fuel encodings, it can be matched in the Default encoding
to obtain the same information. An instantiation of (ff-def-axiom)/(vf-def-axiom) can always be matched with
an instantiation of the (def-axiom) due to the more liberal trigger, and a synonym axiom does not need to be
matched since the information is already present. The reverse is not the case, as shown by the previous examples.
None of this is in conflict with Theorem 3.12 but a result of the undecidability of the problem and the inherent
incompleteness of E-matching.

3.2.4 Termination under E-matching Semantics

The initial motivation for introducing the fuel encodings was to prevent matching loops when encoding user-
defined functions. We argue in this section that we have achieved this goal by giving an upper bound on the
number of possible instantiations. Naturally, we assume that only E-matching is used for quantifier reasoning
in this section.
When counting the instantiations caused by the term fac2 (𝑛), it is not enough to only examine the direct in-
stantiations. The instantiations of the synonym and definitional axiom produce new fac1-terms and so on. We
therefore must also examine the transitive instantiations. For fac2 (𝑛) these are shown in an instantiation graph
in Figure 3.33.

Figure 3.33: All (transitive) instantiations caused by the term fac2 (𝑛). A 𝛿-arrow denotes an instantiation of the
corresponding (ff-def-axiom) and a 𝜎-arrow of the corresponding (ff-syn-axiom).

We call a term that is a function application of𝑔with 𝑘 fuel, i.e. a term of the form𝑔𝑘 (𝑑) or𝑔fuel (𝑘, 𝑑) (depending
on the encoding), a 𝑔𝑘 -term.
Intuitively, at some point no more instantiations are possible since the fuel value of the new function symbols
decreases each time an axiom is instantiated. Once the fuel value reached 0, no new instantiations are possible.
As can be seen in Figure 3.33, a fac0-term (e.g. fac0 (𝑛 − 2) or fac0 (3)) causes 0 instantiations, a fac1-term
causes 2 instantiations, and a fac2-term 6 instantiations.
Another fact that can be seen in Figure 3.33 is that each of the axioms is only instantiated once for each term.
We formulate these as two observations as they are relevant for the proof.

Observation 1. A 𝑔0-term can neither be used to instantiate the synonym axiom nor the definitional axiom. This
is ensured by the chosen triggers.

Observation 2. Once a quantifier was instantiated using a 𝑔𝑘 -term, then the same 𝑔𝑘 -term cannot be used to

36

3.2. Soundness

instantiate the same quantifier again. The second instantiation is prevented since it would not add any
new ground terms. All produced ground terms were already added by the first instantiation.

We now consider the general case, of encoding the function 𝑔 : 𝐷̄ 𝑅 with a fuel encoding. When encoding a for-
mula 𝜑 , it can contain arbitrary additional quantifiers. We therefore assume that the only quantifiers producing
𝑔𝑘 -terms are the ones introduced by the Fixed fuel encoding/Variable fuel encoding. Instantiating the synonym
axiom results in exactly one (potentially) new 𝑔𝑘 -term. The number of new 𝑔𝑘 -term produced by the definitional
axiom depends on the number of occurrences (recursive calls) of 𝑔 in def𝑔, in the following denoted by #𝑔 (def𝑔).

Lemma 3.34
Given a signature Σ, a function 𝑔 : 𝐷̄ 𝑅 ∈ Σ, a Σ-sentence 𝜑 , and def𝑔, then during the proof search of the fuel
encoded formula 𝜑 (Effterm (𝜑, def𝑔)/E

vf

term (𝜑, def𝑔)), each 𝑔𝑘 ground term can cause at most

𝑘−1∑︁
𝑖=0

2 · (#𝑔 (def𝑔) + 1)𝑖

E-matching instantiations (direct and transitively).

Proof. By induction on 𝑘 .

Induction base (𝑘 = 0). By Observation 1, a 𝑔0-term can be instantiated 0 times, which is bounded by

0−1∑︁
𝑖=0

2 · (#𝑔 (def𝑔) + 1)𝑖 = 0.

Induction step (𝑘 ⇝ 𝑘 + 1). Assume now that a 𝑔𝑘 -term can cause at most
∑𝑘−1

𝑖=0 2 · (#𝑔 (def𝑔) + 1)𝑖 instantia-
tions. A 𝑔𝑘+1-term can trigger the corresponding synonym and definitional axiom each at most once (see
Observation 2).

• The instantiation of the synonym axiom produces a 𝑔𝑘 -term. By induction hypothesis, this term can
cause at most

∑𝑘−1
𝑖=0 2 · (#𝑔 (def𝑔) + 1)𝑖 instantiations.

• The instantiation of the definitional axiom produces #𝑔 (def𝑔) 𝑔𝑘 -terms. By induction hypothesis,
these terms can cause at most

∑𝑘−1
𝑖=0 2 · (#𝑔 (def𝑔) + 1)𝑖 instantiations each.

In total, that makes at most

2 + (#𝑔 (def𝑔) + 1) ·
𝑘−1∑︁
𝑖=0

2 · (#𝑔 (def𝑔) + 1)𝑖

= 2 +
𝑘−1∑︁
𝑖=0

2 · (#𝑔 (def𝑔) + 1)𝑖+1

= 2 +
𝑘∑︁
𝑖=1

2 · (#𝑔 (def𝑔) + 1)𝑖

=

𝑘∑︁
𝑖=0

2 · (#𝑔 (def𝑔) + 1)𝑖

instantiations. This is precisely our claimed upper bound.

□

Since we have a fixed maximal fuel value mf and the number of initial 𝑔mf ground terms is finite (𝑁𝑔 :=
#𝑔mf
(Effterm (𝜑, def𝑔)) = #𝑔fuel (E

vf

term (𝜑, def𝑔))), the maximum number of quantifier instantiations caused by the
encodings is

𝑁𝑔 ·
mf −1∑︁
𝑖=0

2 · (#𝑔 (def𝑔) + 1)𝑖 .

37

3. Limited Functions

Thus, the fuel encodings are guaranteed to terminate.
Note again that this only true under the assumption that 𝜑 does not contain quantifiers that produce 𝑔-terms
and that only E-matching is used for quantifier instantiation. The latter can be ensured by configuring the SMT
solver accordingly. The former is generally not guaranteed. The formula 𝜑 might also already contain matching
loops by itself.
For practical purposes, the above considerations guarantee that adding a user-defined function encoded with a
fuel encoding does not introduce a matching loop on its own.
A more rigorous termination proof based on the operational small-step semantics for E-matching developed by
Ge et al. in [23] was outside the scope of this thesis. The core ideas would be the same as in the above argument.
The general limitation that we can only make statements about quantifiers that were created by the encodings
is expected and remains.

3.3 Enabling Unbounded Computations

At the start of the chapter, we motivated that limiting the number of unfoldings is reasonable and the com-
pleteness impact regarding program proofs is acceptable. But in one situation, limited functions have a clear
drawback. Trying to compute the actual value of a (now limited) function often fails, since it usually requires
more unfoldings than admitted by the encoding. We saw in Example 3.31 that the solver is unable to prove fac

(1) == 1with the fuel encodings and a maximal fuel ofmf = 1. This limitation is not easily fixable by increasing
the maximum available fuel. On the one hand, for most recursive functions and a fixed number of instantiations,
there always exist an argument that requires more instantiations. So the fix would never be complete. On the
other hand, using a large fuel value is contrary to the initial idea of guiding the solver during the proof search.
The fuel encodings effectively degenerate to the Default encoding if the maximal fuel is too large. The possibility
of increasing the maximum fuel value iteratively is briefly discussed in Section 6.5. In this section, we explore
an alternative solution that allows for unbounded unfoldings in certain “safe” cases.

3.3.1 Literal Terms

One solution to this problem is to allow unfolding of the limited functionwithout consuming fuel if all arguments
are known to be literal. Intuitively, literal terms are terms that have a known value, such as literals like 0 and
1 and operations on them like 1 + 3. When a limited function is applied to only literal terms, it can be safely
allowed to be unfolded an unbounded number of times without running into an endless matching loop. This is
the case since all the arguments are known values, such that evaluating the function eventually terminates with
a concrete value (assuming of course that the function terminates). This solution was presented by Amin et al.
together with the Variable fuel encoding in [2].
To our knowledge, there exists no formal definition of literal values/terms in this context. Based on the idea that
a literal term always has the same value, regardless of the interpretation, we propose the following definition:

Definition 3.35. Literal term
Let Σ be a signature, AX a set of Σ-sentences (axioms), and T a Σ-theory. A Σ-term 𝜑 is called literal iff

|{⟦𝜑⟧ℑ | Σ-interpretation ℑ = ⟨𝔄, 𝔳⟩ with 𝔄 ∈ T and 𝔄 |= AX}| ≤ 1

We discuss problems with the definition later in Section 5.4. By this definition, interpreted symbols from theories
such as NRA or NIA are literal by the fact that these theories only have a single model, i.e. 1 : Int is always the
number 1 ∈ Z and + : Real Real Real is always standard addition on R. The additional set of axioms is required
to fix the meaning of uninterpreted functions from EUF. This includes user-defined functions. The axioms from
the encoding are part of the set AX. Therefore, the term fac(2) is also literal, since the possible interpretation
of fac : UInt UInt is uniquely determined by the definitional axiom in AX. This definition also requires that
the recursive definition given in AX for an uninterpreted function 𝑓 is terminating when an application 𝑓 (𝑑) is
considered literal. If the definition of 𝑓 does not terminate for the input 𝑑 , then 𝑓 is not uniquely defined for 𝑑
and thus not all possible interpretations assign the same value to 𝑓 (𝑑).
We use “literal” to denote this concept to differentiate it from the concept of constants. Take the term
probMessageLost() from the program in Figure 1.1. It is a constant in the sense that, given an interpretation, it

38

3.3. Enabling Unbounded Computations

always has the same value, regardless in which position it is evaluated. But it is not literal, since it can have any
value from the interval [0, 1].
Which terms can be considered literal is statically approximated by the verifier and then passed to the SMT
solver. Since this information must be available during E-matching, this is done through Lit-marker functions.
A Lit-marker is an identity function and marks its argument as literal. For example, Lit(fac(2)) is logically
equivalent to fac(2) and additionally communicates that fac(2) is literal. The Lit-marker can be used in the
trigger of quantifiers such that a computation axiom can only be instantiated if all function arguments are
known to be literal. The computational axiom for the fac function using the Variable fuel encoding is shown in
Figure 3.36.

1 axiom fac_comp forall fuel: Fuel, n: UInt @trigger(fac(fuel , Lit(n))).
2 fac(fuel , Lit(n)) == ite(n == 0, 1, n * fac(fuel , Lit(n - 1)))

Figure 3.36: Computation axiom for fac from Figure 3.1. The Lit-markers are reduced to theminimumnecessary.

It is very similar to the (vf-def-axiom) with the key difference that it does not require a non-zero fuel value in
the trigger and the fuel is not decremented in the body. Additionally, the Lit-marker in the trigger ensure that
it can only be used if the arguments of fac are literal. The Lit-marker are also propagated through the body, to
enable nested computation. Note that n - 1 is considered literal since the parameter n is ensured to be literal by
the trigger.

3.3.2 Fuel Encodings with Computation

Both the Variable fuel encoding and Fixed fuel encoding encoding can be extended with computation. We use
the function tagLit𝑑 : 𝐷̄ (𝜑) to wrap all literal sub terms of 𝜑 with Lit-marker. For that, all axioms of the program
are collected in AX and the variables 𝑑 : 𝐷̄ are also assumed to be literal. The definition of literal terms (Defini-
tion 3.35) does not lend itself to an implementation. The heuristic used by Caesar for determining literal terms
is discussed in the implementation chapter (Section 5.4). For the sake of readability and consistency with the
implementation, not all literal terms are wrapped in the following examples, only a necessary subset.

Definition 3.37. Variable fuel encoding with computation

The variable fuel encoding with computation is an extension of the Variable fuel encoding and defined by the
encoding functions

Evfcsig (Σ, 𝑔 : 𝐷̄ 𝑅) =
〈
ΣS
vf
, ΣF

vf

¤∪ { Lit } , ΣFS
vf

¤∪
{
Lit : 𝜎 𝜎 | 𝜎 ∈ ΣS }〉

Evfcterm (𝜑, def𝑔) = 𝛿Lit ∧ 𝜒
vfc

𝑔 ∧ 𝛿
vf

𝑔 ∧ 𝜎
vf

𝑔 ∧ tagLit (𝜑 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (mf , 𝑑 ′)])

with the computation axiom

𝜒
vfc

𝑔 := ∀fuel : Fuel, 𝑑 : 𝐷̄ {𝑔fuel (fuel, Lit(𝑑))}. (vfc-comp-axiom)
𝑔fuel (fuel, Lit(𝑑)) ≈ tagLit𝑑 : 𝐷̄ (def𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔fuel (fuel, 𝑑 ′)])

and the definitional axioms for the Lit-markers

𝛿Lit :=
∧
𝜎∈ΣS
∀𝑥 : 𝜎 {Lit(𝑥)}. Lit(𝑥) ≈ 𝑥

The signature of the Variable fuel encoding is extended with a Lit-marker function for each sort, a computation
axiom is added to the final sentence, and all the literal sub-terms in the original formula 𝜑 are tagged with Lit-
markers. Additionally, all Lit-makers are fixed to be identity functions by 𝛿Lit. The quires all arguments to be
literal and does not decrease the fuel value. In the body, the arguments of the function are assumed to be literal
and marked accordingly.
The same happens when using the Fixed fuel encoding as a base. Here, an individual computation axiom is
added for each of the individual functions 𝑔𝑖 .

