
Metaheuristic Optimization for Complex Routing
Problems

Von der Fakultät für Wirtschaftswissenschaften der Rheinisch-Westfälischen
Technischen Hochschule Aachen zur Erlangung des akademischen Grades einer
Doktorin der Wirtschafts- und Sozialwissenschaften genehmigte Dissertation

vorgelegt von
Alina Theiß

Berichter: Univ.-Prof. Dr. rer. pol. Michael Schneider
Berichterin: Univ.-Prof. Dr. rer. pol. Britta Peis

Tag der mündlichen Prüfung: 26. August 2025

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online
verfügbar.

Articles included in this thesis

R. Cavagnini, M. Schneider, and A. Theiß (2024a). “A granular iterated local search
for the asymmetric single truck and trailer routing problem with satellite depots
at DHL Group”. In: Networks 83.1, pp. 3–29. doi: 10.1002/net.22178.

R. Cavagnini, M. Schneider, and A. Theiß (2024b). “A tabu search with
geometry-based sparsification methods for angular traveling salesman problems”.
In: Networks 83.1, pp. 30–52. doi: 10.1002/net.22180.

A. Theiß, R. Cavagnini, and D. Gellert (2025). An iterated local search for the
capacitated team orienteering problem with time-dependent and piecewise linear
score functions. Working Paper. Chair of Computational Logistics, RWTH
Aachen University, Germany.

A. Theiß, R. Cavagnini, and M. Schneider (2025). The vehicle routing problem with
depot operation constraints at DHL Group. Working Paper. Chair of
Computational Logistics, RWTH Aachen University, Germany.

https://doi.org/10.1002/net.22178
https://doi.org/10.1002/net.22180

4

Abstract

Optimizing transportation systems has become essential for addressing today’s logistics
challenges. As global trade grows consistently and consumer expectations for faster
and on-time deliveries rise, companies face increasing pressure to deliver quickly and
cost-efficiently.

This thesis addresses four routing problems: First, the single truck and trailer
routing problem with satellite depots (STTRPSD), which can be used to model the
problem of optimizing routes of mail carriers in the last mile delivery stage of a mail
delivery network. Second, the vehicle routing problem with depot operation constraints
(VRPDOC), which additionally includes the assignment of households to mail carriers
in the route planning and incorporates depot operations. Third, the angular-metric
traveling salesman problem (AngleTSP) and the angular-distance-metric traveling
salesman problem (AngleDistanceTSP), relevant for minimizing sharp turns in the
routing of heavy vehicles. Last, the capacitated team orienteering problem with
time-dependent and piecewise-linear score functions (C-TOP-TDPLSF) often used in
the context of customer-focused deliveries.

To efficiently solve realistically sized instances of these N P-hard problems, we use
metaheuristics like iterated local search or tabu search. Each heuristic is designed
to incorporate problem specific features to enhance their performance. Extensive
computational experiments show significant improvements compared to state-of-the-
art algorithms from the literature and practices implemented in the real world. For
the STTRPSD, we use its natural decomposition into subproblems in the design of our
heuristic, that reduces the travel times of real-world solutions currently used in practice
by our industry partner on average by approximately 2%. Addressing the VRPDOC,
our work is one of the first ones to incorporate depot operations into the route planning.
In our algorithm, we use problem-specific neighborhood operators and incorporate
the instance structure of real-world street networks. On real-world instances, our
heuristic is not only reducing total travel times by approximately 6.5% compared
to the currently implemented solutions from our industry partner but also provides
significantly simpler solutions with regards to the letter handling operations at the
depot, highlighting the operational benefits of considering depot operation constraints.
For the AngleTSP and the AngleDistanceTSP, we incorporate the geometric features
of the problems. Our heuristic provides a good trade-off between runtime and solution
quality, and we find new best-known solutions for around 80% of benchmark instances

i

for which an optimal solution was not available. For the C-TOP-TDPLSF, our
heuristic is tailored to the specific structure of the score function.

Through in-depth analysis of the obtained solutions, we provide practical recom-
mendations to companies, offering insights into improving operational efficiency and
decision-making.

ii

Acknowledgements

First and foremost, I want to thank Michael for giving me the opportunity to work
on his team and to write this thesis and for his support over the past five years. Your
guidance has been invaluable throughout this journey. Thank you for enduring the
corrections of my overly long sentences and never getting tired of my endless comma
mistakes.

A heartfelt thanks to Britta for dedicating your time to serve as my second
supervisor.

I also thank André, from DHL, for a great collaboration and for providing me with
fascinating research topics.

Thanks to my colleagues at the chair, it has been a real pleasure to work with all
of you.

Rossana, I could not have imagined a better research partner and mentor on my
PhD journey. Together we have experienced all the ups and downs that writing four
papers together bring. From countless calls to thousands of messages, your support,
feedback, and encouragement mean the world to me.

Stefan, thank you for being my go-to problem solver, no matter how trivial or
complex the issue. Thanks for countless procrastination calls, thanks for always
listening to me and giving advice. I really hope that we will work together again in
the future.

To my family and friends, thank you for your unwavering support, for cheering me
on, and for always being there for me. I sincerely apologize to everyone who has been
on vacation with me while I brought my laptop: thank you for your understanding
and patience. To my parents, thank you for your belief in me, for always having my
back and for laying the foundation that made all this possible. To my best friend
Vera, words cannot express how much your constant support over the last ten years
has meant to me. Without you, I would never have been able to do this.

To everyone who contributed to this journey, whether through advice, encourage-
ment, shared laughter, or simply being there, I am deeply grateful. This thesis would
have not been possible without your support.

iii

iv

Contents

1 Introduction 1
1.1 Optimization problems studied in this thesis 3
1.2 Organization . 9

2 The asymmetric single truck and trailer routing problem with satellite
depots 13
2.1 Introduction . 15
2.2 Literature review . 18
2.3 Problem description . 20
2.4 Conditions for particular optimal solution structures 21
2.5 Granular iterated local search . 24

2.5.1 Construction heuristic . 24
2.5.2 Iterated local search . 27

2.6 Computational experiments . 30
2.6.1 Description of the instances 30
2.6.2 Computational environment and parameter tuning 33
2.6.3 Results . 34

2.7 Conclusion . 44
2.8 Appendix . 49

A Comparison on symmetric STTRPSD instances 49
B Detailed results for the impact of ignoring parking and loading

times . 53

3 The vehicle routing problem with operation simplification constraints 57
3.1 Introduction . 59

3.1.1 Problem description . 62
3.1.2 Literature review . 64
3.1.3 Contribution and structure of the paper 65

3.2 Mathematical formulation . 66
3.2.1 Formulation F1a . 66
3.2.2 Preprocessing and valid inequalities 69

3.3 Complexity results . 72

v

3.4 An iterated local search for the VRPDOC 74
3.4.1 Construction heuristic . 75
3.4.2 Iterated local search . 80

3.5 Computational experiments . 86
3.5.1 Description of test instances 87
3.5.2 Effectiveness of the preprocessing techniques and valid inequalities 88
3.5.3 Comparison between ILS-VRPDOC and Gurobi 90
3.5.4 Comparison of ILS-VRPDOC solutions and DHL solutions . . 91
3.5.5 The impact of the depot operation constraints 95

3.6 Conclusion . 98
3.7 Appendix . 103

A Alternative model formulations 103
B Parameter tuning and analysis of the ILS-VRPDOC components107
C Detailed results for the comparison of the DHL solutions to

ILS-VRPDOCquality solutions 111
D Detailed results for the routing-based comparison of the DHL

solutions to ILS-VRPDOCquality solutions 114
E Detailed results for the depot operation-based comparison of

the DHL solutions to ILS-VRPDOCquality solutions 117
F Detailed results for the routing-based comparison of the ILS-

VRPDOCquality solutions to the ILS-VRPDOCOFF
quality solutions 120

G Detailed results for the depot operation-based comparison of
the ILS-VRPDOCquality solutions to the ILS-VRPDOCOFF

quality

solutions . 123

4 The angular traveling salesman problem 127
4.1 Introduction . 128
4.2 Literature review . 129
4.3 Granular tabu search for the angular metric traveling salesman problem130

4.3.1 Construction heuristics . 132
4.3.2 Neighborhoods . 134
4.3.3 Construction of the generator arc set 135
4.3.4 Continuous diversification . 139

4.4 Computational experiments . 140
4.4.1 Benchmark instances and computational environment 140
4.4.2 Parameter setting . 141
4.4.3 Performance of GTS-angular with different construction heuristics141
4.4.4 Comparison to the literature 143

4.5 Conclusion . 150
4.6 Appendix . 153

vi

A Dominated and non-dominated algorithmic variants by Staněk
et al., 2019 . 153

B GTS-angular detailed results 156

5 The capacitated team orienteering problem with multiple time win-
dows and time-dependent score functions 161
5.1 Introduction . 163
5.2 Literature review . 165
5.3 Problem description and model formulation 169

5.3.1 C-TOP-TDPLSF with no waiting at customers (C-TOP-
TDPLSF-nw) . 170

5.3.2 C-TOP-TDPLSF with flexible waiting strategy (C-TOP-
TDPLSF-w) . 173

5.3.3 Preprocessing techniques and valid inequalities 174
5.4 Iterated local search for the C-TOP-TDPLSF-nw and the C-TOP-

TDPLSF-w . 175
5.4.1 Variable neighborhood descent 176
5.4.2 Perturbation . 179
5.4.3 Finalization phase . 179

5.5 Computational experiments . 180
5.5.1 Description of the instances 180
5.5.2 Effectiveness of the preprocessing techniques and valid inequalities182
5.5.3 Parameter tuning . 183
5.5.4 ILS-algo performance assessment 186
5.5.5 Managerial insights . 192

5.6 Conclusion . 196
5.7 Appendix . 201

A C-TOP-TDPLSF with constrained waiting strategy (C-TOP-
TDPLSF-cw) . 201

B Detailed results for small-scale instances 203
C Detailed results for the large-scale instances 206

6 Conclusion and Outlook 219

vii

viii

Chapter 1

Introduction

In today’s rapidly changing global economy, the efficiency of transportation systems
is more critical than ever. As industries become increasingly connected, the demand
for transporting goods has reached an all-time high. The global trade volume is
expected to grow by 2.7% in 2024 and by 3% in 2025 (World Trade Organization,
2024). Solving classical routing problems, such as the traveling salesman problem
(TSP) or the vehicle routing problem (VRP) efficiently, has become a core problem
for many companies. However, operational constraints, such as time windows or
capacity constraints, add complexity to the problems and make finding good solutions
a challenging task.

In addition to cost-efficiency, companies must focus on customer satisfaction and
employee well-being. Growing customer expectations, such as the demand for timely
deliveries, make service quality critical for maintaining competitiveness in the market.
At the same time, driver satisfaction plays an important role. High levels of stress,
for example caused by driving new routes daily, finding parking in urban areas, or
unbalanced workloads, can lead to increased turnover rates. Incorporating constraints
such as equal workload distribution into route planning not only improves driver
well-being but also enhances long-term operational efficiency.

Another critical aspect is the environmental impact. The transportation sector is
responsible for 16% of global greenhouse gas emissions (Ritchie et al., 2020). Typically,
in routing problems, the distance is minimized. Therefore, by optimizing routing
decisions, companies can significantly reduce fuel consumption and CO2 emissions.
This aligns with regulatory frameworks such as the Sustainable Development Goals
of the United Nations (United Nations, 2015) and the European Commission’s “Fit
for 55” package, which aims to reduce EU greenhouse gas emissions by at least 55%
by 2030 (European Commission, 2021).

Most routing problems belong to the class of N P-hard problems. This means that
exact methods, which guarantee optimal solutions, become computationally expensive
as the instance size grows. This is often the case when dealing with real-world instances
of routing problems that involve numerous customers and constraints. Consequently,
developing efficient solution methods is essential for solving routing problems, especially
if they arise at the operational decision level of companies, where new solutions need

1

to be computed every day. This is where heuristics come into play. Unlike exact
methods, heuristics explore only parts of the solution space, with the aim of achieving
a good trade-off between solution quality and runtime. At their core, many heuristics
rely on local search, a technique that iteratively improves a given initial solution
by applying incremental changes (moves). The local search terminates as soon as
none of the possible moves leads to an improvement, meaning that we have reached
a locally optimal solution. To enhance the efficiency of local search, a commonly
employed principle is granular search (Toth and Vigo, 2003). Instead of evaluating all
possible moves, granular search restricts the search to a smaller subset. This subset
is determined using sparsification methods, which seek to identify moves that result
in promising solutions (Escobar et al., 2014). Because we only apply small changes
to the given initial solution, with local search, we only explore a small area of the
solution space close to the initial solution and end up in a local optimum, which can
be arbitrarily bad. To overcome this issue, we use metaheuristics such as iterated
local search, tabu search, genetic algorithms, and simulated annealing (Gendreau and
Potvin, 2019). The metaheuristic most commonly used in this thesis is iterated local
search (ILS). In an ILS, we iterate between two phases, the local search phase and
the perturbation phase. In the local search phase, we improve a given solution until a
local optimum is reached. In the perturbation phase, we modify this local optimum
to reach a different area of the solution space. We iterate the two phases until a given
stopping criterion is met, which could, for example, be a given number of iterations
without improvement or a time limit. Two iterations of the procedure are illustrated
in Figure 1.1.

S

c(S)
Local search

Perturbation

Figure 1.1: Example of two iterations of an iterated local search.

In this thesis, we develop heuristics to efficiently solve four practical routing problems.

2

1.1 Optimization problems studied in this thesis

In the following section, we present the practical motivation, the problem description,
and our contribution for each optimization problem studied in this thesis.

The single truck and trailer routing problem with satellite depots. One
example of a transportation system in which route optimization plays a major role is
the mail delivery network of DHL Group (DHL). DHL delivers an average of 57 million
letters every day, making efficient logistics operations crucial to meeting service quality
standards implied by German law (Postgesetz (PostG), 2024) while minimizing costs
and environmental impact. The structure of DHL’s mail delivery network is illustrated
in Figure 1.2. The process begins with the first mile collection, in which letters enter
the network either through direct collection from customers, retail outlets, or drop-offs
at letter boxes and post offices by customers. The letters are then transported to
sorting centers, where they undergo an initial sorting and consolidation based on their
destinations, a process known as outbound sorting. Next, the letters are transported
to the destination sorting centers, a stage referred to as line haul, for which DHL
employs various modes of transport. Upon arrival, the letters are sorted according
to the delivery depots, in a process called inbound sorting and then brought to the
corresponding delivery depot in the distribution stage. In the final last mile delivery
stage, mail carriers deliver the letters directly to the households using either a trolley,
bike, or car.

First mile
collection

Outbound
sorting Line haul

Inbound
sorting Distribution

Last mile
delivery

POST

Figure 1.2: Mail delivery network at DHL Group.

In this thesis we focus on the problem of routing mail carriers in the last mile
delivery stage. The problem of determining a route for one mail carrier serving a given

3

set of households can be modeled as a park and loop problem (PLP, see Bodin and
Levy, 2000), in which the mail carrier departs from a delivery depot using a vehicle,
that could be a trolley, bike or car, to serve a set of households, that are reachable
by foot only. The mail carrier parks the vehicle at designated parking spots, gets off,
and loads their bag with letters to serve a group of households. Given the limited
capacity of the bag, the mail carrier may need to complete multiple subtours, all
originating and ending at the same parking spot. The aim of DHL is (i) to select
a set of parking spots and determine the sequence in which they are visited, and
(ii) to sequence the household visits from each selected parking spot ensuring that
each household is visited exactly once. The objective is to minimize the total travel
time across the tours of all mail carriers. This problem corresponds to the single
truck and trailer routing problem with satellite depots (STTRPSD). We refer to the
tour traveled by the mail carrier using a vehicle as first-level tour and to the walking
subtours as second-level tours.

Existing approaches like Villegas et al. (2010), Accorsi and Vigo (2020) or Arnold
and Sörensen (2021) primarily address the symmetric variant of the STTRPSD.
However, because DHL operates on a real street network, they solve an asymmetric
STTRPSD (ASTTRPSD). Apart from the asymmetry, DHL instances differ in size
and parking-spot-to-household ratio from the artificial instances used in the literature.
To address these challenges, we propose an ILS, called ILS-ASTTRPSD, designed to
solve both the symmetric and asymmetric variant of the STTRPSD.

To build our initial solution, we use an iterative variant of a clustering algorithm
inspired by the one proposed by Fischetti et al. (1997) and an improvement phase,
both tailored to our problem. We incorporate the natural decomposition of the
problem into first-level and second-level tours into the algorithmic design by tackling
the first-level tour at the perturbation level, and improving the second-level tours
in the local search phase, resulting in decreased computational effort compared to
applying the perturbation and the local search phase to the first- and second-level
tours simultaneously as done in prior methods. Our neighborhood operators are
designed to generate moves on the second-level tours while incorporating first-level
tour savings in move evaluations, ensuring the total travel time is minimized. To speed
up the search, our ILS employs a vertex-based granular search technique motivated
by the structure of instances based on real street networks. In the perturbation phase,
we obtain a new parking spot configuration that is possibly infeasible with respect
to the second-level tours. To overcome this issue, we propose two transformation
heuristics that are applied to the second-level tours.

In our computational experiments, we first compare ILS-ASTTRPSD to the state-
of-the-art heuristic by Reed et al. (2024) for a similar problem. ILS-ASTTRPSD
outperforms this method and finds new best-known solutions for a large number of
instances. Compared to the real-world solutions provided by DHL, our heuristic is

4

able to reduce the total travel time by approximately 2% on average. By analyzing
the resulting solutions, we draw insights into efficient mail carrier practices and the
influence of parking and loading times in shaping solution structures. Additionally,
we derive conditions under which specific optimal solution structures emerge and
evaluate the robustness of solutions under parking time fluctuations.

The vehicle routing problem with depot operation constraints. In the
STTRPSD we consider only one mail carrier and a given set of households. However,
the assignment of households to mail carriers is often not predetermined and must
be considered in the route planning. Instead of planning for just one mail carrier,
the problem expands to routing multiple mail carriers within a designated delivery
area and including the assignment of households to mail carriers into the optimization
problem. To simplify the problem, DHL clusters single households into street segments.
For each of these street segments a service time is computed, representing the total
time required for the mail carrier to serve all households within the street segment,
i.e., it includes parking their vehicle, walking to the letter box of the household,
and delivering the letters. With this simplification the mail delivery problem can be
modeled as a VRP with route duration constraints, in which the mail carriers act as
vehicles and the street segments as customers. The objective is to minimize the total
travel time.

In addition to delivering the letters, an important task for mail carriers at DHL is to
collect the letters of the households assigned to their route from so-called preparation
tables located at the depot. To avoid wasting time on finding the correct letters
while executing the route, mail carriers already collect the letters in the order they
will be delivered. Each preparation table consists of shelves that are divided into
sections. Each shelf section is labeled with the names and numbers of the delivery
addresses. The delivery addresses are sorted according to their visiting order in their
corresponding street segment. An example of such a preparation table is shown in
Figure 1.3. The labels cannot be changed on a daily basis, so the order according to
which the letters are sorted on the preparation tables is fixed.

Baker St Baker St Privet Drive
1 3 5 7 6 4 2 1 2 3 4 5

Figure 1.3: Example of a preparation table and detailed view of a shelf.

5

In practice, a different number of mail carriers might be needed to serve the
delivery area due to fluctuating demand, e.g., caused by daily or seasonal variations.
Consequently, some street segments must be reassigned, leading to changes in the
routing of mail carriers and in their visits to the preparation tables at the depot. Recall
that the order according to which the letters are sorted on the preparation tables is
fixed and cannot be modified to fit the new routing of mail carriers. Accordingly, the
letter collection process may become very complex and generate a lot of overhead at
the depot, e.g., long walking distances, switching back and forth between preparation
tables, or standing in front of a preparation table together with many mail carriers at
the same time. Thus, keeping the letter collection operations as simple as possible is
vital for DHL and must be taken into consideration when optimizing the routes of
mail carriers. To achieve this, we add so-called depot operation constraints to the
routing problem described above and refer to the resulting problem as VRP with
depot operation constraints (VRPDOC). The VRPDOC is a novel extension of the
traditional VRP that explicitly integrates depot operations into routing decisions.

We propose and compare multiple mathematical model formulations for the
VRPDOC and further improve the best-performing formulation by adding problem-
specific preprocessing techniques and valid inequalities. Theoretical results prove the
N P-completeness of finding a feasible solution to the VRPDOC. We show that after
relaxing two specific constraints (upper and lower bounds on the route duration), a
feasible solution can be found in polynomial time.

Because commercial solvers cannot even find a feasible solution for real-world
instances of the VRPDOC in reasonable runtimes, we propose an algorithm capable
of efficiently solving real-world instances that relies on the ILS paradigm. To speed
up the search, the local search component in ILS-VRPDOC uses granular search that
restricts neighborhood exploration using both traditional sparsification methods (e.g.,
distance-based) and problem-specific sparsification strategies to select additional arcs.

Computational experiments on large-scale real-world instances provided by DHL
demonstrate the effectiveness of our approach. ILS-VRPDOC does not only outperform
the DHL solutions reducing total travel time by approximately 6% but also provides
significantly simpler solutions with regard to the letter collection operations at the
preparation tables, highlighting the operational benefits of considering depot operation
constraints. We carry out an extensive analysis of the solutions obtained for the
real-world DHL instances, assess the added cost of considering the depot operation
constraints to the total travel times, and evaluate the effect of neglecting the depot
operation constraints on the resulting complexity of the letter collection operations.

The angular-metric traveling salesman problem. The angular-metric traveling
salesman problem (AngleTSP) seeks to identify a Hamiltonian cycle that visits a
set of vertices in the Euclidean plane while minimizing the total cost defined by

6

the sum of turning angles. When this cost is a combination of the turning angles
and the traveled distance, it is referred to as the angular-distance-metric traveling
salesman problem (AngleDistanceTSP). Both problems are variants of the classic
TSP. Figure 1.4 illustrates how turning angles are determined.

i

j

k

α

Figure 1.4: Example of a turning angle.

Both problems have practical applications in fields such as robotics and trans-
portation. In transportation, straight movements improve control of heavy vehicles,
which is crucial for drivers of machinery like tractors and harvesters operating on
uneven terrain, where avoiding sharp turns is essential to prevent accidents (see, e.g.,
Abubakar et al., 2010). Similarly, semitrailer truck drivers navigating sharp urban
corners face risks such as “jackknifing”, where the trailer forms a 90-degree angle
with the vehicle, posing danger to surrounding vehicles, pedestrians, and property as
reported by the Federal Motor Carrier Safety Administration (2019). Additionally,
poor road conditions, bad weather, or improperly secured loads can lead to rollovers,
even at low speeds due to the high center of gravity in semitrailer trucks (McKnight
and Bahouth, 2009). In all such cases, straight movements are generally preferable
to reduce these risks. Consequently, the AngleTSP is highly relevant when planning
routes for heavy vehicles.

Prior studies, such as Fischer et al. (2014) or Staněk et al. (2019), proposed several
heuristics to solve the problem. However, the best-performing methods are either
simple construction heuristics or matheuristics, lacking in solution quality or runtime,
respectively. To address the gap in the availability of fast yet effective heuristics, we
propose a granular tabu search (GTS) framework, called GTS-angular, to address
both problem variants. We leverage the geometric properties of good solutions in
our construction heuristics and in the sparsification methods used in the local search
component of GTS-angular. For the AngleTSP, we refine the convex hull construction
heuristic proposed by Staněk et al. (2019). For the AngleDistanceTSP, we introduce a
new construction method based on the observation that good solutions rarely include
intersecting arcs because they compromise the distance component of the objective
function. We strengthen the sparsification method originally proposed by Staněk
et al. (2019) of using a lens to limit the size of the neighborhood and introduce two
problem-specific sparsification methods which we apply to both the AngleTSP and
AngleDistanceTSP. Extensive computational experiments demonstrate the effective-
ness of GTS-angular. Compared to the best-performing heuristics developed by Staněk
et al. (2019), GTS-angular improves either the solution quality or the runtimes or

7

both, and finds new best-known solutions for around 80% of the benchmark instances
for which an optimal solution is not yet available.

The capacitated team orienteering problem with time-dependent and
piecewise-linear score functions. The team orienteering problem (TOP) arises
in the context of high-quality delivery services, which are essential for customer
satisfaction and loyalty. These customer-oriented deliveries provide companies with
a competitive edge in today’s market. It is particularly relevant in situations where
serving all customers is not possible, requiring careful consideration of both collected
customer scores and geographic locations.

In the TOP, a fleet of vehicles is available for visiting a set of customers, each
associated with a score and a service time. Given a limited tour duration for each
vehicle, the decision-maker must determine which customers to visit, which vehicle
should serve them, and in what sequence. The objective is to maximize the total score
collected by the fleet. Depending on the setting, drivers may be allowed to park their
vehicles only for the duration necessary to unload their goods, or may be allowed to
park for additional waiting and unloading.

In this thesis, we study the capacitated team orienteering problem with time-
dependent and piecewise-linear score functions (C-TOP-TDPLSF). The C-TOP-
TDPLSF introduces additional complexity to the standard TOP in three ways:
(1) vehicles have limited capacity, (2) each customer has multiple time windows for
service, marked as either preferred or less preferred depending on their availability and
activity schedules, (3) the score for serving a customer varies based on the time of visit,
modeled by a piecewise-linear function. Scores remain constant during preferred time
windows but may increase or decrease linearly during less preferred time windows,
depending on the customer’s availability.

We refer to the C-TOP-TDPLSF in which waiting at a customer is not permitted
as the capacitated team orienteering problem with time-dependent and piecewise-
linear score functions with no waiting (C-TOP-TDPLSF-nw). To also study the
settings in which parking and waiting is allowed, we additionally introduce a variant
of the C-TOP-TDPLSF called the capacitated team orienteering problem with time-
dependent and piecewise-linear score functions with waiting (C-TOP-TDPLSF-w).
In the C-TOP-TDPLSF-w, drivers can park at customer locations and wait for the
most advantageous time to begin service. In both, the C-TOP-TDPLSF-nw and the
C-TOP-TDPLSF-w, waiting at the depot is allowed.

We propose a mathematical formulation for each variant, supplemented with
problem-specific preprocessing techniques and valid inequalities. Because of the
limitations of commercial optimization solvers in handling real-world instances of the
C-TOP-TDPLSF, we propose two heuristics based on ILS: ILS-noWait for solving the
C-TOP-TDPLSF-nw and ILS-cWait-fin for solving the C-TOP-TDPLSF-w. These

8

heuristics differ in the evaluation of waiting decisions. In ILS-noWait, moves that
violate time window constraints are rejected. Because the decision about waiting
at customers is continuous and thus computationally expensive, ILS-cWait-fin only
considers a prespecified set of waiting strategies according to which waiting at a
customer is only allowed for a prespecified amount of time. A post-processing
finalization phase is applied to the best found solutions of the ILS to optimize
customer visiting times while maintaining the sequence of visits.

Computational experiments on small-scale instances show that for C-TOP-
TDPLSF-nw instances, ILS-noWait outperforms a commercial optimization solver.
However, for some C-TOP-TDPLSF-w instances, ILS-cWait-fin struggles to match
the quality of the solutions found with the commercial optimization solver. Although
the finalization phase leads to higher runtimes, it is crucial for improving the solutions
for the C-TOP-TDPLSF-w. The analysis of solutions of large-scale instances of both
problem variants provides valuable managerial insights into the impact of the widths
of time windows, vehicle number, fleet size, and of allowing waiting at customer
locations.

1.2 Organization

This thesis consists of four articles, introducing several heuristics designed to support
decision-making for the optimization problems described above. Our work on the
single truck and trailer routing problem with satellite depots (STTRPSD) is pre-
sented in Chapter 2. In Chapter 3, we introduce the vehicle routing problem with
depot operation constraints (VRPDOC). We examine the angular traveling salesman
problem (AngleTSP) and the angular distance traveling salesman problem (AngleDis-
tanceTSP) in Chapter 4. In Chapter 5, our work on the capacitated team orienteering
problem with time-dependent and piecewise-linear score functions (C-TOP-TDPLSF)
is discussed. Finally, in Chapter 6, we conclude and provide an outlook to further
research topics.

Since the four articles emerged from collaborative work, there is a statement at
the beginning of each chapter, clarifying my contribution.

9

References

M. S. Abubakar, D. Ahmad, and F. B. Akande (2010). “A review of farm tractor
overturning accidents and safety”. In: Pertanika Journal of Science and Technology
18.2, pp. 377–385.

L. Accorsi and D. Vigo (2020). “A hybrid metaheuristic for single truck and trailer
routing problems”. In: Transportation Science 54.5, pp. 1351–1371. doi: 10.1287/
trsc.2019.0943.

F. Arnold and K. Sörensen (2021). “A progressive filtering heuristic for the location-
routing problem and variants”. In: Computers & Operations Research 129, pp. 105–
166. doi: 10.1016/j.cor.2020.105166.

L. Bodin and L. Levy (2000). “Scheduling of local delivery carrier routes for the united
states postal service”. In: Arc Routing. Springer, pp. 419–442. doi: 10.1007/978-
1-4615-4495-1_11.

J. W. Escobar, R. Linfati, and P. Toth (2014). “A hybrid granular tabu search algorithm
for the multi-depot vehicle routing problem”. In: Journal of the Operational
Research Society 65.1, pp. 37–48. doi: 10.1057/jors.2013.102.

European Commission (2021). Fit for 55: Delivering the EU’s 2030 Climate Target on
the Way to Climate Neutrality. Accessed: 2024-11-24. url: https://commission.
europa.eu/strategy-and-policy/priorities-2019-2024/european-green-
deal/delivering-european-green-deal/fit-55-delivering-proposals_en.

U. D. o. T. Federal Motor Carrier Safety Administration (2019). Large truck and bus
crash facts 2017. url: https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/
files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-
2019.pdf.

A. Fischer, F. Fischer, G. Jäger, J. Keilwagen, P. Molitor, and I. Grosse (2014). “Exact
algorithms and heuristics for the quadratic traveling salesman problem with an
application in bioinformatics”. In: Discrete Applied Mathematics 166, pp. 97–114.
doi: 10.1016/j.dam.2013.09.011.

M. Fischetti, J. J. Salazar González, and P. Toth (1997). “A branch-and-cut algorithm
for the symmetric generalized traveling salesman problem”. In: Operations Research
45.3, pp. 378–394. doi: 10.1287/opre.45.3.378.

M. Gendreau and J.-Y. Potvin (2019). Handbook of Metaheuristics. 2nd. Springer.
doi: 10.1007/978-3-319-91086-4.

A. J. McKnight and G. T. Bahouth (2009). “Analysis of large truck rollover crashes”.
In: Traffic injury prevention 10.5, pp. 421–426. doi: 10.1080/15389580903135291.

Postgesetz (PostG) (2024). Postgesetz vom 15. Juli 2024 (BGBl. 2024 I Nr.
236). Accessed: 2024-11-26. url: https : / / www . bundesnetzagentur . de /
SharedDocs/Downloads/DE/Sachgebiete/Post/Unternehmen_Institutionen/
Anbieterverzeichnis/PostG.pdf?__blob=publicationFile&v=3.

10

https://doi.org/10.1287/trsc.2019.0943
https://doi.org/10.1287/trsc.2019.0943
https://doi.org/10.1016/j.cor.2020.105166
https://doi.org/10.1007/978-1-4615-4495-1_11
https://doi.org/10.1007/978-1-4615-4495-1_11
https://doi.org/10.1057/jors.2013.102
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal/fit-55-delivering-proposals_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal/fit-55-delivering-proposals_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal/fit-55-delivering-proposals_en
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf
https://doi.org/10.1016/j.dam.2013.09.011
https://doi.org/10.1287/opre.45.3.378
https://doi.org/10.1007/978-3-319-91086-4
https://doi.org/10.1080/15389580903135291
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Post/Unternehmen_Institutionen/Anbieterverzeichnis/PostG.pdf?__blob=publicationFile&v=3
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Post/Unternehmen_Institutionen/Anbieterverzeichnis/PostG.pdf?__blob=publicationFile&v=3
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Post/Unternehmen_Institutionen/Anbieterverzeichnis/PostG.pdf?__blob=publicationFile&v=3

S. Reed, A. M. Campbell, and B. W. Thomas (2024). Does Parking Matter? The
Impact of Search Time for Parking on Last-Mile Delivery Optimization. Tech. rep.
doi: 10.1016/j.tre.2023.103391.

H. Ritchie, M. Roser, and P. Rosado (2020). “CO2 and Greenhouse Gas Emissions”.
In: Our World in Data. Accessed: 2024-11-24. url: https://ourworldindata.
org/co2-and-other-greenhouse-gas-emissions.

R. Staněk, P. Greistorfer, K. Ladner, and U. Pferschy (2019). “Geometric and LP-based
heuristics for angular travelling salesman problems in the plane”. In: Computers
& Operations Research 108, pp. 97–111. doi: 10.1016/j.cor.2019.01.016.

P. Toth and D. Vigo (2003). “The granular tabu search and its application to the
vehicle-routing problem”. In: INFORMS Journal on Computing 15.4, pp. 333–346.
doi: 10.1287/ijoc.15.4.333.24890.

United Nations (2015). Sustainable Development Goals. Accessed: 2024-11-26. url:
https://unric.org/en/united-nations-sustainable-development-goals/.

J. G. Villegas, C. Prins, C. Prodhon, A. L. Medaglia, and N. Velasco (2010). “GRASP/
VND and multi-start evolutionary local search for the single truck and trailer
routing problem with satellite depots”. In: Engineering Applications of Artificial
Intelligence 23.5, pp. 780–794. doi: 10.1016/j.engappai.2010.01.013.

W. World Trade Organization (2024). World Trade Outlook and Statistics 2024.
Accessed: 2024-11-26. url: https://www.wto.org/english/res_e/booksp_e/
stat_10oct24_e.pdf.

11

https://doi.org/10.1016/j.tre.2023.103391
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
https://doi.org/10.1016/j.cor.2019.01.016
https://doi.org/10.1287/ijoc.15.4.333.24890
https://unric.org/en/united-nations-sustainable-development-goals/
https://doi.org/10.1016/j.engappai.2010.01.013
https://www.wto.org/english/res_e/booksp_e/stat_10oct24_e.pdf
https://www.wto.org/english/res_e/booksp_e/stat_10oct24_e.pdf

12

Chapter 2

The asymmetric single truck and trailer routing
problem with satellite depots

Publication status: R. Cavagnini, M. Schneider, and A. Theiß (2024a). “A
granular iterated local search for the asymmetric single truck and trailer routing
problem with satellite depots at DHL Group”. In: Networks 83.1, pp. 3–29. doi:
10.1002/net.22178

Abstract: To plan the postal deliveries of our industry partner DHL Group (DHL),
the single truck and trailer routing problem with satellite depots (STTRPSD)
is solved to optimize mail carriers routes. In this application context, instances
feature a high number of customers and satellites, and they are based on real street
networks. This motivates the study of the asymmetric STTRPSD (ASTTRPSD).
The heuristic solution methods proposed in the literature for the STTRPSD can
either solve only the symmetric problem variant, or it is unclear whether they can
also be used to solve the ASTTRPSD. We introduce an iterated local search, called
ILS-ASTTRPSD, which generates different first-level tours in the perturbation
phase, and improves the second-level tours in the local search phase. To speed
up the search, granular neighborhoods are used. The computational results on
instances from the literature prove the capability of ILS-ASTTRPSD to return
high-quality solutions. On DHL instances, ILS-ASTTRPSD significantly decreases
total travel times of the mail carriers and returns solutions with a different structure
compared to the ones provided by DHL. Based on these differences, we give
recommendations on how DHL could design more efficient mail carrier practices.
Dedicated computational experiments reveal that considering parking and loading
times when solving the ASTTRPSD leads to lower travel times, and that ignoring
parking times is more counterproductive than ignoring loading times. Moreover,
we assess the robustness of our solutions under parking time fluctuations. Finally,
we derive properties of instances for which optimal solutions contain multiple
second-level tours rooted at the same parking spot and for which the optimal so-
lutions of the ASTTRPSD correspond to the ones of a pure traveling salesman problem.

13

https://doi.org/10.1002/net.22178

Contribution of the author: The authors shared efforts in the conceptual develop-
ment of the research goals, the literature review, the design of the methodology and
implementation of the algorithm, the computational experiments and result analysis,
and in writing the paper.

14

2.1 Introduction

Postal routing activities are of major importance for companies like our industry
partner DHL Group (DHL). DHL has to serve 54 200 districts on six days a week and
has to deliver an average of 57 million letters every day. Therefore, decision support
to reduce the travel time of the individual mail carriers is a strong lever to reduce
total operating costs.

DHL’s postal delivery tours are executed daily, but they are planned at the tactical
level, i.e., they remain unchanged for several months. DHL executes the delivery
tours using two different means of transportation: a vehicle (car, bike, or carrier) is
combined with a mail carrier that walks to carry out the final delivery. This can be
modeled as a park and loop problem (PLP, see Bodin and Levy, 2000), in which a
mail carrier with a vehicle departs from a main depot to serve the demand of a set
of households, which are reachable only by walking (without the vehicle). There is
a set of given parking spots, where the mail carrier can park the vehicle and get off.
Parking requires a specified amount of time that is independent of the demand to be
served from that parking spot. Then, the mail carrier loads their bag with letters to
serve a group of households. DHL sorts letters at the depot according to the sequence
in which letters will be delivered using dedicated sorting machines. Before leaving the
depot, the mail carrier has already packed them into blocks and does not need time
to select letters one by one after parking the vehicle. Although letters are already
packed, according to DHL, the loading time cannot be considered negligible because
the mail carrier still needs to open the vehicle trunk, pick up the correct block of
letters, and close the vehicle trunk. Thus, in our problem, the loading time does not
depend on the number of letters delivered in a walking tour, but it is considered fixed
and non-negligible for each walking tour. The bag has a limited capacity, but the
mail carrier can walk one or multiple subtours, all starting and ending at the same
parking spot. We refer to the tour traveled by the mail carrier using a vehicle as
first-level tour and to the walking subtours as second-level tours. The aim of DHL is
(i) to select a set of parking spots and determine their visiting sequence (first-level
tour), and (ii) to choose the household visiting sequence from each selected parking
spot (second-level tours) in such a way that each household is visited exactly once.
The objective is to minimize the total travel time of all tours of the mail carrier.

The specific PLP that DHL has to solve corresponds to the single truck and
trailer routing problem with satellite depots (STTRPSD). Because DHL executes
deliveries on a real street network, the presence of one way streets, crossroads, dead-
end streets, turning restrictions, and medial strips between lanes makes travel times
neither Euclidean nor symmetric. Consequently, DHL has to solve the asymmetric
STTRPSD (ASTTRPSD).

Several metaheuristics exist for the symmetric STTRPSD (see Villegas et al.,

15

2010; Accorsi and Vigo, 2020; Arnold and Sörensen, 2021). However, neither the
heuristic of Accorsi and Vigo, 2020 nor the one of Arnold and Sörensen, 2021 can
solve the asymmetric problem variant. For the method of Villegas et al., 2010, the
implementation is not publicly available, and it is not clear whether it can also solve
the ASTTRPSD (for more details, see Section 2.2). We contribute by proposing a more
general metaheuristic that can be applied to solve both the symmetric and asymmetric
STTRPSD variant and that provides our industry partner with an effective solution
approach to solve real-world instances. Moreover, apart from their asymmetry, DHL
instances differ from the artificial instances used in the literature in two additional
aspects. First, while the instances in the literature have at most 20 parking spots
and 200 households, the DHL instances are larger with an average of 724 parking
spots and 390 households. Second, all DHL instances have more parking spots than
households. In each instance, the number of parking spots is approximately double
the number of households, representing the possibility, for almost all households, of
parking on both sides of the street. An extract of a DHL instance is presented in
Figure 2.1. The street network is shown in gray, the households in blue, and the
parking spots in magenta.

Figure 2.1: Extract of an exemplary DHL instance.

In this paper, we propose an iterated local search (ILS) for the ASTTRPSD, called
ILS-ASTTRPSD. The structure of the problem allows us to naturally decompose
the problem into a first-level tour which is tackled at the perturbation level, and
second-level tours which are improved by the local search phase. This decomposition
decreases the computational effort compared to applying the perturbation and the
local search phase to the first- and second-level tours simultaneously as done in Villegas
et al., 2010 and Accorsi and Vigo, 2020. Our neighborhood operators are specifically
designed to generate moves on the second-level tours. However, if we only evaluate
these moves based on changes in the second-level tour travel time, we may discard
moves that improve the total travel time. For example, if a parking spot is closed,

16

the second-level tour time may increase less than the reduction of the first-level tour
time, leading to an overall travel time improvement. To address this issue, the move
evaluation considers the travel time savings in the first-level tour that result from
closing a parking spot. To speed up the search, our ILS uses granular search (see Toth
and Vigo, 2003). This principle is based on a sparsification method which is used to
restrict the size of the neighborhoods to explore. Different from the sparsification
used in Accorsi and Vigo, 2020 and motivated by the structure of instances based on
real street networks, we implement a vertex-based sparsification method. To make
the second-level tours compatible with the new parking spot configuration obtained
after applying the perturbation move, we also propose two transformation heuristics
to be run depending on the selected move. Finally, ILS-ASTTRPSD runs on a
starting solution obtained with a clustering algorithm inspired by the one proposed
by Fischetti et al., 1997. However, we derive an iterated version of this heuristic and
an improvement phase, both tailored to our problem.

In our computational experiments, to test the ILS-ASTTRPSD capability of
returning high-quality solutions, we first compare ILS-ASTTRPSD solutions to the
state-of-the-art heuristic by Reed et al., 2024 for a similar problem. ILS-ASTTRPSD
outperforms this method and finds new best-known solutions for a large number of
instances. On DHL instances, ILS-ASTTRPSD significantly improves the total travel
times with respect to the solutions provided by DHL. By comparing the structure
of ILS-ASTTRPSD and the DHL solutions, we draw insights on more efficient mail
carrier practices. For completeness, we also use ILS-ASTTRPSD to solve symmetric
instances from the literature. The results show that the solution quality is reasonable
compared to the specialized methods from the literature.

Moreover, we derive instance conditions under which: (i) multiple second-level
tours from the same parking spot may exist in an optimal solution, and (ii) the optimal
solution corresponds to the one of a TSP with one dedicated parking spot for each
household. We contribute with managerial insights on the influence of parking and
loading times on the solution structure. Results show that considering both parking
and loading times leads to shorter travel times and that ignoring parking times returns
more costly solutions than ignoring loading times. Finally, we assess the robustness of
solutions under parking time fluctuations.

To summarize, our contributions are the following:

• We propose a metaheuristic that solves both the symmetric and asymmetric
STTRPSD and that contains new features compared to the methods proposed
in the literature. Our metaheuristic solves real-world instances effectively and
outperforms the heuristic of Reed et al., 2024 on asymmetric instances from the
literature.

• We derive properties of instances that lead to a particular structure in optimal
solutions.

17

• We derive insights on efficient mail carrier practices, on the influence of parking
and loading times on the solution structure, and on the robustness of solutions
under parking time fluctuations.

The paper is organized as follows. In Section 2.2, we review the literature on the
STTRPSD and related problems. Section 2.3 provides a formal description of the
problem and introduces the used notation. Section 2.4 derives instance properties
that characterize special structures of optimal solutions, and, Section 2.5 describes our
ILS-ASTTRPSD. We present the computational experiments and results in Section 2.6.
Finally, Section 2.7 concludes the paper.

2.2 Literature review

In this section, we review the literature on the STTRPSD and closely-related problems.
The STTRPSD belongs to the class of the truck and trailer routing problems (TTRP),
which are discussed in several surveys (Nagy and Salhi, 2007; Drexl, 2012; Prodhon
and Prins, 2014; Cuda et al., 2015; Schiffer et al., 2019).

The STTRPSD was first introduced in Villegas et al., 2010. The authors propose
a mathematical formulation, a set of symmetric instances, and multiple heuristic
methods to solve the problem. The best performing method is a multi-start ILS.
However, the authors only report experiments for symmetric instances, and it remains
unclear whether their heuristic can also solve asymmetric ones. Belenguer et al., 2016
propose a branch-and-cut algorithm that uses several families of valid inequalities and
exact and heuristic separation procedures. Their exact method solves instances with
up to 50 households and 10 parking spots to optimality. While the valid inequalities
in Belenguer et al., 2016 are specifically tailored to the STTRPSD, Bartolini and
Schneider, 2020 solve instances of the STTRPSD of the same size via a branch-and-
cut algorithm with valid inequalities developed for the capacitated TTRP. Accorsi
and Vigo, 2020 develop the state-of-the-art metaheuristic for the STTRPSD. Their
approach is based on an ILS applied within a multistart framework, and the authors
store high-quality first- and second-level tours in a solution pool during the execution
of the heuristic. The ILS is composed of a perturbation phase based on a ruin and
recreate mechanism and a local search component, namely, a randomized variable
neighborhood descent (VND) with first improvement. Every time the perturbation
phase is called, either a subset of parking spots is randomly selected and closed,
or random households are removed from every second-level route until their load is
less than a specified threshold. The solution is then rebuilt by selecting households
according to different criteria and inserting them in the position which minimizes the
insertion cost. At the end, a set-partitioning problem is solved with the tours saved
in the solution pool. The algorithm of Accorsi and Vigo, 2020 has been specifically
designed for symmetric instances and cannot be used to solve asymmetric instances.

18

For example, in their algorithm, the authors use, among others, the 2-opt neighborhood
operator in intra-route fashion, which causes problems when dealing with asymmetric
instances. Arnold and Sörensen, 2021 study the STTRPSD as a variant of location-
routing problems and propose a progressive filtering heuristic capable of obtaining
solutions competitive to those of Villegas et al., 2010. Arnold and Sörensen, 2021 use
the k-means clustering algorithm implementation of the SciKit-learn library, which
assumes symmetric instances, they always use the term “edge”, and all experiments
are based on symmetric instance sets, indicating that their heuristic cannot be used
to solve asymmetric instances.

A problem similar to the STTRPSD is the capacitated delivery problem with
parking (CDPP) introduced by Reed et al., 2024. The authors explicitly model
the time required for a delivery man to search for a parking spot and identify the
conditions under which considering the parking time changes the solution structure.
Their problem is different from ours in the following aspects. First, they assume that
the parking and household locations coincide. Consequently, whenever the parking
search time is set to zero, the optimal solution corresponds to that of a TSP, in
which every household is served from the parking spot at the same location. In the
ASTTRPSD, when no parking times are considered, the optimal solution may differ
from the TSP solution because driving on a street network is not always faster than
walking, and a household may have more than one associated parking spot. Second,
in their paper, the loading time depends on the number of packages to be delivered.
Because the sum of all households’ demand must be satisfied, the loading time is a
constant that can be excluded from the optimization. In the ASTTRPSD, because the
mail carrier can directly take the letters in blocks, the loading time is not dependent
on the number of letters but fixed per second-level tour. Consequently, the loading
time must be included in the optimization because it may influence the number of
second-level tours in the solution. Reed et al., 2024 propose a heuristic to address
their problem. The computational results show gaps to the optimal solution of at
most 5.5% for instances with up to 100 households.

The STTRPSD is also related to PLPs. The practice of combining walking and
driving is introduced by Levy and Bodin, 1989 in a location arc routing problem
for postal deliveries and formalized as “park-and-loop” problem by Bodin and Levy,
2000. For model formulations of the PLPs proposed by Bodin and Levy, 2000, we
refer to Bode, 2013. Additional variants of PLPs are the multi-modal PLP for postal
deliveries (Gussmagg-Pfliegl et al., 2011), the doubly open park-and-loop routing
problem (Cabrera et al., 2022), and the park-and-loop routing problem with parking
selection (Le Colleter et al., 2023).

The two-echelon structure of the STTRPSD also relates it to the two-echelon
driving and walking distribution problem for last-mile delivery studied in Martinez-
Sykora et al., 2020. The authors propose a mathematical formulation of the problem,

19

derive valid inequalities, and solve instances with up to 30 vertices via branch-and-cut.
However, different from our problem, the authors do not allow multiple second-level
tours starting from the same parking spot.

2.3 Problem description

In this section, we formally describe the ASTTRPSD and introduce all relevant
notation. Figure 2.2 shows a small example of the ASTTRPSD.

The ASTTRPSD can be defined on a directed graph G = (V, A), where V is the
vertex set and A is the arc set. The vertex set is partitioned into V = {0} ∪ VD ∪ VC ,
where 0 is the depot, VD is the set of parking spots, and VC is the set of households.
Figure 2.2(a) represents the households along the street, the depot in the lower
right part of the figure, and the parking spots associated to each household. A
nonnegative travel time cij is associated with each arc (i, j) ∈ A. For walking arcs,
i.e., {(i, j)|(i ∈ VC ∧ j ∈ VC) ∨ (i ∈ VC ∧ j ∈ VD) ∨ (i ∈ VD ∧ j ∈ VC)}, and driving
arcs, i.e., {(i, j)|(i ∈ {0} ∪ VD ∧ j ∈ {0} ∪ VD)}, the travel times satisfy the triangle
inequality. However, this is not true in general because driving between two locations
i and j may be slower than walking from i to k and from k to j. This happens,
for example, when two households are located on the opposite sides of a street and
crossing the street by walking is possible, but U-turns by vehicles are not allowed.
Each household i ∈ VC has a nonnegative demand qi. The capacity of the vehicle is
denoted by Qv, the capacity of the mail carrier bag by Qb. To guarantee feasibility, we
assume that the capacity of the vehicle at least corresponds to the cumulative demand
of the households, i.e., Qv ≥ ∑

i∈VC
qi. Moreover, we assume that split deliveries are

not allowed and that the capacity of the mail carrier bag is at least as large as the
maximum household demand, i.e., Qb ≥ maxi∈VC

{qi}.
A solution S of the STTRPSD consists of (i) a first-level tour t1, i.e., a cycle

starting from the depot, visiting a subset of parking spots denoted by VD(t1) and
returning to the depot, and (ii) a set of second-level tours T 2, in which each element
of this set starts at a parking spot k ∈ VD(t1) contained in the first-level tour, visits
one or more households in VC , and ends at the same parking spot k. In Figure 2.2(b),
the selected parking spots and the first-level tour traveled by car are highlighted in
magenta, while the second-level tours walked by the mail carrier with a capacitated
bag are colored in blue. Multiple second-level tours can be rooted at the same parking
spot. The set of households visited in a second-level tour t2 ∈ T 2 is represented by
VC(t2). The travel time of the first-level tour is represented by c(t1), the travel time
of a second-level tour is denoted by c(t2). A solution is feasible if the cumulative
demand of the households visited in every second-level tour does not exceed the bag
capacity, i.e., ∑

i∈VC(t2) qi ≤ Qb for all t2 ∈ T 2, and each household is visited exactly
once. A feasible solution is optimal if it minimizes the sum of the total travel time of

20

the first and the second-level tours c(t1) + ∑
t2∈T 2 c(t2). The time required to park

the vehicle at a parking spot k is denoted by ρk and can be easily included at the
instance level by adding the parking time to the travel time of every arc entering the
parking spot k from another parking spot, i.e., to the arcs {(i, k)|i ∈ VD, i ̸= k}. If
the parking time is assumed to be the same for all parking spots, we simply denote it
by ρ. Similarly, the time required to load the bag before starting a second-level tour
at a parking spot k is denoted by ℓ. When the loading time is assumed to be linearly
dependent on the number of letters to be delivered in the second-level tour, loading
times are a constant, and they can be excluded from the optimization.

(a) Example of an ASTTRPSD instance (b) Example of an ASTTRPSD solution

Figure 2.2: A small ASTTRPSD example.

2.4 Conditions for particular optimal solution
structures

In this section, we state properties of instances that lead to a particular optimal
solution structure. We believe that these properties are useful for the following reasons.
First, they allow to gain insights on the structure of optimal solutions by just analyzing
the values of the parameters in the instances, i.e., without the need for solving them.
As an example, these properties could be considered as features for a machine learning
algorithm with the goal of predicting whether a solution is optimal or not. Second, by
recognizing that specific properties of instances are fulfilled, tailored solution methods
could be implemented. Third, these properties will allow us to verify if the structure
of the heuristic solutions obtained by ILS-ASTTRPSD is in line with the structure of
optimal solutions.

The first property refers to the presence of multiple second-level tours from the
same parking spot. Specifically, there can be multiple second-level tours rooted at

21

the same parking spot only if (i) the cumulative demand of the visited households
from the same parking spot exceeds the bag capacity, and (ii) it is more convenient to
serve those households from that parking spot than from a different one. This first
property can be formalized as follows.

Theorem 2.4.1 (Presence of multiple second-level tours from the same parking spot)
In an optimal solution of the ASTTRPSD, multiple second-level tours from the same
parking spot may exist only if there exists at least one pair of parking spot vertices
k1, k2, with k1 ̸= k2, a household vertex h1, and a subset of household vertices H,
with |H| ≥ 1, such that the following two conditions are both verified:

C1. qh1 +
∑
i∈H

qi > Qb

and
C2. ρk1 + ℓ + ck1h1 + ch1k1 + ℓ + ck1H0 + cH|H|k1

≤ ρk1 + ℓ + ck1h1 + ch1k1 + ck1k2 + ρk2 + ℓ + ck2H0 + cH|H|k2 ,

that can be reduced to:
ck1H0 + cH|H|k1 ≤ ck1k2 + ρk2 + ck2H0 + cH|H|k2 .

While condition C1 is straightforward, Figure 2.3 shows an example of condition
C2 for two parking spots k1 and k2, a household h1, and, without loss of generality, a
subset of household vertices H = {h2}. Figure 2.3(a) represents the left-hand side
of condition C2 in which multiple second-level tours are rooted at the same parking
spot, while Figure 2.3(b) shows the right-hand side of condition C2 in which each
household is served from a different parking spot.

h1 h2

k1 k2

d

ℓ + ck1h1 ch1k1

ℓ + ck1h2

ch2k1

ρk1

(a) Left-hand side of condition C2.

h1 h2

k1 k2

d

ℓ + ck1h1
ch1k1 ℓ + ck2h2

ch2k2

ck1k2 + ρk2

ρk1

(b) Right-hand side of condition C2.

Figure 2.3: Example of left-hand and right-hand side of condition C2.

We note that, if the cumulative demand of the visited households from the same
parking spot does not exceed the bag capacity, there cannot be multiple second-level
tours rooted at that parking spot because of the triangle inequality holding for the
walking network.

22

The second property states the condition under which an optimal solution of the
ASTTRPSD corresponds to the one of a TSP in which one parking spot is opened for
each household. This situation occurs only if serving a household in a second-level
tour already visiting another household is never convenient. This property can be
formalized as follows.

Theorem 2.4.2 (The solution of the ASTTRPSD corresponds to a TSP solution)
The optimal solution of the ASTTRPSD corresponds to the one of a TSP in which
one parking spot for each household is opened and each household is visited from that
parking spot, only if for every pair of parking spot vertices k1, k2, with k1 ≠ k2, and
of household vertices h1, h2, the following condition is verified:

ρk1 + ℓ + ck1h1 + ch1k1 + ck1k2 + ρk2 + ℓ + ck2h2 + ch2k2

< ρk1 + ℓ + ck1h1 + ch1h2 + ch2k1

that can be reduced to:
ch1k1 + ck1k2 + ρk2 + ℓ + ck2h2 + ch2k2 < ch1h2 + ch2k1 .

Figure 2.4 shows an example of the condition for two parking spots k1 and k2 and
two households h1 and h2. Figure 2.4(a) represents the left-hand side of the condition
in which each household is served from a dedicated parking spot, while Figure 2.4(b)
shows the right-hand side of the condition in which multiple households are served in
the same second-level tour.

h1 h2

k1 k2

d

ℓ + ck1h1
ch1k1 ℓ + ck2h2

ch2k2

ck1k2 + ρk2

ρk1

(a) Left-hand side of condition stated in Property
4.2.

h1 h2

k1 k2

d

ℓ + ck1h1

ch1h2

ch2k1

ρk1

(b) Right-hand side of condition stated in
Property 4.2.

Figure 2.4: Example of left-hand and right-hand side of the condition stated in
Property 4.2.

The solution of such a TSP in which one parking spot for each household is opened
and each household is visited from that parking spot is always a feasible solution
for the ASTTRPSD. Hence, it provides an upper bound for the optimal objective
function value of the ASTTRPSD solution.

23

2.5 Granular iterated local search

In this section, we introduce the ILS-ASTTRPSD algorithm. The pseudocode is given
in Algorithm 1.

After obtaining a starting solution using the two-phase construction heuristic
explained in Section 2.5.1, the ILS described in Section 2.5.2 is executed. In each ILS
iteration, a local search phase based on a VND with first improvement (Section 2.5.2.1)
is applied. Whenever a better solution than the incumbent best is found, the best
found solution is updated. The VND terminates when the total travel time of the
solution stops improving. Next, the perturbation phase is applied to the best found
solution (Section 2.5.2.2) to generate a new solution having different opened parking
spots and second-level tours adapted for this new configuration. The ILS terminates
after η iterations without improvement.

Algorithm 1: Pseudocode of ILS-ASTTRPSD algorithm
1 S ← constructionHeuristic()
2 S∗ ← S

3 while iterations without improvement < η do
4 while improvementVND do
5 S ← VND(S)
6 if c(S) < c(S∗) then
7 S∗ ← S

8 c(S∗)← S

9 end
10 end
11 S ← perturbation(S∗)
12 end

2.5.1 Construction heuristic

Our construction heuristic consists of two phases: an iterated clustering algorithm
(Section 2.5.1.1) used to obtain a starting solution and an improvement phase (Sec-
tion 2.5.1.2) used to optimize the selection of opened parking spots.

2.5.1.1 Iterated clustering algorithm

The iterated clustering algorithm is inspired by the clustering algorithm proposed
by Fischetti et al., 1997. In their paper, the authors use this algorithm to generate
instances of the group TSP from the instances of the classical TSP contained in the
TSPLIB library (Reinelt, 1991). While Fischetti et al., 1997 apply the algorithm
to create clusters using vertices from the same vertex set, we use the set of parking
spots to select the cluster centroids and the set of households to form clusters. The
algorithm takes as input a parameter K that specifies the number of clusters (i.e., open
parking spots) to form. Then, it selects K centers (i.e., parking spots) by considering
the K vertices located as far as possible from each other. Finally, it assigns each
vertex (i.e., household) to its nearest center. The advantage of this algorithm is that

24

it produces well-distributed opened parking spots in the street network. However, it
requires to specify a value for K as input, and the optimal value of K is unknown.

To overcome this problem, we propose a new iterated version of this clustering
algorithm that is summarized in Algorithm 2. We initialize the number of parking
spots to open to the lower bound value of the number of required second-level tours
to satisfy the total household demand. Then, we execute the clustering algorithm of
Fischetti et al., 1997 for increasing values of K (in steps of one). Once the parking
spots to open and the assignment of households to parking spots have been determined,
we solve a TSP on the opened parking spots to build the first-level tour t1. For each
parking spot, we build a big temporary second-level tour, in which all the assigned
households to that parking spot appear according to their lexicographic order. Next,
we check for each parking spot if the sum of the demands of the households assigned
to that parking spot exceeds the bag capacity of the mail carrier. If the bag capacity
is not exceeded, we leave the second-level tour as it is. Otherwise, by keeping the
households in lexicographic order, we cut the big temporary second-level tour into
smaller second-level tours as soon as adding the demand of the next household would
exceed the bag capacity. Instead of the lexicographic order, a greedy heuristic based
on the household demand could be used to reallocate the households to get a feasible
solution. However, we use the lexicographic order to keep the runtimes of the algorithm
as low as possible because the quality of the solution is guaranteed by the subsequent
ILS. Then, we solve a TSP for every second-level tour in T 2. The algorithm terminates
after a given number of iterations without improvement.

Algorithm 2: Pseudocode of the iterated clustering algorithm
1 initialize S = ∅, c(S) = +∞, γ = 0 , K = ⌈

∑
i∈VC

qi/Qb⌉

2 while γ < γmax do
3 clusteringAlgorithm(K)
4 S′ ← solveTSP(t1)
5 S′ ← solveTSP(t2) ∀t2 ∈ T 2

6 K += 1
7 if c(S ′) < c(S) then
8 γ = 0
9 S ← S ′, c(S)← c(S ′)

10 else
11 γ += 1
12 end
13 end

2.5.1.2 Construction heuristic improvement phase

In the improvement phase, we optimize the choice of the opened parking spots by
keeping the households visited in each second-level tour VC(t2), t2 ∈ T 2 unchanged
and the visiting sequence of the second-level tours fixed.

First, we build the weighted layered graph shown in Figure 2.5. We start by
appending a vertex representing the depot 0 at the beginning and at the end of the
graph. Each layer of the graph corresponds to a second-level tour t2 ∈ T 2. Because

25

the visiting sequence of the second-level tours is kept fixed, the layers can be arranged
in sequence. The nodes within one layer represent the parking spots associated with
the households in that particular second-level tour, i.e., VC(t2). For example, k1

2

represents the parking spot associated to the second household (see subscript) visited
in the first second-level tour (see superscript).

For simplicity, the figure shows the situation in which only one parking spot is
associated with each household, but each household can potentially have more than
one associated parking spot. In this case, we would add an index to the notation
used to represent nodes to indicate which of the associated parking spots we refer
to. Each arc connects a parking spot of one layer to a parking spot of the successive
one. For the sake of representation, the figure does not show the weights on the arcs
which represent the travel time between pairs of connected parking spots. By solving
a shortest path problem on such a weighted layered graph, we identify the optimal
selection of parking spots to open.

Approaches based on solving a shortest path problem on a weighted layered graph
are found, for example, in Villegas et al., 2010 and Cabrera et al., 2022. However,
these authors follow a route-first cluster-second approach. Consequently, they use
a weighted layered graph to optimally cut a household giant tour to determine the
assignment of the households to parking spots that then need to be opened. On the
contrary, we follow a cluster-first route-second approach that leads to a simplified
layered graph. Instead of having as many layers as the number of households, we have
as many layers as the number of second-level tours. Within each layer, instead of
having as many nodes as the number of parking spots, the number of nodes is at most
twice the number of households visited in that second-level tour. Moreover, because
in our graph the layers represent the set of feasible second-level tours, no capacity
constraints must be considered. To the best of our knowledge, this is the first time
that such a layered graph is used to optimize the choice of the opened parking spots
while keeping the visiting sequence of the second-level tours fixed.

If our procedure results in a different choice of the opened parking spots with
respect to the one of the solution S returned by the iterated clustering algorithm,
the second-level tours that were rooted in a parking spot that was previously open
need to be adjusted. In each of those second-level tours, the first visited household
becomes the closest one to the new opened parking spot. The visiting sequence of the
remaining households is determined according to the order in which they appeared
after the new first visited household in the previous version of the second-level tour.
At the end of this improvement phase, the number of opened parking spots may have
changed, e.g., if two second-level tours are now rooted in the same parking spot, or if
two second-level tours which were rooted in the same parking spot are now rooted in
two different parking spots.

26

0 0

t2
1

k1
1

k1
2

...

k1
n

t2
2

k2
1

k2
2

...

k2
n

. . .

. . .

. . .

· · · t2
|T 2|

k
|T 2|
1

k
|T 2|
2

...

k|T
2|

n

Figure 2.5: Structure of the auxiliary weighted layered graph and shortest path
problem solution in magenta.

2.5.2 Iterated local search

Our ILS implements the classical ILS framework originally proposed by Lourenço
et al., 2003. Each iteration of ILS is composed of two phases: (i) a VND phase with
the goal of improving the travel time of the second-level tours (Section 2.5.2.1), and
(ii) a perturbation phase with the goal of generating a new configuration of opened
parking spots (Section 2.5.2.2). This problem decomposition differentiates our ILS
from the one of Villegas et al., 2010 and Accorsi and Vigo, 2020, who apply their ILS
to the first and second-level tours simultaneously.

2.5.2.1 Variable neighborhood descent

VND iteratively evaluates neighboring solutions that are obtained by applying to a
solution S a move uniquely defined by a so-called generator arc (i, j) and a neigh-
borhood operator o ∈ O. After the move is applied, the arc (i, j) is contained in the
resulting solution. Because, in contrast to Villegas et al., 2010, the pivoting rule of our
VND is first improvement, the order according to which the neighborhood operators
and the generator arcs are traversed influences the search trajectory. For this reason,
the elements in the sets of the neighborhood operators O and of the households VC

(which are used as the origin vertices of the generator arcs) are randomly shuffled at
the beginning of each ILS iteration, before calling the VND, resulting in the lists Õ

and ṼC . This increases the likelihood that different search trajectories are explored
and different solutions are obtained in case the same configuration of opened parking
spots is considered more than once.

Algorithm 3 shows the pseudocode of the VND. The VND traverses the list Õ

27

of neighborhood operators described in Section 2.5.2.1.1. For each operator, the
generator arc list is traversed. Specifically, each arc is obtained by pairing a vertex i

from the list ṼC of households with a vertex j from the list of the closest households
and parking spots to household i. This latter list is denoted by Li and obtained as
described in Section 2.5.2.1.2. Given a neighborhood operator and a generator arc, a
move is applied to a solution S and a new solution S

′ is obtained. If the total travel
time of the new solution S

′ is lower than the total travel time of S, then the new
solution S

′ becomes the new incumbent in the VND, and the search restarts from the
first operator, instead of the current one as in Accorsi and Vigo, 2020.

Algorithm 3: Pseudocode of VND(S)
Input: S

1 improvementVND = false
2 for o ∈ Õ do
3 for i ∈ ṼC do
4 for j ∈ Li do
5 S ′ ← move(o, i, j, S)
6 if C(S ′) < C(S) then
7 improvementVND = true
8 S ← S ′

9 C(S)← C(S ′)
10 break
11 end
12 end
13 if improvementVND = true then
14 break
15 end
16 end
17 if improvementVND = true then
18 break
19 end
20 end
21 return S

2.5.2.1.1 Neighborhood operators The neighborhood operators contained in
set O are defined using the generator arc principle introduced in Section 2.5.2.1. They
are depicted in Figure 2.6 and are:

• 2-opt* is used in inter-route and intra-parking spot fashion, i.e., it is not evaluated
for second-level tours rooted at different parking spots.

• split creates a new second-level tour containing a single household, and it is
defined in both intra- and inter-parking spot fashion.

• exchange swaps one household between second-level tours or within a second-level
tour, and it is defined in both intra- and inter-parking spot fashion.

• relocate-1 moves one household between second-level tours or within a second-
level tour, and it is defined in both intra- and inter-parking spot fashion.

28

• relocate-b, where the “b” stands for “backwards”, relocates all predecessors of a
household (parking spot excluded) before another one, and it is defined in both
intra- and inter-parking spot fashion.

The relocate-1 and split operators reduce the number of opened parking spots
by one if the following three conditions apply simultaneously: (i) the second-level
tour of household i is composed of only i, (ii) the parking spot of i is used only for
the second-level tour of i, and (iii) the second-level tour of j is rooted at a different
parking spot (for relocate-1) and j is different from the parking spot of i (for split).
Similarly, the relocate-b operator reduces the number of opened parking spots by one
if (i) i is the last visited household of a second-level tour, (ii) the parking spot of i is
used only for the second-level tour of i, and (iii) the second-level tour of j is rooted
at a different parking spot. For this reason, to compute the impact that each move
has on the total travel time of a solution, we also consider the saving in the first-level
tour travel time if these conditions hold for the above mentioned operators. This
prevents discarding moves that may not appear as improving if only their effect on
the second-level tour was evaluated.

2.5.2.1.2 Composition of Li To speed up the search, we consider only a small
portion of the total number of arcs in A to be used as generator arcs. This technique
has been proposed by Toth and Vigo, 2003 and has later been applied in multiple
works (see, e.g., Prins et al., 2007; Escobar et al., 2014; Goeke, 2019). In contrast to
Accorsi and Vigo, 2020, who consider a portion of the shortest arcs in A, we propose
a per-household sparsification method. Sparsifying on a per-household basis is vital
considering that in DHL instances the households are positioned along street segments.
This ensures that a given number of arcs incident to isolated households is always
included.

In ILS-ASTTRPSD, each generator arc is obtained by pairing a vertex i from the
list ṼC of households with a vertex j from the list Li. List Li contains the ⌈κcVC⌉
closest households and the ⌈κkVD⌉ closest opened parking spots to the household
vertex i, with 0 < κc < 1 and 0 < κk < 1, respectively. In Li, the vertices appear
sorted according to increasing values of travel time to i. We have also tested the
impact of considering a different sorting of the vertices, i.e., first the ⌈κcVC⌉ closest
households vertices, and then the ⌈κkVD⌉ closest parking spot vertices, both sorted
according to increasing values of travel times. However, preliminary results have
shown a similar solution quality but a slight increase in runtimes.

2.5.2.2 Perturbation

The goal of the perturbation phase is to generate, in each iteration of our ILS, a
different configuration of opened parking spots. To this end, in each iteration of ILS,
we randomly choose one of the following perturbation moves:

29

• open a closed parking spot

• close an opened parking spot.

Depending on the chosen perturbation move, one of the following two new transfor-
mation heuristics is applied to transform the current solution into a solution with the
new parking spot configuration:

• Transformation heuristic when a closed parking spot is opened: When
a closed parking spot is opened, we adjust the second-level tours by first creating
a new second-level tour for each household for which this new parking spot
is closer than the currently assigned one. Then, we check if there are opened
parking spots with no assigned households, and we close them. If the new
opened parking spot is still open, i.e., it has at least one assigned household, we
insert it in the first-level tour using a best insertion heuristic.

• Transformation heuristic when an opened parking spot is closed: When
an opened parking spot is closed, we first solve a TSP on the first-level tour
because simply removing the closed parking spot could result in suboptimal
solutions. Then, we remove all second-level tours rooted at that parking spot.
Finally, we create a new second-level tour that serves each unconnected household
from its closest opened parking spot.

2.6 Computational experiments

The goal of the computational experiments is threefold. First, we evaluate the
performance of ILS-ASTTRPSD. Second, we evaluate the impact of considering
parking and loading times on the solution structure. Third, we assess the robustness
of solutions under parking time fluctuations.

Section 2.6.1 describes the instance sets used in our experiments. Section 2.6.2
explains the computational environment and how the parameters for ILS-ASTTRPSD
have been set. Finally, Section 2.6.3 presents the ILS-ASTTRPSD performance
assessment (Section 2.6.3.1), evaluates the impact of considering parking and loading
times (Section 2.6.3.2), and determines how robust solutions calculated assuming
parking times equal for all parking spots are if fluctuations occur (Section 2.6.3.3).

2.6.1 Description of the instances

Our computational experiments are mainly based on the DHL instances described
in Section 2.6.1.2. However, because for DHL instances optimal solutions are not
available, we also test the performance of ILS-ASTTRPSD on the instances of Reed
et al., 2024, see Section 2.6.1.1. Finally, to test the ILS-ASTTRPSD capability of

30

returning good solutions also for symmetric instances, we execute ILS-ASTTRPSD
on the well-known STTRPSD instances available in the literature. For a detailed
description of these instances, we refer to Villegas et al., 2010.

2.6.1.1 Reed et al., 2024 instances

The instances for the CDPP proposed by Reed et al., 2024 are available at https:
//doi.org/10.25820/data.006124. The authors consider three counties, i.e., Cook,
Adams, and Cumberland to represent urban, suburban, and rural household geogra-
phies, respectively. The authors assume that the driver can park at each household
location. To get instances of the ASTTRPSD, we duplicate the household locations
to obtain the locations of the parking spots. All travel times are expressed in minutes
and taken from real-world data, and the instances are asymmetric. For each county,
a different parking time is considered to reflect the time required to find a parking
spot. Specifically, ρ = 9 for Cook county, ρ = 5 for Adams county, and ρ = 1 for
Cumberland county. The loading time is set to ℓ = 2.1, and it is charged for each
served household. For each combination of county and capacity Qb varying from one
to six, ten instances with |VC | = 50 households and five instances with |VC | = 100
households are considered.

2.6.1.2 DHL instances

The set of real-world, non-Euclidean, asymmetric instances from DHL consists of 35
instances based on a German city of approximately 50 000 inhabitants. The city is
divided into postal districts, each one corresponding to one instance and served by a
mail carrier. The mean of transport assumed in DHL instances is a car. Without loss
of generality, ILS-ASTTRPSD can solve instances with any other mean of transport.
The instances contain a number of households |VC | between 245 and 465 (average
390), and a number of parking spots |VD| between 412 and 882 (average 724). Each
household can be either a single house or an apartment building. For most of the
households, there are two associated parking spots, representing a possible parking
spot on each side of the street. The bag capacity Qb is set to 25, and the demand of
each household qi ranges from a minimum of zero units to a maximum of 25. Recalling
that DHL is interested in solving the problem at a tactical level, considering households
with a demand of zero is meaningful because they represent currently uninhabited
houses that could change their status and start having a positive demand before the
problem is solved again. If this happens and the capacity of the second-level tour in
which that household is visited is not completely exploited, the newly inhabited house
can be easily included by keeping the second-level tours of our solutions unchanged.
If we ignored these currently uninhabited houses, our solutions would not provide
any indication on how to serve them. As a result, a mail carrier could use a greedy

31

https://doi.org/10.25820/data.006124
https://doi.org/10.25820/data.006124

approach to decide how to incorporate the visit of these households in the tour with a
consequent worse solution quality.

For each instance, two networks are given: (i) a walking network defined on a
graph Gw = (Vw, Aw) consisting of walking nodes Vw and walking arcs Aw, and (ii)
a driving network defined on a graph Gd = (Vd, Ad) consisting of driving nodes Vd

and driving arcs Ad. Figure 2.7 shows an example of the two networks. For each
household, there are two vertices in Vw: one representing the house itself and one
representing the so-called “walking portal” corresponding to the point on the sidewalk,
where the mail carrier enters the driveway of the house. The parking spots associated
with the households are included both in Vw and Vd because they are reachable by
driving and by walking. Figure 2.8 shows an example of these vertices in Vw and Vd.

To compute the travel time cij between vertices i and j, we solve a shortest path
problem using Dijkstra’s algorithm on:

• graph Gd, if i and j are both parking spots,

• graph Gw, if i is a parking spot and j is a household,

• graph Gw, if i is a household and j is a parking spot,

• graph Gw, if i and j are both households.

Because the travel time from the walking portal to the associated household always
occurs for the mail carrier, it is a constant and, hence, it is not part of the optimization.
Therefore, to compute {cij|(i ∈ VC ∧ j ∈ VC) ∨ (i ∈ VC ∧ j ∈ VD) ∨ (i ∈ VD ∧ j ∈ VC)},
we only consider the travel time from and up to the walking portal. We specify
that, in the street network, U-turns are allowed at parking spots in which they are
also possible in the real world. If this is the case for a parking spot, we also have a
corresponding node in the street network on the other side of the street and they are
connected (see, for example, Figure 2.7(b)). Because we solve a shortest path problem
on such a street network for each pair of vertices to obtain our distance matrix, in
case the U-turn is the cheapest option to connect two vertices, then the shortest path
and the distance matrix contain this U-turn.

Finally, because at DHL parking and loading times are not separately known, DHL
instances are characterized by a penalty P of 22 seconds every time a second-level tour
is performed. This penalty represents the parking and the loading time for the block
of letters to be delivered in a second-level tour. Graph G is modified by adding P = 22
to the arc travel times {cij|i ∈ VD ∧ j ∈ VC}, i.e., to the travel time of every walking
arc connecting a parking spot to a household. If multiple second-level tours are rooted
at the same parking spot, the total time required for parking is overestimated because
it is added multiple times although parking occurs only once. However, because DHL
has considered this graph structure to get their solutions, we use the same structure
in the computational experiments of Section 2.6.3.1 to allow for a fair comparison.

32

The DHL instances are available at https://data.mendeley.com/datasets/
sskwdxcgwt/1.

2.6.2 Computational environment and parameter tuning

ILS-ASTTRPSD was implemented in C++ and compiled using clang version 12.0.0.
The experiments were performed on an Intel(R) Xeon(R) computer with a CPU
E5-2430 v2 processor, at 2.50GHz with 64 GB RAM under CentOS GNU/Linux 7.
Every time a TSP is solved exactly, we use Gurobi solver version 9.5.0.

The values of the parameters for ILS-ASTTRPSD are summarized in Table 2.1.
Because our algorithm contains randomized elements, we performed ten runs of
ILS-ASTTRPSD for each instance. Multiple procedures for tuning the parameters
of algorithms have been proposed in the literature (see, for example, López-Ibáñez
et al., 2016). Because our ILS only includes two parameters to tune, i.e., the values
for the termination criterion of ILS-ASTTRPSD and for the sparsification intensity,
we have conducted a manual parameter tuning on a subset of the DHL instances
which aims at determining a decent parameter setting while avoiding to overfit the
setting to the problem instances under consideration. For this parameter tuning, we
have randomly selected 15 DHL instances. The following values for the termination
criterion of ILS-ASTTRPSD and for the sparsification intensity have been considered:
η = [500, 1000, 1500, 2000, 2500] and κc = κk = 0.01, or κc = κk = 0.015. The results
are summarized in Figures 2.9(a) and 2.9(b) which show the impact of an increasing
number of iterations without improvement and of different sparsification intensity
values on the average percentage gap to the DHL solutions and on the runtime,
respectively. The results show that a sparsification intensity of κc = κk = 0.015
always returns better results than using κc = κk = 0.01. However, the gain in solution
quality reduces and becomes negligible beyond η = 2000, while the runtime increases
considerably for η = 2500. Consequently, the best configuration (κc = κk = 0.015, η =
2000) in terms of solution quality and runtime tradeoff has been chosen (see Table 2.1).

Nevertheless, preliminary experiments have also shown that ILS-ASTTRPSD
runtimes may get long when the number of parking spots is greater than or equal to
100 and the following relationship is fulfilled:

1
(ρ/cVD

)|VD|
≥ 0.04,

where ρ is the parking time, cVD
is the average inter-parking spot distance, |VD| is the

number of parking spots that is used as an adjustment factor, and 0.04 is an empirical
value derived from preliminary experiments. The inequality is satisfied in those
situations in which the average inter-parking spot distance exceeds the total parking
time when opening all parking spots in the instance multiplied by this empirical value.
This relationship is satisfied for big instances representing rural settings with very

33

https://data.mendeley.com/datasets/sskwdxcgwt/1
https://data.mendeley.com/datasets/sskwdxcgwt/1

small parking times compared to the inter-parking spot distance. For these instances,
we have observed that by setting the number of iterations without improvement to
values larger than 50, the solution quality improves only marginally at the expense of
very long runtimes. For this reason, in such settings, the number of iterations without
improvement η is set to 50.

Component Parameter values
termination criterion iterated clustering algorithm γmax = 10
termination criterion ILS-ASTTRPSD η = 2000
sparsification intensity households κc = 0.015
sparsification intensity parking spots κk = 0.015

Table 2.1: ILS-ASTTRPSD parameter values.

2.6.3 Results

In this section, we test the performance of ILS-ASTTRPSD (Section 2.6.3.1), we
evaluate the impact of considering parking and loading times when solving the
ASTTRPSD (Section 2.6.3.2), and we assess the robustness of solutions under parking
time fluctuations (Section 2.6.3.3).

2.6.3.1 ILS-ASTTRPSD performance assessment

To assess the performance of ILS-ASTTRPSD, we compare our solutions to the ones
of Reed et al., 2024 and to the ones obtained by the DHL data analytics department
for the DHL instances. For completeness, Appendix A compares the results of ILS-
ASTTRPSD to the ones of the state-of-the-art heuristics on symmetric STTRPSD
instances.