39

3. Limited Functions

Definition 3.38. Fixed fuel encoding with computation

The fixed fuel encoding with computation is an extension of the Fixed fuel encoding and defined by the en-
coding functions:

Effcsig (Σ, 𝑔 : 𝐷̄ 𝑅) =
〈
ΣS
ff
, ΣF

ff

¤∪ { Lit } , ΣFS
ff

¤∪
{
Lit : 𝜎 𝜎 | 𝜎 ∈ ΣS }〉

Effcterm (𝜑, def𝑔) = 𝛿Lit ∧ 𝜒
ffc

𝑔0 ∧ · · · ∧ 𝜒
ffc

𝑔mf
∧ 𝛿ff𝑔1 ∧ · · · ∧ 𝛿

ff

𝑔mf
∧ 𝜎ff

𝑔1 ∧ · · · ∧ 𝜎
ff

𝑔mf
∧

tagLit (𝜑 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔mf (𝑑 ′)])

with the computation axioms

𝜒
ffc

𝑔𝑖
:= ∀𝑑 : 𝐷̄ {𝑔𝑖 (Lit(𝑑))}. 𝑔𝑖 (Lit(𝑑)) ≈ tagLit𝑑 : 𝐷̄ (def𝑔 [𝑔(𝑑 ′ : 𝐷̄) ↦→ 𝑔𝑖 (𝑑 ′)]) for 𝑖 = 0, . . . ,mf

(ffc-comp-axiom)

and the same definitional axioms for the Lit-markers as above.

Example 3.39. Variable fuel encoding with computation

Encoding the factorial function from Figure 3.1 with the Variable fuel encoding with computation we addi-
tionally get the computation axiom for fac, shown in Figure 3.36. This lets us prove fac(2) ≈ 2, even with a
maximal fuel of mf = 1. The formula is negated and transformed by the encoding to

Lit(fac(𝑆 (𝑍), Lit(2)) 0 2).

As before, we show that the negated formula is unsatisfiable under the axioms using E-matching. The initial
set of ground terms is

𝐺1 = { Lit(fac(𝑆 (𝑍), Lit(2)) 0 2) } .

Repeatedly instantiating the computation axiom we get the following sets of ground terms: a

𝐺2 =𝐺1 ∪ { fac(𝑆 (𝑍), Lit(2)) ≈ 2 ∗ fac(𝑆 (𝑍), Lit(1)) }
𝐺3 =𝐺2 ∪ { fac(𝑆 (𝑍), Lit(1)) ≈ 1 ∗ fac(𝑆 (𝑍), Lit(0)) }
𝐺4 =𝐺3 ∪ { fac(𝑆 (𝑍), Lit(0)) ≈ 1 }

Following all the equalities, we can conclude that

fac(𝑆 (𝑍), Lit(2)) ≈ 2 ∗ 1 ∗ 1

which simplifies to the contradiction
fac(𝑆 (𝑍), Lit(2)) ≈ 2.

Thus, Lit(fac(𝑆 (𝑍), Lit(2)) 0 2) is unsatisfiable and fac(2) ≈ 2 must hold.
Notice that the application of fac produced by the computation axiom had their argument again marked as
literal, allowing for repeated instantiation of the computation axiom until the base case was reached.

aTo keep the example short, we apply some simplifications immediately to the instantiated terms.

3.3.3 Soundness and Termination

We briefly argue (without proving) that the fuel encodings with computation are also sound and do not impose
any new non-termination.
That the computation encodings are logically equivalent to the other encodings can be seen by the fact that
the computation axioms do not add any new constraints. After the Lit-markers are removed (since they are
identity functions), the remaining axioms are precisely the original (def-axiom) but for the fuelled functions
(𝑔fuel/𝑔0, . . . , 𝑔vf respectively). Thus, any model for the Fixed fuel encoding/Variable fuel encoding is also a
model for the Fixed fuel encoding with computation/Variable fuel encoding with computation (adding the Lit-
marker as identity functions). The reverse also holds.
Regarding termination, the story is more complicated. The computational axiom theoretically allows an un-
bounded number of instantiations when the arguments are literal. Here, it is important to only add the com-

40

3.3. Enabling Unbounded Computations

putation axiom for terminating functions. Then the whole application is literal, and these instantiations must
eventually result in a concrete value. A formal proof is complicated by the facts that there is no formal definition
of literal terms that completely captures the intuitive idea (we discuss shortcomings of our definition related to
uninterpreted sorts in Section 5.4) and that termination does not only rely on E-matching but also on theory
solving. The latter is theoretically supported by the formal E-matching semantics from [23], but was outside the
scope of this thesis.

41

4. Counterexamples

The fuel encodings discussed in the previous chapter require that only E-matching is enabled for quantifier in-
stantiation to have their intended effect. E-matching can only be used to create a contradiction, not a model sat-
isfying the quantifier. This suffices when we are only interested in proving that a program is correct. Remember
that the verification condition is negated. Therefore, unsatisfiability means that there exists no counterexample,
i.e. the verification condition is valid. But in cases where the program is wrong, it is desirable to get an actual
concrete counterexample to facilitate debugging, not just unknown. Counterexamples are also important when
it comes to IDE integration. They are required to pinpoint the user to the relevant assertions upon verification
failure. Otherwise, a localisation of the error is not possible and the user can only be told “could not verify this
procedure” without being able to provide a reason. Of course, due to the undecidability of the problem, one
cannot expect to always get a counterexample or successfully verify the program, but must expect unknown as
an answer as well.
We start by examining what other verifiers currently do: using potentially unsound models that are produced
during E-matching. Afterwards, we explore how the Fixed fuel encoding can be modified to perform a bounded
search for a counterexample.

4.1 Using unknown-models

When only relying on E-matching for quantifier reasoning, the SMT solver can no longer return sat in the
presence of quantifier. This is the case since the solver cannot prove that the ground term model also satisfies
the quantifier. Thus, the solver can only return unknown after it failed to prove unsat.
The interface defined by the SMT-LIB to obtain a model is as follows: After adding the required definitions and
formulae to the solver, it is instructed with the check-sat command (or similar) to perform the SAT check. Upon
finishing, the command returns with the result of the SAT check (sat/unsat/unknown). If the result was sat, the
get-model command can then be used to obtain the satisfying model. Interestingly, if the SAT check resulted
in unknown the solver will sometimes also respond with a model when queried with get-model. We call such
models, that are produced after an unknown response, unknown-models.
At least Boogie/Dafny1 and Viper [41] use unknown-models as a basis for generating counterexamples. The SMT
solver Z3 (primarily used by Boogie, Dafny, Viper) has a dedicated option (smt.candidate_models) that forces
the creation of a model even when quantifier or theory reasoning is incomplete [17].2

It is unclear what, if any, guarantees are given by unknown-models. One theory is that an unknown-model satisfies
all the ground terms at the time when E-matching cannot find a new instantiation, returning unknown (Algo-
rithm 1 line 8), i.e. the model that was previously constructed in the same loop iteration to show that the ground
terms are not unsatisfiable (line 3). This would mean that an unknown-model is only guaranteed to satisfy the
instantiations of quantifiers that were made by E-matching and generally not the quantifiers themselves. Vali-
dating this theory or investigating generally unknown-models was outside the scope of this thesis and remains
future work.
Dafny always requests a model upon verification failure and uses it for error localization. Additionally, a coun-
terexample can be requested via the command line interface. Then Dafny uses the same model to construct a
counterexample and prints it out. It issues a warning that the counterexample may be inconsistent or invalid.3

1https://github.com/boogie-org/boogie/issues/1008
2The option was added in response to https://github.com/Z3Prover/z3/issues/4924 where a Boogie/Dafny developer mentioned

that newer versions of Z3 sometimes do not produce a model after responding with unknown.
3See http://dafny.org/dafny/DafnyRef/DafnyRef#sec-counterexamples for more clarification.

42

https://github.com/boogie-org/boogie/issues/1008
https://github.com/Z3Prover/z3/issues/4924
http://dafny.org/dafny/DafnyRef/DafnyRef#sec-counterexamples

4.1. Using unknown-models

1 function exp(b: real, n: nat): real requires n >= 0 {
2 if n == 0 then 1.0 else b * exp(b, n - 1)
3 }
4
5 method badExp(b: real, n: nat) returns (res: real)
6 requires n >= 0
7 ensures res == exp(b, n)
8 {
9 if n == 0 {
10 res := 1.0;
11 } else {
12 var temp := badExp(b, n - 1);
13 res := b + temp; // <- + instead of *
14 }
15 }

Figure 4.1: Dafny program that recursively defines the exponential function and then wrongly implements it
with addition instead of multiplication.

Example 4.2. Wrong Dafny counterexample

This warning is justified, as we will show for the Dafny program in Figure 4.1. The method badExp wrongly
implements the exponential function. Thus, we expect verification to fail and to get a counterexample. Run-
ning the program through the Dafny verifier version 4.9.0.0 with the -extractCounterexample option results
in the error that the post-condition could not be proven and the following counterexample:

exp.dfy(8,0): initial state:
assume 0.0 == b && 8101 == n;
exp.dfy (12 ,29):
assume 0.0 == b && 0.0 == temp && 8101 == n;
exp.dfy (13 ,19):
assume 0.0 == b && 0.0 == res && 0.0 == temp && 8101 == n;

Dafny prints the counterexample as a series of assumptions that can be inserted at the specified program
locations to construct the situation where the failing assertion might be violated. The given counterexample
is wrong. It says that for b = 0 and n = 8101 the method violates its post-condition. The recursive call
badExp(0, 8101 - 1) evaluates (by specification) to exp(0, 8100) = 0. Therefore, the result variable temp is
0. The output variable res is then assigned 0 + 0 = 0, but that actually means that the method satisfies the
post-condition for this input pair (exp(0, 8101) = 0).
The model for uninterpreted functions that are part of the counterexample are not shown by Dafny. We can
gain access to them by saving the prover log with the -proverLog:<file> option and running it through Z3
ourselves. The model printed by Z3 for exp (called exp′ in the following) is

exp′ (𝑆 (𝑆 (𝑍 ())), 0, 8101) = −1 exp′ (𝑆 (𝑍 ()), 0, 8101) = −1 exp′ (𝑍 (), 0, 8101) = −1
exp′ (𝑆 (𝑆 (𝑍 ())), 0, 8100) = 0 exp′ (𝑆 (𝑍 ()), 0, 8100) = 0 exp′ (𝑍 (), 0, 8100) = 0

exp′ (𝑆 (𝑍 ()), 0, 8199) = 0 exp′ (𝑍 (), 0, 8199) = 0
otherwise: exp′ (_, _, _) = 0 exp′ (𝑍 (), 0, 8198) = 0

First, notice that Dafny uses the Variable fuel encoding for user-defined functions. Hence, we get a third
parameter containing the fuel value. Second, the givenmodel exp′ is not an exponential function. This explains
why Dafny claimed that the post-condition is violated for b = 0 and n = 8101. Using this model, the expected
return value of badExp is exp′ (0, 8101) = −1 not 0.

We do not have evidence that suggests that the error localisation based on unknown-models is incorrect, which
does happen by default and does not issue a warning.
Even though the use of unknown-models is generally not sound, it appears to be pretty successful in practice. We
believe that the reason is threefold.

1. They are quick to produce, since they come from the verification query. Here, there has often been put

43

4. Counterexamples

extensive work into the encoding striving for fast results and termination (e.g. limited functions).

2. They are always available when the solver terminates. Which comes back to the first point, that there has
been done work in this direction anyway.

3. In practice, the unknown-models seem to be good enough for identifying problematic assertions and there-
fore localising verification errors.

So upon termination, there are then two possible results. Either the program (provably) verified or a (potentially
wrong) counterexamples is given.
We believe that wrong counterexamples can be confusing and that they should have explainable guarantees.
That is why we look into another approaches next.

4.2 Using a Fixed Depth Encoding

E-matching fundamentally cannot be used to construct models that satisfy quantifiers, let alone recursive func-
tions. MBQI can construct models that provably satisfy quantifiers, but there are problems with constructing
models for recursive function in practice. If the recursive function has an infinite domain, the solver (in our case
Z3) is unable to construct a model with MBQI. Such a model would generally be infinite and require an inductive
argument to prove its correctness, whichmost solvers do not support. This is usually also the case if the recursive
function is not defined by an uninterpreted function + axiom but with define-funs-rec, a command introduced
by the SMT-LIB standard to define a set of mutually recursive functions. Here, Z3 also resorts to incrementally
unfolding the definition without any inductive reasoning.4 We found that in some simple cases, Z3 can find
counterexamples involving recursive functions if the recursive function was declared using define-funs-rec.
If recursive functions are the problem, we can possibly circumvent the problem by encoding them in a non-
recursive manner. Essentially weakening the constraints to make it easier to construct a model. This is almost
what happens when the function is transformed to a limited function. The definitional axioms are not recursive
by themselves.5 But we have seen in Theorem 3.12 that the encodings are logically equivalent to the recursive
one. This means we cannot get spurious counterexamples (Theorem 3.30) but also that a model (counterexample)
must satisfy the full recursive definition of the recursive function, resulting in no counterexamples in practise.
The synonym axioms are the key here. They bundle the multiple introduced function symbols such that the
whole construct becomes recursive again. We have also seen that if the synonym axioms are omitted, we can
get spurious counterexamples (Example 3.10). When encoding a recursive function 𝑔 : 𝐷̄ 𝑅 with the Fixed fuel
encoding but omitting the synonym axioms (ff-syn-axiom), then in a model each function 𝑔𝑘 is guaranteed to
be correct for argument tuples 𝑑 that require less than 𝑘 unfoldings of 𝑔 to compute the value 𝑔(𝑑). So 𝑔0 can
be arbitrary, since it is unconstrained, 𝑔1 is correct for arguments that require no recursive call, and 𝑔2 is correct
for arguments that need zero or one recursive call to compute their result. In total, such a model is correct for
all arguments that require less than the maximum fuel (mf) unfoldings. This gives us at least some correctness
guarantees for the resulting models. We call the Fixed fuel encoding with only the definitional axioms and
without the synonym axioms the fixed depth encoding.
In summary, when dealing with recursive uninterpreted functions, with the fuel encodings we have encodings
that can only yield unsat or unknown. If we omit the synonym axioms, then the function is no longer recursive,
and we could get counterexamples. These observations lead to the following approach: Run two separate queries
in parallel against the SAT solver. One optimized for showing unsat (proving correctness) and one for showing
sat (constructing a counterexample, short cex).

verification query. Using a complete fuel encoding as previously described (definitional axiom, synonym axiom,
possibly including computation axiom and lit-wrapping), enabling only E-matching. This query tries to
prove the correctness of the program.

cex query. Using the fixed depth encoding (Fixed fuel encoding with only the definitional axioms) and only
enabling MBQI. This query tries to find a counterexample (cex) for the program.

When the two queries return conflicting results, the verification query has priority. A complete overview is
given in Table 4.1.

4https://microsoft.github.io/z3guide/docs/logic/Recursive%20Functions/
5Here, 𝑔fuel with a different fuel values is considered to be a different function.

44

https://microsoft.github.io/z3guide/docs/logic/Recursive%20Functions/

4.2. Using a Fixed Depth Encoding

cex query
verification query

sat unsat unknown

sat
Use cex from

verification query Program verified Use cex from cex query

unsat " " unknown
unknown " " unknown

Table 4.1: Which result to use, depending on the results of the two queries

A big problemwith this approach is that the constraints are too weak. The resulting counterexamples often have
only the minimal required structure. This means the function model is correct for arguments that require at most
mf instantiations, and wrong for arguments that require more thanmf instantiations. The counterexample then
consists of a state that needs more than mf instantiations, see Example 3.10 or the following.

1 domain Math {
2 func exp0(base: Real , exponent: UInt): Real
3 func exp1(base: Real , exponent: UInt): Real
4 func exp2(base: Real , exponent: UInt): Real
5
6 axiom exp_def1 forall b: Real , e: UInt @trigger(exp1(b, e)).
7 exp1(b, e) == ite(e == 0, 1, b * exp0(b, e - 1))
8
9 axiom exp_def2 forall b: Real , e: UInt @trigger(exp2(b, e)).
10 exp2(b, e) == ite(e == 0, 1, b * exp1(b, e - 1))
11 }
12
13 proc badExp(base: Real , exponent: UInt) -> (res: Real)
14 post ?(res == exp2(base , exponent))
15 {
16 if exponent == 0 {
17 res = 1
18 } else {
19 var temp: Real = badExp(base , exponent - 1)
20 res = base + temp // <-- + instead of *
21 }
22 }

Figure 4.3: HeyVL program where the exponential is function encoded with the fixed depth encoding (mf = 2)
and that wrongly implements the exponential function with addition instead of multiplication.

Example 4.4

Consider the program in Figure 4.3, the HeyVL counterpart to the earlier Dafny program in Figure 4.1. It has
the fixed depth encoding applied, and the procedure badExp wrongly implements the exponential function.
The counterexample produced for the program is:

exp2(1, 3) = 0 exp2(1, 2) = 0 otherwise exp2(𝑏, 𝑒) =
{

1, if 𝑒 = 0
𝑏 · exp1(𝑏, 𝑒 − 1), else

exp1(1, 2) = 0 exp1(1, 1) = 0 otherwise exp1(𝑏, 𝑒) =
{

1, if 𝑒 = 0
𝑏 · exp0(𝑏, 𝑒 − 1), else

exp0(_, _) = 0 base = 1 exponent = 3 temp = 0 res = 1

Since exp2 is unconstrained for the exponents 3 and 2 (their computation requires more than two unfoldings),
the solver can assign arbitrary values to exp2(1, 3) and exp2(1, 2). The model for the exponential function
bears little resemblance to the actual exponential function. A “counterexample” is then created by choosing
values such that the procedure implementation does not produce the same values. The task for the solver
degenerates from finding a state where the procedure violates the specification to finding a new specification
(and then trivially a state) that the procedure does not satisfy.

45

4. Counterexamples

The resulting counterexamples are usually wrong and offer little insight for debugging a program. Perhaps
there are other use cases where they are useful. We will improve this approach in Section 4.3 by restricting the
counterexample to the defined parts of the function.

4.2.1 Why not to use the Variable fuel encoding?

First, we want to address another question: Why is the Fixed fuel encoding used as a basis for the limited depth
encoding and not the Variable fuel encoding? This has the practical reason that the solver is unable to find
a model for recursive functions encoded with Variable fuel encoding even without the synonym axiom. To
understand that, we have to examine how the uninterpreted Fuel sort can be interpreted by a model. The sort
must contain at least one element — the result of 𝑍 (). Let us name the elements of the Fuel sort vfuel𝑛 , with
𝑍 () = vfuel0.

1 domain Fuel {
2 func Z(): Fuel
3 func S(fuel: Fuel): Fuel
4 }
5
6 domain Math {
7 func exp(fuel: Fuel, base: Real , exponent: UInt): Real
8
9 axiom exp_def forall fu: Fuel, b: Real , e: UInt @trigger(exp(S(fu), b, e)).
10 exp(S(fu), b, e) == ite(e == 0, 1, b * exp(fu, b, e - 1))
11 }

Figure 4.5: Exponential function encoded with Variable fuel encoding but without the (vf-syn-axiom). Model
construction for this encoding fails.

If vfuel0 is the only element, i.e. Fuel𝔄 = { vfuel0 }, then 𝑆 (vfuel0) = vfuel0 must hold. This fact turns the
(vf-def-axiom) into the original recursive (def-axiom). For example, the definitional axiom of the exponential
function in Figure 4.5 becomes:

axiom exp_def forall b: Real , e: UInt @trigger(exp(vfuel0, b, e)).
exp(vfuel0, b, e) == ite(e == 0, 1, b * exp(vfuel0, b, e - 1))

The axiom is again recursive. Therefore, it is clear that MBQI fails to construct a model for the same reasons as
previously stated.
If the Fuel sort consists of more than one element and is finite, i.e. Fuel𝔄 = { vfuel0, vfuel1, . . . , vfuel𝑘 }, then
there must exist a successor loop (named based on the intuition that 𝑆 : Fuel Fuel is the successor function).
Meaning that there exists a vfuel ∈ Fuel𝔄 and a number of applications 𝑛 ∈ N0 such that the n-fold application
of 𝑆 to vfuel is again vfuel, i.e. 𝑆𝑛 (vfuel) = vfuel. Otherwise, all elements produced by 𝑆𝑛 (vfuel) for 𝑛 ∈ N0
must be pairwise distinct, which contradicts the finiteness of Fuel𝔄 . The existence of the loop means that the
definitional axiom is again recursive, and that model creation generally fails.

Example 4.6. Three fuel values

For 3 distinct fuel values with

𝑆 (vfuel0) = vfuel1 𝑆 (vfuel1) = vfuel2 𝑆 (vfuel2) = vfuel1

we get three axioms for the encoding in Figure 4.5
axiom exp_def1 forall b: Real , e: UInt @trigger(exp(vfuel1, b, e)).

exp(vfuel1, b, e) == ite(e == 0, 1, b * exp(vfuel0, b, e - 1))
axiom exp_def2 forall b: Real , e: UInt @trigger(exp(vfuel2, b, e)).

exp(vfuel2, b, e) == ite(e == 0, 1, b * exp(vfuel1, b, e - 1))
axiom exp_def3 forall b: Real , e: UInt @trigger(exp(vfuel1, b, e)).

exp(vfuel1, b, e) == ite(e == 0, 1, b * exp(vfuel2, b, e - 1))

where the last two axioms are mutually recursive.

46

4.3. Using a Fixed Depth Encoding and Bounded Inputs

If the Fuel sort consists of an infinite number of elements, i.e. Fuel𝔄 = { vfuel0, vfuel1, vfuel2, . . . , }, then a
successor loop may not exist. In such a case, the subset

{
(𝑆𝑛 (𝑍))𝔄 | 𝑛 ∈ N

}
of Fuel𝔄 is isomorph to the natural

numbers. The definitional axiom is then not recursive, but the existence of arbitrarily large fuel values means
that there must exist versions of the encoded function that are correct to an arbitrary large depth. Apart from
the infiniteness of the Fuel sort, this makes a model unconstruable.

4.3 Using a Fixed Depth Encoding and Bounded Inputs

The problem that we previously encountered in Example 4.4 was due to the fact that the counterexamples pro-
duced by the fixed depth encoding used parts of the function that were not defined by the encoding. If we restrict
the counterexamples to only use parts of the function that are defined by encoding, we would guarantee correct
counterexamples. Remember that this means restricting the argument values to those that require at most mf

instantiations to compute their value.

1 // fixed depth encoding of exp - omitted ...
2
3 proc badExp(base: Real , exponent: UInt) -> (res: Real)
4 pre ?(exponent < 2) // <-- argument restricted to defined fragment of exp2
5 post ?(res == exp2(base , exponent))
6 {
7 if exponent == 0 {
8 res = 1
9 } else {
10 var temp: Real = badExp(base , exponent - 1)
11 res = base + temp // <-- + instead of *
12 }
13 }

Figure 4.7: Adjusted version of the program from Figure 4.3 with the input bounded such that exp2 is defined for
it.

Example 4.8

In the case of the exponential function, the number of required unfoldings directly corresponds to the exponent
plus one. Thus, if we restrict the input exponent to be less than 2 (for mf = 2) we do not use undefined parts
of exp2. The resulting program is shown in Figure 4.7. The found counterexample is:

exp2(0, 1) = 0 exp2(0, 0) = 1 otherwise exp2(𝑏, 𝑒) =
{

1, if 𝑒 = 0
𝑏 · exp1(𝑏, 𝑒 − 1), else

exp1(0, 0) = 1 otherwise exp1(𝑏, 𝑒) =
{

1, if 𝑒 = 0
𝑏 · exp0(𝑏, 𝑒 − 1), else

exp0(_, _) = 0 base = 0 exponent = 1 temp = 1 res = 1

Finally, exp2 resembles an exponential function and the counterexample is correct. For the inputs base = 0
and exponent = 1 the recursive call badExp(0, 1) returns 1 such that the procedure terminates with res = 1.
This is in violation of the specification that says that res should be exp2(0, 1) = 0. For this simple procedure,
Z3 also finds a counterexample when declaring exp with define-funs-rec.

Some caution is required when interpreting the results obtained by the above encoding. A resulting counterex-
ample (solver returning sat) is also a counterexample for the original program. But if it verifies (solver returning
unsat) that does not mean that the original program is correct. Since the input was bounded, it only means that
the program is correct for this restricted set of inputs and could be wrong for other inputs. For example, if
the bound in Figure 4.7 is tightened to exponent < 1, then the program spuriously verifies. A closer inspection
reveals that badExp is actually correct if exponent is 0, but otherwise wrong. Only unsat from the verification
query can be used to conclude that the program is correct. If no conclusive result is obtained, the depth (mf)

47

4. Counterexamples

1 domain Constants {
2 func probMessageLost (): UReal
3 axiom messageLostProb probMessageLost () <= 1
4 }
5
6 domain Arith {
7 func exp0(base: UReal , exponent: UInt): UReal
8 func exp1(base: UReal , exponent: UInt): UReal
9 func exp2(base: UReal , exponent: UInt): UReal
10
11 axiom exp_def1 forall b: UReal , e: UInt @trigger(exp1(b, e)).
12 exp1(b, e) == ite(e == 0, 1, b * exp0(b, e - 1))
13 axiom exp_def2 forall b: UReal , e: UInt @trigger(exp2(b, e)).
14 exp2(b, e) == ite(e == 0, 1, b * exp1(b, e - 1))
15
16 axiom exp_bounded forall b: UReal , e: UInt. (b <= 1) ==> (exp2(b, e) <= 1)
17 }
18
19 proc arp(triesRemaining: UInt) -> (success: Bool)
20 pre ?(triesRemaining < 2) // <-- restricted to defined fragment of exp2
21 pre exp2(probMessageLost (), triesRemaining) // <-- not converse probability
22 post [success]
23 {
24 if triesRemaining == 0 {
25 success = false
26 } else {
27 var messageLost: Bool = flip(probMessageLost ())
28 if messageLost {
29 success = arp(triesRemaining - 1)
30 } else {
31 success = true
32 }
33 }
34 }

Figure 4.9: Version of the program from Figure 1.1 with the wrong specification from Figure Figure 1.2. The
exponential function is encoded with the Fixed fuel encoding (mf = 2). The exponent (triesRemaining) is
bounded to be less than 2, such that a counterexample only uses defined parts of exp2.

of the fixed depth encoding could be iteratively increased together with corresponding bounds to search for
counterexamples that require more unfoldings.
How it can be ensured, in general, that only defined parts of the encoding are used by the counterexample
remains an open question.

4.3.1 Case Study: Counterexample for arp

We close out the section with a small case study on the motivating example from Figure 1.1 with the wrong
specification from Figure 1.2 that reveals some more challenges. The complete resulting program is shown in
Figure 4.9. It uses the fixed depth encoding for exp and restricts the exponent to the defined fragment.
In our experiments, Z3 was unable to create a model (counterexample) for the program in Figure 4.9 and timed
out. Moreover, simplifying the problem by fixing probMessageLost() to a concrete probability did not help either.
Investigating the performedMBQI instantiationswith SMTscope revealed that, even after fixing probMessageLost
(), Z3 performed many instantiations of exp-terms with widely different bases. Only a single base is relevant for
a counterexample, thus Z3 made no real progress.
Based on this observation, a slightly different encoding was created (see Figure 4.10). The base parameter was
removed from the signature of exp. probMessageLost() remains an arbitrary probability, but is hard-coded as the
base in the definitional axioms. This reduced degree of freedom (probMessageLost() being always the base) is
enough guidance for Z3 to instantly (less than a second) find a model.