2.6.3.1.1 Comparison on Reed et al., 2024 instances We run ILS-
ASTTRPSD on all instances of Reed et al., 2024 and compare to the solutions
returned by both their heuristic and the commercial solver Gurobi 9.0.0, which is able
to solve some of the instances to optimality.

Table 2.2 reports the results of this comparison. The first three columns identify
the instance based on the county, the number of households |VC |, and the bag capacity
Qb. The fourth column reports the average value of the best known solutions (BKS)
over ten instances (if |VC | = 50) or over five instances (if |VC | = 100). The BKSs
are taken from Reed et al., 2024. If the optimal solutions returned by Gurobi are
available, these are used in the computation of the best known solutions (BKSs).
Otherwise, the heuristic solutions found by Reed et al., 2024 are used. Combinations
of county, number of households, and bag capacity for which all instances have been

34

solved to optimality are highlighted in bold. Concerning the runtimes of Gurobi to
solve instances to optimality, Reed et al., 2024 only mention a few examples. When
|VC | = 50 and Qb = 3, the average runtime is 21240, 15840, and 11160 seconds for
Cook, Adams, and Cumberland counties, respectively. When |VC | = 100 and Qb = 2,
the average runtime is 1440 seconds for Cook county, 11160 seconds for Adams county,
and 30600 seconds for Cumberland county. The fifth column reports the average
gap to the BKS (∆BKS(%)) of the heuristic of Reed et al., 2024. The next four
columns report the average gap to the BKS reached by ILS-ASTTRPSD in the best
(∆b

BKS(%)) and average (∆a
BKS(%)) run, respectively, the average standard deviation

of our ILS-ASTTRPSD runs with respect to the BKS, and the average runtime in
seconds (t(s)). Underlined values improve on the BKS. Because the parameter tuning
for ILS-ASTTRPSD is based on the DHL instances, we also try to solve Reed et al.,
2024 instances with ILS-ASTTRPSD using only half the number of iterations without
improvement. This ILS-ASTTRPSD variant is called “ILS-ASTTRPSD-fast” and
allows us to investigate the tradeoff among solution quality and runtime. The last four
columns of Table 2.2 report the same four statistics reported for ILS-ASTTRPSD,
but for ILS-ASTTRPSD-fast. A comparison of ILS-ASTTRPSD to the heuristic of
Reed et al., 2024 based on the runtimes is not possible due to the lack of information
regarding the characteristics of the machine of the University of Iowa’s Argon high
performance computing cluster used in Reed et al., 2024. Reed et al., 2024 state that
the average runtime of their heuristic is at most 42 seconds by running parallelized
experiments using the Gurobi solver and limiting the thread count to 32.

The results show that, in the best run, ILS-ASTTRPSD always finds solutions of
better quality than the ones provided by the heuristic of Reed et al., 2024. Specifically,
on instances for which optimal solutions are available, ILS-ASTTRPSD returns smaller
optimality gaps, and on instances for which only the heuristic solution of Reed et al.,
2024 is available, ILS-ASTTRPSD finds new best-known solutions. The same results
are obtained in the average run of ILS-ASTTRPSD, except for the instances referring
to Cook county with |VC | = 50 and |VC | = 100, and Qb = 2. Comparing the gaps
of the best run of ILS-ASTTRPSD to optimal solutions across counties, the best
performance is obtained with rural household geographies (Cumberland county),
followed by suburban (Adams county), and urban (Cook county) ones. Instead, the
comparison of the gaps to the BKSs of the best and average runs of ILS-ASTTRPSD
across counties shows that the highest improvements are obtained for the suburban
county, followed by the urban, and rural ones.

Looking at the column of Table 2.2 reporting the average runtimes, ILS-ASTTRPSD
shows reasonable runtimes. While the runtimes of ILS-ASTTRPSD are roughly equiv-
alent for instances with suburban and urban geographies (Adams and Cook), the ones
for the Cumberland county are longer. We note that these instances correspond to
big rural instances for which η has been set to 50 (see Section 2.6.2). These longer

35

runtimes are due to very small parking times compared to inter-parking spot distances
that cause the opening of a lot of parking spots. This requires, for ILS-ASTTRPSD,
to solve a TSP on the first-level tour every time that a perturbation move closing an
opened parking spot is applied. These results are in line with the observation of Reed
et al., 2024, where some of the Cumberland county instances with 100 households
could not be solved to optimality even for small bag capacities.

The comparison of ILS-ASTTRPSD and ILS-ASTTRPSD-fast shows that by
decreasing the number of iterations without improvement by half, the runtimes reduce
by approximately 24% on average at the expense of a slightly deteriorating solution
quality. The biggest difference in solution quality between ILS-ASTTRPSD and
ILS-ASTTRPSD-fast is observed for Cook instances with higher capacity values and
is equal to 0.2%. The results achieved with ILS-ASTTRPSD-fast suggest that, by
properly adjusting the parameter η of ILS-ASTTRPSD for smaller instances than
the DHL ones, runtimes can decrease while still achieving a comparable level of
solution quality. Finally, the small values of the average standard deviation indicate
that the solutions do not vary substantially across the runs of ILS-ASTTRPSD and
ILS-ASTTRPSD-fast, which is a signal of algorithmic robustness.

2.6.3.1.2 Comparison on DHL instances We compare the results obtained
with ILS-ASTTRPSD to the ones provided by the DHL analytics department on DHL
instances. We remark that the DHL solutions have not been obtained by manual
planning but by using a local search heuristic. Their local search algorithm takes as
input the solution that is currently implemented in practice and applies operators to
merge and split second-level tours. A post-processing phase that uses the 2-opt and
3-opt heuristic is finally executed.

Table 2.3 presents the comparison of the DHL solutions to the solutions obtained
by ILS-ASTTRPSD. The first columns in the table contain for each instance: the
instance name, the number of households (|VC |), the number of parking spots (|VD|),
the cumulative demand (∑

i∈VC
qi), and the average inter-household distance (cij). The

sixth column contains the objective function values of the DHL solution. Because the
runtimes of the DHL algorithm are not available, we do not include this information
in the table. The last columns of the table contain for each instance: the gap to
the DHL solution of the ILS-ASTTRPSD best run (∆b(%)), of the ILS-ASTTRPSD
average run (∆a(%)), the standard deviation of the objective function values across
ILS-ASTTRPSD runs, and the runtime of the ILS-ASTTRPSD average run (t(s)).
On all instances, ILS-ASTTRPSD improves the solution of DHL in the best run.
The same applies for the average run, except for two instances on which we perform
slightly worse, and for one instance on which we achieve the same solution quality.
Even if an average improvement by 1.95% may seem limited, we remark that this is
only for one postal district. Considering that DHL has to serve thousands of districts,

36

Instance BKS Reed et al., 2024 ILS-ASTTRPSD ILS-ASTTRPSD-fast
County |VC | Qb ∆BKS(%) ∆b

BKS(%) ∆a
BKS(%) ∆std dev

BKS (±) t(s) ∆b
BKS(%) ∆a

BKS(%) ∆std dev
BKS (±) t(s)

adams 50 1 296.9 4.0 0.5 1.3 0.5 61.4 0.5 1.3 0.5 37.3
adams 50 2 286.7 2.2 0.3 0.6 0.3 37.1 0.3 0.6 0.3 22.0
adams 50 3 281.8 3.1 0.1 0.5 0.3 31.4 0.1 0.5 0.3 18.0
adams 50 4 280.2 3.6 0.0 0.2 0.2 30.3 0.0 0.2 0.2 18.3
adams 50 5 290.2 0.0 -3.9 -3.5 0.2 25.0 -3.9 -3.5 0.2 14.6
adams 50 6 290.2 0.0 -4.4 -4.1 0.2 22.9 -4.4 -4.1 0.2 13.6
adams 100 1 538.0 4.9 1.1 1.9 0.6 517.3 1.1 1.9 0.6 360.8
adams 100 2 515.2 2.6 0.7 1.3 0.4 228.7 0.7 1.3 0.4 145.6
adams 100 3 523.2 0.0 -3.2 -2.6 0.3 128.8 -3.2 -2.6 0.3 81.0
adams 100 4 521.7 0.0 -4.7 -4.4 0.3 108.4 -4.7 -4.3 0.3 68.0
adams 100 5 521.7 0.0 -5.9 -5.5 0.3 81.0 -5.8 -5.5 0.3 54.5
adams 100 6 521.3 0.0 -6.6 -6.2 0.3 77.4 -6.6 -6.2 0.3 47.7
Avg. adams 405.6 1.7 -2.2 -1.7 0.3 112.5 -2.2 -1.7 0.3 73.5
cook 50 1 328.3 5.5 1.7 3.5 1.2 18.2 1.7 3.5 1.2 12.7
cook 50 2 292.4 1.3 1.0 2.8 1.1 11.2 1.0 2.9 1.2 6.8
cook 50 3 272.5 3.4 0.9 2.1 0.8 9.9 1.1 2.2 0.8 5.9
cook 50 4 261.8 5.5 0.6 1.6 0.9 20.5 0.6 1.7 0.9 11.8
cook 50 5 273.9 0.0 -7.2 -6.0 0.9 26.1 -7.1 -5.9 1.0 14.2
cook 50 6 272.4 0.0 -9.1 -8.3 0.7 29.5 -9.1 -8.2 0.8 16.7
cook 100 1 621.0 4.9 1.6 2.9 0.8 254.0 1.6 2.9 0.8 221.1
cook 100 2 547.9 0.5 1.5 2.7 0.7 54.8 1.5 2.7 0.7 37.8
cook 100 3 526.1 0.0 -1.6 -0.7 0.6 41.4 -1.6 -0.7 0.6 27.3
cook 100 4 513.3 0.0 -3.5 -2.8 0.4 63.8 -3.5 -2.6 0.5 36.4
cook 100 5 507.9 0.0 -5.5 -4.7 0.6 72.4 -5.4 -4.6 0.6 45.4
cook 100 6 505.2 0.0 -7.0 -6.3 0.4 89.6 -6.8 -6.2 0.4 50.3
Avg. cook 410.2 1.8 -2.2 -1.1 0.8 57.6 -2.2 -1.0 0.8 40.5
cumberland 50 1 192.9 1.6 0.1 0.2 0.1 275.1 0.1 0.2 0.1 146.2
cumberland 50 2 192.6 1.5 0.1 0.1 0.0 253.3 0.1 0.1 0.0 131.3
cumberland 50 3 192.6 1.5 0.1 0.1 0.0 246.1 0.1 0.1 0.0 123.9
cumberland 50 4 192.6 1.5 0.1 0.1 0.0 239.2 0.1 0.1 0.0 122.9
cumberland 50 5 195.5 0.0 -1.5 -1.5 0.0 234.5 -1.5 -1.5 0.0 119.7
cumberland 50 6 195.5 0.0 -1.5 -1.5 0.0 238.0 -1.5 -1.5 0.0 120.2
cumberland 100 1 360.6 1.2 0.2 0.5 0.2 7942.5 0.3 1.2 0.6 6432.2
cumberland 100 2 360.1 1.1 -0.0 0.1 0.0 760.1 0.0 0.2 0.0 589.8
cumberland 100 3 364.0 0.0 -1.1 -1.0 0.0 562.8 -1.1 -0.9 0.0 455.5
cumberland 100 4 364.0 0.0 -1.2 -1.1 0.0 509.6 -1.2 -1.1 0.0 433.8
cumberland 100 5 364.0 0.0 -1.2 -1.1 0.0 567.1 -1.2 -1.1 0.0 482.3
cumberland 100 6 364.0 0.0 -1.2 -1.1 0.0 506.6 -1.2 -1.1 0.0 416.9
Avg. cumberland 278.2 0.7 -0.6 -0.5 0.0 1027.9 -0.6 -0.4 0.0 797.9
Avg. 1.4 -1.7 -1.1 0.4 399.3 -1.6 -1.1 0.4 304.0

Table 2.2: Comparison of the average results of Reed et al., 2024’s heuristic with
ILS-ASTTRPSD and ILS-ASTTRPSD-fast. Each row of the table reports the average
results over 10 instances if VC = 50, and over 5 instances if VC = 100. Optimality has
been proven for the solutions in boldface by Reed et al., 2024. Results that improve
on the previous BKS are underlined.

a small percentage improvement entails considerable cost savings. The robustness
of ILS-ASTTRPSD across runs is confirmed by the low standard deviation values
reported also for the DHL instances.

Because postal delivery tours are planned at the tactical level, runtime is not crucial
for DHL. Still, the average runtime of ILS-ASTTRPSD corresponds to approximately
20 minutes, meaning that improvements are found quickly. We observe that the
runtimes are not strictly related to the instance dimension. For example, instances
25 and 35 have approximately the same number of households and parking spots,
but their average runtimes differ significantly. This might be due to a particular
search trajectory of ILS-ASTTRPSD or to the geography of a particular instance.
For example, instance 35 has a higher average inter-household distance compared to
instance 25. The same can be observed when comparing instances 13, 16, 19, and 26.
While these instances have similar dimension, instance 16 with the highest average
inter-household distance is the one with the highest runtime. This result is in line with

37

our observation for Reed et al., 2024 instances in Section 2.6.3.1.1, where instances of
rural geographies, i.e., with larger inter-household distances, are the most difficult to
solve.

DHL ILS-ASTTRPSD
Instance |VC | |VD| ∑

i∈VC
qi cij ∆b(%) ∆a(%) ∆std dev(±) t(s)

1 382 746 646 417.16 11047.67 -1.18 -0.85 0.26 1264.51
2 465 852 713 556.17 11307.95 -2.74 -2.31 0.25 1784.86
3 424 778 703 399.71 10130.74 -0.92 -0.41 0.61 1438.54
4 433 742 711 333.05 8916.46 -4.44 -4.02 0.29 1447.48
5 403 698 826 464.93 9874.41 -3.31 -2.49 0.47 1460.92
6 378 585 887 527.94 9618.68 -4.33 -3.77 0.42 1130.51
7 361 643 884 340.49 8366.41 -1.94 -1.50 0.56 1243.83
8 452 872 791 497.59 10207.59 -1.78 -1.10 0.46 2157.41
9 250 412 483 614.93 7560.05 -2.74 -2.17 0.61 525.97
10 298 481 1092 293.17 8967.08 -1.93 -1.51 0.30 692.75
11 389 758 756 504.81 9900.64 -2.81 -2.17 0.38 1126.18
12 374 729 628 456.74 10774.50 -2.83 -2.36 0.51 1222.89
13 418 762 770 433.92 9539.38 -1.46 -0.88 0.36 1324.16
14 360 697 653 522.93 9910.45 -3.17 -2.19 0.63 975.74
15 441 854 700 537.55 11657.85 -1.85 -0.87 0.51 1584.94
16 416 793 621 834.63 12542.86 -0.90 -0.51 0.25 1448.51
17 427 812 634 375.59 9376.12 -1.06 -0.60 0.23 1570.28
18 452 882 725 600.57 11042.54 -1.36 -0.69 0.45 1787.35
19 414 767 654 409.54 13517.72 -1.40 -0.82 0.32 1368.85
20 378 720 696 444.09 10302.26 -2.43 -1.66 0.53 1078.21
21 458 772 627 475.02 11549.82 -1.46 -0.89 0.39 1393.34
22 447 770 673 327.47 11160.20 -3.39 -2.79 0.43 1397.45
23 430 815 641 353.29 11280.73 -2.04 -0.93 0.64 1414.80
24 334 639 606 647.47 11211.68 -0.75 0.11 0.57 1350.33
25 342 640 601 375.88 9792.03 -1.22 -0.17 0.68 774.70
26 419 814 740 400.45 11573.60 -2.44 -1.77 0.40 1351.10
27 368 700 568 930.46 11439.95 -1.04 -0.77 0.20 1007.06
28 395 762 571 385.66 12231.05 -1.14 -0.55 0.61 1567.54
29 384 746 745 321.71 10173.03 -0.43 -0.00 0.42 1337.85
30 369 722 676 543.72 10765.11 -2.50 -1.35 0.62 762.33
31 410 728 736 413.50 9758.15 -1.95 -1.53 0.40 1168.34
32 429 837 788 696.90 11345.84 -1.76 -1.38 0.34 2006.24
33 245 477 453 1629.02 12999.68 -2.11 -1.98 0.18 1460.67
34 353 695 735 359.09 10254.06 -0.45 0.17 0.35 786.97
35 341 644 498 510.62 9974.97 -1.08 -0.59 0.38 1199.02

Avg. 389.69 724.11 692.31 512.45 -1.95 -1.35 0.43 1303.19

Table 2.3: Comparison of the DHL solutions to the solutions of the best and average
run of ILS-ASTTRPSD on DHL instances.

To understand why ILS-ASTTRPSD returns better-quality solutions than the
algorithm of DHL, we compare the structure of the solutions of ILS-ASTTRPSD and
DHL. Table 2.4 presents this comparison with respect to: the first-level tour travel
time c(t1), the travel time of the second-level tours ∑

t2∈T 2 c(t2), the number of opened
parking spots |VD(t1)|, the number of second-level tours |T 2|, and the average number
of households served in each second-level tour |VC(t2)|. By looking at the last row of
the table reporting the average values, we observe that ILS-ASTTRPSD solutions are

38

characterized by shorter travel times for first- and second-level tours. Considering
that in ILS-ASTTRPSD solutions, a lower number of parking spots are opened and
that more households are served within each second-level tour, this suggests that
ILS-ASTTRPSD performs a better selection of parking spots to open and provides
better-quality second-level tours. Moreover, in the DHL solutions, the number of
opened parking spots exactly corresponds to the number of second-level tours across
all instances. This means that, in the DHL results, there are no second-level tours
rooted at the same parking spot. In the ILS-ASTTRPSD solutions, for some instances,
the number of second-level tours is higher than the number of opened parking spots,
indicating that starting multiple second-level tours from the same parking spot might
be beneficial to decrease travel times. By analyzing these instances, we observed that
this is useful if, for example, one single household is located very close to others and
exhibits a very high demand, or if there are two dead-end streets crossing at a main
street where the parking spot is located (see Figures 2.10(a) and 2.10(b)). To increase
readability, the figure shows a simplified version of the street network. The vertex
highlighted in magenta represents the parking spot at which two second-level tours
are rooted, and the first-level tour is represented in magenta. To make the figure more
compact, instead of drawing the actual household vertices, we have represented their
walking portal vertices in orange or green depending on the second-level tour they
belong to. The same color scheme is used for the walked arcs.

Our results suggest that by adopting ILS-ASTTRPSD solutions:

• Mail carriers drive and walk less.

• Mail carriers park less. Allen et al., 2018 noticed that drivers prefer walking
instead of continually moving the vehicle for very small distances and trying to
find parking spots.

• Performing multiple second-level tours from the same parking spot may be
beneficial especially in the presence of households having high demand or in the
presence of a particular road network structure.

• Because of the lower number of opened parking spots, mail carriers serve more
households in each second-level tour. However, this does not imply longer
walking times.

2.6.3.2 Impact of ignoring parking and loading times

When parking does not require difficult maneuvers or when loading does not imply
any other operation than grabbing a bag, parking and loading times are negligible.
However, if these operations are not immediate, ignoring the time required for parking
and loading may result in a solution of bad quality and in increased total travel times.

39

c(t1) ∑
t2∈T 2 c(t2) |VD(t1)| |T 2| |VC(t2)|

Instance DHL ILS-ASTTRPSD DHL ILS-ASTTRPSD DHL ILS-ASTTRPSD DHL ILS-ASTTRPSD DHL ILS-ASTTRPSD
1 2902.35 2722.11 8145.32 8195.37 58 55 58 55 6.59 6.95
2 3797.08 3598.03 7510.87 7399.67 55 52 55 52 8.45 8.94
3 2405.94 2274.41 7724.80 7763.23 51 48 51 48 8.31 8.83
4 2357.01 2313.49 6559.45 6207.38 50 46 50 46 8.66 9.41
5 2466.07 2193.87 7408.34 7353.59 58 55 58 57 6.95 7.07
6 2196.52 2156.09 7422.15 7046.51 65 61 65 63 5.82 6.00
7 1866.04 1635.10 6500.37 6568.96 67 59 67 59 5.39 6.12
8 1968.59 1918.29 8238.99 8107.29 63 66 63 67 7.17 6.75
9 2390.87 2309.35 5169.18 5043.64 51 46 51 46 4.90 5.43
10 2059.21 2090.90 6907.87 6703.39 76 73 76 75 3.92 3.97
11 2311.93 2194.77 7588.71 7427.85 56 54 56 54 6.95 7.20
12 3462.30 3329.56 7312.20 7140.46 55 60 55 61 6.80 6.13
13 2588.76 2464.53 6950.62 6935.72 58 54 58 54 7.21 7.74
14 3145.48 2967.53 6764.98 6628.38 50 49 50 49 7.20 7.35
15 3258.84 2958.45 8399.01 8483.83 56 51 56 51 7.88 8.65
16 4168.42 4154.70 8374.43 8274.80 49 52 49 52 8.49 8.00
17 2808.81 2667.19 6567.31 6609.27 37 33 37 34 11.54 12.56
18 3104.88 3098.29 7937.66 7794.34 44 44 44 44 10.27 10.27
19 5589.42 5513.26 7928.30 7814.77 54 50 54 52 7.67 7.96
20 3309.68 3143.57 6992.58 6908.79 57 50 57 50 6.63 7.56
21 3702.90 3509.14 7846.92 7872.37 48 38 48 39 9.54 11.74
22 3002.92 2841.29 8157.28 7940.38 45 42 45 42 9.93 10.64
23 3043.75 2862.57 8236.98 8187.91 51 49 51 49 8.43 8.78
24 3947.10 3894.33 7264.58 7233.02 67 68 67 68 4.99 4.91
25 3369.26 3330.91 6422.77 6341.60 40 39 40 39 8.55 8.77
26 3773.79 3537.61 7799.80 7753.07 49 49 49 50 8.55 8.38
27 4493.87 4408.21 6946.08 6913.10 50 50 50 50 7.36 7.36
28 4103.63 3963.43 8127.42 8128.11 55 44 55 45 7.18 8.78
29 3768.42 3618.65 6404.61 6510.23 46 40 46 42 8.35 9.14
30 4097.62 3966.66 6667.49 6528.79 47 43 47 43 7.85 8.58
31 2018.49 2053.61 7739.66 7514.26 57 59 57 59 7.19 6.95
32 3543.11 3331.90 7802.72 7814.57 76 68 76 69 5.64 6.22
33 6019.41 5705.95 6980.27 7019.42 105 103 105 103 2.33 2.38
34 3452.49 3162.04 6801.58 7045.64 65 54 65 54 5.43 6.54
35 3682.26 3860.12 6292.71 6007.28 64 65 64 65 5.33 5.25

Avg. 3262.21 3135.71 7311.26 7234.77 56.43 53.40 56.43 53.89 7.24 7.64

Table 2.4: Comparison of statistics of the DHL solutions to the solutions of the best
run of ILS-ASTTRPSD for DHL instances.

As mentioned in Section 2.1, by adding additional times to the travel times of
specific arcs of G, we can obtain different problem settings. To assess the impact of
ignoring parking and loading times, we execute ILS-ASTTRPSD on DHL instances
considering the following graphs:

1. Graph 1 (G1) represents an ASTTRPSD only with travel times. In this problem
setting, the parking and loading times are neglected.

2. Graph 2 (G2) represents an ASTTRPSD with parking times, but loading times
are neglected. If the vehicle stops at a parking spot, a parking time ρ of 11 seconds
is added. Graph G is modified by adding ρ = 11 to every cij, i ∈ VD, j ∈ VD, i ≠ j,
i.e., to the travel time of every driving arc entering a parking spot. Neglecting
loading times represents, for example, problem settings in which the mail carrier’s
bag already contains the letters of all households.

3. Graph 3 (G3) represents an ASTTRPSD with loading times, but parking times
are neglected. Every time the mail carrier has to load the bag with letters to
start a new second-level tour, a loading time ℓ of 11 seconds is added. Graph G

is modified by adding ℓ = 11 to every cij, i ∈ VD, j ∈ VC , i.e., to the travel
time of every walking arc connecting a parking spot to a household. Neglecting

40

parking times represents problem settings in which parking operations are
straightforward.

4. Graph 4 (G4) represents an ASTTRPSD with travel, parking, and loading times.
If the vehicle stops at a parking spot, a parking time ρ of 11 seconds is charged,
and every time the mail carrier has to load the bag with letters to start a new
second-level tour, a loading time ℓ of 11 seconds is charged. Graph G is modified
by adding ρ = 11 to every cij, i ∈ VD, j ∈ VD, i ̸= j, i.e., to the travel time of
every driving arc entering a parking spot, and ℓ = 11 to every cij, i ∈ VD, j ∈ VC ,
i.e., to the travel time of every walking arc connecting a parking spot to a
household.

In the above graphs, when considered, the time values for parking and loading
are both set equal to 11 to fairly compare settings in which parking or loading are
ignored. The solutions obtained by running ILS-ASTTRPSD on instances based on
graphs G1, G2, and G3 represent good solutions for the cases in which parking and
loading times, loading times, and parking times are ignored, respectively. For a fair
comparison of the objective function values, we use the solutions of the best run of
ILS-ASTTRPSD obtained for the instances based on graphs G1, G2, and G3, and
evaluate the solutions based on the travel times of graph G4, i.e., the one including
both parking and loading times. This allows us to measure the impact of ignoring
parking and/or loading times. Table 2.5 summarizes the average objective function
values over the 35 DHL instances decomposed into first (c(t1)G4) and second-level
tours (c(T 2)G4) travel times. The last column contains the average gap to the total
objective function value of graph G4. For the first-level tour, we report driving time,
parking time, total time, and the average gap to the first-level tour travel time of
graph G4. For the second-level tours, we report walking time, loading times, total
time, and the average gap to the second-level tours travel times of graph G4. The
results of the last column of the table suggest that the highest increase in travel times
occurs when both parking and loading times are neglected (graph G1), followed by
the case in which parking times (graph G3), and loading times (graph G2) are ignored.
The higher increase in travel times in graph G3 compared to graph G2 may be even
more remarkable in real-world settings in which parking usually requires more time
than loading. Ignoring parking and/or loading times (graphs G1, G2, and G3) always
results in longer driving times and shorter walking times compared to instances in
which they are considered (graph G4). The absence of parking and/or loading times
leads to the opening of a higher number of parking spots and second-level tours, so
that the time for parking, for driving between parking spots, and for loading increases,
while the walking times decrease.

To understand the reason of the travel time differences of Table 2.5, we compare
the structure of the solutions based on some metrics. The average results of these

41

c(t1)G4 c(T 2)G4

Graph Driving Parking Total ∆c(t1)G4 (%) Walking Loading Total ∆c(T 2)G4 (%) ∆cG4 (%)
G1 3541.80 1859.33 5401.12 47.99 4669.00 1862.19 6531.19 -2.40 15.39
G2 3218.65 841.06 4059.71 11.23 5544.87 863.61 6408.48 -4.23 1.23
G3 3231.57 863.39 4094.96 12.20 5527.68 867.46 6395.14 -4.43 1.44
G4 3088.70 561.00 3649.70 - 6102.91 588.39 6691.30 - -

Table 2.5: Comparison of average objective function values (over 35 instances) obtained
by taking the solutions of ILS-ASTTRPSD for the instances of graphs G1, G2, G3,
and G4, and by evaluating them based on the travel times of G4.

metrics over all instances for each graph are summarized in Table 2.6, while the
detailed results are reported in Appendix B. The travel times reported in this table are
computed according to the travel times of the graph each line refers to. When parking
times are set to zero (graphs G1 and G3), the number of opened parking spots |VD(t1)|
and of second-level tours |T 2| is higher than in the settings where parking times are
considered (graphs G2 and G4). A consequence of the lower number of opened parking
spots in graphs G2 and G4 is the larger number of second-level tours originating from
the same parking spot compared to their number in graphs G1 and G3. The average
number of households served in each second-level tours increases as the number of
opened parking spots decrease. In general, as more time components are added to
the instances, the solution structure gets more consolidated, i.e., fewer parking spots
are opened, fewer second-level tours are used, and more households are served within
each second-level tour.

c(t1) c(T 2) |VD(t1)| |T 2| |VC(t2)|
Graph Driving Parking Walking Loading
G1 3541.80 - 4669.44 - 169.03 169.29 2.36
G2 3218.65 841.06 5544.87 - 76.46 78.51 5.22
G3 3231.57 - 5527.68 867.46 78.49 78.86 5.16
G4 3088.70 561.00 6102.91 588.39 51.00 53.49 7.73

Table 2.6: Comparison of objective function values and metrics of the solutions of
ILS-ASTTRPSD for the instances of graphs G1, G2, G3, and G4. The values for each
graph type are reported as averages over 35 instances.

The results in Table 2.6 are also in line with the properties stated in Section 2.4.
By comparing the number of opened parking spots reported in columns |VD(t1)| of
Table 2.6, we observe that for graph G1, the number of opened parking spots is closer
to the solution of a TSP, in which each household is served by a dedicated parking
spot. Conversely, with graphs G2, G3, and G4, less parking spots are opened. This is
a consequence of Property 2.4.2. To understand why, for each graph type, we make

42

explicit the condition stated in Property 2.4.2 that corresponds to the following:

Graph G1 : ch1k1 + ck1k2 + ck2h2 + ch2k2 < ch1h2 + ch2k1 .

Graph G2 : ch1k1 + ck1k2 + ρk2 + ck2h2 + ch2k2 < ch1h2 + ch2k1 .

Graph G3 : ch1k1 + ck1k2 + ℓ + ck2h2 + ch2k2 < ch1h2 + ch2k1 .

Graph G4 : ch1k1 + ck1k2 + ρk2 + ℓ + ck2h2 + ch2k2 < ch1h2 + ch2k1 .

Across all graphs, this condition contains some common terms. However, for graph G1,
this condition is more likely to be fulfilled than for the other graphs because the
left-hand side includes fewer terms than the ones in the other graphs. For graphs G2,
G3, and G4, the conditions are more difficult to be satisfied due to the presence of the
parking time and/or of the loading time.

Finally, by comparing columns |VD(t1)| with |T 2| of Table 2.6, we observe that
with graphs G1 and G3, the number of opened parking spots is almost equal to the
one of the second-level tours. Conversely, with graphs G2 and G4, more second-level
tours originate from the same parking spot. This is a consequence of Property 2.4.1.
To understand why, for each graph type, we make explicit the conditions stated in
Property 2.4.1. Because C1 is the same for all graphs, we focus only on C2, that
corresponds to the following:

Graph G1, C2 : ck1H0 + cH|H|k1 ≤ ck1k2 + ck2H0 + cH|H|k2 .

Graph G2, C2 : ck1H0 + cH|H|k1 ≤ ck1k2 + ρk2 + ck2H0 + cH|H|k2 .

Graph G3, C2 : ck1H0 + cH|H|k1 ≤ ck1k2 + ck2H0 + cH|H|k2 .

Graph G4, C2 : ck1H0 + cH|H|k1 ≤ ck1k2 + ρk2 + ck2H0 + cH|H|k2 .

Across all graphs, condition C2 contains some common terms. However, for graphs G1

and G3, condition C2 is more difficult to fulfill than for the other graphs because the
right-hand side includes fewer terms than the ones in the other graphs. This means
that the solution has less second-level tours rooted at the same parking spot. For
graphs G2 and G4, condition C2 is more likely to be satisfied due to the presence of
the parking time only on the right-hand side of the inequality. Hence, these solutions
contain more second-level tours rooted at the same parking spot.

The fact that our heuristic solutions present structures that are in line with those
of optimal solutions is an additional indicator of the quality of our solutions.

2.6.3.3 Robustness of solutions under parking times fluctuations

In this section, we assess how robust solutions calculated assuming parking times
equal for all parking spots are if fluctuations occur.

For this analysis, we execute ILS-ASTTRPSD on the DHL instances considering
graphs G3 and G4 of Section 2.6.3.2 corresponding to the ASTTRPSD with parking

43

times equal to ρ = 0 and ρ = 11, respectively. Moreover, we create two additional
graphs, G5 and G6, corresponding to the ASTTRPSD with parking times equal
to ρ = 22 and ρ = 33. In all graphs, the loading time is kept fixed to ℓ = 11.
After obtaining the solutions of ILS-ASTTRPSD on these graphs, we evaluate how
these solutions perform under parking times fluctuations. We analyze ten fluctuation
intervals from which the parking times are drawn uniformly random for each parking
spot. These fluctuation intervals vary by parking time values and width.

Table 2.7 reports the results of this analysis. The first and the second column of
the table contain the generated fluctuation intervals and the objective function values
(averaged over 35 instances) obtained by solving the ASTTRPSD on DHL instances
with parking times taken from the corresponding fluctuation intervals, respectively.
Then, the first and the second-level tours of the ASTTRPSD solution returned by
assuming the same parking time value (i.e., ρ = 0, ρ = 11, ρ = 22, and ρ = 33) for
all parking spots are evaluated by considering the parking times from the fluctuation
intervals. This new total travel time is compared to the one of the second column of
the table. Hence, the last four columns of Table 2.7 report the average percentage
loss by assuming the same parking time values for all parking spots when fluctuations
instead occur. The values of the expected percentage loss E[loss(%)] (computed by
considering equiprobable fluctuation intervals for ρ) suggest that assuming ρ = 22
represents the most robust strategy that allows to better hedge against parking time
fluctuations. The least robust strategy is the one which assumes null parking times.
By comparing the losses reported in the extreme cases in which the assumed parking
time is ρ = 0 and the fluctuation interval is [33, 44] and in which the assumed parking
time is ρ = 33 and the fluctuation interval is [0, 11], we observe that underestimating
parking times is more costly than overestimating them.

2.7 Conclusion

Motivated by the challenging task of solving large-scale ASTTRPSD instances for
postal deliveries, we propose a new metaheuristic, called ILS-ASTTRPSD. For the
asymmetric instances from the literature, ILS-ASTTRPSD provides high-quality
solutions in short runtimes. For DHL instances, ILS-ASTTRPSD is always able to
reduce total travel times compared to the solutions provided by DHL. This result is
due to a different solution structure in which mail carriers spend less time for driving
and walking and stop at fewer parking spots. This also contributes to reduce the stress
originating from parking activities. Our solutions also exhibit multiple second-level
tours rooted at the same parking spot, which is convenient under particular conditions
related to the road network structure and to single households with high demands. In
our solutions, mail carriers serve more households in each second-level tour without
causing longer walking times. Through additional computational experiments, we

44

Assumed ρ
Fluctuation intervals Objective function 0 11 22 33
[0, 11] 9857.88 1.94 2.05 3.51 5.17
[0, 22] 10048.28 4.37 2.93 3.68 4.88
[6, 16] 10225.10 2.59 1.15 1.89 3.09
[11, 22] 10487.40 4.05 1.27 1.33 2.11
[11, 33] 10604.41 7.04 2.83 2.23 2.59
[17, 27] 10744.69 5.67 1.48 0.90 1.28
[22, 33] 10961.58 7.42 2.01 0.81 0.80
[22, 44] 11049.80 10.54 3.76 1.94 1.54
[28, 38] 11158.64 9.48 2.74 0.95 0.57
[33, 44] 11321.89 11.63 3.72 1.34 0.60

E[loss(%)] 6.47 2.40 1.86 2.26

Table 2.7: Comparison of the average percentage loss (over 35 instances) obtained
when evaluating the solution obtained by assuming a parking time value under different
fluctuation intervals.

evaluate the impact of not considering parking and loading times. While ignoring
both these time components results in higher travel times, the drawbacks of ignoring
loading times are more limited than those of ignoring parking times. The results of our
computational experiments are in line with the two properties necessary for multiple
second-level tours being rooted at the same parking spot, and for the ASTTRPSD
solution to correspond to a TSP solution. Finally, we evaluate how robust the solutions
are when we assume that all parking spots have the same parking time but fluctuations
occur.

Acknowledgments

We thank Sara Reed, Ann Campbell, and Barrett Thomas for providing the detailed
solutions of the experiments contained in Reed et al., 2024. We also thank the two
anonymous referees for providing valuable comments that helped to improve the
paper.

References

L. Accorsi and D. Vigo (2020). “A hybrid metaheuristic for single truck and trailer
routing problems”. In: Transportation Science 54.5, pp. 1351–1371. doi: 10.1287/
trsc.2019.0943.

45

https://doi.org/10.1287/trsc.2019.0943
https://doi.org/10.1287/trsc.2019.0943

J. Allen, M. Piecyk, M. Piotrowska, F. McLeod, T. Cherrett, K. Ghali, T. Nguyen,
T. Bektas, O. Bates, A. Friday, et al. (2018). “Understanding the impact of e-
commerce on last-mile light goods vehicle activity in urban areas: The case of
London”. In: Transportation Research Part D: Transport and Environment 61,
pp. 325–338. doi: 10.1016/j.trd.2017.07.020.

F. Arnold and K. Sörensen (2021). “A progressive filtering heuristic for the location-
routing problem and variants”. In: Computers & Operations Research 129, pp. 105–
166. doi: 10.1016/j.cor.2020.105166.

E. Bartolini and M. Schneider (2020). “A two-commodity flow formulation for the
capacitated truck-and-trailer routing problem”. In: Discrete Applied Mathematics
275, pp. 3–18. doi: 10.1016/j.dam.2018.07.033.

J. M. Belenguer, E. Benavent, A. Mart́ınez, C. Prins, C. Prodhon, and J. G. Villegas
(2016). “A branch-and-cut algorithm for the single truck and trailer routing
problem with satellite depots”. In: Transportation Science 50.2, pp. 735–749. doi:
10.1287/trsc.2014.0571.

C. Bode (2013). Lower bounds for park and loop delivery problems. Tech. rep. Technical
Report LM-2013-02, Chair of Logistics Management, Mainz School of Management
and Economics, Johannes Gutenberg University, Mainz, Germany. url: http:
//logistik.bwl.uni-mainz.de/158.php.

L. Bodin and L. Levy (2000). “Scheduling of local delivery carrier routes for the united
states postal service”. In: Arc Routing. Springer, pp. 419–442. doi: 10.1007/978-
1-4615-4495-1_11.

N. Cabrera, J.-F. Cordeau, and J. E. Mendoza (2022). “The doubly open park-and-
loop routing problem”. In: Computers & Operations Research 143, pp. 105–761.
doi: 10.1016/j.cor.2022.105761.

R. Cuda, G. Guastaroba, and M. G. Speranza (2015). “A survey on two-echelon
routing problems”. In: Computers & Operations Research 55, pp. 185–199. doi:
10.1016/j.cor.2014.06.008.

M. Drexl (2012). “Synchronization in vehicle routing—a survey of VRPs with multiple
synchronization constraints”. In: Transportation Science 46.3, pp. 297–316. doi:
10.1287/trsc.1110.0400.

J. W. Escobar, R. Linfati, and P. Toth (2014). “A hybrid granular tabu search algorithm
for the multi-depot vehicle routing problem”. In: Journal of the Operational
Research Society 65.1, pp. 37–48. doi: 10.1057/jors.2013.102.

M. Fischetti, J. J. Salazar González, and P. Toth (1997). “A branch-and-cut algorithm
for the symmetric generalized traveling salesman problem”. In: Operations Research
45.3, pp. 378–394. doi: 10.1287/opre.45.3.378.

D. Goeke (2019). “Granular tabu search for the pickup and delivery problem with
time windows and electric vehicles”. In: European Journal of Operational Research
278.3, pp. 821–836. doi: 10.1016/j.ejor.2019.05.010.

46

https://doi.org/10.1016/j.trd.2017.07.020
https://doi.org/10.1016/j.cor.2020.105166
https://doi.org/10.1016/j.dam.2018.07.033
https://doi.org/10.1287/trsc.2014.0571
http://logistik.bwl.uni-mainz.de/158.php
http://logistik.bwl.uni-mainz.de/158.php
https://doi.org/10.1007/978-1-4615-4495-1_11
https://doi.org/10.1007/978-1-4615-4495-1_11
https://doi.org/10.1016/j.cor.2022.105761
https://doi.org/10.1016/j.cor.2014.06.008
https://doi.org/10.1287/trsc.1110.0400
https://doi.org/10.1057/jors.2013.102
https://doi.org/10.1287/opre.45.3.378
https://doi.org/10.1016/j.ejor.2019.05.010

E. Gussmagg-Pfliegl, F. Tricoire, K. F. Doerner, and R. F. Hartl (2011). “Mail-delivery
problems with park-and-loop tours: a heuristic approach”. In: Proceedings of the
ORP3 Meeting, Cadiz. Universidad de Cádiz, pp. 77–81.

T. Le Colleter, D. Dumez, F. Lehuédé, and O. Péton (2023). “Small and Large
Neighborhood Search for the Park-and-Loop Routing Problem with Parking Selec-
tion”. In: European Journal of Operational Research 308.3, pp. 1233–1248. doi:
10.1016/j.ejor.2023.01.007.

L. Levy and L. Bodin (1989). “The arc oriented location routing problem”. In:
INFOR: Information Systems and Operational Research 27.1, pp. 74–94. doi:
10.1080/03155986.1989.11732083.

M. López-Ibáñez, J. Dubois-Lacoste, L. Cáceres Pérez, M. Birattari, and T. Stützle
(2016). “The irace package: Iterated racing for automatic algorithm configuration”.
In: Operations Research Perspectives 3, pp. 43–58. doi: 10.1016/j.orp.2016.09.
002.

H. R. Lourenço, O. C. Martin, and T. Stützle (2003). “Iterated Local Search”. In:
Handbook of Metaheuristics. Springer US, pp. 320–353. doi: 10.1007/0-306-
48056-5_11.

A. Martinez-Sykora, F. McLeod, C. Lamas-Fernandez, T. Bektaş, T. Cherrett, and
J. Allen (2020). “Optimised solutions to the last-mile delivery problem in London
using a combination of walking and driving”. In: Annals of Operations Research
295.2, pp. 645–693. doi: 10.1007/s10479-020-03781-8.

G. Nagy and S. Salhi (2007). “Location-routing: Issues, models and methods”. In:
European Journal of Operational Research 177.2, pp. 649–672. doi: 10.1016/j.
ejor.2006.04.004.

PassMark Software (2022). Professional CPU benchmarks. url: https : / / www .
cpubenchmark.net/singleThread.html (visited on 06/23/2022).

C. Prins, C. Prodhon, A. Ruiz, P. Soriano, and R. Wolfler Calvo (2007). “Solving the
Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-
Granular Tabu Search Heuristic”. In: Transportation Science 41.4, pp. 470–483.
doi: 10.1287/trsc.1060.0187.

C. Prodhon and C. Prins (2014). “A survey of recent research on location-routing
problems”. In: European Journal of Operational Research 238.1, pp. 1–17. doi:
10.1016/j.ejor.2014.01.005.

S. Reed, A. M. Campbell, and B. W. Thomas (2024). Does Parking Matter? The
Impact of Search Time for Parking on Last-Mile Delivery Optimization. Tech. rep.
doi: 10.1016/j.tre.2023.103391.

G. Reinelt (1991). “TSPLIB–A traveling salesman problem library”. In: ORSA Journal
on Computing 3.4, pp. 376–384. doi: 10.1287/ijoc.3.4.376.

47

https://doi.org/10.1016/j.ejor.2023.01.007
https://doi.org/10.1080/03155986.1989.11732083
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/s10479-020-03781-8
https://doi.org/10.1016/j.ejor.2006.04.004
https://doi.org/10.1016/j.ejor.2006.04.004
https://www.cpubenchmark.net/singleThread.html
https://www.cpubenchmark.net/singleThread.html
https://doi.org/10.1287/trsc.1060.0187
https://doi.org/10.1016/j.ejor.2014.01.005
https://doi.org/10.1016/j.tre.2023.103391
https://doi.org/10.1287/ijoc.3.4.376

M. Schiffer, M. Schneider, G. Walther, and G. Laporte (2019). “Vehicle routing and
location routing with intermediate stops: A review”. In: Transportation Science
53.2, pp. 319–343. doi: 10.1287/trsc.2018.0836.

P. Toth and D. Vigo (2003). “The granular tabu search and its application to the
vehicle-routing problem”. In: INFORMS Journal on Computing 15.4, pp. 333–346.
doi: 10.1287/ijoc.15.4.333.24890.

J. G. Villegas, C. Prins, C. Prodhon, A. L. Medaglia, and N. Velasco (2010). “GRASP/
VND and multi-start evolutionary local search for the single truck and trailer
routing problem with satellite depots”. In: Engineering Applications of Artificial
Intelligence 23.5, pp. 780–794. doi: 10.1016/j.engappai.2010.01.013.

48

https://doi.org/10.1287/trsc.2018.0836
https://doi.org/10.1287/ijoc.15.4.333.24890
https://doi.org/10.1016/j.engappai.2010.01.013

2.8 Appendix

A Comparison on symmetric STTRPSD instances

In this section, we report the results obtained by ILS-ASTTRPSD on symmetric
STTRPSD instances from the literature. Due to the different structure of the literature
instances, we decreased the sparsification intensity for households and parking spots to
κc = 0.10 and κk = 0.10, and increased the number of iterations without improvement
η to 3000. Moreover, every three iterations of ILS-ASTTRPSD without improvement,
we perturb the best found solution in the last three iterations. Table 2.8 shows the
comparison of our results to the state-of-the-art approaches in the literature, i.e.:
the hybrid metaheuristic of Accorsi and Vigo, 2020 (AVXS), the multi-start iterated
local search of Villegas et al., 2010 (MS-ILS), and the progressive filtering heuristic of
Arnold and Sörensen, 2021 (PF). Because the algorithm of Accorsi and Vigo, 2020 is
available online, we report the runtimes of AVXS executed on our machine. To allow
for a fair runtime comparison with MS-ILS and PF, we used the CPU single-thread
rating defined by PassMark Software, 2022. The website assigns a score of 1483 to
our CPU, and a score of 574 and 2233 to the CPU used by Villegas et al., 2010 and
Arnold and Sörensen, 2021, respectively. Thus, we convert the runtimes of Villegas
et al., 2010 by dividing them by 2.58 and by multiplying the runtimes of Arnold
and Sörensen, 2021 by 1.51. We are aware that a completely precise comparison of
runtimes is not possible due to the different programming languages and other factors.
However, we follow the procedure adopted by the literature, and we compare with
respect to the CPU.

The results show that ILS-ASTTRPSD returns good-quality solutions with a
best and an average gap to the BKS significantly below 1%. Also on the symmetric
STTRPSD instances, the low standard deviation values suggest that ILS-ASTTRPSD
is robust. Our algorithm is competitive to the MS-ILS of Villegas et al., 2010 and
to the PF of Arnold and Sörensen, 2021 especially for the large-sized instances. For
some of these instances, ILS-ASTTRPSD reaches solutions of a better quality in the
best and/or in the average run. The average runtimes of ILS-ASTTRPSD are larger
than the ones of the other state-of-the-art heuristics. However, because DHL only
plans postal delivery tours at the tactical level, the runtimes are still acceptable.

49

Legend:

k opened parking spot

h household

k/h opened parking spot or household

unmodified arc

inserted arc

removed arc

tour segment

i h

i+ k/h

j−k/h

jh

(a) 2-opt*

jk

i+k/h

i h

i−k/h

(b) split

i+ k/h

i h

i− k/h

jk/h

j−h

j=k/h

(c) exchange

i+k/h

i h

i−k/h

jk/h

j−k/h

ikk

i+k/h

i h

ifirst h

jk/h

j−k/h

(d) relocate-1 (e) relocate-b

Figure 2.6: Neighborhood operators of ILS-ASTTRPSD. The generator arc is denoted
by (i, j). The predecessor and successor of i are denoted i− and i+, respectively. The
first visited household in a second-level tour is denoted by ifirst. For a more concise
representation, in Figure 3(b) and 3(e), the arcs that connect the opened parking
spots to the first-level tour are not depicted.

50

(a) Walking network Gw. (b) Driving network Gd.

Figure 2.7: Example of walking and driving network.

(a) Vertices representing the parking spots,
walking portals, and houses in Vw.

(b) Vertices representing the parking spots
in Vd.

Figure 2.8: Example of vertices in Vw and Vd.

0 500 1000 1500 2000 2500−3

−2.5

−2

−1.5

−1

−0.5

0

η

∆
a
(%

)

κc, κk =0.01
κc, κk =0.015

(a) Solution quality.

0 500 1000 1500 2000 25000

500

1000

1500

2000

2500

η

Av
g.

t(
s)

κc, κk =0.01
κc, κk =0.015

(b) Runtime.

Figure 2.9: Parameter tuning experiment results.

(a) Instance 10. (b) Instance 6.

Figure 2.10: Examples of multiple second-level tours from the same parking spot for
two instances.

51

AVXS MS-ILS PF ILS-ASTTRPSD

Instance BKS ∆b(%) ∆a(%) t(s) ∆b(%) ∆a(%) t(s) ∆(%) t(s) ∆b(%) ∆a(%) ∆std dev(±) t(s)

STTRP-25-5-1-c 405.46 0.00 0.00 1.00 0.00 0.00 4.42 0.00 60.40 0.00 0.00 0.00 11.28
STTRP-25-5-1-rd 584.03 0.00 0.00 1.00 0.00 0.00 4.88 0.00 258.21 0.00 0.00 0.00 10.18
STTRP-25-5-2-c 374.79 0.00 0.00 1.00 0.00 0.00 4.42 0.00 253.68 0.00 0.00 0.01 34.81
STTRP-25-5-2-rd 508.48 0.00 0.00 1.00 0.00 0.00 3.95 0.00 277.84 0.00 0.00 0.00 32.03
STTRP-25-10-1-c 386.45 0.00 0.00 1.00 0.00 0.00 5.12 0.00 134.39 0.00 0.00 0.00 12.0
STTRP-25-10-1-rd 573.96 0.00 0.00 1.00 0.00 0.00 5.35 0.00 66.44 0.00 0.00 0.00 11.25
STTRP-25-10-2-c 380.86 0.00 0.00 1.00 0.00 0.00 4.88 0.00 140.43 0.00 0.12 0.25 22.93
STTRP-25-10-2-rd 506.37 0.00 0.00 1.00 0.00 0.00 4.88 0.02 99.66 0.00 0.01 0.01 19.66
STTRP-50-5-1-c 583.07 0.00 0.00 1.00 0.00 0.00 27.44 0.00 78.52 0.00 0.00 0.00 50.65
STTRP-50-5-1-rd 870.51 0.00 0.00 1.00 0.00 0.00 23.72 0.00 75.50 0.00 0.00 0.00 53.73
STTRP-50-5-2-c 516.98 0.00 0.00 1.00 0.00 0.00 22.09 0.00 327.67 0.00 0.09 0.13 196.14
STTRP-50-5-2-rd 766.03 0.00 0.00 1.00 0.00 0.00 22.79 0.00 146.47 0.00 1.16 0.81 105.65
STTRP-50-10-1-c 387.83 0.00 0.00 1.00 0.00 0.00 31.86 0.32 89.09 0.34 0.47 0.07 36.04
STTRP-50-10-1-rd 811.28 0.00 0.00 1.90 0.00 0.00 27.91 0.00 83.05 0.00 0.06 0.09 29.98
STTRP-50-10-2-c 367.01 0.00 0.00 1.00 0.00 0.00 29.07 0.00 161.57 0.00 0.00 0.00 110.40
STTRP-50-10-2-rd 731.53 0.00 0.00 2.20 0.00 0.00 24.42 0.00 172.14 1.61 1.82 0.21 141.31
STTRP-100-10-1-c 614.02 0.00 0.00 9.50 0.00 0.06 134.88 0.00 107.21 0.00 0.16 0.33 175.58
STTRP-100-10-1-rd 1271.78 0.00 0.00 11.90 0.65 0.87 115.35 0.00 129.86 0.95 1.55 0.37 212.44
STTRP-100-10-2-c 547.44 0.00 0.00 6.00 0.00 0.02 150.93 0.00 209.89 0.00 0.05 0.08 202.58
STTRP-100-10-2-rd 1097.28 0.00 0.00 9.00 0.00 0.06 100.93 0.00 203.85 0.00 0.60 0.38 404.61
STTRP-100-20-1-c 642.61 0.00 0.00 11.20 0.00 0.00 112.09 0.36 123.82 0.00 0.13 0.14 254.75
STTRP-100-20-1-rd 1143.10 0.00 0.00 9.70 0.00 0.31 116.74 0.39 143.45 0.16 0.36 0.13 104.56
STTRP-100-20-2-c 581.56 0.00 0.00 7.80 0.00 0.11 139.53 2.26 205.36 0.00 0.63 0.35 398.84
STTRP-100-20-2-rd 1060.75 0.01 0.24 15.00 0.00 0.20 114.19 0.60 218.95 0.28 1.08 0.39 270.06
STTRP-200-10-1-c 819.96 0.00 0.00 49.30 0.31 1.03 447.44 0.20 226.50 0.53 0.79 0.13 1249.40
STTRP-200-10-1-rd 1755.41 0.00 0.00 66.20 0.45 1.59 399.77 0.21 285.39 0.84 2.05 0.56 1301.08
STTRP-200-10-2-c 710.70 0.00 0.06 44.80 0.51 1.31 452.79 0.22 295.96 1.17 1.59 0.25 1248.26
STTRP-200-10-2-rd 1445.94 0.00 0.00 40.70 0.00 0.84 360.00 0.00 681.01 1.78 2.33 0.48 1462.46
STTRP-200-20-1-c 907.17 0.00 0.00 51.30 0.25 0.70 532.79 2.05 382.03 0.08 0.41 0.29 740.40
STTRP-200-20-1-rd 1610.62 0.00 0.00 53.70 0.22 1.30 496.98 2.58 311.06 0.72 1.57 0.92 1028.85
STTRP-200-20-2-c 814.42 0.00 0.01 38.30 0.77 0.95 567.67 0.18 608.53 0.04 0.72 0.36 1710.74
STTRP-200-20-2-rd 1413.32 0.00 0.00 54.10 0.00 0.81 468.37 1.45 552.66 0.74 0.98 0.22 1390.63

Avg. 0.00 0.01 15.52 0.10 0.32 154.93 0.34 222.21 0.29 0.58 0.22 407.29

Table 2.8: Comparison of the solutions of the heuristics from the literature to the ones of ILS-ASTTRPSD for symmetric instances.

52

B Detailed results for the impact of ignoring parking and
loading times

B.1 Detailed results for graph G1

Instance |VC | |VD| ∑
i∈VC

qi cij c(t1) ∑
t2∈T 2 c(t2) |VD(t1)| |T 2| |VC(t2)|

1 382 746 646 417.16 3186.72 5471.77 174 174 2.20
2 465 852 713 556.17 3972.45 5156.11 150 150 3.10
3 424 778 703 399.71 2983.57 4839.58 178 178 2.38
4 433 742 711 333.05 2456.27 4381.36 136 136 3.18
5 403 698 826 464.93 2863.95 4414.85 197 198 2.04
6 378 585 887 527.94 2471.13 4410.89 173 175 2.16
7 361 643 884 340.49 1868.59 4294.22 139 139 2.60
8 452 872 791 497.59 2369.00 5215.32 197 197 2.29
9 250 412 483 614.93 2496.43 3370.08 98 98 2.55
10 298 481 1092 293.17 2401.62 3892.34 156 158 1.89
11 389 758 756 504.81 2476.11 4872.41 185 185 2.10
12 374 729 628 456.74 3566.43 4610.93 174 174 2.15
13 418 762 770 433.92 2684.91 4602.22 160 160 2.61
14 360 697 653 522.93 3371.13 3969.06 181 181 1.99
15 441 854 700 537.55 3510.49 5360.06 218 218 2.02
16 416 793 621 834.63 4460.93 5492.73 200 200 2.08
17 427 812 634 375.59 2961.07 4734.62 163 163 2.62
18 452 882 725 600.57 3453.10 5198.55 204 204 2.22
19 414 767 654 409.54 5738.47 5410.20 162 163 2.54
20 378 720 696 444.09 3600.95 4102.34 198 198 1.91
21 458 772 627 475.02 3979.46 5484.10 140 140 3.27
22 447 770 673 327.47 2988.59 6197.99 118 118 3.79
23 430 815 641 353.29 3534.22 5412.74 185 185 2.32
24 334 639 606 647.47 4367.17 4251.95 189 189 1.77
25 342 640 601 375.88 3723.74 4033.70 148 149 2.30
26 419 814 740 400.45 4010.82 4798.18 223 223 1.88
27 368 700 568 930.46 4965.45 4199.24 190 190 1.94
28 395 762 571 385.66 4845.79 4997.82 193 193 2.05
29 384 746 745 321.71 3941.85 4540.14 132 132 2.91
30 369 722 676 543.72 4261.53 4386.76 155 155 2.38
31 410 728 736 413.50 2329.96 5035.29 179 179 2.29
32 429 837 788 696.90 3900.44 4879.95 170 171 2.51
33 245 477 453 1629.02 6321.45 3433.80 172 172 1.42
34 353 695 735 359.09 3762.65 4456.70 153 153 2.31
35 341 644 498 510.62 4136.67 3522.25 126 127 2.69

Avg. 389.69 724.11 692.31 512.45 3541.80 4669.44 169.03 169.29 2.36

Table 2.9: Statistics of the best run of ILS-ASTTRPSD for the DHL instances with
graph G1.

53

B.2 Detailed results for graph G2

Instance |VC | |VD| ∑
i∈VC

qi cij c(t1) ∑
t2∈T 2 c(t2) |VD(t1)| |T 2| |VC(t2)|

1 382 746 646 417.16 3954.19 6114.57 87 88 4.34
2 465 852 713 556.17 4452.55 5881.19 69 72 6.46
3 424 778 703 399.71 3135.63 6161.82 65 68 6.24
4 433 742 711 333.05 2973.50 4925.16 62 62 6.98
5 403 698 826 464.93 3184.15 5594.19 74 76 5.30
6 378 585 887 527.94 3028.39 5299.49 79 86 4.40
7 361 643 884 340.49 2573.98 4777.37 80 83 4.35
8 452 872 791 497.59 3084.00 6023.88 99 101 4.48
9 250 412 483 614.93 3192.46 3540.12 66 66 3.79
10 298 481 1092 293.17 3076.58 4638.54 88 100 2.98
11 389 758 756 504.81 3021.81 5824.76 79 82 4.74
12 374 729 628 456.74 4318.65 5358.94 86 88 4.25
13 418 762 770 433.92 3321.60 5330.96 75 77 5.43
14 360 697 653 522.93 4006.95 4904.38 80 82 4.39
15 441 854 700 537.55 4175.47 6496.90 93 93 4.74
16 416 793 621 834.63 5160.32 6486.38 79 81 5.14
17 427 812 634 375.59 3184.06 5573.94 44 45 9.49
18 452 882 725 600.57 4095.58 6157.79 74 74 6.11
19 414 767 654 409.54 6380.72 6128.33 81 82 5.05
20 378 720 696 444.09 4041.28 5304.00 75 77 4.91
21 458 772 627 475.02 4489.09 6181.17 79 82 5.59
22 447 770 673 327.47 3311.86 6887.50 48 50 8.94
23 430 815 641 353.29 3456.05 6863.50 66 66 6.52
24 334 639 606 647.47 5359.55 4790.01 105 106 3.15
25 342 640 601 375.88 4157.09 4963.29 62 65 5.26
26 419 814 740 400.45 4517.72 6031.93 87 88 4.76
27 368 700 568 930.46 5171.84 5472.63 67 68 5.41
28 395 762 571 385.66 4671.00 6803.53 62 64 6.17
29 384 746 745 321.71 4314.25 5224.66 54 56 6.86
30 369 722 676 543.72 4624.25 5331.46 57 60 6.15
31 410 728 736 413.50 2899.62 5853.49 77 79 5.19
32 429 837 788 696.90 4299.04 5924.93 78 80 5.36
33 245 477 453 1629.02 7211.50 4232.91 124 124 1.98
34 353 695 735 359.09 4294.94 4956.69 83 85 4.15
35 341 644 498 510.62 4950.03 4029.86 92 92 3.71

Avg. 389.69 724.11 692.31 512.45 4059.71 5544.87 76.46 78.51 5.22

Table 2.10: Statistics of the best run of ILS-ASTTRPSD for the DHL instances with
graph G2.

54

B.3 Detailed results for graph G3

Instance |VC | |VD| ∑
i∈VC

qi cij c(t1) ∑
t2∈T 2 c(t2) |VD(t1)| |T 2| |VC(t2)|

1 382 746 646 417.16 3039.75 7076.93 84 84 4.55
2 465 852 713 556.17 3616.64 6692.90 71 72 6.46
3 424 778 703 399.71 2513.42 6769.97 76 76 5.58
4 433 742 711 333.05 2290.97 5593.20 63 63 6.87
5 403 698 826 464.93 2263.03 6517.12 72 72 5.60
6 378 585 887 527.94 2239.93 6112.51 88 90 4.20
7 361 643 884 340.49 1667.22 5719.82 82 82 4.40
8 452 872 791 497.59 1946.48 7147.32 98 99 4.57
9 250 412 483 614.93 2466.46 4275.05 64 64 3.91
10 298 481 1092 293.17 2223.41 5566.27 103 104 2.87
11 389 758 756 504.81 2202.24 6651.75 85 85 4.58
12 374 729 628 456.74 3316.72 6363.21 86 86 4.35
13 418 762 770 433.92 2580.43 6130.92 82 82 5.10
14 360 697 653 522.93 3045.48 5883.47 76 76 4.74
15 441 854 700 537.55 3075.68 7659.97 82 82 5.38
16 416 793 621 834.63 4264.82 7428.49 77 77 5.40
17 427 812 634 375.59 2719.15 6092.18 43 43 9.93
18 452 882 725 600.57 3281.58 6978.94 79 79 5.72
19 414 767 654 409.54 5646.67 6916.10 87 88 4.70
20 378 720 696 444.09 3174.08 6171.94 74 74 5.11
21 458 772 627 475.02 3603.80 7156.08 74 76 6.03
22 447 770 673 327.47 2877.46 7375.79 58 58 7.71
23 430 815 641 353.29 2908.14 7360.18 75 76 5.66
24 334 639 606 647.47 4111.37 6046.87 103 103 3.24
25 342 640 601 375.88 3483.39 5637.83 61 62 5.52
26 419 814 740 400.45 3635.39 6911.00 93 93 4.51
27 368 700 568 930.46 4464.12 6187.95 71 71 5.18
28 395 762 571 385.66 4083.96 7365.45 74 74 5.34
29 384 746 745 321.71 3798.01 5758.49 61 62 6.19
30 369 722 676 543.72 4031.77 5920.57 60 60 6.15
31 410 728 736 413.50 2058.83 6717.91 79 79 5.19
32 429 837 788 696.90 3488.66 6759.55 81 83 5.17
33 245 477 453 1629.02 5909.94 5558.96 126 126 1.94
34 353 695 735 359.09 3291.54 6093.44 72 72 4.90
35 341 644 498 510.62 3784.39 5231.62 87 87 3.92

Avg. 389.69 724.11 692.31 512.45 3231.57 6395.14 78.49 78.86 5.16

Table 2.11: Statistics of the best run of ILS-ASTTRPSD for the DHL instances with
graph G3.

55

B.4 Detailed results for graph G4

Instance |VC | |VD| ∑
i∈VC

qi cij c(t1) ∑
t2∈T 2 c(t2) |VD(t1)| |T 2| |VC(t2)|

1 382 746 646 417.16 3295.01 7606.96 54 55 6.95
2 465 852 713 556.17 4130.20 6862.38 51 54 8.61
3 424 778 703 399.71 2758.07 7227.29 46 49 8.65
4 433 742 711 333.05 2793.95 5736.55 44 45 9.62
5 403 698 826 464.93 2557.62 6920.93 50 57 7.07
6 378 585 887 527.94 2794.63 6368.91 59 65 5.82
7 361 643 884 340.49 2294.81 5890.15 57 60 6.02
8 452 872 791 497.59 2531.29 7480.28 61 64 7.06
9 250 412 483 614.93 2828.57 4499.06 47 49 5.10
10 298 481 1092 293.17 2733.36 6004.36 65 75 3.97
11 389 758 756 504.81 2654.32 6951.82 52 54 7.20
12 374 729 628 456.74 3928.47 6523.39 56 58 6.45
13 418 762 770 433.92 3026.20 6363.56 53 54 7.74
14 360 697 653 522.93 3452.48 6110.31 48 51 7.06
15 441 854 700 537.55 3421.94 8018.91 46 47 9.38
16 416 793 621 834.63 4780.26 7602.97 51 53 7.85
17 427 812 634 375.59 2967.57 6250.93 33 34 12.56
18 452 882 725 600.57 3469.33 7393.77 39 42 10.76
19 414 767 654 409.54 6001.20 7294.00 47 50 8.28
20 378 720 696 444.09 3684.95 6334.85 48 51 7.41
21 458 772 627 475.02 3809.20 7541.52 35 38 12.05
22 447 770 673 327.47 3157.37 7487.01 40 41 10.90
23 430 815 641 353.29 3244.84 7750.61 44 45 9.56
24 334 639 606 647.47 4670.41 6435.32 70 70 4.77
25 342 640 601 375.88 3640.29 6051.64 32 36 9.50
26 419 814 740 400.45 4042.97 7234.58 47 49 8.55
27 368 700 568 930.46 4974.99 6358.32 47 48 7.67
28 395 762 571 385.66 4240.42 7832.63 41 42 9.40
29 384 746 745 321.71 4091.35 5987.94 40 44 8.73
30 369 722 676 543.72 4520.78 6025.44 45 45 8.20
31 410 728 736 413.50 2480.40 7026.45 58 59 6.95
32 429 837 788 696.90 3908.49 7180.35 63 69 6.22
33 245 477 453 1629.02 6772.28 5881.35 103 103 2.38
34 353 695 735 359.09 3702.97 6474.28 51 53 6.66
35 341 644 498 510.62 4378.48 5486.61 62 63 5.41

Avg. 389.69 724.11 692.31 512.45 3649.70 6691.30 51.00 53.49 7.73

Table 2.12: Statistics of the best run of ILS-ASTTRPSD for the DHL instances with
graph G4.

56

Chapter 3

The vehicle routing problem with operation simpli-
fication constraints

Publication status: A. Theiß, R. Cavagnini, and M. Schneider (2025). The vehicle
routing problem with depot operation constraints at DHL Group. Working Paper.
Chair of Computational Logistics, RWTH Aachen University, Germany

Abstract: In this paper, we study the vehicle routing problem with depot operation
constraints (VRPDOC), a new problem arising in the context of postal deliveries
at DHL Group. DHL clusters the street segments of a city into districts, and, for
each of them, it determines a route traveled by a mail carrier departing from a depot.
DHL presorts letters on preparation tables that are located at the depot. The mail
carriers have to visit the preparation tables and collect their letters before starting
their routes. The sorting of the letters is fixed and cannot be modified. Because the
number of letters varies daily, a different number of mail carriers may be needed
for delivery depending on the day of the week or the season of the year. The goal
of the VRPDOC is to determine the routes for each mail carrier so that the total
travel time is minimized. Upper and lower bounds on the duration of each route
must be respected, and the letter collection at preparation tables must be kept as
simple as possible. We formulate the VRPDOC as an integer program, and we
improve the formulation using several preprocessing techniques and valid inequalities.
We also derive theoretical results on the complexity of finding a feasible solution
for the VRPDOC. Because commercial solvers cannot even find feasible solutions
for realistically-sized instances of VRPDOC in reasonable runtimes, we develop an
iterated local search (ILS) to solve the VRPDOC. The experiments show that the
ILS finds optimal solutions on small-scale instances, and it significantly improves the
solutions computed by DHL for real-world instances. More precisely, our solutions
do not only decrease the total travel time compared to the DHL solutions, but they
simplify letter collection at preparation tables at the same time, leading to depot
operations that are fast, generate less confusion and mistakes, and allow for faster
learning processes. Additional experiments show that ignoring depot operation
constraints leads to shorter travel times but severely complicates the letter collection

57

at the preparation tables.

Contribution of the author: The authors shared efforts in the conceptual develop-
ment of the research goals, the literature review, the mathematical formulations of
the problem, the design of the methodology and implementation of the algorithm, the
computational experiments and result analysis, and in writing the paper.

58

3.1 Introduction

Cost-efficient routing of mail carriers is of major importance for companies like our
industry partner DHL Group. On average, DHL delivers 57 million letters every day
in Germany. To keep the problem of routing a given set of mail carriers in a delivery
area as simple as possible, DHL has already clustered single households into street
segments. For each of these street segments, a so-called service time is computed,
which corresponds to the total time a mail carrier needs to serve the households
within the street segment, i.e., parking their vehicle (bike/car), walking to the letter
boxes of the households, delivering the letters, and returning to the vehicle. With this
simplification, the mail delivery problem can be modeled as a vehicle routing problem
(VRP) with route duration constraints, in which the mail carriers are the vehicles, the
street segments are the customers, and the objective is to minimize the total travel
time.

Before starting their route, the mail carriers have to collect the letters of the
street segments assigned to their route from so-called preparation tables located at
the depot (in the remainder of the paper we will simply refer to them as tables). To
avoid wasting time on finding the correct letters while driving the route, mail carriers
already collect the letters in the order in which they are delivered on their route.
Each table consists of shelves that are divided into sections. Each shelf section is
labeled with the names and numbers of the delivery addresses. The delivery addresses
are sorted according to their visiting order in the corresponding street segment. An
example of a table is shown in Figure 3.1. On the right side of the figure, we see
the details of twelve sections from the third level of the shelf, covering three street
segments. All households labeled with the same color form one street segment. A
street segment can consist either only of households on one side of the road (blue and
green segment in the example) or of households on both sides of the road (orange
segment). The labels cannot be changed on a daily basis, and, thus, the order in
which the letters are sorted on the tables is fixed.

Baker St Baker St Privet Drive
1 3 5 7 6 4 2 1 2 3 4 5

Figure 3.1: Example of a table and detailed view of a shelf.

Figure 3.2 shows an example of a delivery area and the corresponding tables at the

59

depot. The delivery area in Figure 3.2(a) consists of 24 street segments, and the depot
is depicted as gray rectangle. To serve the delivery area, four mail carriers are needed.
The assignment of street segments to mail carriers (consequently also the assignment
of households to mail carriers) is indicated by the coloring of the households. The
routes of the mail carriers are given by the colored arcs. To keep the figure as simple
as possible, we do not show the arcs from the depot to the first street segment and
from the last street segment back to the depot. Figure 3.2(b) depicts the tables at the
depot. The street segments are assigned to the tables in such a way that each mail
carrier has to visit only one table and that the letters in the shelves are already sorted
according to the order of the street segments in the routes of the mail carriers.

d

1 2 3

4 5 6 7

8 9 10

11 12 13 14

15 16 17

18 19 20 21

22 23 24

(a) delivery area

12

5

1

4

11

8

9

6

2

3

7

10

16

15

18

22

23

19

13

17

14

21

24

20

(b) tables at the depot

Figure 3.2: A problem instance with an example solution using four mail carriers

In reality, the demand for mail deliveries varies depending on the day of the week
and the season of the year. This implies that the time spent to serve a street segment
may reduce or increase depending on the volume of letters to deliver. However, each
mail carrier works for a prespecified amount of hours determined by their contract.
Because only a limited time can be spent working overtime, and sending workers
home early is not economical, DHL changes the number of mail carriers to serve the
delivery area on a daily basis. Consequently, some street segments must be reassigned.
A new route composition may also be needed because mail carriers can have different
working hours depending on their contract, and, for example, one mail carrier working
full time is replaced by two mail carriers working part time.

In this case, the reassignment of street segments to other routes results in changes
in the routing of the mail carriers and in their visits to the tables at the depot. Recall
that the order according to which the letters are sorted on the tables is fixed and
cannot be modified to fit the new routing of the mail carriers. Consequently, the
letter collection process may become complex and generate a lot of overhead at the
depot. This is illustrated by the example in Figure 3.3, using the same instance as in

60

Figure 3.2. Because of a higher demand, five mail carriers are now needed to serve
the delivery area. The most intuitive way of reassigning street segments is to move
one or two street segments from the routes of the first four mail carriers to the route
of the additional fifth mail carrier (in yellow), resulting in the routing solution in
Figure 3.3(a). In Figure 3.3(b) the corresponding situation at the depot is depicted.
The “yellow” mail carrier has to walk to every table to collect their letters, a situation
that is likely to cause severe problems in reality, when instances have up to 30 tables.

d

1 2 3

4 5 6 7

8 9 10

11 12 13 14

15 16 17

18 19 20 21

22 23 24

(a) delivery area

12

5

1

4

11

8

9

6

2

3

7

10

16

15

18

22

23

19

13

17

14

21

24

20

(b) tables at the depot

Figure 3.3: Example solution for the instance of Figure 3.2 using five mail carriers

Other scenarios that should be avoided are (i) a large number of mail carriers
visiting the same table, (ii) the mail carrier having to switch from one side of a table
to the other multiple times, or (iii) the mail carrier having to skip blocks of letters to
collect the correct ones. The described scenarios are undesirable for DHL for multiple
reasons. First, complex depot operations reduce the efficiency and speed because
mail carriers need more time to execute them. Second, if multiple mail carriers visit
the same table, it is difficult for them to coordinate their collection activities. This
increases the risk of making mistakes and collecting the wrong letters. Finally, the
learning process for new hires becomes difficult and slow.
Consequently, keeping the depot operations as simple as possible is vital for DHL and
must be taken into account when optimizing the routes of mail carriers. To achieve this,
we add so-called depot operation constraints to the routing problem described above
and refer to the resulting problem as vehicle routing problem with depot operation
constraints (VRPDOC). The VRPDOC belongs to the class of NP-hard problems
because it generalizes the capacitated VRP (see, e.g., Toth and Vigo, 2002).

The remainder of this section is organized as follows. In Section 3.1.1, we provide
a detailed description of the VRPDOC and the depot operation constraints. We
review the literature on similar problems in Section 3.1.2 and state our contributions
in Section 3.1.3.

61

3.1.1 Problem description

The goal of the VRPDOC is to route a given set of mail carriers in a delivery area
consisting of street segments under the following constraints: (1) each street segment
is visited exactly once, (2) the route of each mail carrier starts and ends at the depot,
and (3) the duration of each route stays between a given lower and upper bound.
The objective is to minimize the total travel time required by the mail carriers for
completing their routes.

To guarantee that letter collection operations at the depot for a given assignment
of street segments to tables remain as simple as possible, we add the following depot
operation constraints:

1. Precedence constraints: If two street segments are assigned to the same
table, and if they get assigned to the same mail carrier, then the precedence
relationship defined by the order of these two street segments on their table has
to be respected in the route of the mail carrier. The effect of these constraints is
illustrated in Figure 3.4(a). If the constraints are active, the mail carrier must
only move along the table once from left to right, once through each shelf from
the top to the bottom row, and through each row from left to right.

2. Skipping constraints: Because collecting large blocks of consecutive letters
from a shelf is easier than having to skip letters repeatedly, an upper bound on
the number of times a mail carrier can skip letters is introduced and represented
by ubskipping. An example of such a skip is shown in Figure 3.4(b). The mail
carrier has to collect the red letters, but because the gray letter is not assigned
to their route, the whole row cannot be collected in one go.

3. Table constraints: Because the space available to stand in front of a table is
limited, an upper bound on the number of mail carriers visiting the same table
is introduced and denoted as ubmailcarriers. An example in which only two mail
carriers can fit in front of a table is depicted in Figure 3.4(c).

4. Mail carrier constraints: Because each table is located at a certain distance
from the others, an upper bound on the number of tables that a mail carrier
can visit is introduced and denoted by ubtables. This avoids that a mail carrier
spends too much time moving through the depot. An example in which the
mail carrier is only allowed to visit two tables in a depot with four tables is
represented in Figure 3.4(d).

5. Table change constraint: An upper bound on the total number of table
changes, denoted as ubtablechanges, is introduced for two reasons. First, to prevent
that every mail carrier exploits the upper bound of visited tables imposed by
the constraints described in Point 4. An example is shown in Figure 3.4(e): If
only the mail carrier constraints of Point 4 with an upper bound of two are

62

active, each of the three mail carriers could visit two tables. To avoid this, we
also impose that the total number of table changes of all mail carriers cannot be
greater than four in the example. Second, even if a mail carrier can visit only a
few different tables, walking from one to the other may occur several times. An
example of such a situation is depicted in Figure 3.4(f): If only the mail carrier
constraints of Point 4 with an upper bound of two are active, the mail carrier
could visit exactly two tables but move from one to the other multiple times.
This is also forbidden by the imposed upper bound on the total number of table
changes of four, so that only four switches between the tables are allowed.

(a) Precedence constraints (b) Skipping constraints (c) Table constraints

(d) Mail carrier constraints (e) Table change constraints (1) (f) Table change constraints (2)

Figure 3.4: Motivational examples for the depot operation constraints.

For DHL, solving the VRPDOC is relevant on both the tactical and the operational
level. On the tactical level, DHL derives a predefined set of demand scenarios and
mail carrier compositions (i.e., the number of mail carriers and their working hours)
that repeat across the year, and determine a solution for each of these scenarios only
once. Whenever a specific demand realizes, DHL simply implements the corresponding
solution. Planning on the operational level becomes necessary when sick notes of mail
carriers or unexpected high or low demands cause changes in the available or required
number of mail carriers and need to be addressed on a daily basis.

We are aware that considering the assignment of street segments to tables as an
additional decision of the optimization problem is an interesting extension of our
problem. This would result in the stochastic problem of finding a table assignment
that hedges well against demand uncertainty. However, we focus on the non-integrated
and deterministic version of the problem in which the assignment of street segments

63

to tables is given and cannot be modified. This has several reasons. From a practical
viewpoint, DHL is currently not willing to carry out any change in the assignment
of street segments to tables because of organizational effort and the cost incurred.
The goal of DHL is to react to a specific demand scenario by optimizing the routes of
mail carriers given the current table organization. From a scientific viewpoint, this
is the first time that this problem is studied in the literature and starting from its
deterministic version is the most natural step. Finally, solving real-world instances
of the deterministic problem is already challenging. Thus, we leave the study of a
stochastic variant of this problem as future work.

3.1.2 Literature review

To the best of our knowledge, the VRPDOC is a new problem. Although multiple
works exist that include one of our additional depot operation constraints (see, e.g.,
Vidal et al., 2020, for a survey of VRP variants) for a survey of VRP variants), we
could not find any work addressing problems that consider all our depot operation
constraints at once or at least a relevant subset of them. It rather seems that, apart
from loading, depot operations and their interdependency with routing decisions are
mostly neglected in the traditional routing literature.

The VRPDOC without the depot operation constraints corresponds to the VRP
with lower and upper bounds on the route duration (see, e.g., Laporte et al., 1985).
If the bounds on the route duration differ by mail carrier, the problem qualifies as a
VRP with heterogeneous fleet (see Koç et al., 2016, for a survey), otherwise it qualifies
as a VRP with homogeneous fleet.

One of the depot operations constraints common in the literature are precedence
constraints. There are several works that consider VRPs with precedence constraints,
(e.g., Irnich, 2008; Dohn et al., 2011; Razali, 2015; Haddadene et al., 2016).