48

4.3. Using a Fixed Depth Encoding and Bounded Inputs

1 domain Constants {
2 func probMessageLost (): UReal
3 axiom messageLostProb probMessageLost () <= 1
4 }
5
6 domain Arith {
7 func exp0(exponent: UInt): UReal
8 func exp1(exponent: UInt): UReal
9 func exp2(exponent: UInt): UReal
10
11 axiom definitional1 forall e: UInt @trigger(exp1(e)).
12 exp1(e) == ite(e == 0, 1, probMessageLost () * exp0(e - 1))
13 axiom definitional2 forall e: UInt @trigger(exp2(e)).
14 exp2e == ite(e == 0, 1, probMessageLost () * exp1(e - 1))
15
16 axiom exp_bounded forall b: UReal , i: UInt. exp2(i) <= 1
17 }
18
19 proc arp(triesRemaining: UInt) -> (success: Bool)
20 pre ?(triesRemaining < 2) // <-- restricted to defined fragment of exp2
21 pre exp2(triesRemaining) // <-- not converse probability
22 post [success]
23 {
24 // body - omitted ...
25 }

Figure 4.10: Adjusted version of the program from Figure 4.9. The defined exponential function has a fixed base
of probMessageLost().

The produced counterexample for the program in Figure 4.10 is:

exp2(0) = 1 otherwise exp2(𝑒) = 1
2 · exp1(𝑒 − 1)

exp1(0) = 1 otherwise exp1(𝑒) = 1
2 · exp0(𝑒 − 1)

exp0(_) = 4 probMessageLost() =
1
2 triesRemaining = 0 success = false

The counterexample is correct. exp2 resembles an exponential function and the post-expectation is violated. The
pre-expectation exp2(triesRemaining) evaluates to 1, but the post-expectation is 0 (pre is not a lower bound of
the post).
The initial problems of finding amodel are again a reminder that the underlying procedure is incomplete, and it is
not always obviouswhat the underlying problem is. Tooling such as SMTscope allowed us to analyse the problem
and improve the encoding. Finding a standard encoding that generally works out of the box for user-provided
definitions is probably unrealistic. Here, another approach is to identify commonly required functions/constructs
and provide well tuned built-in encodings/procedures. For exponentials, a dedicated counter example guided
abstraction refinement (CEGAR) loop presented in [21] looks promising. We relied entirely on MBQI, a very
general CEGAR loop on the level of arbitrary terms. A dedicated CEGAR loop for exponentials can exploit
additional facts, e.g. monotonicity, and possibly perform better.
For thismore complicated procedure, Z3 fails to find a counterexamplewhen declaring expwith define-funs-rec.
This is the case for both versions (Figure 4.9/Figure 4.10).

49

5. Implementation

As part of this thesis, the presented encodings were implemented in Caesar and evaluated. This chapter details
their general implementation as well as the design decisions and challenges specific to working with the SMT
solver Z3 [15].

5.1 General

The function encodings are applied to function declarations with an associated body. Figure 5.1 shows the syntax
for this HeyVL construct. This syntax was already previously used in Figure 3.4 to define the factorial function.
Function declarations without a body are continued to be directly mapped to an uninterpreted function.

func 𝑔(𝑑:𝐷̄): 𝑅 = def𝑔

Figure 5.1: HeyVL syntax for defining a function where 𝑔 is the name of the function, 𝑑 : 𝐷̄ is a possibly empty
list of typed parameters, 𝑅 is the return type and def𝑔 a HeyVL expression of type 𝑅 (assuming the varaibles 𝑑
have types 𝐷̄).

The encoding of user defined-functions is the responsibility of the FOL Encoder (see Figure 2.1). It takes the
generated verification condition and the declarations in the HeyVL program and produces the input for the SMT
solver. The different function encodings are implemented using the strategy pattern [22] as shown in Figure 5.2.

FunctionEncoding

+ declareFunction(func: HeyVLDecl): List<SMTDecl>
+ axioms(func: HeyVLDecl): List<Axiom>
+ callFunction(func: HeyVLDecl, args: List<SMTTerm>): SMTTerm

DefaultEncoding FixedFuelEncoding

- computation: Bool
- maxFuel: UInt

VariableFuelEncoding

- computation: Bool
- maxFuel: UInt

Figure 5.2: The strategy pattern is used to implement the different encodings. They each the FunctionEncoding
interface.

The structure of the implementation is close to how the encodings were introduced in Section 3.1. The fuel
encodings have additional parameters, determining the maximum fuel and if computation axioms should be
generated. Each encoding must implement three operations. The first operation (declareFunction) generates
the necessary declarations for the SMT solver. This is one function declaration in the case of the Default encoding
and Variable fuel encoding and multiple functions in the case of the Fixed fuel encoding. It is the implementation
of the Esig function from the definitions, which performs the necessary signature modifications. The second
operation (axioms) generates all the required (and applicable) axioms for a function (definitional, synonym and
computational if enabled). The third operation (callFunction) generates the appropriated call to the function
with the given arguments. Together, the second and third operations implement the Eterm function from the
definitions, which adds the axioms and substitutes in the correct function calls in the remaining formula.

50

5.2. Disabling MBQI

5.2 Disabling MBQI

The fuel encodings presented in Chapter 3 are designed with only E-matching in mind. Thus, MBQI must be
disabled. Both E-matching and MBQI are enabled in Z3 by default.

Disabling MBQI the standard way. The standard way of disabling MBQI is to first disable automatic configura-
tion mode by setting the parameter smt.auto_config to false and then disabling MBQI with the parameter
smt.mbqi [9, 17].

Problems with quantitative quantifiers. Disabling MBQI generally like that has the effect that some examples
that rely on quantitative quantifiers no longer verify. In the quantitative setting, the infimum (greatest lower
bound) and supremum (least upper bound) are analogues to the universal and existential quantifier. Most of the
time, quantitative quantifiers can be eliminated by Caesar. In cases where they cannot be eliminated, they are
currently encoded using the textbook definition, i.e. inf is the infimum of 𝑅 ⊆ R∞≥0 iff

∀𝑟 ∈ 𝑅. 𝑖𝑛𝑓 ≤ 𝑟 (inf is lower bound)
∀lb ∈ R∞≥0 . (∀𝑟 ∈ 𝑅. lb ≤ 𝑟) =⇒ lb ≤ inf (inf is greater than every other lower bound)

and dually for the supremum. The exact reason why E-matching alone does not suffice was not determined. A
possible reason could be that the encoding is too naive and that bad patterns are inferred such that E-matching
is rendered useless. Improvements to the quantitative quantifier elimination and the encoding of quantitative
quantifiers are important next steps.

Alternative way of disabling MBQI. With the observation that MBQI can be useful/is required for proving unsat,
we decided not to disable it globally but only on a per-quantifier basis. Z3 has the option smt.mbqi.id that when
specified has the effect that model-based quantifier instantiation only happens for quantifiers with an ID that
starts with the specified prefix [17]. Quantifier IDs are additional metadata that can be associatedwith quantifiers
(similar to triggers), primarily for debugging purposes. The idea is to set this option to mbqi_ and add that as a
prefix to the three quantifiers of the infimum/supremum encoding. This disables MBQI for all other quantifiers
that do not have the prefix, such as those produced by the fuel encodings. However, it keeps MBQI enabled for
the infimum/supremum encoding. This means that examples with quantitative quantifiers still verify.

Z3 bug. This approach faced the practical problem that the smt.mbqi.id did not work as the documentation
suggested. Setting the option caused Z3 to frequently return sat together with unsound models. We opened
an issue1 with our findings and a bug fix was subsequently added by Nikolaj Bjørner. We think that MBQI
previously only ignored quantifier not matching the prefix when checking if a model is valid. Thus, returning
unsound models. This is similar to our approach in Section 4.2, where we removed the synonym axioms to make
model construction possible. Perhaps that was the original intention of the option and the documentation was
misleading.

The confusion reveals a problem when working with a large and complex tool with vast configuration options
such as Z3. It is not always clear what the intended use for the option is and how they interact with each other
and the different solver components. For example, it is not obvious from the documentation that only disabling
smt.mbqi is not enough to turn offMBQI but that smt.auto_configmust be disabled as well. We found that it is
often best to just try the different options and observe how the solver behaviour changes. For less frequently used
options, there exists the additional complication that one cannot be sure if the observed behaviour is intended
or if the option has a bug (as with smt.mbqi.id).

5.3 Lit-marker

The literal values for which the unfolding limit is suspended are marked with Lit-marker. They are identity
functions and relevant for E-matching, since their existence is required to instantiate the computation axiom.
Hence, they need to be part of the E-graph and are declared as an uninterpreted function plus a definitional
axiom stating they are equal to their argument. For illustrative purposes, the equivalent HeyVL code is shown
in Figure 5.3.

1https://github.com/Z3Prover/z3/issues/7510

51

https://github.com/Z3Prover/z3/issues/7510

5. Implementation

1 func LitInt(x: Int): Int
2 axiom lit_int_def forall x: Int @trigger(LitInt(x)). LitInt(x) == x

Figure 5.3: HeyVL code that demonstrates how the Lit-markers are encoded, here for the sort Int.

A different function and axiom is generated for each SMT-LIB. Some HeyVL types are mapped to the same
SMT-LIB sort, but with additional constraints. For example, UInt-terms are translated to terms of sort Int with
a non-negativity constraint (same for UReal and Real). This means that UInt-terms get marked with the same
functions as Int-terms. The default encoding of the EUReal type uses two different terms. One term of sort
Bool, which keeps track of whether the value is infinite or not, and one term of sort Real with non-negativity
constraint, which keeps track of the numeric value. Here, each of the two terms is marked separately.
The marker functions are not implemented with define-fun or define-fun-rec, dedicated commands pro-
vided by the SMT-LIB standard [6] for defining functions, since they are subject to preprocessing in Z3. For both
commands, Z3 first inlines all calls to Lit-markers. Replacing them with their argument. This is logically sound,
but has the effect of eliminating all Lit-marker. Thus, no Lit-marker are present in the E-graph and the compu-
tation axiom never triggers. Interestingly, the define-fun command is defined to be equivalent to declaring an
uninterpreted function and adding a definitional axiom [6, Section 4.2.3] like we ended up doing (see Figure 5.3).
But as we have seen several times, this theoretical equivalence does not imply an equivalence in practice.

5.4 Determining Literal Terms

Our definition of literal terms (Definition 3.35) characterizes them by the fact that they only ever have a single
value assigned to them, regardless of the interpretation. This definition cannot be directly implemented, since
it would require checking all (potentially infinite) possible interpretations. Instead, Caesar uses a bottom up
heuristic that approximates the literal terms of an expression. At a high level, it operates on the principle that
interpreted constants are literal, such as 1 and 2, and that interpreted operations involving only literal terms are
also literal. For example, 1 + 2 is literal. For a user-defined function 𝑓 : 𝐷 𝑅, the fact that the term 𝑡 : 𝐷 is literal
does not always imply that the term 𝑓 (𝑡) is also literal. Here, the user-defined function 𝑓 must be computable
in a finite number of steps. If the function 𝑓 was declared with a body

func f(x: D): R = def

then Caesar assumes that the definition terminates and 𝑓 (𝑡) is also considered literal. Caesar does not prove
that the function terminates. Automatically proving termination of recursive functions is not part of this thesis.
We rely on the user giving sensible function definitions. The user can also annotate functions that they know
are computable with @computable.

@computable func f(x: D): R

Again, this claim is not checked and the responsibility of the user to ensure that it is correct. In this second case,
𝑓 (𝑡) is also considered to be literal. It is not considered literal in all other cases.
The complete algorithm that determines if the term 𝑡 is literal under the assumption that the variables 𝑥 : 𝜎 are
literal is presented in Algorithm 3. If the term 𝑡 is one of the variables that are assumed to be literal, then it is
literal. All other variables are not considered literal. If the term is a function application, it is first recursively
checked if all the arguments are literal. If this is not the case, then the function application is not considered
literal. Otherwise, if all arguments are literal, the applied function is examined next. As previously discussed, if
the function is an interpreted function from a background theory or a user-defined function that was declared
with a body or is annotated as computable, then the application is considered literal. In all other cases, 𝑡 is
not considered literal. Remember that constants are functions with zero arguments. All of their arguments are
vacuously literal. Therefore, interpreted constants like 0, 1, . . . are always considered literal by line 11.

Example 5.4. The need for @computable

Caesar currently has not special support for custom data types. But they can still be encoded with uninter-
preted functions. The HeyVL program in Figure 5.5 creates a Peano number data type called Nat with two
variants Z() (zero) and S(n) (successor). The code also declares a tester function isZ that checks if the variant
that was used to construct the Peano number was Z(), and an accessor getPrev to obtain the previous value of

52

5.4. Determining Literal Terms

Algorithm 3: IsLit(𝑡, 𝑥 : 𝜎)
Input : A term 𝑡 : 𝜎 and a set of variables that are 𝑥 : 𝜎 assumed to be literal
Output: Either true if 𝑡 is determined to be literal or false otherwise

1 switch on the structure of 𝑡 do
2 case 𝑡 is a varaible 𝑦 do
3 if 𝑦 : 𝜎 is in 𝑥 : 𝜎 then
4 return true;
5 else
6 return false;
7 end
8 end
9 case 𝑡 is a function application 𝑓 (𝑡 ′) do
10 if for all 𝑡 ′ in 𝑡 ′: IsLit(𝑡 ′, 𝑥 : 𝜎) then
11 if 𝑓 is an interpreted function then /* includes interpreted constants like 0 */
12 return true;
13 else if 𝑓 is a user-defined function with body or @computable annotation then
14 return true;
15 else
16 return false;
17 end
18 else
19 return false;
20 end
21 end
22 otherwise do /* 𝑡 is a quantifier */
23 return false;
24 end
25 end

a Peano number created with S(). The plus function uses these helper functions to implements the addition
of two Peano numbers.
The functions isZ and getPrev currently cannot be defined with a single expression body. They need to match
on the Nat value to determine how it was built. HeyVL has no match expression, instead the matching must be
encoded with axioms as done in the code. The two constructor functions have no definition, since their value
is just themselves.
If the other functions were not marked @computable the generated computation axiom for plus would be
1 forall f: Fuel, n: Nat , m: Nat @trigger(plus(f, Lit(n), Lit(m))).
2 plus(f, Lit(n), Lit(m)) == ite(isZ(Lit(n)), Lit(m),
3 S(plus(f, getPrev(Lit(n)), Lit(m))))

which cannot be applied repeatedly since the first argument (getPrev(Lit(n))) of the recursive plus call is not
marked as literal. Without an annotation, Caesar has no way of telling that n being literal also implies getPrev
(n) being literal. Therefore, proving plus(S(S(Z())), Z()) == S(S(Z())) with a maximum fuel of mf = 2 is
not possible. With the annotations, the computation axiom becomes
1 forall f: Fuel, n: Nat , m: Nat @trigger(plus(f, Lit(n), Lit(m))).
2 plus(f, Lit(n), Lit(m)) == ite(isZ(Lit(n)), m,
3 S(plus(f, Lit(getPrev(Lit(n))), Lit(m))))

which can be repeatedly applied. The annotations also have the effect that S(S(Z())) is considered literal,
which is required to kick-start the computation. Note that 𝑖𝑡𝑒 and its arguments are now considered literal
too, but are not marked due to the optimization described in Section 5.4.1.
The @computable annotation offers a flexible solution for user to specify which functions are computable. In
the future, if HeyVL adds extra syntax for data types and the ability to match on them, then these constructs
would provide the algorithm with additional information and guarantees, such that it could infer more things
to be literal. This would reduce the user’s responsibility in this regard.

53

5. Implementation

1 domain Nat {
2 @computable func Z(): Nat
3 @computable func S(n: Nat): Nat
4
5 @computable func isZ(n: Nat): Bool
6 axiom isZ_Z isZ(Z()) == true
7 axiom isZ_S forall n: Nat @trigger(isZ(S(n))). isZ(S(n)) == false
8
9 @computable func getPrev(n: Nat): Nat
10 axiom getPrev_def forall n: Nat @trigger(getPrev(S(n))). getPrev(S(n)) == n
11
12 func plus(n: Nat , m: Nat): Nat = ite(isZ(n), m, S(plus(getPrev(n), m)))
13 }

Figure 5.5: Computation with custom data types requires @computable annotation.

Our use of @computable for Z and S is technically in conflict with our previously given definition of literal terms
(Definition 3.35). Since the sortNat is uninterpreted, there aremany possible interpretations for it likeNat𝔄 =N0
or even Nat𝔄 = { 𝑎 }, since it is not required to be infinite. Thus Z(), S(Z()) and so on, can have many possible
values. Nat𝔄 can also contain values that are not constructible by a combination of Z and Smaking the definitions
of all the other functions partial. These hypotheticals are not relevant from a practical perspective. Only the
constructible fragment ofNat𝔄 is ever relevant, and our intuition that terms like S(Z()) are custom literals holds.
If used as an argument, they can be used to compute the concrete value of the other defined functions.
The function getPrev is also only defined partially for numbers built with S. It can be made into a total function,
such that it is considered literal by Definition 3.35, by retuning a fixed value for all other numbers. The extension
is not necessary for the program in Figure 5.5 since all its applications are guarded by a negative isZ check.
The proposed definition does not work for uninterpreted sorts, and it is currently not clear how it could be
extended to include them.

5.4.1 Which Terms to Lit-mark

In an implementation, it is not adventitious to wrap all literal terms in Lit-marker. Too many Lit-marker can
slow down the solver. They each require an instantiation and introduce a new equality that must be tracked.
Looking at Algorithm 3 we see that if a term 𝑡 is considered literal also all it (immediate/transitive) child terms
are considered literal. Most of this literal information is not relevant and is only required during the algorithm
run. In fact, the only case where the information is directly relevant is for arguments of user-defined functions.
Therefore, a literal term is only marked with a Lit-marker if its parent is a function application of a user-defined
function or if its parent itself is not literal. The latter prevents the information from getting lost completely.
In [2], Amin et al. briefly mentioned that it is important in practice to use ite (if-then-else) as a stopper for
propagating literal information, i.e. considering ite itself not literal and every term containing it. We can confirm
this claim, but are unsure if it is related to ite. It could also be that it should be avoided to mark the result of the
computation axiom as literal. It is difficult to distinguish the two due to the usual structure of recursive function.
They contain a top-level case distinction (ite) to separate the base case from the recursive case. As a result, the
code produced by both rules is almost identical. Still, we decided to go with the latter as it is more localized to
the area we saw problems.
In summary, in our implementation a term is wrapped in a Lit-marker iff

• Algorithm 3 determines that it is literal,

• and its parent is a function application of a user-defined function or the parent is not literal,

• and it is not the result of a computation axiom.

Our evaluation in Section 6.4 confirms that these optimisations are important for obtaining a working imple-
mentation.
We have no explanation as to why it is important to not mark ite/the result of the computation axiom as literal.
We can only describe the observed behaviour if it is not done. In some runs, it causes Z3 to hang and to time

54

5.5. Quantifier IDs and Weights

out. When examining the produced traces for such a run with SMTscope we see no matching-loops (which
would have been surprising), but numerous equalities and gigantic terms filling multiple screens. For illustrative
proposes, we will discuss two equalities taken from a verification run for a program working with different
definitions of the factorial function. The first suspicious equality is

ite(n - LitInt(1) >= 0, n - LitInt(1), 0) == LitInt(1)

which says that n (from the verification condition that we do not know anything of) minus 1 but bounded at 0
is equal to LitInt(1). The reason for this equality is not given. Subsequent equalities then write LitInt(1) in
more and more elaborate ways. For example, an early one is:

ite(n - LitInt (1) >= 0, n - LitInt (1), 0) ==
LitInt(ite(Factorial(S(S(Z)), LitInt (0)) == 0,

1,
Factorial(S(S(Z)), LitInt (0)) * Factorial(S(S(Z)),

LitInt(ite(Factorial(S(S(Z)), LitInt (0)) >= 1,
-1 + Factorial(S(S(Z)), LitInt (0)),
0

))
)

))

later equalities fill whole screens.
Our two hypotheses are that there are so many equalities due to the Lit-terms that Z3 can get stuck propagating
equalities and/or case splits introduce equalities with Lit-terms which interact poorly with the computation
axiom.

5.5 Quantifier IDs and Weights

Quantifier IDs and quantifier weight are additional metadata that can be associated with quantifiers (similar to
triggers). We use the Quantifier IDs together with the smt.mbqi.id option to disable MBQI for most of the
quantifiers. Quantifier IDs are also useful when debugging verification performance. For example, if present,
SMTscope uses the quantifier ID to refer to a quantifier in the GUI. This enables quick cross-referencing to
the original program, provided that the IDs are sensible. The quantifier weight is an unsigned integer, where
a higher weight deprioritizes the quantifier for instantiation. It is important to give the computation axioms
a higher weight such that the solver first tries to use the general axioms to obtain a proof before restoring to
computing a value [2]. Like Dafny, we went with a weight of 3 for the computation axioms (the default weight
is 1).
Both ID and weight can be set using the Z3 API, but the rust bindings2 used by Caesar were missing this feature.
The necessary bindings were implemented in a PR3 and accepted.

2Caesar uses z3.rs for Z3 rust bindings: https://github.com/prove-rs/z3.rs.
3https://github.com/prove-rs/z3.rs/pull/326

55

https://github.com/prove-rs/z3.rs
https://github.com/prove-rs/z3.rs/pull/326

6. Evaluation

To evaluate the quality of the implementation and to compare quantifier handling with/without the encodings,
we ran the integration tests on different versions and configurations of Caesar. For each configuration, we set
out to answer three questions:

1. How brittle is the verification? How many procedures sometimes switch between verified and unknown
or counterexample and unknown.

2. How complete is the verification? How often do we get verified or a counterexample, not just unknown.

3. How fast is the verification?

That the result for a procedure changes from verified/counterexample to unknown, or the other way around,
for different verifier configurations or seeds, is not desirable but expected due to the inherent incompleteness.
Changes between verified and counterexample should never occur and would mean that Caesar is unsound.
Further, questions are

• What are the required manual changes such that the encodings can be applied?

• Are the encodings with computation beneficial? Do the Lit-marker introduce new problems?

• What is a good maximum fuel value?

First, we present how we measured brittleness, characterize the integration tests and describe the applied mod-
ifications to the integration tests. Next, in Section 6.2, we test the brittleness of Caesar without any of the
mentioned changes and show that verification is highly sensitive with respect to the Z3 version. The five pre-
sented encodings for user-defined recursive functions are compared in Section 6.3. Thereafter, we highlight and
quantify problems introduced by the Lit-marker (Section 6.4), before discussing what a good maximum fuel
values is, and possible alternatives to the encodings with computation in Section 6.5.

6.1 Methodology and Benchmark Set

6.1.1 Measuring Brittleness

Tomeasure brittleness, we runCaesar ten times for each procedure. Each time, we supply a different random seed
to Z3 and record the results. This is in line with earlier work by Leino and Pit-Claudel [31]. The random-seed
option is defined by the SMT-LIB standard [6] and instructs the solver to use the provided seed for initializing
its internal random number generators. Consecutive solver runs with the same random-seed (that is not the
special default seed 0) are guaranteed to behave the same. We always used the seeds 1-10.
Caesar does not have a built-in command for measuring brittleness that also modifies the SMT solver input,
for example by renaming variables (an example is the measure-complexity command from Dafny [12, Section
13.7.6.1]). But it is also not necessary for the evaluation, as different random seeds are enough of a change to
provoke widely different solver behaviour.
Unless otherwise noted, all runs used Z3 4.14.1, an individual timeout of 90 seconds and a memory limit of 4 GiB
for each procedure. Everything was run on a system with an Intel Core i7-8550U with 16 GB of RAM.

6.1.2 The Integration Tests

Before this thesis, the Caesar integration tests suite was composed of 34 HeyVL programs, totalling 62 proce-
dures. They include probabilistic as well as Boolean examples and cover the various features and proof rules of

56

6.2. Previous Brittleness

Caesar. Only 11 of the test programs contain recursive user-defined functions. There are not that many exam-
ples with recursive functions. This is partly because they previously did not work particularly well. During the
implementation, 6 new examples with recursive functions were added, primarily Dafny examples ported from
[2] and the sum example from [30]. The final test suite used for evaluation consists of 40 files with 75 differ-
ent procedures. 17 of these files contain recursive user-defined functions, comprising a total of 33 procedures.
Examples of recurring recursive functions include exponential functions, array sums, harmonic numbers and
triangle numbers.

6.1.3 Required Modifications to Programs

For the fuel encodings to be applied, the function must be defined with a body, see Figure 5.1. This syntax in not
new, but previously the integration tests did not use it. Thus, the programs were updated to use it. For example,

func exp(b: UReal , i: UInt): UReal
axiom exp_base forall b: UReal. exp(b, 0) == 1
axiom exp_step forall b: UReal , i: UInt. exp(b, i + 1) == b * exp(b, i)

from Figure 1.1 is rewritten to

func exp(b: UReal , i: UInt): UReal = ite(i == 0, 1, b * exp(b, i))

Similarly for other functions. Computable functions that cannot be defined with this syntax were annotated
with @computable, see Example 5.4. Some verification problems require axillary axioms that provide additional
facts about the functions. An example is

axiom exp_bounded forall b: UReal , i: UInt. (b <= 1) ==> (exp(b, i) <= 1)

from Figure 1.1. These previously all lacked trigger annotations, leaving it up to the SMT solver to select triggers.
Suitable trigger annotations were added to these axioms, such as

axiom exp_bounded forall b: UReal , i: UInt @trigger(exp(b, i)).
(b <= 1) ==> (exp(b, i) <= 1)

The overall changes were minor and could be applied mechanical. One can argue that declaring the functions
with a body makes the programs easier to read.

6.2 Previous Brittleness

To get a baseline for the previous brittleness, we ran all the integration tests with the current Caesar main
branch1 (without the new changes merged in) in two different configurations. For a fair and accurate view of
the current version, we used the same Z3 version (Z3 4.12.1) that is currently bundled with Caesar, the seeds
0-9 (for Z3 the seed 0 is also stable), and included any extra command line flags specified in the test files. For
better comparison with all the following configurations, we also ran Caesar main with the same setup as used
in the other runs. That is, Z3 4.14.1, seeds 1-10, and without any extra command line flags specified in the files.
For both configurations, the previously existing integration tests were taken from that same revision (without
the changes described in Section 6.1.3). Any newly added tests were back ported to that version of Caesar, if
necessary. Caesar was run with default arguments, meaning user-defined functions and axioms are directly
mapped to SMT-LIB, and both E-matching and MBQI are used for quantifier instantiation. A summary of the
results is shown in Table 6.1 and Figure 6.1.
All the unknown responses come from procedures that contain user-defined recursive functions. Both config-
urations of Caesar main show brittleness, with the newer Z3 version performing significantly worse. For 18
procedures unknown is always returned due to exceeded resource limits. This is more than half of the 33 pro-
cedures that contain user-defined recursive functions. Both the timeouts and abortions due to memory limits,
together with the fact that all problematic procedures included recursive functions, are indications of matching
loops. Either quickly resulting in so many quantifier instantiations and new terms that the 4 GiB RAM limit is
exceeded, or at least producing too many terms that the remaining solver operations become so slow that the
90-second timeout is exceeded.

1https://github.com/moves-rwth/caesar/tree/6a66db5e67d4d346baaf822ecbbc97a8ce3e075f

57

https://github.com/moves-rwth/caesar/tree/6a66db5e67d4d346baaf822ecbbc97a8ce3e075f

6. Evaluation

Caesar main
all integration tests only with recursive functions

Z3 4.12.1 Z3 4.14.1 Z3 4.12.1 Z3 4.14.1
Verified 67 (71) 52 (55) 27 (31) 12 (15)
Counterexample 2 (2) 2 (2) 0 (0) 0 (0)
Unknown 0 (0) 0 (0) 0 (0) 0 (0)
Unknown timeout/OOM 2/0 (6/0) 8/9 (12/10) 2/0 (6/0) 8/9 (12/10)
Total procedures 75 75 33 33
Total execution time 3063 s 13210 s 2632 s 12527 s
Avg. time no timeouts 875 ms 5483 ms 666 ms 12711 ms

Table 6.1: The number of procedures with each possible verification result across all ten seeds is given. The
number of procedures in which this result occurred at least once is given in parentheses. The results are given
for both Caesar main configurations, both across all integration tests and across the fragment containing user-
defined recursive functions. All brittle procedures are part of this fragment.