In the VRPDOC, some street segments need to be reassigned to other routes
depending on the volume of letters to deliver. Consequently, the VRPDOC also
has similarities with rerouting problems. Li et al., 2009 and Mu et al., 2011 study
the problem of rerouting the customers of disrupted routes resulting from vehicle
breakdowns or accidents. However, different from the VRPDOC, their problems are
solved as online problems, i.e., after the vehicles have already started their routes.
Nikolić and Teodorović, 2015 study a rerouting problem to be solved if a solution
becomes infeasible due to unexpectedly high customer demands. In contrast to our
problem, Nikolić and Teodorović, 2015 consider a VRP with customer time windows
but no route duration constraints. In the vehicle rescheduling problem, Spliet et al.,
2014 consider the joint minimization of routing costs and the costs of deviations of a
route from the original schedule. This is similar to our skipping constraints because
the assignment of street segments on the tables can be seen as a routing order that
we try to keep as good as possible.

64

The VRPDOC is also related to districting problems because the assignment of
street segments to tables could be seen as some sort of districts. Rı́os-Mercado and
López-Pérez, 2013 and Kalcsics and Rı́os-Mercado, 2019 survey this problem class.
Different from districting problems, the VRPDOC neither uses graph-based measures
nor geometric measures to evaluate solutions. Assis et al., 2014 and Gliesch et al.,
2020a study redistricting problems, in which the compactness is maximized while
guaranteeing that the homogeneity, workload balance, and conformity of districts is
preserved compared to a reference solution. However, in these works, the routing
within the districts is absent and is only considered in a later work by Gliesch et al.,
2020b.

3.1.3 Contribution and structure of the paper

The contributions of this paper are as follows:

• We address a practically relevant problem that features constraints related to
depot operations, which are neglected in many VRP variants.

• We propose different model formulations for the VRPDOC. Moreover, we further
improve the best-performing formulation among the proposed ones by adding
problem-specific preprocessing techniques and valid inequalities.

• We derive theoretical results by proving that the problem of finding a feasible
solution of the VRPDOC is already NP-complete, and that after relaxing two
specific constraints, a feasible solution can be found in polynomial time.

• Because commercial solvers cannot even find a feasible solution for realistically-
sized instances of the VRPDOC in reasonable runtimes, we propose a solution
method, called ILS-VRPDOC, that relies on the iterated local search (ILS)
paradigm proposed by Lourenço et al., 2003. To speed up the search, the local
search component in ILS-VRPDOC uses granular search (see Toth and Vigo,
2003). This search principle is based on a sparsification method that restricts
the size of the neighborhoods to explore. Besides traditional sparsification
methods (i.e., distance-based), we propose new problem-specific strategies to
select additional arcs.

• In our computational experiments, we compare the performance of the different
VRPDOC models on a set of self-generated small-scale instances. In experiments
on larger instances provided by DHL, ILS-VRPDOC does not only outperform
the DHL solutions regarding the total travel time but also provides significantly
simpler solutions with regards to the letter collection operations at the tables.
The results show that relevant improvements can be obtained by including our
problem-specific sparsification methods. We carry out an extensive analysis of

65

the solutions obtained for the real-world DHL instances, assess the cost that the
consideration of the depot operation constraints has on the total travel times,
and evaluate the effect of not considering them on the resulting complexity of
the letter collection operations.

The remainder of the paper is organized as follows. We introduce the notation
and the mathematical formulation of the VRPDOC in Section 3.2. In Section 3.3,
we present complexity results for the VRPDOC. After describing ILS-VRPDOC
in Section 3.4, we present the computational experiments, results, and managerial
insights in Section 3.5. Finally, Section 3.6 concludes the paper.

3.2 Mathematical formulation

In this section, we present a mathematical formulation of the VRPDOC (Section 3.2.1).
Although we tested additional formulations for the VRPDOC (see Appendix A), we
introduce only the best-performing formulation called F1a (see Appendix A.7 for an
experimental comparison). In Section 3.2.2, we further improve Formulation F1a by
proposing preprocessing techniques and valid inequalities.

3.2.1 Formulation F1a

The set of street segments is denoted as I, the depot is represented by d, and the set
of all locations is defined as L = I ∪ {d}. The set of arcs connecting the locations
is denoted by A = {(i, j) : i, j ∈ L, i ̸= j}, and the travel time between each pair
of locations i and j is given by tij. Each street segment i ∈ I is characterized by a
service time si that represents the time needed by the mail carrier to deliver letters to
the households in that street segment.

We denote the set of tables as T , and their organization is defined by the following
parameters. The assignment of street segments to tables is described by binary
parameters at

i, with at
i = 1 if street segment i is assigned to table t, and at

i = 0
otherwise. The binary parameters seqij represent the sequence of street segments
on their table. If street segment j is the direct successor of street segment i, then
seqij = 1, and seqij = 0 otherwise. The binary parameters sameij indicate if two street
segments i and j are assigned to the same table (sameij = 1) or not (sameij = 0).
Additionally, the binary parameters pij = 1 state that street segment i is assigned to
the same table as street segment j, and i is located before j in the sequence, otherwise
pij = 0.

Set K represents the available mail carriers. We introduce binary variables xk
ij to

indicate if mail carrier k goes directly from location i to location j (xk
ij = 1) or not

(xk
ij = 0), binary variables yk

i to describe whether mail carrier k serves street segment i

(yk
i = 1) or not (yk

i = 0), and integer variables uk
i to represent the position of street

66

segment i in the route of mail carrier k. We use binary variables zkt to decide whether
mail carrier k has to visit table t (zkt = 1) or not (zkt = 0).

The objective is to minimize the total travel time that the mail carriers require to
complete their deliveries. The duration of the route traveled by each mail carrier k ∈ K

must be greater than a given lower bound lbk and smaller than an upper bound ubk.
This guarantees that the mail carrier is neither underutilized nor works too much
overtime. The route duration is computed as the sum of the service times and of the
travel times between the locations visited in a route. The upper and lower bounds
on the route duration may differ for each mail carrier because they depend on the
working time imposed by their contract, for example, if a mail carrier has a part-time
position.

Table 3.1 summarizes the mathematical notation.

Sets Description
I Set of street segments
d Depot
L Set of locations L = I ∪ {d}
A Set of arcs A = {(i, j) : i, j ∈ L, i ̸= j}
K Set of mail carriers
T Set of tables
Parameters Description
si Service time of location i ∈ L (service time of the depot is 0)
tij Travel times of all arcs (i, j) ∈ A
lbk Lower bound on the route duration of mail carrier k ∈ K
ubk Upper bound on the route duration of mail carrier k ∈ K
at

i at
i = 1 if street segment i ∈ I is assigned to table t ∈ T

sameij sameij = 1 if street segment i ∈ I and street segment j ∈ I are assigned to the same table
seqij seqij = 1 if street segment i ∈ I and street segment j ∈ I are assigned to the same table and if j is the direct successor of i
pij pij = 1 if street segment i ∈ I and street segment j ∈ I are assigned to the same table and i is located before j
ubmailcarriers Upper bound on the number of allowed mail carriers per table
ubtables Upper bound on the number of allowed tables per mail carrier
ubskipping Upper bound on the number of allowed skips (the total number of times the mail carriers have to skip letters on the table)
ubtablechanges Upper bound on the number of allowed table changes
M Big M (M ≥ |I|)
Decision variables Description
xk

ij ∈ {0, 1} xk
ij = 1 if mail carrier k ∈ K goes directly from location i to location j, xk

ij = 0 otherwise
yk

i ∈ {0, 1} yk
i = 1 if mail carrier k ∈ K serves street segment i, yk

i = 0 otherwise
zkt ∈ {0, 1} zkt = 1 if mail carrier k ∈ K has to visit table t, zkt = 0 otherwise
uk

i ∈ Z≥0 Position of street segment i ∈ I in the route of mail carrier k ∈ K

Table 3.1: Summary of the notation for the VRPDOC model.

Formulation F1a represents the VRPDOC as the following integer program:

min
∑
k∈K

∑
(i,j)∈A

tijxk
ij (3.1)

s.t.
∑

j∈δ+
i

xk
ij = yk

i i ∈ I, k ∈ K (3.2)

∑
i∈δ−

j

xk
ij = yk

j j ∈ I, k ∈ K (3.3)

∑
j∈δ+

d

xk
dj = 1 k ∈ K (3.4)

∑
i∈δ−

d

xk
id = 1 k ∈ K (3.5)

67

∑
k∈K

yk
i = 1 i ∈ I (3.6)∑

i∈I

siy
k
i +

∑
(i,j)∈A

tijxk
ij ≤ ubk k ∈ K (3.7)

∑
i∈I

siy
k
i +

∑
(i,j)∈A

tijxk
ij ≥ lbk k ∈ K (3.8)

yk
i at

i ≤ zkt i ∈ I, k ∈ K, t ∈ T (3.9)∑
k∈K

zkt ≤ ubmailcarriers t ∈ T (3.10)∑
t∈T

zkt ≤ ubtables k ∈ K (3.11)∑
k∈K

∑
i∈I

∑
j∈I:j ̸=i

xk
ij(1 − sameij) ≤ ubtablechanges (3.12)

uk
i ≤ Myk

i i ∈ I, k ∈ K (3.13)

uk
i − uk

j + 1 ≤ M(1 − xk
ij) (i, j) ∈ A, k ∈ K (3.14)

uk
i − uk

j + 1 ≥ −M(1 − xk
ij) (i, j) ∈ A, k ∈ K (3.15)

uk
d = 1 k ∈ K (3.16)

uk
i − uk

j ≤ (2 − yk
i − yk

j) · ubk (i, j) ∈ A : pij = 1, k ∈ K (3.17)∑
i∈I

∑
j∈I:j ̸=i

∑
k∈K

xk
ij · sameij · (1 − seqij) ≤ ubskipping (3.18)

xk
ij ∈ {0, 1} (i, j) ∈ A, k ∈ K (3.19)

yk
i ∈ {0, 1} i ∈ I, k ∈ K (3.20)

uk
i ∈ Z≥0 i ∈ L, k ∈ K (3.21)

zkt ∈ {0, 1} k ∈ K, t ∈ T (3.22)

The objective of minimizing the total travel time needed by the mail carriers
for completing their routes is defined in (3.1). Constraints (3.2) and (3.3) ensure
that mail carrier k traverses exactly one outgoing and one ingoing arc of street
segment i, respectively, if street segment i is served by mail carrier k. Constraints (3.4)
and (3.5) guarantee that every mail carrier leaves and returns to the depot exactly
once. Constraints (3.6) state that every street segment is visited by exactly one mail
carrier. The upper and lower bounds on the duration of the routes are modeled in
constraints (3.7) and (3.8). Constraints (3.9) link variables y and z such that if mail
carrier k serves street segment i, and i is located at table t, mail carrier k has to visit
table t. The table, the mail carrier, and the table change constraints are modeled in
constraints (3.10), (3.11), and (3.12), respectively. Constraints (3.13)–(3.16) define the
subtour elimination in the form of the well-known Miller-Tucker-Zemlin constraints.
The precedence constraints are given in constraints (3.17). If two street segments i ∈ I

and j ∈ I that fulfill the precedence constraints (i.e., pij = 1) are assigned to the
same mail carrier k, the right-hand-side of the constraint becomes zero, and thus,
the index of street segment i in the assigned route is forced to be smaller than the
index of street segment j. To model the skipping constraints, a counter keeps track of
the number of times that the mail carrier needs to skip letters while collecting them

68

from the shelves, which is the case if the following three conditions are simultaneously
satisfied: (i) two street segments i ∈ I and j ∈ I are served directly after each other
in the route of a mail carrier, (ii) they are assigned to the same table, and (iii) j is not
the direct successor of i on the table (see constraints (3.18)). Finally, the domain of
the variables is defined in constraints (3.19)–(3.22). Note that the u-variables can also
be defined as continuous variables. However, preliminary experiments showed that
defining them as continuous variables and removing constraints (3.15) and (3.16) has
no impact on the performance of the model. Therefore, we use the integer definition
of the variables.

3.2.2 Preprocessing and valid inequalities

To improve Formulation F1a, we restrict the size of the problem by proposing prepro-
cessing techniques in Section 3.2.2.1, and we strengthen the formulation by introducing
valid inequalities in Section 3.2.2.2.

3.2.2.1 Preprocessing techniques

We propose two preprocessing techniques to remove infeasible arcs.
Precedence (Prec) The first preprocessing technique is based on the precedence

constraints. A variable xk
ji, (j, i) ∈ A, k ∈ K can be fixed to zero (i.e., xk

ji = 0) if the
following condition holds:

pij = 1. (3.23)

Condition (3.23) states that if two street segments i ∈ I and j ∈ I visited by the same
mail carrier k are assigned to the same table and i is located before j (i.e., pij = 1), j

cannot precede i. Then, variable xk
ji can be fixed to zero.

Street segments incompatibility (pre SegInc) The second preprocessing
technique is based on the route duration constraints. A variable xk

ij , (i, j) ∈ A, k ∈ K

can be fixed to zero (i.e., xk
ij = 0) if the following condition holds:

si + sj + tij ≥ ubk. (3.24)

If the sum of the service times of street segments i and j and the travel time between i

and j exceeds the upper bound on the route duration of mail carrier k, then only one
of the two street segments i and j can be served by mail carrier k and variable xk

ij

can be fixed to zero.
If the triangle inequality holds for the travel times, we can strengthen condition (3.24)
to:

tdi + si + tij + sj + tjd ≥ ubk. (3.25)

69

3.2.2.2 Valid inequalities

To strengthen Formulation F1a, we propose the following four classes of valid inequal-
ities.

Street segments incompatibility (vi SegInc) If the sum of the service times
of street segments i and j and the travel time between i and j exceeds the upper
bound on the route duration of mail carrier k, at most one of these two street segments
can be assigned to mail carrier k. This is described by the following valid inequality:

yk
i + yk

j ≤ 1 (i, j) ∈ A : si + sj + tij ≥ ubk, k ∈ K. (3.26)

If the triangle inequality holds for the travel times, we can strengthen the valid
inequality to:

yk
i + yk

j ≤ 1 (i, j) ∈ A : tdi + si + tij + sj + tjd ≥ ubk, k ∈ K. (3.27)

2-cycle and 3-cycle elimination constraints (Cycle) To strengthen the
subtour elimination, we directly forbid 2- and 3-cycles by adding the following two
valid inequalities that are frequently used in the literature (see, e.g., Irnich and
Villeneuve, 2006):

xk
ij + xk

ji ≤ 1 (i, j) ∈ A, k ∈ K, (3.28)
xk

ij + xk
jv + xk

vi ≤ 2 i, j, v ∈ I : i ̸= j ̸= v, k ∈ K. (3.29)

Bounds on the number of street segments within each route
(NumSegBounds) We compute the minimum and maximum number of street seg-
ments mink

num street segments and maxk
num street segments, respectively, that can be as-

signed to a mail carrier.
To obtain the minimum number, we compute, for each street segment, the sum

of its service time and of the travel time of the arc from the street segment to the
location farthest away from the street segment, i.e., we compute

si + max
j∈L

{tij} (3.30)

for each street segment i ∈ I. We store these sums in decreasing order in a list
called γdec. Then, we iterate through that list and add up the entries. We stop as
soon as the sum exceeds the lower bound lbk on the duration of the route of mail
carrier k. The iteration counter, i.e., the number of entries we have summed up, is
the minimum number of street segments that must be assigned to that mail carrier:

mink
num street segments = min{j|

j∑
i=1

γdec[i] > lbk}. (3.31)

70

The procedure to obtain the maximum number of street segments that can be
assigned to a mail carrier is analogous. We compute, for each street segment, the sum
of its service time and of the travel time of the arc from the street segment to the
location closest to the street segment, i.e., we compute

si + min
j∈L

{tij} (3.32)

for each street segment i ∈ I. We store these sums in increasing order in a list
called γinc. Then, we iterate through that list and add up the entries. We stop as
soon as adding the next entry to the sum would exceed the upper bound ubk on the
duration of the route of mail carrier k. The iteration counter, i.e., the number of
entries we have summed up, is the maximum number of street segments that can be
assigned to that mail carrier:

maxk
num street segments = max{j|

j∑
i=1

γinc[i] < ubk}. (3.33)

Finally, we can add the following valid inequalities to the model:

∑
i∈I

yk
i ≥ mink

num street segments k ∈ K, (3.34)
∑
i∈I

yk
i ≤ maxk

num street segments k ∈ K. (3.35)

Symmetry breaking constraints (SymBreak) Symmetry breaking constraints
are regularly used in models of VRPs with a homogeneous fleet (see, e.g., Archetti
et al., 2014; Lahyani et al., 2018; Darvish et al., 2020). Darvish et al., 2020 recommend
to use hierarchical constraints because they perform best in terms of solution quality
and runtime. The hierarchical formulation of symmetry breaking constraints has the
following form:

yk
i ≤

i−1∑
j=1

yk−1
j i ∈ I, k ∈ K \ {0}. (3.36)

Constraints (3.36) ensure that if street segment i is served by mail carrier k, then
at least one street segment with an index smaller than i must be served by mail
carrier k − 1.

These constraints are defined for VRPs with a homogeneous fleet and cannot be
used for the heterogeneous case. However, for the VRPDOC, it is rarely the case that
all mail carriers have different upper and lower bounds on the route duration due to
standardized working contracts. Instead, there are groups of mail carriers with the
same upper and lower bounds on the route duration. So although we cannot define
the symmetry breaking constraints on the whole set of mail carriers, we can still use

71

them within each group.
Let us assume that the mail carriers are divided into a set of disjoint groups G =
{K1, K2, . . . , K|G|} with K1 ∪ K2 ∪ · · · ∪ K|G| = K, K1 ∩ K2 ∩ · · · ∩ K|G| = ∅. Each
group Kg = {kg1 , . . . , kg|Kg |} contains mail carriers that have the same upper and lower
bound on their route duration. Then, we can add the following valid inequalities:

y
kgl
i ≤

i−1∑
j=1

y
kgl−1
j i ∈ I, g ∈ {1, . . . , |G|}, l ∈ {2, . . . , |Kg|}. (3.37)

In the special case in which all mail carriers have the same upper and lower bound
on their route duration, the VRPDOC is a variant of the VRP with a homogeneous
fleet, and because all mail carriers are in the same group, constraints (3.37) exactly
correspond to constraints (3.36).

3.3 Complexity results

In this section, we present results about the complexity of the VRPDOC. We refer to
the problem of identifying a feasible solution of the VRPDOC as the vehicle routing
feasibility problem with depot operation constraints (VRFPDOC). In Theorem 3.3.1,
we show that the VRFPDOC is NP-complete. We then define a relaxed version of the
VRFPDOC with regard to the route duration constraints, and we call it VRFPDOCrel.
In Theorem 3.3.2, we show that a solution for the VRFPDOCrel (that is, a solution
that is feasible for all the other constraints of the VRPDOC except for the route
duration constraints and those forbidding empty routes) can be found in polynomial
time.

Theorem 3.3.1 The VRFPDOC is NP-complete.

Proof. To show that the VRFPDOC is NP-complete, we show that the subproblem
of assigning street segments to mail carriers in such a way that they fulfill the route
duration constraints is NP-complete.

We use a transformation of an instance of the VRFPDOC to an instance of a
particular case of the knapsack problem, which is known to be NP-complete (Garey
and Johnson, 1979) and is defined as follows:

• Instance: Given a set P = {p1, p2, . . . , pn} with pi ∈ R≥0 and positive integers
B and C with B < C.

• Question: Does there exist a subset P ′ ⊆ P such that: ∑
pi∈P ′

pi ≥ B and∑
pi∈P ′

pi ≤ C?

We assume an instance of this knapsack problem to be given. We now consider the
following instance of the VRFPDOC:

72

• The number of street segments |I| is given by n.

• The service time si of street segment i ∈ I is given by si = pi.

• The travel times are tij = 0 for all (i, j) ∈ A.

• There is one mail carrier k ∈ K with lbk = B and ubk = C.

• The upper bounds for the depot operations constraints are given by ubmailcarriers =
ubtables = ubskipping = ubtablechanges = ∞.

Then, the question of the knapsack problem is equivalent to the question whether
there exists a subset of street segments so that the route duration constraint of mail
carrier k is fulfilled.

If the knapsack problem has a “yes” answer, then we can transform the solution of
the knapsack problem to a solution of the subproblem of assigning street segments to
mail carrier k by setting yk

i = 1 if pi ∈ P ′, and yk
i = 0 otherwise. In the same manner,

if a subset of street segments I ′ ⊆ I fulfills ∑
i∈I′ si <= lbk and ∑

i∈I′ si >= ubk, then
by including in P ′ the items pi that are represented by the street segments i ∈ I ′, the
knapsack problem has a “yes” answer.

Theorem 3.3.2 A feasible solution for an instance of the VRFPDOCrel can be found
in polynomial time.

Proof. We perform a proof by cases. The only three cases that can occur depending
on the relationship between the desired number of mail carriers |K|, and the number
of tables |T | are the following:

1. The number of desired mail carriers is equal to the number of tables (|K| = |T |).
In this case, we assign one table to each mail carrier, and let them visit the
street segments according to the sequence in which they are sorted on the table,
that we denote by uk

i . We obtain a solution identical to the one corresponding to
the organization of the tables. Hence, it is trivial to see that the VRFPDOCrel

solution is feasible with respect to all constraints (i.e., there is only one mail
carrier per table, one table per mail carrier, no skips, and no table changes).

2. The number of desired mail carriers is greater than the number of tables
(|K| > |T |). In this case, we assign one table to each of the |T | mail carriers, and
let them visit the street segments according to the sequence in which they are
sorted on the table, that we denote by uk

i . Then, we assign an empty route to
each of the remaining |K| − |T | mail carriers. Because of the reasons explained
in Case 1, such a solution is feasible with respect to all VRFPDOCrel constraints.

73

3. The number of desired mail carriers is lower than the number of tables (|K| < |T |).
In this case, we assign the street segments of table t to the route of mail
carrier k = t(mod|K|). Then, each mail carrier visits the street segments
according to the sequence in which they are sorted on the tables. For this case,
it is necessary to analyze the depot operation constraints one by one:

• Precedence constraints: Because the street segments are visited according
to the sequence in which they are sorted on the tables, the precedence
constraints are fulfilled.

• Skipping constraints: Because the street segments are visited according to
the sequence in which they are sorted on the tables, the skipping constraints
are fulfilled.

• Table constraints: Because each table is visited by exactly one mail carrier,
the table constraints are fulfilled.

• Mail carrier constraints: By assigning table t to the route of mail carrier k =
t(mod|K|), we assign the tables as evenly as possible across the mail carriers.
This corresponds to the lowest number of tables per mail carrier that can
be obtained. If the number of tables per mail carrier is higher than the
upper bound imposed by an instance, then the instance is infeasible.

• Table change constraint: By assigning table t to the route of mail carrier
k = t(mod|K|), we have exactly |T | − |K| table changes in the solution.
This corresponds to the minimum number of table changes of any feasible
solution.

Because in all three cases the sequence of street segments is fixed and we just assign
complete tables to mail carriers, the heuristics described run in O(|T |) in all three
cases.

3.4 An iterated local search for the VRPDOC

In this section, we introduce our ILS-VRPDOC algorithm (see Figure 4 for a pseu-
docode overview).

We generate a starting solution S0 using the construction heuristic described in
Section 3.4.1. Then, the ILS presented in Section 3.4.2 is executed. In each ILS
iteration, a local search based on a variable neighborhood descent (VND) is applied
to improve solution S (see Section 3.4.2.1). In the VND, we allow infeasibilities only
with respect to the route duration constraints. At the end of the VND, if the improved
solution S is better than the overall best-found solution S∗, S∗ is updated. Then, we
perturb the best-found solution S∗ (Section 3.4.2.2). The ILS terminates if either η

iterations without improvement or a given time limit of τ seconds are reached.

74

Algorithm 4: Pseudocode of the ILS-VRPDOC algorithm
1 S ← constructionHeuristic()
2 S∗ ← S, S ← S

3 while termination criterion not satisfied do
4 S ← VND(S)
5 if c(S) < c(S∗) then
6 S∗ ← S

7 c(S∗)← S

8 end
9 S ← Perturbation(S∗)

10 end
11 return S∗

3.4.1 Construction heuristic

To build an initial solution, we iterate a route-first cluster-second approach. Sec-
tion 3.4.1.1 describes how to build a giant route consisting of all street segments.
Section 3.4.1.2 explains how to cut this giant route to obtain as many routes as the
number of desired mail carriers |K|. If these two steps don’t lead to a feasible solution,
we start again by constructing a different giant route and trying to cut it. We stop,
as soon as we find a feasible solution.

3.4.1.1 Build giant route

The procedure to build the giant route is explained along the example shown in
Figure 3.5. The example contains a depot, 16 street segments, and four tables
indicated by four different colors. Street segments depicted in the same color are
assigned to the same table, i.e., street segments 1–3 are assigned to table 1, street
segments 4–7 to table 2, street segments 8–12 to table 3, and street segments 13–16
to table 4. For the sake of simplicity, we assume that the street segments are sorted
on the tables in increasing order of their number. To ensure that we obtain a feasible
solution with respect to the precedence and skipping constraints, the order in which the
street segments are sorted on the tables is kept. This guarantees that the precedence
constraints are always fulfilled, and the number of times a mail carrier skips letters
while collecting them is zero. To do this, we build a path (one for each table), in
which the street segments are connected according their order on the table (see the
arcs in Figure 3.5(a)). In our example, this leads to four paths representing the four
different tables. Then, we randomly connect these paths to form the giant route. In
Figure 3.5(b), we connect the paths in the following sequence: table 1 – table 3 –
table 4 – table 2 – table 1.

3.4.1.2 Cut giant route

To cut the giant route and obtain the desired number of routes, we solve a path
problem on an auxiliary layered graph. We describe the construction of this graph in

75

d

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

(a)

d

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

(b)

Figure 3.5: Example of the procedure used to build the giant route.

Section 3.4.1.2.1 and the mathematical model of the path problem in Section 3.4.1.2.2.

3.4.1.2.1 Construction of the auxiliary layered graph We denote the auxil-
iary layered graph by Gaux = (Vaux, Aaux). The set Vaux consists of all the vertices
in the giant tour (i.e, all street segments i ∈ I) and of a dummy vertex, i.e., we
define Vaux = I ∪ {dummy}. The set of arcs Aaux describes the routes of the mail
carriers. In particular, an arc (i, j)k, i, j ∈ Vaux : i ̸= j, k ∈ K represents a route
starting at street segment i, and serving all street segments up to j (j excluded)
traveled by mail carrier k. The set Aaux contains only arcs that are feasible with
respect to the route duration constraints and mail carrier constraints. Consequently,
for each mail carrier, we add an arc (i, j)k only if (i) the sum of the service times of
all street segments visited between i and the predecessor of j and the travel times
for visiting these street segments lies within the lower and upper bound of the route
duration of that mail carrier k, and (ii) the route described by (i, j)k does not visit
more than ubtables tables. The construction of such an auxiliary graph is explained in
the following example.

Example 3.4.1 Given is a giant route (s1, s2, s3, s4, . . .) obtained by applying the
procedure described in Section 3.4.1.1, where s stands for street segment. Assume
that, given a certain demand, DHL decides that three mail carriers are needed with
the following lower and upper bounds on their route duration: (lb1, ub1) = (3, 4),
(lb2, ub2) = (3, 5), and (lb3, ub3) = (4, 5). Hence, we cut the giant route to obtain three
routes. For the sake of simplicity, in this example, we do not include the mail carrier
constraint, and we assume that the lower and upper bound on the route duration only
consider the service time and avoid the inclusion of the travel times between street
segments in these constraints. Moreover, the service time of each street segment is
assumed to be equal to one, so that the lower and upper bound on the route duration
correspond to a lower and upper bound on the number of street segments per route.

The auxiliary graph has layers that are added one by one. The first layer of the

76

graph represents the first route that has to start at the first street segment s1 of
the giant route. To construct this first layer, we add, for every mail carrier, all arcs
with i = s1 that describe feasible routes with respect to the route duration and the
mail carrier constraints. Figure 3.6 shows an example of this first layer. Each of the
three mail carriers is represented by a different color (green, blue, orange). The first
mail carrier k1 (green) has a lower bound of lb1 = 3 and an upper bound of ub1 = 4
on the route duration. Thus, for this mail carrier, only the two routes described by
the green arcs are feasible: the route that includes street segments s1, s2, and s3

and that is represented by the arc (s1, s4)k1 , and the route that includes the street
segments s1, s2, s3, and s4 and that is represented by the arc (s1, s5)k1 . Analogously,
we add the arcs for the second (blue) and the third (orange) mail carrier. Because
each arc is not only defined by its origin and destination but also by the mail carrier,
the resulting graph is not simple, and several arcs with the same origin and destination
are possible.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 . . .

Figure 3.6: First layer of an exemplary auxiliary layered graph built to cut the giant
route.

To construct the second layer, the procedure is similar to the one applied to obtain
the first layer. The only difference is that we have to consider all street segments
that are arc destinations in the first layer as origin vertices. Hence, there may be
more origin vertices than the one (s1) in the first layer. In the example in Figure 3.7,
the origin vertices for the second-layer are the street segments s4, s5, and s6. Then,
we iterate over all possible origin vertices, and add, for each mail carrier, the arcs
representing feasible routes as described for the first layer.

All following layers are build analogously to the second layer. Because we need
exactly one route per mail carrier, in total we need |K| layers. ⋄

3.4.1.2.2 Path problem After obtaining the auxiliary layered graph, we solve
a path problem to find a feasible solution to the problem of cutting the giant route
into the desired number of routes. For the model formulation, we consider the set of
vertices Vaux = (s1, s2, . . . , s|I|, dummy) and the set of arcs Aaux as they appear in the
auxiliary layered graph. We denote the number of table changes implied by the route
described by the arc (i, j)k for all k by tcij, and the binary parameter tvt

ij indicates

77

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 . . .

Figure 3.7: First two layers of an exemplary auxiliary layered graph built to cut the
giant route.

whether the route described by the arc (i, j)k for all k implies a visit to table t ∈ T .
Finally, the binary variable xk

ij ∈ {0, 1} determines if mail carrier k executes the route
described by arc (i, j)k (xk

ij = 1) or not (xk
ij = 0). We obtain the following binary

program for the path problem:

min 0 (3.38)
s.t.

∑
(i,j,k)∈Aaux:i=s1

xk
ij = 1 (3.39)

∑
(i,j)k∈Aaux:j=dummy

xk
ij = 1 (3.40)

∑
(i,j)k∈Aaux:j=j′

xk
ij =

∑
(j,i,k)∈Aaux:j=j′

xk
ji j′ ∈ Vaux \ {s1, dummy} (3.41)

∑
(i,j)k∈Aaux:k=k′

xk
ij = 1 k′ ∈ K (3.42)

∑
(i,j)k∈Aaux

tvt
ij · xk

ij ≤ ubmailcarriers t ∈ T (3.43)

∑
(i,j)k∈Aaux

tcij · xk
ij ≤ ubtablechanges (3.44)

xk
ij ∈ {0, 1} (i, j)k ∈ Aaux (3.45)

Because the goal is only to find a feasible solution, the objective function (3.38) is set
to zero. Constraints (3.39), (3.40), and (3.41) ensure that we obtain a path from the
first to the last vertex in the giant route. Constraints (3.42) guarantee that exactly
one arc is chosen for each mail carrier in the resulting path. The table constraints and
table change constraints are modeled in constraints (3.43) and (3.44), respectively.
The domain of the variables is defined in constraints (3.45).

We remark that if all mail carriers have the same lower and upper bound on the
route duration, the number of arcs in the auxiliary graph drastically decreases and,
consequently, also the size of the mathematical model. In fact, the information of which
route is performed by which mail carrier is disregarded and, without loss of generality,
we randomly assign mail carriers to layers. Referring to Example 3.4.1, suppose that

78

now all three mail carriers have the same lower and upper bound (lb, ub) = (3, 5). The
first two layers of the auxiliary layered graph are depicted in Figure 3.8. Because all
mail carriers have the same lower and upper bounds on the route duration, we can
arbitrarily assign the first layer to the blue mail carrier, and the second layer to the
green mail carrier.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 . . .

Figure 3.8: Exemplary auxiliary layered graph to cut the giant route if all mail carriers
have the same upper and lower bound on the route duration.

This path problem does not necessarily need to be feasible. In this case, we revert
to constructing the giant route. Since the order in which the paths representing the
tables are connected is randomized, repeating the procedure produces a different giant
route. These two steps are iterated until a feasible solution is found. In preliminary
studies, we also considered starting from an infeasible initial solution, however, results
showed that it is always beneficial to start from a feasible solution.

To summarize, our construction heuristic builds a giant route consisting of all
street segments, and cuts it into the desired number of routes by solving a mathe-
matical model. We guarantee that all constraints of the VRPDOC are fulfilled in the
construction heuristic, namely:

• The route duration constraints are fulfilled because we only add arcs to the
auxiliary layered graph that represent feasible routes with respect to the route
duration constraints.

• The precedence constraints are respected because, in the giant route, the street
segments are visited in the same sequence in which they are sorted on the tables.

• The skipping constraints are satisfied because, in the giant route, the street
segments are visited in the same sequence in which they are sorted on the tables.
Consequently, no letters have to be skipped.

• The table constraints are fulfilled due to their inclusion in model (3.38)–(3.45)
of the path problem.

• The mail carrier constraints are respected because we only add arcs that represent
feasible routes with respect to the mail carrier constraints to the auxiliary layered
graph.

79

• The table change constraint is satisfied due to its inclusion in model (3.38)–(3.45)
of the path problem.

3.4.2 Iterated local search

We design our ILS according to the classical ILS framework originally proposed by
Lourenço et al., 2003. Each iteration of the ILS consists of two phases. The first phase
corresponds to a VND with the goal of improving the solution with respect to the total
travel time (Section 3.4.2.1). In the VND, we allow infeasible solutions as described
in more detail in Section 3.4.2.1.1. The second phase consists of a perturbation with
the goal of reaching new areas of the search space (Section 3.4.2.2).

3.4.2.1 Variable neighborhood descent

In the VND, we iteratively evaluate neighboring solutions with a first improvement
search strategy. Each neighboring solution is obtained by applying a move that is
uniquely defined by an operator o from the ordered set of neighborhood operators O

and a so-called generator arc (i, j) ∈ A. After the execution of the move, the generator
arc (i, j) is part of the solution. Because we apply a first improvement search strategy,
the order in which we evaluate the moves has an impact on the search trajectory. As
soon as we find an improving solution, we accept it, and we restart the search with
the newly obtained solution and the first neighborhood operator. During the search
process, the VND is allowed to visit solutions that are infeasible with regard to the
lower and the upper bounds on the route duration. The solutions are penalized by
means of a generalized cost function in which the penalty parameters are determined
via a dynamic mechanism.

Algorithm 5 shows the pseudocode of the VND. The VND is always initiated with
a feasible solution S. In the first ILS iteration, solution S corresponds to the one
returned by the construction heuristic. For the following iterations, solution S is the
one returned by the perturbation phase. During the search, the best feasible solution
is denoted by Sbest. At the beginning of each ILS iteration, to increase the likelihood
that different search trajectories are explored, the operators from the set O (described
in Section 3.4.2.1.2) and the street segments from the set I used as the origin vertices
of the generator arcs are saved in ordered sets Õ and Ĩ and randomly shuffled. The
penalty parameter α is initialized to α0. As long as solution Sbest improves, the VND
traverses the neighborhood operator set Õ. The generator arc is obtained by pairing
a vertex i from the set of shuffled street segments Ĩ, and a vertex j from the list Li

in which the possible end vertices for the generator arcs originating in i are saved
(see Section 3.4.2.1.3 for the construction of Li). Given a neighborhood operator
and a generator arc, the move is applied to solution S, and a new solution S

′ is
obtained. Solution S

′ is then evaluated with the generalized cost function as described

80

in Section 3.4.2.1.1. If the cost of solution S
′ is lower than that of S, S

′ becomes the
new incumbent solution. Moreover, if S

′ is a feasible solution and better than the
overall best feasible solution, we update Sbest. The penalty parameter α is updated
depending on the amount by which the lower and the upper bounds on the route
duration are violated.
If no improvement can be found, the VND terminates.

Algorithm 5: Pseudocode of VND(S)
1 Sbest = S
2 improvement = false
3 Ĩ, Õ = shuffle(I, O)
4 α = α0
5 while improvement do
6 improvement = false
7 for o ∈ Õ do
8 for i ∈ Ĩ do
9 for j ∈ Li do

10 S ′ ← move(o, i, j, S)
11 if cgen(S ′) < cgen(S) then
12 improvement = true
13 S ← S ′

14 c(S)← c(S ′)
15 if viol(S′) = 0 and c(S′) < c(Sbest) then
16 Sbest ← S ′

17 c(Sbest)← c(S ′)
18 end
19 α← updateAlpha(α, viol(S′))
20 goto line 5
21 end
22 end
23 end
24 end
25 return Sbest

3.4.2.1.1 Evaluation of infeasible solutions By allowing the VND to visit
infeasible solutions, it is possible to escape local optima, which leads to more flexibility
in the exploration of the solution space. We only allow infeasibility in the route
duration constraints because of two reasons: i) As proven in Theorem 3.3.2, a solution
to the VRFPDOCrel can be found in polynomial time, which is not true for other
constraints. This suggests, that by allowing infeasibility in these constraints in the
VND, we gain the most flexibility in the exploration of the solution space. ii) We use a
generalized cost function that penalizes the violation of the route duration constraints,
which is expressed in the same measurement unit as the objective function of the
VRPDOC (i.e., time). Therefore, it is not necessary to calibrate the penalty due to
the use of different measurement units.

Let viol(S) be the cumulative route duration violation of a given solution S, c(S)
the objective function value of solution S (i.e., the total travel time of solution S),

81

and α the penalty factor. Then, the generalized cost function cgen(S) is:

cgen(S) = c(S) + α · viol(S).

We apply the dynamic mechanism similar to Schneider and Löffler (2019) to update
the penalty parameter α. We initialize the penalty factor α to α0. If the current
solution is infeasible, we multiply α by a factor δ > 1 to increase the penalization of
route duration violations. By doing so, the search is guided towards feasible solutions.
On the contrary, if the current solution is feasible, we divide α by a factor δ > 1 to
decrease the penalization of route duration violations. This brings more diversification
in the search as infeasible solutions are penalized less strongly. If α is not bounded, it
can increase or decrease strongly, and a lot of iterations are then needed to get back to
an adequate value. To avoid this and make the penalty mechanism more reactive, we
introduce two additional parameters αmin and αmax, and as soon as a feasible solution
is found, we set α = min(αmax, α

δ
). Otherwise, we set α = max(αmin, αδ).

3.4.2.1.2 Neighborhood operators The neighborhood operators contained in
set O are defined such that together with a generator arc (i, j) they uniquely identify
a move. The neighborhood operators are presented in Figure 3.9 and are:

1. exchange-1 swaps the positions of two street segment, and it is defined in both
intra- and inter-route fashion.

2. relocate-1 moves one street segment to a different position, and it is defined in
both intra- and inter-route fashion.

3. relocate-2 moves one street segment and its predecessor to a different position,
and it is defined in both intra- and inter-route fashion.

4. relocate-3 moves one street segment and its two predecessors to a different
position, and it is defined in both intra- and inter-route fashion.

If we restrict ourselves to the described traditional VRP operators, it can happen
that the depot operations constraints together with the constraints on the route
duration of a given instance are so tight that it is not possible to move from one
feasible solution to another one. Consequently, we have no possibility to escape from
a possibly low-quality local optimum. In the example in Figure 3.10, we are given a
solution of an instance with six preparation tables, represented by the different colors,
and we have to find a solution with three mail carriers. Assume that in this instance
the upper bound of allowed table changes is three, then there is no feasible move that
can be applied to this solution because applying any of the moves described above
leads to four table changes. There might be other feasible solutions but they cannot
be reached with the set of neighborhood operators above.

82

Legend:

street segment

depot or street segment

unmodified arc

inserted arc

removed arc

i+

i

i−

j

j−

j=

(a) exchange-1

i+

i

i−

j

j−

i+

i

i−

i=

j

j−

i+

i

i−

i=

i≡

j

j−

(b) relocate-1 (c) relocate-2 (d) relocate-3

Figure 3.9: Neighborhood operators of ILS-VRPDOC. The generator arc is given
by (i, j). The predecessor and successor of i are denoted as i− and i+, respectively.
Note that in all of the operators presented, arc (i, j) is always an arc inserted into the
solution.

k1 d d

k2 d d

k3 d d

Figure 3.10: The routes of a solution for an instance with six preparation tables
represented by the different colors and three mail carriers.

To overcome this problem, we introduce an additional problem-specific neighbor-
hood operator called swap-tables. The operator swaps all street segments of two
tables tm and tn, m ̸= n, between two mail carriers ki and kj, i ≠ j. To do this, all
street segments in the route of mail carrier ki that are assigned to table tm are moved
to the end of the route of mail carrier kj in the order they appear in the route of mail

83

carrier ki, and vice versa. An example is given in Figure 3.11. At the top of the figure,
the original routes of mail carriers k1 and k2 are depicted. The colors represent the
tables, and the numbers represent the order of the street segments on the tables. We
now swap the street segments from the red table of mail carrier k1 with the street
segments from the green table of mail carrier k2. The resulting solution is given in the
middle of the figure. However, in the case in which either mail carrier ki is already
visiting street segments assigned to table tn or mail carrier kj is already visiting street
segments assigned to table tm, it can happen that the precedence constraints are
violated. In our example, mail carrier k2 is already visiting two street segments of
the red table, and the resulting route does not fulfill the precedence constraints. To
overcome this problem, we additionally remove all street segments assigned to table tm

(tn) from the route of mail carrier kj (ki) and reinsert them at the end of the route at
the correct position according to the order they are assigned to the table. The final
resulting solution is given at the bottom of the figure.

ki d 1 1 2 3 1 2 5 6 7 2 3 4 d

kj d 4 5 1 2 3 4 3 4 6 1 2 3 d

⇝
ki d 1 1 2 5 2 3 4 1 2 3 4 d

kj d 4 5 3 4 6 1 2 3 1 2 3 6 7 d

⇝
ki d 1 1 2 5 2 3 4 1 2 3 4 d

kj d 3 4 6 1 2 3 1 2 3 4 5 6 7 d

Figure 3.11: Example of the swap-tables operator applied to the routes of mail carriers
ki and kj.

3.4.2.1.3 Composition of the generator arc set We speed up the search by
avoiding to evaluate unpromising moves. Recall that the neighborhood operators are
designed in such a way that the generator arc (i, j) is always inserted in the solution.
Hence, we identify those arcs that are likely to be part of good-quality solutions, and
we only consider these arcs as generator arcs. This process, that is called sparsification
and gives rise to granular neighborhoods, was first proposed by Toth and Vigo, 2003
and later applied in multiple works (see, e.g., Prins et al., 2007; Escobar et al., 2014;
Goeke, 2019).

To guarantee that for each street segment a given number of incident arcs is
always included in the generator arc set (even if a street segment is isolated), we

84

use a street segment-based sparsification method based on distance. For every street
segment i ∈ I, we build the list Li consisting of the κ closest street segments (κ ∈ N)
to i. The arcs defined by pairing a street segment i ∈ I with a street segment j ∈ Li

are used as generator arcs.
Based on the specific features of the VRPDOC, we also derive two strategies for

enriching the generator arc set defined above. The first strategy consists of adding to
set Li all street segments that are assigned to the same table of i and that fulfill the
precedence constraints. The arcs added based on this criterion always guarantee that
the mail carrier and the table constraints are respected.

The second strategy is motivated by the presence of rural areas that DHL has to
serve. In rural areas, there can be one or more villages located far away from each
other. Each such village corresponds to a route (i.e., to a table at the depot). For the
street segments of these routes, limiting the composition of set Li as described above,
implies that only arcs connecting i to street segments of the same route exist, and
no arcs connecting them to other routes exist. Figure 3.12 shows an example of an
instance with 13 street segments and three tables represented by three different colors.
The arcs between the street segments correspond to the arcs identified by the street
segment-based sparsification method with κ = 2 (i.e., for each street segment, only the
two closest street segments are added to the set Li). We observe that the blue route is
isolated with no generator arcs connecting one of its street segments to those of other
routes. Adding arcs connecting all street segments on the same table that fulfill the
precedence constraints does not change this situation. To overcome this problem, the
second strategy consists in enriching Li with one vertex jt per table t ∈ T , where jt is
the closest vertex to i on table t.

Figure 3.12: Example of the generator arc set for a rural instance obtained by only
considering the street segment-based sparsification method based on distance with
κ = 2 .

We finally apply the preprocessing techniques SegInc p and Precedence (Section
3.2.2.1) to remove from set Li all those street segments generating infeasible arcs.
Because we do not have a separate generator arc set for each mail carrier, for SegInc p,
two street segments are incompatible to be in the same route only if condition 3.24 is

85

fulfilled for the maximum upper bound ubk for k ∈ K.
Contrary to the relocate and exchange neighborhood operators, the swap-tables

neighborhood operator is always defined by two mail carriers and two tables (k1, k2, tm,

tn) and not by a generator arc (i, j). Consequently, we cannot apply the sparsification
techniques described above. Because the number of mail carriers and the number
of tables is usually a lot smaller compared to the number of street segments, and
because it is hard to identify pairs of mails carriers leading to good swap-table moves,
we search the complete swap-tables neighborhood.

3.4.2.2 Perturbation

To perturbate, we apply a number of random feasible moves defined by the operators
presented in Section 3.4.2.1.2 to the overall best-found solution. Because the required
perturbation strength depends on the size of an instance, we set the number of applied
moves to ⌈pperturb · |I|⌉, with 0 < pperturb < 1.

3.5 Computational experiments

The goal of our computational study is threefold:

• First, we investigate the performance of different formulations for the VRPDOC.
We evaluate the effectiveness of using preprocessing techniques and valid in-
equalities with the best-performing formulation determined by pretests that are
described in Appendix A (see Section 3.5.2).

• Second, we assess the performance of ILS-VRPDOC by comparing its results
to the ones of a commercial solver for a set of small-scale instances, and to the
solutions computed by DHL for a set of large-scale real-world instances. For the
latter, we also compare the structure of the solutions by analyzing routing- and
depot-operation-based solution metrics (see Sections 3.5.3 and 3.5.4).

• Third, we study the impact that the depot operation constraints have on the
routing decisions and give managerial insights (see Section 3.5.5).

All experiments are performed on an Intel(R) Xeon(R) computer with a CPU
E5-2430 v2 processor, at 2.50GHz with 64 GB RAM under Debian 12 (Bookworm)
Slim. ILS-VRPDOC is implemented in C++ and compiled using gcc version 12.2. All
mathematical models are solved with Gurobi 10.0.0. To allow for a fair comparison,
all experiments are run on a single thread. If not stated otherwise, we always use the
Gurobi default settings.

The parameter tuning of ILS-VRPDOC is described in Appendix B. We recall that
the VRPDOC can be solved at both the tactical and the operational level. Hence, we
investigate two different algorithmic variants: version ILS-VRPDOCquality focusing on

86

solution quality and to be used at the tactical level, and version ILS-VRPDOCspeed

focusing on runtime and to be used at the operational level. The final parameter values
for both ILS-VRPDOCspeed and ILS-VRPDOCquality are summarized in Table 3.2.

ILS-VRPDOCquality ILS-VRPDOCspeed

η 4000 150
τ 3600 60
κ 5 10
Additional generator arcs included included
(αmin, αmax, α0) (0.1,10,1) (0.1,10,1)
pperturb 0.1 0.1

Table 3.2: Final parameter configurations for ILS-VRPDOCquality and ILS-
VRPDOCspeed.

3.5.1 Description of test instances

Our computational experiments use two instance sets. The first set (Section 3.5.1.1)
is composed of large-scale real-world instances provided by DHL. We use these
instances for the parameter tuning and analysis of the ILS-VRPDOC components
(described in Appendix B), to compare the solutions obtained with ILS-VRPDOC to
the ones provided by DHL in Section 3.5.4, and to assess the effect of including depot
operation constraints on the routing decisions in Section 3.5.5. The second instance set
(Section 3.5.1.2) is composed of small-scale instances derived from the first instance
set, that are used to analyze the VRPDOC formulations in Appendix A.7, to test the
preprocessing techniques and valid inequalities in Section 3.5.2, and to compare the
performance of ILS-VRPDOC and Gurobi in Section 3.5.3.

3.5.1.1 Large-scale instances

The instance set provided by DHL consists of 98 real-world instances representing
the German city of Hannover and its surrounding area, i.e., the set contains a mix of
urban and rural instances. Each instance specifies the complete distance matrix, the
service times of the street segments, the assignment of street segments to the tables
in the depot, the desired number of mail carriers |K|, such that either |K| < |T |
or |K| > |T |, and the upper and lower bounds on the route duration for each mail
carrier. DHL places the latter symmetrically around a given target route duration
based on the working hours of the mail carriers. The number of tables in the instances
varies between six and 30, and the number of street segments varies between 273
and 1408.

DHL also shared with us the solutions that they computed using dynamic pro-
gramming and simple heuristics (details cannot be provided here due to confidentiality

87

reasons) and that they currently follow in practice. For 54 out of the 98 instances,
the DHL solution violates the precedence constraints for some street segments. Con-
sequently, the comparison is not completely accurate because the DHL solutions
are not feasible for the problem described in the paper at hand. Nevertheless, our
solutions strictly respect the precedence constraints also for these instances. To make
the comparison between ILS-VRPDOC and DHL solutions as fair as possible, we set
the values for skipping, mail carrier, table, and table changes of the DHL solution as
input parameters of our ILS-VRPDOC.

The same delivery area (depot and street segments) can appear in different
instances, e.g., with a different number of desired mail carriers, different bounds on
the depot operation constraints, etc.

3.5.1.2 Small-scale instances

Because Gurobi cannot find feasible solutions to the DHL real-world instances in
reasonable runtime, we derive a set of smaller instances from the DHL instances. As
a basis, we select one urban and one rural instance from the DHL set. For both
instances, we randomly choose subsets of 3, 5, and 10 tables, respectively, in such
a way that the structure of the instance (i.e., urban or rural) is preserved. For
each table, we randomly select subsets of 10, 15, and 20 street segments. For each
combination (except for the one with 10 tables and 20 street segments for which
Gurobi cannot find a feasible solution in reasonable runtime), the number of mail
carriers is set to one mail carrier less and one mail carrier more than the number
of tables. This leads to a total of |{urban,rural}| · (|{3, 5, 10}| · |{10, 15, 20}| − 1) ·
|{#mail carriers-1,#mail carriers+1}| = 2 · (3 · 3 − 1) · 2 = 32 instances.

3.5.2 Effectiveness of the preprocessing techniques and valid
inequalities

By means of the computational experiments described in Appendix A.7, we established
that the best-performing formulation is Formulation F1a. In this section, we evaluate
the influence of the preprocessing techniques (Section 3.5.2.1) and valid inequalities
(Section 3.5.2.2) on Formulation F1a to determine the final configuration of the model
to use for the comparison with ILS-VRPDOC. For these experiments, we use the
small-scale instances. The Gurobi time limit is set to two hours.

3.5.2.1 Impact of the preprocessing techniques

To assess the impact of the preprocessing techniques presented in Section 3.2.2.1,
we first solve Formulation F1a without preprocessing techniques, and then with the
inclusion of the preprocessing techniques Prec and p SegInc separately. Table 3.3
shows the results. In the first column of the table, we report the tested configurations.

88

For each of the three configurations (No preprocessing, Prec, and p SegInc), we
report the number of instances for which at least a feasible solution is found (#feas),
the average gap (Gap) and the average runtime (t) over those instances for which
Gurobi finds a feasible solution. The results show that, by activating Prec, the number
of instances for which a feasible solution is found within the time limit increases by
two and the runtime required for solving the integer program decreases. Thus, we
decide to include Prec in the final configuration of F1a.

The inclusion of p SegInc has no effect on the results compared to those obtained
without preprocessing techniques. In fact, in our instances, there are no pairs of street
segments with incompatible service times, and all mail carriers have the same lower
and upper bounds on the route duration. Nevertheless, these preprocessing techniques
can be useful for more heterogeneous instances with, e.g., street segments with very
high service times or mail carriers with different lower and upper bounds on the route
duration. Because the inclusion of p SegInc has neither a positive nor negative effect,
we also add it to the final configuration of F1a.

Preprocessing technique #feas Gap(%) t(s)
No preprocessing 29/32 6.88 4577.63

Prec 31/32 6.69 4130.06
p SegInc 29/32 6.88 4577.62

Table 3.3: Results of Formulation F1a with and without preprocessing techniques.

3.5.2.2 Impact of valid inequalities

To evaluate the influence of the valid inequalities, we first solve Formulation F1a with
Prec and p SegInc without valid inequalities, and then, including each of the valid
inequalities presented in Section 3.2.2.2 individually. The results are presented in
Table 3.4, which has the same structure as Table 3.3. Because in our instances there
are no pairs of street segments with incompatible service times, adding vi SegInc
has no effect on the results compared to those obtained with no valid inequalities.
The inclusion of Cycle reduces the number of instances for which a feasible solution
is found and raises the average gap and runtime. Using NumSegBounds, Gurobi finds
a feasible solution within the time limit for all 32 instances. However, the average gap
increases compared to the model with no valid inequalities. Including SymBreak cuts
down the number of instances for which a feasible solution is found and deteriorates
the average gap and runtime.

Because for testing the performance of ILS-VRPDOC we are especially interested
in the number of instances for which a feasible solution is found, we refrain from
including SymBreak. Including vi SegInc has no negative effect and could potentially

89

be helpful for other instances, for that reason we decided to include it. Considering
that NumSegBounds leads to feasible solutions on all 32 instances while only slightly
increasing the average gap, we decide to also include NumSegBounds in Formulation F1a.
This leads to the final configuration: Formulation F1a with vi SegInc, NumSegBounds,
Precedence, and p SegInc.

Valid inequalities #feas Gap(%) t(s)
No valid inequalities 31/32 5.66 4020.58

vi SegInc 31/32 5.67 4020.64
Cycle 28/32 5.98 4354.54

NumSegBounds 32/32 5.74 4213.18
SymmBreak 30/32 6.13 4204.32

Table 3.4: Results of Formulation F1a with Precedence and p SegInc with and
without valid inequalities.

3.5.3 Comparison between ILS-VRPDOC and Gurobi

In this section, we compare the results of ILS-VRPDOCquality and ILS-VRPDOCspeed

to the ones of Gurobi on the small-scale instances introduced in Section 3.5.1.2. The
results of the comparison are presented in Table 3.5. The first four columns contain
instance details: the instance ID, the number of street segments |I|, the number of
tables at the depot |T |, and the number of desired mail carriers |K|. Columns 5–8
show the results of Gurobi, i.e., the best objective function value Obj and the best
lower bound LB found in the time limit of two hours, the percentage gap of the
objective function value to the lower bound (∆LB(%) = (Obj − LB)/Obj), and the
average runtime in seconds per run t(s). Instances solved to optimality are marked in
bold. Note that because the default value of Gurobi for the MIPGap is 0.0001 (0.01%),
an instance can be marked as “solved to optimality” although the percentage gap is
still greater than 0. The final six columns contain, for each of our algorithmic variants,
the percentage gap of the solution of the best ∆best

LB (%) and average ∆avg
LB (%) run to

the best lower bound found by Gurobi, and the average runtime ta(s). In the bottom
three rows of the table, we report the average values and the number of instances on
which ILS-VRPDOC returns a better or equal solution quality than Gurobi.

Gurobi finds near-optimal solutions for all instances with three tables, but for
instances with five and ten tables, the gaps of the best objective value to the best
lower bound found by Gurobi after two hours are significant. This indicates that the
complexity of an instance depends primarily on the number of tables and not on the
number of street segments. These results also show that a commercial solver cannot
solve real-world-sized instances (that can reach up to 30 tables) and that a heuristic
approach is needed.

90

ILS-VRPDOCquality and ILS-VRPDOCspeed find solutions that are very close
to optimal on all instances solved to optimality by Gurobi. On these instances,
the runtimes of ILS-VRPDOCspeed stay below 15 seconds and the runtimes of ILS-
VRPDOCquality below five minutes. On bigger instances, both ILS-VRPDOCquality

and ILS-VRPDOCspeed obtain better percentage gaps to the lower bounds than Gurobi
for both the best and average run.

Gurobi ILS-VRPDOCquality ILS-VRPDOCspeed

Instance |I| |T | |K| Obj LB ∆LB(%) t(s) ∆best
LB (%) ∆avg

LB (%) ta(s) ∆best
LB (%) ∆avg

LB (%) ta(s)
1 30 3 2 9450.37 9450.37 0.00 2.39 0.00 0.00 3.94 0.00 0.00 0.34
2 30 3 4 11429.57 11429.57 0.00 4.32 0.00 0.81 6.72 1.69 4.69 0.55
3 30 3 2 14055.00 14055.00 0.00 5.26 0.00 0.00 6.95 0.00 0.05 0.77
4 30 3 4 24093.58 24093.58 0.00 48.78 0.03 0.03 8.01 0.03 0.40 0.71
5 45 3 2 10904.39 10904.39 0.00 3.27 0.00 0.00 8.11 0.00 0.00 0.49
6 45 3 4 13405.58 13405.58 0.00 31.13 0.00 0.09 13.93 0.06 1.86 0.93
7 45 3 2 14861.41 14860.21 0.01 56.62 0.01 0.19 19.22 0.01 0.84 1.16
8 45 3 4 24526.63 24524.23 0.01 500.93 0.01 0.22 10.51 0.01 0.63 0.99
9 60 3 2 11533.07 11533.07 0.00 8.65 0.00 0.00 11.75 0.00 0.00 0.78

10 60 3 4 13769.60 13769.60 0.00 105.22 0.00 0.57 14.51 0.00 1.52 1.00
11 60 3 2 15798.17 15798.17 0.00 109.14 0.00 0.34 28.64 0.06 1.65 1.39
12 60 3 4 25561.51 25559.07 0.01 1888.10 0.01 0.15 21.15 0.01 0.72 1.50
13 50 5 4 12691.07 12096.94 4.68 7200.00 4.68 4.68 26.09 4.68 4.68 1.82
14 50 5 5 13727.54 12939.24 5.74 7200.00 4.18 4.18 25.27 4.18 4.24 1.51
15 50 5 4 26774.46 24855.66 7.17 7200.00 6.40 6.48 40.31 6.49 6.72 2.45
16 50 5 5 32359.31 29301.13 9.45 7200.00 6.76 7.13 58.70 6.76 7.30 2.68
17 75 5 4 16118.61 15661.05 2.84 7200.00 2.68 2.91 59.45 2.68 3.09 4.21
18 75 5 5 16999.79 16012.50 5.81 7200.00 6.15 6.41 80.71 6.62 6.68 3.46
19 75 5 4 27967.03 26249.85 6.14 7200.00 6.23 6.66 92.73 6.67 7.11 5.88
20 75 5 5 33080.56 30354.93 8.24 7200.00 7.51 7.93 99.22 7.03 8.42 5.04
21 100 5 4 18238.53 17551.37 3.77 7200.00 3.32 3.36 78.13 3.32 3.67 5.34
22 100 5 5 18329.00 17836.19 2.69 7200.00 2.69 2.69 73.11 2.69 2.69 4.34
23 100 5 4 28350.97 27024.20 4.68 7200.00 4.56 4.88 127.49 5.16 5.76 6.29
24 100 5 5 33485.13 31350.17 6.38 7200.00 4.89 5.50 189.77 5.35 6.39 8.24
25 50 10 9 19350.20 12959.24 33.03 7200.00 30.36 30.36 121.08 30.36 30.63 8.80
26 50 10 11 21457.66 13898.83 35.23 7200.00 30.93 30.93 124.38 30.93 31.05 8.18
27 50 10 9 61246.98 53202.10 13.14 7200.00 10.56 10.71 115.92 10.61 11.10 9.95
28 50 10 11 71858.71 63472.23 11.67 7200.00 10.88 11.06 178.41 11.30 11.45 10.07
29 100 10 9 27001.67 17925.72 33.61 7200.00 21.49 21.69 456.15 21.59 22.06 21.96
30 100 10 11 27815.09 18429.70 33.74 7200.00 24.23 24.44 551.61 24.56 25.23 22.96
31 100 10 9 74290.88 55345.93 25.50 7200.00 11.79 12.58 491.74 12.94 13.38 22.09
32 100 10 11 84598.75 64680.22 23.54 7200.00 12.70 13.05 569.55 12.97 13.66 22.72

Avg 8.66 4586.37 6.66 6.88 116.04 6.84 7.43 5.89
better solutions 16/32 14/32 15/32 12/32
equal solutions 13/32 6/32 10/32 5/32

Table 3.5: Comparison of the results obtained with ILS-VRPDOCquality and ILS-
VRPDOCspeed to the results obtained by Gurobi with a time limit of two hours.

3.5.4 Comparison of ILS-VRPDOC solutions and DHL solu-
tions

In this section, we benchmark the results of the two ILS-VRPDOC variants against
the ones provided by DHL for the large-scale instances. Table 3.6 shows the results.
Columns 2 and 3 report the percentage gap of the objective value of our construction
heuristic to the DHL objective value (∆init(%)) and the runtime in seconds (tinit(s)).
The remaining columns display, for ILS-VRPDOCquality and ILS-VRPDOCspeed, re-
spectively, the percentage gap of the solution of the best ∆best(%) and average ∆avg(%)
run to the DHL solution, and the average runtime ta(s). We report the average values

91

and the number of instances on which ILS-VRPDOC returns a better or equal solution
than DHL. The detailed results for each instance can be found in Table 3.17 in
Appendix C.

Focusing on the results provided by the construction heuristic, we observe that
for 37.76% of instances, the quality of our initial solution is already better than the
DHL solution. However, the average gap over all instances is positive (3.08%). The
average runtime of our construction heuristic is around 20 seconds, i.e., it finds feasible
solutions very quickly, also for large instances.

ILS-VRPDOCquality improves the DHL solution quality on 94.90% of instances, and
the average improvement of the best run with respect to the DHL solutions is 6.21%.
Comparing the gaps of the best run to those of the average run, ILS-VRPDOCquality

shows a robust behavior. As expected, ILS-VRPDOCquality finds better solutions than
ILS-VRPDOCspeed but exhibits higher runtimes. ILS-VRPDOCspeed still improves the
DHL solution quality on 92.86% of instances. The average improvement of the best
run with respect to the DHL solutions is 5.10%. Again, when comparing the average
gaps of the best run to those of the average run, ILS-VRPDOCspeed shows a robust
behavior. ILS-VRPDOCspeed requires less than one minute per run, on average, to
deliver good-quality solutions and is therefore a convincing choice to be used at the
operational level. Only if runtime is not important, the clearly longer runtimes of
ILS-VRPDOCquality are justified to reach some additional solution quality.

ILS-VRPDOCinit ILS-VRPDOCquality ILS-VRPDOCspeed

∆init(%) tinit(s) ∆b(%) ∆a(%) ta(s) ∆b(%) ∆a(%) ta(s)
Avg 3.08 20.66 -6.21 -5.75 2943.31 -5.10 -4.34 59.12

better solutions 37/98 93/98 93/98 91/98 89/98
equal solutions 1/98 1/98 1/98 1/98 1/98

Table 3.6: Comparison of the DHL solutions to the solutions of our construction heuris-
tic, and of the best and average run of ILS-VRPDOCquality and ILS-VRPDOCspeed.

To better understand why ILS-VRPDOC returns better solutions than those of
DHL, we compare the structure of the DHL solutions to the structure of the best
solutions found by ILS-VRPDOCquality. For this comparison, we first focus on the
features related to the routing (Section 3.5.4.1), and then on the features related to
the depot operation constraints (Section 3.5.4.2).

3.5.4.1 Comparison of the routing in DHL and ILS-VRPDOC solutions

To compare the routes of the DHL to the ILS-VRPDOCquality solutions, we use the
maximum and average deviation from the target route duration, i.e., the middle value
between the lower and the upper bound on the route duration, and the similarity of the
routes. To compute the former, we apply the following three steps: (i) we determine

92

the target for each mail carrier, (ii) for each mail carrier, we compute the deviation
of the actual route duration from this middle value, (iii) we report the maximum
deviation across all mail carriers, and the average deviation over all mail carriers of a
solution. Two exemplary solutions of an instance with three mail carriers (k1, k2, and
k3) are shown in Figure 3.13. For the sake of simplicity, we assume that all three mail
carriers have the same lower (lbk) and upper bound (ubk) on the route duration. Both
solutions have the same average route duration over all mail carriers. However, both
the maximum and the average deviation from the desired route duration differ. Even
if both solutions fulfill the lower and upper bound constraints on the route duration,
the solution in Figure 3.13(b) shows a more balanced workload because the amount
of overtime and undertime is minimized.

Route duration
lbk Target ubk

k1

k2

k3

(a) Solution with larger deviations in the route
duration.

Route duration
lbk Target ubk

k1

k2

k3

(b) Solution with lower deviations in the route
duration.

Figure 3.13: Comparison of two exemplary solutions 3.13(a) and 3.13(b) with same
average route duration over all mail carriers and different route duration deviations.

For the routes similarity metric, we compute the number of arcs that are present
both in the DHL and the ILS-VRPDOC solution and divide it by the total number of
arcs in the solution. For all metrics, we report the average, maximum and minimum
value and the number of instances for which the ILS-VRPDOC solution has an
improved or equal value of the considered metric than the DHL solution.

Aggregated results are shown in Table 3.7. The detailed results for each instance
can be found in Table 3.18 in Appendix D. In the ILS-VRPDOC solution, the maximum
deviation of the route duration is lower while the average deviation is higher than the
deviation in the DHL solution. This implies that, in our solutions, even though the
route durations deviate more from the middle value, they are more equally balanced
among the mail carriers.

Although neither the objective function of the VRPDOC nor its constraints
consider the route similarity with respect to the DHL solutions, it is interesting to
observe this metric because greater route similarity enables a mail carrier to learn
the new route more quickly, reducing resistance to the change. The average similarity
over all instances lies above 90%. These high values for route similarity are explained
by the need of keeping the sequence in which the street segments are visited as similar

93

as possible to their sorting on the tables.

3.5.4.2 Comparison of the depot operations in DHL and ILS-VRPDOC
solutions

To compare the situation at the depot in the DHL and the ILS-VRPDOCquality

solutions, we use the following metrics: the maximum number of mail carriers per
table, the average number of mail carriers per table, the maximum number of tables
over all mail carriers, the number of letter blocks skipped by mail carriers, and the total
number of table changes. These metrics are not part of the objective of VRPDOC,
but they are considered as constraints. Because we chose as upper bounds of these
constraints exactly the values of the DHL solutions, the values of the ILS-VRPDOC
solutions can only be equal or better. Nevertheless, it is interesting to analyze the
differences between the DHL and our solutions with respect to these metrics to better
understand the differences in complexity of the depot operations.

In Table 3.8, we show the results, averaged over all instances. For all metrics
we report the average, maximum and minimum value and the number of instances
where the ILS-VRPDOC solution has an improved or equal value of the considered
metric than the DHL solution. The detailed results for each instance are reported in
Table 3.19 in Appendix E.

As explained, in the ILS-VRPDOC solutions, the average values of all metrics
are lower than those in the DHL solutions. The most remarkable difference is in the
maximum number of mail carriers per table and in the maximum number of tables
visited by a mail carrier. On average, in the DHL solutions, there is at least one table
that is visited by more than six mail carriers and one mail carrier visiting more than
five tables. In our solutions, this numbers are reduced to three mail carriers and three
tables, respectively. We observe that in the ILS-VRPDOC solutions, the number of
table changes is only smaller than in the DHL solutions for five out of the 98 instances,
which is an indicator that this is the constraint limiting the solution space the most.

From the practical point of view, compared to the DHL solutions, ILS-VRPDOC
delivers solutions in which:

• Fewer mail carriers visit the same tables on average. As a result, less confusion
is generated at each table.

• Each mail carrier visits fewer tables on average. This implies that each mail
carrier has to move less between different tables.

• Each mail carrier skips fewer letter blocks while collecting letters from the tables.
As a result, the letter collection operations are simplified, leading to a smaller
chance of making mistakes and to a faster learning process.

94

• There are fewer movements of mail carriers between tables at the depot. This
decreases potential confusion in the depot during letter collection operations as
well as the risk of accidents.

3.5.5 The impact of the depot operation constraints

In this section, we assess the influence of the depot operation constraints on the
objective function value, on the routing metrics, and on the metrics describing the
situation at the depot. To this end, we compare the solutions of the large-scale
instances of the best run of ILS-VRPDOCquality to solutions that we obtain with a
modified version of ILS-VRPDOCquality that ignores all depot operation constraints.
We call this version of our heuristic “ILS-VRPDOCOFF

quality”. Tables 3.9 and 3.10
are structured like the tables in Section 3.5.4 with the only difference that we add
two columns that include the objective function values of ILS-VRPDOCquality and
ILS-VRPDOCOFF

quality to Table 3.9.
Table 3.9 shows the routing metrics averaged over all instances. The detailed

results per instance can be found in Table 3.20 in Appendix F. As expected, ILS-
VRPDOCOFF

quality returns total travel times lower than ILS-VRPDOCquality. By consid-
ering the depot operation constraints, on average, the total travel time increases by
10.72%. The increase of the maximum deviation of the route duration is small for
ILS-VRPDOCOFF

quality, but the increase of the average deviation of the route duration
is significant. This result is in line with the finding of Matl et al., 2018 reporting
that cost-optimal solutions of the CVRP tend to lead to poorly balanced routes. For
ILS-VRPDOCOFF

quality, the similarity of the routes with respect to the DHL solution
decreases drastically compared to the similarity of ILS-VRPDOCquality. For mail
carriers, this would mean that they have to relearn a large share of their routes.

95

Service time max deviation Service time avg deviation
DHL ILS-VRPDOC DHL ILS-VRPDOC Similarity

Avg 38.41 36.72 8.39 15.29 92.34
Max 86.56 78.36 23.79 37.99 97.92
Min 8.99 8.99 2.98 2.77 82.95

improved value 41/98 8/98
equal value 57/98 7/98

Table 3.7: Routing-based comparison of the DHL solutions to the solutions of the best run of ILS-VRPDOCquality.

Max #mail carriers Avg #mail carriers Max #tables Avg #tables Skips Table changes
DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC

Avg 6.96 2.96 1.69 1.61 5.43 2.71 1.82 1.73 8.50 7.56 15.83 15.78
Max 27.00 10.00 2.50 2.42 24.00 9.00 2.83 2.48 53.00 53.00 47.00 47.00
Min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

improved value 39/98 57/98 35/98 57/98 18/98 5/98
equal value 59/98 31/98 63/98 31/98 80/98 93/98

Table 3.8: Depot operation-based comparison of the DHL solutions to the solutions of the best run of ILS-VRPDOCquality.

Objective Service time max deviation Service time avg deviation Similarity to DHL solutions
ILS-VRPDOCquality ILS-VRPDOCOFF

quality ILS-VRPDOCquality ILS-VRPDOCOFF
quality ILS-VRPDOCquality ILS-VRPDOCOFF

quality ILS-VRPDOCquality ILS-VRPDOCOFF
quality

Avg 104570.82 94446.52 36.72 37.89 15.29 22.80 92.34 33.88
Max 209600.72 170253.63 78.36 86.03 37.99 51.30 97.92 63.35
Min 34075.42 29947.85 8.99 8.92 2.77 5.99 82.95 22.20

improved value 98/98 40/98 11/98 0/98
equal value 0/98 0/98 0/98 0/98

Table 3.9: Routing-based comparison of the best run of ILS-VRPDOCquality to the solutions of the best run of ILS-VRPDOCOFF
quality.

Max #mail carriers Avg #mail carriers Max #tables Avg #tables Skips Table changes
ILS-VRPDOCquality ILS-VRPDOCOFF

quality ILS-VRPDOCquality ILS-VRPDOCOFF
quality ILS-VRPDOCquality ILS-VRPDOCOFF

quality ILS-VRPDOCquality ILS-VRPDOCOFF
quality ILS-VRPDOCquality ILS-VRPDOCOFF

quality ILS-VRPDOCquality ILS-VRPDOCOFF
quality

Avg 2.96 8.65 1.61 4.58 2.71 8.65 1.73 5.00 7.56 437.35 15.78 125.40
Max 10.00 15.00 2.42 6.54 9.00 15.00 2.48 8.38 53.00 776.00 47.00 235.00
Min 1.00 4.00 1.00 2.06 1.00 4.00 1.00 2.71 0.00 88.00 0.00 26.00

improved value 0/98 0/98 1/98 0/98 0/98 0/98
equal value 2/98 0/98 2/98 0/98 0/98 0/98

Table 3.10: Depot operation-based comparison of the best run of ILS-VRPDOCquality to the solutions of the best run of ILS-VRPDOCOFF
quality.

96

Table 3.10 shows the metrics describing the situation at the depot. Detailed results
per instance are reported in Table 3.21 in Appendix G. As expected, all the metrics are
clearly higher for ILS-VRPDOCOFF

quality than for ILS-VRPDOCquality. In particular, the
number of skips and the number of table changes drastically increase. This enlarges the
chances of mistakes or accidents during the letter collection operations due to the high
number of mail carriers moving from one table to another in the depot. To illustrate
this Figure 3.14 shows the visits of each mail carrier to tables determined by the solution
of ILS-VRPDOCquality (Figure 3.14(a)) and of ILS-VRPDOCOFF

quality (Figure 3.14(b))
for instance 1. This is a small instance with six tables represented by the circles in
the figures, and a desired number of mail carriers (MC) of seven. We observe that the
operations corresponding to the solution provided by ILS-VRPDOCquality are much
less complex and error-prone than those of ILS-VRPDOCOFF

quality. In the latter solution,
most mail carriers have to visit several tables and have to come back to the same
table multiple times.

1 2 3

4 5 6

MC 1

1 2 3

4 5 6

MC 2

1 2 3

4 5 6

MC 3

1 2 3

4 5 6

MC 4

1 2 3

4 5 6

MC 5

1 2 3

4 5 6

MC 6

1 2 3

4 5 6

MC 7

(a) Visits of mail carriers to tables in the ILS-VRPDOCquality solution for instance 1.

1 2 3

4 5 6

MC 1

1 2 3

4 5 6

MC 2

1 2 3

4 5 6

MC 3

1 2 3

4 5 6

MC 4

1 2 3

4 5 6

MC 5

1 2 3

4 5 6

MC 6

1 2 3

4 5 6

MC 7

(b) Visits of mail carriers to tables in the ILS-VRPDOCOFF
quality solution for instance 1.

Figure 3.14: Comparison of visits of mail carriers to tables in the different solutions
(ILS-VRPDOCquality and ILS-VRPDOCOFF

quality) for instance 1.

To analyze the letter collection at each table for instance 1 in more detail, Table 3.11

97

contains, for each mail carrier, tuples consisting of the table ID and of lists representing
the blocks of consecutive letters that the mail carrier has to collect from the table.
Table 3.10(a) reports the ILS-VRPDOCquality solution, and Table 3.10(b) shows the
ILS-VRPDOCOFF

quality solution. Table 3.10(a) shows that in the ILS-VRPDOCquality

solution big blocks of consecutive letters can be collected by mail carriers in one go.
On the contrary, the ILS-VRPDOCOFF

quality solution is very complicated as represented
by the huge number of non-consecutive blocks of letters that the mail carrier has to
collect.

3.6 Conclusion

Motivated by DHL’s task to find cost-efficient routing solutions that lead to simplified
letter collection processes at the depot, we introduce the VRPDOC. The feasibility
problem of the VRPDOC is already NP-complete, however, by relaxing the upper and
lower bound on the route duration a feasible solution can be found in polynomial time.
We propose two metaheuristic variants to address realistically sized instances—ILS-
VRPDOCquality for solving the VRPDOC at the tactical level and ILS-VRPDOCspeed

for solving it at the operational level. Both heuristics show a convincing performance
and are able to find (close to) optimal solutions on small-scale instances and to
significantly improve the DHL solutions on larger instances. In many cases, our
solutions improve the travel cost and, at the same time, simplify the operations at the
depot, i.e., they are faster, generate less confusion and mistakes, decrease the need
for coordination, and lead to faster learning processes. Our numerical studies show
that travel times could be reduced by 11% on average if depot operation constraints
are ignored, however, ignoring them extremely complicates the letter collection at
the tables. Future research should, e.g., focus on obtaining a good assignment of the
street segments to the tables with the goal of achieving more robust solutions for the
different numbers of desired mail carriers.

98

Mail carrier Letter collection sequence (table, [street segments])

1 (5,[187-229])
2 (6,[239-275])
3 (2,[48-86])
4 (3,[87-120])
5 (6,[230-233], (5,[183-186]), (4,[136-138]), (1,[3-13]), (6,[234-238]), (1,[14-18])
6 (4,[135, 139-182])
7 (1,[1-2, 19-47]), (3,[121-134])

(a) Letter collection sequence at tables by mail carrier in the ILS-
VRPDOCquality solution for instance 1.

Mail carrier Letter collection sequence (table, [street segments])
1 (1,[1]), (6,[239, 254, 253, 250-252, 262, 255-257, 260-261, 263-266, 269, 273, 270, 267, 268, 271-272, 249, 248, 247, 244-246, 243]), (1,[4, 3]), (6,[242, 240-241]), (4,[138])
2 (5,[183-186]), (6,[234, 236, 238]), (5,[192-214, 216, 220, 219, 221, 218, 217, 215, 222, 228]), (6,[235]), (1,[13])
3 (3,[87]), (4,[140, 151]), (3,[88, 90-91, 94, 96, 95, 97-99, 113]), (4,[157-168]), (3,[100-102, 104-105, 103, 106-110, 112, 111]) (4,[177, 176, 156, 155, 149, 143]), (6,[233, 231])
4 (1,[19-26, 28-29, 32, 34-38, 40-44, 46, 47, 45, 39, 33, 30, 31, 27, 15-16, 18, 17])
5 (4,[139]), (6,[232]), (2,[79, 81, 83-85, 82, 80, 78, 76, 75, 62-64, 56-58, 69, 68, 59, 60-61, 67, 66, 65, 49, 55, 50-54, 48, 70, 71-74, 77, 86]), (6,[274-275, 258-259])
6 (4,[135, 137, 136]), (1,[7, 6, 5, 8-12]), (5,[187-188, 191, 189-190, 223-227, 229, 237]), (1,[14]), (6,[230]), (1,[2])
7 (4,[144, 147, 145-146, 148, 150, 152-153, 170-175, 178-182]), (3,[92-93, 115-118, 120-127, 130, 128-129, 131-134, 119, 114]), (4,[169, 154]), (3,[89]), (4,[142, 141])

(b) Letter collection sequence at tables by mail carrier in the ILS-VRPDOCOFF
quality solution for instance 1.

Table 3.11: Letter collection sequence at tables in the different solutions (ILS-
VRPDOCquality and ILS-VRPDOCOFF

quality) for instance 1.

99

References

C. Archetti, N. Bianchessi, S. Irnich, and M. G. Speranza (2014). “Formulations
for an inventory routing problem”. In: International Transactions in Operational
Research 21.3, pp. 353–374. doi: 10.1111/itor.12076.

L. S. d. Assis, P. M. Franca, and F. L. Usberti (2014). “A redistricting problem applied
to meter reading in power distribution networks”. In: Computers & Operations
Research 41, pp. 65–75. doi: 10.1016/j.cor.2013.08.002.

M. Darvish, L. C. Coelho, and R. Jans (2020). Comparison of symmetry breaking and
input ordering techniques for routing problems. FSA-2020-008. CIRRELT.