(a) All procedures (b) Only procedures with user-defined recursive functions

Figure 6.1: Bar charts with the results from Table 6.1. The darker colours represent the number of procedures
that produced this result for all ten seeds, while the lighter colours represent the number of procedures that
produced this result at least once. A difference between the two (visible lighter colour) indicates brittleness.

The newer Z3 version is slower in every aspect. The procedures without user-defined functions take longer,
as well as the procedures with user-defined functions. This is partially due to the higher number of timeouts,
increasing the overall execution time. But also the average verification time for each procedure (excluding time-
outs) increased multiple times over.
We think the stark difference between the two Z3 versions is partially explained by the fact that all the tests
were developed with Z3 4.12.1. Thus, implicitly formulations were chosen that work well with that Z3 version
and not with others. Furthermore, the integration tests are run as part of CI on every commit, as described for
the first configuration, but only with seed 0. So at least one successful run is expected for each old procedure
with the older Z3 version. This is indeed the case. The 2 procedures that failed completely were newly added.
Two old files specified an additional --no-simplify option, which turns off an optimization that uses syntactic
rewrite rules to simplify the SMT solver input. This option was necessary to verify the files; otherwise, they
timed out. The problem here is not with the optimization but that the files contain matching loops and with the
different solver input, the solver avoids them (at least for seed 0). These are all different ways how the test files
were (subconsciously) designed to work with the older Z3 version. With a different Z3 version, the underlying
problems are then highlighted.
In summary, the results are as follows: Both configurations of the Caesar main exhibit brittleness. However,
the configuration with the currently bundled Z3 version performs significantly better. Regarding completeness,
several procedures are never verified, even when trying with ten different seeds. The overall execution time
is relatively long due to the timeouts (Caesar is primarily used interactively within an IDE). Even the better
configuration took more than 40 minutes for only the procedures with recursive functions.

58

6.3. Comparing the Encodings

Figure 6.2: Bar charts with the results from Table 6.2. The darker colours represent the number of procedures
that produced this result for all ten seeds, while the lighter colours represent the number of procedures that
produced this result at least once. A difference between the two (visible lighter colour) indicates brittleness.

6.3 Comparing the Encodings

Next, we compare the five presented encodings with each other. For that, we ran each procedure ten times with
each of the encodings (Default encoding, Fixed fuel encoding, Variable fuel encoding, Fixed fuel encoding with
computation, and Variable fuel encodingwith computation), only enabling E-matching andwith amaximum fuel
mf = 2. This time, we restricted the test to the 33 files that contained user-defined recursive functions. Since
the encodings only differ in how they handle those. To judge the effect of disabling MBQI, the Default encoding
was run twice, once with only E-matching and once with both E-matching and MBQI. For the fuel encodings
this was not done since it defeats their purpose. As a baseline, Caesar main with the bundled Z3 version from
the previous section is also included. A summary of the results is shown in Table 6.2 and Figure 6.2.

Z3 4.12.1 Z3 4.14.1
(+ MBQI) (computation)

main Default Default Fixed Variable Fixed Variable
Verified 27(31) 23 (29) 23 (30) 26 (26) 26 (26) 32 (33) 32 (33)
Counterexample 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Unknown 0 (0) 0 (0) 0 (0) 7 (7) 7 (7) 0 (1) 0 (1)
Unknown timeout/OOM 2/0 (6/0) 4/0 (10/0) 3/0 (10/0) 0/0 (0/0) 0/0 (0/0) 0/0 (0/0) 0/0 (0/0)
Total procedures 33 33 33 33 33 33 33
Total execution time 2632 s 6337 s 6260 s 26.5 s 24 s 33 s 33.5 s
Avg. time no timeouts 666 ms 1503 ms 1881 ms 81 ms 73 ms 100 ms 102 ms

Table 6.2: Comparison of the five different encodings on the files containing user-defined recursive functions. A
maximum fuel of mf = 2 and only E-matching was enabled for the function encodings. The Default encoding
was run twice, once with only E-matching and once also with MBQI. Caesar main is included in the table as a
baseline. For each possible result, the table shows the number of procedures that yielded that resulted for every
seed, along with the number of procedures in which this result occurred at least once in parentheses.

The difference between the run with Caesar main and the Default encoding is that the latter specifies triggers,
either manually added (see Section 6.1.3) or by the (def-axiom), that MBQI was disabled, and the usage of a newer
Z3 version. The Default encoding performs worse than Caesar main with Z3 4.12.1, regarding completeness and
brittleness, but significantly better than Caesar main with the same newer Z3 version. The Default encoding
also still has numerous timeouts, since it does not address the matching loops, present in all the run programs.
It performs slightly better when additionally enabling MBQI with one additional procedure verifying some of
the time. On average, enabling MBQI results in slower verification times for procedures, excluding timeouts.
The two different ways (fixed vs. variable) of encoding fuel behave very similar. As we expect, the non computa-
tion encodings cannot verify all the procedures. They both fail at 7 procedures, all of them containing assertions
that check a computed value. They are strictly less complete than the other encodings, but completely stable

59

6. Evaluation

on the integration tests. The encodings with computation can verify all examples. Subsequently, they take a
bit longer than the non computation encodings, since the 7 computation examples do not immediately result in
unknown. The fuel endings with computation are less stable. There exists a procedure (same for both fixed and
variable) that for some seeds verifies and for others not. Overall, the similar results between the two fuel variants
justifies the focus on the Variable fuel encoding/Variable fuel encoding with computation in this chapter.
Regarding counterexamples, the need to disable MBQI for the fuel encodings (with and without computation)
to work as desired means that generating a counterexample in the presence of quantifiers is impossible. The
integration tests do not include an example that contains user-defined recursive functions and results in a coun-
terexample. If it would, MBQI also would not help, since it cannot construct the infinite model corresponding to
the recursive function. Details were discussed in Chapter 4. Even when MBQI is disabled, the two procedures
in the test suite that result in counterexamples still do so, since they do not contain quantifiers.
In conclusion, the Default encoding is not an improvement in any regard over Caesar main. The fuel encodings
without computation are extremely stable and fast, but have to make compromises in terms of completeness.
With computation, the fuel encodings are still fast and can verify all procedures, but are sightly less stable. We
explore this fact next.

6.4 Impact of Lit-Marking

Next, we examine the impact of the Lit-markers, that are used by the computation encodings to mark literal
terms. We modified the implementation of the Variable fuel encoding with computation in such a way that we
do not restrict the Lit-marker to a handful of terms, as described in Section 5.4.1. Instead, every literal term,
as determined by Algorithm 3, is wrapped in a Lit identity function. We also disabled the check that skips
everything related to literal terms if the program does not contain user-defined functions. In such cases, Lit-
marking terms has no benefit. We called this version aggressive Lit-marking. The results are obtained in the
usual way (ten runs per procedure with only E-matching, a maximum fuel value mf = 2, a 90-second timeout,
and 4 GiB memory limit).
The results are listed separately for procedures with and without recursive functions in Table 6.3 and Figure 6.3.
The results for the Variable fuel encoding with computation with normal Lit-wrapping (as previously described)
is included for comparison.

Variable fuel (computation)
with recursive functions without recursive functions

normal Lit aggressive Lit no Lit aggressive Lit
Verified 32 (33) 23 (25) 40 (40) 37 (39)
Counterexample 0 (0) 0 (0) 2 (2) 0 (0)
Unknown 0 (1) 0 (1) 0 (0) 1 (2)
Unknown timeout/OOM 0/0 (0/0) 6/1 (9/1) 0/0 (0/0) 2/0 (3/0)
Total procedures 33 33 42 42
Total execution time 34 s 7127 s 830 s 2604 s
Avg. time no timeouts 104 ms 2845 ms 1989 ms 443 ms

Table 6.3: Results for a modified Variable fuel encoding with computation implementation that always Lit-
marks terms that are literal according to Algorithm 3. Each procedure was run ten times with different seeds.
The number of procedures yielding the result for all seeds is shown, with the number of procedures yielding the
result at least once shown in parentheses.

For the procedures with recursive functions, the results are worse than for the Default encoding (compare Ta-
ble 6.2). As we have seen before with the computation encodings, for one procedure the solver heuristics give up,
resulting in unknown. But this time, also many runs exceed the timeout and some exceed the memory limit. It is
unclear to us why more Lit-functions degrade the performance so much. Perhaps this is due to the potentially
large number of additional equalities. We also cannot rule out a bug in our implementation, but prior work also
performs similar Lit-marker optimizations [2].
For the procedures without recursive functions, the (unnecessary) Lit-markers are detrimental to the solver
performance. The additional identity functions are enough to slow down the solver enough for timeouts to occur.
We guess that this is due to the additional equalities and terms. The average verification time per procedure,

60

6.5. Optimal Fuel Value, Fuel Ramping and Hybrid Approaches

(a) Procedures with recursive user-defined functions (b) Procedures without recursive user-defined functions

Figure 6.3: Bar charts with the results from Table 6.3. The darker colours represent the number of procedures
that produced this result for all ten seeds, while the lighter colours represent the number of procedures that
produced this result at least once. A difference between the two (visible lighter colour) indicates brittleness.

excluding timeouts, is actually decreasing, as the more difficult procedures are slowed down so much that they
result in timeouts.
With the normal Lit-marking, and without MBQI, counterexamples can still be produced for the two wrong
procedures in the test suite. This is since they both do not contain quantifiers, and the encoding also does
not add any. Therefore, MBQI is not required to construct a model in this case. Always adding Lit markers
introduces universal quantifiers2. Since MBQI is disabled, no more counterexamples can be produced. For wrong
procedures, we can then only expect unknown as a result.
In conclusion, the additional Lit-marker introduced by the computation encodings are bad for the solver per-
formance and should be reduced to the minimum necessary. For procedures without user-defined functions, this
means completely omitting them and otherwise applying the optimizations described in Section 5.4.1.

6.4.1 Brittleness Introduced by Lit-Marker

As can be observed in Table 6.2 the encodings with computation are also not entirely stable with the mentioned
Lit optimizations. The one brittle procedure is arp from Figure 1.1, with an adjusted definition of exp, as de-
scribed in Section 6.1.3. Proving the correctness of arp never requires computing a large value of exp. The
additional Lit-markers are only a hindrance in this case.
We also believe that calculating the exact value of a function for one specific input is an unusual use case.
Typically, deductive verification is used to obtain a correctness result for all inputs. This is supported by the
fact that all the examples in the test suite that require computation were added solely to test the computation
capability. This raises the question of how beneficial the encodings with computation are over the fuel encodings
without computation. An alternative is discussed in the next section.

6.5 Optimal Fuel Value, Fuel Ramping and Hybrid Approaches

To obtain the minimal maximal fuel valuemf required for each procedure, we ran each procedure multiple times,
starting withmf = 1 and increasing it by one if the solver result was unknown. mf was iteratively increased until
the procedure was verified. This was again done for all procedures containing user-defined recursive functions
for ten different seeds. Only E-matching was enabled and the usual resource limits were used. A summary of the
results can be found in Table 6.4 and the distribution of the maximum fuel values that were used in the successful
runs is shown in Figure 6.4.
By iteratively increasing mf , all procedures can be verified for all seeds. Theoretically, the minimum required
mf for a procedure should always be the same. In practice, this is not the case, with one procedure verifying for

2The quantifiers come from the implementation of the Lit-marker, see Section 5.3.

61

6. Evaluation

Variable fuel
(ramping max fuel)

Verified 33 (33)
Counterexample 0 (0)
Unknown 0 (10)
Unknown timeout/OOM 0/0 (0/0)
Total procedures 33
Total runs 878
Total execution time 41.5 s

Table 6.4: Result summeries of verifying each pro-
cedure ten times with different seeds using the
Variable fuel encoding. Starting at 1, mf was it-
erativly increased by one util verification was suc-
cesfull.

Figure 6.4: Cut of points of the maximum fuel value. When
ramping the fuel, these fuel values where required to verify
the prodedure.

two seeds with mf = 1 but requiring mf = 2 for the remaining 8 seeds. Since the fuel encoding is built in such
a way that the solver quickly returns unknown if a proof is not possible, the total execution time is only about
25% (8 seconds) longer than when using a fuel encoding with computation (compare Table 6.2). This is notable
because the total number of runs is 166% more3, suggesting that the fuel encodings without computation are
more efficient than the encodings with computation. The number of required runs could also be decreased by
increasing the maximum fuel by more than one upon failure, e.g. doubeling.
Looking at the distribution of mf in Figure 6.4 supports that mf = 2 is a good default, covering all but the 7
procedures that explicitly compute the value of a function in an assertion.
Iteratively increasing the maximum fuel upon an unknown response was inspired by F* [42, Section 46.2.6]. Here,
the user can provide an initial and upper maximum fuel value. These are then tried until verification is successful
or the upper limit is reached. The ramping of the maximum fuel value seems like a promising alternative to the
somewhat unstable computation encodings with their Lit-markers. Another possibility is a hybrid approach,
where after a certain maximum fuel value we switch to an encoding with computation. The fact that the fuel
encodings result in quick unknown responses instead of timeouts when verification fails allows us to quickly try
multiple different queries, while preserving quick verifier responses, enabling interactive usages.

6.6 Case Study: Coupon Collector

As a final evaluation, we demonstrate with an example how the implemented features help in modelling and
successfully verifying probabilistic programs.

Coupon Collector’s Problem. We will use the coupon-collector.heyvl, the most complex of the programs in
the Caesar Test Suite, as the example. The Coupon Collector’s Problem is a well-known problem in probability
theory. It asks the question: if each box of breakfast cereals contains one of 𝑁 different coupons, what is the
expected number of boxes you need to buy to collect all 𝑁 different coupons and win the prize (assuming all
coupons are equally likely) [13]. The expected number of required boxes turns out to be 𝑁 · 𝐻𝑁 , where 𝐻𝑁 is
the 𝑁 -th harmonic number. The aforementioned HeyVL program models the Coupon Collector’s Problem as a
probabilistic programs and verifies that 𝑁 · 𝐻𝑁 is an upper bound on the expected number of required boxes.

Previous. The complete program is relatively involved and not shown here.4 We focus on the simplifications and
improvements enabled by the new features. The program contains two recursive functions, shown in Figure 6.5.
The first is a helper function for summing the elements of a list, and the second one generates the harmonic

3For the other configuration, the total number of runs is 33 · 10 = 330.
4Interested readers can find it here: https://github.com/moves-rwth/caesar/blob/9840dd86d73068a1085d458f876e00c0a4dc415b/

tests/coupon-collector.heyvl.

62

https://github.com/moves-rwth/caesar/blob/9840dd86d73068a1085d458f876e00c0a4dc415b/tests/coupon-collector.heyvl
https://github.com/moves-rwth/caesar/blob/9840dd86d73068a1085d458f876e00c0a4dc415b/tests/coupon-collector.heyvl

6.7. Conclusion

numbers. Since the verification of the program was very brittle, harmonic was encoded as a limited function by
hand in an attempt to make it more stable. The (ff-syn-axiom) is missing from the hand-rolled encoding. For the
CI, it also used the --no-simplify “trick” (cf. Section 6.2).

1 func sum(elements: []UReal , start: UInt, len: UInt): UReal =
2 ite(len >0, select(elements , start+len -1) + sum(elements , start , len -1), 0)
3
4 func harmonic(n: UInt): UReal
5 func harmonic0(n: UInt): UReal
6 axiom harmonic_def forall n: UInt.
7 (harmonic(n) == ite(n==0, 0, (1/n) + harmonic0(n-1)))

Figure 6.5: The two recursive functions from coupon-collector.heyvl as previously defined. The first im-
plements the sum

∑start+len−1
𝑖=start elements[𝑖] and the second function generates the harmonic numbers. In an

attempt to fight brittleness, a partial limited function encoding was done by hand.

Problems. Since the Equation (ff-syn-axiom) is missing from the hand-rolled encoding, it had to manually be
included using (co)assume stamens in the relevant places such that verification could succeed. In general, the
lack of triggers and the fact that MBQI is not disabled renders the hand-rolled encoding for harmonic not very
effective in reducing the brittleness of the program. The recursive sum function was not addressed at all. Even
though it is defined with a body, in previous Caesar versions these were just translated using a definitional
axiom without triggers. When run with the Caesar main (Table 6.1), this caused the complete program (all 7
procedures) to not be verified for one seed with Z3 4.12.1 and to never be verified with Z3 4.14.1. Ignoring
timeouts, the average time needed for verification was over 6 seconds.

Improvements. By defining harmonic with a body and using any of the fuel encodings, we correctly encode
both recursive functions as limited functions (all axioms and triggers). The manually assumed synonym axiom
can be removed. By disabling MBQI the limited functions ensure that the solver terminates. For any of the
4 fuel encodings, the modified programs always stably verify. The average verification time also goes down
significantly to well below a second for all encodings. Using a built-in fuel encoding also has the advantage
that the HeyVL program is not cluttered with SMT encoding details. Users can write standard code, in the
knowledge that the verifier will take care of the encoding. This approach is also more flexible. For example, it is
easily possible to test the program with a higher maximum fuel.

These positive results are not limited to this example. First tests with other complex examples using quantifiers
also show promising results. Examples that never worked previously, now verify and are stable with the newly
introduced fuel encodings.

6.7 Conclusion

We saw that there were a number of instabilities caused by matching loops on the Caesar integration tests. This
problemwas especially highlighted after updating the Z3 version. Due to the frequent timeouts, overall execution
time was relatively slow. By using one of the fuel encodings and only enabling E-matching, the matching loops
are eliminated and thus also the timeouts. The procedure either quickly verifies or the solver quickly returns
unknown. The two different fuel variants (fixed/variable) are very comparable. The Default encoding does not
perform very well, since it does not address the matching loops. Procedures that compute the concrete value
of a user-defined recursive function as part of an assertion cannot be verified by the fuel encodings without
computation, at least for a small maximal fuel value. The fuel encodings with computation were able to verify
all examples. So the fuel encodings with computation are, in practice, more complete than the current Caesar
main and also faster. When only considering successful runs, that did not time out, the average execution time
went down by a factor of more than 6.
The computation encodings are not without their problems. The introduced Lit-functions are not good for the
solver performance and can cause brittleness. They should be reduced to the minimum amount necessary.
The most promising strategy, mainly regarding stability, seems to be fuel ramping. Here, a fuel encoding without
computation is run multiple times, increasing the maximum fuel value, until the procedure is verified. It uses

63

6. Evaluation

the fact that when using a restrictive encoding, E-Matching terminates with unknown if a proof is not possible.
Allowing for another try with a little less restrictive encoding.

64

7. Related Work

7.1 Related Work

Limited functions. The fuel encodings are borrowed from other deductive verifiers. The Variable fuel encoding
with computation was initially designed in [2] for Dafny [28]. Inspired by this, F* [43] uses the Variable fuel
encoding for recursive functions [1]. F* can also incrementally try higher fuel values by setting an initial fuel 𝑛
and maximum fuel𝑚. The fuel is initially 𝑛 and then increased whenever the SMT solver returns unknown up to
𝑚 [42, Section 46.2.6]. F* does not include computation axioms or determine literal terms. Instead, proofs that
can be performed using computation leverage symbolic execution [42, Section 1.4]. Finally, close similarities
between the fuel encodings and the comprehension encoding in [30] were discussed in detail in Section 3.1.4.

Formal semantics of E-matching. Recently, Ge et al. developed small-step operational semantics for E-matching,
which can be used for proving the termination of axiomatizations when relying on E-matching for quantifier
reasoning [23]. In our setting, it is the operational counterpart to the more denotational semantics defined by
SMT-LIB standard [6]. In an earlier formalization of E-matching, Dross et al. extended FOL with triggers and
witnesses [18].

Counterexamples. To enable the solver to find models involving recursive functions, one has to deal with the
infinite models. We bounded the depth of the recursive function and searched for a model within this defined
fragment, in Section 4.3. By bounding the depth of the recursive function, it is only defined for the relevant parts
of the domain and the model is finite. A similar approach was taken in [37]. For each recursive function 𝑓 , a
new uninterpreted sort is introduced, representing the abstract domain of 𝑓 . Additionally, for each argument
of 𝑓 a concretization function from the abstract domain to the argument sort is introduced. The definitional
axiom for 𝑓 only quantifies over the abstract domain, and concretization functions are inserted as necessary.
Since, quantification is over the abstract domain, which is an uninterpreted sort, finite model finding techniques
implemented by SMT solvers are applicable. The generated formula also falls into the essentially uninterpreted

fragment, for which a complete instantiation procedure is implemented in Z3 [24]. The produced model 𝑓 is
correctly defined for all points that are relevant to the counterexample. In theory, this makes it a more flexible
version of the bounded approach discussed in Section 4.3 that does not require giving a prior bound, but where
this bound is determined by the SMT solver during the SAT check.
Another option is to find a finite representation for infinite models. Elad et al. used symbolic representation to
represent certain infinite counter-models occurring in verification problems. For this class of infinite models, the
model-checking problem can be reduced to the satisfiability-checking problem for LIA formulae. The search for
a symbolic representation can also be encoded, based on templates, as a satisfiability problem of a LIA formula.
The approach is complete for Effectively Propositional formulae extended by one sort that is allowed to have
cyclic functions [19].
A third option is to externalize the definition of the recursive functions from the solver input. Frohn and Giesl
presented a technique for incorporating exponential integer arithmetic into SMT solvers [21]. It is based on a
CEGAR (Counter Example Guided Abstraction Refinement) loop. The exponential function exp is abstracted to
be an uninterpreted function. Whenever a model is produced, it is checked if exp matches the semantics of an
exponential function. If it does, a correct model was found. Otherwise, suitable lemmas are added to rule out
the current model and the next iteration of the loop starts. By not including the definition of exponentials in the
input, but iteratively adding what is necessary for a correct model, the model stays constructible for the solver.

Unfolding definitions. The instantiation of the definitional axiom for 𝑓 (𝑥), when 𝑓 (𝑡) is present in the ground
terms, is distinctly similar to a heuristic known in the literature as “unfold-and-match” [32, 36]. Here, recursive
functions are first unfolded. In the subsequent satisfiability check, they are then considered to be uninterpreted.
In practice, the recursive definitions can not be unfolded completely, but the unfolding depth is iteratively in-
creased. The presented UQFR (Unfolding and Quantifier-Free Reasoning) algorithm in [36, Fig. 1] reads very

65

7. Related Work

similar to E-matching (Algorithm 1). UQFR differs from E-matching in the aspect that it completely unfolds
(think instantiate) all definitions once on each iteration. This yields a complete procedure for a FOL fragment
called FLUID (First-Order Logic of Universal properties under Inductive Definitions) [36]. Using a similar ap-
proach, a completeness result is given in [32] for a different FOL fragment called safe. These results shed some
light on why E-matching is so effective for program verification. They also give two reasons why some proofs
fail. One reason is that there exists a nonstandard model that satisfies the formula (remember that we show
validity by the unsatisfiability of the negation). Another reason is that, one can only model fixpoint semantics
in FOL, not least-fixpoint semantics. And thus the formula might be satisfiable when choosing another fixpoint
than the least. Additional induction lemmas must be added that exclude the unwanted models [32, 36].

Brittleness and verification performance. Brittleness and unpredicable verification performance are problems that
all deductive verifier have to deal with. The literature includes examples of general guidance on trigger design
[34, 31] (manual and automated). The SMTscope1 tool (formerly known as Axiom Profiler [8]), is specifically
being developed to be able to better understand and debug the behaviour of SMT solvers (for more details, see
Section 2.3.1). Dafny has separate guides for stabilising verification [45] and addressing poor verification per-
formance2. The F* handbook also contains a section detailing techniques to address performance problems [42,
Section 46.4].

1https://github.com/viperproject/smt-scope
2https://dafny.org/dafny/VerificationOptimization/VerificationOptimization

66

https://github.com/viperproject/smt-scope
https://dafny.org/dafny/VerificationOptimization/VerificationOptimization

8. Conclusion

In this thesis, we greatly reduced the verification brittleness in Caesar. The instabilities were mainly caused by
quantifiers. More specifically, matching loops – a problem related to E-matching-based quantifier instantiation.
When naively encoding user-defined recursive functions, a matching loop is always introduced. Therefore, we
looked at limited functions, an encoding technique used by other verifies to prevent matching loops, by limiting
the number of recursive quantifier instantiations.
We formally defined two different variants of a fuel encoding, which generate limited functions. The main
theoretical contribution of this thesis is a formal proof that the limited function encodings are equisatisfiable to
the Default encoding. Building on this result, we showed that Caesar remains sound when implementing the
fuel encodings. We also showed that, when using E-matching, the number of quantifier instantiations caused by
the fuel encodings is finite, and thus the solver terminates.
We also examined possibilities for obtaining models (counterexamples) for recursive functions. Since a model of
a recursive function is usually infinite, it cannot be constructed by current solvers. We explored how one of the
fuel encodings can be modified to make the resulting model finite. A bounded search on a finite fragment of the
recursive function can then result in guaranteed sound and constructible counterexamples.
The fuel encodingswere all implemented in Caesar. An evaluation on the integration test shows that brittleness is
nearly eliminated. Subsequently, the verification performance is greatly increased for programs with recursive
functions. On the one hand, this is due to no longer running into timeouts and on the other hand, by better
guiding the SMT solver. Excluding previous timeouts, verification of programs with recursive functions became
faster by more than a factor of 6. First tests suggest that the increased stability enables modelling and verifying
new kinds of programs that were previously impossible.
Having to largely disable MBQI for the fuel encodings means that counterexamples are no longer be produced
if the input contains quantifiers. The approach also only covers functions that can be defined with a single
expression. There are still many possibilities for better quantifier handling and reducing brittleness in Caesar.

8.1 Future Work

Synthesizing triggers. In this work, we were only concerned with finding good encodings (that include triggers)
for user-defined functions. But the user can include quantifiers in any condition (axiom, specification, assume,
. . .). Here, the user can manually specify triggers with the @trigger annotation, but when they are omitted,
Caesar leaves it up to the SMT solver to come up with suitable triggers. For Dafny, it has been shown to be
beneficial to synthesize the triggers on the level of the verifier for more predicatable results [31]. Viper also
synthesizes the trigger itself [40, Section 2.6]. In the future, it should be evaluated whether it would be beneficial
for Caesar to determine the triggers instead of the SMT solver, particularly for quantitative quantifiers.

Quantitative quantifiers. Caesar, using a quantitative logic, also has quantitative quantifiers (infimum/supre-
mum). For certain fragments, they can be eliminated [38, Section 4.2]. We only briefly discussed their current
(non-optimal) encoding in Section 5.2 for when they cannot be eliminated. Very recently, a quantitative quan-
tifier elimination technique for piecewise linear quantities was presented in [7]. If it turns out to be feasible in
practise, it would allow circumventing some problems related to quantitative quantifiers by eliminating more of
them. Regardless, important next improvements are that suitable triggers should be specified when quantitative
quantifiers are introduced by Caesar. The user should also be able to specify triggers when declaring a quantita-
tive quantifier themselves. Here it is not immediately obvious how this would be done since (at least currently)
a single quantitative quantifier is encoded with multiple different Boolean quantifiers. This might also be an
opportunity where Caesar can infer better triggers than the SMT solver (see the previous point).

Testing for brittlenss. For evaluating the brittleness, we used external scripts. But this information is also in-

67

8. Conclusion

teresting for intermediate and advanced users of the tool when developing and debugging their programs. For
example, Dafny has an extra measure-complexity command to measure the brittleness of proofs [12, Section
13.7.6.1]. Similar functionality would also be valuable for Caesar. Helping users and developers of Caesar to
quantify proof brittleness keep it under control.