A. Dohn, M. S. Rasmussen, and J. Larsen (2011). “The vehicle routing problem with
time windows and temporal dependencies”. In: Networks 58.4, pp. 273–289. doi:
10.1002/net.20472.

J. W. Escobar, R. Linfati, and P. Toth (2014). “A hybrid granular tabu search algorithm
for the multi-depot vehicle routing problem”. In: Journal of the Operational
Research Society 65.1, pp. 37–48. doi: 10.1057/jors.2013.102.

M. R. Garey and D. S. Johnson (1979). Computers and intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company.

A. Gliesch, M. Ritt, A. H. S. Cruz, and M. C. d. O. Moreira (2020a). “A heuristic
algorithm for districting problems with similarity constraints”. In: 2020 IEEE
Congress on Evolutionary Computation (CEC). IEEE, pp. 1–8. doi: 10.1109/
CEC48606.2020.9185552.

A. Gliesch, M. Ritt, A. H. S. Cruz, and M. C. d. O. Moreira (2020b). “A hybrid
heuristic for districting problems with routing criteria”. In: 2020 IEEE Congress
on Evolutionary Computation (CEC). IEEE, pp. 1–9. doi: 10.1109/CEC48606.
2020.9185863.

D. Goeke (2019). “Granular tabu search for the pickup and delivery problem with
time windows and electric vehicles”. In: European Journal of Operational Research
278.3, pp. 821–836. doi: 10.1016/j.ejor.2019.05.010.

S. R. A. Haddadene, N. Labadie, and C. Prodhon (2016). “A GRASP× ILS for
the vehicle routing problem with time windows, synchronization and precedence
constraints”. In: Expert Systems with Applications 66, pp. 274–294. doi: 10.1016/
j.eswa.2016.09.002.

S. Irnich (2008). “A Unified Modeling and Solution Framework for Vehicle Routing
and Local Search-Based Metaheuristics”. In: INFORMS Journal on Computing
20.2, pp. 270–287. doi: 10.1287/ijoc.1070.0239.

S. Irnich and D. Villeneuve (2006). “The shortest-path problem with resource con-
straints and k-cycle elimination for k ≥ 3”. In: INFORMS Journal on Computing
18.3, pp. 391–406. doi: 10.1287/ijoc.1040.0117.

100

https://doi.org/10.1111/itor.12076
https://doi.org/10.1016/j.cor.2013.08.002
https://doi.org/10.1002/net.20472
https://doi.org/10.1057/jors.2013.102
https://doi.org/10.1109/CEC48606.2020.9185552
https://doi.org/10.1109/CEC48606.2020.9185552
https://doi.org/10.1109/CEC48606.2020.9185863
https://doi.org/10.1109/CEC48606.2020.9185863
https://doi.org/10.1016/j.ejor.2019.05.010
https://doi.org/10.1016/j.eswa.2016.09.002
https://doi.org/10.1016/j.eswa.2016.09.002
https://doi.org/10.1287/ijoc.1070.0239
https://doi.org/10.1287/ijoc.1040.0117

J. Kalcsics and R. Z. Ŕıos-Mercado (2019). “Districting problems”. In: Location science.
Springer, pp. 705–743. doi: 10.1007/978-3-030-32177-2_25.

Ç. Koç, T. Bektaş, O. Jabali, and G. Laporte (2016). “Thirty years of heterogeneous
vehicle routing”. In: European Journal of Operational Research 249.1, pp. 1–21.
doi: 10.1016/j.ejor.2015.07.020.

R. Lahyani, L. C. Coelho, and J. Renaud (2018). “Alternative formulations and
improved bounds for the multi-depot fleet size and mix vehicle routing problem”.
In: OR Spectrum 40.1, pp. 125–157. doi: 10.1007/s00291-017-0494-y.

G. Laporte, Y. Nobert, and M. Desrochers (1985). “Optimal routing under capacity
and distance restrictions”. In: Operations Research 33.5, pp. 1050–1073. doi:
10.1287/opre.33.5.1050.

V. Leggieri and M. Haouari (2017). “Lifted polynomial size formulations for the
homogeneous and heterogeneous vehicle routing problems”. In: European Journal
of Operational Research 263.3, pp. 755–767. doi: 10.1016/j.ejor.2017.05.039.

J.-Q. Li, P. B. Mirchandani, and D. Borenstein (2009). “Real-time vehicle rerouting
problems with time windows”. In: European Journal of Operational Research 194.3,
pp. 711–727. doi: 10.1016/j.ejor.2007.12.037.

M. López-Ibáñez, J. Dubois-Lacoste, L. Cáceres Pérez, M. Birattari, and T. Stützle
(2016). “The irace package: Iterated racing for automatic algorithm configuration”.
In: Operations Research Perspectives 3, pp. 43–58. doi: 10.1016/j.orp.2016.09.
002.

H. R. Lourenço, O. C. Martin, and T. Stützle (2003). “Iterated Local Search”. In:
Handbook of Metaheuristics. Springer US, pp. 320–353. doi: 10.1007/0-306-
48056-5_11.

P. Matl, R. F. Hartl, and T. Vidal (2018). “Workload Equity in Vehicle Routing
Problems: A Survey and Analysis”. In: Transportation Science 52.2, pp. 239–260.
doi: 10.1287/trsc.2017.0744.

Q. Mu, Z. Fu, J. Lysgaard, and R. Eglese (2011). “Disruption management of the
vehicle routing problem with vehicle breakdown”. In: Journal of the Operational
Research Society 62.4, pp. 742–749. doi: 10.1057/jors.2010.19.

M. Nikolić and D. Teodorović (2015). “Vehicle rerouting in the case of unexpect-
edly high demand in distribution systems”. In: Transportation Research Part C:
Emerging Technologies 55, pp. 535–545. doi: 10.1016/j.trc.2015.03.002.

C. Prins, C. Prodhon, A. Ruiz, P. Soriano, and R. Wolfler Calvo (2007). “Solving the
Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-
Granular Tabu Search Heuristic”. In: Transportation Science 41.4, pp. 470–483.
doi: 10.1287/trsc.1060.0187.

N. Razali (2015). “An Efficient Genetic Algorithm for Large Scale Vehicle Routing
Problem Subject to Precedence Constraints”. In: Procedia - Social and Behavioral
Sciences 195, pp. 1922–1931. doi: 10.1016/j.sbspro.2015.06.203.

101

https://doi.org/10.1007/978-3-030-32177-2_25
https://doi.org/10.1016/j.ejor.2015.07.020
https://doi.org/10.1007/s00291-017-0494-y
https://doi.org/10.1287/opre.33.5.1050
https://doi.org/10.1016/j.ejor.2017.05.039
https://doi.org/10.1016/j.ejor.2007.12.037
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1287/trsc.2017.0744
https://doi.org/10.1057/jors.2010.19
https://doi.org/10.1016/j.trc.2015.03.002
https://doi.org/10.1287/trsc.1060.0187
https://doi.org/10.1016/j.sbspro.2015.06.203

R. Z. Rı́os-Mercado and J. F. López-Pérez (2013). “Commercial territory design
planning with realignment and disjoint assignment requirements”. In: Omega 41.3,
pp. 525–535. doi: 10.1016/j.omega.2012.08.002.

M. Schneider and M. Löffler (2019). “Large composite neighborhoods for the capac-
itated location-routing problem”. In: Transportation Science 53.1, pp. 301–318.
doi: 10.1287/trsc.2017.0770.

R. Spliet, A. F. Gabor, and R. Dekker (2014). “The vehicle rescheduling problem”. In:
Computers & Operations Research 43, pp. 129–136. doi: 10.1016/j.cor.2013.
09.009.

P. Toth and D. Vigo (2002). The Vehicle Routing Problem. Society for Industrial and
Applied Mathematics. doi: 10.1137/1.9780898718515.

P. Toth and D. Vigo (2003). “The granular tabu search and its application to the
vehicle-routing problem”. In: INFORMS Journal on Computing 15.4, pp. 333–346.
doi: 10.1287/ijoc.15.4.333.24890.

T. Vidal, G. Laporte, and P. Matl (2020). “A concise guide to existing and emerging
vehicle routing problem variants”. In: European Journal of Operational Research
286.2, pp. 401–416. doi: 10.1016/j.ejor.2019.10.010.

102

https://doi.org/10.1016/j.omega.2012.08.002
https://doi.org/10.1287/trsc.2017.0770
https://doi.org/10.1016/j.cor.2013.09.009
https://doi.org/10.1016/j.cor.2013.09.009
https://doi.org/10.1137/1.9780898718515
https://doi.org/10.1287/ijoc.15.4.333.24890
https://doi.org/10.1016/j.ejor.2019.10.010

3.7 Appendix

A Alternative model formulations

In this section, we present multiple formulations for the VRPDOC. In Section A.7 we
discuss, the performance of the different formulations and motivate our decision of
using the formulation presented in Section 3.2.

A.1 Model Formulation F1a

For the model Formulation F1a and its description, the reader can refer to Section 3.2.

A.2 Model Formulation F1b

Instead of using the decision variable uk
i ∈ Z, i ∈ L, k ∈ K representing the position

of location i in the route of mail carrier k, we use the decision variable vk
i ∈ R, i ∈

L, k ∈ K representing the sum of service times “collected” in the route of mail
carrier k after leaving location i. Consequently, we replace constraints (3.13)–(3.17)
in Formulation F1a with the following constraints to obtain model Formulation F1b:

vk
i ≤ ubk i ∈ I, k ∈ K (3.46)

vk
i ≥ si i ∈ I, k ∈ K (3.47)

vk
i − vk

j + ubk · xk
ij + (ubk − si − sj) · xk

ji ≤ ubk − sj (i, j) ∈ A, k ∈ K (3.48)

vk
d = 0 k ∈ K (3.49)

vk
i − vk

j ≤ (2 − yk
i − yk

j) · ubk (i, j) ∈ A : pij = 1, k ∈ K (3.50)

Because now vk
i ∈ R, i ∈ L, k ∈ K represents the sum of service times “collected” in

the route of mail carrier k before reaching location i, we have to adapt the upper
bound on vk

i to ubk in constraints (3.46) and we can introduce a lower bound in
constraints (3.47). In constraints (3.48), we fix vk

j ≥ vk
i + sj in case xk

ij = 1 and
vk

i ≤ vk
j + si in case xk

ji = 1, and we fix vk
d to be zero in constraints (3.49). The

precedence constraints in constraints (3.50) are modeled exactly the same way as in
Formulation F1a.

A.3 Model Formulation F2a

To reduce the number of variables in the model, we remove the y-variables from
Formulation F1a and replace them with yk

i = ∑
j∈δ+

i
xk

ij. We obtain the following
Formulation F2a:

min
∑
k∈K

∑
(i,j)∈A

tijxk
ij (3.51)

103

s.t.
∑
k∈K

∑
j∈δ+

i

xk
ij = 1 i ∈ I (3.52)

∑
k∈K

∑
i∈δ−

j

xk
ij = 1 j ∈ I (3.53)

∑
j∈δ−

i

xk
ji =

∑
j∈δ+

i

xk
ij i ∈ I, k ∈ K (3.54)

∑
j∈δ+

d

xk
dj = 1 k ∈ K (3.55)

∑
i∈δ−

d

xk
id = 1 k ∈ K (3.56)

∑
i∈I

si

∑
j∈δ+

i

xk
ij +

∑
(i,j)∈A

tijxk
ij ≤ ubk k ∈ K (3.57)

∑
i∈I

si

∑
j∈δ+

i

xk
ij +

∑
(i,j)∈A

tijxk
ij ≥ lbk k ∈ K (3.58)

at
i

∑
j∈δ+

i

xk
ij ≤ zkt i ∈ I, k ∈ K, t ∈ T (3.59)

∑
k∈K

zkt ≤ ubmailcarriers t ∈ T (3.60)∑
t∈T

zkt ≤ ubtables k ∈ K (3.61)∑
i∈I

∑
j∈I:j ̸=i

∑
k∈K

xk
ij(1 − sameij) ≤ ubtablechanges (3.62)

uk
i ≤ M

∑
(i,j)∈δ+

i

xk
ij i ∈ I, k ∈ K (3.63)

uk
i − uk

j + 1 ≤ M(1 − xk
ij) (i, j) ∈ A, k ∈ K (3.64)

uk
i − uk

j + 1 ≥ −M(1 − xk
ij) (i, j) ∈ A, k ∈ K (3.65)

uk
d = 1 k ∈ K (3.66)

uk
i − uk

j ≤ (2 −
∑

m∈δ+
i

xk
im −

∑
m∈δ+

j

xk
jm) · M (i, j) ∈ A : pij = 1, k ∈ K (3.67)

∑
i∈I

∑
j∈I:j ̸=i

∑
k∈K

xk
ij · sameij · (1 − seqij) ≤ ubskipping (3.68)

xk
ij ∈ {0, 1} (i, j) ∈ A, k ∈ K (3.69)

uk
i ∈ Z i ∈ L, k ∈ K (3.70)

A.4 Model Formulation F2b

We replace the decision variable uk
i ∈ Z, i ∈ L, k ∈ K representing the position

of location i in the route of mail carrier k with the decision variable vk
i ∈ R, i ∈

L, k ∈ K representing the sum of service times “collected” in the route of mail
carrier k after leaving location i, as done in F1b. Consequently, we can replace
constraints (3.63)–(3.67) in Formulation F2a with the following constraints to obtain
model Formulation F2b:

vk
i ≤ ubk i ∈ I, k ∈ K (3.71)

104

vk
i ≥ si i ∈ I, k ∈ K (3.72)

vk
i − vk

j + ubk · xk
ij + (ubk − si − sj) · xk

ji ≤ ubk − sj (i, j) ∈ A, k ∈ K (3.73)

vk
d = 0 k ∈ K (3.74)

vk
i − vk

j ≤ (2 −
∑

m∈δ+
i

xk
im −

∑
m∈δ+

j

xk
jm) · M (i, j) ∈ A : pij = 1, k ∈ K (3.75)

A.5 Model Formulation F2c

The following model formulations are based on the formulation of the CVRP presented
in Leggieri and Haouari, 2017. Instead of using the variable yk

i , i ∈ I, k ∈ K

and uk
i , i ∈ I, k ∈ K, we use the binary variable yk

ij, i ∈ I, j ∈ I, k ∈ K determining
whether mail carrier k visits both street segments i and j, and i precedes j in the
route. We can then replace the MTZ-constraints (3.63)–(3.66) with the following
subtour elimination constraints (3.76)–(3.78) and the precedence constraints (3.67)
with constraints (3.79) in Formulation F2a in order to obtain Formulation F2c.

xk
ij ≤ yk

ij i, j ∈ I, k ∈ K (3.76)

− (1 − xk
iv) ≤ yk

ij − yk
vj ≤ 1 − xk

iv i, j, v ∈ I, i ̸= j ̸= v, k ∈ K (3.77)

yk
ij + yk

ji ≤ 1 i, j ∈ I, k ∈ K (3.78)

yk
ji ≤ 1 − pij i, j ∈ I, k ∈ K (3.79)

Constraints (3.76) and (3.77) link the x-variables with the y-variables. In con-
straints (3.78) subtours are eliminated because for two street segments i ∈ I and j ∈ I,
i can either precede j or j precedes i, but not both at the same time, which would be
the case in a subtour.

A.6 Model Formulation F3a

Leggieri and Haouari, 2017 propose an even stronger model formulation that is obtained
by lifting some constraints in Formulation F2c. The additional variables fk

ijv =
xk

ijy
k
jv, i, j, v ∈ L, k ∈ K and gk

ijv = yk
ijx

k
jv, i, j, v ∈ L, k ∈ K are introduced, and we

obtain Formulation F3a by replacing constraints (3.76)–(3.78) in Formulation F2c by
the following constraints:

∑
v∈I\{i,j}

fk
ivj + xk

ij = yk
ij (i, j) ∈ A, k ∈ K (3.80)

fk
dij +

∑
v∈I\{i,j}

fk
vij = yk

ij (i, j) ∈ A, k ∈ K (3.81)

∑
v∈I\{i,j}

gk
ijv + gk

ijd = yk
ij (i, j) ∈ A, k ∈ K (3.82)

fk
ijv + gk

vij ≤ xk
ij i, j, v ∈ I, i ̸= j ̸= v, k ∈ K (3.83)∑

v∈I\{i,j}

fk
ivj −

∑
v∈I\{i,j}

gk
ivj = 0 (i, j) ∈ A, k ∈ K (3.84)

105

fk
dvj ≤ xk

dv j, v ∈ I, k ∈ K (3.85)

gk
ivd ≤ xk

vd i, v ∈ I, k ∈ K (3.86)

A.7 Comparison of the different model formulations

In this section, we compare the proposed model formulations. For this, we solve the
small-scale instances introduced in Section 3.5.1.2 for each of the above formulations
with Gurobi with a time limit of two hours. We compare the results based on the
number of instances for which a feasible solution is found within the time limit
(#feas), and the average percentage gap (Gap) and runtime (t) over these instances.
The results in Table 3.12 show that the best formulations are Formulation F1a and
Formulation F1b which return feasible solutions for the highest number of instances
within the time limit.

IP

Formulation #feas Gap(%) t(s)

F1a 29 6.88 4577.63
F1b 28 5.82 4273.28
F2a 18 9.15 4529.50
F2b 24 4.22 4182.97
F2c 16 3.62 3542.21
F3a 3 0.00 2493.16

Table 3.12: Results of the different mathematical model formulations.

For these formulations, Table 3.13 shows the average percentage gap and runtime
only on the 28 instances for which a feasible solution is found in the time limit.
The results show that on these 28 instances, Formulation F1b is slightly better than
Formulation F1a. Because we use the solution of the mathematical model to assess
the solution quality provided by our heuristic, considering the formulation that is able
to solve more instances within the time limit is more relevant, as the solution quality
for both formulations is nearly the same. Hence, in our computational experiments,
we consider Formulation F1a.

IP

Formulation #feas Gap(%) t(s)

F1a 28 5.95 4483.97
F1b 28 5.82 4273.28

Table 3.13: Comparison of model Formulation F1a and Formulation F1b.

106

B Parameter tuning and analysis of the ILS-VRPDOC com-
ponents

In this section, we describe how we determine the parameters of ILS-VRPDOC.
Although various sophisticated methods for tuning the parameters of algorithms have
been proposed in the literature (see, for example, López-Ibáñez et al., 2016), we
perform a very basic tuning of the parameters because ILS-VRPDOC has only a few
parameters to be tuned, i.e., the stopping criterion (time and number of iterations
without improvement, see Section B.1), the generator arc set (sparsification intensity
and additional generator arcs, see Section B.2), and the infeasibility penalty factor
and its bounds (see Section B.3).

To avoid overfitting, we perform the parameter tuning experiments on a subset
of DHL instances. We first divide the DHL set into six groups, depending on the
number of tables (below 10, between 11 and 20, and above 21) and on whether more
or less mail carriers are needed compared to the number of tables in the depot. Then,
we randomly choose between four and six instances from each group, resulting in a
final subset of 30 instances.

Because our algorithm contains randomized elements, we perform ten runs of
ILS-VRPDOC for each instance. In the parameter tuning experiments, we always
compare to the solution provided by DHL.

B.1 Stopping criteria

The first two parameters to tune define the stopping criteria of ILS-VRPDOC, and
are: the iterations without improvement η, and the time limit in seconds τ .

We recall that the VRPDOC can be solved at both tactical and operational level.
Hence, we choose the values to test for the parameters η and τ based on the possibility
of deriving two versions of ILS-VRPDOC, that are: version ILS-VRPDOCquality

focusing on solution quality and to be used at the tactical level, and version ILS-
VRPDOCspeed focusing on runtime and to be used at the operational level. Because the
runtime is more critical at operational level, we start by choosing a value for the time
limit of 60 seconds per run so that, in the worst case, the runtime of ILS-VRPDOC is
at most ten minutes. Then, we tested higher values for the time limit. The largest
considered value is 3600 seconds per run because even if at the tactical level the
runtime is not critical, ILS-VRPDOC must be run for a larger number of instances,
each with a different number of desired mail carriers. For each considered value of τ ,
we determined a corresponding value of η through preliminary experiments, aiming to
retain a balance between the two stopping criteria.

Table 3.14 shows the results of ILS-VRPDOC for varying values of η and τ . The
first two columns display the number of iterations without improvement and the time
limit in seconds. All other parameters are fixed. The sparsification intensity is set

107

such that only the five closest locations to each street segment are considered when
deriving the generator arcs, additional arcs are not included in the generator arc set,
and the penalty term values are set to standard values (αmin, αmax, α0) = (0.01, 100, 1)
used in the literature (see, e.g., Schneider and Löffler, 2019). For every parameter
configuration, we report the average over the 30 instances, for each of the following
metrics: gap of the best solution out of the ten runs to the DHL solution(∆b(%)),
the average gap over the ten runs (∆a(%)), and the average runtime over the ten
runs (ta(s)). The results show that already with the fastest variant of ILS-VRPDOC,
our solutions are better than those of DHL both in the best and average run. By
increasing η and τ , the solution quality keeps improving. As expected, the results
show a tradeoff between runtime and solution quality. We set η = 150 and τ = 60 for
ILS-VRPDOCspeed and η = 4000 and τ = 3600 for ILS-VRPDOCquality.

η τ ∆b(%) ∆a(%) ta(s)

150 60 -5.47 -4.57 42.14
500 300 -5.54 -4.37 165.15

1000 600 -5.75 -4.69 328.04
4000 3600 -6.58 -5.98 1762.20

Table 3.14: Results of the parameter tuning for the stopping criteria of ILS-VRPDOC.

B.2 Size and composition of the generator arc set

In this section, we tune the parameters that affect the size and composition of the
generator arc set. For both of the final termination criteria from Section B.1, we
test two sparsification intensity values, i.e., κ = 5 and κ = 10. Moreover, for each of
the four obtained combinations, we test the effect of including or not additional arcs
according to the strategies presented in Section 3.4.2.1.3.

Table 3.15 shows the results, and is organized like Table 3.14 with the additional
columns describing the size and composition of the generator arc set. For combination
(η = 150, τ = 60), we focus on the average solution quality, because ILS-VRPDOCspeed

is used on the operational level, where time could be a critical factor and there might
not be enough time to do ten runs of the algorithm. A better average solution quality
is returned when considering a lower sparsification intensity (i.e., κ = 10) compared
to the corresponding variant with κ = 5. By enriching the generator arc set with the
additional arcs described in Section 3.4.2.1.3, we obtain further improvements in the
best and average solution quality. Using a higher sparsification intensity translates
into slightly faster runtimes. For ILS-VRPDOCquality (i.e., η = 4000 and τ = 3600),
we put more emphasis on the best run because time is not a critical factor here,
and we assume that it is always possible to do ten runs. A better solution quality
in the best run is reached considering a higher sparsification intensity (i.e., κ = 5).

108

Including the additional arcs leads to higher runtimes, but we again obtain further
improvements in the best and average solution quality.

Consequently, for ILS-VRPDOCspeed, we choose the parameter combination (κ =
10, Additional generator arcs=included) represented by line 2 in Table 3.15 while
for ILS-VRPDOCquality, we choose the combination (κ = 5, Additional generator
arcs=included) of line 8 in Table 3.15. These results are a clear indicator that the
additional arcs are vital to find solutions of good quality.

η τ κ Additional generator arcs ∆b(%) ∆a(%) ta(s)

150 60 5 not included -5.47 -4.57 42.14
150 60 5 included -5.61 -4.51 50.14
150 60 10 not included -5.47 -4.62 44.11
150 60 10 included -5.56 -4.65 51.12

4000 3600 5 not included -6.58 -5.98 1762.20
4000 3600 5 included -6.77 -6.08 2361.87
4000 3600 10 not included -6.56 -6.13 1930.56
4000 3600 10 included -6.71 -6.14 2425.72

Table 3.15: Results of the parameter tuning for the generator arc set size and
composition for ILS-VRPDOC.

B.3 Infeasiblity penalty factor

The last set of parameters to tune defines the minimum, maximum, and initial values
(αmin, αmax, and α0) of the penalty factor α that is used in the VND. The parameter δ

is given by exp (log(αmax/αmin)/αmax). For each of the two algorithmic versions established
before, we test the values (αmin, αmax, α0) = (0.01, 1, 0.1) proposed by Schneider and
Löffler, 2019. Then, we increase all three α-values by a factor of ten until the quality
of the solution stops improving.

Table 3.16 shows the results and is organized as Table 3.15 with an additional
column for the α-values. Increasing αmax to 10 000 for ILS-VRPDOCspeed and to
100 000 for ILS-VRPDOCquality leads to the overall best solution quality. Increasing the
values (αmin, αmax, α0) = (0.01,1,0.1) by a factor of ten improves the solution quality
for both combinations (η = 150, τ = 60, κ = 10, Additional generator arcs=included)
and (η = 4000, τ = 3600, κ = 5, Additional generator arcs=included). However,
further increasing the values (αmin, αmax, α0) by a factor of ten provides results with
a solution quality that is similar to the one obtained for the starting values.

109

η τ κ Additional generator arcs (αmin, αmax, α0) ∆b(%) ∆a(%) ta(s)

150 60 10 included (0.01,1,0.1) -5.56 -4.65 51.12
150 60 10 included (0.1,10,1) -6.08 -5.36 53.40
150 60 10 included (1,100,10) -5.88 -5.15 53.81

4000 3600 5 included (0.01,1,0.1) -6.77 -6.08 2361.87
4000 3600 5 included (0.1,10,1) -7.21 -6.70 2563.76
4000 3600 5 included (1,100,10) -6.94 -6.44 2602.75

Table 3.16: Results of the parameter tuning for the infeasibility penalty factor of
ILS-VRPDOC.

110

C Detailed results for the comparison of the DHL solutions to ILS-VRPDOCquality solutions

DHL ILS-VRPDOCinit ILS-VRPDOCquality ILS-VRPDOCspeed

Instance |I| |T | |K| Obj ∆init(%) tinit(s) ∆b(%) ∆a(%) ta(s) ∆b(%) ∆a(%) ta(s)

1 275 6 7 80306.27 6.97 0.12 -14.40 -13.96 337.68 -14.12 -13.56 20.62
2 278 6 7 52383.28 23.67 0.10 -2.65 -1.24 171.99 -1.72 1.23 13.78
3 300 7 8 61147.58 35.14 0.14 -5.31 -4.63 409.08 -4.70 -3.71 23.74
4 273 7 6 36080.66 2.79 0.10 -5.56 -3.98 339.39 -3.46 -3.36 14.38
5 376 9 8 113977.07 8.40 0.86 -17.69 -15.71 1195.06 -12.96 -12.70 35.68
6 376 9 10 111441.89 17.40 2.23 -9.84 -8.97 1261.64 -6.50 -5.77 42.11
7 471 10 9 51611.83 15.35 0.63 -3.67 -3.58 1252.16 -3.45 -3.38 51.69
8 471 10 11 52937.57 11.10 0.61 -5.05 -4.93 1463.39 -5.03 -4.85 58.90
9 475 10 5 48070.73 3.07 0.13 1.99 1.99 410.23 1.99 1.99 16.84

10 475 10 9 51828.73 5.54 1.00 -5.96 -5.25 1864.72 -4.94 -4.38 54.44
11 475 10 11 52691.95 10.08 0.73 -4.57 -4.38 1743.46 -4.41 -3.85 57.77
12 475 10 12 55253.52 2.45 2.41 -8.23 -7.80 2196.88 -7.92 -5.65 59.01
13 480 10 11 54135.82 5.12 1.22 -4.88 -4.79 1432.91 -4.63 -4.21 49.84
14 514 12 11 209600.72 -0.00 0.91 -0.00 -0.00 186.04 -0.00 -0.00 8.00
15 514 12 13 230777.27 4.18 1.78 -25.27 -21.02 2093.26 -17.67 -14.88 59.95
16 582 12 6 66697.42 4.77 0.29 1.01 1.22 1532.63 1.04 1.30 55.98
17 582 12 10 70990.00 7.04 1.78 -5.51 -5.16 2993.39 -4.62 -3.51 60.19
18 582 12 11 71366.72 11.57 0.98 -5.50 -4.58 2978.43 -3.78 -3.38 60.41
19 582 12 13 71383.10 0.88 3.35 -4.20 -3.50 2914.09 -2.64 -1.80 60.26
20 582 12 14 71544.74 13.12 1.38 -4.08 -2.95 3213.96 -2.45 -1.81 60.56
21 625 13 12 47652.46 6.33 1.80 -8.88 -8.67 3589.74 -8.33 -7.60 60.56
22 625 13 14 47041.95 28.90 1.36 -5.27 -4.53 3527.31 -3.59 -3.08 60.27
23 622 13 12 56328.01 4.94 0.69 -4.76 -4.44 2871.02 -4.19 -3.78 59.11
24 622 13 14 58871.79 -1.82 4.43 -8.75 -8.48 3095.95 -7.62 -6.78 60.47
25 663 14 13 79206.96 -3.84 7.63 -8.91 -7.78 2695.29 -8.23 -6.95 60.19
26 663 14 15 75749.86 2.52 7.09 -2.61 -2.30 3400.34 -2.15 -1.49 60.31
27 700 14 7 99048.40 0.31 0.34 -3.25 -3.25 1296.59 -3.25 -3.25 55.07
28 700 14 13 107648.24 6.45 1.37 -9.51 -9.04 3054.55 -9.08 -8.09 60.26
29 700 14 15 104876.38 0.07 5.88 -5.04 -4.59 3571.28 -4.32 -3.72 60.25
30 726 15 8 49052.81 3.61 2.65 -4.71 -4.71 1794.68 -4.71 -4.71 60.30
31 726 15 14 57841.67 -6.45 7.65 -15.38 -14.72 3177.93 -14.58 -13.85 60.36
32 701 15 14 86149.90 4.05 1.32 -4.15 -3.98 3047.55 -3.69 -3.47 60.23
33 701 15 16 88584.53 -1.81 5.48 -6.60 -6.17 3562.92 -5.72 -4.87 60.77
34 760 16 15 66775.56 9.98 2.68 -8.63 -8.14 3507.19 -7.68 -6.95 60.42
35 751 16 15 105504.51 -3.77 5.46 -6.01 -5.88 3356.22 -5.80 -5.42 60.56
36 751 16 17 111828.22 2.49 3.10 -7.45 -6.91 3397.01 -6.85 -6.31 60.53
37 829 17 9 82907.27 6.27 3.82 1.03 1.03 3031.88 1.03 1.04 60.55
38 829 17 15 93979.54 11.66 4.41 -7.54 -6.92 3600.39 -6.50 -5.95 60.64
39 829 17 16 94282.40 1.18 11.81 -6.71 -6.30 3528.51 -6.06 -5.05 60.80
40 829 17 18 93599.51 13.21 5.43 -4.54 -4.38 3601.21 -4.06 -2.84 60.77
41 829 17 19 95578.75 -1.55 11.77 -5.54 -4.97 3600.63 -4.35 -3.43 60.64
42 925 19 18 99827.69 2.16 8.57 -5.27 -4.86 3482.59 -4.82 -4.10 60.41

111

DHL ILS-VRPDOCinit ILS-VRPDOCquality ILS-VRPDOCspeed

Instance |I| |T | |K| Obj ∆init(%) tinit(s) ∆b(%) ∆a(%) ta(s) ∆b(%) ∆a(%) ta(s)

43 925 19 20 98594.66 3.16 25.97 -2.73 -2.56 3600.52 -2.28 -1.32 60.85
44 942 19 10 90774.77 0.09 8.29 -2.69 -2.69 3222.51 -2.69 -2.69 60.58
45 942 19 17 94097.24 -0.46 21.68 -1.47 -1.47 1615.37 -1.47 -1.47 60.28
46 942 19 18 93705.88 -0.15 8.75 -0.17 -0.17 988.26 -0.17 -0.17 48.75
47 908 19 10 111950.33 0.44 30.65 -6.09 -6.02 3600.67 -5.89 -4.95 60.84
48 908 19 18 121663.85 -0.83 7.50 -6.92 -6.19 3477.04 -5.86 -4.66 60.38
49 908 19 20 120329.49 -0.25 26.20 -5.28 -5.12 3554.57 -4.64 -3.44 60.59
50 908 19 21 124268.87 -3.26 35.11 -8.73 -8.52 3600.96 -6.41 -5.96 61.01
51 925 19 18 149507.13 -2.51 19.32 -13.22 -12.75 3600.72 -12.12 -11.35 60.34
52 925 19 20 141349.27 -2.38 13.81 -7.73 -7.26 3601.10 -6.22 -5.38 61.14
53 925 19 21 141449.26 0.08 19.98 -6.97 -6.68 3601.02 -5.40 -4.45 61.07
54 923 20 10 113765.56 2.46 23.64 -5.45 -5.45 2917.00 -5.45 -5.44 60.40
55 923 20 18 127691.87 -6.50 9.34 -10.62 -10.36 3600.62 -9.43 -8.69 60.51
56 923 20 19 128271.91 -5.69 9.09 -11.32 -10.67 3600.69 -10.12 -9.34 60.84
57 923 20 21 127353.23 8.74 6.01 -9.43 -9.21 3601.00 -8.71 -7.70 60.89
58 923 20 22 127232.23 0.72 14.55 -7.66 -7.29 3600.66 -6.63 -5.84 60.86
59 929 21 19 150342.68 2.18 5.98 -5.19 -4.63 3574.17 -4.67 -4.20 60.41
60 929 21 20 153093.73 -1.63 7.21 -6.98 -6.62 3600.77 -6.38 -5.48 60.86
61 929 21 23 154417.54 2.87 25.31 -6.33 -5.90 3601.01 -5.05 -4.01 60.90
62 934 21 12 88196.75 1.15 8.46 -2.22 -2.22 3600.77 -2.22 -2.22 61.01
63 1114 23 21 134146.07 -0.35 52.13 -1.77 -1.77 2611.56 -1.77 -1.61 60.43
64 1114 23 22 134170.55 -0.17 34.49 -0.50 -0.50 1492.39 -0.50 -0.50 60.25
65 1051 23 12 95717.08 3.20 8.00 -2.08 -2.08 3600.88 -2.08 -2.08 61.15
66 1051 23 21 108528.78 -5.13 28.76 -10.29 -9.99 3600.79 -9.34 -8.70 61.09
67 1051 23 22 105518.97 -1.81 28.18 -6.99 -6.55 3601.12 -6.15 -5.54 61.10
68 1051 23 24 103758.82 -0.50 30.57 -4.22 -3.85 3601.45 -3.04 -2.34 61.69
69 1051 23 25 106000.89 -1.57 33.40 -6.70 -6.26 3602.39 -5.15 -3.94 61.83
70 965 24 23 119080.63 -2.49 21.88 -8.48 -7.80 3600.97 -7.34 -6.31 60.79
71 965 24 25 118442.36 -0.02 28.45 -6.63 -6.40 3601.47 -5.68 -4.81 62.59
72 1142 24 23 127830.99 7.12 16.97 -8.61 -8.29 3601.09 -7.62 -6.68 62.42
73 1142 24 25 119689.31 6.23 61.54 -2.14 -1.64 3601.40 2.38 3.74 68.05
74 1200 25 14 119604.29 2.71 43.86 -7.06 -6.89 3602.76 -6.51 -5.41 62.07
75 1200 25 24 136155.86 -3.40 76.13 -7.86 -7.30 3602.35 -6.09 -4.75 76.66
76 1200 25 26 138261.97 -1.96 42.21 -7.22 -6.72 3602.43 -4.68 -4.20 62.98
77 1200 25 28 139005.59 -0.93 68.63 -5.64 -5.12 3601.17 -2.67 -1.59 70.08
78 1225 25 24 128255.07 -1.48 157.72 -7.48 -7.03 3601.76 -3.89 -3.30 158.97
79 1119 26 25 141018.97 0.62 39.34 -6.17 -5.11 3601.72 -4.64 -3.88 60.74
80 1119 26 27 143749.07 -1.30 52.37 -5.96 -5.52 3601.43 -3.83 -2.97 61.74
81 1080 26 25 123149.40 0.64 34.10 -8.68 -7.52 3602.02 -6.14 -4.77 61.61
82 1080 26 27 116985.82 6.69 42.93 -1.47 -1.25 3600.82 0.07 0.98 61.26
83 1275 26 25 172465.52 -9.89 57.09 -14.04 -13.64 3601.94 -12.63 -11.47 62.93
84 1275 26 27 155416.88 -0.25 14.28 -0.27 -0.27 1487.09 -0.27 -0.27 60.22
85 1275 26 28 155798.72 1.92 14.74 1.84 1.84 1650.74 1.84 1.84 60.27
86 1221 26 13 144936.73 9.59 9.71 -0.30 -0.30 3602.60 -0.27 0.06 61.47
87 1221 26 22 166087.78 5.37 37.39 -7.84 -7.20 3601.39 -6.30 -4.88 61.22
88 1221 26 23 171720.73 -3.61 85.35 -10.59 -9.87 3603.41 -8.86 -6.57 86.44
89 1221 26 24 165108.85 1.09 34.88 -5.73 -4.86 3602.05 -4.36 -3.32 61.02

112

DHL ILS-VRPDOCinit ILS-VRPDOCquality ILS-VRPDOCspeed

Instance |I| |T | |K| Obj ∆init(%) tinit(s) ∆b(%) ∆a(%) ta(s) ∆b(%) ∆a(%) ta(s)

90 1221 26 25 163742.70 -1.12 69.29 -3.90 -3.28 3600.99 -2.30 -1.59 70.61
91 1221 26 27 168394.38 3.43 66.57 -5.39 -4.94 3603.15 -3.79 -1.90 71.02
92 1221 26 28 171411.25 20.12 28.55 -7.19 -6.52 3605.58 -3.97 -1.59 63.15
93 1199 29 27 144566.45 -0.69 70.61 -5.86 -5.43 3601.26 -3.21 -2.18 70.50
94 1199 29 28 145994.48 -0.11 66.42 -6.13 -5.31 3600.91 -4.09 -2.61 67.10
95 1199 29 32 150366.94 -1.74 44.48 -7.06 -6.57 3603.44 -5.25 -4.62 63.16
96 1408 30 29 183708.28 -6.98 49.71 -9.62 -9.36 3601.91 -8.55 -8.09 62.65
97 1282 30 15 174091.53 4.64 8.94 -5.03 -5.03 3601.56 -5.03 -4.98 62.71
98 1282 30 28 203951.23 2.15 12.83 -10.72 -10.37 3603.46 -9.53 -9.07 61.61

Table 3.17: Comparison of the DHL solutions to the solutions of our construction heuristic, and of the best and average run of ILS-
VRPDOCquality and ILS-VRPDOCspeed.

113

D Detailed results for the routing-based comparison of the DHL solutions to ILS-VRPDOCquality

solutions

Service time max deviation Service time avg deviation

Instance |I| |T | |K| DHL ILS-VRPDOC DHL ILS-VRPDOC Similarity

1 275 6 7 20.54 18.87 6.57 13.34 89.72
2 278 6 7 15.61 14.81 8.85 11.97 90.18
3 300 7 8 24.27 21.83 8.69 12.77 91.88
4 273 7 6 11.79 9.34 3.93 5.52 93.55
5 376 9 8 27.20 26.78 6.80 12.64 93.49
6 376 9 10 27.03 27.61 9.20 18.19 91.19
7 471 10 9 28.11 28.79 7.02 12.61 93.75
8 471 10 11 29.26 29.15 10.62 19.37 91.70
9 475 10 5 19.90 19.59 12.63 11.46 97.08

10 475 10 9 55.54 54.09 17.27 28.26 93.60
11 475 10 11 31.20 31.27 6.67 18.94 90.53
12 475 10 12 31.58 31.91 7.93 22.91 89.32
13 480 10 11 17.01 16.55 5.68 10.41 91.04
14 514 12 11 30.06 21.74 7.99 6.47 97.14
15 514 12 13 51.27 50.16 11.09 25.78 90.32
16 582 12 6 14.62 13.53 7.45 8.28 93.54
17 582 12 10 34.96 33.01 7.42 12.84 90.20
18 582 12 11 32.29 31.68 6.56 14.44 89.71
19 582 12 13 34.47 33.73 6.96 17.57 89.41
20 582 12 14 34.18 34.29 7.76 25.49 87.42
21 625 13 12 23.39 23.08 6.63 9.10 86.66
22 625 13 14 25.22 25.62 6.98 15.56 91.86
23 622 13 12 23.88 23.73 9.67 10.64 93.06
24 622 13 14 47.29 47.85 13.96 29.05 90.72
25 663 14 13 40.86 40.01 7.00 16.44 93.49
26 663 14 15 31.34 30.99 5.71 12.33 89.53
27 700 14 7 14.04 14.04 6.21 6.21 97.60
28 700 14 13 24.22 24.19 7.44 13.12 94.25
29 700 14 15 22.34 21.61 7.91 13.72 93.71
30 726 15 8 64.96 46.15 16.24 14.47 97.41
31 726 15 14 33.97 33.16 5.41 9.92 93.78
32 701 15 14 12.58 12.67 5.63 7.47 93.15
33 701 15 16 39.16 39.97 9.74 18.97 86.19
34 760 16 15 21.27 20.18 4.86 11.72 92.52
35 751 16 15 26.18 22.32 5.12 11.38 92.95
36 751 16 17 31.93 29.62 5.08 12.73 91.80
37 829 17 9 65.73 47.79 14.61 12.79 97.61
38 829 17 15 38.15 38.35 7.50 18.11 90.40
39 829 17 16 36.76 31.62 7.11 9.71 91.83
40 829 17 18 41.63 41.99 8.60 19.87 88.43

114

Service time max deviation Service time avg deviation

Instance |I| |T | |K| DHL ILS-VRPDOC DHL ILS-VRPDOC Similarity

41 829 17 19 42.68 42.24 8.46 24.06 91.04
42 925 19 18 35.15 35.92 5.24 15.18 93.85
43 925 19 20 32.30 32.91 5.95 15.68 92.06
44 942 19 10 75.62 47.52 16.91 14.14 97.48
45 942 19 17 80.51 61.65 18.60 11.72 97.81
46 942 19 18 40.92 40.84 6.15 6.15 97.92
47 908 19 10 62.32 62.60 12.58 37.28 97.06
48 908 19 18 20.24 20.43 7.34 7.41 95.90
49 908 19 20 37.58 36.59 7.04 14.01 93.97
50 908 19 21 34.50 34.70 7.90 16.00 90.85
51 925 19 18 39.39 39.28 5.26 10.97 93.74
52 925 19 20 36.66 35.56 4.56 11.48 87.83
53 925 19 21 33.80 33.97 8.11 15.70 87.42
54 923 20 10 8.99 8.99 2.98 2.77 97.43
55 923 20 18 26.07 26.55 4.58 15.19 93.62
56 923 20 19 25.73 20.96 4.75 11.09 93.42
57 923 20 21 29.05 29.24 5.66 13.76 89.94
58 923 20 22 23.55 23.55 4.49 13.82 92.06
59 929 21 19 24.31 24.31 4.64 9.20 93.78
60 929 21 20 27.46 23.78 4.80 9.86 93.15
61 929 21 23 26.09 26.09 8.65 16.82 91.07
62 934 21 12 61.74 60.57 23.79 24.41 97.04
63 1114 23 21 86.56 76.59 17.03 14.05 95.95
64 1114 23 22 43.88 42.13 7.45 7.45 96.04
65 1051 23 12 55.09 44.44 12.62 10.28 97.27
66 1051 23 21 41.69 39.89 8.63 13.90 93.94
67 1051 23 22 38.88 38.88 8.59 10.66 93.29
68 1051 23 24 33.82 31.26 7.44 14.25 89.58
69 1051 23 25 39.07 39.90 8.49 17.06 85.87
70 965 24 23 35.12 35.69 5.00 13.53 92.11
71 965 24 25 34.50 34.95 4.67 17.07 85.25
72 1142 24 23 40.36 40.64 9.50 14.93 92.02
73 1142 24 25 34.95 34.95 8.82 15.42 93.83
74 1200 25 14 72.10 67.85 23.68 36.53 92.26
75 1200 25 24 53.26 51.68 8.85 19.35 88.64
76 1200 25 26 50.04 49.86 7.87 22.02 82.95
77 1200 25 28 63.67 63.36 20.76 28.74 90.15
78 1225 25 24 78.36 78.36 10.01 37.99 93.92
79 1119 26 25 37.86 37.77 7.09 9.09 92.31
80 1119 26 27 31.99 31.99 4.30 12.18 91.54
81 1080 26 25 57.18 57.69 8.85 19.96 90.14
82 1080 26 27 53.65 53.65 7.82 14.53 94.49
83 1275 26 25 41.60 40.79 4.38 13.89 92.69
84 1275 26 27 51.73 49.23 10.75 11.40 97.77
85 1275 26 28 50.54 50.97 15.86 16.46 97.54
86 1221 26 13 48.21 46.49 10.55 10.63 94.57
87 1221 26 22 54.10 54.77 7.14 17.09 92.20

115

Service time max deviation Service time avg deviation

Instance |I| |T | |K| DHL ILS-VRPDOC DHL ILS-VRPDOC Similarity

88 1221 26 23 51.89 51.89 6.66 18.51 88.50
89 1221 26 24 49.95 49.98 6.56 19.48 92.29
90 1221 26 25 51.01 51.86 9.98 19.02 94.38
91 1221 26 27 45.11 45.66 5.97 19.90 86.94
92 1221 26 28 43.36 43.38 6.13 23.22 83.67
93 1199 29 27 54.69 54.03 4.72 17.05 92.41
94 1199 29 28 50.79 50.80 4.43 18.10 92.34
95 1199 29 32 47.59 47.59 6.65 22.59 88.63
96 1408 30 29 29.61 27.97 6.76 9.09 93.46
97 1282 30 15 38.23 36.54 6.84 6.85 97.30
98 1282 30 28 13.29 13.62 4.42 6.79 92.82

Table 3.18: Routing-based comparison of the DHL solutions to the solutions of the best run of ILS-VRPDOCquality.

116

E Detailed results for the depot operation-based comparison of the DHL solutions to ILS-
VRPDOCquality solutions

Max #mail carriers Avg #mail carriers Max #tables Avg #tables Skips Table changes

Instance |I| |T | |K| DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC

1 275 6 7 2.00 2.00 2.00 1.83 6.00 4.00 1.71 1.57 3.00 2.00 6.00 6.00
2 278 6 7 2.00 2.00 2.00 1.83 6.00 5.00 1.71 1.57 5.00 5.00 5.00 5.00
3 300 7 8 2.00 2.00 2.00 1.86 7.00 4.00 1.75 1.62 3.00 3.00 6.00 6.00
4 273 7 6 6.00 4.00 1.71 1.57 2.00 2.00 2.00 1.83 0.00 0.00 6.00 6.00
5 376 9 8 8.00 3.00 1.78 1.78 2.00 2.00 2.00 2.00 0.00 0.00 8.00 8.00
6 376 9 10 2.00 2.00 2.00 1.78 9.00 2.00 1.80 1.60 2.00 2.00 9.00 9.00
7 471 10 9 9.00 4.00 1.80 1.70 2.00 2.00 2.00 1.89 0.00 0.00 9.00 9.00
8 471 10 11 2.00 2.00 2.00 1.70 9.00 2.00 1.82 1.55 4.00 4.00 9.00 8.00
9 475 10 5 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 1.00 0.00 5.00 5.00

10 475 10 9 8.00 4.00 1.70 1.60 2.00 2.00 1.89 1.78 1.00 1.00 8.00 8.00
11 475 10 11 2.00 2.00 1.90 1.80 6.00 3.00 1.73 1.64 8.00 8.00 8.00 8.00
12 475 10 12 2.00 2.00 1.90 1.90 4.00 4.00 1.58 1.58 10.00 9.00 9.00 9.00
13 480 10 11 2.00 2.00 1.90 1.90 9.00 5.00 1.73 1.73 5.00 5.00 8.00 8.00
14 514 12 11 1.00 1.00 1.00 1.00 2.00 2.00 1.09 1.09 1.00 0.00 1.00 1.00
15 514 12 13 2.00 2.00 1.83 1.75 10.00 3.00 1.69 1.62 8.00 8.00 9.00 9.00
16 582 12 6 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 10.00 0.00 14.00 13.00
17 582 12 10 6.00 3.00 1.67 1.58 2.00 2.00 2.00 1.90 13.00 7.00 14.00 14.00
18 582 12 11 11.00 3.00 1.83 1.75 2.00 2.00 2.00 1.91 13.00 10.00 12.00 12.00
19 582 12 13 2.00 2.00 1.92 1.67 9.00 3.00 1.77 1.54 12.00 12.00 11.00 11.00
20 582 12 14 3.00 3.00 2.17 2.17 6.00 3.00 1.86 1.86 17.00 12.00 14.00 14.00
21 625 13 12 12.00 5.00 1.85 1.85 2.00 2.00 2.00 2.00 12.00 12.00 23.00 23.00
22 625 13 14 2.00 2.00 2.00 2.00 13.00 3.00 1.86 1.86 7.00 7.00 13.00 13.00
23 622 13 12 11.00 3.00 1.77 1.62 2.00 2.00 1.92 1.75 3.00 3.00 11.00 11.00
24 622 13 14 2.00 2.00 2.00 1.77 13.00 3.00 1.86 1.64 5.00 5.00 14.00 14.00
25 663 14 13 12.00 4.00 1.79 1.71 2.00 2.00 1.92 1.85 0.00 0.00 15.00 15.00
26 663 14 15 2.00 2.00 1.93 1.93 10.00 7.00 1.80 1.80 10.00 10.00 20.00 20.00
27 700 14 7 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 0.00 0.00 7.00 7.00
28 700 14 13 13.00 6.00 1.86 1.64 2.00 2.00 2.00 1.77 0.00 0.00 13.00 13.00
29 700 14 15 2.00 2.00 1.86 1.71 12.00 5.00 1.73 1.60 4.00 4.00 11.00 11.00
30 726 15 8 1.00 1.00 1.00 1.00 2.00 2.00 1.88 1.88 0.00 0.00 7.00 7.00
31 726 15 14 14.00 6.00 1.87 1.67 2.00 2.00 2.00 1.79 0.00 0.00 14.00 14.00
32 701 15 14 12.00 6.00 1.73 1.60 2.00 2.00 1.86 1.71 3.00 3.00 12.00 12.00
33 701 15 16 2.00 2.00 2.00 1.80 12.00 3.00 1.88 1.69 25.00 25.00 17.00 17.00
34 760 16 15 12.00 3.00 1.69 1.56 2.00 2.00 1.80 1.67 11.00 11.00 12.00 12.00
35 751 16 15 2.00 2.00 1.88 1.56 2.00 2.00 2.00 1.67 0.00 0.00 15.00 14.00
36 751 16 17 2.00 2.00 2.00 1.56 2.00 2.00 1.88 1.47 0.00 0.00 15.00 15.00
37 829 17 9 1.00 1.00 1.00 1.00 2.00 2.00 1.89 1.89 1.00 0.00 9.00 9.00
38 829 17 15 9.00 4.00 1.82 1.88 3.00 3.00 2.07 2.13 13.00 13.00 18.00 18.00
39 829 17 16 15.00 3.00 1.82 1.76 2.00 2.00 1.94 1.88 4.00 4.00 19.00 19.00
40 829 17 18 3.00 3.00 2.06 2.12 10.00 4.00 1.94 2.00 17.00 17.00 21.00 21.00

117

Max #mail carriers Avg #mail carriers Max #tables Avg #tables Skips Table changes

Instance |I| |T | |K| DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC

41 829 17 19 2.00 2.00 1.94 1.76 8.00 3.00 1.74 1.58 9.00 9.00 16.00 16.00
42 925 19 18 17.00 4.00 1.84 1.74 2.00 2.00 1.94 1.83 0.00 0.00 17.00 17.00
43 925 19 20 2.00 2.00 1.89 1.79 17.00 5.00 1.80 1.70 10.00 10.00 18.00 18.00
44 942 19 10 1.00 1.00 1.00 1.00 2.00 2.00 1.90 1.90 0.00 0.00 9.00 9.00
45 942 19 17 1.00 1.00 1.00 1.00 2.00 2.00 1.12 1.12 0.00 0.00 2.00 2.00
46 942 19 18 1.00 1.00 1.00 1.00 2.00 2.00 1.06 1.06 0.00 0.00 1.00 1.00
47 908 19 10 2.00 2.00 1.05 1.05 3.00 3.00 2.00 2.00 1.00 0.00 10.00 10.00
48 908 19 18 8.00 3.00 1.37 1.32 2.00 2.00 1.44 1.39 0.00 0.00 8.00 8.00
49 908 19 20 2.00 2.00 1.58 1.58 11.00 3.00 1.50 1.50 6.00 6.00 10.00 10.00
50 908 19 21 2.00 2.00 1.95 1.89 11.00 3.00 1.76 1.71 14.00 14.00 16.00 16.00
51 925 19 18 18.00 5.00 1.89 1.63 2.00 2.00 2.00 1.72 0.00 0.00 18.00 18.00
52 925 19 20 2.00 2.00 1.89 1.89 17.00 5.00 1.80 1.80 32.00 28.00 16.00 16.00
53 925 19 21 2.00 2.00 1.89 1.84 9.00 3.00 1.71 1.67 29.00 29.00 15.00 15.00
54 923 20 10 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 0.00 0.00 11.00 10.00
55 923 20 18 9.00 4.00 1.80 1.60 2.00 2.00 2.00 1.78 0.00 0.00 18.00 18.00
56 923 20 19 19.00 6.00 1.90 1.70 2.00 2.00 2.00 1.79 0.00 0.00 19.00 19.00
57 923 20 21 2.00 2.00 2.00 1.75 20.00 3.00 1.90 1.67 13.00 13.00 19.00 19.00
58 923 20 22 2.00 2.00 1.95 1.70 10.00 3.00 1.77 1.55 5.00 5.00 17.00 17.00
59 929 21 19 9.00 4.00 1.76 1.62 2.00 2.00 1.95 1.79 0.00 0.00 18.00 18.00
60 929 21 20 19.00 7.00 1.86 1.67 2.00 2.00 1.95 1.75 0.00 0.00 19.00 19.00
61 929 21 23 2.00 2.00 1.86 1.71 11.00 3.00 1.70 1.57 12.00 12.00 16.00 16.00
62 934 21 12 1.00 1.00 1.00 1.00 2.00 2.00 1.75 1.75 2.00 0.00 9.00 9.00
63 1114 23 21 1.00 1.00 1.00 1.00 2.00 2.00 1.10 1.10 19.00 0.00 2.00 2.00
64 1114 23 22 1.00 1.00 1.00 1.00 2.00 2.00 1.05 1.05 19.00 0.00 1.00 1.00
65 1051 23 12 1.00 1.00 1.00 1.00 2.00 2.00 1.92 1.92 0.00 0.00 11.00 11.00
66 1051 23 21 10.00 4.00 1.74 1.57 2.00 2.00 1.90 1.71 0.00 0.00 19.00 19.00
67 1051 23 22 20.00 6.00 1.83 1.65 2.00 2.00 1.91 1.73 1.00 1.00 20.00 20.00
68 1051 23 24 2.00 2.00 1.78 1.78 18.00 4.00 1.71 1.71 22.00 22.00 19.00 19.00
69 1051 23 25 3.00 3.00 2.43 2.17 18.00 4.00 2.24 2.00 30.00 30.00 32.00 32.00
70 965 24 23 21.00 10.00 1.83 1.71 2.00 2.00 1.91 1.78 2.00 2.00 21.00 21.00
71 965 24 25 2.00 2.00 1.96 1.79 12.00 3.00 1.88 1.72 26.00 26.00 29.00 29.00
72 1142 24 23 21.00 5.00 1.83 1.88 2.00 2.00 1.91 1.96 6.00 6.00 26.00 26.00
73 1142 24 25 2.00 2.00 1.92 1.88 22.00 7.00 1.84 1.80 9.00 9.00 24.00 24.00
74 1200 25 14 2.00 2.00 1.08 1.20 3.00 3.00 1.93 2.14 31.00 21.00 16.00 16.00
75 1200 25 24 20.00 5.00 1.88 1.92 3.00 3.00 1.96 2.00 31.00 31.00 25.00 25.00
76 1200 25 26 2.00 2.00 1.92 1.88 4.00 3.00 1.85 1.81 53.00 53.00 38.00 38.00
77 1200 25 28 2.00 2.00 1.44 1.48 3.00 3.00 1.29 1.32 31.00 31.00 10.00 10.00
78 1225 25 24 20.00 5.00 1.76 1.76 2.00 2.00 1.83 1.83 3.00 3.00 20.00 20.00
79 1119 26 25 18.00 4.00 1.65 1.58 2.00 2.00 1.72 1.64 9.00 9.00 18.00 18.00
80 1119 26 27 2.00 2.00 1.69 1.65 13.00 3.00 1.63 1.59 9.00 9.00 21.00 21.00
81 1080 26 25 22.00 6.00 1.81 1.92 2.00 2.00 1.88 2.00 3.00 3.00 38.00 38.00
82 1080 26 27 2.00 2.00 1.92 1.88 24.00 9.00 1.85 1.81 4.00 4.00 23.00 23.00
83 1275 26 25 24.00 4.00 1.88 1.77 2.00 2.00 1.96 1.84 6.00 6.00 24.00 24.00
84 1275 26 27 2.00 2.00 1.04 1.04 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
85 1275 26 28 2.00 2.00 1.08 1.08 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
86 1221 26 13 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 6.00 0.00 29.00 28.00
87 1221 26 22 7.00 4.00 1.65 1.54 2.00 2.00 1.95 1.82 15.00 14.00 21.00 21.00

118

Max #mail carriers Avg #mail carriers Max #tables Avg #tables Skips Table changes

Instance |I| |T | |K| DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC DHL ILS-VRPDOC

88 1221 26 23 21.00 7.00 2.50 2.19 3.00 3.00 2.83 2.48 14.00 14.00 43.00 43.00
89 1221 26 24 11.00 6.00 1.77 1.77 2.00 2.00 1.92 1.92 12.00 12.00 23.00 23.00
90 1221 26 25 11.00 4.00 1.38 1.42 2.00 2.00 1.44 1.48 6.00 6.00 13.00 13.00
91 1221 26 27 2.00 2.00 1.88 1.92 9.00 4.00 1.81 1.85 30.00 30.00 33.00 33.00
92 1221 26 28 3.00 3.00 2.19 2.42 9.00 4.00 2.04 2.25 43.00 42.00 47.00 47.00
93 1199 29 27 15.00 5.00 1.83 1.66 2.00 2.00 1.96 1.78 3.00 3.00 26.00 26.00
94 1199 29 28 26.00 5.00 1.86 1.72 2.00 2.00 1.93 1.79 0.00 0.00 26.00 26.00
95 1199 29 32 2.00 2.00 1.93 1.62 10.00 3.00 1.75 1.47 26.00 26.00 24.00 24.00
96 1408 30 29 25.00 5.00 1.80 1.70 2.00 2.00 1.86 1.76 0.00 0.00 27.00 27.00
97 1282 30 15 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 0.00 0.00 15.00 15.00
98 1282 30 28 27.00 5.00 1.87 1.63 2.00 2.00 2.00 1.75 0.00 0.00 28.00 28.00

Table 3.19: Depot operation-based comparison of the DHL solutions to the solutions of the best run of ILS-VRPDOCquality.

119

F Detailed results for the routing-based comparison of the ILS-VRPDOCquality solutions to the
ILS-VRPDOCOFF

quality solutions

Objective Service time max deviation Service time avg deviation Similarity to DHL solutions

Instance |I| |T | |K| Q QOF F Q QOF F Q QOF F Q QOF F

1 275 6 7 68740.90 62801.91 18.87 19.63 13.34 15.73 89.72 45.74
2 278 6 7 50993.70 46704.53 14.81 15.89 11.97 12.95 90.18 46.67
3 300 7 8 57901.85 49982.84 21.83 24.75 12.77 18.95 91.88 51.95
4 273 7 6 34075.42 29947.85 9.34 11.99 5.52 9.98 93.55 40.86
5 376 9 8 93816.72 82443.89 26.78 27.53 12.64 20.17 93.49 44.79
6 376 9 10 100481.24 90682.77 27.61 27.81 18.19 21.53 91.19 50.00
7 471 10 9 49719.36 43638.34 28.79 27.82 12.61 16.29 93.75 32.29
8 471 10 11 50262.42 44511.48 29.15 29.33 19.37 23.06 91.70 37.34
9 475 10 5 49025.43 40724.75 19.59 14.03 11.46 8.23 97.08 35.21

10 475 10 9 48737.83 43116.50 54.09 53.15 28.26 26.98 93.60 33.26
11 475 10 11 50283.28 44930.79 31.27 31.70 18.94 22.79 90.53 33.54
12 475 10 12 50708.49 45147.68 31.91 31.54 22.91 20.87 89.32 34.91
13 480 10 11 51495.36 45892.44 16.55 17.57 10.41 12.73 91.04 34.62
14 514 12 11 209600.72 138273.76 21.74 30.93 6.47 20.31 97.14 23.62
15 514 12 13 172467.93 152854.81 50.16 51.74 25.78 35.20 90.32 22.20
16 582 12 6 67373.45 57002.42 13.53 13.35 8.28 8.69 93.54 33.84
17 582 12 10 67079.17 59928.71 33.01 30.17 12.84 18.32 90.20 34.12
18 582 12 11 67442.05 61054.54 31.68 25.41 14.44 9.99 89.71 32.72
19 582 12 13 68381.81 61649.80 33.73 34.81 17.57 15.02 89.41 32.94
20 582 12 14 68623.11 62577.09 34.29 28.78 25.49 12.54 87.42 32.21
21 625 13 12 43420.61 39302.15 23.08 23.79 9.10 15.31 86.66 49.14
22 625 13 14 44563.03 41202.67 25.62 25.91 15.56 18.67 91.86 49.77
23 622 13 12 53645.91 43954.54 23.73 22.46 10.64 14.13 93.06 32.49
24 622 13 14 53719.78 44971.56 47.85 47.21 29.05 24.87 90.72 27.20
25 663 14 13 72151.27 65051.33 40.01 40.41 16.44 25.64 93.49 29.44
26 663 14 15 73772.15 67192.25 30.99 31.26 12.33 18.49 89.53 29.20
27 700 14 7 95826.72 85384.75 14.04 12.48 6.21 7.25 97.60 52.05
28 700 14 13 97409.55 91256.59 24.19 23.13 13.12 9.44 94.25 51.19
29 700 14 15 99591.85 93745.98 21.61 22.68 13.72 16.31 93.71 52.59
30 726 15 8 46743.05 36557.86 46.15 63.81 14.47 39.35 97.41 52.86
31 726 15 14 48943.76 42563.29 33.16 33.64 9.92 21.31 93.78 52.84
32 701 15 14 82572.73 74594.75 12.67 12.65 7.47 8.30 93.15 32.31
33 701 15 16 82736.75 76762.85 39.97 39.64 18.97 18.96 86.19 37.10
34 760 16 15 61011.39 56424.07 20.18 21.63 11.72 15.54 92.52 63.35
35 751 16 15 99159.71 91747.66 22.32 25.84 11.38 13.28 92.95 35.25
36 751 16 17 103501.30 96162.32 29.62 31.88 12.73 15.86 91.80 31.51
37 829 17 9 83764.56 69906.90 47.79 65.70 12.79 44.58 97.61 38.42
38 829 17 15 86895.58 77053.91 38.35 37.66 18.11 20.53 90.40 36.73
39 829 17 16 87959.53 78487.27 31.62 36.41 9.71 20.36 91.83 27.57
40 829 17 18 89347.42 81969.05 41.99 40.97 19.87 27.50 88.43 27.74

120

Objective Service time max deviation Service time avg deviation Similarity to DHL solutions

Instance |I| |T | |K| Q QOF F Q QOF F Q QOF F Q QOF F

41 829 17 19 90282.71 81545.10 42.24 42.71 24.06 28.75 91.04 27.71
42 925 19 18 94565.20 87467.86 35.92 35.93 15.18 29.45 93.85 28.42
43 925 19 20 95907.39 89419.68 32.91 32.69 15.68 21.14 92.06 29.52
44 942 19 10 88330.87 68874.72 47.52 67.60 14.14 43.37 97.48 28.78
45 942 19 17 92713.46 78351.90 61.65 80.20 11.72 45.94 97.81 23.88
46 942 19 18 93542.82 79484.96 40.84 39.64 6.15 22.61 97.92 28.54
47 908 19 10 105134.08 89312.40 62.60 62.40 37.28 44.55 97.06 35.08
48 908 19 18 113248.93 100498.56 20.43 20.52 7.41 10.19 95.90 32.40
49 908 19 20 113977.13 103619.46 36.59 37.14 14.01 22.67 93.97 30.93
50 908 19 21 113417.08 104678.12 34.70 32.81 16.00 20.75 90.85 30.68
51 925 19 18 129736.31 116936.20 39.28 35.57 10.97 21.12 93.74 28.00
52 925 19 20 130423.66 119932.59 35.56 34.32 11.48 20.22 87.83 28.25
53 925 19 21 131597.14 122945.22 33.97 33.76 15.70 23.45 87.42 31.50
54 923 20 10 107567.55 93737.83 8.99 8.92 2.77 5.99 97.43 44.27
55 923 20 18 114129.51 106782.51 26.55 26.40 15.19 15.92 93.62 37.19
56 923 20 19 113749.54 109832.87 20.96 24.11 11.09 13.91 93.42 35.24
57 923 20 21 115343.65 109906.61 29.24 29.37 13.76 19.55 89.94 32.20
58 923 20 22 117492.02 107559.07 23.55 23.72 13.82 15.49 92.06 43.07
59 929 21 19 142544.76 133540.72 24.31 24.23 9.20 13.74 93.78 33.54
60 929 21 20 142402.56 134184.86 23.78 27.25 9.86 16.72 93.15 37.83
61 929 21 23 144643.26 137104.37 26.09 26.83 16.82 16.22 91.07 37.29
62 934 21 12 86240.44 65433.78 60.57 61.94 24.41 42.07 97.04 31.71
63 1114 23 21 131766.76 116649.61 76.59 86.03 14.05 51.30 95.95 23.70
64 1114 23 22 133506.39 121693.90 42.13 43.49 7.45 26.22 96.04 23.86
65 1051 23 12 93727.56 74681.86 44.44 54.04 10.28 40.06 97.27 29.44
66 1051 23 21 97360.82 83251.70 39.89 41.65 13.90 23.95 93.94 25.28
67 1051 23 22 98146.01 86494.15 38.88 38.83 10.66 20.30 93.29 23.58
68 1051 23 24 99382.19 87724.38 31.26 33.60 14.25 23.13 89.58 24.19
69 1051 23 25 98897.03 87281.41 39.90 38.12 17.06 20.61 85.87 22.49
70 965 24 23 108984.91 99914.10 35.69 35.65 13.53 23.30 92.11 31.88
71 965 24 25 110589.18 100706.53 34.95 34.53 17.07 22.11 85.25 25.86
72 1142 24 23 116821.71 101479.20 40.64 40.08 14.93 23.38 92.02 29.53
73 1142 24 25 117123.22 104477.06 34.95 32.44 15.42 16.38 93.83 28.88
74 1200 25 14 111157.56 98846.79 67.85 72.78 36.53 33.93 92.26 34.43
75 1200 25 24 125456.71 115068.56 51.68 53.67 19.35 30.61 88.64 28.68
76 1200 25 26 128275.41 119528.84 49.86 50.87 22.02 27.82 82.95 26.35
77 1200 25 28 131164.45 119911.50 63.36 63.54 28.74 37.96 90.15 27.52
78 1225 25 24 118660.41 109189.65 78.36 78.47 37.99 47.76 93.92 29.94
79 1119 26 25 132312.31 121274.17 37.77 36.33 9.09 20.80 92.31 35.66
80 1119 26 27 135184.95 126663.34 31.99 31.90 12.18 18.98 91.54 33.86
81 1080 26 25 112458.17 100580.55 57.69 57.97 19.96 32.30 90.14 25.43
82 1080 26 27 115260.39 103425.49 53.65 53.88 14.53 33.14 94.49 24.84
83 1275 26 25 148247.83 139948.74 40.79 41.86 13.89 27.14 92.69 29.00
84 1275 26 27 155004.65 140786.88 49.23 51.04 11.40 32.20 97.77 32.49
85 1275 26 28 158665.70 144263.40 50.97 50.93 16.46 25.29 97.54 35.61
86 1221 26 13 144496.74 130905.98 46.49 44.76 10.63 20.21 94.57 30.55
87 1221 26 22 153066.71 144137.87 54.77 54.15 17.09 23.80 92.20 34.03

121

Objective Service time max deviation Service time avg deviation Similarity to DHL solutions

Instance |I| |T | |K| Q QOF F Q QOF F Q QOF F Q QOF F

88 1221 26 23 153527.34 148993.25 51.89 51.34 18.51 28.10 88.50 29.34
89 1221 26 24 155644.23 150039.35 49.98 48.24 19.48 24.72 92.29 35.58
90 1221 26 25 157353.58 150250.68 51.86 51.89 19.02 32.79 94.38 28.73
91 1221 26 27 159322.28 154204.09 45.66 45.29 19.90 26.40 86.94 32.85
92 1221 26 28 159080.51 155315.27 43.38 43.95 23.22 27.82 83.67 30.18
93 1199 29 27 136095.96 125769.70 54.03 54.87 17.05 28.43 92.41 28.06
94 1199 29 28 137041.84 124529.27 50.80 50.91 18.10 29.94 92.34 28.77
95 1199 29 32 139756.01 126973.19 47.59 47.94 22.59 28.35 88.63 28.84
96 1408 30 29 166029.52 161423.37 27.97 29.99 9.09 19.28 93.46 26.86
97 1282 30 15 165339.03 149813.66 36.54 38.91 6.85 18.74 97.30 30.07
98 1282 30 28 182095.37 170253.63 13.62 13.90 6.79 7.41 92.82 45.95

Table 3.20: Routing-based comparison of the solutions of the best run of ILS-VRPDOCquality (Q) to the solutions of the best run of
ILS-VRPDOCOFF

quality (QOF F).

122

G Detailed results for the depot operation-based comparison of the ILS-VRPDOCquality solutions to
the ILS-VRPDOCOFF

quality solutions

Max #mail carriers Avg #mail carriers Max #tables Avg #tables Skips Table changes

Instance |I| |T | |K| Q QOF F Q QOF F Q QOF F Q QOF F Q QOF F Q QOF F

1 275 6 7 2.00 5.00 1.83 3.17 4.00 4.00 1.57 2.71 2.00 109.00 6.00 27.00
2 278 6 7 2.00 6.00 1.83 3.67 5.00 4.00 1.57 3.14 5.00 112.00 5.00 26.00
3 300 7 8 2.00 7.00 1.86 4.43 4.00 5.00 1.62 3.88 3.00 88.00 6.00 44.00
4 273 7 6 4.00 4.00 1.57 3.14 2.00 5.00 1.83 3.67 0.00 126.00 6.00 28.00
5 376 9 8 3.00 6.00 1.78 5.00 2.00 8.00 2.00 5.62 0.00 123.00 8.00 67.00
6 376 9 10 2.00 8.00 1.78 5.78 2.00 8.00 1.60 5.20 2.00 107.00 9.00 65.00
7 471 10 9 4.00 6.00 1.70 3.20 2.00 5.00 1.89 3.56 0.00 259.00 9.00 43.00
8 471 10 11 2.00 6.00 1.70 3.10 2.00 4.00 1.55 2.82 4.00 245.00 8.00 31.00
9 475 10 5 1.00 4.00 1.00 3.20 2.00 8.00 2.00 6.40 0.00 246.00 5.00 55.00

10 475 10 9 4.00 6.00 1.60 3.90 2.00 7.00 1.78 4.33 1.00 239.00 8.00 64.00
11 475 10 11 2.00 5.00 1.80 3.90 3.00 5.00 1.64 3.55 8.00 250.00 8.00 51.00
12 475 10 12 2.00 5.00 1.90 3.80 4.00 4.00 1.58 3.17 9.00 237.00 9.00 53.00
13 480 10 11 2.00 6.00 1.90 4.10 5.00 6.00 1.73 3.73 5.00 251.00 8.00 48.00
14 514 12 11 1.00 9.00 1.00 5.50 2.00 12.00 1.09 6.00 0.00 238.00 1.00 141.00
15 514 12 13 2.00 9.00 1.75 5.83 3.00 11.00 1.62 5.38 8.00 239.00 9.00 144.00
16 582 12 6 1.00 5.00 1.00 3.33 2.00 9.00 2.00 6.67 0.00 298.00 13.00 79.00
17 582 12 10 3.00 9.00 1.58 4.00 2.00 9.00 1.90 4.80 7.00 286.00 14.00 83.00
18 582 12 11 3.00 10.00 1.75 4.50 2.00 8.00 1.91 4.91 10.00 289.00 12.00 86.00
19 582 12 13 2.00 8.00 1.67 4.75 3.00 9.00 1.54 4.38 12.00 289.00 11.00 84.00
20 582 12 14 3.00 9.00 2.17 4.58 3.00 6.00 1.86 3.93 12.00 291.00 14.00 82.00
21 625 13 12 5.00 8.00 1.85 4.46 2.00 7.00 2.00 4.83 12.00 193.00 23.00 89.00
22 625 13 14 2.00 12.00 2.00 5.54 3.00 7.00 1.86 5.14 7.00 186.00 13.00 102.00
23 622 13 12 3.00 6.00 1.62 3.46 2.00 5.00 1.75 3.75 3.00 343.00 11.00 60.00
24 622 13 14 2.00 9.00 1.77 4.85 3.00 7.00 1.64 4.50 5.00 360.00 14.00 72.00
25 663 14 13 4.00 9.00 1.71 4.79 2.00 8.00 1.85 5.15 0.00 345.00 15.00 107.00
26 663 14 15 2.00 8.00 1.93 4.21 7.00 8.00 1.80 3.93 10.00 354.00 20.00 95.00
27 700 14 7 1.00 6.00 1.00 2.93 2.00 7.00 2.00 5.86 0.00 243.00 7.00 82.00
28 700 14 13 6.00 8.00 1.64 3.71 2.00 7.00 1.77 4.00 0.00 251.00 13.00 71.00
29 700 14 15 2.00 10.00 1.71 4.21 5.00 8.00 1.60 3.93 4.00 225.00 11.00 81.00
30 726 15 8 1.00 6.00 1.00 2.80 2.00 8.00 1.88 5.25 0.00 243.00 7.00 88.00
31 726 15 14 6.00 9.00 1.67 3.60 2.00 6.00 1.79 3.86 0.00 233.00 14.00 81.00
32 701 15 14 6.00 7.00 1.60 3.73 2.00 6.00 1.71 4.00 3.00 377.00 12.00 77.00
33 701 15 16 2.00 7.00 1.80 3.20 3.00 5.00 1.69 3.00 25.00 356.00 17.00 54.00
34 760 16 15 3.00 7.00 1.56 3.25 2.00 6.00 1.67 3.47 11.00 179.00 12.00 66.00
35 751 16 15 2.00 9.00 1.56 3.81 2.00 7.00 1.67 4.07 0.00 402.00 14.00 64.00
36 751 16 17 2.00 8.00 1.56 3.88 2.00 7.00 1.47 3.65 0.00 421.00 15.00 64.00
37 829 17 9 1.00 5.00 1.00 2.06 2.00 6.00 1.89 3.89 0.00 423.00 9.00 78.00
38 829 17 15 4.00 6.00 1.88 3.12 3.00 7.00 2.13 3.53 13.00 416.00 18.00 81.00
39 829 17 16 3.00 9.00 1.76 4.65 2.00 8.00 1.88 4.94 4.00 466.00 19.00 111.00
40 829 17 18 3.00 10.00 2.12 4.76 4.00 7.00 2.00 4.50 17.00 457.00 21.00 117.00

123

Max #mail carriers Avg #mail carriers Max #tables Avg #tables Skips Table changes

Instance |I| |T | |K| Q QOF F Q QOF F Q QOF F Q QOF F Q QOF F Q QOF F

41 829 17 19 2.00 9.00 1.76 4.76 3.00 7.00 1.58 4.26 9.00 467.00 16.00 108.00
42 925 19 18 4.00 9.00 1.74 5.58 2.00 8.00 1.83 5.89 0.00 470.00 17.00 163.00
43 925 19 20 2.00 10.00 1.79 5.53 5.00 11.00 1.70 5.25 10.00 470.00 18.00 154.00
44 942 19 10 1.00 7.00 1.00 3.74 2.00 12.00 1.90 7.10 0.00 518.00 9.00 141.00
45 942 19 17 1.00 9.00 1.00 5.47 2.00 11.00 1.12 6.12 0.00 533.00 2.00 165.00
46 942 19 18 1.00 9.00 1.00 4.95 2.00 10.00 1.06 5.22 0.00 500.00 1.00 151.00
47 908 19 10 2.00 7.00 1.05 3.84 3.00 13.00 2.00 7.30 0.00 447.00 10.00 129.00
48 908 19 18 3.00 10.00 1.32 5.84 2.00 10.00 1.39 6.17 0.00 444.00 8.00 145.00
49 908 19 20 2.00 10.00 1.58 5.21 3.00 8.00 1.50 4.95 6.00 457.00 10.00 143.00
50 908 19 21 2.00 11.00 1.89 6.00 3.00 11.00 1.71 5.43 14.00 446.00 16.00 152.00
51 925 19 18 5.00 11.00 1.63 6.37 2.00 10.00 1.72 6.72 0.00 458.00 18.00 185.00
52 925 19 20 2.00 11.00 1.89 6.47 5.00 10.00 1.80 6.15 28.00 461.00 16.00 177.00
53 925 19 21 2.00 10.00 1.84 6.11 3.00 11.00 1.67 5.52 29.00 432.00 15.00 169.00
54 923 20 10 1.00 4.00 1.00 2.25 2.00 7.00 2.00 4.50 0.00 433.00 10.00 67.00
55 923 20 18 4.00 7.00 1.60 3.90 2.00 7.00 1.78 4.33 0.00 452.00 18.00 98.00
56 923 20 19 6.00 9.00 1.70 4.95 2.00 9.00 1.79 5.21 0.00 444.00 19.00 123.00
57 923 20 21 2.00 7.00 1.75 4.20 3.00 9.00 1.67 4.00 13.00 488.00 19.00 100.00
58 923 20 22 2.00 6.00 1.70 3.05 3.00 7.00 1.55 2.77 5.00 417.00 17.00 70.00
59 929 21 19 4.00 7.00 1.62 4.52 2.00 8.00 1.79 5.00 0.00 457.00 18.00 127.00
60 929 21 20 7.00 10.00 1.67 4.90 2.00 9.00 1.75 5.15 0.00 428.00 19.00 119.00
61 929 21 23 2.00 10.00 1.71 5.05 3.00 10.00 1.57 4.61 12.00 431.00 16.00 115.00
62 934 21 12 1.00 7.00 1.00 3.62 2.00 12.00 1.75 6.33 0.00 488.00 9.00 136.00
63 1114 23 21 1.00 12.00 1.00 6.35 2.00 13.00 1.10 6.95 0.00 603.00 2.00 220.00
64 1114 23 22 1.00 12.00 1.00 6.52 2.00 10.00 1.05 6.82 0.00 596.00 1.00 222.00
65 1051 23 12 1.00 7.00 1.00 3.09 2.00 13.00 1.92 5.92 0.00 574.00 11.00 154.00
66 1051 23 21 4.00 10.00 1.57 4.52 2.00 9.00 1.71 4.95 0.00 594.00 19.00 165.00
67 1051 23 22 6.00 10.00 1.65 5.57 2.00 9.00 1.73 5.82 1.00 579.00 20.00 198.00
68 1051 23 24 2.00 9.00 1.78 5.17 4.00 8.00 1.71 4.96 22.00 580.00 19.00 179.00
69 1051 23 25 3.00 12.00 2.17 5.52 4.00 11.00 2.00 5.08 30.00 585.00 32.00 191.00
70 965 24 23 10.00 11.00 1.71 4.71 2.00 10.00 1.78 4.91 2.00 491.00 21.00 131.00
71 965 24 25 2.00 13.00 1.79 5.29 3.00 10.00 1.72 5.08 26.00 518.00 29.00 165.00
72 1142 24 23 5.00 9.00 1.88 5.21 2.00 9.00 1.96 5.43 6.00 601.00 26.00 174.00
73 1142 24 25 2.00 13.00 1.88 6.04 7.00 11.00 1.80 5.80 9.00 597.00 24.00 192.00
74 1200 25 14 2.00 8.00 1.20 3.40 3.00 8.00 2.14 6.07 21.00 635.00 16.00 124.00
75 1200 25 24 5.00 8.00 1.92 5.56 3.00 11.00 2.00 5.79 31.00 651.00 25.00 169.00
76 1200 25 26 2.00 10.00 1.88 6.08 3.00 11.00 1.81 5.85 53.00 658.00 38.00 177.00
77 1200 25 28 2.00 9.00 1.48 5.88 3.00 12.00 1.32 5.25 31.00 667.00 10.00 166.00
78 1225 25 24 5.00 10.00 1.76 5.68 2.00 11.00 1.83 5.92 3.00 651.00 20.00 169.00
79 1119 26 25 4.00 7.00 1.58 3.54 2.00 6.00 1.64 3.68 9.00 551.00 18.00 133.00
80 1119 26 27 2.00 7.00 1.65 3.73 3.00 6.00 1.59 3.59 9.00 572.00 21.00 130.00
81 1080 26 25 6.00 11.00 1.92 5.88 2.00 13.00 2.00 6.12 3.00 557.00 38.00 218.00
82 1080 26 27 2.00 15.00 1.88 6.54 9.00 13.00 1.81 6.30 4.00 552.00 23.00 235.00
83 1275 26 25 4.00 11.00 1.77 5.65 2.00 11.00 1.84 5.88 6.00 661.00 24.00 205.00
84 1275 26 27 2.00 12.00 1.04 5.54 1.00 11.00 1.00 5.33 0.00 643.00 0.00 184.00
85 1275 26 28 2.00 11.00 1.08 5.92 1.00 10.00 1.00 5.50 0.00 598.00 0.00 187.00
86 1221 26 13 1.00 8.00 1.00 4.19 2.00 13.00 2.00 8.38 0.00 640.00 28.00 191.00
87 1221 26 22 4.00 10.00 1.54 4.58 2.00 9.00 1.82 5.41 14.00 597.00 21.00 169.00

124

Max #mail carriers Avg #mail carriers Max #tables Avg #tables Skips Table changes

Instance |I| |T | |K| Q QOF F Q QOF F Q QOF F Q QOF F Q QOF F Q QOF F

88 1221 26 23 7.00 13.00 2.19 5.35 3.00 10.00 2.48 6.04 14.00 615.00 43.00 207.00
89 1221 26 24 6.00 9.00 1.77 5.08 2.00 11.00 1.92 5.50 12.00 577.00 23.00 168.00
90 1221 26 25 4.00 12.00 1.42 5.12 2.00 9.00 1.48 5.32 6.00 651.00 13.00 186.00
91 1221 26 27 2.00 11.00 1.92 4.88 4.00 9.00 1.85 4.70 30.00 616.00 33.00 164.00
92 1221 26 28 3.00 10.00 2.42 5.12 4.00 9.00 2.25 4.75 42.00 638.00 47.00 168.00
93 1199 29 27 5.00 11.00 1.66 4.76 2.00 9.00 1.78 5.11 3.00 634.00 26.00 189.00
94 1199 29 28 5.00 11.00 1.72 4.72 2.00 9.00 1.79 4.89 0.00 624.00 26.00 186.00
95 1199 29 32 2.00 9.00 1.62 4.55 3.00 9.00 1.47 4.12 26.00 618.00 24.00 185.00
96 1408 30 29 5.00 12.00 1.70 6.10 2.00 11.00 1.76 6.31 0.00 776.00 27.00 210.00
97 1282 30 15 1.00 8.00 1.00 4.10 2.00 15.00 2.00 8.20 0.00 669.00 15.00 208.00
98 1282 30 28 5.00 5.00 1.63 2.63 2.00 5.00 1.75 2.82 0.00 555.00 28.00 92.00

Table 3.21: Depot operation-based comparison of the solutions of the best run of ILS-VRPDOCquality (Q) to the solutions of the best run
of ILS-VRPDOCOFF

quality (QOF F).