Built-in support. Constructs like exponentials, harmonic numbers or general sums frequently occur in proba-
bilistic programs. Rather than the user having to come up with a suitable encoding each time, Caesar could
provide a high-quality, well-tuned encoding itself. For encoding sums, there exists prior work by Leino et al.
[30] that is closely related to the fuel encodings (cf. Section 3.1.4). We already briefly discussed the advantages
of a dedicated CEGAR loop for exponentials [21] over a generic CEGAR loop (MBQI) in Section 4.3.1.

Implementation. The different present encodings for user-defined functions were implemented as part of this
thesis. Still, while testing and evaluating, other encodings and strategies emerged. It would be interesting to
implement and test the strategies mentioned in Section 6.5. There is fuel ramping inspired by F* [42, Section
46.2.6] where themaximum fuel is iteratively increasedwhen it was not enough and the solver returned unknown.
There is also the hybrid strategy of first trying a fuel encoding without computation and then on an unknown
response switching to a fuel encoding with computation. Maybe they could also both be combined. For obtaining
counterexamples, the fixed depth encdoing (Section 4.2 and onwards) and similar approaches in the literature
[37] should be explored further. The general idea of running multiple different queries in parallel that are tuned
for different results seems promising. For example, one query with only E-matching for verification and another
with MBQI for finding a counterexample.

68

Bibliography

[1] Alejandro Aguirre. Towards a provably correct encoding from F* to SMT. Tech. rep. INRIA, 2016.
[2] Nada Amin, K Rustan M Leino, and Tiark Rompf. “Computing with an SMT solver”. In: Tests and Proofs:

8th International Conference, TAP 2014, Held as Part of STAF 2014, York, UK, July 24-25, 2014. Proceedings 8.
Springer. 2014, pp. 20–35.

[3] An Ethernet Address Resolution Protocol: Or Converting Network Protocol Addresses to 48.bit Ethernet Address

for Transmission on Ethernet Hardware. RFC 826. Nov. 1982. doi: 10.17487/RFC0826. url: https://www.
rfc-editor.org/info/rfc826.

[4] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. “Discrete-time rewards model-checked”. In:
Formal Modeling and Analysis of Timed Systems: First International Workshop, FORMATS 2003, Marseille,

France, September 6-7, 2003. Revised Papers 1. Springer. 2004, pp. 88–104.
[5] Haniel Barbosa et al. “cvc5: A versatile and industrial-strength SMT solver”. In: International Conference

on Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2022, pp. 415–442.
[6] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.6. Tech. rep. Available

at www.SMT-LIB.org. Department of Computer Science, The University of Iowa, 2017.
[7] Kevin Batz, Joost-Pieter Katoen, and Nora Orhan. “Quantifier Elimination and Craig Interpolation: The

Quantitative Way”. In: Foundations of Software Science and Computation Structures. Ed. by Parosh Aziz
Abdulla and Delia Kesner. Cham: Springer Nature Switzerland, 2025, pp. 176–197. isbn: 978-3-031-90897-
2.

[8] Nils Becker, Peter Müller, and Alexander J Summers. “The axiom profiler: Understanding and debugging
smt quantifier instantiations”. In: Tools and Algorithms for the Construction and Analysis of Systems: 25th

International Conference, TACAS 2019, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2019, Prague, Czech Republic, April 6–11, 2019, Proceedings, Part I 25. Springer. 2019,
pp. 99–116.

[9] Nikolaj Bjørner et al. “Programming Z3”. In: Engineering Trustworthy Software Systems: 4th International

School, SETSS 2018, Chongqing, China, April 7–12, 2018, Tutorial Lectures 4 (2019), pp. 148–201.
[10] Henrik Bohnenkamp et al. “Cost-optimisation of the IPv4 zeroconf protocol”. In: International Computer

Performance and Dependability Symposium (IPDS’03). IEEE Computer Society Press, 2003, pp. 531–540.
[11] Stuart Cheshire, Dr. Bernard D. Aboba, and Erik Guttman. Dynamic Configuration of IPv4 Link-Local Ad-

dresses. RFC 3927. May 2005. doi: 10.17487/RFC3927. url: https://www.rfc- editor.org/info/
rfc3927.

[12] The dafny-lang community. Dafny Reference Manual. url: https://dafny.org/dafny/DafnyRef/
DafnyRef (visited on 05/05/2025).

[13] Coupon collector’s problem – Wikipedia. url: https://en.wikipedia.org/wiki/Coupon_collector%
27s_problem (visited on 05/15/2025).

[14] LeonardoDeMoura andNikolaj Bjørner. “Efficient E-matching for SMT solvers”. In:AutomatedDeduction–

CADE-21: 21st International Conference on Automated Deduction Bremen, Germany, July 17-20, 2007 Proceed-

ings 21. Springer. 2007, pp. 183–198.
[15] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”. In: International conference on

Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2008, pp. 337–340.
[16] David Detlefs, Greg Nelson, and James B Saxe. “Simplify: a theorem prover for program checking”. In:

Journal of the ACM (JACM) 52.3 (2005), pp. 365–473.
[17] The Z3 developers. Parameters | Online Z3 Guide. url: https://microsoft.github.io/z3guide/

programming/Parameters (visited on 04/15/2025).

69

https://doi.org/10.17487/RFC0826
https://www.rfc-editor.org/info/rfc826
https://www.rfc-editor.org/info/rfc826
www.SMT-LIB.org
https://doi.org/10.17487/RFC3927
https://www.rfc-editor.org/info/rfc3927
https://www.rfc-editor.org/info/rfc3927
https://dafny.org/dafny/DafnyRef/DafnyRef
https://dafny.org/dafny/DafnyRef/DafnyRef
https://en.wikipedia.org/wiki/Coupon_collector%27s_problem
https://en.wikipedia.org/wiki/Coupon_collector%27s_problem
https://microsoft.github.io/z3guide/programming/Parameters
https://microsoft.github.io/z3guide/programming/Parameters

BIBLIOGRAPHY

[18] Claire Dross et al. “Adding decision procedures to SMT solvers using axioms with triggers”. In: Journal of
Automated Reasoning 56 (2016), pp. 387–457.

[19] Neta Elad, Oded Padon, and Sharon Shoham. “An infinite needle in a finite haystack: Finding infinite
counter-models in deductive verification”. In: Proceedings of the ACM on Programming Languages 8.POPL
(2024), pp. 970–1000.

[20] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3—where programs meet provers”. In: European
symposium on programming. Springer. 2013, pp. 125–128.

[21] Florian Frohn and Jürgen Giesl. “Satisfiability Modulo Exponential Integer Arithmetic”. In: International
Joint Conference on Automated Reasoning. Springer. 2024, pp. 344–365.

[22] Erich Gamma et al. Design patterns: elements of reusable object-oriented software. Addison-Wesley, 1994.
isbn: 0-201-63361-2.

[23] Rui Ge, Ronald Garcia, and Alexander J Summers. “A Formal Model to Prove Instantiation Termination for
E-matching-Based Axiomatisations”. In: International Joint Conference on Automated Reasoning. Springer.
2024, pp. 419–438.

[24] Yeting Ge and Leonardo De Moura. “Complete instantiation for quantified formulas in satisfiabiliby mod-
ulo theories”. In: Computer Aided Verification: 21st International Conference, CAV 2009, Grenoble, France,

June 26-July 2, 2009. Proceedings 21. Springer. 2009, pp. 306–320.
[25] Biniam Gebremichael, Frits Vaandrager, and Miaomiao Zhang. “Analysis of a protocol for dynamic con-

figuration of IPv4 link local addresses using Uppaal”. In: ICIS, Radboud University Nijmegen, Tech. Rep.

ICIS-R06xxx (2006).
[26] Benjamin Lucien Kaminski and Joost-Pieter Katoen. “On the hardness of almost–sure termination”. In:

International Symposium on Mathematical Foundations of Computer Science. Springer. 2015, pp. 307–318.
[27] Marta Kwiatkowska et al. “Performance analysis of probabilistic timed automata using digital clocks”. In:

Formal Methods in System Design 29.1 (2006), pp. 33–78.
[28] K Rustan M Leino. “Dafny: An automatic program verifier for functional correctness”. In: International

conference on logic for programming artificial intelligence and reasoning. Springer. 2010, pp. 348–370.
[29] K Rustan M Leino. “This is boogie 2”. In: manuscript KRML 178.131 (2008), p. 9.
[30] K Rustan M Leino and Rosemary Monahan. “Reasoning about comprehensions with first-order SMT

solvers”. In: Proceedings of the 2009 ACM symposium on Applied Computing. 2009, pp. 615–622.
[31] K Rustan M Leino and Clément Pit-Claudel. “Trigger selection strategies to stabilize program verifiers”.

In: International Conference on Computer Aided Verification. Springer. 2016, pp. 361–381.
[32] Christof Löding, P Madhusudan, and Lucas Peña. “Foundations for natural proofs and quantifier instanti-

ation”. In: Proceedings of the ACM on Programming Languages 2.POPL (2017), pp. 1–30.
[33] IUrii V Matiyasevich. Hilbert’s tenth problem. MIT press, 1993.
[34] Michał Moskal. “Programming with triggers”. In: Proceedings of the 7th International Workshop on Satisfi-

ability Modulo Theories. 2009, pp. 20–29.
[35] PeterMüller,Malte Schwerhoff, andAlexander J Summers. “Viper: A verification infrastructure for permission-

based reasoning”. In: Verification, Model Checking, and Abstract Interpretation: 17th International Confer-

ence, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings 17. Springer. 2016, pp. 41–62.
[36] Adithya Murali et al. “Complete first-order reasoning for properties of functional programs”. In: Proceed-

ings of the ACM on Programming Languages 7.OOPSLA2 (2023), pp. 1063–1092.
[37] Andrew Reynolds et al. “Model finding for recursive functions in SMT”. In: Automated Reasoning: 8th

International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27–July 2, 2016, Proceedings 8. Springer.
2016, pp. 133–151.

[38] Philipp Schroer. “A Deductive Verifier for Probabilistic Programs”. Available at https://publications.
rwth-aachen.de/record/998370/files/998370.pdf. Master’s thesis. RWTH Aachen, Apr. 2023.

[39] Philipp Schröer et al. “A Deductive Verification Infrastructure for Probabilistic Programs”. In: Proceedings
of the ACM on Programming Languages 7.OOPSLA2 (2023), pp. 2052–2082.

[40] Malte H Schwerhoff. “Advancing automated, permission-based program verification using symbolic exe-
cution”. PhD thesis. ETH Zurich, 2016.

70

https://publications.rwth-aachen.de/record/998370/files/998370.pdf
https://publications.rwth-aachen.de/record/998370/files/998370.pdf

BIBLIOGRAPHY

[41] Cédric Stoll. “SMT Models for Verification Debugging”. Available at https://ethz.ch/content/dam/
ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Cedric_
Stoll_MA_report.pdf. Master’s thesis. ETH Zürich, May 2019.

[42] Nikhil Swamy, GuidoMartinez, andAseemRastogi. Proof-Oriented Programming in F*. Available at https:
//fstar-lang.org/tutorial/proof-oriented-programming-in-fstar.pdf. Apr. 2025.

[43] Nikhil Swamy et al. “Dependent types and multi-monadic effects in F”. In: Proceedings of the 43rd annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 2016, pp. 256–270.

[44] Alfred Tarski. “A Decision Method for Elementary Algebra and Geometry”. In: Journal of Symbolic Logic

17.3 (1952).
[45] Aaron Tomb and Jean-Baptiste Tristan. Avoiding verification brittleness in Dafny. url: https://dafny.

org/blog/2023/12/01/avoiding-verification-brittleness/ (visited on 04/02/2025).
[46] Max Willsey et al. “Egg: Fast and extensible equality saturation”. In: Proceedings of the ACM on Program-

ming Languages 5.POPL (2021), pp. 1–29.

71

https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Cedric_Stoll_MA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Cedric_Stoll_MA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Cedric_Stoll_MA_report.pdf
https://fstar-lang.org/tutorial/proof-oriented-programming-in-fstar.pdf
https://fstar-lang.org/tutorial/proof-oriented-programming-in-fstar.pdf
https://dafny.org/blog/2023/12/01/avoiding-verification-brittleness/
https://dafny.org/blog/2023/12/01/avoiding-verification-brittleness/

	Introduction
	Background
	Deductive Verification and Caesar
	Probabilistic Programs and HeyVL
	From HeyVL to SMT

	Many-sorted FOL
	Equality with Uninterpreted Function

	Quantifier Instantiation
	E-matching
	MBQI

	Limited Functions
	The Encodings
	Default Encoding
	Fixed Fuel Encoding
	Variable Fuel Encoding
	First Comparison and Analysis

	Soundness
	Equisatisfiability under SMT-LIB Semantics
	High-level Soundness
	Incompleteness under E-matching Semantics
	Termination under E-matching Semantics

	Enabling Unbounded Computations
	Literal Terms
	Fuel Encodings with Computation
	Soundness and Termination

	Counterexamples
	Using unknown-models
	Using a Fixed Depth Encoding
	Why not to use the Variable fuel encoding?

	Using a Fixed Depth Encoding and Bounded Inputs
	Case Study: Counterexample for arp

	Implementation
	General
	Disabling MBQI
	Lit-marker
	Determining Literal Terms
	Which Terms to Lit-mark

	Quantifier IDs and Weights

	Evaluation
	Methodology and Benchmark Set
	Measuring Brittleness
	The Integration Tests
	Required Modifications to Programs

	Previous Brittleness
	Comparing the Encodings
	Impact of Lit-Marking
	Brittleness Introduced by Lit-Marker

	Optimal Fuel Value, Fuel Ramping and Hybrid Approaches
	Case Study: Coupon Collector
	Conclusion

	Related Work
	Related Work

	Conclusion
	Future Work