125

126

Chapter 4

The angular traveling salesman problem

Publication status: R. Cavagnini, M. Schneider, and A. Theiß (2024b). “A tabu
search with geometry-based sparsification methods for angular traveling salesman
problems”. In: Networks 83.1, pp. 30–52. doi: 10.1002/net.22180

Abstract: The angular-metric traveling salesman problem (AngleTSP) aims to
find a tour visiting a given set of vertices in the Euclidean plane exactly once while
minimizing the cost given by the sum of all turning angles. If the cost is obtained
by combining the sum of all turning angles and the traveled distance, the problem
is called angular-distance-metric traveling salesman problem (AngleDistanceTSP).
In this work, we study the symmetric variants of these problems. Because both the
AngleTSP and AngleDistanceTSP are NP-hard, multiple heuristic approaches have
been proposed in the literature. Nevertheless, a good tradeoff between solution quality
and runtime is hard to find. We propose a granular tabu search (GTS) that considers
the geometric features of the two problems in the design of starting solutions and
sparsification methods. We further enrich the GTS with components that guarantee
both intensification and diversification during the search. The computational results
on benchmark instances from the literature show that (i) for the AngleTSP, our
GTS lies on the Pareto frontier of the best performing-heuristics, and (ii) for the
AngleDistanceTSP, our GTS provides the best solution quality across all existing
heuristics in competitive runtimes. In addition, new best-known solutions are found
for most benchmark instances for which an optimal solution is not available.

Contribution of the author: The authors shared efforts in the conceptual develop-
ment of the research goals, the literature review, the design of the methodology and
implementation of the algorithm, the computational experiments and result analysis,
and in writing the paper.

127

https://doi.org/10.1002/net.22180

4.1 Introduction

The angular-metric traveling salesman problem (AngleTSP) aims to find a Hamiltonian
cycle visiting a given set of vertices in the Euclidean plane while minimizing the cost
given by the sum of all turning angles. If the cost is obtained by combining the sum
of all turning angles and the traveled distance, the problem is called angular-distance-
metric traveling salesman problem (AngleDistanceTSP). The two problems have
applications in, e.g., robotics and transportation. In robotics, keeping the movements
of a robot as straight as possible is key to avoiding energy-consuming changes in
driving direction. In transportation, straight movements make heavy vehicles more
controllable. For example, drivers of farm machinery such as tractors and harvesters
often have to execute operations on an irregular ground. In this situation, sharp
corners should be avoided as much as possible to avoid accidents (see, e.g., Abubakar
et al., 2010). This is also true for drivers of semitrailer trucks that deliver goods
in city centers in which corners are typically sharp and tight. By driving sharp
corners (even at a low speed), the trailer may end up at a 90-degree angle relative
to the vehicle it is attached to (a phenomenon called “jackknifing”, see Leng et al.,
2022). This is an unpleasant situation for the driver, and it increases the hazard to
nearby vehicles, properties, and pedestrians as reported by the Federal Motor Carrier
Safety Administration, 2019. Moreover, poor road conditions, bad weather conditions,
and improperly secured load may cause rollovers (even at slow speed) because of the
high center of gravity of semitrailer trucks (McKnight and Bahouth, 2009). In all
these situations, straight movements are preferable to turning maneuvers.

In this work, we consider the symmetric variants of these problems, which are
formally defined as follows. Let G = (V, A) be a complete directed graph with vertex
set V = {1, 2, . . . , n} in the Euclidean plane and arc set A = {(i, j) : i, j ∈ V, i ̸= j}.
The Euclidean distance dij is associated with each arc and a non-negative turning
angle αijk with each vertex triplet (i, j, k), i, j, k ∈ V . The cost for each triplet (i, j, k)
is defined as cijk = ρ1αijk + ρ2(dij + djk)/2, where ρ1 and ρ2 are the weights associated
with the turning angles and the distances, respectively. For the AngleTSP, ρ2 is equal
to 0. A solution of the AngleTSP or AngleDistanceTSP is denoted by S, and it is a
tour visiting each vertex in V exactly once. A solution is optimal if it minimizes the
cost of the tour C(S).

Because both problems are NP-hard and exact solution methods can only solve
small instances in reasonable runtimes (see Fischer et al., 2014), Staněk et al., 2019
proposed multiple heuristics. The best-performing methods are either simple con-
struction heuristics or matheuristics: the former are fast but provide unsatisfying
solution quality, the latter achieve superior solution quality but are expensive in terms
of runtime. There is evidence of a gap in the literature concerning the availability of
fast but effective heuristics for both problem variants.

128

This paper contributes to filling this gap by presenting a granular tabu search
(GTS) framework, called GTS-angular, to address both problem variants. To obtain
decent starting solutions for GTS-angular, we exploit geometric properties of good
solutions. For the AngleTSP, we present a faster version of the convex hull construction
heuristic proposed by Staněk et al., 2019. For the AngleDistanceTSP, we develop
a new construction method based on our empirical observation that good solutions
typically do not contain arcs that intersect. A tour containing intersections is not
optimal with regard to the traveled distance, which is one of the components to be
minimized in the objective function of the AngleDistanceTSP.

To speed up the search, our tabu search adopts the granular search principle
introduced by Toth and Vigo, 2003. This principle relies on sparsification methods
which are used to restrict the size of the neighborhoods to explore. GTS frameworks
provide high-quality solutions within reduced runtimes for several routing-related
problems like the capacitated vehicle routing problem (CVRP, Toth and Vigo, 2003),
the vehicle routing problem (VRP) with time windows (Schneider et al., 2017), the
multi-depot VRP (Escobar et al., 2014), the pickup and delivery problem with time
windows and electric vehicles (Goeke, 2019), the dial-a-ride problem (Kirchler and
Wolfler Calvo, 2013), and the capacitated location routing problem (CLRP, Prins
et al., 2007; Schneider and Löffler, 2019).

In this work, we strengthen the sparsification method originally proposed by
Staněk et al., 2019 of using a lens to limit the size of the neighborhood to search.
Our contribution is to design two problem-specific sparsification methods which are
applied to both the AngleTSP and AngleDistanceTSP and which give rise to two
algorithmic variants of GTS-angular.

We run numerical studies on benchmark instances from the literature to test the
performance of the two GTS-angular variants differing with respect to the sparsification
method. Compared with the best-performing heuristics developed by Staněk et al.,
2019, GTS-angular improves either the solution quality or the runtimes, sometimes
both, and finds new best-known solutions for many benchmark instances.

The remainder of the paper is organized as follows. In Section 4.2, we review the
literature related to the AngleTSP and the AngleDistanceTSP. Section 4.3 describes
GTS-angular in detail. We discuss the experimental setting and the computational
results in Section 4.4. Finally, Section 4.5 presents our conclusion.

4.2 Literature review

The AngleTSP has been introduced by Aggarwal et al., 2000, who show that this prob-
lem is NP-hard. Savla et al., 2008 are the first authors to study the AngleDistanceTSP,
which is later formalized by Medeiros and Urrutia, 2010 as an approximation of the
TSP in which the turn radius of the car is limited.

129

In both problem variants, the cost arises for the successive use of two arcs. Hence,
most research has treated these problems as generalizations of the quadratic TSP
(QTSP). Polyhedral properties for the symmetric QTSP are studied in Fischer and
Helmberg, 2013, who derive classes of strengthened subtour elimination constraints.
Fischer et al., 2014 study the symmetric QTSP and propose both exact and heuristic
approaches to solve it. The exact approaches include: a transformation of the problem
to the TSP, then solved by standard methods, a branch-and-bound algorithm, and a
branch-and-cut algorithm. These methods solve instances with up to 40 vertices in
reasonable runtimes. The heuristic approaches are based on modifications of heuristics
commonly applied to the TSP. While these methods are faster than the exact ones,
they show significant optimality gaps even for relatively small instances with up to 50
vertices. Fischer et al., 2015 investigate the performance of three exact methods for
solving QTSP instances with bioinformatic applications.

Apart from Aggarwal et al., 2000, who exclusively study the AngleTSP, the only
paper in the literature focusing exclusively on the AngleTSP and AngleDistanceTSP
is the one of Staněk et al., 2019. The authors propose a large number of heuristic
approaches that can be classified into the following categories: construction heuristics,
geometric heuristics (applied only to the AngleTSP), and linear programming-based
approaches. The authors extend these methods by applying improvement algorithms,
such as 2-opt and 3-opt heuristics, a destroy-and-repair matheuristic, and a simulated
annealing metaheuristic. Their fastest methods are the simple construction heuristics,
and the methods returning the best solution quality are the linear programming-based
approaches improved by the destroy-and-repair matheuristic. A good trade-off be-
tween solution quality and runtime is difficult to find. Moreover, the authors highlight
that the quite notable optimality gaps make the development of metaheuristics a
promising research topic.

4.3 Granular tabu search for the angular metric
traveling salesman problem

In this section, we describe the general idea of tabu search (TS) and we introduce the
GTS-angular framework. Section 4.3.1 provides details on how the starting solution
is obtained, Section 4.3.2 describes the used neighborhoods, Section 4.3.3 introduces
the sparsification methods, and Section 4.3.4 presents the continuous diversification
strategy.

The TS framework was introduced by Glover, 1989. In its basic form, it includes
a local search that iteratively explores neighboring solutions. Two main features of
TS are (i) the presence of a memory, which contains information on which moves
are tabu to avoid cycling, and (ii) the application of the best non-tabu move in each
iteration—which may be deteriorating—to escape from local optima.

130

Algorithm 6 provides a pseudocode overview of GTS-angular and its main com-
ponents are detailed in the remainder of this section. After obtaining a starting
solution according to the construction heuristic described in Section 4.3.1 (line 1) and
initializing the current solution Scurr and the overall best-found solution S∗ with it,
the TS component is initialized (line 2) and executed (lines 3–23). The tabu criterion
forbids to reinsert an arc that has been removed for a tenure of τ iterations. As
aspiration criterion, we always permit a move that is tabu but improves on the overall
best-found solution S∗.

At the beginning of each iteration, we define the best solution found in this
iteration by S, we initialize it to an empty tour and set its cost to infinity (line 4).
In each iteration, GTS-angular evaluates neighboring solutions that are obtained by
applying a move defined by a neighborhood operator and a so-called generator arc.
The neighborhood operator defines the type of modification applied to a solution (e.g.,
if one vertex is relocated to a new position or if two vertex positions are exchanged).
All neighborhood operators are designed in such a way that the generator arc is always
an arc inserted in the solution. For a given neighborhood operator, the generator arc
unambiguously defines the move, that is, all the other arcs involved in the move are
implicitly defined. Our algorithm first traverses the generator arc set Ag (line 5). To
speed up the search, the dimension of Ag is reduced to the arcs selected by applying
the sparsification methods described in Section 4.3.3. For each generator arc, we loop
over the relocate, exchange, and 2-opt operators contained in the set O (line 6) and
presented in Section 4.3.2, and the move applied to Scurr (resulting in S

′) is evaluated
with respect to its cost C(S ′) (line 7-8). Moves deteriorating the cost of Scurr are
evaluated according to the extended objective function Cdiv(S ′) that considers the
number of times the inserted arcs were included in previously carried-out moves
(Section 4.3.4). This continuous diversification mechanism (lines 9–11) guides the
search to new areas of the solution space by favoring solutions with arcs that have
rarely been included in previous iterations. Within each iteration of the TS, we keep
track of the best non-tabu solution S (lines 12–18). Note that, we have also tested
the first-improvement variant of GTS-angular during our computational experiments.
However, the gained runtime advantage was not high enough to counterbalance
the experienced loss in solution quality. Consequently, we only focus on the best-
improvement variant of GTS-angular. If the move is tabu and does not satisfy the
aspiration criterion (lines 12–14), TS omits the cost check and the eventual update of
the best solution S of the current iteration (lines 15–18). Finally, Scurr is updated
with S, i.e., the best found solution in this iteration (line 21), and the overall best
solution S∗, the tabu list, and the generator arc set are updated (line 22). GTS-angular
terminates after η iterations without improvement.

131

Algorithm 6: Pseudocode of GTS-angular
1 Scurr ← constructionHeuristic()
2 initialize S∗ ← Scurr, tabuList, and generator arc set Ag

3 while termination criterion not satisfied do
4 S = ∅, costS =∞
5 for (i, j) ∈ Ag do
6 for o ∈ O do
7 S

′ ← move((i, j), o, Scurr)

8 costS
′

= C(S′)

9 if costS
′
≥ C(Scurr) then

10 costS
′

= Cdiv(S′)
11 end
12 if S

′ ∈ tabuList and notAspiration then
13 continue
14 end

15 if costS
′

< costS then
16 S← S

′

17 costS = costS
′

18 end
19 end
20 end
21 Scurr ← S

22 update S∗, tabuList, Ag

23 end

4.3.1 Construction heuristics

To generate an initial solution, we use separate algorithms for the AngleTSP (Sec-
tion 4.3.1.1) and the AngleDistanceTSP (Section 4.3.1.2).

4.3.1.1 Initial solution for the AngleTSP

For the AngleTSP, the literature has shown that optimal tours have a snail shell
shape (see, e.g., Aichholzer et al., 2017; Staněk et al., 2019). Therefore, we use a
construction heuristic based on convex hulls similar to the one described in Staněk
et al., 2019, and we call it convex hull heuristic (CHH). Our construction heuristic
works as follows. We first determine the convex hull considering the complete vertex
set V . While Staněk et al., 2019 does not specify how the convex hulls are computed,
we use a modified version of Graham’s scan algorithm (Graham, 1972). This modified
version is described by Cormen et al., 2009: instead of computing the actual polar
angles via trigonometric functions and sorting the vertices accordingly in increasing
order, vertices are sorted by only comparing the polar angles via cross products. Given
are a reference vertex v0, which is the vertex with the minimum y-coordinate and a
pair of vertices v1 and v2. To decide whether the polar angle of v1 with respect to
v0 is larger or smaller than the polar angle of v2 with respect to v0, a single cross
product can be computed without computing the actual angle. If the sign of the cross
product is negative, then a left turn must be taken to move from v0 to v1 to v2, i.e.,

132

the polar angle is wider for v2 than for v1. If the sign is positive, a right turn must be
taken, i.e., the polar angle is smaller for v2 than for v1. The special case of a cross
product equal to zero represents collinearity of vertices v0, v1 and v2. In this case, the
vertex farther away from v0 is chosen first.

Once the outermost convex hull is found, we remove the vertices defining this
convex hull from V , and we compute the convex hull on the remaining vertices. We
repeat the procedure until at most one vertex is left. Finally, these convex hulls (and
the final vertex, if any) are connected to form a tour in the cheapest insertion fashion
from the innermost to the outermost convex hull. We have also tested a variant of
this construction heuristic in which the convex hulls are merged in the opposite order,
i.e., from the outermost to the innermost. However, the results reported in Section
4.4.3 suggest that merging the convex hulls from the innermost to the outermost
convex hull provides better results. Specifically, given a pair of convex hulls, the inner
one is inserted in the outer one at the position causing the minimal cost increase. If
the innermost “convex hull” consists of just two vertices, they are inserted at once.
Our insertion procedure makes our construction heuristic faster than the procedure
described in Staněk et al., 2019. In their approach, every time two convex hulls must
be merged, the authors check, for all pairs of convex hulls and all edge pairs, the
connection returning the smallest sum of objective function values over all subtours.
Figure 4.1 shows an example of constructing an initial solution for the AngleTSP
according to our approach. In step 1, we obtain three convex hulls corresponding
to three subtours. In step 2, we connect the two innermost convex hulls in cheapest
insertion fashion, and two subtours are left. Finally, in step 3, the innermost subtour
is connected to the outermost convex hull. Because this last step results in a tour
visiting all vertices in V , the algorithm terminates.

Step 1 Step 2 Step 3

Figure 4.1: Example of constructing an initial solution for the AngleTSP.

4.3.1.2 Initial solution for the AngleDistanceTSP

By plotting several optimal solutions of the AngleDistanceTSP in which the turning
angle and distance component are relatively balanced, we observed that optimal
tours usually contain no intersections. This empirical observation is in line with
the fact that, in the Euclidean plane, in a minimal TSP tour no arcs intersect. To

133

obtain such a closed path with no intersections, we designed a construction heuristic
that has similarities to the sweep algorithm of Gillett and Miller, 1974, and we call
it no-intersections heuristic (NIH). We first select a starting vertex v0. Then, the
remaining vertices in V \ {v0} are sorted in increasing order by comparing the polar
angles via cross products (see above). This results in a list of vertices arranged in
counterclockwise order. Finally, we obtain a tour by connecting v0 with the first vertex
of the list, all the vertices in the list according to the order in which they appear,
and the last vertex of the list to v0. Because the resulting tour depends on the choice
of the starting vertex, we repeat the procedure for all possible starting vertices, and
we choose the tour with the lowest cost. Figure 4.2 shows an example of four tours
obtained by selecting different starting vertices highlighted in red.

Polygon from bottommost vertex Polygon from rightmost vertex

Polygon from topmost vertex Polygon from leftmost vertex

Figure 4.2: Example of four tours obtained from different starting vertices for the
AngleDistanceTSP.

4.3.2 Neighborhoods

In each iteration, GTS-angular applies the best non-tabu move in a composite neigh-
borhood defined by the set O containing three operators: relocate, exchange, and
2-opt (Toth and Vigo, 2003). Differently from the standard TSP, to compute the
impact that each move has on the cost of a solution, we have to take into account
that the cost is defined for triplets of vertices. This implies that each modification of
a vertex position causes a change not only of the cost corresponding to that vertex
but also on the cost associated with its predecessor and successor.

All operators are defined using the generator arc principle introduced in Section 4.3.

134

Figure 4.3 presents the operators:

• The relocate operator moves one vertex from its current position to another one
in the tour.

• The exchange operator swaps the positions of two vertices in the tour.

• The 2-opt operator removes two non-consecutive arcs from the tour, inverts
the vertex segment between the two removed arcs, and reconnects the inverted
segment using two new arcs.

Legend: vertex

generator arc

inserted arc or angle

removed arc or angle

unchanged arc or angle

reversed arc or angle

i++

i+

i

i−

i−−

j+

j

j−

j−−

⇝

(a) relocate

i++

i+

i

i−

i−−

j+

j

j−

j−−

i++

i+

i

i−

i−− j+

j

j−

j−−

j−−−

⇝

(b) exchange

i++

i+

i

i−

i−− j+

j

j−

j−−

j−−−
i++

i+

i

i− j++

j+

j

j−

⇝

(c) 2-opt

i++

i+

i

i− j++

j+

j

j−

Figure 4.3: Neighborhood operators of GTS-angular. The generator arc is denoted by
(i, j) and highlighted in bold. The predecessor and successor of i are denoted by i−
and i+, respectively.

4.3.3 Construction of the generator arc set

To reduce the neighborhood size, we recall that the generator arc set Ag contains
a subset of the complete arc set A and that this subset is determined by applying
sparsification methods. Sparsification methods were introduced by Toth and Vigo,
2003 and have later been used in multiple works (see, e.g., Prins et al., 2007; Escobar
et al., 2014; Goeke, 2019).

135

In our case, Ag is composed of the arcs contained in the arc sets Aa and As.
Aa includes the arcs accepted by the most recent moves, and we explain how it
is obtained in Section 4.3.3.1. As contains the arcs selected by one of our two
sparsification strategies, and, in Section 4.3.3.2, we describe how it is derived. Finally,
in Section 4.3.3.3, we provide the details on how the arcs in Aa and As are merged
into set Ag.

4.3.3.1 Composition of Aa

Different strategies have been suggested for guaranteeing that the generator arc set
contains the arcs belonging to high-quality solutions. Toth and Vigo, 2003, Schneider
et al., 2017, and Becker et al., 2021 include the arcs that were inserted in the best
move selected in each iteration. In the first two papers, the authors remove these
arcs repetitively after a given number of iterations, while, in the third paper, these
arcs are always kept. Neverthess, all these papers agree that the inclusion of the
arcs inserted by the best move in the last iteration is fundamental for achieving good
solution quality.

In GTS-angular, we add the arcs inserted by the most recently accepted moves
to the generator arc set. Initially, Aa is an empty set, and, during the search, its
cardinality cannot exceed the limit ⌈κa|A|⌉, with 0 < κa < 1. At the end of each
iteration, after the move is carried out, the set of arcs inserted by the applied move
is represented by Ains, and each of its elements is added to Aa with a time stamp
representing the moment in which they have been inserted. If, in an iteration, an arc
in Ains has already been added by previous accepted moves, the time stamp of that
arc is updated. When the cardinality limit of Aa is reached, the arcs with the oldest
time stamp are removed from the set and those added by the last move are inserted.
By definition, a generator arc defines a valid move if it is not currently contained
in the tour. Hence, the arcs in Aa can only become generator arcs after they have
been removed in one of the previous GTS-angular iterations. However, this is not in
contrast with the idea of TS that tries to prevent the reinsertion of recently removed
arcs. First, we recall that the tabu tenure of TS forbids to reinsert removed arcs
only for a limited number of iterations. Consequently, a removed arc can always be
reinserted in the tour at a later point of the search. Second, the same generator arc
can generate a different move from iteration to iteration because the second arc that
is inserted depends on the current solution. Hence, considering a recently removed
arc as generator arc does not necessarily lead to obtaining the same solution again.
Finally, if a tabu yet promising arc appears in Aa, it can be used coupled with a
different neighborhood operator and generate a different solution. Including such
an arc in Aa guarantees that this arc is considered for insertion in the tour, and it
increases the likelihood that the aspiration criterion is satisfied.

136

4.3.3.2 Composition of As

Even if most of the papers using sparsification strategies rely on the arc cost-based
sparsification method originally proposed by Toth and Vigo, 2003, other authors have
presented alternative methodologies (Labadie et al., 2012; Schneider et al., 2017).
Due to the special features of the AngleTSP and AngleDistanceTSP, we propose two
sparsification strategies.

Both approaches rely on a modification of the general lens procedure (LENS)
introduced by Staněk et al., 2019. In LENS, a lens with thickness γ is positioned
between two consecutive vertices i and i+ in a tour such that the lens curvature
intersects at these vertices. Only the vertices inside this lens are considered for
insertion in the tour between i and i+. This procedure guarantees that any inserted
vertex generates: (1) an additional angle that is smaller than the angle of the lens
curvature at the tangent point with the vertices, and (2) a limited increase in the
traveled distance. The left part of Figure 4.4 shows an example of LENS applied to the
arc (i, i+). In this example, only vertex k is within the lens and hence considered for
insertion between i and i+. The right part of Figure 4.4 shows the resulting insertion
and updated tour section.

i i+

i−

i++

k

⇝
i i++

i−

i+++

i+

Figure 4.4: Example of LENS applied to the arc (i, i+).

In contrast to Staněk et al., 2019, who apply LENS to every arc of a tour and
include all the resulting arcs in As, we further intensify the sparsification by limiting
the cardinality of As to ⌈κs|A|⌉, with 0 < κs < 1. The parameter κs represents the
sparsification intensity: the lower κs, the more intense the sparsification, i.e., only a
few arcs are included in As. This implies that a criterion to select the arcs on which
the lens should be positioned has to be defined. To this end, we propose the following
two strengthened LENS-based sparsification strategies:

• Random-based lens procedure (r-LENS): In each iteration, the lens is
initially positioned on the arc originating from a vertex i, and then applied to the
subsequent arcs according to their order in the tour. However, across iterations,
if the lens is always initially positioned on the arc originating from the same
vertex i, there may be little variety in As due to its restricted cardinality. To
prevent this, r-LENS starts positioning the lens on the arc of a random vertex in
each iteration. This ensures that different parts of the tour are targeted across
iterations.

137

• Cost-based lens procedure (c-LENS). According to this approach, the
turning angles of the tour are first sorted in non-increasing order. Then, the
lens is applied sequentially, from the pair of arcs defining the largest angle to
the smallest one, until the cardinality limit of As is reached. This sparsification
procedure is greedier than r-LENS, and it aims to improve the most expensive
parts of the tour.

Contrary to the sparsification methods proposed in the literature, which are applied
only once before the search starts, our sparsification methods depend on the current
solution and are therefore called at the end of each iteration of GTS-angular, and
applied to the tour resulting after carrying out the best non-tabu move. Arcs which
have already been included in Aa are not added to As.

To introduce more diversification, both sparsification strategies are dynamic. In
contrast to common practice in the literature, in which the dynamic component
is based on variations of the sparsification intensity κs (e.g., Toth and Vigo, 2003;
Schneider and Löffler, 2019), in r-LENS and c-LENS, the sparsification intensity
remains unchanged. Instead, we modify the criterion according to which the arcs
are selected, i.e., we vary the lens thickness in the interval [γmin, 2γmin]. More
precisely, the lens thickness is initially set equal to γmin. Every ηκ iterations without
improvement, the lens thickness is increased by γmin/µ, where µ = η/ηκ-1. In the
last ηκ iterations of GTS-angular, the lens thickness is doubled with respect to its
initial value γmin. Enlarging the lens thickness γ when improvements are hard to find
allows inserting more diverse arcs in the generator arc set while keeping its size and
the resulting neighborhood restricted. Whenever an improvement with respect to the
overall best solution is found, the lens thickness is reset to γmin.

Based on the used sparsification method, we derive two algorithmic variants,
namely GTS-angular r-LENS and GTS-angular c-LENS.

4.3.3.3 Composition of Ag

Algorithm 7 provides an overview of how the generator arc set Ag is updated during
the search depending on the sets Aa and As. At the beginning of GTS-angular, As

contains the arcs added by the sparsification strategy applied to the tour of the current
solution Scurr resulting from the construction heuristic, and Aa and Ag are initialized
to empty sets (line 1). All arcs contained in As are added to Ag (line 2). Then,
lines 4–20 of the pseudocode in Figure 6 are executed. At the end of every iteration
of GTS-angular (see Figure 6), after the best move is carried out, the tour of the new
current solution Scurr and the set Ains of the arcs inserted by the move are obtained
(line 4). Next, Ag is cleaned from all arcs (line 5). The set Aa is updated by adding
the arcs contained in Ains (line 6). Subsequently, As is obtained by applying the
sparsification strategy to the tour of the current solution Scurr and by discarding

138

those arcs which are already in Aa (line 7). If these arcs would be included in As,
they would increase the cardinality of As unnecessarily (and consequently prevent
other arcs to be added to As) because they would be part of Ag in any case. Finally,
the arcs contained in Aa and As are merged into Ag (line 8). The set Ag is then used
for the next iteration of GTS-angular.

Algorithm 7: Pseudocode for the composition of the generator arc set
Ag.

1 initialize As ← sparsificationStrategy(Scurr), Aa = ∅, Ag = ∅
2 Add arcs in As to Ag

3 while termination criterion not satisfied do
4 Scurr , Ains ← apply best move {lines 4–20 of pseudocode in Figure 6}
5 Delete all arcs from Ag

6 Add arcs in Ains to Aa

7 As ← sparsificationStrategy(Scurr , Aa)
8 Add arcs in Aa and As to Ag

9 end

4.3.4 Continuous diversification

We incorporate the continuous diversification strategy originally proposed by Cordeau
et al., 1997 into GTS-angular. This diversification technique has been successfully
applied in a number of TS metaheuristics developed for different problem classes (e.g.,
the CLRP and the multi-depot VRP). The goal of continuous diversification is to
guide the search towards unexplored regions of the solution space.

Whenever a move does not improve the cost value, i.e., a move is changing Scurr

into S
′ with C(S ′) ≥ C(Scurr), we penalize the cost of that solution based on its

similarity with respect to the previously visited solutions. To measure this similarity,
we keep a counter Λ(a) for every arc a ∈ A. Every time GTS-angular carries out a
move that inserts the set of arcs Ains, we increase Λ(a) by one for every arc a ∈ Ains.
The resulting formula to evaluate non-improving solutions corresponds to an extended
objective function that considers the number of times the inserted arcs were included in
previously carried-out moves. The extended objective function is denoted by Cdiv(S ′)
and is computed as follows:

Cdiv(S ′) = C(S ′)
1 + σ ·

∑
a∈Ains

Λ(a)
, (4.1)

where C(S ′) is the cost of solution S
′ (i.e., the neighboring solution of Scurr), σ

is a parameter that controls the intensity of the diversification, and ∑
a∈Ains

Λ(a) is
the number of times that the arcs inserted by the applied move were contained in
previously carried-out moves. Whenever a new best solution is found, Λ(a) is reset to
zero for every arc a ∈ A; thus, Cdiv(S ′) = C(S ′).

139

4.4 Computational experiments

The goal of the computational experiments is twofold. First, we assess the quality
of the solutions returned by the construction heuristics described in Section 4.3.1
compared to the quality of a random starting solution, and we evaluate the influence
of these starting solutions on the final objective function values and runtimes of GTS-
angular. Second, we compare our two algorithmic variants (GTS-angular r-LENS and
GTS-angular c-LENS) to the state-of-the-art algorithms from the literature.

Section 4.4.1 presents the instances on which the two algorithmic variants are
tested and the computational environment. In Section 4.4.2, we describe the parameter
setting for GTS-angular. Section 4.4.3 presents the study on the construction heuristics.
Finally, Section 4.4.4 presents the comparison of the results to the state-of-the-art
heuristics.

4.4.1 Benchmark instances and computational environment

To test the performance of GTS-angular, we run computational experiments on the
benchmark set proposed by Staněk et al., 2019 and available at https://arxiv.org/
abs/1803.03681. This set is composed of ten symmetric instances for each of the 40
different sizes n = 5, 10, . . . , 200. In total, 400 instances for the AngleTSP and 400
instances for the AngleDistanceTSP are considered. Each AngleDistanceTSP instance
has been obtained taking the same vertex coordinates as the corresponding AngleTSP
instance. The difference between the two instance sets lies in how the cost of the
AngleTSP and of the AngleDistanceTSP instance is computed. To guarantee the
comparability of the results, we adopted the same cost computation as done in the
literature (see Staněk et al., 2019; Fischer et al., 2014; Aichholzer et al., 2017). In the
AngleTSP, the cost for each triplet of vertices i, j, k ∈ V corresponds to the turning
angle αijk multiplied by 1000. In the AngleDistanceTSP, the cost for each triplet
of vertices i, j, k ∈ V is obtained by combining the turning angle and the Euclidean
distance as follows:

cijk = 100
40 · αijk + dij + djk

2

. (4.2)

In both cases, the resulting costs are rounded to 12 decimal places.

GTS-angular was implemented in C++ and compiled using Clang version 12.0.0.
The experiments were performed on an Intel(R) Xeon(R) computer with a CPU
E5-2430 v2 processor, at 2.50GHz with 64 GB RAM under CentOS GNU/Linux 7.
Because our algorithm contains randomized elements, we performed ten runs for each
instance.

140

https://arxiv.org/abs/1803.03681
https://arxiv.org/abs/1803.03681

4.4.2 Parameter setting

During the development of the algorithm, parameter tuning experiments have been
performed to adequately set the parameters for GTS-angular. To avoid overfitting the
parameters to the instance type, we set all GTS-angular parameters to the same values
for solving both the AngleTSP and the AngleDistanceTSP instances, except for the
minimum lens thickness parameter γmin. Because of the different computation of the
costs for each triplet of vertices performed in the AngleTSP and AngleDistanceTSP
instances (see Equation 4.2), a different value for the minimum lens thickness for each
problem type, namely γA

min for the AngleTSP and γAD
min for the AngleDistanceTSP,

should be properly tuned. Consequently, we considered the same lens thickness
value of 0.6981 suggested by Staněk et al., 2019 for solving the AngleTSP instances
and, consistently with the computation of the turning angle (see Section 4.4.1), we
multiply that by 1000, that is, γA

min =698.1. For the AngleDistanceTSP instances,
we computed γAD

min coherently with the cost computation in Equation (4.2) as γAD
min

=100(40 · 0.6981 + d), where d is the average distance over all arcs in A. Table 4.1
summarizes all GTS-angular parameters.

Component Notation Parameter values
tabu tenure τ = [τmin, τmax] τ = [10, 20]
termination criterion η η = 30 000
continuous diversification σ σ = 2e−6

dynamic sparsification γ = [γA
min, 2γA

min] γ = [698.1, 2 · 698.1] = [698.1, 1 396.2]
γ = [γAD

min, 2γAD
min] γ = [100(40 · 0.6981 + d), 200(40 · 0.6981 + d)]

= [100(2 792.4 + d), 200(2 792.4 + d)]
accepted arc list length limit κa κa = 0.05
sparsification intensity κs κs = 0.05
sparsification iterations ηκ ηκ = 1 000

Table 4.1: GTS-angular parameter values.

4.4.3 Performance of GTS-angular with different construction
heuristics

To assess the value of our construction heuristics, we compare the performance of
GTS-angular r-LENS and GTS-angular c-LENS using the construction heuristics of
Section 4.3.1 (i.e., CHH for AngleTSP instances and NIH for AngleDistanceTSP
instances) to GTS-angular r-LENS and GTS-angular c-LENS when using a randomly
generated starting solution. As a benchmark for our comparison, we consider the
results of Staněk et al., 2019, which include:

• The solution (objective function value) obtained by each of their algorithmic
variants for each instance.

141

• The optimal objective function value for each of the AngleTSP instances with
size up to 75 vertices, and for each of the AngleDistanceTSP instances with size
up to 100 vertices. The number of AngleTSP and AngleDistanceTSP instances
for which an optimal solution is available is reported in Table 4.2. These optimal
solutions are obtained by solving the integer linear models for the AngleTSP
and AngleDistanceTSP via an off-the-shelf solver (for more details, see Staněk
et al., 2019).

Number of instances

Optimal solution available Optimal solution not available

AngleTSP 150 250
AngleDistanceTSP 200 200
Total 350 450

Table 4.2: Number of AngleTSP and AngleDistanceTSP instances for which an
optimal solution is available from Staněk et al., 2019.

The best-known solution (BKS) in the following comparisons corresponds to the
optimal objective function value for the instances for which an optimal solution is
available, and to the best found objective function value across all the algorithmic
variants of Staněk et al., 2019 for those instances for which optimality is not proven.

Tables 4.3 and 4.4 report the results of the construction heuristics for the AngleTSP
and the AngleDistanceTSP, respectively. For each method, we report the gap of the
starting solution to the BKS averaged over all instances (∆start

BKS(%)), the runtimes of
the approach (tstart(s)) averaged over all runs and instances, the gap of the best run
to the BKS averaged over all instances (∆best

BKS(%)), the gap to the BKS averaged over
all runs and instances (∆avg

BKS(%)), and the runtimes t(s) averaged over all runs and
instances. In the tables, we highlight in bold the best result for each of the reported
measures.

Comparing the quality of the starting solutions, we observe that both our con-
struction heuristics return a clearly better starting solution quality than the quality
of a random starting solution. As expected, randomly generating solutions is faster
than our construction heuristics. However, the runtimes of our construction heuristics
only amount to around 1.2% or less of the total GTS-angular runtime, and therefore
the speed difference is rather irrelevant.

Focusing on the final objective values, for the AngleTSP instances, GTS-angular
r-LENS and GTS-angular c-LENS return a notably better solution quality when
using CHH compared to using a random starting solution. However, this happens at
the expense of a higher runtime. For the AngleDistanceTSP instances, the superior
quality of the starting solution returned by NIH is less relevant for the performance
of GTS-angular r-LENS and GTS-angular c-LENS. This result could be caused by
the quality of the NIH solution that is not improving as much as the CHH solution
with respect to a random starting solution.

142

Random starting solution CHH

∆start

BKS(%) t
start(s) ∆best

BKS(%) ∆avg

BKS(%) t(s) ∆start

BKS(%) t
start(s) ∆best

BKS(%) ∆avg

BKS(%) t(s)
GTS-angular r-LENS 378.50 0.02 -0.35 1.34 262.82 45.12 0.55 -0.36 1.28 290.28
GTS-angular c-LENS 378.50 0.02 0.07 1.55 330.37 45.12 0.55 -0.13 1.29 350.65

Table 4.3: Comparison of GTS-angular r-LENS and GTS-angular c-LENS using
the starting solution from CHH and a random starting solution for the AngleTSP
instances.

Random starting solution NIH

∆start

BKS(%) t
start(s) ∆best

BKS(%) ∆avg

BKS(%) t(s) ∆start

BKS(%) t
start(s) ∆best

BKS(%) ∆avg

BKS(%) t(s)
GTS-angular r-LENS 352.43 0.02 -0.20 0.11 186.18 89.55 2.10 -0.20 0.12 198.09
GTS-angular c-LENS 352.43 0.02 -0.11 0.33 177.79 89.55 2.10 -0.11 0.18 174.03

Table 4.4: Comparison of GTS-angular r-LENS and GTS-angular c-LENS using the
starting solution from NIH and a random starting solution for the AngleDistanceTSP
instances.

Due to the positive impact of the starting solution obtained with CHH, we perform
additional experiments in which we merge the convex hulls in the opposite order,
i.e., from the outermost to the innermost one. We call this construction heuristic
CHHo, where the “o” stands for “opposite”. The results reported in Table 4.5 show
that also CHHo returns a clearly better starting solution quality than the quality of a
random starting solution. However, the comparison of CHH and CHHo suggests that
the quality of the starting solution returned by CHH is better than the one of CHHo.
Moreover, on average, even if the runtime of GTS-angular r-LENS and GTS-angular
c-LENS is slightly lower when using the starting solution of CHHo, a better solution
quality is returned using the starting solution of CHH. Hence, in the remainder of the
paper, we use the results of GTS-angular r-LENS and GTS-angular c-LENS with the
starting solution of CHH.

CHH CHHo

∆start

BKS(%) t
start(s) ∆best

BKS(%) ∆avg

BKS(%) t(s) ∆start

BKS(%) t
start(s) ∆best

BKS(%) ∆avg

BKS(%) t(s)
GTS-angular r-LENS 45.12 0.55 -0.36 1.28 290.28 47.05 0.68 -0.38 1.32 275.67
GTS-angular c-LENS 45.12 0.55 -0.13 1.29 350.65 47.05 0.68 -0.06 1.33 347.76

Table 4.5: Comparison of GTS-angular r-LENS and GTS-angular c-LENS using the
starting solution from CHH that merges the convex hulls from the innermost to
the outermost and CHHo that merges the convex hulls from the outermost to the
innermost.

4.4.4 Comparison to the literature

In this section, we compare the performance of GTS-angular r-LENS and GTS-
angular c-LENS to the state-of-the-art heuristics from the literature. In addition to
the reported measures of Staněk et al., 2019 described in Section 4.4.3, we now also
consider the runtime of each of their algorithmic variants for each instance.

143

For each algorithmic variant of Staněk et al., 2019, we first determine whether it
is dominated or not (see Tables 4.10 and 4.11 in Appendix A). For this analysis, we
consider the results as reported by Staněk et al., 2019. Specifically, we compute, for
each algorithmic variant the average gap (over all instances) between the obtained
objective function value and the BKS and the average runtimes. The status of an
algorithm is “not dominated” if there is no other algorithm that provides: (i) a better
solution quality and faster runtimes simultaneously, (ii) the same solution quality
but lower runtimes, (iii) the same runtimes but better solution quality. Otherwise,
it is “dominated”. For the comparison with GTS-angular, we consider only the
non-dominated algorithmic variants that show an average gap to the BKS below
2%. This results in the selection of four algorithmic variants (namely, LPP R + M15,
LPP R + M20, LPCR

1 + M15, LPCR
1 + M20) for the AngleTSP, and six algorithmic

variants (namely, CIF + M15, CIF + M20, NN2
S + M15, NN2

S + M20, LPCR
1 + M20,

LPCR
2 +M20) for the AngleDistanceTSP. The algorithmic variants with names starting

with “LP” are methods based on the solution of the linear programming relaxation
of the AngleTSP and AngleDistanceTSP models. They differ with respect to the
rounding procedure applied to the variables representing the selection of the arcs
in a tour. The algorithmic variants with names starting with “CIF” are methods
based on the cheapest insertion heuristic proposed by Fischer et al., 2014. The
algorithmic variants with names starting by “NN2

S” are methods based on the nearest
neighbor heuristic run from all possible starting vertices and coupled with the 2-opt
improvement heuristic. The suffixes “M15” and “M20” refer to an improvement
heuristic similar to a large neighborhood search, in which part of the tour is destroyed
by removing all arcs adjacent to a set of vertices in a geographical neighborhood. The
numbers 15 and 20 represent the expected number of vertices in such a set. Then, the
tour is repaired by optimally reconnecting the paths and isolated points by solving a
quadratic programming model.

To make runtimes comparable, we have rerun the original code of all non-dominated
algorithms of Staněk et al., 2019 on our test computer described in Section 4.4.1.
The algorithms of Staněk et al., 2019 are implemented in Python; GTS-angular is
implemented in C++. Depending on the test setting, multiple sources have reported
speedup factors of C++ compared to Python in the range from 10 to 100. To ensure
a fair comparison of runtimes, we convert the runtimes of the algorithms of Staněk
et al., 2019 using the most optimistic speedup factor of 100 (thus guaranteeing that
we are definitely not giving any runtime advantage to our GTS-angular). Because
all non-dominated algorithms of Staněk et al., 2019 make calls to the solver Gurobi,
whose runtimes are independent of the programming language used for the main
algorithm, we convert the runtimes as follows:

tconv = tGurobi + ttot − tGurobi

100 ,

144

where tconv denotes the converted runtime, tGurobi the runtime spent in the Gurobi
(version 10.0.0) calls with the parameter OutputFlag set to zero, and ttot is the total
runtime of the respective algorithm.

Tables 4.6 and 4.7 report the described runtime measures for all non-dominated
algorithms of Staněk et al., 2019 averaged over the AngleTSP and the AngleDis-
tanceTSP instances, respectively. The total runtime ttot and the converted runtime
tconv are reported in seconds, the runtime for Gurobi calls tGurobi as percentage of the
total runtime. The tables show that for all but two of the algorithms, most of the
runtime is spent in Gurobi. Consequently, for the large majority of algorithms, the
runtime differences between C++ and Python are nearly irrelevant for the comparison.
Nevertheless, we base the following comparisons on the converted runtimes tconv.

Algorithm t̃tot(s) t̃Gurobi(%) tconv(s)

LP P R + M15 340.09 94.41 321.28
LP P R + M20 411.69 94.68 390.02
LP CR

1 + M15 351.44 94.41 331.98
LP CR

1 + M20 405.30 94.46 383.08

Table 4.6: AngleTSP: conversion of the runtimes of the non-dominated algorithms of
Staněk et al., 2019.

Algorithm t̃tot(s) t̃Gurobi(%) tconv(s)

CIF + M15 45.37 82.32 37.43
CIF + M20 74.36 87.60 65.23
NN2

S + M15 133.51 27.17 37.24
NN2

S + M20 160.08 38.32 62.33
LP CR

1 + M20 261.35 94.40 246.86
LP CR

2 + M20 275.68 89.66 247.47

Table 4.7: AngleDistanceTSP: conversion of the runtimes of the non-dominated
algorithms of Staněk et al., 2019.

Tables 4.8 and 4.9 summarize the comparison of GTS-angular r-LENS and GTS-
angular c-LENS for the AngleTSP and AngleDistanceTSP, respectively, to the non-
dominated algorithms of Staněk et al., 2019. For each solution method, we report
the gap of the best run to the BKS averaged over all instances (∆best

BKS(%)), the gap
to the BKS averaged over all runs and instances (∆avg

BKS(%)), and the runtimes t(s)
(that correspond to tconv(s) for the algorithms of Staněk et al., 2019) averaged over
all runs and instances. In the tables, we highlight in bold the best result for each of
these three measures. Tables 4.12–4.15 in Appendix B contain more detailed results
grouped according to the instance size. In Figure 4.5, we represent the Pareto frontiers
of the algorithms with respect to the average runtime t(s) and the average gap to
the BKS ∆avg

BKS(%) for the AngleTSP and AngleDistanceTSP, respectively. Every
time the performance of the algorithms is discussed in terms of solution quality and
runtimes, we use the average solution quality and average runtimes of GTS-angular
for fair comparison. The solution of the best run is only used to carry out comparisons

145

based exclusively on solution quality. We note that, by using the converted runtimes,
some of the algorithms that are non-dominated according to the results reported by
Staněk et al., 2019 are now dominated (see LPP R + M20 for the AngleTSP, and
CIF + M15 and CIF + M20 for the AngleDistanceTSP). However, we keep them in
our comparison, and we refrain from rerunning the code of Staněk et al., 2019 for all
66 algorithmic variants due to the immense computational effort.

On AngleTSP instances, GTS-angular r-LENS and LPCR
1 + M20 dominate GTS-

angular c-LENS. The position of GTS-angular r-LENS on the Pareto frontier (Fig-
ure 4.5(a)) shows that GTS-angular r-LENS achieves a good compromise between
solution quality and runtime, and dominates three out of the four algorithms of Staněk
et al., 2019 (namely, LPP R + M15, LPCR

1 + M15, and LPCR
1 + M20).

For the AngleDistanceTSP, both GTS-angular variants achieve a better solution
quality than the algorithms of Staněk et al., 2019 in competitive runtimes. GTS-
angular r-LENS returns a better solution quality than GTS-angular c-LENS, while
the latter is faster. The position of GTS-angular r-LENS and GTS-angular c-LENS
in Figure 4.5(b) shows that they lie not only on the Pareto frontier, but they also
dominate two state-of-the-art algorithms (namely, LPCR

1 + M20 and LPCR
2 + M20).

Analyzing the results with regard to the average gap to the BKS obtained in the
best run, i.e., ∆best

BKS(%), and reported in Tables 4.8 and 4.9, our algorithmic variants
achieve a better solution quality than the algorithms of Staněk et al., 2019 both for the
AngleTSP and AngleDistanceTSP instances. Specifically, GTS-angular r-LENS finds
new BKSs for 177 AngleTSP instances, i.e., 70.8% of the instances for which an optimal
solution is not available (see Table 4.2), and for 183 AngleDistanceTSP instances, i.e.,
91.5% of the instances for which an optimal solution is not available. Moreover, the
heuristics of Staněk et al., 2019 returning the best solution quality (i.e., LPCR

1 + M20

for AngleTSP instances, and LPCR
2 + M20 for AngleDistanceTSP instances) reported,

for instances with cardinality between 105 and 200, average gaps to the best lower
bounds of 15.75% and 8.26% for the AngleTSP and AngleDistanceTSP, respectively.
For the same instances, our average gaps to the best lower bounds are 13.89% for the
AngleTSP instances and 7.30% for the AngleDistanceTSP instances.

LPP R + M15 LPP R + M20 LPCR
1 + M15 LPCR

1 + M20 GTS-angular r-LENS GTS-angular c-LENS

∆best

BKS(%) 1.90 1.20 1.58 0.98 -0.36 -0.13
∆avg

BKS(%) 1.90 1.20 1.58 0.98 1.28 1.29
t(s) 321.28 390.02 331.98 382.91 290.28 350.65

Table 4.8: AngleTSP results: comparison of the average results of the non-dominated
algorithms of Staněk et al., 2019 with GTS-angular r-LENS and GTS-angular c-LENS.

To provide more details on our comparison, we analyze the following indicators
computed by grouping instances by size: (1) the percentage of instances for which
each of the algorithms is able to find the optimal solution (Section 4.4.4.1), and (2)
the percentage of instances on which our GTS-angular variants provide better or

146

CIF + M15 CIF + M20 NN2
S + M15 NN2

S + M20 LPCR
1 + M20 LPCR

2 + M20 GTS-angular r-LENS GTS-angular c-LENS

∆best

BKS(%) 1.72 1.22 0.64 0.49 0.42 0.40 -0.20 -0.11
∆avg

BKS(%) 1.72 1.22 0.64 0.49 0.42 0.40 0.12 0.18
t(s) 37.43 65.23 37.24 62.33 246.86 247.47 198.09 174.03

Table 4.9: AngleDistanceTSP results: comparison of the average results of the
non-dominated algorithms of Staněk et al., 2019 with GTS-angular r-LENS and
GTS-angular c-LENS.

∆
a

v
g

B
K

S
(%

)

t(s)

250 300 350 400

-0.5

0

0.5

1

1.5

2
⋆
LP P R + M15

⋆
LP CR

1 + M15

⋆
LP CR

1 + M20

⋆
LP P R + M20

⋆
GTS-angular r-LENS

⋆
GTS-angular c-LENS

(a) AngleTSP.

∆
a

v
g

B
K

S
(%

)

t(s)

0 50 100 150 200 250 300

-0.5

0

0.5

1

1.5

2

⋆
CIF + M15

⋆
CIF + M20

⋆
NN2

S + M15

⋆
NN2

S + M20

⋆
GTS-angular r-LENS

⋆
LP CR

1 + M20

⋆GTS-angular c-LENS

⋆
LP CR

2 + M20

(b) AngleDistanceTSP.

Figure 4.5: Pareto frontiers of the compared algorithmic variants.

equal solution quality than the one provided by the best-performing heuristics of
Staněk et al., 2019 (Section 4.4.4.2). For the sake of representation, the figures in the

147

remainder of this section show aggregated data. Specifically, we first obtain groups
of instances by dividing them according to their size aggregated in increasing size
intervals of 20. For example, the instance group 5–25 contains all instances with size
between 5 and 25 vertices, the instance group 30–50 contains all instances with size
between 30 and 50 vertices, and so on. Then, we compute the percentage of instances
within each group satisfying the evaluated indicator, and we report that value.

4.4.4.1 Percentage of optimal solutions found

According to this indicator, we compute the percentage of instances for which our
GTS-angular variants and the heuristics proposed by Staněk et al., 2019 are able to
find the optimal solution. To derive this indicator, we refer to the optimal objective
function values computed by Staněk et al., 2019. We recall that these optimal values
were provided only for the instances with sizes 5–75 for the AngleTSP, and instances
with sizes 5–100 for the AngleDistanceTSP. Because their heuristics do not contain
random components, the authors executed only one run for each heuristic. Hence, we
compute this indicator for their algorithms by using the objective function value of
that run. For our GTS-angular variants, we consider the objective function value of
the best run. Figure 4.6 shows, for each heuristic, the percentage of AngleTSP and
AngleDistanceTSP instances for which the optimal solution is found.

For the AngleTSP instances (Figure 4.6(a)), GTS-angular r-LENS and GTS-
angular c-LENS are the heuristics returning the highest percentage of optimal solutions.
For instances with size ranging between 30 and 75 vertices, our algorithmic variants
always find at least 25% more optimal solutions compared with the variants of Staněk
et al., 2019.

For the AngleDistanceTSP instances (Figure 4.6(b)), our GTS-angular variants
find optimal solutions for most of the instances with up to 100 vertices. Conversely,
the heuristics of Staněk et al., 2019 are not able to find optimal solutions for most of
the instances with sizes starting from 55 vertices.

Comparing our two algorithmic variants, GTS-angular r-LENS is in general superior
to GTS-angular c-LENS. An exception is represented by the case of AngleDistanceTSP
instances with sizes ranging from 5 to 25. In this instance group, GTS-angular c-LENS
performs slightly better.

4.4.4.2 Percentage of instances with better or equal solution quality

According to this indicator, we compute the percentage of instances for which our
GTS-angular variants find a better or equal solution than the one provided by each
of the non-dominated heuristics of Staněk et al., 2019. For each of our algorithmic
variants, we count the number of instances for which the returned objective function
value of the best run is lower or equal to the one provided by each of the non-dominated

148

%
of

fo
un

d
op

ti
m

al
so

lu
ti

on
s

instance size

5-25 30-50 55-75
0

25

50

75

100

LP P R + M15

LP P R + M20

LP CR
1 + M15

LP CR
1 + M20

GTS-angular r-LENS
GTS-angular c-LENS

(a) AngleTSP.

%
of

fo
un

d
op

ti
m

al
so

lu
ti

on
s

instance size

5-25 30-50 55-75 80-100
0

25

50

75

100

CIF + M15

CIF + M20

NN2
S + M15

NN2
S + M20

LP CR
1 + M20

LP CR
2 + M20

GTS-angular r-LENS
GTS-angular c-LENS

(b) AngleDistanceTSP.

Figure 4.6: Percentage of optimal solutions found by all compared heuristics.

heuristics of Staněk et al., 2019. Figures 4.7 and 4.8 show the percentage of these
instances for GTS-angular r-LENS and GTS-angular c-LENS for AngleTSP and
AngleDistanceTSP instances, respectively.

For the AngleTSP, both GTS-angular variants (Figures 4.7(a) and 4.7(b)) return
better or equal solutions than the non-dominated variants of Staněk et al., 2019 for
more than 60% of the instances, independent of the instance size. Compared to
LPCR

1 +M20 (the best-performing heuristic with respect to solution quality by Staněk
et al., 2019), GTS-angular r-LENS finds better or equal solutions for more than 75%
of the instances with up to 175 vertices and for more than 65% of the instances with
180 to 200 vertices.

For the AngleDistanceTSP, the performance of our GTS-angular variants is con-
vincing: for all but three instance size groups, GTS-angular r-LENS finds better or
equal solutions for all instances. In those three instance size groups, GTS-angular
r-LENS returns better or equal solutions for more than 97% of the instances (Fig-
ure 4.8(a)). Across all instance size groups, GTS-angular c-LENS finds better or equal
solutions for at least 90% of the instances (Figure 4.8(b)). In addition, GTS-angular

149

r-LENS always returns a better or equal solution than the one found by the algorithms
of Staněk et al., 2019 for the biggest instances with sizes 180-200.

%
of

be
tt

er
or

eq
ua

ls
ol

ut
io

ns

instance size

5-
25

30
-5

0

55
-7

5

80
-1

00

10
5-

12
5

13
0-

15
0

15
5-

17
5

18
0-

20
050

60

70

80

90

100

LP P R + M15

LP P R + M20

LP CR
1 + M15

LP CR
1 + M20

(a) GTS-angular with r-LENS.
%

of
be

tt
er

or
eq

ua
ls

ol
ut

io
ns

instance size

5-
25

30
-5

0

55
-7

5

80
-1

00

10
5-

12
5

13
0-

15
0

15
5-

17
5

18
0-

20
050

60

70

80

90

100

LP P R + M15

LP P R + M20

LP CR
1 + M15

LP CR
1 + M20

(b) GTS-angular with c-LENS.

Figure 4.7: Percentage of AngleTSP instances for which GTS-angular finds a better
or equal solution than the ones of the heuristics of Staněk et al., 2019.

%
of

be
tt

er
or

eq
ua

ls
ol

ut
io

ns

instance size

5-
25

30
-5

0

55
-7

5

80
-1

00

10
5-

12
5

13
0-

15
0

15
5-

17
5

18
0-

20
080

85

90

95

100

CIF + M15

CIF + M20

NN2
S + M15

NN2
S + M20

LP CR
1 + M20

LP CR
2 + M20

(a) GTS-angular with r-LENS.

%
of

be
tt

er
or

eq
ua

ls
ol

ut
io

ns

instance size

5-
25

30
-5

0

55
-7

5

80
-1

00

10
5-

12
5

13
0-

15
0

15
5-

17
5

18
0-

20
080

85

90

95

100

CIF + M15

CIF + M20

NN2
S + M15

NN2
S + M20

LP CR
1 + M20

LP CR
2 + M20

(b) GTS-angular with c-LENS.

Figure 4.8: Percentage of AngleDistanceTSP instances for which GTS-angular finds a
better or equal solution than the ones of the heuristics of Staněk et al., 2019.

4.5 Conclusion

We propose a GTS framework that considers the geometric features of the AngleTSP
and AngleDistanceTSP in the design of the starting solutions and the sparsification

150

methods. The comparison of two sparsification methods proves that r-LENS returns
solutions of better quality than c-LENS on AngleTSP and AngleDistanceTSP instances,
but c-LENS is faster on AngleDistanceTSP instances. The computational results on
AngleTSP instances show that the performance of GTS-angular lies on the Pareto
frontier of heuristic AngleTSP and AngleDistanceTSP methods and it qualifies as
a valuable alternative to the heuristics proposed by Staněk et al., 2019. For the
AngleDistanceTSP instances, GTS-angular provides the best solution quality across
the best-performing heuristics of Staněk et al., 2019 in competitive runtimes. Moreover,
it dominates two of the heuristics proposed by Staněk et al., 2019. Finally, it finds new
best-known solutions on around 81% of AngleTSP and AngleDistanceTSP instances
for which an optimal solution is not available.

References

M. S. Abubakar, D. Ahmad, and F. B. Akande (2010). “A review of farm tractor
overturning accidents and safety”. In: Pertanika Journal of Science and Technology
18.2, pp. 377–385.

A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani, and B. Schieber (2000). “The
angular-metric traveling salesman problem”. In: SIAM Journal on Computing 29.3,
pp. 697–711. doi: 10.1137/S0097539796312721.

O. Aichholzer, A. Fischer, F. Fischer, J. F. Meier, U. Pferschy, A. Pilz, and R.
Staněk (2017). “Minimization and maximization versions of the quadratic travelling
salesman problem”. In: Optimization 66.4, pp. 521–546. doi: 10.1080/02331934.
2016.1276905.

C. Becker, R. Cavagnini, S. Irnich, and M. Schneider (2021). Rule-based design
of a granular tabu search for the multi-depot vehicle routing problem. Working
Paper DPO-2021-01. Aachen, Germany: Deutsche Post Chair – Optimization of
Distribution Networks, RWTH Aachen University.

J.-F. Cordeau, M. Gendreau, and G. Laporte (1997). “A tabu search heuristic for
periodic and multi-depot vehicle routing problems”. In: Networks 30.2, pp. 105–119.
doi: 10.1002/(SICI)1097-0037(199709)30:2%3C105::AID-NET5%3E3.0.CO;2-
G.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein (2009). Introduction to
algorithms. MIT press.

J. W. Escobar, R. Linfati, and P. Toth (2014). “A hybrid granular tabu search algorithm
for the multi-depot vehicle routing problem”. In: Journal of the Operational
Research Society 65.1, pp. 37–48. doi: 10.1057/jors.2013.102.

U. D. o. T. Federal Motor Carrier Safety Administration (2019). Large truck and bus
crash facts 2017. url: https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/

151

https://doi.org/10.1137/S0097539796312721
https://doi.org/10.1080/02331934.2016.1276905
https://doi.org/10.1080/02331934.2016.1276905
https://doi.org/10.1002/(SICI)1097-0037(199709)30:2%3C105::AID-NET5%3E3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-0037(199709)30:2%3C105::AID-NET5%3E3.0.CO;2-G
https://doi.org/10.1057/jors.2013.102
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf

files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-
2019.pdf.

A. Fischer and C. Helmberg (2013). “The symmetric quadratic traveling salesman
problem”. In: Mathematical Programming 142.1, pp. 205–254. doi: 10.1007/
s10107-012-0568-1.

A. Fischer, F. Fischer, G. Jäger, J. Keilwagen, P. Molitor, and I. Grosse (2014). “Exact
algorithms and heuristics for the quadratic traveling salesman problem with an
application in bioinformatics”. In: Discrete Applied Mathematics 166, pp. 97–114.
doi: 10.1016/j.dam.2013.09.011.

A. Fischer, F. Fischer, G. Jäger, J. Keilwagen, P. Molitor, and I. Grosse (2015).
“Computational recognition of RNA splice sites by exact algorithms for the quadratic
traveling salesman problem”. In: Computation 3.2, pp. 285–298. doi: 10.3390/
computation3020285.

B. E. Gillett and L. R. Miller (1974). “A heuristic algorithm for the vehicle-dispatch
problem”. In: Operations research 22.2, pp. 340–349. doi: 10.1287/opre.22.2.
340.

F. Glover (1989). “Tabu search – Part 1”. In: ORSA Journal on Computing 1.3,
pp. 190–206. doi: 10.1287/ijoc.1.3.190.

D. Goeke (2019). “Granular tabu search for the pickup and delivery problem with
time windows and electric vehicles”. In: European Journal of Operational Research
278.3, pp. 821–836. doi: 10.1016/j.ejor.2019.05.010.

R. L. Graham (1972). “An efficient algorithm for determining the convex hull of a
finite planar set”. In: Information Processing Letters 1, pp. 132–133.

D. Kirchler and R. Wolfler Calvo (2013). “A granular tabu search algorithm for the
dial-a-ride problem”. In: Transportation Research Part B 56, pp. 120–135. doi:
10.1016/j.trb.2013.07.014.

N. Labadie, R. Mansini, J. Melechovskỳ, and R. W. Calvo (2012). “The team orien-
teering problem with time windows: An LP-based granular variable neighborhood
search”. In: European Journal of Operational Research 220.1, pp. 15–27. doi:
10.1016/j.ejor.2012.01.030.

Z. Leng, Y. Wang, M. Xin, and M. A. Minor (2022). “The Effect of Sideslip on
Jackknife Limits during Low Speed Trailer Operation”. In: Robotics 11.6, p. 133.
doi: 10.3390/robotics11060133.

A. J. McKnight and G. T. Bahouth (2009). “Analysis of large truck rollover crashes”.
In: Traffic injury prevention 10.5, pp. 421–426. doi: 10.1080/15389580903135291.

A. C. Medeiros and S. Urrutia (2010). “Discrete optimization methods to determine
trajectories for Dubins’ vehicles”. In: Electronic Notes in Discrete Mathematics 36,
pp. 17–24. doi: 10.1016/j.endm.2010.05.003.

C. Prins, C. Prodhon, A. Ruiz, P. Soriano, and R. Wolfler Calvo (2007). “Solving the
Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-

152

https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf
https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf
https://doi.org/10.1007/s10107-012-0568-1
https://doi.org/10.1007/s10107-012-0568-1
https://doi.org/10.1016/j.dam.2013.09.011
https://doi.org/10.3390/computation3020285
https://doi.org/10.3390/computation3020285
https://doi.org/10.1287/opre.22.2.340
https://doi.org/10.1287/opre.22.2.340
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1016/j.ejor.2019.05.010
https://doi.org/10.1016/j.trb.2013.07.014
https://doi.org/10.1016/j.ejor.2012.01.030
https://doi.org/10.3390/robotics11060133
https://doi.org/10.1080/15389580903135291
https://doi.org/10.1016/j.endm.2010.05.003

Granular Tabu Search Heuristic”. In: Transportation Science 41.4, pp. 470–483.
doi: 10.1287/trsc.1060.0187.

K. Savla, E. Frazzoli, and F. Bullo (2008). “Traveling salesperson problems for the
Dubins vehicle”. In: IEEE Transactions on Automatic Control 53.6, pp. 1378–1391.
doi: 10.1109/TAC.2008.925814.

M. Schneider and M. Löffler (2019). “Large composite neighborhoods for the capac-
itated location-routing problem”. In: Transportation Science 53.1, pp. 301–318.
doi: 10.1287/trsc.2017.0770.

M. Schneider, F. Schwahn, and D. Vigo (2017). “Designing granular solution methods
for routing problems with time windows”. In: European Journal of Operational
Research 263.2, pp. 493–509. doi: 10.1016/j.ejor.2017.04.059.

R. Staněk, P. Greistorfer, K. Ladner, and U. Pferschy (2019). “Geometric and LP-based
heuristics for angular travelling salesman problems in the plane”. In: Computers
& Operations Research 108, pp. 97–111. doi: 10.1016/j.cor.2019.01.016.

P. Toth and D. Vigo (2003). “The granular tabu search and its application to the
vehicle-routing problem”. In: INFORMS Journal on Computing 15.4, pp. 333–346.
doi: 10.1287/ijoc.15.4.333.24890.

4.6 Appendix

A Dominated and non-dominated algorithmic variants by
Staněk et al., 2019

Tables 4.10 and 4.11 report the dominated and non-dominated algorithmic variants
proposed by Staněk et al., 2019 for the AngleTSP and AngleDistanceTSP instances,
respectively.

153

https://doi.org/10.1287/trsc.1060.0187
https://doi.org/10.1109/TAC.2008.925814
https://doi.org/10.1287/trsc.2017.0770
https://doi.org/10.1016/j.ejor.2017.04.059
https://doi.org/10.1016/j.cor.2019.01.016
https://doi.org/10.1287/ijoc.15.4.333.24890

Algorithmic variant ∆BKS(%) t(s) dominated/not dominated

CIF 56.5 3.49 dominated
CIF + 2O 22.75 3.85 dominated
CIF + L 48.89 43.70 dominated
CIF + M15 7.67 66.19 dominated
CIF + M20 5.33 104.65 dominated
CIF + 3O 11.74 88.61 dominated
NNS 39.57 146.51 dominated
NNS + 2O 35.92 146.64 dominated
NNS + L 38.60 187.77 dominated
NNS + M15 12.30 253.81 dominated
NNS + M20 8.64 317.54 dominated
NNS + 3O 26.93 215.02 dominated
NNL

S 36.03 215.33 dominated
NNL

S + 2O 19.49 215.62 dominated
NNL

S + L 32.06 254.86 dominated
NNL

S + M15 3.97 278.38 dominated
NNL

S + M20 2.59 329.23 dominated
NNL

S + 3O 9.00 296.41 dominated
NN2

S 28.93 35.61 dominated
NN2

S + 2O 28.93 35.67 dominated
NN2

S + L 28.02 76.84 dominated
NN2

S + M15 11.25 138.75 dominated
NN2

S + M20 7.91 198.77 dominated
NN2

S + 3O 23.89 102.17 dominated
CH 41.07 0.81 dominated
CH + 2O 39.35 0.92 dominated
CH + L 40.28 42.20 dominated
CH + M15 12.22 106.32 dominated
CH + M20 8.98 175.15 dominated
CH + 3O 29.13 72.91 dominated
CHC 35.87 1.22 dominated
CHC + 2O 35.45 1.30 dominated
CHC + L 35.48 42.63 dominated
CHC + M15 12.72 109.70 dominated
CHC + M20 8.95 176.71 dominated
CHC + 3O 29.97 59.39 dominated
CHL

C 32.90 0.73 not dominated
CHL

C + 2O 21.76 0.98 not dominated
CHL

C + L 29.64 40.34 dominated
CHL

C + M15 3.92 66.17 not dominated
CHL

C + M20 2.68 120.13 not dominated
CHL

C + 3O 9.01 86.96 dominated
LP P 25.69 107.78 dominated
LP P + 2O 13.25 108.05 dominated
LP P + L 22.15 148.14 dominated
LP P + M15 4.18 162.68 dominated
LP P + M20 2.65 213.59 not dominated
LP P + 3O 6.43 178.42 dominated
LP P R 10.39 192.41 dominated
LP P R + 2O 7.20 192.57 dominated
LP P R + L 8.66 233.06 dominated
LP P R + M15 1.90 245.95 not dominated
LP P R + M20 1.20 290.26 not dominated
LP P R + 3O 4.29 252.79 dominated
LP CR

1 8.56 204.32 dominated
LP CR

1 + 2O 6.44 204.46 dominated
LP CR

1 + L 7.17 244.93 dominated
LP CR

1 + M15 1.58 256.32 not dominated
LP CR

1 + M20 0.98 299.53 not dominated
LP CR

1 + 3O 3.71 262.42 dominated
LP CR

2 8.38 212.48 dominated
LP CR

2 + 2O 6.40 212.62 dominated
LP CR

2 + L 6.99 253.05 dominated
LP CR

2 + M15 1.62 264.87 dominated
LP CR

2 + M20 1.01 306.34 dominated
LP CR

2 + 3O 3.70 271.11 dominated

Table 4.10: Dominated and non-dominated algorithmic variants proposed by Staněk
et al., 2019 for the AngleTSP instances.

154

Algorithmic variant ∆BKS(%) t(s) dominated/not dominated

CIF 12.62 3.49 dominated
CIF + 2O 5.61 3.79 not dominated
CIF + L 12.13 40.48 dominated
CIF + M15 1.72 25.13 not dominated
CIF + M20 1.22 42.00 not dominated
CIF + 3O 3.29 67.35 dominated
NNS 13.28 147.56 dominated
NNS + 2O 5.66 147.89 dominated
NNS + L 12.07 187.50 dominated
NNS + M15 1.45 175.55 dominated
NNS + M20 1.03 195.07 dominated
NNS + 3O 3.29 213.71 dominated
NNL

S 12.46 241.49 dominated
NNL

S + 2O 5.21 241.83 dominated
NNL

S + L 11.19 281.43 dominated
NNL

S + M15 1.36 268.74 dominated
NNL

S + M20 0.94 288.29 dominated
NNL

S + 3O 3.03 307.01 dominated
NN2

S 2.34 69.36 dominated
NN2

S + 2O 2.34 69.42 dominated
NN2

S + L 2.13 107.61 dominated
NN2

S + M15 0.64 90.97 not dominated
NN2

S + M20 0.49 106.27 not dominated
NN2

S + 3O 1.66 120.77 dominated
CH 52.32 0.74 dominated
CH + 2O 8.41 1.30 dominated
CH + L 42.62 40.84 dominated
CH + M15 2.29 39.76 dominated
CH + M20 1.50 65.52 dominated
CH + 3O 4.22 74.77 dominated
CHC 47.85 0.90 dominated
CHC + 2O 7.99 1.44 dominated
CHC + L 39.24 40.89 dominated
CHC + M15 2.26 38.58 dominated
CHC + M20 1.51 63.96 dominated
CHC + 3O 4.26 74.54 dominated
CHL

C 17.86 0.56 not dominated
CHL

C + 2O 7.89 0.95 not dominated
CHL

C + L 17.21 33.70 dominated
CHL

C + M15 1.74 30.50 dominated
CHL

C + M20 1.23 51.05 dominated
CHL

C + 3O 4.34 68.42 dominated
LP P 5.89 79.29 dominated
LP P + 2O 2.65 79.52 dominated
LP P + L 5.30 117.33 dominated
LP P + M15 0.76 99.76 dominated
LP P + M20 0.59 115.46 dominated
LP P + 3O 1.57 132.85 dominated
LP P R 6.45 145.14 dominated
LP P R + 2O 2.45 145.38 dominated
LP P R + L 5.42 184.40 dominated
LP P R + M15 0.70 166.58 dominated
LP P R + M20 0.46 182.29 dominated
LP P R + 3O 1.37 197.83 dominated
LP CR

1 5.62 144.70 dominated
LP CR

1 + 2O 2.37 144.94 dominated
LP CR

1 + L 4.78 183.76 dominated
LP CR

1 + M15 0.64 165.91 dominated
LP CR

1 + M20 0.42 180.77 not dominated
LP CR

1 + 3O 1.33 197.69 dominated
LP CR

2 5.25 154.52 dominated
LP CR

2 + 2O 2.27 154.75 dominated
LP CR

2 + L 4.49 193.57 dominated
LP CR

2 + M15 0.61 175.70 dominated
LP CR

2 + M20 0.40 190.72 not dominated
LP CR

2 + 3O 1.27 206.42 dominated

Table 4.11: Dominated and non-dominated algorithmic variants proposed by Staněk
et al., 2019 for the AngleDistanceTSP instances.

155

B GTS-angular detailed results

Tables 4.12 and 4.13 report the comparison of the results grouped by instance size of
the non dominated algorithms of Staněk et al., 2019 with GTS-angular r-LENS for
the AngleTSP and AngleDistanceTSP instances, respectively. Tables 4.14 and 4.15
report the comparison of the results grouped by instance size of the non dominated
algorithms of Staněk et al., 2019 with GTS-angular c-LENS for the AngleTSP and
AngleDistanceTSP instances, respectively.

156

LP P R + M15 LP P R + M20 LP CR
1 + M15 LP CR

1 + M20 GTS-angular r-LENS

Size ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆best
BKS(%) ∆avg

BKS(%) t
avg(s)

5 0.00 0.18 0.00 0.19 0.00 0.18 0.00 0.21 0.00 0.00 0.03
10 0.00 0.41 0.00 0.36 0.00 0.38 0.00 0.39 0.00 0.00 0.10
15 0.00 1.02 0.00 1.05 0.00 1.07 0.00 1.03 0.00 0.03 0.66
20 0.00 28.08 0.00 9.35 0.00 27.76 0.00 9.46 0.00 0.11 1.52
25 0.03 13.92 0.00 22.30 0.03 13.74 0.00 22.66 0.00 0.28 2.82
30 2.46 16.54 0.29 44.06 2.44 15.91 0.29 44.13 0.00 0.09 4.12
35 1.75 12.62 1.17 29.36 1.75 16.97 0.77 28.56 0.00 0.29 5.48
40 0.52 81.22 0.39 92.44 0.55 20.16 0.39 89.55 0.11 0.60 8.15
45 1.33 43.02 0.79 44.85 1.57 129.75 1.13 43.78 0.24 0.51 10.78
50 2.81 40.24 3.03 33.52 2.94 40.78 3.07 38.28 0.12 0.48 13.30
55 1.15 47.17 1.40 50.05 1.56 52.78 1.42 45.82 0.18 0.86 16.70
60 2.27 64.22 1.10 143.14 2.14 62.91 1.12 110.51 0.51 1.30 23.06
65 2.00 61.86 1.37 97.47 2.03 61.12 1.21 88.50 0.07 0.80 23.12
70 3.54 59.69 2.49 226.42 3.26 61.66 2.15 106.22 0.30 1.20 30.94
75 3.68 78.52 3.16 122.97 2.91 77.17 2.22 119.98 0.52 1.62 39.13
80 1.99 71.62 1.52 221.62 2.06 71.35 1.45 122.24 -0.42 1.03 48.84
85 1.89 129.11 0.94 194.28 1.77 118.94 1.74 158.34 -0.47 0.64 55.61
90 1.84 175.57 1.13 145.07 2.04 123.88 1.47 148.39 -0.44 0.59 68.53
95 2.65 152.03 1.40 178.23 2.30 262.39 0.90 193.36 -0.28 1.29 87.80
100 1.78 164.27 1.85 206.52 0.96 159.14 1.24 208.47 -1.25 0.34 98.16
105 1.49 265.97 0.73 209.27 1.29 437.74 0.98 192.58 -1.32 -0.11 116.38
110 1.23 192.95 0.78 330.04 1.08 204.76 1.37 294.92 -1.14 0.48 142.25
115 3.12 212.34 2.05 348.61 2.13 207.68 1.06 336.06 -1.42 1.32 168.12
120 1.69 265.23 2.00 377.40 2.51 259.66 0.86 353.04 -0.42 1.33 174.16
125 1.65 289.47 0.82 393.66 1.57 257.50 1.19 339.65 -1.20 1.06 219.04
130 2.04 310.34 0.78 505.92 1.08 321.42 0.71 467.38 -1.27 1.48 242.56
135 2.61 412.56 0.74 421.58 1.31 384.64 1.45 468.69 -1.14 0.75 276.24
140 2.35 431.83 1.33 505.78 1.81 435.93 0.90 662.40 -1.02 1.09 326.16
145 2.74 428.14 1.69 656.21 1.90 512.38 0.77 547.82 -0.63 2.63 367.78
150 3.13 513.04 2.03 606.98 1.77 483.46 0.26 559.07 -0.91 1.60 447.62
155 1.86 561.82 1.27 618.75 1.71 521.27 1.10 602.04 -0.22 1.93 527.07
160 1.62 563.99 0.96 634.72 2.01 558.81 1.11 637.95 -0.69 1.78 507.06
165 2.12 644.94 1.36 751.54 2.02 790.36 1.10 769.64 -0.36 2.74 613.91
170 2.35 665.16 1.46 738.15 0.69 759.51 0.50 853.14 -0.85 1.98 728.70
175 1.67 861.34 1.28 895.28 1.50 846.18 0.77 913.91 -0.80 2.54 790.32
180 2.16 881.03 1.00 896.17 1.14 809.29 0.84 901.22 0.40 3.61 818.04
185 2.56 923.65 1.39 1095.27 2.10 910.28 0.96 1117.72 0.47 3.91 998.30
190 3.10 960.09 1.44 1136.95 1.58 927.81 1.24 1054.27 0.02 3.43 1121.57
195 2.73 1067.69 1.92 1201.70 2.15 1167.62 0.97 1313.30 -0.76 2.48 1149.00
200 1.96 1158.22 1.04 1413.78 1.60 1164.71 0.51 1351.58 -0.40 3.27 1338.27

Avg per inst 1.90 321.28 1.20 390.02 1.58 331.98 0.98 382.91 -0.36 1.28 290.28

Table 4.12: AngleTSP results: comparison of the results averaged by instance size of the non-dominated algorithms of Staněk et al., 2019
with GTS-angular r-LENS.

157

CIF + M15 CIF + M20 NN2
S + M15 NN2

S + M20 LPCR
1 + M20 LPCR

2 + M20 GTS-angular r-LENS

Size ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆best

BKS(%) ∆avg

BKS(%) t
avg(s)

5 0.00 0.10 0.00 0.11 0.00 0.11 0.00 0.12 0.00 0.22 0.00 0.22 0.00 0.00 0.06
10 0.00 0.19 0.00 0.23 0.00 0.19 0.00 0.20 0.00 0.42 0.00 0.43 0.00 0.00 0.26
15 0.00 0.32 0.00 0.32 0.00 0.31 0.00 0.33 0.00 0.62 0.00 0.66 0.00 1.82 0.63
20 0.00 3.09 0.00 0.80 0.00 3.15 0.00 0.80 0.00 1.41 0.00 1.46 0.06 1.49 1.19
25 0.18 4.12 0.00 5.93 0.00 4.10 0.00 6.26 0.00 6.96 0.00 6.95 0.00 0.70 2.13
30 0.47 3.74 0.31 7.63 0.00 3.37 0.00 7.33 0.25 10.25 0.25 10.17 0.00 0.45 3.27
35 0.89 4.60 0.37 8.56 0.05 4.25 0.00 8.27 0.05 10.32 0.05 10.40 0.00 0.24 4.75
40 1.05 4.57 0.21 8.67 0.06 4.42 0.06 9.45 0.00 13.06 0.00 13.20 0.00 0.18 6.48
45 0.60 11.53 0.32 10.74 0.00 10.28 0.00 9.08 0.12 15.59 0.10 16.02 0.00 0.15 8.70
50 1.26 13.96 0.84 17.23 0.17 11.98 0.05 12.25 0.29 19.99 0.29 20.56 0.00 0.10 11.09
55 1.19 13.47 1.47 13.03 0.39 12.63 0.37 10.43 0.50 19.21 0.44 19.22 0.00 0.15 14.38
60 0.65 15.17 0.34 29.41 0.52 12.00 0.59 26.30 0.11 37.45 0.11 37.26 0.00 0.12 17.70
65 1.35 20.34 0.89 34.94 0.25 14.74 0.25 30.07 0.83 50.16 0.53 49.63 0.00 0.05 21.21
70 1.35 16.45 1.83 37.29 0.20 15.28 0.25 30.07 0.63 58.53 0.56 57.73 0.00 0.09 26.62
75 1.82 16.94 1.07 47.70 0.65 17.77 0.42 45.37 0.45 63.94 0.55 63.63 0.00 0.17 34.97
80 2.36 19.24 1.49 39.51 0.56 17.04 0.39 32.27 0.49 68.74 0.47 68.37 0.00 0.20 40.57
85 2.15 24.19 1.77 46.49 0.52 27.12 0.49 37.00 0.38 82.23 0.36 86.37 0.01 0.15 45.82
90 1.83 40.65 1.48 30.99 0.79 27.89 0.68 37.98 1.33 90.58 1.36 90.05 0.00 0.13 53.41
95 1.82 43.04 1.72 40.49 0.61 42.80 0.47 37.94 1.00 99.52 0.88 99.58 0.00 0.13 65.19
100 1.35 29.58 1.48 50.68 0.64 27.56 0.48 39.32 0.69 106.04 0.55 105.29 0.00 0.20 80.21
105 2.21 37.59 1.89 37.62 0.47 33.83 0.27 52.59 0.52 121.08 0.52 120.20 -0.14 0.02 89.99
110 2.36 33.63 2.10 71.36 0.56 34.87 0.46 71.78 0.75 170.66 0.57 175.73 -0.11 0.03 109.35
115 2.59 33.04 1.65 69.19 1.05 37.74 1.09 65.04 0.56 181.22 0.59 178.05 -0.32 -0.13 125.96
120 1.61 37.97 1.41 105.53 0.80 39.19 0.65 64.27 0.44 208.95 0.43 212.20 -0.20 -0.03 134.88
125 1.51 36.63 0.99 85.85 1.01 35.57 0.88 73.75 0.62 217.11 0.64 223.51 -0.42 -0.15 159.93
130 2.44 41.34 1.61 101.86 1.06 53.08 0.69 105.04 0.65 280.79 0.57 287.00 -0.40 -0.19 165.13
135 1.77 55.95 0.82 93.19 0.79 41.46 0.40 83.95 0.50 297.16 0.51 295.41 -0.36 -0.10 208.88
140 2.90 69.66 1.41 109.08 0.81 52.83 0.39 107.32 0.65 315.16 0.56 320.38 -0.24 0.05 242.54
145 2.55 53.45 1.86 92.89 1.27 51.01 1.00 100.71 0.24 338.56 0.25 333.11 -0.28 0.12 270.61
150 2.26 69.40 1.25 118.01 0.89 63.34 0.68 90.98 0.27 385.14 0.30 386.91 -0.61 -0.24 287.81
155 2.92 64.93 1.86 108.53 0.75 62.22 0.69 91.11 0.25 418.69 0.31 416.14 -0.44 -0.10 348.43
160 2.27 89.10 1.83 117.95 1.03 111.02 1.00 103.91 0.74 500.20 0.60 501.84 -0.39 -0.05 374.42
165 2.78 68.97 1.86 104.30 1.58 66.02 0.97 97.86 0.31 467.59 0.29 472.23 -0.41 0.03 427.46
170 2.13 69.20 1.97 94.21 1.16 80.54 0.71 101.35 0.25 521.77 0.25 522.79 -0.43 -0.03 456.83
175 2.29 63.57 1.78 107.72 1.30 67.86 0.95 110.81 0.29 525.27 0.23 526.13 -0.50 -0.01 514.18
180 2.53 77.16 1.62 105.10 1.40 74.96 1.15 121.08 0.50 670.68 0.52 667.02 -0.65 -0.27 566.67
185 3.10 77.88 2.12 143.94 0.92 83.62 0.64 148.36 0.50 792.41 0.50 798.71 -0.65 -0.14 604.57
190 2.49 75.87 1.23 160.65 1.16 75.50 0.80 167.56 0.27 889.03 0.27 884.59 -0.61 -0.18 736.33
195 2.97 71.34 2.19 165.60 1.06 83.88 1.10 171.9 0.77 859.39 0.78 855.71 -0.53 -0.11 791.15
200 2.79 85.16 1.70 185.85 1.08 84.15 0.62 182.97 0.78 958.31 0.78 963.86 -0.51 -0.11 869.75

Avg per inst 1.72 37.43 1.22 65.23 0.64 37.24 0.49 62.33 0.42 246.86 0.40 247.47 -0.20 0.12 198.09

Table 4.13: AngleDistanceTSP results: comparison of the results averaged by instance size of the non-dominated algorithms of Staněk
et al., 2019 with GTS-angular r-LENS.

158

LP P R + M15 LP P R + M20 LP CR
1 + M15 LP CR

1 + M20 GTS-angular c-LENS

Size ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆best
BKS(%) ∆avg

BKS(%) t
avg(s)

5 0.00 0.18 0.00 0.19 0.00 0.18 0.00 0.21 0.00 0.00 0.07
10 0.00 0.41 0.00 0.36 0.00 0.38 0.00 0.39 0.00 0.00 0.16
15 0.00 1.02 0.00 1.05 0.00 1.07 0.00 1.03 0.00 0.00 0.78
20 0.00 28.08 0.00 9.35 0.00 27.76 0.00 9.46 0.00 0.04 1.79
25 0.03 13.92 0.00 22.30 0.03 13.74 0.00 22.66 0.06 0.29 3.19
30 2.46 16.54 0.29 44.06 2.44 15.91 0.29 44.13 0.00 0.13 4.42
35 1.75 12.62 1.17 29.36 1.75 16.97 0.77 28.56 0.13 0.30 6.44
40 0.52 81.22 0.39 92.44 0.55 20.16 0.39 89.55 0.08 0.49 9.12
45 1.33 43.02 0.79 44.85 1.57 129.75 1.13 43.78 0.10 0.45 12.53
50 2.81 40.24 3.03 33.52 2.94 40.78 3.07 38.28 0.06 0.46 15.81
55 1.15 47.17 1.40 50.05 1.56 52.78 1.42 45.82 0.16 0.85 20.67
60 2.27 64.22 1.10 143.14 2.14 62.91 1.12 110.51 0.40 1.27 25.56
65 2.00 61.86 1.37 97.47 2.03 61.12 1.21 88.50 0.12 0.93 28.73
70 3.54 59.69 2.49 226.42 3.26 61.66 2.15 106.22 0.25 0.86 37.36
75 3.68 78.52 3.16 122.97 2.91 77.17 2.22 119.98 0.59 1.51 48.58
80 1.99 71.62 1.52 221.62 2.06 71.35 1.45 122.24 -0.42 1.02 58.64
85 1.89 129.11 0.94 194.28 1.77 118.94 1.74 158.34 -0.17 0.62 66.23
90 1.84 175.57 1.13 145.07 2.04 123.88 1.47 148.39 -0.46 0.79 84.13
95 2.65 152.03 1.40 178.23 2.30 262.39 0.90 193.36 0.28 1.24 111.32
100 1.78 164.27 1.85 206.52 0.96 159.14 1.24 208.47 -1.11 0.06 120.61
105 1.49 265.97 0.73 209.27 1.29 437.74 0.98 192.58 -1.36 -0.16 155.82
110 1.23 192.95 0.78 330.04 1.08 204.76 1.37 294.92 -0.88 0.33 171.55
115 3.12 212.34 2.05 348.61 2.13 207.68 1.06 336.06 -0.58 1.00 216.59
120 1.69 265.23 2.00 377.40 2.51 259.66 0.86 353.04 -0.22 1.41 211.29
125 1.65 289.47 0.82 393.66 1.57 257.50 1.19 339.65 -0.77 1.08 244.25
130 2.04 310.34 0.78 505.92 1.08 321.42 0.71 467.38 -0.41 1.83 296.55
135 2.61 412.56 0.74 421.58 1.31 384.64 1.45 468.69 -0.88 0.95 305.28
140 2.35 431.83 1.33 505.78 1.81 435.93 0.90 662.40 -0.20 1.92 360.58
145 2.74 428.14 1.69 656.21 1.90 512.38 0.77 547.82 0.58 2.39 441.66
150 3.13 513.04 2.03 606.98 1.77 483.46 0.26 559.07 -0.73 1.32 531.41
155 1.86 561.82 1.27 618.75 1.71 521.27 1.10 602.04 -0.23 1.45 640.09
160 1.62 563.99 0.96 634.72 2.01 558.81 1.11 637.95 -0.72 1.68 654.21
165 2.12 644.94 1.36 751.54 2.02 790.36 1.10 769.64 -0.58 1.94 743.64
170 2.35 665.16 1.46 738.15 0.69 759.51 0.50 853.14 -0.07 2.94 775.97
175 1.67 861.34 1.28 895.28 1.50 846.18 0.77 913.91 -0.14 2.57 935.95
180 2.16 881.03 1.00 896.17 1.14 809.29 0.84 901.22 -0.07 3.07 1085.87
185 2.56 923.65 1.39 1095.27 2.10 910.28 0.96 1117.72 1.10 4.22 1234.51
190 3.10 960.09 1.44 1136.95 1.58 927.81 1.24 1054.27 0.75 3.82 1372.88
195 2.73 1067.69 1.92 1201.70 2.15 1167.62 0.97 1313.30 0.30 3.43 1278.44
200 1.96 1158.22 1.04 1413.78 1.60 1164.71 0.51 1351.58 -0.09 3.07 1713.43

Avg per inst 1.90 321.28 1.20 390.02 1.58 331.98 0.98 382.91 -0.13 1.29 350.65

Table 4.14: AngleTSP results: comparison of the the results averaged by instance size of the non-dominated algorithms of Staněk et al.,
2019 with GTS-angular c-LENS.

159

CIF + M15 CIF + M20 NN2
S + M15 NN2

S + M20 LPCR
1 + M20 LPCR

2 + M20 GTS-angular c-LENS

Size ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆BKS(%) tconv(s) ∆best

BKS(%) ∆avg

BKS(%) t
avg(s)

5 0.00 0.10 0.00 0.11 0.00 0.11 0.00 0.12 0.00 0.22 0.00 0.22 0.00 0.00 0.08
10 0.00 0.19 0.00 0.23 0.00 0.19 0.00 0.20 0.00 0.42 0.00 0.43 0.00 0.00 0.32
15 0.00 0.32 0.00 0.32 0.00 0.31 0.00 0.33 0.00 0.62 0.00 0.66 0.00 0.61 0.71
20 0.00 3.09 0.00 0.80 0.00 3.15 0.00 0.80 0.00 1.41 0.00 1.46 0.00 0.58 1.39
25 0.18 4.12 0.00 5.93 0.00 4.10 0.00 6.26 0.00 6.96 0.00 6.95 0.00 0.53 2.35
30 0.47 3.74 0.31 7.63 0.00 3.37 0.00 7.33 0.25 10.25 0.25 10.17 0.00 0.12 3.53
35 0.89 4.60 0.37 8.56 0.05 4.25 0.00 8.27 0.05 10.32 0.05 10.40 0.00 0.15 5.15
40 1.05 4.57 0.21 8.67 0.06 4.42 0.06 9.45 0.00 13.06 0.00 13.20 0.00 0.25 6.47
45 0.60 11.53 0.32 10.74 0.00 10.28 0.00 9.08 0.12 15.59 0.10 16.02 0.00 0.23 8.84
50 1.26 13.96 0.84 17.23 0.17 11.98 0.05 12.25 0.29 19.99 0.29 20.56 0.00 0.21 11.01
55 1.19 13.47 1.47 13.03 0.39 12.63 0.37 10.43 0.50 19.21 0.44 19.22 0.00 0.20 13.93
60 0.65 15.17 0.34 29.41 0.52 12.00 0.59 26.30 0.11 37.45 0.11 37.26 0.00 0.14 17.70
65 1.35 20.34 0.89 34.94 0.25 14.74 0.25 30.07 0.83 50.16 0.53 49.63 0.00 0.07 21.66
70 1.35 16.45 1.83 37.29 0.20 15.28 0.25 30.07 0.63 58.53 0.56 57.73 0.01 0.12 27.54
75 1.82 16.94 1.07 47.70 0.65 17.77 0.42 45.37 0.45 63.94 0.55 63.63 0.02 0.26 31.47
80 2.36 19.24 1.49 39.51 0.56 17.04 0.39 32.27 0.49 68.74 0.47 68.37 0.04 0.15 41.29
85 2.15 24.19 1.77 46.49 0.52 27.12 0.49 37.00 0.38 82.23 0.36 86.37 0.03 0.17 45.87
90 1.83 40.65 1.48 30.99 0.79 27.89 0.68 37.98 1.33 90.58 1.36 90.05 0.03 0.28 55.05
95 1.82 43.04 1.72 40.49 0.61 42.80 0.47 37.94 1.00 99.52 0.88 99.58 0.06 0.24 63.98
100 1.35 29.58 1.48 50.68 0.64 27.56 0.48 39.32 0.69 106.04 0.55 105.29 0.06 0.29 66.10
105 2.21 37.59 1.89 37.62 0.47 33.83 0.27 52.59 0.52 121.08 0.52 120.20 -0.09 0.16 86.78
110 2.36 33.63 2.10 71.36 0.56 34.87 0.46 71.78 0.75 170.66 0.57 175.73 -0.06 0.17 101.40
115 2.59 33.04 1.65 69.19 1.05 37.74 1.09 65.04 0.56 181.22 0.59 178.05 -0.23 0.02 116.99
120 1.61 37.97 1.41 105.53 0.80 39.19 0.65 64.27 0.44 208.95 0.43 212.20 -0.17 -0.05 124.12
125 1.51 36.63 0.99 85.85 1.01 35.57 0.88 73.75 0.62 217.11 0.64 223.51 -0.28 -0.03 158.57
130 2.44 41.34 1.61 101.86 1.06 53.08 0.69 105.04 0.65 280.79 0.57 287.00 -0.24 0.09 151.28
135 1.77 55.95 0.82 93.19 0.79 41.46 0.40 83.95 0.50 297.16 0.51 295.41 -0.28 0.11 170.82
140 2.90 69.66 1.41 109.08 0.81 52.83 0.39 107.32 0.65 315.16 0.56 320.38 -0.15 0.11 204.80
145 2.55 53.45 1.86 92.89 1.27 51.01 1.00 100.71 0.24 338.56 0.25 333.11 -0.12 0.30 224.38
150 2.26 69.40 1.25 118.01 0.89 63.34 0.68 90.98 0.27 385.14 0.30 386.91 -0.44 0.02 267.56
155 2.92 64.93 1.86 108.53 0.75 62.22 0.69 91.11 0.25 418.69 0.31 416.14 -0.37 0.01 303.88
160 2.27 89.10 1.83 117.95 1.03 111.02 1.00 103.91 0.74 500.20 0.60 501.84 -0.27 0.14 332.20
165 2.78 68.97 1.86 104.30 1.58 66.02 0.97 97.86 0.31 467.59 0.29 472.23 -0.22 0.21 376.23
170 2.13 69.20 1.97 94.21 1.16 80.54 0.71 101.35 0.25 521.77 0.25 522.79 -0.33 0.06 425.68
175 2.29 63.57 1.78 107.72 1.30 67.86 0.95 110.81 0.29 525.27 0.23 526.13 -0.19 0.19 489.41
180 2.53 77.16 1.62 105.10 1.40 74.96 1.15 121.08 0.50 670.68 0.52 667.02 -0.39 0.18 444.55
185 3.10 77.88 2.12 143.94 0.92 83.62 0.64 148.36 0.50 792.41 0.50 798.71 -0.27 0.12 514.50
190 2.49 75.87 1.23 160.65 1.16 75.50 0.80 167.56 0.27 889.03 0.27 884.59 -0.29 0.12 615.34
195 2.97 71.34 2.19 165.60 1.06 83.88 1.10 171.90 0.77 859.39 0.78 855.71 -0.12 0.31 681.15
200 2.79 85.16 1.70 185.85 1.08 84.15 0.62 182.97 0.78 958.31 0.78 963.86 -0.19 0.39 747.09

Avg per inst 1.72 37.43 1.22 65.23 0.64 37.24 0.49 62.33 0.42 246.86 0.40 247.47 -0.11 0.18 174.03

Table 4.15: AngleDistanceTSP results: comparison of the results averaged by instance size of the non-dominated algorithms of Staněk
et al., 2019 with GTS-angular c-LENS.

160

Chapter 5

The capacitated team orienteering problem with
multiple time windows and time-dependent score
functions

Publication status: A. Theiß, R. Cavagnini, and D. Gellert (2025). An iterated
local search for the capacitated team orienteering problem with time-dependent and
piecewise linear score functions. Working Paper. Chair of Computational Logistics,
RWTH Aachen University, Germany

Abstract: In this paper, we study two versions of the capacitated team orienteering
problem with time-dependent and piecewise linear score functions (C-TOP-TDPLSF).
In the C-TOP-TDPLSF, a fleet of capacitated vehicles is available for visiting a
set of customers, each associated with a demand, a service time, a set of time
windows, and a score that varies based on the visiting time and that is modeled
by a piecewise linear function. Given a maximum tour duration for each vehicle,
the company must determine which customers to visit, which vehicle should serve
them, and in which sequence. The objective is to maximize the total score collected
by the fleet. Depending on the setting, parking and waiting at customer locations
may or may not be allowed. We refer to the C-TOP-TDPLSF in which waiting
at customers is not permitted as C-TOP-TDPLSF-nw and the variant in which
waiting is allowed as C-TOP-TDPLSF-w. We propose a mathematical formulation
for both variants, and improve them with problem-specific preprocessing techniques
and valid inequalities. Because commercial optimization solvers cannot even find
feasible solutions for realistically-sized instances of C-TOP-TDPLSF in reasonable
runtimes, we propose two heuristics based on an iterated local search framework:
ILS-noWait for solving the C-TOP-TDPLSF-nw and ILS-cWait-fin for solving the
C-TOP-TDPLSF-w. These heuristics differ in the evaluation of the waiting decision.
In ILS-cWait-fin, a finalization phase is applied to a subset of best-found solutions
from the ILS to optimize customer visiting times while maintaining the sequence
of visits fixed. Computational experiments on small-scale instances show that for
C-TOP-TDPLSF-nw instances, ILS-noWait outperforms a commercial optimization

161

solver. However, for some C-TOP-TDPLSF-w instances, ILS-cWait-fin struggles to
match the quality of the solutions found with the commercial optimization solver. By
analyzing large-scale instances, we draw managerial insights into the impact of the time
window width, vehicle number, fleet size, and of allowing waiting at customer locations.

Contribution of the author: The authors shared efforts in the conceptual devel-
opment of the research goals, the design of the methodology and implementation of
the algorithm, the computational experiments and result analysis, and in writing the
paper.

162

5.1 Introduction

High-quality delivery services are crucial for the success of companies and form a
central component of their customer service strategies. Customer-oriented deliveries
improve satisfaction and loyalty, providing companies with a competitive advantage
in today’s market.

We study the problem of a company that delivers goods and wants to maximize
the quality of the service offered to customers. The quality of the service depends on
whether and when customers are visited. Each customer has a demand and a service
time. Given a time horizon, each customer has multiple time windows during which
they can be visited. Customers indicate these time windows as either preferred or
less preferred. This depends on their primary activity that customers must interrupt
to receive goods. Depending on the urgency of the primary activity, a time window
may be less favored than another. The quality of the delivery service offered by the
company depends on whether and on the time at which customers are visited. In
fact, the quality of the service is high if the visit falls in a preferred time window,
and decreases for less preferred time windows as the visit time gets farther from
the preferred time windows. A fleet of capacitated vehicles for visiting customers is
available, and for each vehicle, the total time spent traveling and serving customers
cannot exceed a maximum duration. Finally, depending on the setting, drivers may
be allowed to park their vehicles only for the duration necessary to unload their goods
and visit a customer, or may be allowed to park and wait at a customer location.

This problem has multiple real-world applications, especially for customer-service
oriented companies. A typical example is deliveries to restaurants. Throughout the
day, restaurants have open and close hours. Within their open hours, they may
experience peak hours in which they must serve many people. When a restaurant
is open but experiences low occupancy, waiters can easily interrupt their activities
to manage goods receipt, making these time windows preferred. The quality of the
service provided by the company is high by visiting that restaurant during such time
windows due to the convenience for the restaurant. As the delivery time approaches
peak hours, the waiters’ idleness decreases and consequently, also the restaurant’s
preference and the quality of the service. This reflects the inconvenience for the
restaurant to be visited in that time window.

To study this problem, we introduce a variant of the team orienteering problem
(TOP) and we call it capacitated team orienteering problem with time-dependent
and piecewise linear score functions (C-TOP-TDPLSF). We refer to the C-TOP-
TDPLSF in which waiting at a customer is not permitted as the capacitated team
orienteering problem with time-dependent and piecewise linear score functions with
no waiting (C-TOP-TDPLSF-nw). In C-TOP-TDPLSF-nw, a waiting period, i.e.,
a time span between the arrival of a vehicle at a customer and the start of service,

163

is not allowed. However, to also study those settings in which parking and waiting
is allowed, we introduce a variant of the C-TOP-TDPLSF called the capacitated
team orienteering problem with time-dependent and piecewise linear score functions
with waiting (C-TOP-TDPLSF-w). In the C-TOP-TDPLSF-w, drivers can park at
customer locations and wait for the most advantageous time to begin service. Both in
the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w, waiting at the depot is allowed.

The C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w differ from the TOP in three
significant ways. First, the vehicles have a limited capacity. Second, each customer
has multiple time windows during which they can be visited and they can be either
preferred or less preferred. Third, the score that can be collected at each customer
depends on the visiting time of a vehicle at that customer. To represent these possibly
non-continuous opening times and different preferences, multiple time windows with
time-dependent scores described by a piecewise linear score function must be considered.
Specifically, our score function exhibits constant scores for preferred time windows
and linear functions with positive or negative slopes for less preferred time windows.

In the literature, the TOP with multiple time windows and time-dependent score
functions is studied by Yu et al. (2019). While in their work, the score of each time
window is represented by a constant function, the piecewise linear score functions in the
C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w allow for a more realistic representation
of customer’s preferences. In Yu et al. (2019), similar to the C-TOP-TDPLSF-w, if a
vehicle arrives at a customer before the opening of any of its time windows, waiting at
a customer is allowed. However, in their work, waiting longer than the opening time
of any time windows is never convenient because the score within each time window
is constant. In fact, waiting longer only consumes time that could be used in a more
profitable manner. On the contrary, in the C-TOP-TDPLSF-w, waiting longer than
the opening time of a less preferred time window may lead to a higher collected score.
Yu et al. (2019) also propose a heuristic to solve their problem. However, because
of this difference in the customers’ score function, applying their heuristic to the
C-TOP-TDPLSF-w leads to suboptimal solutions.

We fill the gaps in the literature by addressing two practically relevant problems
(i.e., the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w) that feature an accurate
representation of customers’ preferences and account for the option of waiting at
customers. For each of these two problems, we propose a mathematical formulation,
problem-specific preprocessing techniques, and valid inequalities. Because commercial
optimization solvers cannot find a feasible solution for realistically-sized instances of
the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w in reasonable runtimes, we propose
an iterated local search (ILS) to solve them. In particular, we present two ILS variants:
ILS-noWait for solving the C-TOP-TDPLSF-nw, and ILS-cWait-fin for solving the
C-TOP-TDPLSF-w. These two ILS variants differ in how the waiting decisions are
evaluated. On the one hand, for the C-TOP-TDPLSF-nw, because waiting is not

164

allowed, ILS-noWait considers all moves in which the arrival time of a vehicle at a
customer falls outside a time window as infeasible and does not accept them. On
the other hand, solving the C-TOP-TDPLSF-w requires to make decisions about
the length of the waiting time of vehicles at customers. Because these decisions are
continuous, evaluating them within a metaheuristic framework is computationally
expensive. Hence, during the local search phase, ILS-cWait-fin only considers a
prespecified set of waiting strategies. These waiting strategies depend on whether the
upcoming time window with respect to the arrival time at a customer is a preferred
or a less preferred one. During the ILS, a given number of best solutions is saved. In
ILS-cWait-fin, after the ILS terminates, each of the saved best solutions undergoes
a finalization phase. This finalization phase keeps the customer visiting sequence of
the solution fixed but their visiting times can be adapted. Hence, the goal of this
finalization phase is to search for better customer visiting times (and hence, better
waiting strategies) to improve the collected score.

For our computational experiments, we generate a new set of instances based on
the ones in Souffriau et al. (2013). On small-scale instances, the results show the
effectiveness of our preprocessing techniques and that our ILS-noWait outperforms a
commercial optimization solver on C-TOP-TDPLSF-nw small-scale instances. How-
ever, for some C-TOP-TDPLSF-w small-scale instances, ILS-cWait-fin struggles to
consistently achieve a good solution quality. The results show that althought the
finalization phase leads to higher runtimes, it is crucial for improving the solutions
for the C-TOP-TDPLSF-w. Moreover, we show that existing algorithms from the
literature are inadequate for producing high-quality solutions for instances of the
C-TOP-TDPLSF-w due to their simplistic waiting strategy. The solutions obtained
by ILS-noWait and ILS-cWait-fin for large-scale instances are used to draw managerial
insights into the effects of the time window width, vehicle fleet size, and of allowing
waiting at customer locations.

This paper is organized as follows. Section 5.2 presents a review of the literature
of related problems. In Section 5.3, we provide a detailed description of the C-TOP-
TDPLSF-nw and C-TOP-TDPLSF-w and their mathematical formulations. In Section
5.4, we describe the ILS variants that we designed to solve the C-TOP-TDPLSF-nw
and C-TOP-TDPLSF-w. Section 5.5 presents the computational experiments and
results. Finally, we conclude in Section 5.6.

5.2 Literature review

To the best of our knowledge, the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w have
not been studied in the literature yet. In this section, we review the extant literature
with respect to the main features of our problems.

In the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w, we consider a limited number

165

of capacitated homogeneous vehicles with route duration constraints. The TOP with
a homogeneous and limited vehicle fleet and tour duration constraints is introduced
by Chao et al. (1996) who develop a two-step heuristic for this problem and propose
benchmark instances. Archetti et al. (2009) are the first to extend the TOP by
considering a capacity constraint for each vehicle in addition to the time limit on the
tour duration. They propose a branch-and-price exact algorithm (later improved in
Archetti et al., 2013), and three metaheuristics.

An important feature of our problems is the presence of time windows. Kantor and
Rosenwein (1992) are the first to study the orienteering problem with time windows.
Vansteenwegen et al. (2009) study the team orienteering problem with time windows
(TOPTW) and tour duration constraints and design a fast iterated local search (ILS)
to solve it. In their local search procedure, only one neighborhood operator that tries
to insert one customer at a time is used. The perturbation procedure removes one
or more consecutive customers and it is designed to encourage every customer to be
removed at least once. After a new solution is obtained, the search continues from
the current solution instead of the best-one found. The distinguishing feature of this
metaheuristic relies on the efficient time window feasibility evaluation of insertion
moves and on the efficient shifting of arrival times at customers after one or more
customers are removed from a route. Gunawan et al. (2017) propose an improved
version of this ILS by properly tuning the algorithm’s parameters and Gavalas et al.
(2019) improve the ILS of Vansteenwegen et al. (2009) by proposing two extensions
that group closely located customers together. Amarouche et al. (2020) propose a
multistart ILS that alternates between two search spaces, the route representation of a
solution and the giant tour representation of a solution. Additional metaheuristics have
been proposed (see, e.g., Labadie et al., 2012; Labadie et al., 2010; Labadie et al., 2011;
Lin and Vincent, 2012; Hu and Lim, 2014; Guibadj and Moukrim, 2014; Schmid and
Ehmke, 2017). However, the ILS of Vansteenwegen et al. (2009) stands out for speed,
while the multistart ILS of Amarouche et al. (2020) outperforms the other methods
for solution quality. Different from C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w, in
the TOPTW, only one time window per customer is considered.

Tricoire et al. (2010) introduce the multi-period orienteering problem with multiple
time windows (MuPOPTW). In the MuPOPTW, there are mandatory and optional
customers to visit, and each customer has individual service times. In each period,
one route is planned that cannot exceed a maximum duration for that period, and
a maximum driver’s working time over the whole time horizon. Each customer may
have up to two time windows per day that can also vary depending on the day. Time
windows of the same customer cannot overlap. Due to the consideration of multiple
time windows, the MuPOPTW is related to the C-TOP-TDPLSF-nw and C-TOP-
TDPLSF-w. Multiple time windowsand multiple periods are also included in the multi-
constraint team orienteering problem with multiple time windows (MCTOPMTW)

166

studied by Souffriau et al. (2013). This problem has multiple constraints on a number
of attributes referring both to intra-route features (e.g., route duration), and inter-tour
features (e.g., a maximum number of vertices of a type visited by all routes). Apart
from the presence of multiple attributes, the MCTOPMTW differentiates from the
C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w because in the MCTOPMTW, time
windows are not only vertex-dependent but also vehicle-dependent.

All papers discussed above consider a constant score for each customer. Never-
theless, real-world problems may require to consider time-dependent scores. Yu et al.
(2022) classify (T)OP variants with time-dependent scores into two categories: the
orienteering problem with arrival-time-varying score (OPATP) and the orienteering
problem with service-time-varying score (OPSTP, see, e.g., Erdoğan and Laporte, 2013;
Gunawan et al., 2018; Khodadadian et al., 2022). Because the C-TOP-TDPLSF-nw
and C-TOP-TDPLSF-w belong to the OPATP, we only focus on this category of
time-dependent scores.

The score function used in the team orienteering problem with time windows and
time-dependent scores (TOPTW-TDS) investigated by Yu et al. (2019) is the most
similar to the one of the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w. The authors
consider multiple time windows in which a vertex can be visited and waiting at a
vertex for the opening of any of its time windows is allowed. The collected score when
visiting a vertex is the product of the vertex basic score and a recommendation factor
of the time window the vertex is visited in. Consequently, the score of a vertex in the
TOPTW-TDS is described by a step function. Yu et al. (2019) develop an artificial
bee colony heuristic to solve the TOPTW-TDS. To guarantee diversification, the
authors consider a simulated annealing-based acceptance rule. Despite of the good
performance achieved by their heuristic when solving the TOPTW-TDS, the design of
this artificial bee colony heuristic is not suitable for solving the C-TOP-TDPLSF-w
due to two features of this metaheuristic. First, in the heuristic by Yu et al. (2019), if
the vehicle arrives at a vertex before the opening time of one of its time windows, the
visiting time is delayed until the opening time of one of its time windows. In fact,
in their problem, waiting longer than the time window opening is not advantageous
because it does not lead to a higher collected score and, instead, it only consumes
time for the route duration. Recalling that in our problem, the score within less
preferred time windows is determined by a piecewise linear function, waiting only
for the opening of the upcoming time window may result in a lower collected score
than the one that could be achieved by visiting the customer in the middle of that
time window, for example. Second, to consider the presence of multiple time windows
with different scores in the neighborhood search, Yu et al. (2019) design an operator
that randomly selects a vertex with at least two available time windows and changes
its current visiting time with the opening time of one of the next time windows
selected randomly. For our problem, this may lead to collecting again a suboptimal

167

score if the visiting time is changed with the opening time of a less preferred time
window. Both cases potentially lead to bad-quality solutions for the C-TOP-TDPLSF-
w because part of the time budget for the route duration is spent without a gain in
the collected score as counterpart. Hence, a properly-designed waiting strategy for the
C-TOP-TDPLSF-w is necessary. Moreover, apart from extending the TOPTW-TDS
by considering scores determined by a piecewise linear function, we also consider
capacitated vehicles. This makes impossible to use Yu et al. (2019) algorithm to solve
instances of C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w.

Kim et al. (2020) study a version of the TOPTW-TDS, in which only one vehicle
is considered and customers do not have time windows but can be visited at any time
during the time horizon. The time horizon is divided into periods with each period
having a different but constant score. Yu et al. (2022) study the TOP-TTP in which
the score collected by visiting a vertex decreases with the arrival time and increases
with the service time spent at a vertex. Because the score depends on two variables,
the score function of a vertex is non-linear. We differentiate from the TOP-TTP by
considering capacitated vehicles and constant service times. In our problem, each
customer’s score function is piecewise linear.

Scores depending on the arrival time are often considered in papers studying
problems with applications in catastrophe management, in which the probability of
finding survivors decreases with the length of the time interval between the disaster
and the rescuing teams arriving at destination (see, e.g., Erkut and Zhang, 1996).
Arrival-time dependent scores also characterize technician routing applications, in
which a larger score is given depending on the urgency of a task (see, e.g., Tang et al.,
2007; Ekici and Retharekar, 2013). In these works, neither time windows nor capacity
restrictions are considered. Peng et al. (2019) describe the scheduling problem for an
agile observation satellite (AEOS), that has to perform a subset of observation tasks
while the satellite is within a visible time window of an observation target. Within
this time window, the best image quality can be achieved when the AEOS is directly
above the target (that is, the Nadir Point). The larger the angle of observation, the
worse the image quality. This problem falls in the category of arrival time-dependent
scores with time windows and, due to the AEOS characteristics, travel times are
time-dependent. However, differently from most of the other papers in the literature,
the scores do not decrease monotonically over time, but increase up to the Nadir
Point and then decrease again. Therefore, similar to our problem, they consider a
piecewise linear function. However, the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w
consider multiple vehicles and static traveling times. Recently, Barrena et al. (2023)
investigate the selective traveling salesperson problem with time-dependent profits.
In this problem, the score function of a vertex can be time-dependent in two ways: It
can be monotonically increasing, also called cumulative, or it can completely depend
on the visiting time. In the latter case, it resembles a piecewise linear function that

168

can take on positive or negative values. Negative values correspond to a loss. The
authors distinguish between the cases in which a vertex can be visited only once,
or multiple times. The case with only one visit is a common characteristic to the
C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w. We extend the problem of Barrena
et al. (2023) by considering multiple routes that are constrained not only by the
duration, but also by the capacity of a vehicle.

The OP is a special case of the traveling salesperson problem (TSP) with profits
introduced by Feillet et al. (2005). A solution of this problem is a tour that visits a
subset of vertices exactly once and returns to the origin. When the objective function
aims to simultaneously maximizing the total revenue minus the travel costs, the TSP
with profits corresponds to the profitable tour problem introduced by Archetti et al.
(2009). However, more often, only one of the two objective function components is
considered in the objective function, and the other in the constraints. When the travel
cost is interpreted as travel times, and the objective is to only optimize the collected
profit while respecting a maximum tour duration constraint, the problem is equal
to the OP. When the objective is to minimize travel costs while collecting at least a
minimum amount of profit, the problem is referred to as the prize-collecting traveling
salesperson problem. An overview of the variants of the TSP with profits and the
VRP with profits and a comparison of exact, approximate, and heuristic algorithms
to solve them can be found in Archetti et al. (2014).

Finally, the OP is also related to the tourist trip design problem (TTDP, Gavalas
et al., 2014; Ruiz-Meza and Montoya-Torres, 2022). In the TTDP, the goal is to
optimize the tour planning of an individual tourist by considering multiple means of
transport to move between points of interest (e.g., museums and parks). Each mean
of transport is characterized by different travel times and the score of each point of
interest is partially based on the subjective importance for the tourist. A TTDP in
which there is only one mean of transport reduces to the OP.

5.3 Problem description and model formulation

In this section, we describe the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w, and we
provide their mathematical formulations. In Section 5.3.1, we present the C-TOP-
TDPLSF-nw in which waiting is only allowed at the depot. The C-TOP-TDPLSF-w,
i.e., a variant of the C-TOP-TDPLSF-nw in which waiting at the depot and at
customers is allowed, is described in Section 5.3.2. Finally, Section 5.3.3 presents
preprocessing techniques and valid inequalities that are applied to strengthen the
formulations.

169

5.3.1 C-TOP-TDPLSF with no waiting at customers (C-TOP-
TDPLSF-nw)

We formulate the C-TOP-TDPLSF-nw as a mixed integer program. The C-TOP-
TDPLSF-nw can be defined on a complete directed graph G = (V, A), where V is
the vertex set with |V | = N and A is the set of arcs. The vertex set is partitioned
into V = {0} ∪ VC ∪ {N + 1}, where 0 and N + 1 represent the depot (every route
starts at 0 and ends at N + 1), and VC is the set of customers. For convenience, we
represent the set of customers plus the origin depot by V0 = {0} ∪ VC and the set
of customers plus the arrival depot by VN+1 = VC ∪ {N + 1}. A nonnegative travel
time dij is associated to each arc (i, j) ∈ A and we assume that the travel times satisfy
the triangle inequality.

The set of homogeneous vehicles is represented by K. Each vehicle has capacity Qk

and is initially located at the depot. The vehicles are loaded at the depot at the
beginning of the tour and return to the depot empty at the end of the tour. Each
vehicle is subject to a maximum tour duration Dmax that is identical for all vehicles.
Each customer i ∈ VC has a nonnegative demand qi, a service time si, and a maximum
score pi. Split deliveries are not allowed, i.e., the demand can only be served in one
visit by one vehicle.

Given a time horizon of length T , every customer i ∈ VC has a given list Wi of
chronologically-ordered hard time windows that describe the time periods within T in
which customer i can be visited. The opening and the closing time of time window
w ∈ Wi are represented by aiw and biw. Each customer has a set of preferred time
windows Pi ⊆ Wi and less preferred time windows LPi ⊆ Wi, with Pi ∪ LPi = Wi and
Pi ∩ LPi = ∅. We additionally split the set of less preferred time windows LPi into
two sets LP +

i and LP−i , which indicate the sign of the slope. Two consecutive time
windows within Wi can only overlap at the edge (i.e., bi,w−1 = aiw) and we assume
there cannot be two consecutive time windows of the same type. For all periods
outside the preferred and less preferred time windows, no visit can take place.

The decision variables xk
ij, i ∈ V0, j ∈ VN+1 : i ≠ j, k ∈ K are binary and

equal to one if arc (i, j) is traversed by vehicle k, and zero otherwise. Variable
tk
i , i ∈ V, k ∈ K represents the visiting time of vehicle k at vertex i. Note that in the

C-TOP-TDPLSF-nw, the visiting time corresponds to the arrival time. Moreover,
variables yk

iw, w ∈ Wi, i ∈ VC , k ∈ K are binary and equal to one if customer i is
visited in time window w by vehicle k and zero otherwise.

The objective of C-TOP-TDPLSF-nw is to maximize the sum of the scores collected
at the visited customer. The score collected at each customer is defined by fi(tk

i)
and depends on the time at which a vehicle arrives at the customer. Specifically,
fi : T → R is the piecewise linear function for vertex i ∈ VC that assigns a score to

170

each point t in the time horizon T . Based on tk
i , the score function is defined as

fi(tk
i) =


βiwtk

i + αiw if ∃w ∈ Wi, aiw < tk
i < biw,

max{βi,w−1tk
i + αi,w−1, βiwtk

i + αiw} if ∃w ∈ Wi, w ̸= 1, bi,w−1 = tk
i = aiw,

0 otherwise.

The coefficients αiw and βiw represent the intercept and the slope of the score function,
respectively. If tk

i falls on the edge between two time windows (e.g., tk
i = bi,w−1 = aiw),

we assume that the highest score is collected. In preferred time windows w ∈ Pi, the
slope of the score function is equal to zero (βiw = 0) and the intercept is equal to pi

(αiw = pi), i.e., the maximum nonnegative score.
Figure 5.1 shows an example of the score function for a customer, which opens

6:00 a.m. in the morning and closes at 10:00 p.m., and is additionally closed in time
intervals (8, 10) and (16, 18). The maximum score is pi = 100. The customer has eight
time windows: three preferred time windows ([10, 12], [14, 16], and [20, 22]), and five
less preferred time windows ([6, 7], (13, 14), and [18, 20) with positive slope and (7, 8]
and (12, 13] with negative slope).

pi

t6 8 10 12 14 16 18 20 22

100

50

0

Figure 5.1: Exemplary score function for a customer with eight time windows.

In the C-TOP-TDPLSF-nw, waiting is only allowed at the depot, i.e., before a
tour starts. By departing at the beginning of the time horizon, if the arrival time of
the vehicle at the first customer i visited in a tour falls in one of its preferred time
windows Wi, then the arrival time σi at customer i corresponds to d0i, i.e., the travel
time between the depot and customer i. In this case, there is no waiting time at the
depot. On the opposite, waiting at the depot occurs if departing at time zero leads to
an arrival time at the first visited customer that is outside any of its time windows.
The waiting time is dependent on the next upcoming time window. For a point in
time t, where visiting customer i is not possible, the upcoming time window is defined
as

wupcoming,i(t) = argmin
w∈Wi

{aiw > t}.

171

The arrival time σi at the first customer i ∈ VC visited in a tour is defined as follows:

σi =


d0i if ∃w ∈ Wi, aiw > d0i > biw,

aiwupcoming,i(d0i) if wupcoming,i(d0i) ∈ Pi ∪ LP−i ,
aiwupcoming,i(d0i)+biwupcoming,i(d0i)

2 if wupcoming,i(d0i) ∈ LP +
i .

If the upcoming time window w = wupcoming,i(t) is a preferred or a less preferred
one with negative slope, i.e., w ∈ Pi ∪ LP−i , then the arrival time σi at customer i

corresponds to aiw, i.e., the opening time of time window w. If the next upcoming
time window w is a less preferred time window with positive slope, i.e., w ∈ LP +

i ,
then the arrival time σi at customer i corresponds to aiw+biw

2 , i.e., the middle of time
window w.

The mathematical model of C-TOP-TDPLSF-nw is formulated as a mixed-integer
program as follows:

max
∑
k∈K

∑
i∈VC

fi(tk
i) (5.1)

s.t.
∑

w∈Wi

yk
iw =

∑
j∈VN+1:j ̸=i

xk
ij i ∈ VC , k ∈ K (5.2)

∑
k∈K

∑
w∈Wi

yk
iw ≤ 1 i ∈ VC (5.3)

∑
j∈VN+1

xk
0j =

∑
j∈V0

xk
jN+1 = 1 k ∈ K (5.4)

∑
j∈VN+1:j ̸=i

xk
ij =

∑
j∈V0:j ̸=i

xk
ji i ∈ VC , k ∈ K (5.5)

Dmax − d0ix
k
0i − (djN+1 + sj)xk

jN+1 − (tk
j − tk

i) ≥ 0 i ∈ VC , j ∈ V0, k ∈ K (5.6)∑
i∈V

∑
j∈V :j ̸=i

qix
k
ij ≤ Qk k ∈ K (5.7)

tk
i ≥ σix

k
0i i ∈ VC , k ∈ K (5.8)

tk
i ≤ σi + M(1 − xk

0i) i ∈ VC , k ∈ K (5.9)

tk
i + si + dij ≤ tk

j + M(1 − xk
ij) i ∈ VC , j ∈ VN+1 : j ̸= i, k ∈ K (5.10)

tk
i + si + dij ≥ tk

j − M(1 − xk
ij) i ∈ VC , j ∈ VN+1 : j ̸= i, k ∈ K (5.11)

aiwyk
iw ≤ tk

i ≤ M(1 − yk
iw) + biw w ∈ Wi, i ∈ VC , k ∈ K (5.12)

tk
i ≤ M

∑
j∈VN+1:j ̸=i

xk
ij i ∈ VC , k ∈ K (5.13)

tk
N+1 ≤ T k ∈ K (5.14)

tk
i ≥ 0 i ∈ V, k ∈ K (5.15)

xk
ij ∈ {0, 1} i ∈ V0, j ∈ VN+1 : j ̸= i, k ∈ K (5.16)

yk
iw ∈ {0, 1} w ∈ Wi, i ∈ VC , k ∈ K (5.17)

The objective function of maximizing the collected score by all vehicles is defined in
(5.1). We denote the objective function of this formulation with ΘC−T OP−T DP LSF−nw.

172

The collected score at customer i depends only on the arrival time tk
i . Constraints (5.2)

link the variables xk
ij and yk

iw. If customer i is visited (i.e., ∑
j∈VN+1:j ̸=i

xk
ij = 1), then

the visit must fall in one of its time windows. Otherwise, if customer i is not visited
(i.e., ∑

j∈VN+1:j ̸=i
xk

ij = 0), no time window for that customer is chosen. Constraints (5.3)

guarantee that each customer can be visited at most once. Constraints (5.4) ensure
that there are as many tours as the number of available vehicles. This constraint
allows empty tours, i.e., tours including no vertices but the depot. Constraints (5.5)
ensure flow conservation, and constraints (5.6) restrict every tour duration to the
limit Dmax. Constraints (5.7) guarantee that the load never exceeds the capacity of the
vehicle. Constraints (5.8) and (5.9) define the arrival time at the first visited customer
in a tour and allow waiting at the depot. Constraints (5.10) and (5.11) determine the
arrival time at each customer. These constraints do not allow waiting at the customers
and they also serve as subtour elimination constraints. For these constraints, the large
number M is substituted with T + si + dij to tighten the formulation. Constraints
(5.12) are inspired by Tricoire et al. (2010), in which the time windows are not only
dependent on the vertex, but also on the period of the visit. These constraints link
variables yt

iw and tk
i . Constraints (5.13) force the arrival time at a non-visited customer

to be zero. For constraints (5.12) and (5.13), the large number M is substituted
with min{T − di0, bmax

i }, where bmax
i = max{biw : w ∈ Wi} to tighten the formulation.

Constraints (5.14) impose that the arrival time at the depot cannot be greater than
the time horizon length T . Finally, constraints (5.15)–(5.17) define the domain of the
variables.

5.3.2 C-TOP-TDPLSF with flexible waiting strategy (C-TOP-
TDPLSF-w)

In the C-TOP-TDPLSF-w, if the arrival time of a vehicle at a customer falls outside
one of its time windows, waiting is allowed. Note that, because of the shape of
customers’ score functions in less preferred time windows with positive slope, waiting
longer than the opening time of the upcoming time window may be beneficial.

To allow for a flexible waiting strategy at customers, we modify the model for-
mulation (5.1)–(5.17) by removing constraints (5.9) and (5.11), and by modifying
constraints (5.9) as follows:

tk
i ≥ d0ix

k
0i i ∈ VC , k ∈ K. (5.18)

In the C-TOP-TDPLSF-w formulation, the variable tk
i represents the visiting time

(instead of the arrival time) at customer i because it may include the time that the
vehicle k waits at customer i. We denote the objective function of this formulation
with ΘC−T OP−T DP LSF−w. The total score of the optimal solution of C-TOP-TDPLSF-

173

w is an upper bound on the score of the optimal solution of C-TOP-TDPLSF, i.e.,
ΘC−T OP−T DP LSF−nw ≤ ΘC−T OP−T DP LSF−w.

5.3.3 Preprocessing techniques and valid inequalities

To strengthen the formulations presented in Section 5.3.1 and 5.3.2, we apply prepro-
cessing steps to remove infeasible arcs as commonly done in the literature (Psaraftis,
1983; Savelsbergh, 1985; Schneider et al., 2014). An arc (i, j) can be removed from
the set of possible arcs, i.e., xk

ij can be fixed to zero, if one of the following conditions
holds:

i, j ∈ VC : qi + qj > Qk, (5.19)

i ∈ VC , j ∈ VC : d0i + si + dij + sj + dj,|N |+1 > Dmax, (5.20)

i ∈ V0, j ∈ VN+1 : amin
i + si + dij > bmax

j ,

where amin
i = min{aiw : w ∈ Wi} and bmax

j = max{bjw : w ∈ Wj}, (5.21)

i ∈ V0, j ∈ VC : amin
i + si + dij + sj + dj,|N |+1 > T, where amin

i = min{aiw : w ∈ Wi}. (5.22)

Inequality (5.19) and (5.20) are well-known preprocessing steps based on capacity
and tour duration violations. Inequalities (5.21) and (5.22) are based on time window
and time horizon violations, respectively.

Moreover, to strengthen the formulation, we add the following well-known valid
inequalities (Irnich and Villeneuve, 2006; Archetti et al., 2014; Lahyani et al., 2018;
Darvish et al., 2020):

xk
ij + xk

ji ≤ 1 i ∈ VC , j ∈ VC : j ̸= i, k ∈ K (5.23)

xk
ij + xk

jh + xk
hi ≤ 2 i ∈ VC , j ∈ VC : j ̸= i, h ∈ VC : h ̸= j ̸= i, k ∈ K (5.24)∑

j∈VN+1:j ̸=i

xk
ij ≤

i−1∑
l=1

∑
j∈VN+1:j ̸=l

xk−1
lj i ∈ VC , k ∈ K \ {0}. (5.25)

Inequalities (5.23) and (5.24) are the two-cycle and the three-cycle elimination
constraints, respectively. Inequalities (5.25) are symmetry breaking constraints.

In addition, we denote the list of the non-decreasingly-ordered demands by q =
[q1, q2, . . . , q|VC |]. The maximum number of demands with the lowest values that can
fit into the vehicle capacity is an upper bound on the number of customers that can
be served by each tour k ∈ K and it can be computed as follows:

qUB = max{h|
h∑

l=1
ql < Qk}.

Similarly, we denote the list of the increasingly-ordered service times by s =
[s1, s2, . . . , sl, . . . , s|VC |], with l denoting the position in this list. The maximum

174

number of the lowest service times that can fit into the tour duration is an upper
bound on the number of customers that can be served by each tour and it can be
computed as follows:

sUB = max{h|
h∑

l=1
sl < Dmax}.

The strongest upper bound among qUB and sUB on the number of customers that can
be served by each tour corresponds to the minimum of the two. Hence, the following
valid inequality is added:

∑
i∈V0

∑
j∈VN+1:j ̸=i

xk
ij ≤ min{qUB, sUB} k ∈ K. (5.26)

5.4 Iterated local search for the C-TOP-TDPLSF-
nw and the C-TOP-TDPLSF-w

In this section, we introduce two ILS variants: ILS-noWait for solving the C-TOP-
TDPLSF-nw, and ILS-cWait-fin for solving the C-TOP-TDPLSF-w. Because these
two ILS variants differ only in whether and how a waiting decision is contemplated,
they share a common structure. We refer to this structure as “ILS-algo”, and use the
terms “ILS-noWait”, and “ILS-cWait-fin” to specify when the two variants differ. Our
ILS implements the classical ILS framework originally proposed by Lourenço et al.
(2003). The pseudocode of ILS-algo is given in Algorithm 8. ILS-algo starts with a
feasible solution. Due to the nature of our problems, an empty solution Se in which
no customer is visited is feasible for the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w.
Similar to the approach chosen for the ILS for the TOPTW by Vansteenwegen et al.
(2009), our starting solution is set to Se. Then, the ILS is executed. In each ILS
iteration, a local search phase based on a variable neighborhood descent (VND) with
first improvement (Section 5.4.1) is applied. Whenever a better solution than the
incumbent best is found, the best-found solution is updated. The VND terminates
when the total score of the solution stops improving. Then, the perturbation phase
is applied to the best-found solution S∗ (Section 5.4.2) to generate a new solution
having different visited customers and routes. The ILS terminates after η iterations
without improvement.

175

Algorithm 8: Pseudocode of the ILS-algo algorithm
1 S∗ ← Se, S ← Se

2 while termination criterion not satisfied do
3 S ← VND(S)
4 if c(S) > c(S∗) then
5 S∗ ← S

6 c(S∗)← S

7 end
8 S ← Perturbation(S∗)
9 end

10 return S∗

5.4.1 Variable neighborhood descent

In the VND, we iteratively evaluate neighboring solutions that are obtained by
applying to a solution S a move uniquely defined by a neighborhood operator o from
the ordered set of neighborhood operators O (described in Section 5.4.1.1) and a
so-called generator arc (i, j). After the move is applied, the arc (i, j) is contained in
the resulting solution. Because the pivoting rule of our VND is first improvement, the
traversal order of the neighborhood operators and the generator arcs influences the
search trajectory. Algorithm 9 shows the pseudocode of the VND applied to solution S.
At the beginning of each ILS iteration, to increase the likelihood that different search
trajectories are explored, the elements in the ordered neighborhood operator set O are
randomly shuffled, resulting in the list Õ. Each generator arc is obtained by pairing
a customer i ∈ ṼC to a vertex j belonging to Li. Both lists ṼC and L̃i result from
sorting strategies applied to the elements of the customer and vertex sets (VC and Li),
respectively, and described in Section 5.4.1.2. Given a neighborhood operator and a
generator arc, a move is applied to a solution S and a new solution S ′ is obtained.
If the total collected score of the new solution S ′ is higher than the total collected
score of S, then the solution S ′ becomes the new incumbent solution, and the search
restarts from the first operator. If no improvement can be found, the VND terminates.

5.4.1.1 Neighborhood operators

The neighborhood operators contained in list O are defined using the generator arc
principle introduced in Section 5.4.1. They are depicted in Figure 5.2 and are:

• relocate-1 moves one customer to a different position, and it is defined in both
inter- and intra-route fashion.

• relocate-2 moves one customers and its predecessor to a different position, and
it is defined in both inter- and intra-route fashion.

• exchange swaps the positions of two customers, and it is defined in both intra-
and inter-route fashion.

176

Algorithm 9: Pseudocode of VND(S)
1 improvement = false
2 Õ = shuffle(O)
3 ṼC = sort(VC)/shuffle(VC)
4 while improvement do
5 improvement = false
6 for o ∈ Õ do
7 for i ∈ ṼC do
8 for j ∈ L̃i do
9 S ′ ← move(o, i, j, S)

10 if c(S ′) > c(S) then
11 improvement = true
12 S ← S ′

13 c(S)← c(S ′)
14 go to line 4
15 end
16 end
17 end
18 end
19 return S

During the VND, non-visited customers are stored in a dummy route. Consequently,
by applying any of the three aforementioned operators in an inter-route manner where
at least one of the routes involved is the dummy route, customers can be added
to or removed from the real routes. However, these operators are never applied in
intra-route fashion for the dummy route.

Before a move is evaluated, we check whether the resulting solution is feasible with
respect to vehicle capacity, tour duration, time horizon, and time windows. Regarding
the latter aspect, we distinguish the following two cases depending on the problem
and ILS variant.

For the ILS-noWait that solves the C-TOP-TDPLSF-nw (in which waiting is not
allowed), if the arrival time at any customer in the resulting routes does not fall in
any of its time windows, the move is considered infeasible.

For the ILS-cWait-fin that solves the C-TOP-TDPLSF-w, if the arrival time at
a customer is outside any of its time windows, waiting is allowed, but only for a
predefined period of time. The length of the waiting time depends on the type of the
upcoming time window. If the upcoming time window is a preferred one or a less
preferred one with a negative slope, i.e., w ∈ Wi ∪ LP−i , then the vehicle is allowed
to wait until its opening time. On the contrary, if the upcoming time window is less
preferred with a positive slope, i.e., w ∈ LP +

i , then the vehicle is allowed to wait until
the middle of the time window. Once the visiting time at that customer is updated, we
check the arrival time at the following customer. If the arrival time at this customer
falls outside one of its time windows, we repeat the same procedure described above
to determine the length of the waiting time and obtain the new visiting time. The
procedure stops if at least one of the following three cases occurs: (i) the updated
arrival times are feasible for all customers in that route, (ii) the limit on the tour
duration gets violated, and (iii) the limit on the time horizon gets violated. In case

177

(i), the move is feasible, while in case (ii) and (iii), the move is infeasible.
We have also tested the inclusion of the 2-Opt∗ neighborhood operator. This

operator is used in inter-route fashion, removes one arc from each of two tours, and
reconnects the first part of the first tour with the second part of the second tour and
vice versa. However, preliminary results have shown that the ILS-noWait and ILS-
cWait-fin without 2-Opt∗ dominate the ILS-noWait and ILS-cWait-fin with 2-Opt∗,
respectively, both regarding solution quality and runtime. Our preliminary results
support the findings of Souffriau et al. (2013) in which they conclude that 2-Opt
moves lead to increased runtime without improvements in solution quality because
the shift in the arrival time at the customers following those that define the generator
arc is likely to lead to infeasibility.

5.4.1.2 Generator arc set

To speed up the search, we consider only a small portion of the total number of
arcs in A to be used as generator arcs. First, we discard all arcs that are infeasible
according to our preprocessing techniques described in Section 5.3.3. Then, we apply
sparsification methods, i.e., strategies designed to limit the number of arcs (among
the feasible ones) considered as generator arcs. Sparsification methods have originally
been proposed by Toth and Vigo (2003), and applied to multiple works on routing
(e.g., Prins et al., 2007; Escobar et al., 2014; Schneider et al., 2017; Goeke, 2019;
Cavagnini et al., 2024).

We investigate the use of different sparsification methods. All of these methods
are customer-based, i.e., for each customer, only a subset of arcs is considered as
generator arcs. In fact, sparsifying on a customer base guarantees that a given number
of arcs incident to possibly isolated customers is always included.

In ILS-algo, each generator arc is obtained by pairing a vertex i from the list ṼC

with a vertex j from the list Li. List Li contains only ⌈κ · |VC |⌉ customers, with
0 < κ ≤ 1. In addition, Li always includes the depot. In the lists ṼC and Li, the
customers and vertices, respectively, appear sorted according to one of the following
different strategies:

• sorted ṼC-sorted Li: all customers in ṼC are sorted in decreasing order of
their score. For each customer i ∈ ṼC , list Li contains the depot, and the
closest ⌈κ · |VC |⌉ customers to i, all sorted according to increasing distance.

• sorted ṼC-random Li: all customers in ṼC are sorted in decreasing order of
their score. For each customer i ∈ ṼC , list Li contains, in random order, the
depot, and ⌈κ · |VC |⌉ random customers.

• random ṼC-sorted Li: all customers in ṼC are randomly sorted. For each
customer i ∈ ṼC , list Li contains the depot, and the closest ⌈κ · |VC |⌉ customers
to i, all sorted according to increasing distance.

178

Legend:

customer

customer or depot

inserted arc

removed arc

i+

i

i−

j

j−

j=

(c) exchange-1

i+

i

i−

j

j−

(a) relocate-1

i+

i

i−

i=

j

j−

(b) relocate-2

Figure 5.2: Neighborhood operators of ILS-algo. The generator arc is denoted by (i, j).
The predecessor and successor of i are denoted i− and i+, respectively.

• random ṼC-random Li all customers in ṼC are randomly sorted. For each
customer i ∈ ṼC , list Li contains, in random order, the depot, and ⌈κ · |VC |⌉
random customers.

5.4.2 Perturbation

The goal of the perturbation phase is to generate a new solution to reach new areas
of the search space. We apply to the overall best-found solution S∗ a given number of
random feasible moves defined by the operators presented in Section 5.4.1.1. Because
more moves are required to significantly perturb tours with many customers compared
to tours with few customers, the number of applied moves is dependent on the number
of customers in the instance. We set the number of applied moves to ⌈ρ · |VC |⌉, with
0 < ρ < 1.

5.4.3 Finalization phase

The finalization phase is applied after the ILS procedure terminates and is used
only in ILS-cWait-fin. The goal of this phase is to introduce more flexibility in the
determination of the waiting time at customers by adjusting their visiting times. In
particular, during the execution of the ILS, the µ best-found solutions are saved in a
solution pool. For each of these solutions, a linear program is solved by a commercial
optimization solver. This model corresponds to the one of Section 5.3.2 in which
the xk

ij variables are fixed to the values obtained by the solution under consideration,
and the only decision variables are tk

i . This model provides the optimal waiting times
for that solution.

179

5.5 Computational experiments

The goal of our computational study, performed on the instance sets described in
Section 5.5.1, is threefold. First, in Section 5.5.2, we assess the improvement in
the model formulations for the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w when
preprocessing techniques and valid inequalities are included. Second, after tuning the
parameters of ILS-algo in Section 5.5.3, we evaluate the performance of ILS-noWait
and ILS-cWait-fin for solving the C-TOP-TDPLSF-nw and the C-TOP-TDPLSF-w,
respectively, in Section 5.5.4. For ILS-cWait-fin, we also assess the impact of the
finalization phase, and of our predefined waiting strategies. Finally, in Section 5.5.5,
we derive managerial insights on, for example, the impact of the time window width,
the number of vehicles, and the value of allowing waiting.

All experiments are performed on an Intel(R) Xeon(R) computer with a CPU
E5-2430 v2 processor, at 2.50GHz with 64 GB RAM under Debian 12 (Bookworm)
Slim. ILS-noWait, ILS-cWait-fin, and the models were implemented as single-thread
code in C++ and compiled using gcc version 12.2. The models were solved with
Gurobi solver version 10.0.0 by setting a time limit of two hours (i.e., 7200 seconds).
In our preliminary experiments, a bug in the Gurobi presolve method was identified.
Hence, we deactivated it. All other Gurobi parameters are set to their default values.

5.5.1 Description of the instances

Because C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w are new problems, no bench-
mark instance sets are available in the literature. Consequently, we generate our
instance set by adapting the MC-TOP-MTW instances used in Souffriau et al. (2013)
because their problem shares multiple features with ours. Souffriau et al. (2013)
instances are available at https://www.mech.kuleuven.be/en/cib/op.

Section 5.5.1.1 describes how we adapted the Souffriau et al. (2013) instances for
our problems. Moreover, in Section 5.5.1.2, we generate a set of small-scale instances
that can be solved by means of the commercial optimization solver Gurobi and that
can be used to assess the solution quality of ILS-noWait and ILS-cWait-fin.

5.5.1.1 Large-scale instances adapted from Souffriau et al. (2013)

The instances of Souffriau et al. (2013) are based on the vehicle routing problem
with time windows (VRPTW) instances created by Solomon (1987) and Cordeau
et al. (1997). From Solomon’s instances, Souffriau et al. (2013) consider 29 instances
(c101–c109, r101–r112, and rc101–rc108), all having 100 customers. We recall that
the prefixes “c”, “r”, and “rc” represent instances in which customers are clustered,
randomly distributed, and randomly clustered, respectively. From Cordeau’s instances,
Souffriau et al. (2013) consider eight instances (pr01–pr05, and pr07–pr09), with a

180

https://www.mech.kuleuven.be/en/cib/op

number of customers between 48 and 240. In the rest of the paper, we refer to this
reduced set of Solomon and Cordeau instances as “base” instances. For each instance,
Souffriau et al. (2013) create one instance in which the number of tours (i.e., vehicles
in our instances) is equal to one, two, three, and four, respectively. In total, 148
instances for the MC-TOP-MTW are obtained by Souffriau et al. (2013).

In our instances, customers’ service times si are kept the same as in Souffriau
et al. (2013) instances, and the travel times dij are equal to the Euclidean distances,
rounded to two decimals. Souffriau et al. (2013) set the customers’ scores equal to
the customers’ demands of the VRPTW instances. For our instances, these scores
correspond to the customers maximum scores pi. Similar to Souffriau et al. (2013),
the time horizon T is composed of 1000 units for all Cordeau-based instances, and for
Solomon-based instances, it varies as follows: 1236 units for instances c101-c109, 230
for instances r101-112, and 240 for instances rc101-108.

Souffriau et al. (2013) study the MC-TOP-MTW motivated by an application in
the tourism industry. As such, they have a budget that corresponds to the financial
availability of a tourist to perform a tour that maximizes their collected score by
visiting tourist attractions. Moreover, each tourist attraction has an entrance fee. In
our instances, we consider the budget and the vertex entrance fees of Souffriau et al.
(2013) as the vehicle capacity Qk and the customer demands qi, i ∈ VC , respectively.
However, while in Souffriau et al. (2013) instances, the budget increases as the number
of tours increases, in our instances, the capacity of the vehicles always corresponds to
the budget of Souffriau et al. (2013) instances with one tour.

In the VRPTW instances, every vertex has one time window. Souffriau et al.
(2013) split this time window into four equal, consecutive, and non-overlapping time
windows. In our instances, Souffriau et al. (2013)’s time windows uniquely translate
into periods, each of which may or may not correspond to a time window in which a
visit is allowed (i.e., it is preferred or less preferred). For each of the 148 Souffriau et al.
(2013) instances, we create two instance sets called “4-period” and “8-period” instance
sets. In the 4-period instance set, the four time windows of Souffriau et al. (2013)
correspond to four periods. In the 8-period instance set, each of the four Souffriau et al.
(2013)’s time windows is split into two equally large periods, obtaining a total of eight
time periods. This allows us to analyze the impact of different time window lengths.
In the 4-period instance set, we assign every customer one preferred, and two less
preferred periods, leaving one period as closed. In the 8-period instance set, we assign
every customer two preferred, and four less preferred periods, leaving two periods as
closed. For both instance sets, we require that there must not be two consecutive
periods or time windows of the same type. Considering this requirement, there are
six feasible combinations in the 4-period instance set, and 24 feasible combinations
in the 8-period instance set. A preferred period is translated to a preferred time
window. If a less preferred period is between a preferred and closed period (closed and

181

preferred) this corresponds to a less preferred time window with negative (positive)
slope. Whenever there is a less preferred period between two preferred periods (two
closed periods), we split that period in two less preferred time windows, the first
one with a negative (positive) slope and the second one with a positive (negative)
slope. Every customer is randomly assigned to one of these combinations. Due to the
randomness of the assignment, a customer who may be open for visit at one point
in time in a 4-period instance may be closed at the same time in the corresponding
8-period instance. Thus, the objective value of an optimal solution for the 4-period
instance may be different to the one of the 8-period instance. In total, we obtain 296
instances: 148 in the 4-period instance set, and 148 in the 8-period instance set. We
call this instance set “large-scale instance set”.

5.5.1.2 Small-scale instances

To generate our small-scale instance set, we pseudo-randomly select eleven out of
the 37 “base” instances defined in Section 5.5.1.1. While selecting them, we ensured
that the resulting eleven instances are such that the same proportion between the
number of Cordeau et al. (1997) and Solomon (1987) instances is maintained as in
the “base” instance set. Moreover, we guarantee that also the proportion between
the number of Solomon (1987) instances in which customers are clustered, randomly
distributed, and randomly clustered is kept as in the “base” instance set. For each of
these eleven “base” instances, we have randomly drawn half the number of customers.
For each such instance, we have considered one, two, and three vehicles, and four and
eight periods, thus obtaining 66 instances.

Preliminary experiments have shown that Gurobi did not return a feasible solution
with an acceptable optimality gap even after decreasing the number of customers. In
fact, also the length of the time horizon has an influence on the complexity of the
problem: the longer the time horizon, the more customers can be visited. However,
reducing the length of the time horizon requires determining new time windows and
recomputing all intervals for the piecewise linear function. Instead of reducing the
length of the time horizon, we consider a more straightforward procedure that doubles
all entries of the distance matrix and the service times.

5.5.2 Effectiveness of the preprocessing techniques and valid
inequalities

In this section, we assess the effectiveness of the preprocessing techniques and valid
inequalities when added to the model formulations for the C-TOP-TDPLSF-nw and
C-TOP-TDPLSF-w. This allows us to determine the final configuration of the models
to use for the comparison with ILS-algo.

These experiments are run by solving with Gurobi all the small-scale instances

182

described in Section 5.5.1.2 by activating and deactivating the preprocessing techniques
and valid inequalities. Table 5.1 shows the results by problem averaged over the 66
test instances. The columns of the table contain in order: the problem, the indication
whether the preprocessing techniques and valid inequalities are activated, the average
percentage gap obtained by Gurobi to the upper bound ∆̄UB(%), the average runtime
in seconds t̄(s), and the number of instances for which a feasible (# feasible) and an
optimal (# optimal) solution is found within the time limit. The results show that, for
both the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w, by including the preprocessing
techniques, the average gaps to the upper bounds and the average runtimes improve.
However, the inclusion of the valid inequalities does not result in improvements: the
average gaps to the upper bounds and the average runtimes considerably increase.
Moreover, when the valid inequalities are active, a smaller number of instances is
solved to optimality. Consequently, for the final model configuration, we include only
the preprocessing techniques.

Problem Preprocessing techniques Valid inequalities ∆UB(%) t̄(s) #feasible #optimal

C-TOP-TDPLSF-nw

no no 39.83 3951.02 66/66 30/66
no yes 55.74 4684.39 66/66 30/66
yes no 38.55 3924.77 66/66 30/66
yes yes 52.74 4548.54 66/66 29/66

C-TOP-TDPLSF-w

no no 34.59 3935.40 66/66 31/66
no yes 47.44 4659.57 66/66 27/66
yes no 33.70 3905.72 66/66 31/66
yes yes 44.38 4458.64 66/66 28/66

Table 5.1: Comparison of the results (averaged over the 66 small-scale instances for each
problem type) obtained with Gurobi with and without activating the preprocessing
techniques and valid inequalities.

5.5.3 Parameter tuning

Because ILS-algo contains randomized elements, we performed ten runs of ILS-algo
for each instance. To determine a decent parameter setting while avoiding to overfit
the setting to the instances under consideration, we have conducted a parameter
tuning on a subset of the large-scale instances. We have considered 88 instances
obtained by selecting the same eleven “base” instances considered in the small-scale
instance set but with the complete number of customers (i.e., not halved). For each
“base” instance, we have considered one, two, three, and four vehicles, and four and
eight periods, thus, obtaining 88 instances. We solved these 88 instances both for
C-TOP-TDPLSF-nw and the C-TOP-TDPLSF-w.

For the ILS-noWait and the ILS-cWait-fin, the following parameters must be tuned:
the multiplier ρ for determining the number ⌈ρ|VC |⌉ of perturbation moves to apply, the
sorting strategy for the lists ṼC and Li, the multiplier κ for determining the size ⌈κ|VC |⌉
of the generator arc set, and the number η of iterations without improvement. In

183

addition, for the ILS-cWait-fin, also the number µ of best-found solutions stored in
the pool must be tuned. An appropriate value for the multiplier ρ (i.e., ρ = 0.1) has
been determined during the development of the algorithm. To avoid conducting full
factorial parameter tuning experiments, we carry out the experiments with the aim of
evaluating one parameter at a time, while keeping the other parameters constant. To
ensure consistency, when setting the values of parameters that are common to both
ILS-noWait and ILS-cWait-fin, we do not take into account the finalization phase for
ILS-cWait-fin (i.e., µ = 0).

We first set the parameters κ = 0.1 and η = 50, and we focus on assessing the most
appropriate sorting strategy for the lists ṼC and Li. Table 5.2 shows the results by ILS
variant averaged over the 88 test instances. The columns of the table contain in order:
the ILS variant, the value for the number µ of best-found solutions in the solution
pool, the number η of iterations without improvement, the value of the multiplier κ

for determining the generator arc set size, the sorting strategy for ṼC and Li, the
objective function values Θbest and Θavg of the best and of the average run of our
algorithm averaged over the 88 test instances, and the average runtime ta(s) in seconds.
The results show that, for ILS-noWait, the sorting strategy sorted ṼC-sorted Li leads
to the highest collected score both in the best and average run, while runtimes are
competitive to the ones obtained for the other sorting strategies. For ILS-cWait-fin,
the sorting strategy sorted ṼC-sorted Li returns the highest collected score in the
average run, while the sorting strategy random ṼC-sorted Li in the best run. However,
considering that the sorting strategy random ṼC-sorted Li has the highest runtimes,
we decide to fix the sorting strategy sorted ṼC-sorted Li for the following experiments.

ILS variant µ η κ ṼC Li Θbest Θavg
ta(s)

ILS-noWait

- 50 0.1 random random 463.50 428.57 0.29
- 50 0.1 sorted random 468.52 434.13 0.24
- 50 0.1 random sorted 484.34 449.73 0.39
- 50 0.1 sorted sorted 486.21 460.18 0.29

ILS-cWait-fin

0 50 0.1 random random 498.37 471.64 0.42
0 50 0.1 sorted random 499.69 473.54 0.33
0 50 0.1 random sorted 547.11 523.79 0.61
0 50 0.1 sorted sorted 546.61 530.68 0.49

Table 5.2: Results (averaged over the 88 test instances) of the parameter tuning
experiments for determining the sorting strategy for the sets ṼC and Li for the ILS-
noWait and ILS-cWait-fin.

Next, we fix the sorting strategy sorted ṼC-sorted Li, η = 50, and we run ILS-
noWait and ILS-cWait-fin for κ = {0.1, 0.3, 0.5, 1} to determine the most appropriate
value for the size of the generator arc set. Table 5.3 shows the results by problem
type averaged over the 88 test instances and it is organized as Table 5.2. The results
show that, for ILS-noWait, for increasing values of κ, the objective function values
improve both in the best and in the average run, while the runtime increases. For

184

ILS-cWait-fin, the objective function value stops improving at κ = 0.5. To keep the
runtimes limited while preserving solution quality, we fix κ = 0.5 for both problem
types in the following experiments.

ILS variant µ η κ ṼC Li Θbest Θavg
ta(s)

ILS-noWait

- 50 0.1 sorted sorted 486.21 460.18 0.29
- 50 0.3 sorted sorted 518.49 497.11 0.90
- 50 0.5 sorted sorted 525.33 505.26 1.45
- 50 1.0 sorted sorted 529.52 510.02 2.93

ILS-cWait-fin

0 50 0.1 sorted sorted 546.61 530.68 0.49
0 50 0.3 sorted sorted 567.00 556.68 1.21
0 50 0.5 sorted sorted 569.12 559.63 1.81
0 50 1.0 sorted sorted 569.13 558.57 3.47

Table 5.3: Results (averaged over the 88 test instances for each problem type) of the
parameter tuning experiments for determining the size of the generator arc set.

Then, we consider the sorting strategy sorted ṼC-sorted Li, κ = 0.5, and we run
ILS-noWait and ILS-cWait-fin for increasing values of η until the objective function
values stop to considerably improve. Table 5.4 shows the results by problem type
averaged over the 88 test instances and it is organized as Table 5.2. The results show
that, both for ILS-noWait and ILS-cWait-fin, by increasing the number η of iterations
without improvement, the objective function values improve both in the best and in
the average run. As expected, runtimes increase. However, by changing η from 1500
to 2000, the higher runtimes are not justified by the improvement in the objective
function value. Hence, we fix η = 1500.

ILS variant µ η κ ṼC Li Θbest Θavg
ta(s)

ILS-noWait

- 50 0.5 sorted sorted 525.33 505.26 1.45
- 100 0.5 sorted sorted 532.51 514.90 2.85
- 500 0.5 sorted sorted 544.24 532.20 13.87
- 1000 0.5 sorted sorted 548.52 536.68 27.19
- 1500 0.5 sorted sorted 551.17 540.07 40.75
- 2000 0.5 sorted sorted 551.98 541.75 52.33

ILS-cWait-fin

0 50 0.5 sorted sorted 569.12 559.63 1.81
0 100 0.5 sorted sorted 572.81 564.74 3.56
0 500 0.5 sorted sorted 579.39 573.40 18.12
0 1000 0.5 sorted sorted 581.62 576.37 34.31
0 1500 0.5 sorted sorted 582.23 577.63 53.43
0 2000 0.5 sorted sorted 582.71 578.44 69.26

Table 5.4: Results (averaged over the 88 test instances for each problem type) of the
parameter tuning experiments for determining the number of iterations η to consider.

Finally, we consider the sorting strategy sorted ṼC-sorted Li, κ = 0.5, η = 1500,
and we run ILS-cWait-fin for increasing values of µ until the objective function values
stop to considerably improve. Table 5.5 shows the results by problem type averaged
over the 88 test instances and it is organized as Table 5.2. The results show that
by increasing the number µ of best-found solutions stored in the solution pool, the
objective function values improve both in the best and in the average run. As expected,
runtimes increases. By changing µ from 200 to 300, the higher runtimes are not
justified by the improvement in the objective function value. Hence, we fix µ = 200.

185

ILS variant µ η κ ṼC Li Θbest Θavg
ta(s)

ILS-cWait-fin

0 1500 0.5 sorted sorted 582.23 577.63 53.43
1 1500 0.5 sorted sorted 590.62 584.66 52.91
5 1500 0.5 sorted sorted 592.96 586.99 55.48

10 1500 0.5 sorted sorted 594.12 587.95 56.84
50 1500 0.5 sorted sorted 595.43 589.45 74.10

100 1500 0.5 sorted sorted 595.88 589.84 105.71
200 1500 0.5 sorted sorted 596.06 590.08 197.47
300 1500 0.5 sorted sorted 596.11 590.11 313.14

Table 5.5: Results (averaged over the 88 test instances for each problem type) of the
parameter tuning experiments for determining the number of best-found solutions in
the solution pool.

The values of the parameters for ILS-algo are summarized in Table 5.6.

Component Parameter values

Multiplier for the number of perturbation moves ρ = 0.1
Sorting strategy for ṼC and Li sorted ṼC -sorted Li

Multiplier for the size of the generator arc set κ = 0.5
Number of iterations without improvement η = 1500
Number of best-found solutions in solution pool (ILS-cWait-fin) µ = 200

Table 5.6: ILS-algo parameter values.

5.5.4 ILS-algo performance assessment

To assess the performance of ILS-algo, we compare the solutions of ILS-algo to the best
solutions found by the commercial optimization solver Gurobi for the 66 small-scale
instances described in Section 5.5.1.2.

Table 5.7 shows the comparison of the average results obtained with Gurobi and
ILS-algo on the small-scale instances solved for C-TOP-TDPLSF-nw and C-TOP-
TDPLSF-w. The detailed results are reported in Tables 5.8 and 5.9. The columns of
Table 5.7 contain: the problem type, the instance type, the Gurobi statistics related to
the average percentage gap to the upper bound ∆̄UB(%) and the average runtimes t̄(s)
in seconds, and the statistics of the ILS-algo, i.e., the average percentage gap to
the best solution found by Gurobi of the solutions obtained in the best and average
run of ILS-algo (∆best

UB (%) and ∆avg

UB(%)), and the average runtimes (t̄a(s)) in seconds.
The last three columns report the percentage of instances for which, in the best run,
ILS-algo obtains a better, an equal, and a worse solution compared to the solution
found by Gurobi.

Regarding Gurobi performance, Table 5.7 suggests that C-TOP-TDPLSF-nw is
more difficult to solve for Gurobi than the C-TOP-TDPLSF-w as shown by the larger
optimality gaps. Both for C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w, Cordeau
instances are more difficult to solve for Gurobi as shown by larger optimality gaps
and longer runtimes compared to those for Solomon instances.

186

For C-TOP-TDPLSF-nw, Table 5.7 shows that, in the best run, ILS-noWait obtains
solutions of better quality than Gurobi for both the Cordeau and Solomon instances.
In the average run, the solutions are of comparable quality. However, ILS-noWait
terminates much faster than Gurobi. Moreover, compared to Gurobi, ILS-noWait
finds solutions of better or equal quality for approximately 94% of instances.

For C-TOP-TDPLSF-w, Table 5.7 shows that ILS-cWait-fin returns high-quality
solutions in fast runtimes both in the best and in the average run for the Cordeau
instances. However, for the Solomon instances, despite ILS-cWait-fin finds solutions
of better or equal quality than Gurobi for 39% of instances, there is potential for
improvement in reducing the gaps.

Gurobi ILS-algo Instances
Problem type Instance type ∆UB(%) t̄(s) ∆b

Θ(%) ∆a
Θ(%) t̄a(s) # better # equal # worse

C-TOP-TDPLSF-nw
Cordeau 67.07 5466.17 -1.97 1.64 5.89 6/12 5/12 1/12
Solomon 32.21 3582.24 -0.14 0.04 0.73 6/54 45/54 3/54

All 38.55 3924.77 -0.47 0.33 1.67 12/66 50/66 4/66

C-TOP-TDPLSF-w
Cordeau 54.05 5481.77 -0.86 -0.64 64.69 4/12 1/12 7/12
Solomon 29.18 3555.49 2.53 2.60 38.59 4/54 19/54 31/54

All 33.70 3905.72 1.91 2.01 43.34 8/66 20/66 38/66

Table 5.7: Comparison of results obtained with Gurobi and ILS-algo on the small-scale
C-TOP-TDPLSF and C-TOP-TDPLSF-cw instances.

5.5.4.1 Effectiveness of ILS-cWait-fin with µ = 0

We observed that ILS-cWait-fin does not find as many high-quality solutions for
C-TOP-TDPLSF-w as ILS-noWait does for the C-TOP-TDPLSF-nw. The difference
in results between Gurobi and ILS-cWait-fin for the C-TOP-TDPLSF-w may be due
to: (i) the poorer performance of ILS-cWait-fin compared to ILS-noWait due to the
introduction of the constrained waiting strategy, and (ii) the scarce effectiveness of
the finalization phase in deciding waiting times compared to Gurobi’s larger search
space. To investigate the behavior of ILS-cWait-fin, we run ILS-cWait-fin with µ = 0,
i.e., without finalization phase, and compare its results to those obtained by Gurobi
when solving a model for C-TOP-TDPLSF-w in which a constrained waiting strategy
(corresponding to the one implemented in the ILS-cWait-fin) is allowed. We refer to
this new problem “C-TOP-TDPLSF-cw”, and we provide its model in Appendix A.
This analysis also determines whether the longer runtime of ILS-cWait-fin compared
to ILS-noWait is due to the constrained waiting strategy or the finalization phase.
Finally, ILS-cWait-fin without finalization phase serves as an independent heuristic
that does not require the use of a commercial optimization solver.

Table 5.10 shows the comparison of the results obtained with Gurobi and ILS-
cWait-fin without finalization phase (i.e., with µ = 0) on the small-scale instances
solved for C-TOP-TDPLSF-cw. The first five columns of the table contain the instance
features. The following three columns contain the Gurobi statistics (objective function

187

Gurobi ILS-noWait

Instance id type |K| |N| # periods Θ ∆UB(%) t(s) ∆best
Θ (%) ∆avg

Θ (%) ta(s)

pr04 Cordeau 1 96 4 157.95 116.63 7200.00 -2.18 -2.15 2.85
pr04 Cordeau 1 96 8 156.67 137.92 7200.00 -8.00 -4.53 3.77
pr04 Cordeau 2 96 4 299.58 120.98 7200.01 -4.88 -3.67 14.21
pr04 Cordeau 2 96 8 291.27 136.04 7200.01 -0.92 0.42 8.74
pr04 Cordeau 3 96 4 420.16 100.00 7200.00 -6.73 -5.26 18.65
pr04 Cordeau 3 96 8 418.00 105.96 7200.02 -1.99 2.02 15.28
pr07 Cordeau 1 36 4 122.52 0.00 16.00 0.00 7.39 0.47
pr07 Cordeau 1 36 8 117.76 0.00 74.09 0.00 3.86 0.47
pr07 Cordeau 2 36 4 198.15 0.00 703.92 0.00 10.92 1.24
pr07 Cordeau 2 36 8 201.12 20.87 7200.00 1.08 3.92 1.11
pr07 Cordeau 3 36 4 261.92 21.40 7200.00 0.00 5.23 1.72
pr07 Cordeau 3 36 8 275.52 44.97 7200.01 0.00 1.56 2.22
c101 Solomon 1 50 4 120.00 0.00 1.45 0.00 0.00 0.34
c101 Solomon 1 50 8 81.60 0.00 5.17 0.00 0.00 0.32
c101 Solomon 2 50 4 196.33 0.00 18.97 0.00 0.14 0.94
c101 Solomon 2 50 8 155.59 0.00 70.08 0.00 0.08 0.64
c101 Solomon 3 50 4 271.32 0.00 125.32 0.00 0.17 1.28
c101 Solomon 3 50 8 228.93 0.00 382.38 0.00 0.00 0.91
c107 Solomon 1 50 4 120.28 0.00 16.10 0.00 0.00 0.53
c107 Solomon 1 50 8 120.95 0.00 18.75 0.00 0.00 0.41
c107 Solomon 2 50 4 227.05 0.01 372.49 0.00 0.67 1.19
c107 Solomon 2 50 8 217.26 0.00 1719.29 0.00 0.00 0.83
c107 Solomon 3 50 4 318.49 9.09 7200.01 1.12 3.09 1.36
c107 Solomon 3 50 8 309.00 21.22 7200.00 0.33 0.43 1.49
c109 Solomon 1 50 4 146.98 0.00 149.66 0.00 0.00 0.48
c109 Solomon 1 50 8 135.57 0.00 713.21 0.00 0.00 0.50
c109 Solomon 2 50 4 277.30 11.18 7200.01 0.00 0.00 0.93
c109 Solomon 2 50 8 260.57 31.60 7200.00 0.00 0.17 1.03
c109 Solomon 3 50 4 363.14 20.59 7200.01 -2.79 -2.79 1.23
c109 Solomon 3 50 8 350.96 24.92 7200.01 -1.12 -0.28 1.42
r102 Solomon 1 50 4 59.44 0.00 76.01 0.00 0.00 0.37
r102 Solomon 1 50 8 69.46 0.00 415.69 0.00 0.00 0.40
r102 Solomon 2 50 4 112.30 0.00 2702.69 0.00 0.00 0.56
r102 Solomon 2 50 8 122.46 18.41 7200.00 0.00 0.00 0.64
r102 Solomon 3 50 4 163.93 77.58 7200.00 0.00 0.00 0.82
r102 Solomon 3 50 8 173.57 89.89 7200.01 0.00 0.59 1.22
r103 Solomon 1 50 4 119.52 0.00 206.93 0.00 0.00 0.36
r103 Solomon 1 50 8 122.33 0.00 598.13 0.00 0.00 0.41
r103 Solomon 2 50 4 192.92 36.88 7200.00 0.00 0.00 0.58
r103 Solomon 2 50 8 191.46 47.60 7200.00 0.00 0.00 0.96
r103 Solomon 3 50 4 253.02 62.57 7200.00 0.00 0.00 0.73
r103 Solomon 3 50 8 251.08 61.13 7200.00 0.00 2.32 1.23
r110 Solomon 1 50 4 90.10 0.00 539.77 0.00 0.00 0.40
r110 Solomon 1 50 8 84.47 0.00 1792.01 0.00 0.00 0.39
r110 Solomon 2 50 4 179.13 55.53 7200.01 0.00 0.00 0.86
r110 Solomon 2 50 8 158.42 143.09 7200.00 0.36 0.36 0.66
r110 Solomon 3 50 4 250.37 99.93 7200.00 0.00 0.68 0.93
r110 Solomon 3 50 8 218.87 147.99 7200.01 -1.22 -0.65 1.61

rc101 Solomon 1 50 4 69.31 0.00 2.25 0.00 0.00 0.30
rc101 Solomon 1 50 8 62.76 0.00 3.86 0.00 0.00 0.25
rc101 Solomon 2 50 4 121.31 0.00 10.40 0.00 0.00 0.54
rc101 Solomon 2 50 8 113.33 0.00 17.55 0.00 0.00 0.46
rc101 Solomon 3 50 4 167.31 0.00 50.35 0.00 0.00 0.70
rc101 Solomon 3 50 8 155.70 0.00 61.37 0.00 0.00 0.67
rc107 Solomon 1 50 4 86.19 0.00 149.97 0.00 0.00 0.34
rc107 Solomon 1 50 8 80.99 0.00 795.68 0.00 0.00 0.33
rc107 Solomon 2 50 4 158.02 19.13 7200.00 0.00 0.00 0.62
rc107 Solomon 2 50 8 159.99 85.91 7200.01 0.00 0.00 0.60
rc107 Solomon 3 50 4 212.86 76.06 7200.01 -1.88 -1.05 1.01
rc107 Solomon 3 50 8 219.99 89.40 7200.03 -0.63 -0.56 0.89
rc108 Solomon 1 50 4 90.00 0.01 426.11 0.00 0.00 0.32
rc108 Solomon 1 50 8 87.53 0.00 1999.26 0.00 0.00 0.32
rc108 Solomon 2 50 4 156.38 80.58 7200.00 -1.54 -1.54 0.65
rc108 Solomon 2 50 8 163.57 154.36 7200.00 0.00 0.00 0.58
rc108 Solomon 3 50 4 222.29 131.01 7200.00 0.00 0.11 0.81
rc108 Solomon 3 50 8 227.55 143.69 7200.01 0.00 0.00 0.91

Avg 38.55 3924.77 -0.47 0.33 1.67

Table 5.8: Comparison of results obtained with Gurobi and ILS-noWait on the small-
scale C-TOP-TDPLSF-nw instances. Optimality has been proven for the underlined
solutions. ILS-noWait solutions that are equal or improve Gurobi solutions are
highlighted in boldface.

value Θ, the average percentage optimality gap ∆UB(%), and the runtime t(s)). The
last three columns show the statistics of ILS-cWait-fin without finalization phase
(percentage gap to Gurobi solution obtained in the best ∆best

Θ (%) and average ∆avg
Θ (%)

run of ILS-cWait-fin without finalization, and the average runtime t(s)). The results
show that ILS-cWait-fin without finalization phase achieves the same solution obtained
with Gurobi for 45.45%, and finds new best-known solutions for 50.00% of instances.

188

Gurobi ILS-cWait-fin

Instance id type |K| |N| # periods Θ ∆UB(%) t(s) ∆best
Θ (%) ∆avg

Θ (%) ta(s)

pr04 Cordeau 1 96 4 170.16 94.50 7200.00 -1.05 -1.05 76.49
pr04 Cordeau 1 96 8 165.86 140.15 7200.00 -8.10 -7.87 86.14
pr04 Cordeau 2 96 4 339.30 94.09 7200.00 1.65 1.80 105.77
pr04 Cordeau 2 96 8 320.02 116.54 7200.02 -5.64 -5.64 102.11
pr04 Cordeau 3 96 4 463.93 80.38 7200.02 -5.23 -4.19 127.64
pr04 Cordeau 3 96 8 499.08 72.51 7200.02 2.27 3.04 135.00
pr07 Cordeau 1 36 4 122.94 0.00 15.48 0.00 0.00 15.68
pr07 Cordeau 1 36 8 137.31 0.00 77.63 0.66 0.66 16.21
pr07 Cordeau 2 36 4 215.98 0.01 888.00 1.42 1.69 24.46
pr07 Cordeau 2 36 8 236.30 5.78 7200.01 1.06 1.06 23.95
pr07 Cordeau 3 36 4 287.40 19.54 7200.00 2.61 2.77 36.18
pr07 Cordeau 3 36 8 323.56 25.14 7200.00 0.02 0.02 26.64
c101 Solomon 1 50 4 130.02 0.00 0.57 0.03 0.03 27.15
c101 Solomon 1 50 8 130.08 0.00 1.11 15.40 15.41 27.52
c101 Solomon 2 50 4 250.02 0.00 2.18 0.00 0.00 48.11
c101 Solomon 2 50 8 239.95 0.00 9.26 8.29 8.29 36.38
c101 Solomon 3 50 4 350.08 0.00 15.78 3.37 4.14 54.79
c101 Solomon 3 50 8 340.76 0.00 46.49 9.01 9.01 42.77
c107 Solomon 1 50 4 138.71 0.00 10.26 0.00 0.00 27.96
c107 Solomon 1 50 8 131.53 0.00 31.35 1.57 1.57 28.50
c107 Solomon 2 50 4 259.61 0.00 267.81 3.69 3.69 40.45
c107 Solomon 2 50 8 261.57 0.00 1357.14 3.83 4.83 37.87
c107 Solomon 3 50 4 369.61 0.01 5713.40 4.66 5.50 44.35
c107 Solomon 3 50 8 368.23 13.25 7200.00 4.49 4.49 44.67
c109 Solomon 1 50 4 172.63 0.00 102.46 11.59 11.59 28.97
c109 Solomon 1 50 8 175.95 0.00 476.27 6.38 6.38 34.48
c109 Solomon 2 50 4 292.60 14.46 7200.01 3.41 3.41 44.22
c109 Solomon 2 50 8 296.01 27.58 7200.00 0.00 0.00 40.16
c109 Solomon 3 50 4 388.39 22.41 7200.01 -0.94 -0.94 42.60
c109 Solomon 3 50 8 405.86 17.45 7200.01 0.89 0.89 42.39
r102 Solomon 1 50 4 72.00 0.00 154.59 3.31 3.31 26.40
r102 Solomon 1 50 8 72.00 0.00 444.80 0.00 0.00 26.35
r102 Solomon 2 50 4 140.00 0.00 3691.15 6.70 6.70 39.20
r102 Solomon 2 50 8 141.46 34.39 7200.01 0.00 0.00 38.10
r102 Solomon 3 50 4 201.00 58.86 7200.00 3.27 3.27 43.84
r102 Solomon 3 50 8 200.47 72.44 7200.00 2.55 2.55 45.65
r103 Solomon 1 50 4 122.00 0.00 286.90 0.00 0.00 26.90
r103 Solomon 1 50 8 122.00 0.00 623.59 0.00 0.00 26.83
r103 Solomon 2 50 4 201.01 37.60 7200.00 0.00 0.00 38.73
r103 Solomon 2 50 8 193.24 48.60 7200.00 -0.14 -0.14 41.16
r103 Solomon 3 50 4 274.06 50.69 7200.01 0.00 0.00 46.21
r103 Solomon 3 50 8 259.34 60.72 7200.00 -0.07 0.90 46.11
r110 Solomon 1 50 4 94.00 0.00 573.18 4.15 4.18 37.46
r110 Solomon 1 50 8 90.68 0.00 1879.28 0.00 0.00 34.39
r110 Solomon 2 50 4 184.10 60.28 7200.00 2.30 2.30 44.65
r110 Solomon 2 50 8 175.32 112.39 7200.00 1.15 1.15 43.29
r110 Solomon 3 50 4 257.83 92.26 7200.00 2.23 2.41 52.35
r110 Solomon 3 50 8 247.32 123.05 7200.00 4.36 4.36 46.94

rc101 Solomon 1 50 4 90.00 0.00 1.17 0.00 0.00 26.89
rc101 Solomon 1 50 8 90.00 0.00 1.07 0.00 0.00 26.38
rc101 Solomon 2 50 4 160.01 0.00 7.49 0.00 0.00 37.45
rc101 Solomon 2 50 8 160.00 0.00 8.83 0.00 0.00 37.52
rc101 Solomon 3 50 4 219.35 0.00 18.67 0.00 0.00 43.69
rc101 Solomon 3 50 8 220.00 0.00 43.47 3.03 3.03 43.81
rc107 Solomon 1 50 4 93.31 0.00 155.08 0.00 0.00 27.35
rc107 Solomon 1 50 8 97.01 0.00 649.91 9.83 9.83 27.84
rc107 Solomon 2 50 4 171.71 16.94 7200.00 3.83 3.83 40.85
rc107 Solomon 2 50 8 167.01 83.61 7200.00 2.23 2.23 42.52
rc107 Solomon 3 50 4 232.01 68.91 7200.00 3.43 3.43 50.75
rc107 Solomon 3 50 8 240.01 76.51 7200.00 2.80 2.80 46.34
rc108 Solomon 1 50 4 90.00 0.00 495.07 0.00 0.00 27.11
rc108 Solomon 1 50 8 91.71 0.00 2127.83 4.06 4.06 27.63
rc108 Solomon 2 50 4 160.19 98.97 7200.00 0.00 0.00 43.68
rc108 Solomon 2 50 8 179.69 127.41 7200.00 2.62 2.62 41.55
rc108 Solomon 3 50 4 229.53 132.86 7200.00 0.00 0.00 49.20
rc108 Solomon 3 50 8 249.70 123.82 7200.00 -0.38 -0.38 45.62

Avg 33.70 3905.72 1.91 2.01 43.34

Table 5.9: Comparison of results obtained with Gurobi and ILS-cWait-fin on the small-
scale C-TOP-TDPLSF-w instances. Optimality has been proven for the underlined
solutions. ILS-cWait-fin solutions that are equal or improve Gurobi solutions are
highlighted in boldface.

Moreover, ILS-cWait-fin without finalization terminates much faster than Gurobi.
Hence, ILS-cWait-fin without finalization phase returns a good solution quality in fast
runtimes for C-TOP-TDPLSF-cw instances.

We make the following two observations regarding the performance of ILS-cWait-fin
for solving the C-TOP-TDPLSF-w. First, the difference in results between Gurobi and
ILS-cWait-fin for the C-TOP-TDPLSF-w (see Table 5.9) is due to the lack of flexibility

189

Gurobi ILS-cWait-fin µ = 0

Instance id type |K| |N| # periods Θ ∆UB(%) t(s) ∆best
Θ (%) ∆avg

Θ (%) ta(s)

pr04 Cordeau 1 96 4 153.01 188.24 7200.04 -11.52 -11.52 3.18
pr04 Cordeau 1 96 8 162.00 189.87 7200.01 -8.59 -8.59 4.93
pr04 Cordeau 2 96 4 317.93 127.01 7200.03 -4.17 -4.17 9.07
pr04 Cordeau 2 96 8 301.01 139.78 7200.04 -10.36 -10.36 11.74
pr04 Cordeau 3 96 4 471.74 82.48 7200.01 -2.74 -1.69 16.19
pr04 Cordeau 3 96 8 400.26 115.06 7200.01 -18.83 -17.10 24.43
pr07 Cordeau 1 36 4 122.52 0.00 86.47 0.00 0.00 0.44
pr07 Cordeau 1 36 8 121.62 0.00 1033.71 0.00 0.00 0.68
pr07 Cordeau 2 36 4 211.00 37.61 7200.00 0.00 0.42 1.06
pr07 Cordeau 2 36 8 210.27 48.93 7200.00 -0.65 -0.65 1.19
pr07 Cordeau 3 36 4 280.35 50.59 7200.02 1.78 1.90 2.02
pr07 Cordeau 3 36 8 291.53 44.21 7200.00 -1.19 -1.19 1.50
c101 Solomon 1 50 4 130.00 0.00 2.21 0.02 0.02 0.48
c101 Solomon 1 50 8 109.94 0.00 7.41 0.00 0.00 0.57
c101 Solomon 2 50 4 224.84 0.00 29.15 0.00 0.00 1.11
c101 Solomon 2 50 8 199.97 0.00 372.21 0.00 0.00 1.04
c101 Solomon 3 50 4 308.24 0.00 429.46 0.00 0.00 1.85
c101 Solomon 3 50 8 269.28 18.72 7200.06 0.00 0.00 1.56
c107 Solomon 1 50 4 125.30 0.00 48.48 0.00 0.00 0.57
c107 Solomon 1 50 8 128.91 0.00 89.47 0.00 0.00 0.74
c107 Solomon 2 50 4 233.53 6.74 7200.01 -0.75 -0.75 1.24
c107 Solomon 2 50 8 230.53 12.53 7200.00 -0.73 -0.73 1.53
c107 Solomon 3 50 4 329.42 35.93 7200.03 -0.31 -0.31 2.02
c107 Solomon 3 50 8 325.36 33.34 7200.00 -1.68 -1.68 2.11
c109 Solomon 1 50 4 146.98 0.00 3006.77 0.00 0.00 0.59
c109 Solomon 1 50 8 138.19 36.16 7200.01 0.00 0.00 0.76
c109 Solomon 2 50 4 277.30 33.35 7200.00 0.00 0.00 1.23
c109 Solomon 2 50 8 251.13 51.68 7200.00 -6.51 -6.51 1.38
c109 Solomon 3 50 4 360.85 32.22 7200.01 -3.44 -3.44 1.84
c109 Solomon 3 50 8 361.85 31.86 7200.00 -1.39 -1.39 1.99
r102 Solomon 1 50 4 67.00 0.00 882.70 0.00 0.00 0.53
r102 Solomon 1 50 8 69.46 0.00 1548.35 0.00 0.00 0.52
r102 Solomon 2 50 4 128.00 103.20 7200.00 0.00 0.00 1.07
r102 Solomon 2 50 8 129.96 105.20 7200.05 0.00 0.00 1.06
r102 Solomon 3 50 4 184.26 98.00 7200.00 -0.11 -0.11 1.50
r102 Solomon 3 50 8 181.50 101.60 7200.00 -1.29 -1.29 1.70
r103 Solomon 1 50 4 119.52 0.00 2010.53 0.00 0.00 0.49
r103 Solomon 1 50 8 122.00 20.54 7200.01 -0.27 -0.27 0.59
r103 Solomon 2 50 4 185.28 74.35 7200.01 -4.12 -4.12 0.86
r103 Solomon 2 50 8 191.13 77.56 7200.00 -0.17 -0.17 1.20
r103 Solomon 3 50 4 253.02 71.40 7200.00 -0.74 -0.74 1.21
r103 Solomon 3 50 8 246.13 76.19 7200.02 -2.01 -2.01 1.76
r110 Solomon 1 50 4 90.10 0.00 6976.73 0.00 0.03 0.71
r110 Solomon 1 50 8 84.47 161.57 7200.01 0.00 0.00 0.72
r110 Solomon 2 50 4 174.14 145.75 7200.03 -2.87 -2.87 1.28
r110 Solomon 2 50 8 157.85 191.60 7200.00 -0.46 -0.46 1.21
r110 Solomon 3 50 4 246.27 129.27 7200.01 -1.66 -1.45 1.97
r110 Solomon 3 50 8 213.94 165.36 7200.00 -3.26 -3.26 1.86

rc101 Solomon 1 50 4 90.00 0.00 4.02 0.00 0.00 0.36
rc101 Solomon 1 50 8 70.00 0.00 7.63 0.00 0.00 0.45
rc101 Solomon 2 50 4 160.01 0.00 13.68 0.00 0.00 0.72
rc101 Solomon 2 50 8 132.96 0.00 106.63 0.00 0.00 0.90
rc101 Solomon 3 50 4 214.69 0.00 113.48 0.00 0.00 1.11
rc101 Solomon 3 50 8 186.29 0.01 2900.28 2.68 2.68 1.51
rc107 Solomon 1 50 4 86.19 0.00 1148.27 0.00 0.00 0.46
rc107 Solomon 1 50 8 87.00 0.00 4751.50 0.00 0.00 0.46
rc107 Solomon 2 50 4 158.02 92.87 7200.01 0.00 0.00 0.94
rc107 Solomon 2 50 8 156.38 116.51 7200.00 -2.31 -2.31 0.99
rc107 Solomon 3 50 4 214.04 103.69 7200.01 -1.32 -1.32 1.76
rc107 Solomon 3 50 8 220.86 108.39 7200.00 -0.23 -0.23 1.78
rc108 Solomon 1 50 4 90.00 50.97 7200.00 0.00 0.00 0.42
rc108 Solomon 1 50 8 87.53 158.70 7200.01 0.00 0.00 0.51
rc108 Solomon 2 50 4 153.50 186.23 7200.00 -3.45 -3.45 0.89
rc108 Solomon 2 50 8 139.81 231.35 7200.00 -16.99 -16.99 1.02
rc108 Solomon 3 50 4 219.88 167.47 7200.00 -1.10 -1.10 1.32
rc108 Solomon 3 50 8 227.34 153.22 7200.00 -0.59 -0.59 1.60

Avg 63.75 5187.42 -1.69 -1.63 2.07

Table 5.10: Comparison of results obtained with Gurobi and ILS-cWait-fin without
finalization phase (i.e., µ = 0) on the small-scale C-TOP-TDPLSF-cw instances.
Optimality has been proven for the underlined solutions. ILS-cWait-fin without
finalization solutions that are equal or improve Gurobi solutions are highlighted in
boldface.

in determining more appropriate visiting times at customer locations. Second, because
the runtimes of ILS-cWait-fin without finalization phase are comparable to those of
ILS-noWait (see Table 5.8), the longer runtimes of ILS-cWait-fin reported in Table 5.9
are primarily due to the execution of the finalization phase.

190

5.5.4.2 Assessing the effectiveness of the finalization phase

To evaluate the effectiveness of the finalization phase, we solve C-TOP-TDPLSF-w
using both ILS-cWait-fin with µ = 0 and ILS-cWait-fin with the finalization phase.
Then, we compare these results to those obtained by Gurobi for the C-TOP-TDPLSF-
w.

Table 5.11 shows the results obtained with ILS-cWait-fin without finalization phase
(µ = 0) and with finalization phase when solving the small-scale C-TOP-TDPLSF-w
instances. The detailed results are presented in Table 5.18 in Appendix B. For each
algorithmic variant, Table 5.11 displays the average percentage gap obtained in the
best (∆best

Θ) and average (∆avg
Θ) run of the algorithm to the upper bound provided

by Gurobi, and the average runtime (ta(s)) in seconds. The results show that the
finalization phase is very effective: the average percentage gaps obtained in the best
and average run of the algorithm are decreased by approximately five percentage
points when ILS-cWait-fin includes the finalization phase. However, this comes at the
expense of higher runtimes.

ILS-cWait-fin µ = 0 ILS-cWait-fin

∆best
Θ (%) ∆avg

Θ (%) ta(s) ∆best
Θ (%) ∆avg

Θ (%) ta(s)

C-TOP-TDPLSF-w 6.81 6.86 2.07 1.91 2.01 43.34

Table 5.11: Comparison of the average results obtained with ILS-cWait-fin without
finalization phase (µ = 0) and with finalization phase when solving the small-scale
C-TOP-TDPLSF-w instances.

5.5.4.3 Assessing the effectiveness of our constrained waiting strategy

In the literature of TOPTW with allowed waiting, heuristics employ the waiting
strategy in which a vehicle delays its visit to a customer until the opening time of the
customer’s time window if it arrives early. This approach is based on the assumption
that waiting beyond the opening time does not increase the collected score and only
consumes route duration. However, in our problem, the scores within less preferred
time windows are determined by a piecewise linear function with slope different from
zero. Consequently, simply waiting for the next time window’s opening may yield a
lower score compared to visiting at a better point within that time window.

In this section, we evaluate the effectiveness of using a more sophisticated con-
strained waiting strategy (i.e., the one included in ILS-cWait-fin) rather than merely
waiting for the upcoming time window’s opening. We solve the C-TOP-TDPLSF-w
small-scale instances using both ILS-cWait-fin and a modified version called ILS-
cWait-fin-simple, in which waiting is only allowed until the opening of the upcoming
time window.

The detailed results of this comparison are presented in Table 5.19 in Appendix B,

191

while Table 5.12 shows the averaged results. For each method, Table 5.12 displays
the average percentage gap obtained in the best (∆best

Θ) and average (∆avg
Θ) run of the

algorithm to the best-found solution by Gurobi. The results show that considering a
more sophisticated waiting strategy is fundamental for obtaining high-quality solutions
for the C-TOP-TDPLSF-w. In fact, with ILS-cWait-fin, the average percentage gaps
obtained in the best and average run of the algorithm decrease by approximately
1.4 percentage points compared to those achieved with ILS-cWait-fin-simple. Even
though a more sophisticated waiting strategy may lead to longer route durations
because of longer waiting times and hence, to fewer visited customers, it allows to
collect higher scores. This suggests that algorithms from the extant literature will
likely fail to deliver high-quality solutions for the instances of C-TOP-TDPLSF-w due
to their reliance on a too simple waiting strategy.

ILS-cWait-fin-simple ILS-cWait-fin

∆best
Θ (%) ∆avg

Θ (%) ∆best
Θ (%) ∆avg

Θ (%)

C-TOP-TDPLSF-w 3.22 3.47 1.91 2.01

Table 5.12: Comparison of the average results obtained with ILS-cWait-fin in which
waiting is only allowed until the opening of the upcoming time window (ILS-cWait-fin-
simple) and ILS-algo (i.e., in which a more elaborated waiting strategy is implemented)
when solving the small-scale C-TOP-TDPLSF-w instances.

5.5.5 Managerial insights

In this section, we derive managerial insights on the impact of the time window
width, and the number of vehicles on the solutions for the C-TOP-TDPLSF-nw
(Section 5.5.5.1) and the C-TOP-TDPLSF-w (Section 5.5.5.2). Moreover, in Sec-
tion 5.5.5.3, we evaluate the value of waiting by comparing the solutions obtained
for the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w. For our analysis, we solve
the large-scale instances described in Section 5.5.1.1 by using ILS-noWait for the
C-TOP-TDPLSF-nw, and the ILS-cWait-fin for the C-TOP-TDPLSF-w. We con-
sider the solutions returned by the best and the average run of the ILS-noWait and
ILS-cWait-fin to compute the following metrics:

• Θbest: objective function value of the best run.

• Θavg: objective function value of the average run.

• ta(s): average runtime in seconds.

• cust visited(%): number of visited customers computed as a percentage of the
total number of customers.

192

• cust visited P(%): number of customers visited in a preferred time window
computed as a percentage of the number of visited customers.

• cust visited LP(%): number of customers visited in a less preferred time window
computed as a percentage of the number of visited customers.

• avg load(%): vehicle load when leaving the depot computed as an average over
the number of vehicles and expressed as a percentage of the vehicle capacity.

• avg duration(%): tour duration computed as an average over the number of
vehicles and expressed as a percentage of the maximum tour duration.

• waiting cust(%) (computed only for the C-TOP-TDPLSF-w): number of cus-
tomers at which vehicles wait computed as a percentage of the number of visited
customers.

• waiting time(%) (computed only for the C-TOP-TDPLSF-w): percentage of the
overall tour duration that is spent on waiting.

In the following sections, we report the value of these metrics averaged by instance
type. The detailed values of these metrics by instance for the C-TOP-TDPLSF-nw
and the C-TOP-TDPLSF-w are reported in Appendix C.

5.5.5.1 Managerial insights for the solutions of C-TOP-TDPLSF-nw

Table 5.13 shows the results of the above metrics for instances with four and eight
periods. We recall that the larger the number of periods is, the tighter the time
windows are. The results show that when time windows are tight, the average collected
score is lower than when time windows are wide due to a limitation of the flexibility
of the routing operations. The reduction of the collected score is due to a lower
percentage of visited customers, resulting in a higher inefficiency caused by lower
vehicle loads and shorter tour durations that leave part of the drivers’ working hours
unused. Despite of the fewer visited customers, a larger number of them is visited in
a preferred time window. Hence, tighter time windows allow for better adherence to
preferred time windows.

periods Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%)
4 568.60 558.00 56.57 25.11 64.23 35.77 79.97 88.39
8 567.58 553.12 61.07 24.75 66.81 33.19 79.29 88.26

Table 5.13: Metrics averaged by 4-period and 8-period instances for the C-TOP-
TDPLSF-nw solved with ILS-noWait.

Table 5.14 shows the results of the above metrics for instances with increasing
number of vehicles. The results show that the collected score increases when more
vehicles are available due to more customers being visited. Hence, the customer service

193

level also increases. Despite of visiting more customers, the number of those served
within a preferred time window decreases. More vehicles also correspond to a lower
vehicle load utilization and shorter tour duration.

|K| Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%)

1 265.03 260.29 9.03 10.70 66.10 33.90 80.50 88.99
2 487.48 477.46 37.64 20.49 65.48 34.52 79.68 88.58
3 677.27 662.67 78.15 29.74 65.57 34.43 78.62 88.06
4 842.57 821.84 110.47 38.77 64.93 35.07 79.72 87.68

Table 5.14: Metrics averaged by vehicle number for the C-TOP-TDPLSF-nw solved
with ILS-noWait.

For the C-TOP-TDPLSF-nw in which waiting is not allowed, our results suggest
the following:

• When deciding the width of the time windows to offer to their customers,
practitioners should consider the tradeoff between: (i) visiting fewer customers
and being more inefficient but with a better adherence to their preferred time
windows, or (ii) visiting more customers and being more efficient but with a
worse adherence to their preferred time windows.

• Enlarging the vehicle fleet increases the percentage of served customers by ap-
proximately ten percentage points when an additional vehicle is added, although
the increase tends to diminish as more vehicles are used.

• With larger vehicle fleets, the driver’s working hours that remain unused in-
crease by one percentage point. Practitioners should consider assigning drivers
alternative tasks or modifying working contracts.

• Offering wider time windows or increasing the number of vehicles leads to a
worse adherence to the preferred time windows which, in the long term, can
compromise the perceived service quality.

5.5.5.2 Managerial insights for the solutions of C-TOP-TDPLSF-w

Table 5.15 shows the results of the above metrics for instances with four and eight
periods when waiting is allowed. The results show that, when time windows are tight,
the average collected score is higher than when time windows are wide. The increase
in the collected score is not due to more visited customers but to a higher percentage
of customers served in their preferred time windows. With tighter time windows,
vehicle loads and tour durations also increase. Tighter time windows imply higher
waiting times and more customers at which drivers have to wait.

Table 5.16 shows the results of the above metrics for instances with increasing
number of vehicles when waiting is allowed. The results show that as the number of

194

periods Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%) waiting cust(%) waiting time(%)
4 603.41 598.11 208.82 26.45 60.88 39.12 83.14 89.87 6.57 5.10
8 613.89 606.99 220.17 26.40 61.70 38.30 83.80 90.08 8.01 5.24

Table 5.15: Metrics averaged by 4-period and 8-period instances for the C-TOP-
TDPLSF-w solved with ILS-cWait-fin.

available vehicles increases, the collected score also increases due to both more visited
customers and a higher percentage of them served in a preferred time window. With
more vehicles, each driver completes their tour faster. By increasing the number of
vehicles, the total waiting time first increases and then becomes stable. Moreover,
with a higher number of vehicles, waiting is needed at more customer locations.

|K| Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%) waiting cust(%) waiting time(%)
1 283.33 281.93 104.14 11.38 60.34 39.66 84.90 90.56 3.07 4.65
2 521.23 516.77 176.35 21.57 60.66 39.34 82.69 90.33 6.17 4.93
3 726.82 718.58 243.62 31.56 61.27 38.73 82.92 89.79 8.66 5.56
4 903.22 892.92 333.88 41.18 62.89 37.11 83.36 89.22 11.27 5.54

Table 5.16: Metrics averaged by vehicle number for the C-TOP-TDPLSF-w solved
with ILS-cWait-fin.

For the C-TOP-TDPLSF-w in which waiting is allowed, our results suggest the
following:

• Practitioners should offer tight time windows to their customers because: (i)
Higher scores can be achieved with less visited customers, (ii) A better service
level is provided to those visited customers, and (iii) A better utilization of
vehicle capacity and drivers’ working hours is achieved.

• For every additional vehicle, the percentage of served customers increases by
approximately ten percentage points, although the increase tends to diminish as
more vehicles are used.

• Offering tight time windows or increasing the number of vehicles leads to in-
creased waiting times. Practitioners should consider assigning drivers alternative
tasks during waiting periods or training drivers to handle waiting times produc-
tively. With more vehicles, drivers also complete their routes faster. Practitioners
should consider assigning drivers additional deliveries within the same work
shift.

5.5.5.3 The value of waiting

Table 5.17 shows the results of the metrics for the C-TOP-TDPLSF-nw solved by
ILS-noWait, and C-TOP-TDPLSF-w solved by ILS-cWait-fin. The results show that,
when waiting is allowed, the collected score increases due to more visited customers,
which imply increased capacity utilization and tour duration. Despite of more visited
customers, the number of those served in a preferred time window decreases.

195

Problem Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%)
C-TOP-TDPLSF-nw 568.09 555.56 58.82 24.93 65.52 34.48 79.63 88.33
C-TOP-TDPLSF-w 608.65 602.55 214.50 26.42 61.29 38.71 83.47 89.97

Table 5.17: Metrics averaged by problem type for the C-TOP-TDPLSF-nw solved
with ILS-noWait, and the C-TOP-TDPLSF-w solved with ILS-cWait-fin.

The comparison of the results obtained for C-TOP-TDPLSF-nw and C-TOP-
TDPLSF-w suggests the following:

• Allowing waiting at customer locations increases scores due to more visited
customers.

• Practitioners should be aware of a worse adherence to the preferred time windows
which, in the long term, can compromise the perceived service quality.

5.6 Conclusion

In this paper, we introduce the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w, two
practically relevant problems that represent customers’ preferences accurately. We
propose their mathematical formulations and effective preprocessing techniques. To
solve them in reasonable runtimes, we design two ILS variants, namely ILS-noWait
and ILS-cWait-fin, that differ in how the waiting decisions are evaluated in the local
search phase. Both algorithms show a good performance, even though ILS-cWait-fin
struggles to consistently determine good visiting times. Moreover, including in the
algorithm a more complex waiting strategy than the one usually implemented in the
literature is vital for obtaining C-TOP-TDPLSF-w high-quality solutions. Our results
show that wider time windows or a large number of vehicles lead to worse adherence to
the preferred time windows in urban contexts in which waiting is not allowed. When
waiting is allowed, the same effect is observed but when time windows are tight.

References

Y. Amarouche, R. N. Guibadj, E. Chaalal, and A. Moukrim (2020). “Effective neighbor-
hood search with optimal splitting and adaptive memory for the team orienteering
problem with time windows”. In: Computers & Operations Research 123. Article
ID 105039. doi: 10.1016/j.cor.2020.105039.

C. Archetti, N. Bianchessi, and M. G. Speranza (2013). “Optimal solutions for routing
problems with profits”. In: Discrete Applied Mathematics 161.4-5, pp. 547–557.
doi: 10.1016/j.dam.2011.12.021.

196

https://doi.org/10.1016/j.cor.2020.105039
https://doi.org/10.1016/j.dam.2011.12.021

C. Archetti, M. G. Speranza, and D. Vigo (2014). “Chapter 10: Vehicle Routing
Problems with Profits”. In: Vehicle Routing. Ed. by P. Toth and D. Vigo. Philadel-
phia, PA: Society for Industrial and Applied Mathematics, pp. 273–297. isbn:
978-1-61197-358-7. doi: 10.1137/1.9781611973594.ch10.

C. Archetti, D. Feillet, A. Hertz, and M. G. Speranza (2009). “The capacitated team
orienteering and profitable tour problems”. In: The Journal of the Operational
Research Society 60.6, pp. 831–842. doi: 10.1057/palgrave.jors.2602603.

C. Archetti, N. Bianchessi, S. Irnich, and M. G. Speranza (2014). “Formulations
for an inventory routing problem”. In: International Transactions in Operational
Research 21.3, pp. 353–374. doi: 10.1111/itor.12076.

E. Barrena, D. Canca, L. C. Coelho, and G. Laporte (2023). “Analysis of the selective
traveling salesman problem with time-dependent profits”. In: TOP 31, pp. 165–193.
doi: 10.1007/s11750-022-00632-6.

R. Cavagnini, M. Schneider, and A. Theiß (2024). “A granular iterated local search
for the asymmetric single truck and trailer routing problem with satellite depots
at DHL Group”. In: Networks 83.1, pp. 3–29. doi: 10.1002/net.22178.

I.-M. Chao, B. L. Golden, and E. A. Wasil (1996). “The team orienteering problem”. In:
European Journal of Operational Research 88.3, pp. 464–474. doi: 10.1016/0377-
2217(94)00289-4.

J.-F. Cordeau, M. Gendreau, and G. Laporte (1997). “A tabu search heuristic for
periodic and multi-depot vehicle routing problems”. In: Networks 30.2, pp. 105–119.
doi: 10.1002/(SICI)1097-0037(199709)30:2%3C105::AID-NET5%3E3.0.CO;2-
G.

M. Darvish, L. C. Coelho, and R. Jans (2020). Comparison of symmetry breaking and
input ordering techniques for routing problems. FSA-2020-008. CIRRELT.

A. Ekici and A. Retharekar (2013). “Multiple agents maximum collection problem
with time dependent rewards”. In: Computers & Industrial Engineering 64.4,
pp. 1009–1018. doi: 10.1016/j.cie.2013.01.010.

G. Erdoğan and G. Laporte (2013). “The orienteering problem with variable profits”.
In: Networks 61.2, pp. 104–116. doi: 10.1002/net.21496.

E. Erkut and J. Zhang (1996). “The maximum collection problem with time-dependent
rewards”. In: Naval Research Logistics 43.5, pp. 749–763. doi: 10.1002/(SICI)
1520-6750(199608)43:5%3C749::AID-NAV10%3E3.0.CO;2-J.

J. W. Escobar, R. Linfati, and P. Toth (2014). “A hybrid granular tabu search algorithm
for the multi-depot vehicle routing problem”. In: Journal of the Operational
Research Society 65.1, pp. 37–48. doi: 10.1057/jors.2013.102.

D. Feillet, P. Dejax, and M. Gendreau (2005). “Traveling Salesman Problems with
Profits”. In: Transportation Science 39.2, pp. 188–205. doi: 10.1287/trsc.1030.
0079.

197

https://doi.org/10.1137/1.9781611973594.ch10
https://doi.org/10.1057/palgrave.jors.2602603
https://doi.org/10.1111/itor.12076
https://doi.org/10.1007/s11750-022-00632-6
https://doi.org/10.1002/net.22178
https://doi.org/10.1016/0377-2217(94)00289-4
https://doi.org/10.1016/0377-2217(94)00289-4
https://doi.org/10.1002/(SICI)1097-0037(199709)30:2%3C105::AID-NET5%3E3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-0037(199709)30:2%3C105::AID-NET5%3E3.0.CO;2-G
https://doi.org/10.1016/j.cie.2013.01.010
https://doi.org/10.1002/net.21496
https://doi.org/10.1002/(SICI)1520-6750(199608)43:5%3C749::AID-NAV10%3E3.0.CO;2-J
https://doi.org/10.1002/(SICI)1520-6750(199608)43:5%3C749::AID-NAV10%3E3.0.CO;2-J
https://doi.org/10.1057/jors.2013.102
https://doi.org/10.1287/trsc.1030.0079
https://doi.org/10.1287/trsc.1030.0079

D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou (2014). “A survey on
algorithmic approaches for solving tourist trip design problems”. In: Journal of
Heuristics 20.3, pp. 291–328. doi: 10.1007/s10732-014-9242-5.

D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou (2019). “Efficient
Cluster-Based Heuristics for the Team Orienteering Problem with Time Win-
dows”. In: Asia-Pacific Journal of Operational Research 36.01. doi: 10.1142/
S0217595919500015.

D. Goeke (2019). “Granular tabu search for the pickup and delivery problem with
time windows and electric vehicles”. In: European Journal of Operational Research
278.3, pp. 821–836. doi: 10.1016/j.ejor.2019.05.010.

R. N. Guibadj and A. Moukrim (2014). “Memetic algorithm with an efficient split
procedure for the Team Orienteering Problem with Time Windows”. In: Artificial
Evolution. Ed. by P. Legrand, M.-M. Corsini, J.-K. Hao, N. Monmarché, E. Lutton,
and M. Schoenauer, pp. 183–194. doi: 10.1007/978-3-319-11683-9_15.

A. Gunawan, H. C. Lau, P. Vansteenwegen, and K. Lu (2017). “Well-tuned algo-
rithms for the team orienteering problem with time windows”. In: Journal of the
Operational Research Society 68, pp. 861–876.

A. Gunawan, K. M. Ng, G. Kendall, and J. Lai (2018). “An iterated local search
algorithm for the team orienteering problem with variable profits”. In: Engineering
Optimization 50.7, pp. 1148–1163. doi: 10.1080/0305215X.2017.1417398.

Q. Hu and A. Lim (2014). “An iterative three-component heuristic for the team
orienteering problem with time windows”. In: European Journal of Operational
Research 232.2, pp. 276–286. doi: 10.1016/j.ejor.2013.06.011.

S. Irnich and D. Villeneuve (2006). “The shortest-path problem with resource con-
straints and k-cycle elimination for k ≥ 3”. In: INFORMS Journal on Computing
18.3, pp. 391–406. doi: 10.1287/ijoc.1040.0117.

M. G. Kantor and M. B. Rosenwein (1992). “The Orienteering Problem with Time
Windows”. In: The Journal of the Operational Research Society 43.6, pp. 629–635.
doi: 10.2307/2583018.

M. Khodadadian, A. Divsalar, C. Verbeeck, A. Gunawan, and P. Vansteenwegen
(2022). “Time dependent orienteering problem with time windows and service time
dependent profits”. In: Computers & Operations Research 143. Article ID 105794.
doi: 10.1016/j.cor.2022.105794.

H. Kim, B.-I. Kim, and D.-j. Noh (2020). “The multi-profit orienteering problem”. In:
Computers & Industrial Engineering 149. Article ID 106808. doi: 10.1016/j.cie.
2020.106808.

N. Labadie, J. Melechovskỳ, and R. W. Calvo (2010). “An effective hybrid evolutionary
local search for orienteering and team orienteering problems with time windows”.
In: Parallel Problem Solving from Nature, PPSN XI: 11th International Conference,

198

https://doi.org/10.1007/s10732-014-9242-5
https://doi.org/10.1142/S0217595919500015
https://doi.org/10.1142/S0217595919500015
https://doi.org/10.1016/j.ejor.2019.05.010
https://doi.org/10.1007/978-3-319-11683-9_15
https://doi.org/10.1080/0305215X.2017.1417398
https://doi.org/10.1016/j.ejor.2013.06.011
https://doi.org/10.1287/ijoc.1040.0117
https://doi.org/10.2307/2583018
https://doi.org/10.1016/j.cor.2022.105794
https://doi.org/10.1016/j.cie.2020.106808
https://doi.org/10.1016/j.cie.2020.106808

Kraków, Poland, September 11-15, 2010, Proceedings, Part II 11. Springer, pp. 219–
228. doi: 10.1007/978-3-642-15871-1_23.

N. Labadie, J. Melechovskỳ, and R. Wolfler Calvo (2011). “Hybridized evolutionary
local search algorithm for the team orienteering problem with time windows”. In:
Journal of Heuristics 17, pp. 729–753. doi: 10.1007/s10732-010-9153-z.

N. Labadie, R. Mansini, J. Melechovskỳ, and R. W. Calvo (2012). “The team orien-
teering problem with time windows: An LP-based granular variable neighborhood
search”. In: European Journal of Operational Research 220.1, pp. 15–27. doi:
10.1016/j.ejor.2012.01.030.

R. Lahyani, L. C. Coelho, and J. Renaud (2018). “Alternative formulations and
improved bounds for the multi-depot fleet size and mix vehicle routing problem”.
In: OR Spectrum 40.1, pp. 125–157. doi: 10.1007/s00291-017-0494-y.

S.-W. Lin and F. Y. Vincent (2012). “A simulated annealing heuristic for the team
orienteering problem with time windows”. In: European Journal of Operational
Research 217.1, pp. 94–107. doi: 10.1016/j.ejor.2011.08.024.

H. R. Lourenço, O. C. Martin, and T. Stützle (2003). “Iterated Local Search”. In:
Handbook of Metaheuristics. Springer US, pp. 320–353. doi: 10.1007/0-306-
48056-5_11.

G. Peng, R. Dewil, C. Verbeeck, A. Gunawan, L. Xing, and P. Vansteenwegen (2019).
“Agile earth observation satellite scheduling: An orienteering problem with time-
dependent profits and travel times”. In: Computers & Operations Research 111,
pp. 84–98. doi: 10.1016/j.cor.2019.05.030.

C. Prins, C. Prodhon, A. Ruiz, P. Soriano, and R. Wolfler Calvo (2007). “Solving the
Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-
Granular Tabu Search Heuristic”. In: Transportation Science 41.4, pp. 470–483.
doi: 10.1287/trsc.1060.0187.

H. N. Psaraftis (1983). “k-Interchange procedures for local search in a precedence-
constrained routing problem”. In: European Journal of Operational Research 13.4,
pp. 391–402. doi: 10.1016/0377-2217(83)90099-1.

J. Ruiz-Meza and J. R. Montoya-Torres (2022). “A systematic literature review
for the tourist trip design problem: Extensions, solution techniques and future
research lines”. In: Operations Research Perspectives 9. Article ID 100228. doi:
10.1016/j.orp.2022.100228.

M. W. Savelsbergh (1985). “Local search in routing problems with time windows”. In:
Annals of Operations research 4, pp. 285–305. doi: 10.1007/BF02022044.

V. Schmid and J. F. Ehmke (2017). “An effective large neighborhood search for the
team orienteering problem with time windows”. In: Computational Logistics: 8th
International Conference, ICCL 2017, Southampton, UK, October 18-20, 2017,
Proceedings 8. Ed. by T. Bektaş, S. Coniglio, A. Martinez-Sykora, and S. Voß.
Springer, pp. 3–18. doi: 10.1007/978-3-319-68496-3_1.

199

https://doi.org/10.1007/978-3-642-15871-1_23
https://doi.org/10.1007/s10732-010-9153-z
https://doi.org/10.1016/j.ejor.2012.01.030
https://doi.org/10.1007/s00291-017-0494-y
https://doi.org/10.1016/j.ejor.2011.08.024
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1016/j.cor.2019.05.030
https://doi.org/10.1287/trsc.1060.0187
https://doi.org/10.1016/0377-2217(83)90099-1
https://doi.org/10.1016/j.orp.2022.100228
https://doi.org/10.1007/BF02022044
https://doi.org/10.1007/978-3-319-68496-3_1

M. Schneider, F. Schwahn, and D. Vigo (2017). “Designing granular solution methods
for routing problems with time windows”. In: European Journal of Operational
Research 263.2, pp. 493–509. doi: 10.1016/j.ejor.2017.04.059.

M. Schneider, A. Stenger, and D. Goeke (2014). “The electric vehicle-routing problem
with time windows and recharging stations”. In: Transportation science 48.4,
pp. 500–520. doi: 10.1287/trsc.2013.0490.

M. M. Solomon (1987). “Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints”. In: Operations Research 35.2, pp. 254–265. doi:
10.1287/opre.35.2.254.

W. Souffriau, P. Vansteenwegen, G. Vanden Berghe, and D. van Oudheusden (2013).
“The Multiconstraint Team Orienteering Problem with Multiple Time Windows”.
In: Transportation Science 47.1, pp. 53–63. doi: 10.1287/trsc.1110.0377.

H. Tang, E. Miller-Hooks, and R. Tomastik (2007). “Scheduling technicians for
planned maintenance of geographically distributed equipment”. In: Transportation
Research Part E: Logistics and Transportation Review 43.5, pp. 591–609. doi:
10.1016/j.tre.2006.03.004.

P. Toth and D. Vigo (2003). “The granular tabu search and its application to the
vehicle-routing problem”. In: INFORMS Journal on Computing 15.4, pp. 333–346.
doi: 10.1287/ijoc.15.4.333.24890.

F. Tricoire, M. Romauch, K. F. Doerner, and R. F. Hartl (2010). “Heuristics for the
multi-period orienteering problem with multiple time windows”. In: Computers &
Operations Research 37.2, pp. 351–367. doi: 10.1016/j.cor.2009.05.012.

P. Vansteenwegen, W. Souffriau, G. Vanden Berghe, and D. van Oudheusden (2009).
“Iterated local search for the team orienteering problem with time windows”. In:
Computers & Operations Research 36.12, pp. 3281–3290. doi: 10.1016/j.cor.
2009.03.008.

Q. Yu, Y. Adulyasak, L.-M. Rousseau, N. Zhu, and S. Ma (2022). “Team Orienteering
with Time-Varying Profit”. In: INFORMS Journal on Computing 34.1, pp. 262–280.
doi: 10.1287/ijoc.2020.1026.

V. F. Yu, P. Jewpanya, S.-W. Lin, and A. Redi (2019). “Team orienteering problem with
time windows and time-dependent scores”. In: Computers & Industrial Engineering
127, pp. 213–224. doi: 10.1016/j.cie.2018.11.044.

200

https://doi.org/10.1016/j.ejor.2017.04.059
https://doi.org/10.1287/trsc.2013.0490
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1287/trsc.1110.0377
https://doi.org/10.1016/j.tre.2006.03.004
https://doi.org/10.1287/ijoc.15.4.333.24890
https://doi.org/10.1016/j.cor.2009.05.012
https://doi.org/10.1016/j.cor.2009.03.008
https://doi.org/10.1016/j.cor.2009.03.008
https://doi.org/10.1287/ijoc.2020.1026
https://doi.org/10.1016/j.cie.2018.11.044

5.7 Appendix

A C-TOP-TDPLSF with constrained waiting strategy (C-
TOP-TDPLSF-cw)

In this section, we describe the C-TOP-TDPLSF-cw as a variant of the C-TOP-
TDPLSF, and we show how to modify Model (5.1)–(5.17) for this new problem.

In the C-TOP-TDPLSF-cw, if the arrival time at a customer falls outside customer’s
time windows, waiting at the customer is allowed but only for a predefined period
of time. The length of the waiting time depends on the type of the upcoming time
window. If the upcoming time window is a preferred one or a less preferred one with
a negative slope, i.e., w ∈ Wi ∪ LP−i , then the vehicle is allowed to wait until its
opening time. On the contrary, if the upcoming time window is less preferred with a
positive slope, i.e., w ∈ LP +

i , then the vehicle is allowed to wait until the middle of
the time window.

Model (5.1)–(5.17) is modified as follows. We introduce the continuous variables
zk

i ∈ R+ to represent the waiting time of vehicle k ∈ K at customer i ∈ VC . The
objective function is changed as follows due to the dependency of the score on the
start time of the visiting time defined as the arrival time plus the waiting time:

ΘC−T OP −T DP LSF −cw = max
∑

i∈VC

fi(tk
i + zk

i) (5.27)

Constraints (5.6), and (5.10)–(5.13) are changed, respectively, as follows:

Dmax − d0ix
k
0i − (djN+1 + sj)xk

jN+1 − (tk
j + zk

j − tk
i) ≥ 0 i ∈ VC , j ∈ V0, k ∈ K (5.28)

tk
i + zk

i + si + dij ≤ tk
j + M(1 − xk

ij) i ∈ VC , j ∈ VN+1 : j ̸= i, k ∈ K (5.29)

tk
i + zk

i + si + dij ≥ tk
j − M(1 − xk

ij) i ∈ VC , j ∈ VN+1 : j ̸= i, k ∈ K (5.30)

aiwyk
iw ≤ tk

i + zk
i ≤ M(1 − yk

iw) + biw w ∈ Wi, i ∈ VC , k ∈ K (5.31)

tk
i + zk

i ≤ M
∑

j∈VN+1

xk
ij i ∈ VN+1, k ∈ K. (5.32)

Similarly to the C-TOP-TDPLSF formulation, the M in constraints (5.29) and (5.30)
can be substituted by T + si + dij and the M in constraints (5.31) and (5.32) can
be replaced by min{T − di0, bmax

i }, where bmax
i = max{biw : w ∈ Wi}. Moreover, we

introduce the following decision variables:

• γk
i ∈ {0, 1}, i ∈ VC , k ∈ K: binary variable equal to one if the arrival time of

vehicle k at customer i falls in a less preferred or preferred time window, equal
to zero otherwise.

• ϕk
iw ∈ {0, 1}, i ∈ VC , w ∈ Wi, k ∈ K: binary variable equal to one if the arrival

time of vehicle k at customer i is smaller than the opening time of time window

201

w ∈ Wi, equal to zero otherwise.

• λk
iw ∈ {0, 1}, i ∈ VC , w ∈ Wi, k ∈ K: binary variable equal to one if the arrival

time of vehicle k at customer i is bigger than the opening time of the previous
time window w − 1, equal to zero otherwise.

Figure 5.3 shows an example of how the upcoming time window with respect to the
arrival time tk

i that falls in a closed time period is identified through the variables λk
iw

and ϕk
iw. In the figure, the horizontal axis represents a section of the time horizon

with five time periods and four time windows (w1, w2, w3, and w4). The arrival time tk
i

falls in a closed time period. Variable ϕk
iw is equal to one for time windows w3 and w4

because tk
i is smaller than the opening time of these two time windows (i.e., tk

i < a3

and tk
i < a4). For w1 and w2, ϕk

iw takes value zero. Variable λk
iw is equal to one for

time windows w1, w2, and w3 because tk
i is bigger than the opening time of their

previous time windows (i.e., tk
i > 0 for w1, tk

i > a1 for w2, and tk
i > a2 for w3). The

time window for which both variable ϕk
iw and λk

iw take value one is the upcoming time
window with respect to the arrival time tk

i .

time
a1

w1 a2
w2 a3

w3 a4
w4tk

i

ϕk
iw 0 0 1 1

λk
iw 1 1 1 0

Figure 5.3: Example of how the upcoming time window with respect to the arrival
time tk

i is identified through the variables λk
iw and ϕk

iw.

In addition, we add the following constraints:

fi(tk
i) ≤ Mγk

i i ∈ VC , k ∈ K (5.33)

zk
i ≤ M(1 − γk

i) i ∈ VC , k ∈ K (5.34)

tk
i ≤ aiw−1 + Mλk

iw w ∈ Pi ∪ LPi, i ∈ VC , k ∈ K (5.35)

tk
i ≥ aiw(1 − ϕk

iw) w ∈ Pi ∪ LP −
i , i ∈ VC , k ∈ K (5.36)

zk
i ≤ (aiw − tk

i) + M(1 − ϕk
iw) w ∈ Pi ∪ LP −

i , i ∈ VC , k ∈ K (5.37)

zk
i ≥ (aiw − tik) − M(2 − (1 − γk

i) − λk
iw) w ∈ Pi ∪ LP −

i , i ∈ VC , k ∈ K (5.38)

zk
i ≤

(aiw + biw

2 − tk
i

)
+ M(1 − ϕk

iw) w ∈ LP +
i , i ∈ VC , k ∈ K (5.39)

zk
i ≥

(aiw + biw

2 − tk
i

)
− M(2 − (1 − γk

i) − λk
iw) w ∈ LP +

i , i ∈ VC , k ∈ K (5.40)

zk
i ≥ 0 i ∈ VC , k ∈ K (5.41)

γk
i ∈ {0, 1} i ∈ VC , k ∈ K (5.42)

ϕk
iw ∈ {0, 1} w ∈ Wi, i ∈ VC , k ∈ K (5.43)

λk
iw ∈ {0, 1} w ∈ Wi, i ∈ VC , k ∈ K (5.44)

Constraints (5.33) guarantee that, if the arrival time falls in a less preferred or
preferred time window, i.e., the score is positive, γi is equal to one. Because the score

202

collected at a customer cannot exceed its full score pi, the M in constraints (5.33) can
be replaced by pi. Constraints (5.34) forces the waiting time to be zero if the arrival
time falls in a less preferred or preferred time window. To strengthen the formulation,
the M in constraints (5.34) is substituted by T − diN+1.

Constraints (5.35) guarantee that the binary variable λiw is equal to one if the
arrival time tk

i is bigger than the opening time of the previous time window w − 1.
Constraints (5.36)–(5.38) define the waiting time if the arrival time precedes the

opening time of a preferred time window w ∈ Pi or of a less preferred time window
with negative slope. Considered with constraints (5.35), constraints (5.36) identify
the upcoming time window, i.e., the time window of which opening time is considered
for determining the length of the waiting time. Because ϕiw is equal to one when the
arrival time precedes the opening time of a preferred time window w ∈ Pi or of a less
preferred time window with negative slope, and λiw is equal to one when the arrival
time is bigger than the opening time of the previous time window w − 1, the time
window w for which both variables are equal to one is the time window to consider.
In this case, the waiting time corresponds to the difference between the opening of
this time window and the arrival time.

In a similar way, constraints (5.39)–(5.40) define the waiting time if the arrival
time precedes the opening time of a less preferred time window with positive slope.
In this case, the waiting time corresponds to the difference between the middle point
of the time window and the arrival time.

The big-M in constraints (5.37) and (5.39) can be substituted with the tighter
value Dmax because the maximum waiting time cannot be greater than the maximum
tour duration. Finally, constraints (5.41)–(5.44) define the domain of the additional
variables.

The score of the optimal solution of C-TOP-TDPLSF-cw is an upper bound
on the total collected score of the optimal solution of C-TOP-TDPLSF-nw, i.e.,
ΘC−T OP−T DP LSF−nw ≤ ΘC−T OP−T DP LSF−cw, and a lower bound on the total collected
score of C-TOP-TDPLSF-w, i.e., ΘC−T OP−T DP LSF−cw ≤ ΘC−T OP−T DP LSF−w.

B Detailed results for small-scale instances

In this section, we report the results detailed by instance for the small-scale instances.
Table 5.18 shows the comparison of the results for the C-TOP-TDPLSF-w instances
solved by ILS-cWait-fin with µ = 0 and ILS-cWait-fin. Table 5.19 shows the comparison
of the results obtained with ILS-cWait-fin in which waiting is only allowed until the
opening of the upcoming time window (ILS-cWait-fin-simple) and ILS-algo.

203

Gurobi ILS-cWait-fin µ = 0 ILS-cWait-fin
Instance id type |K| |N | # periods Θ ∆UB(%) t(s) ∆best

Θ (%) ∆avg
Θ (%) ta(s) ∆best

Θ (%) ∆avg
Θ (%) ta(s)

pr04 Cordeau 1 96 4 170.16 94.50 7200.00 -0.28 -0.28 3.18 -1.05 -1.05 76.49
pr04 Cordeau 1 96 8 165.86 140.15 7200.00 -6.06 -6.06 4.93 -8.10 -7.87 86.14
pr04 Cordeau 2 96 4 339.30 94.09 7200.00 2.39 2.39 9.07 1.65 1.80 105.77
pr04 Cordeau 2 96 8 320.02 116.54 7200.02 -3.81 -3.81 11.74 -5.64 -5.64 102.11
pr04 Cordeau 3 96 4 463.93 80.38 7200.02 -4.47 -3.41 16.19 -5.23 -4.19 127.64
pr04 Cordeau 3 96 8 499.08 72.51 7200.02 4.70 6.08 24.43 2.27 3.04 135.00
pr07 Cordeau 1 36 4 122.94 0.00 15.48 0.34 0.34 0.44 0.00 0.00 15.68
pr07 Cordeau 1 36 8 137.31 0.00 77.63 11.43 11.43 0.68 0.66 0.66 16.21
pr07 Cordeau 2 36 4 215.98 0.01 888.00 2.31 2.71 1.06 1.42 1.69 24.46
pr07 Cordeau 2 36 8 236.30 5.78 7200.01 10.44 10.44 1.19 1.06 1.06 23.95
pr07 Cordeau 3 36 4 287.40 19.54 7200.00 4.19 4.31 2.02 2.61 2.77 36.18
pr07 Cordeau 3 36 8 323.56 25.14 7200.00 8.83 8.83 1.50 0.02 0.02 26.64
c101 Solomon 1 50 4 130.02 0.00 0.57 0.03 0.03 0.48 0.03 0.03 27.15
c101 Solomon 1 50 8 130.08 0.00 1.11 15.48 15.48 0.57 15.40 15.41 27.52
c101 Solomon 2 50 4 250.02 0.00 2.18 10.07 10.07 1.11 0.00 0.00 48.11
c101 Solomon 2 50 8 239.95 0.00 9.26 16.66 16.66 1.04 8.29 8.29 36.38
c101 Solomon 3 50 4 350.08 0.00 15.78 11.95 11.95 1.85 3.37 4.14 54.79
c101 Solomon 3 50 8 340.76 0.00 46.49 20.98 20.98 1.56 9.01 9.01 42.77
c107 Solomon 1 50 4 138.71 0.00 10.26 9.67 9.67 0.57 0.00 0.00 27.96
c107 Solomon 1 50 8 131.53 0.00 31.35 1.99 1.99 0.74 1.57 1.57 28.50
c107 Solomon 2 50 4 259.61 0.00 267.81 9.37 9.37 1.24 3.69 3.69 40.45
c107 Solomon 2 50 8 261.57 0.00 1357.14 11.22 11.22 1.53 3.83 4.83 37.87
c107 Solomon 3 50 4 369.61 0.01 5713.40 10.59 10.60 2.02 4.66 5.50 44.35
c107 Solomon 3 50 8 368.23 13.25 7200.00 10.16 10.16 2.11 4.49 4.49 44.67
c109 Solomon 1 50 4 172.63 0.00 102.46 14.86 14.86 0.59 11.59 11.59 28.97
c109 Solomon 1 50 8 175.95 0.00 476.27 21.46 21.46 0.76 6.38 6.38 34.48
c109 Solomon 2 50 4 292.60 14.46 7200.01 5.23 5.23 1.23 3.41 3.41 44.22
c109 Solomon 2 50 8 296.01 27.58 7200.00 9.64 9.64 1.38 0.00 0.00 40.16
c109 Solomon 3 50 4 388.39 22.41 7200.01 3.89 3.89 1.84 -0.94 -0.94 42.60
c109 Solomon 3 50 8 405.86 17.45 7200.01 9.60 9.60 1.99 0.89 0.89 42.39
r102 Solomon 1 50 4 72.00 0.00 154.59 6.94 6.94 0.53 3.31 3.31 26.40
r102 Solomon 1 50 8 72.00 0.00 444.80 3.53 3.53 0.52 0.00 0.00 26.35
r102 Solomon 2 50 4 140.00 0.00 3691.15 8.57 8.57 1.07 6.70 6.70 39.20
r102 Solomon 2 50 8 141.46 34.39 7200.01 8.13 8.13 1.06 0.00 0.00 38.10
r102 Solomon 3 50 4 201.00 58.86 7200.00 8.23 8.23 1.50 3.27 3.27 43.84
r102 Solomon 3 50 8 200.47 72.44 7200.00 8.29 8.29 1.70 2.55 2.55 45.65
r103 Solomon 1 50 4 122.00 0.00 286.90 2.03 2.03 0.49 0.00 0.00 26.90
r103 Solomon 1 50 8 122.00 0.00 623.59 -0.27 -0.27 0.59 -0.27 -0.27 26.83
r103 Solomon 2 50 4 201.01 37.60 7200.00 4.02 4.02 0.86 0.00 0.00 38.73
r103 Solomon 2 50 8 193.24 48.60 7200.00 0.92 0.92 1.20 -0.14 -0.14 41.16
r103 Solomon 3 50 4 274.06 50.69 7200.01 7.00 7.00 1.21 0.00 0.00 46.21
r103 Solomon 3 50 8 259.34 60.72 7200.00 3.19 3.19 1.76 -0.07 0.90 46.11
r110 Solomon 1 50 4 94.00 0.00 573.18 4.15 4.18 0.71 4.15 4.18 37.46
r110 Solomon 1 50 8 90.68 0.00 1879.28 6.85 6.85 0.72 0.00 0.00 34.39
r110 Solomon 2 50 4 184.10 60.28 7200.00 2.70 2.70 1.28 2.30 2.30 44.65
r110 Solomon 2 50 8 175.32 112.39 7200.00 9.55 9.55 1.21 1.15 1.15 43.29
r110 Solomon 3 50 4 257.83 92.26 7200.00 2.89 3.10 1.97 2.23 2.41 52.35
r110 Solomon 3 50 8 247.32 123.05 7200.00 10.67 10.67 1.86 4.36 4.36 46.94

rc101 Solomon 1 50 4 90.00 0.00 1.17 0.00 0.00 0.36 0.00 0.00 26.89
rc101 Solomon 1 50 8 90.00 0.00 1.07 22.22 22.22 0.45 0.00 0.00 26.38
rc101 Solomon 2 50 4 160.01 0.00 7.49 0.00 0.00 0.72 0.00 0.00 37.45
rc101 Solomon 2 50 8 160.00 0.00 8.83 16.90 16.90 0.90 0.00 0.00 37.52
rc101 Solomon 3 50 4 219.35 0.00 18.67 2.12 2.12 1.11 0.00 0.00 43.69
rc101 Solomon 3 50 8 220.00 0.00 43.47 17.60 17.60 1.51 3.03 3.03 43.81
rc107 Solomon 1 50 4 93.31 0.00 155.08 7.63 7.63 0.46 0.00 0.00 27.35
rc107 Solomon 1 50 8 97.01 0.00 649.91 10.32 10.32 0.46 9.83 9.83 27.84
rc107 Solomon 2 50 4 171.71 16.94 7200.00 7.97 7.97 0.94 3.83 3.83 40.85
rc107 Solomon 2 50 8 167.01 83.61 7200.00 4.20 4.20 0.99 2.23 2.23 42.52
rc107 Solomon 3 50 4 232.01 68.91 7200.00 6.53 6.53 1.76 3.43 3.43 50.75
rc107 Solomon 3 50 8 240.01 76.51 7200.00 7.77 7.77 1.78 2.80 2.80 46.34
rc108 Solomon 1 50 4 90.00 0.00 495.07 0.00 0.00 0.42 0.00 0.00 27.11
rc108 Solomon 1 50 8 91.71 0.00 2127.83 4.56 4.56 0.51 4.06 4.06 27.63
rc108 Solomon 2 50 4 160.19 98.97 7200.00 0.87 0.87 0.89 0.00 0.00 43.68
rc108 Solomon 2 50 8 179.69 127.41 7200.00 8.97 8.97 1.02 2.62 2.62 41.55
rc108 Solomon 3 50 4 229.53 132.86 7200.00 3.15 3.15 1.32 0.00 0.00 49.20
rc108 Solomon 3 50 8 249.70 123.82 7200.00 8.41 8.41 1.60 -0.38 -0.38 45.62

Avg 33.70 3905.72 6.81 6.86 2.07 1.91 2.01 43.34

Table 5.18: Comparison of results obtained with Gurobi and ILS-cWait-fin without
finalization phase (i.e. µ = 0) on the small-scale C-TOP-TDPLSF-w instances.

204

Gurobi ILS-cWait-fin-simple ILS-cWait-fin

Instance id type |K| |N| # periods Θ ∆best
Θ (%) ∆avg

Θ (%) ∆best
Θ (%) ∆avg

Θ (%)

pr04 Cordeau 1 96 4 170.16 -0.68 -0.68 -1.05 -1.05
pr04 Cordeau 1 96 8 165.86 -12.18 -9.46 -8.10 -7.87
pr04 Cordeau 2 96 4 339.30 0.57 1.63 1.65 1.80
pr04 Cordeau 2 96 8 320.02 -4.94 -4.69 -5.64 -5.64
pr04 Cordeau 3 96 4 463.93 -3.40 -3.34 -5.23 -4.19
pr04 Cordeau 3 96 8 499.08 2.23 3.21 2.27 3.04
pr07 Cordeau 1 36 4 122.94 0.00 0.00 0.00 0.00
pr07 Cordeau 1 36 8 137.31 6.25 6.25 0.66 0.66
pr07 Cordeau 2 36 4 215.98 1.42 1.60 1.42 1.69
pr07 Cordeau 2 36 8 236.30 6.56 7.86 1.06 1.06
pr07 Cordeau 3 36 4 287.40 2.76 2.76 2.61 2.77
pr07 Cordeau 3 36 8 323.56 4.80 6.74 0.02 0.02
c101 Solomon 1 50 4 130.02 0.02 0.02 0.03 0.03
c101 Solomon 1 50 8 130.08 15.48 15.48 15.40 15.41
c101 Solomon 2 50 4 250.02 8.02 8.02 0.00 0.00
c101 Solomon 2 50 8 239.95 12.19 12.19 8.29 8.29
c101 Solomon 3 50 4 350.08 10.07 10.07 3.37 4.14
c101 Solomon 3 50 8 340.76 11.75 11.75 9.01 9.01
c107 Solomon 1 50 4 138.71 4.56 4.56 0.00 0.00
c107 Solomon 1 50 8 131.53 2.39 2.39 1.57 1.57
c107 Solomon 2 50 4 259.61 3.69 3.69 3.69 3.69
c107 Solomon 2 50 8 261.57 5.25 5.25 3.83 4.83
c107 Solomon 3 50 4 369.61 3.31 4.45 4.66 5.50
c107 Solomon 3 50 8 368.23 5.76 6.20 4.49 4.49
c109 Solomon 1 50 4 172.63 11.59 11.59 11.59 11.59
c109 Solomon 1 50 8 175.95 15.77 15.77 6.38 6.38
c109 Solomon 2 50 4 292.60 3.41 3.41 3.41 3.41
c109 Solomon 2 50 8 296.01 7.86 8.63 0.00 0.00
c109 Solomon 3 50 4 388.39 -0.94 -0.94 -0.94 -0.94
c109 Solomon 3 50 8 405.86 5.70 7.88 0.89 0.89
r102 Solomon 1 50 4 72.00 3.31 3.31 3.31 3.31
r102 Solomon 1 50 8 72.00 3.53 3.53 0.00 0.00
r102 Solomon 2 50 4 140.00 6.70 6.70 6.70 6.70
r102 Solomon 2 50 8 141.46 9.08 9.08 0.00 0.00
r102 Solomon 3 50 4 201.00 3.27 3.27 3.27 3.27
r102 Solomon 3 50 8 200.47 6.91 7.39 2.55 2.55
r103 Solomon 1 50 4 122.00 0.00 0.00 0.00 0.00
r103 Solomon 1 50 8 122.00 -0.27 -0.27 -0.27 -0.27
r103 Solomon 2 50 4 201.01 0.00 0.00 0.00 0.00
r103 Solomon 2 50 8 193.24 -0.14 -0.14 -0.14 -0.14
r103 Solomon 3 50 4 274.06 4.73 4.73 0.00 0.00
r103 Solomon 3 50 8 259.34 -0.07 2.80 -0.07 0.90
r110 Solomon 1 50 4 94.00 4.15 4.21 4.15 4.18
r110 Solomon 1 50 8 90.68 0.00 0.00 0.00 0.00
r110 Solomon 2 50 4 184.10 2.30 2.30 2.30 2.30
r110 Solomon 2 50 8 175.32 1.15 1.15 1.15 1.15
r110 Solomon 3 50 4 257.83 2.23 2.23 2.23 2.41
r110 Solomon 3 50 8 247.32 4.36 4.36 4.36 4.36

rc101 Solomon 1 50 4 90.00 0.00 0.00 0.00 0.00
rc101 Solomon 1 50 8 90.00 0.00 0.00 0.00 0.00
rc101 Solomon 2 50 4 160.01 0.00 0.00 0.00 0.00
rc101 Solomon 2 50 8 160.00 0.00 0.00 0.00 0.00
rc101 Solomon 3 50 4 219.35 0.00 0.00 0.00 0.00
rc101 Solomon 3 50 8 220.00 0.00 0.00 3.03 3.03
rc107 Solomon 1 50 4 93.31 0.00 0.00 0.00 0.00
rc107 Solomon 1 50 8 97.01 6.85 6.85 9.83 9.83
rc107 Solomon 2 50 4 171.71 3.83 3.83 3.83 3.83
rc107 Solomon 2 50 8 167.01 2.23 2.23 2.23 2.23
rc107 Solomon 3 50 4 232.01 3.43 3.43 3.43 3.43
rc107 Solomon 3 50 8 240.01 5.15 5.47 2.80 2.80
rc108 Solomon 1 50 4 90.00 0.00 0.00 0.00 0.00
rc108 Solomon 1 50 8 91.71 4.06 4.06 4.06 4.06
rc108 Solomon 2 50 4 160.19 0.00 0.00 0.00 0.00
rc108 Solomon 2 50 8 179.69 2.62 2.62 2.62 2.62
rc108 Solomon 3 50 4 229.53 0.00 0.00 0.00 0.00
rc108 Solomon 3 50 8 249.70 3.84 3.84 -0.38 -0.38

Avg 3.22 3.47 1.91 2.01

Table 5.19: Comparison of the results obtained with ILS-cWait-fin in which waiting is
only allowed until the opening of the upcoming time window (ILS-cWait-fin-simple)
and ILS-algo (i.e., in which a more elaborated waiting strategy is implemented) when
solving the small-scale C-TOP-TDPLSF-w instances.

205

C Detailed results for the large-scale instances

In this section, we report the detailed results by instance for the large-scale instances. Table 5.20 and Table 5.21 show the results obtained
by ILS-noWait for the Solomon and Cordeau C-TOP-TDPLSF-nw instances, respectively. Table 5.22 and Table 5.23 show the results
obtained by ILS-cWait-fin for the Solomon and Cordeau C-TOP-TDPLSF-w instances.

Instance id type |K| |N| periods Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%)

c101 Solomon 1 100 4 229.48 221.79 2.70 9.00 22.22 77.78 87.05 89.17
c101 Solomon 1 100 8 241.20 232.52 3.79 10.00 50.00 50.00 93.42 92.19
c101 Solomon 2 100 4 422.88 414.26 11.51 20.00 40.00 60.00 91.61 94.32
c101 Solomon 2 100 8 444.05 438.74 11.92 19.00 68.42 31.58 89.17 95.79
c101 Solomon 3 100 4 595.82 585.47 18.56 26.00 38.46 61.54 90.87 86.54
c101 Solomon 3 100 8 612.50 608.21 19.18 28.00 60.71 39.29 94.27 93.64
c101 Solomon 4 100 4 776.64 754.54 23.58 36.00 38.89 61.11 97.93 88.16
c101 Solomon 4 100 8 793.00 766.55 35.77 37.00 56.76 43.24 106.32 89.57
c102 Solomon 1 100 4 277.08 277.01 5.20 10.00 70.00 30.00 97.50 98.57
c102 Solomon 1 100 8 314.50 308.89 7.15 11.00 81.82 18.18 96.75 99.25
c102 Solomon 2 100 4 504.45 497.30 12.87 21.00 47.62 52.38 88.12 98.92
c102 Solomon 2 100 8 564.35 559.34 19.69 21.00 80.95 19.05 96.50 99.77
c102 Solomon 3 100 4 718.78 698.49 42.33 29.00 51.72 48.28 94.00 93.14
c102 Solomon 3 100 8 778.44 766.20 45.23 30.00 83.33 16.67 94.50 99.12
c102 Solomon 4 100 4 872.28 864.06 91.73 40.00 52.50 47.50 94.94 95.89
c102 Solomon 4 100 8 963.48 934.41 55.18 40.00 75.00 25.00 93.75 99.09
c103 Solomon 1 100 4 361.01 361.01 4.90 10.00 50.00 50.00 73.61 95.44
c103 Solomon 1 100 8 363.40 363.40 5.40 10.00 50.00 50.00 82.03 99.13
c103 Solomon 2 100 4 655.37 651.08 19.52 21.00 57.14 42.86 85.77 97.67
c103 Solomon 2 100 8 646.67 645.57 16.80 20.00 60.00 40.00 87.20 99.32
c103 Solomon 3 100 4 894.41 882.78 33.96 32.00 65.62 34.38 89.30 99.76
c103 Solomon 3 100 8 880.45 859.63 48.13 31.00 67.74 32.26 90.51 97.56
c103 Solomon 4 100 4 1082.54 1070.24 69.15 41.00 63.41 36.59 86.09 97.88
c103 Solomon 4 100 8 1053.26 1045.07 82.16 39.00 76.92 23.08 84.70 97.41
c104 Solomon 1 100 4 375.98 375.98 4.56 10.00 80.00 20.00 63.55 99.26
c104 Solomon 1 100 8 377.41 377.41 6.98 10.00 80.00 20.00 87.46 98.93
c104 Solomon 2 100 4 685.01 677.80 21.44 22.00 72.73 27.27 84.78 99.95
c104 Solomon 2 100 8 687.46 680.06 21.58 21.00 85.71 14.29 77.42 99.29
c104 Solomon 3 100 4 919.17 908.36 41.31 32.00 62.50 37.50 81.16 99.03
c104 Solomon 3 100 8 950.01 940.76 45.42 32.00 81.25 18.75 85.84 99.31
c104 Solomon 4 100 4 1106.37 1097.10 64.53 43.00 72.09 27.91 87.17 99.55
c104 Solomon 4 100 8 1152.32 1133.59 76.33 42.00 73.81 26.19 86.87 96.99
c105 Solomon 1 100 4 269.09 269.09 3.52 10.00 60.00 40.00 91.60 96.81
c105 Solomon 1 100 8 287.49 287.49 3.54 10.00 60.00 40.00 77.29 93.35
c105 Solomon 2 100 4 511.20 506.65 12.89 19.00 68.42 31.58 98.76 92.64
c105 Solomon 2 100 8 534.90 534.90 9.16 19.00 63.16 36.84 93.80 93.91
c105 Solomon 3 100 4 723.86 695.61 16.81 28.00 57.14 42.86 89.12 93.14
c105 Solomon 3 100 8 753.80 747.47 25.38 27.00 81.48 18.52 89.50 87.97

206

Instance id type |K| |N| periods Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%)

c105 Solomon 4 100 4 885.78 880.70 36.75 36.00 63.89 36.11 90.55 91.43
c105 Solomon 4 100 8 923.31 902.11 36.90 36.00 83.33 16.67 90.60 88.13
c106 Solomon 1 100 4 289.40 289.04 6.02 10.00 30.00 70.00 98.69 97.93
c106 Solomon 1 100 8 281.14 275.49 5.28 10.00 80.00 20.00 98.37 92.97
c106 Solomon 2 100 4 561.49 554.49 22.52 20.00 55.00 45.00 83.99 98.00
c106 Solomon 2 100 8 521.00 518.08 15.94 19.00 73.68 26.32 83.91 94.04
c106 Solomon 3 100 4 756.09 740.73 29.81 29.00 51.72 48.28 94.39 96.85
c106 Solomon 3 100 8 715.18 697.27 22.35 27.00 66.67 33.33 82.46 90.35
c106 Solomon 4 100 4 920.10 901.64 38.53 39.00 56.41 43.59 84.44 94.21
c106 Solomon 4 100 8 896.63 864.08 43.32 38.00 65.79 34.21 82.80 91.26
c107 Solomon 1 100 4 306.25 306.25 5.34 10.00 70.00 30.00 95.50 97.74
c107 Solomon 1 100 8 314.54 310.48 6.07 11.00 54.55 45.45 72.50 98.06
c107 Solomon 2 100 4 568.20 560.04 15.01 21.00 71.43 28.57 88.42 98.66
c107 Solomon 2 100 8 566.87 563.98 17.83 21.00 76.19 23.81 83.58 96.97
c107 Solomon 3 100 4 763.00 761.20 26.73 29.00 75.86 24.14 72.83 95.13
c107 Solomon 3 100 8 793.97 780.19 37.39 30.00 73.33 26.67 78.61 93.98
c107 Solomon 4 100 4 955.50 945.17 38.07 40.00 70.00 30.00 84.83 95.37
c107 Solomon 4 100 8 967.06 947.19 57.86 39.00 87.18 12.82 82.42 94.51
c108 Solomon 1 100 4 286.14 284.99 5.87 11.00 72.73 27.27 97.99 98.47
c108 Solomon 1 100 8 301.75 301.75 4.37 10.00 60.00 40.00 91.96 96.56
c108 Solomon 2 100 4 558.72 557.29 15.04 20.00 55.00 45.00 94.08 90.86
c108 Solomon 2 100 8 563.58 563.58 17.11 19.00 42.11 57.89 90.40 90.64
c108 Solomon 3 100 4 751.20 744.66 23.71 30.00 63.33 36.67 98.59 92.16
c108 Solomon 3 100 8 758.51 754.76 31.66 28.00 71.43 28.57 94.57 87.98
c108 Solomon 4 100 4 932.87 924.39 57.89 38.00 60.53 39.47 98.72 89.86
c108 Solomon 4 100 8 949.08 936.29 47.63 36.00 77.78 22.22 97.15 88.75
c109 Solomon 1 100 4 343.40 343.40 4.19 10.00 60.00 40.00 85.80 92.30
c109 Solomon 1 100 8 342.17 342.17 5.14 10.00 70.00 30.00 81.36 93.10
c109 Solomon 2 100 4 615.85 610.84 15.14 20.00 75.00 25.00 97.63 92.21
c109 Solomon 2 100 8 623.47 622.51 17.55 20.00 65.00 35.00 96.89 96.92
c109 Solomon 3 100 4 809.16 802.81 21.93 28.00 67.86 32.14 97.63 89.49
c109 Solomon 3 100 8 821.07 817.75 26.64 29.00 68.97 31.03 97.04 94.54
c109 Solomon 4 100 4 1078.27 1075.38 53.82 42.00 59.52 40.48 154.66 97.48
c109 Solomon 4 100 8 1069.78 1056.56 74.68 41.00 75.61 24.39 146.89 97.02
r101 Solomon 1 100 4 109.98 108.73 1.18 5.00 60.00 40.00 60.25 87.83
r101 Solomon 1 100 8 161.63 138.95 1.75 8.00 37.50 62.50 73.33 98.79
r101 Solomon 2 100 4 215.90 212.86 2.01 11.00 27.27 72.73 69.01 91.38
r101 Solomon 2 100 8 228.97 224.85 3.45 12.00 75.00 25.00 74.07 94.44
r101 Solomon 3 100 4 316.44 310.55 5.20 16.00 43.75 56.25 65.93 88.14
r101 Solomon 3 100 8 349.91 343.54 8.26 18.00 72.22 27.78 76.63 92.50
r101 Solomon 4 100 4 406.62 396.14 7.21 21.00 23.81 76.19 68.58 89.80
r101 Solomon 4 100 8 431.90 419.37 9.62 22.00 68.18 31.82 70.68 84.29
r102 Solomon 1 100 4 240.03 235.79 2.17 10.00 80.00 20.00 85.26 99.77
r102 Solomon 1 100 8 235.48 232.84 4.08 10.00 70.00 30.00 94.44 99.84
r102 Solomon 2 100 4 411.67 408.63 7.43 19.00 73.68 26.32 90.98 97.47
r102 Solomon 2 100 8 419.30 397.76 8.75 18.00 72.22 27.78 88.65 97.51
r102 Solomon 3 100 4 538.14 527.05 11.87 25.00 76.00 24.00 70.63 99.47
r102 Solomon 3 100 8 538.26 529.29 20.06 26.00 65.38 34.62 76.54 97.67
r102 Solomon 4 100 4 651.64 633.41 21.38 31.00 67.74 32.26 65.83 98.07

207

Instance id type |K| |N| periods Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%)

r102 Solomon 4 100 8 642.41 627.68 16.56 32.00 68.75 31.25 63.80 90.98
r103 Solomon 1 100 4 260.69 260.69 2.47 10.00 50.00 50.00 99.26 98.96
r103 Solomon 1 100 8 258.70 258.70 2.67 9.00 88.89 11.11 82.90 98.29
r103 Solomon 2 100 4 433.53 427.91 10.10 19.00 63.16 36.84 98.35 99.17
r103 Solomon 2 100 8 448.53 436.41 12.59 18.00 83.33 16.67 76.93 97.58
r103 Solomon 3 100 4 597.38 591.99 15.49 25.00 68.00 32.00 75.06 97.54
r103 Solomon 3 100 8 608.19 595.36 22.68 30.00 80.00 20.00 88.54 98.33
r103 Solomon 4 100 4 732.96 722.16 21.40 35.00 77.14 22.86 83.96 97.42
r103 Solomon 4 100 8 752.79 718.70 37.04 38.00 68.42 31.58 88.28 98.08
r104 Solomon 1 100 4 264.07 263.23 6.71 12.00 75.00 25.00 98.78 99.05
r104 Solomon 1 100 8 274.32 263.95 3.04 11.00 81.82 18.18 84.22 97.76
r104 Solomon 2 100 4 474.72 472.79 11.98 22.00 72.73 27.27 85.92 99.04
r104 Solomon 2 100 8 493.73 484.43 11.77 20.00 70.00 30.00 80.34 98.61
r104 Solomon 3 100 4 658.60 653.11 17.99 30.00 60.00 40.00 76.73 99.29
r104 Solomon 3 100 8 669.28 660.67 21.99 31.00 80.65 19.35 80.23 98.57
r104 Solomon 4 100 4 796.96 786.92 23.36 39.00 64.10 35.90 72.79 98.73
r104 Solomon 4 100 8 806.11 800.09 25.37 38.00 65.79 34.21 73.03 98.92
r105 Solomon 1 100 4 175.53 171.57 1.84 8.00 87.50 12.50 67.45 89.17
r105 Solomon 1 100 8 176.91 161.61 2.74 7.00 28.57 71.43 56.86 85.56
r105 Solomon 2 100 4 321.46 318.00 7.10 15.00 66.67 33.33 69.61 93.01
r105 Solomon 2 100 8 356.64 312.69 6.91 17.00 35.29 64.71 90.69 88.42
r105 Solomon 3 100 4 482.98 455.75 14.24 24.00 58.33 41.67 77.97 87.88
r105 Solomon 3 100 8 478.80 442.92 11.70 22.00 36.36 63.64 84.58 89.35
r105 Solomon 4 100 4 593.43 568.54 14.30 30.00 70.00 30.00 81.47 91.47
r105 Solomon 4 100 8 610.69 558.04 17.59 30.00 40.00 60.00 78.63 88.17
r106 Solomon 1 100 4 239.93 239.93 2.24 9.00 66.67 33.33 72.91 97.25
r106 Solomon 1 100 8 234.26 233.05 2.96 10.00 70.00 30.00 95.55 99.43
r106 Solomon 2 100 4 431.44 422.22 9.59 19.00 63.16 36.84 65.96 97.39
r106 Solomon 2 100 8 436.84 431.83 9.04 19.00 63.16 36.84 85.62 99.15
r106 Solomon 3 100 4 577.77 567.61 12.77 27.00 62.96 37.04 70.07 98.88
r106 Solomon 3 100 8 597.93 584.51 20.85 28.00 67.86 32.14 80.46 99.02
r106 Solomon 4 100 4 741.12 713.51 18.33 39.00 56.41 43.59 78.48 95.85
r106 Solomon 4 100 8 725.17 707.79 27.88 36.00 72.22 27.78 79.04 95.10
r107 Solomon 1 100 4 259.00 256.89 3.29 11.00 100.00 0.00 81.78 98.92
r107 Solomon 1 100 8 261.15 250.14 4.00 11.00 63.64 36.36 91.08 99.85
r107 Solomon 2 100 4 451.39 448.01 7.30 20.00 80.00 20.00 87.55 98.45
r107 Solomon 2 100 8 451.51 438.31 11.48 20.00 65.00 35.00 91.45 99.10
r107 Solomon 3 100 4 638.88 632.34 20.46 30.00 80.00 20.00 85.13 97.82
r107 Solomon 3 100 8 616.48 607.10 20.75 26.00 73.08 26.92 89.84 99.00
r107 Solomon 4 100 4 816.75 791.03 25.91 39.00 79.49 20.51 92.10 97.39
r107 Solomon 4 100 8 778.49 765.83 27.84 36.00 58.33 41.67 89.13 98.70
r108 Solomon 1 100 4 269.10 266.45 5.14 11.00 90.91 9.09 90.04 98.65
r108 Solomon 1 100 8 268.52 264.73 4.24 11.00 90.91 9.09 98.01 99.77
r108 Solomon 2 100 4 472.90 466.57 11.61 20.00 70.00 30.00 91.37 98.84
r108 Solomon 2 100 8 488.79 473.16 13.55 20.00 70.00 30.00 79.42 99.56
r108 Solomon 3 100 4 666.31 654.29 14.63 29.00 82.76 17.24 90.04 99.08
r108 Solomon 3 100 8 672.01 654.93 23.06 29.00 82.76 17.24 94.25 99.65
r108 Solomon 4 100 4 813.67 805.07 19.78 37.00 75.68 24.32 90.49 99.46
r108 Solomon 4 100 8 840.40 814.40 46.20 40.00 77.50 22.50 95.58 97.88

208

Instance id type |K| |N| periods Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%)

r109 Solomon 1 100 4 227.18 217.34 3.37 11.00 54.55 45.45 95.46 96.29
r109 Solomon 1 100 8 237.10 228.28 3.03 10.00 70.00 30.00 73.11 98.23
r109 Solomon 2 100 4 406.03 398.95 6.41 17.00 64.71 35.29 73.03 97.27
r109 Solomon 2 100 8 423.96 416.73 10.35 19.00 68.42 31.58 86.81 96.79
r109 Solomon 3 100 4 558.46 546.95 12.76 25.00 72.00 28.00 77.82 95.98
r109 Solomon 3 100 8 592.40 576.39 17.19 26.00 65.38 34.62 85.99 97.67
r109 Solomon 4 100 4 723.25 706.48 19.67 35.00 60.00 40.00 87.44 93.43
r109 Solomon 4 100 8 726.36 701.36 25.28 34.00 61.76 38.24 80.00 94.19
r110 Solomon 1 100 4 238.77 237.66 2.86 11.00 72.73 27.27 87.34 97.22
r110 Solomon 1 100 8 227.47 222.65 2.89 10.00 80.00 20.00 75.67 99.68
r110 Solomon 2 100 4 441.34 436.20 10.38 19.00 78.95 21.05 61.39 97.59
r110 Solomon 2 100 8 434.75 430.20 9.22 19.00 78.95 21.05 63.29 98.34
r110 Solomon 3 100 4 621.95 613.36 14.67 28.00 67.86 32.14 66.53 97.33
r110 Solomon 3 100 8 617.32 587.35 16.84 29.00 65.52 34.48 70.60 96.97
r110 Solomon 4 100 4 762.71 754.80 41.66 38.00 76.32 23.68 73.03 98.10
r110 Solomon 4 100 8 766.58 746.93 29.43 37.00 62.16 37.84 62.52 97.98
r111 Solomon 1 100 4 253.00 251.29 3.65 11.00 63.64 36.36 81.16 98.58
r111 Solomon 1 100 8 258.45 254.58 3.87 10.00 90.00 10.00 73.55 99.74
r111 Solomon 2 100 4 436.90 432.55 8.13 18.00 77.78 22.22 61.36 99.10
r111 Solomon 2 100 8 454.01 443.82 11.74 20.00 70.00 30.00 72.02 99.00
r111 Solomon 3 100 4 623.84 617.99 18.04 30.00 53.33 46.67 71.56 97.06
r111 Solomon 3 100 8 641.31 621.51 19.72 29.00 72.41 27.59 65.47 98.32
r111 Solomon 4 100 4 791.72 751.51 23.26 38.00 63.16 36.84 67.97 99.38
r111 Solomon 4 100 8 779.40 772.32 34.76 40.00 67.50 32.50 82.03 96.95
r112 Solomon 1 100 4 256.63 256.63 4.05 11.00 72.73 27.27 95.85 98.36
r112 Solomon 1 100 8 249.57 249.36 3.32 10.00 50.00 50.00 89.78 96.60
r112 Solomon 2 100 4 462.67 458.20 16.24 21.00 66.67 33.33 80.44 97.67
r112 Solomon 2 100 8 456.80 451.20 15.17 20.00 70.00 30.00 81.78 97.22
r112 Solomon 3 100 4 662.31 660.42 14.24 29.00 75.86 24.14 69.48 98.27
r112 Solomon 3 100 8 650.13 632.48 24.28 30.00 70.00 30.00 81.88 98.91
r112 Solomon 4 100 4 839.21 822.68 29.23 41.00 68.29 31.71 71.81 96.87
r112 Solomon 4 100 8 819.63 793.62 26.99 39.00 66.67 33.33 72.56 99.08

rc101 Solomon 1 100 4 168.19 166.50 1.51 8.00 50.00 50.00 88.67 95.46
rc101 Solomon 1 100 8 177.06 177.06 1.65 8.00 75.00 25.00 90.06 91.88
rc101 Solomon 2 100 4 309.86 309.86 3.15 12.00 66.67 33.33 63.22 83.45
rc101 Solomon 2 100 8 327.85 321.95 5.77 14.00 71.43 28.57 70.18 90.27
rc101 Solomon 3 100 4 445.77 427.73 7.55 19.00 57.89 42.11 58.65 89.09
rc101 Solomon 3 100 8 455.42 435.50 9.04 21.00 66.67 33.33 60.83 88.93
rc101 Solomon 4 100 4 584.70 558.27 13.43 27.00 51.85 48.15 65.36 89.34
rc101 Solomon 4 100 8 574.75 557.86 12.90 28.00 64.29 35.71 74.35 93.49
rc102 Solomon 1 100 4 211.15 199.57 2.67 9.00 55.56 44.44 74.29 99.48
rc102 Solomon 1 100 8 203.94 199.17 3.27 9.00 66.67 33.33 86.36 96.31
rc102 Solomon 2 100 4 386.85 381.25 6.92 19.00 52.63 47.37 86.91 97.63
rc102 Solomon 2 100 8 398.73 385.16 6.34 17.00 52.94 47.06 74.69 97.66
rc102 Solomon 3 100 4 567.27 555.89 11.98 26.00 57.69 42.31 75.60 97.87
rc102 Solomon 3 100 8 554.79 542.36 20.76 25.00 48.00 52.00 76.49 95.97
rc102 Solomon 4 100 4 746.98 721.36 19.03 36.00 66.67 33.33 76.76 96.00
rc102 Solomon 4 100 8 702.80 681.86 29.44 31.00 48.39 51.61 70.77 97.78
rc103 Solomon 1 100 4 219.58 216.77 3.35 9.00 66.67 33.33 79.14 96.80

209

Instance id type |K| |N| periods Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%)

rc103 Solomon 1 100 8 216.59 215.88 2.46 8.00 87.50 12.50 98.86 94.98
rc103 Solomon 2 100 4 430.95 428.23 5.79 17.00 82.35 17.65 87.86 93.55
rc103 Solomon 2 100 8 420.23 418.02 7.33 17.00 82.35 17.65 97.29 95.60
rc103 Solomon 3 100 4 607.04 602.13 13.54 26.00 73.08 26.92 89.14 95.34
rc103 Solomon 3 100 8 598.81 595.31 20.45 26.00 57.69 42.31 95.90 98.48
rc103 Solomon 4 100 4 788.60 778.35 19.90 36.00 66.67 33.33 90.43 96.21
rc103 Solomon 4 100 8 773.96 759.42 29.74 35.00 68.57 31.43 94.29 97.28
rc104 Solomon 1 100 4 248.77 243.08 3.89 9.00 66.67 33.33 86.64 98.80
rc104 Solomon 1 100 8 243.99 239.28 3.69 10.00 60.00 40.00 92.32 98.88
rc104 Solomon 2 100 4 463.65 453.06 7.26 18.00 61.11 38.89 84.97 99.17
rc104 Solomon 2 100 8 471.36 468.82 12.81 19.00 63.16 36.84 88.23 97.81
rc104 Solomon 3 100 4 682.61 652.60 12.60 27.00 74.07 25.93 80.36 99.33
rc104 Solomon 3 100 8 693.53 673.31 19.02 30.00 66.67 33.33 92.93 98.50
rc104 Solomon 4 100 4 887.16 828.34 14.95 38.00 71.05 28.95 79.88 98.86
rc104 Solomon 4 100 8 870.63 853.28 28.22 37.00 72.97 27.03 84.27 96.88
rc105 Solomon 1 100 4 186.95 182.11 2.44 8.00 62.50 37.50 52.32 96.55
rc105 Solomon 1 100 8 189.28 187.69 2.32 9.00 66.67 33.33 73.31 97.74
rc105 Solomon 2 100 4 371.00 358.01 6.08 16.00 62.50 37.50 63.94 96.99
rc105 Solomon 2 100 8 361.12 343.01 7.05 18.00 61.11 38.89 68.29 94.82
rc105 Solomon 3 100 4 540.32 527.98 10.08 26.00 73.08 26.92 78.16 95.34
rc105 Solomon 3 100 8 489.93 479.87 11.21 22.00 72.73 27.27 57.97 88.29
rc105 Solomon 4 100 4 690.76 664.41 14.48 34.00 73.53 26.47 76.91 96.01
rc105 Solomon 4 100 8 643.50 627.37 18.14 32.00 56.25 43.75 66.00 94.58
rc106 Solomon 1 100 4 199.29 196.07 2.31 9.00 55.56 44.44 70.74 97.09
rc106 Solomon 1 100 8 212.60 203.28 2.75 8.00 75.00 25.00 58.37 96.22
rc106 Solomon 2 100 4 392.39 387.58 6.03 17.00 58.82 41.18 63.46 96.08
rc106 Solomon 2 100 8 405.55 392.92 7.11 16.00 75.00 25.00 61.97 96.58
rc106 Solomon 3 100 4 571.49 567.34 10.30 25.00 64.00 36.00 69.74 95.37
rc106 Solomon 3 100 8 599.19 581.37 14.00 27.00 55.56 44.44 73.81 97.11
rc106 Solomon 4 100 4 745.18 710.00 18.81 36.00 58.33 41.67 75.31 94.95
rc106 Solomon 4 100 8 725.17 717.43 19.50 32.00 65.62 34.38 63.81 93.20
rc107 Solomon 1 100 4 209.71 209.28 2.32 8.00 62.50 37.50 80.81 98.70
rc107 Solomon 1 100 8 225.36 225.02 2.86 9.00 88.89 11.11 97.98 92.70
rc107 Solomon 2 100 4 418.80 416.12 8.14 16.00 68.75 31.25 89.60 93.69
rc107 Solomon 2 100 8 432.64 430.13 8.92 18.00 55.56 44.44 93.13 95.82
rc107 Solomon 3 100 4 614.94 611.64 16.63 25.00 60.00 40.00 91.99 95.06
rc107 Solomon 3 100 8 623.19 622.70 14.21 27.00 48.15 51.85 94.21 95.78
rc107 Solomon 4 100 4 789.15 781.75 26.26 40.00 55.00 45.00 110.25 96.52
rc107 Solomon 4 100 8 813.60 798.18 22.17 36.00 63.89 36.11 95.15 95.42
rc108 Solomon 1 100 4 223.49 222.67 3.13 10.00 40.00 60.00 94.36 97.50
rc108 Solomon 1 100 8 220.45 219.14 2.32 8.00 75.00 25.00 59.59 98.14
rc108 Solomon 2 100 4 437.02 432.17 6.60 19.00 52.63 47.37 86.75 96.15
rc108 Solomon 2 100 8 459.06 439.54 11.76 20.00 75.00 25.00 93.61 98.28
rc108 Solomon 3 100 4 632.80 627.65 15.29 29.00 62.07 37.93 92.54 94.24
rc108 Solomon 3 100 8 666.19 634.37 19.51 28.00 57.14 42.86 88.47 98.66
rc108 Solomon 4 100 4 826.37 822.66 24.42 37.00 51.35 48.65 84.02 97.20
rc108 Solomon 4 100 8 839.93 811.91 34.45 37.00 59.46 40.54 88.44 98.18

Avg 540.42 530.04 17.05 22.90 65.75 34.25 83.33 95.91

210

Instance id type |K| |N| periods Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%)

Table 5.20: Detailed results for the Solomon large-scale instances solved for the C-TOP-TDPLSF-nw by ILS-noWait.

211

Instance id type |K| |N | periods Θbest Θavg ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%)
pr01 Cordeau 1 48 4 225.85 224.30 4.10 31.25 73.33 26.67 65.69 54.36
pr01 Cordeau 1 48 8 232.26 220.61 4.08 29.17 57.14 42.86 62.88 54.43
pr01 Cordeau 2 48 4 377.60 361.21 9.48 52.08 64.00 36.00 63.73 59.21
pr01 Cordeau 2 48 8 366.13 329.87 9.27 52.08 52.00 48.00 56.79 50.84
pr01 Cordeau 3 48 4 490.93 482.85 15.13 72.92 57.14 42.86 61.00 56.22
pr01 Cordeau 3 48 8 485.12 465.81 20.78 70.83 47.06 52.94 52.01 53.64
pr01 Cordeau 4 48 4 555.86 548.84 15.10 87.50 59.52 40.48 52.31 55.00
pr01 Cordeau 4 48 8 543.35 526.42 19.12 87.50 50.00 50.00 47.99 51.19
pr02 Cordeau 1 96 4 327.79 326.94 17.92 19.79 84.21 15.79 81.55 66.30
pr02 Cordeau 1 96 8 305.60 294.88 25.37 17.71 58.82 41.18 61.31 51.47
pr02 Cordeau 2 96 4 585.92 572.22 48.86 35.42 67.65 32.35 63.37 60.24
pr02 Cordeau 2 96 8 553.32 542.57 71.36 33.33 62.50 37.50 62.17 57.62
pr02 Cordeau 3 96 4 769.11 750.70 83.53 47.92 73.91 26.09 61.66 60.93
pr02 Cordeau 3 96 8 726.76 705.38 88.95 46.88 75.56 24.44 52.40 56.04
pr02 Cordeau 4 96 4 903.98 884.06 140.94 59.38 70.18 29.82 54.13 59.94
pr02 Cordeau 4 96 8 853.64 841.83 177.38 55.21 73.58 26.42 51.18 56.16
pr03 Cordeau 1 144 4 305.35 299.58 22.33 11.81 70.59 29.41 78.36 66.24
pr03 Cordeau 1 144 8 310.99 296.12 23.52 11.81 58.82 41.18 66.60 61.90
pr03 Cordeau 2 144 4 573.12 557.80 80.69 20.83 63.33 36.67 65.05 62.90
pr03 Cordeau 2 144 8 564.61 532.10 81.71 20.14 79.31 20.69 60.35 65.83
pr03 Cordeau 3 144 4 800.78 780.18 226.25 34.03 63.27 36.73 75.82 60.68
pr03 Cordeau 3 144 8 771.79 749.53 225.09 34.03 63.27 36.73 67.98 63.17
pr03 Cordeau 4 144 4 959.38 929.57 319.11 41.67 70.00 30.00 65.26 60.25
pr03 Cordeau 4 144 8 924.09 898.36 307.62 40.28 58.62 41.38 63.17 63.68
pr04 Cordeau 1 192 4 367.38 359.60 47.92 9.90 63.16 36.84 84.41 64.81
pr04 Cordeau 1 192 8 344.18 331.36 40.13 9.38 61.11 38.89 80.18 59.20
pr04 Cordeau 2 192 4 679.99 664.70 172.66 19.27 67.57 32.43 90.92 61.73
pr04 Cordeau 2 192 8 643.71 599.40 163.40 19.27 59.46 40.54 75.33 63.84
pr04 Cordeau 3 192 4 942.11 921.62 277.81 27.60 66.04 33.96 85.08 63.14
pr04 Cordeau 3 192 8 894.04 878.81 360.13 24.48 68.09 31.91 69.08 65.63
pr04 Cordeau 4 192 4 1174.32 1156.67 552.73 34.38 62.12 37.88 74.08 63.17
pr04 Cordeau 4 192 8 1132.12 1089.77 574.92 31.77 65.57 34.43 69.79 65.45
pr05 Cordeau 1 240 4 429.39 418.21 81.88 10.00 50.00 50.00 76.02 59.44
pr05 Cordeau 1 240 8 388.95 377.03 61.67 8.33 55.00 45.00 57.61 63.87
pr05 Cordeau 2 240 4 834.87 811.42 476.81 20.00 66.67 33.33 76.66 60.53
pr05 Cordeau 2 240 8 750.43 731.76 403.25 17.08 58.54 41.46 66.34 63.84
pr05 Cordeau 3 240 4 1125.23 1104.67 980.38 25.83 67.74 32.26 59.19 62.37
pr05 Cordeau 3 240 8 1055.44 1031.09 876.85 24.17 63.79 36.21 58.67 62.69
pr05 Cordeau 4 240 4 1386.91 1360.95 848.83 32.08 66.23 33.77 57.29 61.64
pr05 Cordeau 4 240 8 1351.85 1300.27 1222.15 30.83 67.57 32.43 55.81 59.81
pr07 Cordeau 1 72 4 230.45 230.45 3.13 16.67 75.00 25.00 71.93 57.03
pr07 Cordeau 1 72 8 229.30 225.58 6.46 18.06 76.92 23.08 66.49 61.74
pr07 Cordeau 2 72 4 446.12 434.10 15.27 36.11 61.54 38.46 81.74 60.28
pr07 Cordeau 2 72 8 425.67 407.76 16.38 34.72 64.00 36.00 85.42 60.16
pr07 Cordeau 3 72 4 599.33 577.06 41.88 51.39 70.27 29.73 80.15 58.76
pr07 Cordeau 3 72 8 602.45 551.58 33.56 50.00 61.11 38.89 76.70 62.77
pr07 Cordeau 4 72 4 685.39 673.10 47.13 61.11 65.91 34.09 70.81 60.14
pr07 Cordeau 4 72 8 695.34 663.80 63.68 62.50 62.22 37.78 76.43 60.87
pr08 Cordeau 1 144 4 352.46 341.70 26.77 11.81 58.82 41.18 67.42 64.15
pr08 Cordeau 1 144 8 339.91 317.07 25.21 11.81 52.94 47.06 67.04 61.34
pr08 Cordeau 2 144 4 639.94 629.54 103.34 22.22 56.25 43.75 68.16 61.83
pr08 Cordeau 2 144 8 595.02 571.93 107.22 22.22 56.25 43.75 69.99 59.96
pr08 Cordeau 3 144 4 881.68 844.22 187.43 33.33 72.92 27.08 73.10 64.80
pr08 Cordeau 3 144 8 841.71 812.09 229.43 33.33 64.58 35.42 66.45 59.76
pr08 Cordeau 4 144 4 1080.58 1054.52 341.35 41.67 71.67 28.33 68.87 62.03
pr08 Cordeau 4 144 8 1058.06 1008.29 420.43 40.97 64.41 35.59 64.93 61.25
pr09 Cordeau 1 216 4 328.67 320.63 36.50 8.80 68.42 31.58 55.22 58.93
pr09 Cordeau 1 216 8 338.67 321.56 30.64 7.87 76.47 23.53 53.71 69.95
pr09 Cordeau 2 216 4 660.75 636.49 181.45 18.06 76.92 23.08 66.11 61.69
pr09 Cordeau 2 216 8 600.33 582.57 201.20 15.28 63.64 36.36 51.75 59.04
pr09 Cordeau 3 216 4 935.72 912.91 533.09 25.00 61.11 38.89 59.16 63.40
pr09 Cordeau 3 216 8 882.38 871.35 420.29 23.15 60.00 40.00 55.54 66.58
pr09 Cordeau 4 216 4 1167.09 1129.02 609.48 32.41 68.57 31.43 59.12 62.94
pr09 Cordeau 4 216 8 1146.87 1100.80 595.35 30.09 66.15 33.85 52.32 63.96
Avg 668.41 648.08 210.25 32.29 64.67 35.33 66.22 60.82

Table 5.21: Detailed results for the Cordeau large-scale instances solved for the C-
TOP-TDPLSF-nw by ILS-noWait.

212

Instance id type |K| |N| periods Θbest Θbest ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%) waiting cust(%) waiting time(%)

c101 Solomon 1 100 4 270.43 270.43 84.61 9.00 44.44 55.56 82.80 90.64 4.00 9.17
c101 Solomon 1 100 8 280.47 280.47 84.49 9.00 33.33 66.67 93.84 92.67 5.00 8.70
c101 Solomon 2 100 4 492.91 490.55 148.55 18.00 55.56 44.44 86.62 94.29 10.00 10.19
c101 Solomon 2 100 8 528.35 526.79 126.23 20.00 50.00 50.00 82.27 96.81 13.00 7.30
c101 Solomon 3 100 4 710.54 701.97 151.84 27.00 59.26 40.74 87.40 94.51 14.00 11.65
c101 Solomon 3 100 8 753.46 744.68 166.31 30.00 56.67 43.33 94.55 94.12 15.00 4.25
c101 Solomon 4 100 4 875.97 862.25 219.30 36.00 58.33 41.67 94.43 90.72 18.00 9.44
c101 Solomon 4 100 8 920.69 909.96 203.00 37.00 64.86 35.14 100.42 90.41 18.00 6.07
c102 Solomon 1 100 4 301.19 300.94 80.63 11.00 45.45 54.55 93.00 99.97 3.00 1.54
c102 Solomon 1 100 8 330.03 327.35 87.75 10.00 70.00 30.00 95.50 99.97 5.00 6.01
c102 Solomon 2 100 4 571.05 559.26 137.53 20.00 55.00 45.00 96.00 99.37 7.00 3.22
c102 Solomon 2 100 8 607.34 599.82 144.76 21.00 76.19 23.81 98.00 97.06 9.00 3.17
c102 Solomon 3 100 4 769.54 766.64 185.45 31.00 54.84 45.16 94.33 99.74 7.00 3.54
c102 Solomon 3 100 8 850.03 845.17 188.56 31.00 74.19 25.81 91.92 99.18 9.00 2.54
c102 Solomon 4 100 4 954.19 947.64 261.65 41.00 51.22 48.78 93.00 99.05 14.00 4.26
c102 Solomon 4 100 8 1044.04 1036.58 264.61 42.00 76.19 23.81 92.25 99.07 14.00 3.58
c103 Solomon 1 100 4 365.59 365.60 104.36 10.00 70.00 30.00 72.34 99.44 2.00 0.56
c103 Solomon 1 100 8 368.45 368.26 77.64 10.00 50.00 50.00 86.33 99.99 2.00 1.23
c103 Solomon 2 100 4 661.71 659.55 143.14 20.00 65.00 35.00 84.66 97.81 6.00 3.90
c103 Solomon 2 100 8 650.13 645.98 156.60 22.00 68.18 31.82 92.21 99.93 4.00 0.82
c103 Solomon 3 100 4 904.42 896.38 193.81 32.00 65.62 34.38 90.30 98.52 7.00 2.30
c103 Solomon 3 100 8 885.14 873.08 246.63 30.00 70.00 30.00 87.12 98.06 10.00 3.80
c103 Solomon 4 100 4 1091.36 1083.49 270.34 42.00 71.43 28.57 87.00 97.89 8.00 3.21
c103 Solomon 4 100 8 1080.92 1074.34 317.20 41.00 60.98 39.02 87.52 98.63 9.00 2.77
c104 Solomon 1 100 4 379.43 378.93 89.72 10.00 50.00 50.00 75.42 99.02 2.00 0.93
c104 Solomon 1 100 8 386.42 381.28 77.08 11.00 63.64 36.36 67.39 99.94 3.00 0.56
c104 Solomon 2 100 4 691.66 686.87 132.89 21.00 57.14 42.86 77.34 99.50 3.00 0.59
c104 Solomon 2 100 8 698.43 694.93 149.56 21.00 76.19 23.81 78.85 99.83 2.00 0.26
c104 Solomon 3 100 4 930.08 921.69 206.41 33.00 66.67 33.33 88.29 99.75 5.00 0.62
c104 Solomon 3 100 8 947.39 939.31 247.86 33.00 75.76 24.24 89.19 99.78 5.00 1.00
c104 Solomon 4 100 4 1121.35 1118.36 347.07 43.00 58.14 41.86 87.37 98.65 7.00 1.73
c104 Solomon 4 100 8 1157.07 1148.04 306.06 42.00 83.33 16.67 84.41 98.88 8.00 2.06
c105 Solomon 1 100 4 290.07 290.07 92.86 9.00 22.22 77.78 74.62 97.80 7.00 9.33
c105 Solomon 1 100 8 296.33 296.33 97.74 10.00 40.00 60.00 98.66 94.95 4.00 1.21
c105 Solomon 2 100 4 548.20 547.97 116.92 19.00 52.63 47.37 88.93 95.60 9.00 7.85
c105 Solomon 2 100 8 554.14 551.39 113.88 20.00 45.00 55.00 93.23 96.20 8.00 4.98
c105 Solomon 3 100 4 757.42 753.86 143.24 28.00 60.71 39.29 86.26 94.43 11.00 7.48
c105 Solomon 3 100 8 786.73 785.81 182.76 29.00 65.52 34.48 97.96 96.52 10.00 2.51
c105 Solomon 4 100 4 937.42 928.21 200.66 37.00 56.76 43.24 86.83 93.97 11.00 3.86
c105 Solomon 4 100 8 975.88 960.64 229.87 38.00 60.53 39.47 93.37 93.90 12.00 3.40
c106 Solomon 1 100 4 307.29 307.29 81.84 10.00 70.00 30.00 82.52 98.00 4.00 7.57
c106 Solomon 1 100 8 299.08 299.08 86.60 10.00 80.00 20.00 95.92 98.69 3.00 6.59
c106 Solomon 2 100 4 573.40 573.40 131.42 20.00 40.00 60.00 90.85 98.97 6.00 2.71
c106 Solomon 2 100 8 561.33 549.52 123.34 20.00 50.00 50.00 87.09 96.72 9.00 5.20
c106 Solomon 3 100 4 796.82 786.31 182.09 30.00 46.67 53.33 91.45 99.29 11.00 4.25
c106 Solomon 3 100 8 776.26 760.05 188.40 30.00 56.67 43.33 93.25 98.18 10.00 5.55
c106 Solomon 4 100 4 979.06 972.48 236.16 38.00 50.00 50.00 84.68 92.72 13.00 5.30
c106 Solomon 4 100 8 946.36 939.23 248.60 38.00 68.42 31.58 85.58 95.26 7.00 3.17
c107 Solomon 1 100 4 325.57 325.57 87.35 10.00 50.00 50.00 75.50 99.77 5.00 4.25

213

Instance id type |K| |N| periods Θbest Θbest ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%) waiting cust(%) waiting time(%)

c107 Solomon 1 100 8 330.02 330.04 84.43 11.00 63.64 36.36 73.67 99.77 3.00 1.92
c107 Solomon 2 100 4 593.54 592.90 135.08 20.00 70.00 30.00 85.58 95.47 6.00 2.36
c107 Solomon 2 100 8 596.21 588.50 125.51 21.00 57.14 42.86 88.00 96.94 7.00 1.94
c107 Solomon 3 100 4 819.30 810.27 168.26 31.00 77.42 22.58 81.67 96.32 5.00 2.33
c107 Solomon 3 100 8 825.80 819.18 177.22 31.00 54.84 45.16 87.50 97.61 10.00 3.68
c107 Solomon 4 100 4 1007.43 1002.62 254.68 41.00 60.98 39.02 84.92 94.13 9.00 2.46
c107 Solomon 4 100 8 1009.78 1003.84 243.54 41.00 63.41 36.59 83.67 96.43 11.00 5.47
c108 Solomon 1 100 4 299.84 299.84 83.50 10.00 30.00 70.00 98.21 92.49 2.00 5.85
c108 Solomon 1 100 8 310.00 309.47 78.99 10.00 90.00 10.00 98.66 94.69 2.00 2.70
c108 Solomon 2 100 4 571.69 569.41 117.69 19.00 63.16 36.84 94.64 95.93 5.00 3.58
c108 Solomon 2 100 8 574.84 573.39 126.08 19.00 42.11 57.89 90.85 95.27 7.00 9.17
c108 Solomon 3 100 4 782.93 779.47 169.08 29.00 58.62 41.38 97.10 93.72 11.00 4.76
c108 Solomon 3 100 8 789.00 777.12 175.28 29.00 75.86 24.14 99.26 94.05 5.00 3.81
c108 Solomon 4 100 4 969.63 962.98 238.76 39.00 64.10 35.90 97.82 92.16 9.00 1.64
c108 Solomon 4 100 8 968.95 956.76 223.83 37.00 70.27 29.73 97.27 91.19 11.00 6.06
c109 Solomon 1 100 4 345.73 345.73 80.82 10.00 70.00 30.00 72.49 93.86 1.00 1.61
c109 Solomon 1 100 8 350.05 350.05 78.80 10.00 70.00 30.00 94.67 94.93 2.00 2.10
c109 Solomon 2 100 4 629.76 621.90 113.91 19.00 78.95 21.05 97.78 95.42 6.00 6.39
c109 Solomon 2 100 8 639.04 634.42 137.85 19.00 68.42 31.58 90.38 95.61 5.00 2.49
c109 Solomon 3 100 4 838.52 820.78 173.20 30.00 56.67 43.33 98.32 96.93 7.00 2.13
c109 Solomon 3 100 8 857.21 844.02 204.95 29.00 55.17 44.83 96.84 94.22 8.00 5.58
c109 Solomon 4 100 4 1099.19 1088.05 318.13 44.00 63.64 36.36 165.38 98.54 8.00 0.77
c109 Solomon 4 100 8 1073.97 1070.58 296.42 41.00 65.85 34.15 141.79 97.14 12.00 0.96
r101 Solomon 1 100 4 173.00 173.00 72.85 8.00 50.00 50.00 98.52 98.42 6.00 11.40
r101 Solomon 1 100 8 187.00 187.00 75.45 8.00 62.50 37.50 71.60 98.71 4.00 1.22
r101 Solomon 2 100 4 313.00 309.50 114.27 14.00 50.00 50.00 92.35 91.87 10.00 18.02
r101 Solomon 2 100 8 323.00 323.00 126.10 15.00 53.33 46.67 88.52 98.77 10.00 5.14
r101 Solomon 3 100 4 440.00 436.69 145.03 18.00 55.56 44.44 78.19 90.04 15.00 26.13
r101 Solomon 3 100 8 446.80 443.06 138.38 21.00 52.38 47.62 74.90 90.11 15.00 14.67
r101 Solomon 4 100 4 548.00 543.00 159.71 25.00 56.00 44.00 78.52 91.88 21.00 19.21
r101 Solomon 4 100 8 558.10 549.89 174.18 28.00 57.14 42.86 76.48 91.62 21.00 9.39
r102 Solomon 1 100 4 248.35 247.89 79.47 10.00 80.00 20.00 83.61 99.91 1.00 0.60
r102 Solomon 1 100 8 244.78 242.75 78.70 11.00 36.36 63.64 95.04 99.58 5.00 6.69
r102 Solomon 2 100 4 444.89 442.15 129.42 19.00 63.16 36.84 85.71 99.86 6.00 2.24
r102 Solomon 2 100 8 455.44 453.13 123.11 20.00 50.00 50.00 90.08 97.96 9.00 5.34
r102 Solomon 3 100 4 605.95 603.31 145.22 28.00 60.71 39.29 85.86 98.30 9.00 3.77
r102 Solomon 3 100 8 629.99 629.82 152.09 28.00 50.00 50.00 83.41 98.53 13.00 5.90
r102 Solomon 4 100 4 742.48 734.41 223.78 35.00 68.57 31.43 77.74 98.70 11.00 3.86
r102 Solomon 4 100 8 762.62 760.48 196.43 35.00 54.29 45.71 77.71 99.12 16.00 7.11
r103 Solomon 1 100 4 262.00 262.00 73.23 10.00 50.00 50.00 99.26 99.58 1.00 0.63
r103 Solomon 1 100 8 265.01 263.61 79.59 10.00 80.00 20.00 94.85 99.58 3.00 3.92
r103 Solomon 2 100 4 450.34 448.84 121.86 19.00 57.89 42.11 92.74 99.78 4.00 2.58
r103 Solomon 2 100 8 467.01 462.80 146.99 19.00 68.42 31.58 88.33 98.66 7.00 2.76
r103 Solomon 3 100 4 627.64 622.40 167.04 29.00 68.97 31.03 90.81 99.33 6.00 1.89
r103 Solomon 3 100 8 650.71 641.24 178.76 30.00 63.33 36.67 92.34 99.05 7.00 1.92
r103 Solomon 4 100 4 784.91 774.94 209.51 39.00 71.79 28.21 92.14 98.84 8.00 1.69
r103 Solomon 4 100 8 828.32 813.34 252.74 39.00 51.28 48.72 90.03 99.33 14.00 3.79
r104 Solomon 1 100 4 270.67 270.67 78.51 11.00 72.73 27.27 91.29 99.59 4.00 3.77
r104 Solomon 1 100 8 277.99 275.31 72.86 11.00 81.82 18.18 84.22 99.47 2.00 1.84

214

Instance id type |K| |N| periods Θbest Θbest ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%) waiting cust(%) waiting time(%)

r104 Solomon 2 100 4 481.81 480.47 141.04 21.00 71.43 28.57 89.73 99.62 5.00 2.64
r104 Solomon 2 100 8 498.16 495.76 122.32 20.00 70.00 30.00 80.34 99.62 4.00 1.07
r104 Solomon 3 100 4 674.29 669.72 192.80 30.00 53.33 46.67 77.46 99.67 8.00 3.06
r104 Solomon 3 100 8 680.47 668.80 211.68 30.00 73.33 26.67 78.59 99.61 7.00 3.79
r104 Solomon 4 100 4 837.89 834.19 232.35 41.00 63.41 36.59 88.30 98.96 11.00 3.01
r104 Solomon 4 100 8 837.75 823.06 299.27 41.00 65.85 34.15 77.59 99.24 11.00 4.55
r105 Solomon 1 100 4 216.69 216.69 99.05 9.00 33.33 66.67 80.98 99.59 2.00 4.15
r105 Solomon 1 100 8 207.58 207.58 80.09 9.00 55.56 44.44 82.75 96.68 7.00 6.31
r105 Solomon 2 100 4 386.62 386.62 131.78 18.00 50.00 50.00 97.16 97.44 6.00 10.63
r105 Solomon 2 100 8 386.74 378.95 118.47 17.00 41.18 58.82 90.69 93.28 10.00 10.87
r105 Solomon 3 100 4 530.05 527.42 144.97 24.00 58.33 41.67 88.50 93.96 12.00 13.60
r105 Solomon 3 100 8 539.35 537.37 155.87 24.00 37.50 62.50 90.52 90.38 12.00 14.77
r105 Solomon 4 100 4 674.97 669.99 180.79 34.00 58.82 41.18 80.78 94.13 10.00 6.94
r105 Solomon 4 100 8 679.71 677.31 194.17 34.00 44.12 55.88 80.44 92.33 17.00 9.96
r106 Solomon 1 100 4 253.96 250.06 81.63 12.00 50.00 50.00 98.52 99.45 2.00 0.17
r106 Solomon 1 100 8 246.45 243.88 76.80 10.00 60.00 40.00 93.51 100.00 1.00 0.74
r106 Solomon 2 100 4 437.95 434.65 127.11 18.00 72.22 27.78 66.70 99.65 3.00 2.08
r106 Solomon 2 100 8 453.89 453.04 132.16 20.00 60.00 40.00 83.86 99.80 5.00 1.22
r106 Solomon 3 100 4 634.17 627.47 183.01 30.00 56.67 43.33 78.05 99.66 5.00 1.63
r106 Solomon 3 100 8 632.39 620.38 180.92 30.00 53.33 46.67 82.25 99.72 8.00 1.38
r106 Solomon 4 100 4 799.23 795.90 221.07 39.00 51.28 48.72 77.09 96.96 9.00 4.74
r106 Solomon 4 100 8 789.40 781.20 225.12 38.00 73.68 26.32 78.71 96.64 10.00 6.86
r107 Solomon 1 100 4 259.00 257.98 76.35 11.00 100.00 0.00 81.78 98.92 0.00 0.00
r107 Solomon 1 100 8 267.01 267.01 73.13 10.00 70.00 30.00 85.87 99.67 3.00 2.43
r107 Solomon 2 100 4 455.45 453.87 128.73 20.00 85.00 15.00 91.64 99.25 2.00 1.19
r107 Solomon 2 100 8 465.69 460.82 119.69 19.00 68.42 31.58 89.50 99.65 5.00 2.36
r107 Solomon 3 100 4 649.76 647.59 177.78 30.00 83.33 16.67 90.71 97.17 3.00 1.65
r107 Solomon 3 100 8 652.61 649.27 175.40 27.00 62.96 37.04 89.78 97.71 8.00 3.49
r107 Solomon 4 100 4 832.33 823.69 235.96 39.00 79.49 20.51 90.71 95.84 4.00 3.66
r107 Solomon 4 100 8 801.52 798.96 222.21 35.00 74.29 25.71 83.97 97.77 9.00 2.80
r108 Solomon 1 100 4 270.00 270.00 86.43 11.00 90.91 9.09 90.04 99.63 1.00 0.98
r108 Solomon 1 100 8 273.68 271.13 79.79 11.00 72.73 27.27 93.14 99.70 2.00 0.37
r108 Solomon 2 100 4 476.10 472.18 138.30 21.00 85.71 14.29 94.25 98.69 2.00 0.86
r108 Solomon 2 100 8 494.64 491.39 141.61 21.00 76.19 23.81 87.94 98.65 3.00 1.23
r108 Solomon 3 100 4 673.67 657.56 174.20 29.00 79.31 20.69 93.58 99.66 4.00 0.53
r108 Solomon 3 100 8 695.44 693.63 188.98 31.00 83.87 16.13 91.89 97.00 4.00 1.19
r108 Solomon 4 100 4 841.19 827.61 235.64 38.00 73.68 26.32 93.58 98.84 5.00 1.26
r108 Solomon 4 100 8 867.96 859.39 254.84 39.00 79.49 20.51 94.25 98.05 8.00 2.41
r109 Solomon 1 100 4 248.90 248.05 97.88 12.00 58.33 41.67 92.94 99.59 2.00 1.20
r109 Solomon 1 100 8 251.18 248.68 100.83 11.00 36.36 63.64 95.63 100.00 4.00 3.07
r109 Solomon 2 100 4 430.65 429.54 121.77 19.00 63.16 36.84 84.54 98.33 6.00 3.31
r109 Solomon 2 100 8 453.62 448.10 121.86 20.00 40.00 60.00 89.50 99.14 6.00 5.28
r109 Solomon 3 100 4 600.43 598.65 169.37 27.00 70.37 29.63 82.97 95.82 6.00 2.77
r109 Solomon 3 100 8 625.54 617.43 166.07 29.00 44.83 55.17 88.63 96.64 8.00 4.76
r109 Solomon 4 100 4 738.42 730.98 189.25 37.00 64.86 35.14 90.63 96.22 5.00 3.28
r109 Solomon 4 100 8 770.09 759.17 201.98 38.00 50.00 50.00 83.78 95.75 11.00 3.18
r110 Solomon 1 100 4 240.00 238.23 81.44 11.00 72.73 27.27 87.34 100.00 2.00 2.78
r110 Solomon 1 100 8 251.16 248.49 94.40 11.00 54.55 45.45 89.45 99.59 2.00 1.32
r110 Solomon 2 100 4 440.93 440.57 119.09 18.00 83.33 16.67 63.01 97.81 0.00 0.00

215

Instance id type |K| |N| periods Θbest Θbest ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%) waiting cust(%) waiting time(%)

r110 Solomon 2 100 8 466.83 459.01 140.68 20.00 65.00 35.00 71.45 99.82 3.00 1.43
r110 Solomon 3 100 4 625.34 621.76 163.25 30.00 73.33 26.67 70.28 98.88 3.00 0.22
r110 Solomon 3 100 8 645.73 636.73 177.72 30.00 56.67 43.33 74.50 99.73 6.00 2.38
r110 Solomon 4 100 4 784.73 780.52 225.36 38.00 68.42 31.58 69.59 98.88 7.00 3.18
r110 Solomon 4 100 8 794.73 789.73 229.31 37.00 59.46 40.54 65.82 98.08 8.00 2.78
r111 Solomon 1 100 4 262.73 262.33 81.04 11.00 63.64 36.36 76.04 99.59 2.00 3.06
r111 Solomon 1 100 8 261.70 260.47 73.20 11.00 45.45 54.55 80.75 99.64 4.00 3.63
r111 Solomon 2 100 4 459.46 458.73 121.66 20.00 50.00 50.00 69.81 99.62 5.00 5.37
r111 Solomon 2 100 8 471.05 460.67 133.01 20.00 65.00 35.00 69.32 99.62 3.00 1.84
r111 Solomon 3 100 4 649.20 645.80 178.33 31.00 58.06 41.94 75.99 99.83 6.00 2.10
r111 Solomon 3 100 8 664.01 658.36 178.40 30.00 56.67 43.33 76.45 98.08 5.00 1.81
r111 Solomon 4 100 4 817.79 802.88 231.05 42.00 45.24 54.76 78.46 99.79 7.00 1.58
r111 Solomon 4 100 8 812.21 799.36 250.64 40.00 57.50 42.50 75.87 99.31 10.00 3.56
r112 Solomon 1 100 4 258.31 257.10 77.62 11.00 63.64 36.36 99.41 97.43 1.00 0.72
r112 Solomon 1 100 8 262.78 260.23 83.31 11.00 72.73 27.27 96.74 97.72 3.00 2.95
r112 Solomon 2 100 4 462.91 461.65 145.80 20.00 55.00 45.00 80.96 99.09 3.00 0.44
r112 Solomon 2 100 8 467.52 462.02 123.75 20.00 65.00 35.00 81.48 99.21 5.00 1.74
r112 Solomon 3 100 4 664.39 655.49 183.88 30.00 66.67 33.33 71.80 96.93 3.00 0.31
r112 Solomon 3 100 8 665.84 654.97 185.42 30.00 63.33 36.67 79.16 99.22 9.00 2.32
r112 Solomon 4 100 4 844.96 829.98 227.59 41.00 73.17 26.83 68.44 98.17 6.00 1.30
r112 Solomon 4 100 8 831.96 823.65 277.83 41.00 68.29 31.71 77.48 96.94 8.00 0.90

rc101 Solomon 1 100 4 192.01 192.01 78.67 8.00 75.00 25.00 91.25 93.51 4.00 11.09
rc101 Solomon 1 100 8 201.83 201.83 82.41 9.00 44.44 55.56 99.80 95.24 4.00 12.92
rc101 Solomon 2 100 4 363.13 361.56 126.78 16.00 56.25 43.75 70.08 96.19 7.00 6.45
rc101 Solomon 2 100 8 381.98 381.98 122.33 18.00 55.56 44.44 97.12 91.67 5.00 8.23
rc101 Solomon 3 100 4 520.06 518.45 146.07 23.00 52.17 47.83 77.07 93.25 9.00 7.08
rc101 Solomon 3 100 8 537.33 532.80 159.69 25.00 60.00 40.00 91.72 95.49 11.00 5.19
rc101 Solomon 4 100 4 667.76 661.32 202.86 33.00 51.52 48.48 80.52 93.50 14.00 7.30
rc101 Solomon 4 100 8 681.97 670.14 193.67 32.00 56.25 43.75 90.31 93.61 13.00 4.87
rc102 Solomon 1 100 4 219.12 217.72 95.50 10.00 60.00 40.00 97.65 99.85 2.00 2.50
rc102 Solomon 1 100 8 222.94 222.94 80.89 8.00 37.50 62.50 78.68 99.85 3.00 5.00
rc102 Solomon 2 100 4 414.75 413.58 123.95 20.00 50.00 50.00 87.46 98.25 3.00 0.50
rc102 Solomon 2 100 8 434.56 434.56 106.80 16.00 50.00 50.00 77.51 98.11 8.00 6.86
rc102 Solomon 3 100 4 603.02 598.05 163.43 29.00 62.07 37.93 92.79 98.80 5.00 1.22
rc102 Solomon 3 100 8 625.61 625.61 135.61 25.00 52.00 48.00 82.71 98.45 12.00 6.51
rc102 Solomon 4 100 4 776.23 766.64 208.37 36.00 61.11 38.89 79.94 98.59 11.00 5.25
rc102 Solomon 4 100 8 792.47 774.24 193.44 35.00 51.43 48.57 82.17 98.75 15.00 5.07
rc103 Solomon 1 100 4 226.00 223.42 89.09 9.00 88.89 11.11 82.29 95.62 1.00 3.06
rc103 Solomon 1 100 8 224.00 222.14 76.36 9.00 66.67 33.33 74.00 99.85 2.00 3.13
rc103 Solomon 2 100 4 436.92 434.34 129.90 17.00 88.24 11.76 83.86 97.00 1.00 1.51
rc103 Solomon 2 100 8 437.74 437.74 110.80 16.00 68.75 31.25 87.14 98.89 3.00 2.25
rc103 Solomon 3 100 4 619.55 614.40 148.52 27.00 66.67 33.33 87.62 98.59 6.00 2.04
rc103 Solomon 3 100 8 635.06 630.90 149.44 24.00 62.50 37.50 90.38 99.16 6.00 2.92
rc103 Solomon 4 100 4 798.26 785.45 200.47 37.00 62.16 37.84 92.64 97.50 6.00 2.11
rc103 Solomon 4 100 8 817.46 805.81 206.10 35.00 65.71 34.29 90.93 98.18 8.00 4.31
rc104 Solomon 1 100 4 254.20 252.80 76.68 9.00 66.67 33.33 86.64 100.00 1.00 1.20
rc104 Solomon 1 100 8 258.23 256.56 80.10 10.00 50.00 50.00 99.50 99.92 2.00 1.56
rc104 Solomon 2 100 4 479.61 478.68 121.39 18.00 55.56 44.44 88.23 99.93 3.00 1.27
rc104 Solomon 2 100 8 495.24 483.85 133.66 20.00 70.00 30.00 98.41 98.75 3.00 1.81

216

Instance id type |K| |N| periods Θbest Θbest ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%) waiting cust(%) waiting time(%)

rc104 Solomon 3 100 4 700.82 691.27 154.67 28.00 67.86 32.14 78.24 99.88 5.00 0.99
rc104 Solomon 3 100 8 713.23 704.38 181.93 29.00 75.86 24.14 92.54 98.55 5.00 2.28
rc104 Solomon 4 100 4 898.13 894.63 213.81 39.00 69.23 30.77 79.42 99.73 7.00 1.01
rc104 Solomon 4 100 8 892.98 884.07 212.23 36.00 72.22 27.78 81.18 99.43 7.00 2.59
rc105 Solomon 1 100 4 204.83 199.73 82.50 11.00 63.64 36.36 94.60 97.80 1.00 2.19
rc105 Solomon 1 100 8 218.00 218.00 85.22 10.00 70.00 30.00 83.21 98.94 4.00 3.72
rc105 Solomon 2 100 4 395.09 388.80 118.44 18.00 55.56 44.44 63.42 96.64 4.00 2.86
rc105 Solomon 2 100 8 414.16 406.89 121.32 20.00 60.00 40.00 87.18 98.00 5.00 2.01
rc105 Solomon 3 100 4 576.90 569.95 151.75 27.00 55.56 44.44 67.77 96.72 6.00 2.46
rc105 Solomon 3 100 8 597.52 597.32 155.87 28.00 67.86 32.14 74.86 97.53 10.00 3.62
rc105 Solomon 4 100 4 750.02 739.78 202.71 36.00 61.11 38.89 76.84 96.57 8.00 2.69
rc105 Solomon 4 100 8 776.30 775.27 178.92 36.00 66.67 33.33 74.81 97.76 12.00 3.02
rc106 Solomon 1 100 4 203.93 203.93 101.23 8.00 25.00 75.00 83.26 97.44 3.00 4.93
rc106 Solomon 1 100 8 215.96 215.96 91.35 9.00 66.67 33.33 59.15 96.02 2.00 0.62
rc106 Solomon 2 100 4 405.87 405.19 112.34 17.00 41.18 58.82 77.00 97.48 4.00 2.68
rc106 Solomon 2 100 8 419.02 414.18 123.77 17.00 70.59 29.41 62.36 96.96 5.00 0.96
rc106 Solomon 3 100 4 597.99 592.00 153.12 27.00 44.44 55.56 76.26 98.31 9.00 3.68
rc106 Solomon 3 100 8 611.70 610.58 162.71 27.00 51.85 48.15 74.75 97.49 9.00 2.04
rc106 Solomon 4 100 4 783.84 770.76 210.30 37.00 59.46 40.54 76.21 94.70 11.00 2.86
rc106 Solomon 4 100 8 777.00 770.73 212.85 34.00 79.41 20.59 69.80 95.71 9.00 3.99
rc107 Solomon 1 100 4 213.64 213.36 84.65 8.00 50.00 50.00 65.25 97.12 3.00 8.67
rc107 Solomon 1 100 8 239.23 236.99 73.05 10.00 60.00 40.00 99.19 98.54 3.00 3.08
rc107 Solomon 2 100 4 422.73 422.41 117.99 16.00 62.50 37.50 81.82 92.91 3.00 4.53
rc107 Solomon 2 100 8 449.97 445.89 124.05 19.00 42.11 57.89 95.56 97.47 6.00 3.70
rc107 Solomon 3 100 4 628.22 622.58 153.69 26.00 61.54 38.46 92.53 94.74 3.00 0.90
rc107 Solomon 3 100 8 653.68 644.98 162.31 28.00 67.86 32.14 92.59 97.86 5.00 3.42
rc107 Solomon 4 100 4 801.40 793.60 213.53 39.00 56.41 43.59 106.57 95.27 6.00 2.18
rc107 Solomon 4 100 8 848.13 840.64 223.70 35.00 62.86 37.14 94.34 97.07 7.00 2.94
rc108 Solomon 1 100 4 235.92 234.96 79.27 10.00 30.00 70.00 83.46 98.33 2.00 2.66
rc108 Solomon 1 100 8 246.53 246.53 73.75 9.00 66.67 33.33 69.55 99.85 2.00 1.41
rc108 Solomon 2 100 4 451.14 444.48 116.44 20.00 30.00 70.00 83.27 98.97 4.00 2.98
rc108 Solomon 2 100 8 469.45 464.59 125.13 18.00 66.67 33.33 83.83 99.09 6.00 2.51
rc108 Solomon 3 100 4 648.44 642.60 160.39 28.00 46.43 53.57 80.20 97.97 6.00 2.89
rc108 Solomon 3 100 8 696.50 684.73 209.64 30.00 60.00 40.00 93.55 99.34 9.00 2.06
rc108 Solomon 4 100 4 851.27 847.34 236.09 39.00 46.15 53.85 85.95 98.28 7.00 2.46
rc108 Solomon 4 100 8 875.41 851.34 247.31 40.00 65.00 35.00 95.54 98.73 8.00 1.60

Avg 572.69 567.76 153.59 23.80 61.05 38.95 86.24 97.46 6.59 3.83

Table 5.22: Detailed results for the Solomon large-scale instances solved for the C-TOP-TDPLSF-w by ILS-cWait-fin

217

Instance id type |K| |N | periods Θbest Θbest ta(s) cust visited(%) cust visited P(%) cust visited LP(%) avg load(%) avg duration(%) waiting cust(%) waiting time(%)
pr01 Cordeau 1 48 4 246.21 246.21 35.32 33.33 62.50 37.50 78.87 65.57 8.33 13.16
pr01 Cordeau 1 48 8 261.33 261.33 42.40 35.42 64.71 35.29 81.79 59.68 12.50 12.63
pr01 Cordeau 2 48 4 406.75 405.06 43.42 56.25 55.56 44.44 64.08 61.55 20.83 13.45
pr01 Cordeau 2 48 8 430.62 423.84 61.00 62.50 46.67 53.33 71.23 60.16 25.00 14.81
pr01 Cordeau 3 48 4 538.50 534.09 58.21 79.17 50.00 50.00 66.06 57.10 25.00 17.52
pr01 Cordeau 3 48 8 545.60 534.79 69.58 79.17 76.32 23.68 59.36 59.59 29.17 22.61
pr01 Cordeau 4 48 4 628.44 623.05 64.69 93.75 62.22 37.78 55.26 57.51 31.25 20.11
pr01 Cordeau 4 48 8 630.85 623.99 86.94 91.67 61.36 38.64 52.19 61.55 39.58 16.28
pr02 Cordeau 1 96 4 346.76 344.59 89.40 21.88 61.90 38.10 82.52 66.48 4.17 4.56
pr02 Cordeau 1 96 8 322.60 321.62 82.57 18.75 66.67 33.33 71.62 51.95 2.08 15.79
pr02 Cordeau 2 96 4 603.35 602.19 189.96 37.50 75.00 25.00 65.94 60.97 8.33 10.22
pr02 Cordeau 2 96 8 606.41 596.16 165.43 35.42 58.82 41.18 64.26 61.24 11.46 9.37
pr02 Cordeau 3 96 4 810.73 807.14 222.40 48.96 74.47 25.53 59.67 61.64 12.50 10.91
pr02 Cordeau 3 96 8 800.57 781.26 224.42 48.96 63.83 36.17 63.60 59.79 8.33 10.10
pr02 Cordeau 4 96 4 963.01 950.42 296.52 63.54 68.85 31.15 57.95 61.12 17.71 12.12
pr02 Cordeau 4 96 8 929.79 918.84 308.57 59.38 70.18 29.82 55.60 58.38 12.50 12.33
pr03 Cordeau 1 144 4 312.40 311.41 153.44 12.50 55.56 44.44 73.85 64.51 2.08 4.33
pr03 Cordeau 1 144 8 350.23 350.23 149.15 13.89 65.00 35.00 81.28 62.10 3.47 9.92
pr03 Cordeau 2 144 4 603.76 597.80 236.53 22.92 63.64 36.36 67.97 63.85 5.56 8.90
pr03 Cordeau 2 144 8 637.14 627.75 282.27 26.39 71.05 28.95 76.15 62.80 6.25 7.57
pr03 Cordeau 3 144 4 832.78 825.88 346.38 34.72 56.00 44.00 68.96 60.22 9.72 13.87
pr03 Cordeau 3 144 8 875.73 866.90 439.88 36.11 63.46 36.54 70.65 64.07 9.72 12.85
pr03 Cordeau 4 144 4 1039.18 1021.69 511.07 45.83 63.64 36.36 69.24 59.53 11.81 15.67
pr03 Cordeau 4 144 8 1047.96 1026.02 596.29 47.22 60.29 39.71 71.68 63.76 12.50 10.30
pr04 Cordeau 1 192 4 411.86 410.17 236.62 11.46 68.18 31.82 85.41 64.85 2.08 5.52
pr04 Cordeau 1 192 8 394.54 388.54 265.81 10.94 71.43 28.57 77.62 67.24 3.65 4.13
pr04 Cordeau 2 192 4 751.97 744.38 531.70 21.88 61.90 38.10 74.89 65.66 5.21 6.21
pr04 Cordeau 2 192 8 751.43 741.54 697.16 21.35 56.10 43.90 82.80 65.27 5.73 3.43
pr04 Cordeau 3 192 4 1038.30 1012.87 637.32 31.77 65.57 34.43 78.84 64.13 6.25 5.21
pr04 Cordeau 3 192 8 1040.74 1024.82 809.08 32.29 53.23 46.77 93.95 67.81 7.81 5.87
pr04 Cordeau 4 192 4 1304.92 1275.87 1084.56 41.15 63.29 36.71 88.72 64.68 7.81 5.02
pr04 Cordeau 4 192 8 1317.72 1279.19 1373.94 40.62 64.10 35.90 88.22 64.88 11.98 9.76
pr05 Cordeau 1 240 4 450.20 447.37 453.85 10.42 68.00 32.00 78.19 57.93 1.25 12.75
pr05 Cordeau 1 240 8 456.07 450.14 383.92 11.25 59.26 40.74 89.51 64.27 2.08 8.10
pr05 Cordeau 2 240 4 863.50 850.69 742.36 20.00 68.75 31.25 74.48 62.22 3.75 11.26
pr05 Cordeau 2 240 8 860.32 853.75 837.33 18.75 68.89 31.11 67.26 64.60 5.83 13.32
pr05 Cordeau 3 240 4 1207.21 1192.08 1170.84 28.33 58.82 41.18 66.00 64.71 5.83 10.69
pr05 Cordeau 3 240 8 1173.66 1156.25 1242.57 27.50 57.58 42.42 72.80 62.10 5.83 11.30
pr05 Cordeau 4 240 4 1481.13 1463.84 1458.43 36.67 55.68 44.32 70.09 64.23 6.67 11.45
pr05 Cordeau 4 240 8 1446.64 1427.49 1549.20 34.58 62.65 37.35 61.28 64.71 8.33 11.65
pr07 Cordeau 1 72 4 242.25 242.25 53.35 18.06 76.92 23.08 99.73 64.10 4.17 8.86
pr07 Cordeau 1 72 8 259.65 259.65 61.43 19.44 42.86 57.14 93.87 66.26 6.94 3.94
pr07 Cordeau 2 72 4 469.14 466.72 79.39 38.89 60.71 39.29 91.21 63.38 6.94 5.37
pr07 Cordeau 2 72 8 485.12 478.62 79.91 38.89 60.71 39.29 86.38 64.18 15.28 12.06
pr07 Cordeau 3 72 4 623.40 622.03 92.51 54.17 58.97 41.03 88.83 61.88 12.50 7.50
pr07 Cordeau 3 72 8 663.20 656.00 109.99 52.78 68.42 31.58 83.79 63.89 15.28 10.61
pr07 Cordeau 4 72 4 746.04 739.97 141.30 69.44 68.00 32.00 84.57 61.35 13.89 8.22
pr07 Cordeau 4 72 8 781.82 773.75 156.13 68.06 65.31 34.69 85.73 62.35 25.00 11.06
pr08 Cordeau 1 144 4 381.08 373.35 157.18 14.58 52.38 47.62 88.11 66.46 4.17 6.23
pr08 Cordeau 1 144 8 381.32 379.26 154.62 12.50 61.11 38.89 50.47 62.04 4.17 14.14
pr08 Cordeau 2 144 4 698.23 691.90 241.24 27.08 56.41 43.59 80.20 64.59 6.94 8.01
pr08 Cordeau 2 144 8 701.73 684.47 317.55 26.39 57.89 42.11 75.09 61.18 8.33 12.26
pr08 Cordeau 3 144 4 943.55 934.40 427.27 36.81 56.60 43.40 71.25 63.43 10.42 7.72
pr08 Cordeau 3 144 8 955.13 929.91 424.99 38.19 50.91 49.09 74.34 63.08 10.42 9.94
pr08 Cordeau 4 144 4 1177.99 1171.93 651.59 47.92 57.97 42.03 69.80 65.00 11.11 7.86
pr08 Cordeau 4 144 8 1142.23 1125.42 627.74 46.53 55.22 44.78 76.47 62.11 12.50 8.72
pr09 Cordeau 1 216 4 383.20 377.47 288.35 9.26 60.00 40.00 60.99 60.06 2.31 8.95
pr09 Cordeau 1 216 8 394.57 383.24 275.41 10.19 81.82 18.18 66.62 61.24 1.39 7.72
pr09 Cordeau 2 216 4 725.16 708.50 560.03 21.30 60.87 39.13 72.32 64.60 3.24 6.41
pr09 Cordeau 2 216 8 717.55 714.91 578.10 17.59 63.16 36.84 57.80 69.79 3.70 5.42
pr09 Cordeau 3 216 4 1028.31 1016.66 903.51 28.24 54.10 45.90 70.54 62.30 5.56 9.31
pr09 Cordeau 3 216 8 1057.54 1008.42 834.00 28.24 57.38 42.62 62.89 66.70 8.80 8.04
pr09 Cordeau 4 216 4 1315.21 1287.40 1166.10 35.65 63.64 36.36 65.95 62.47 6.94 8.11
pr09 Cordeau 4 216 8 1302.47 1285.74 1247.36 35.65 66.23 33.77 63.10 65.14 9.26 9.78
Avg 739.01 728.64 435.31 35.94 62.17 37.83 73.44 62.84 9.83 10.02

Table 5.23: Detailed results for the Cordeau large-scale instances solved for the C-
TOP-TDPLSF-w by ILS-cWait-fin.

218

Chapter 6

Conclusion and Outlook

This thesis contributes with the development of metaheuristics for four routing
problems, each with unique complexities and practical applications. We show how
tailored algorithmic design helps solving large-scale real-world instances of these
routing problems, significantly improving solution quality and computational efficiency
compared to state-of the art methods.

Motivated by the problem of routing mail carriers, we propose a metaheuristic to
solve large-scale ASTTRPSD instances, called ILS-ASTTRPSD, making use of the
natural decomposition of the problem into first-level-tour and second-level-tours. On
real-world instances provided by DHL, our approach consistently outperforms existing
solutions. This improvement can be explained by a difference in the solution structure
where mail carriers spend less time driving and walking and stop at fewer parking
spots, thereby also reducing stress originating from parking activities for mail carriers.
In our computational experiments we also evaluate the impact of not considering
parking and loading times. While ignoring both these time components results in
higher travel times, the drawbacks of ignoring loading times are more limited than
those of ignoring parking times. Future research could focus on the introduction of
fluctuations in travel times or availability of parking spots during different times of
the day.

Because besides to delivering letters, mail carriers also have to pick them up at
the depot at so-called preparation tables, we introduce the VRPDOC, which can be
used to model the problem of planning the routes of several mail carriers within a
delivery area, including optimizing the household-to-mail carrier assignment. Because
this problem can be solved both at the tactical and operational level, we propose two
metaheuristics ILS-VRPDOCquality and ILS-VRPDOCspeed to focus more on solution
quality or runtime. On large-scale real-world instances, our approach returns solutions
of better quality with respect to both, the total travel time of mail carriers and the
complexity of the letter collections at the depot compared to the DHL solutions.
For mail carriers, this means that letter collection is resulting in less confusion and
mistakes and is leading to faster learning processes. Our numerical studies show
that travel times could be reduced by 11% on average if depot operation constraints
are ignored, however, ignoring them extremely complicates the letter collection at

219

the tables. An interesting future research direction could be to solve the stochastic
problem that aims on finding a robust assignment of the street segments to the tables
considering the different demand scenarios, defined by the different number of mail
carriers needed.

For the AngleTSP and the AngleDistanceTSP, we propose a heuristic based on
a GTS framework that considers the geometric features of the problem into our
construction heuristic and the sparsification methods, called GTS-angular. The
computational experiments demonstrate that the performance of GTS-angular lies
on the Pareto frontier of heuristic AngleTSP and AngleDistanceTSP methods. With
GTS-angular, we find new best-known solutions on around 80% of AngleTSP and
AngleDistanceTSP instances for which an optimal solution was not yet found.

Finally, we introduce the C-TOP-TDPLSF-nw and C-TOP-TDPLSF-w. To solve
them in reasonable runtimes, we design two ILS variants, namely ILS-noWait and
ILS-cWait-fin, that differ in how the waiting decisions are evaluated in the local search
phase. ILS-noWait shows a good performance, but on ILS-cWait-fin there is still room
for improvements. To improve the performance on ILS-cWait-fin we tried to solve the
mathematical model that determines the optimal waiting times in the evaluation of
every move in the ILS. However, this increases the runtime drastically. To overcome
this problem, future research could focus on finding a better performing algorithm to
determine optimal or near optimal waiting times in the evaluation of moves.

Collectively, all these studies demonstrate the importance of metaheuristic ap-
proaches to solve complex real-world routing problems.

220

	Introduction
	Optimization problems studied in this thesis
	Organization

	The asymmetric single truck and trailer routing problem with satellite depots
	Introduction
	Literature review
	Problem description
	Conditions for particular optimal solution structures
	Granular iterated local search
	Construction heuristic
	Iterated local search

	Computational experiments
	Description of the instances
	Computational environment and parameter tuning
	Results

	Conclusion
	Appendix
	Comparison on symmetric STTRPSD instances
	Detailed results for the impact of ignoring parking and loading times

	The vehicle routing problem with operation simplification constraints
	Introduction
	Problem description
	Literature review
	Contribution and structure of the paper

	Mathematical formulation
	Formulation F1a
	Preprocessing and valid inequalities

	Complexity results
	An iterated local search for the VRPDOC
	Construction heuristic
	Iterated local search

	Computational experiments
	Description of test instances
	Effectiveness of the preprocessing techniques and valid inequalities
	Comparison between ILS-VRPDOC and Gurobi
	Comparison of ILS-VRPDOC solutions and DHL solutions
	The impact of the depot operation constraints

	Conclusion
	Appendix
	Alternative model formulations
	Parameter tuning and analysis of the ILS-VRPDOC components
	Detailed results for the comparison of the DHL solutions to ILS-VRPDOCquality solutions
	Detailed results for the routing-based comparison of the DHL solutions to ILS-VRPDOCquality solutions
	Detailed results for the depot operation-based comparison of the DHL solutions to ILS-VRPDOCquality solutions
	Detailed results for the routing-based comparison of the ILS-VRPDOCquality solutions to the ILS-VRPDOCqualityOFF solutions
	Detailed results for the depot operation-based comparison of the ILS-VRPDOCquality solutions to the ILS-VRPDOCqualityOFF solutions

	The angular traveling salesman problem
	Introduction
	Literature review
	Granular tabu search for the angular metric traveling salesman problem
	Construction heuristics
	Neighborhoods
	Construction of the generator arc set
	Continuous diversification

	Computational experiments
	Benchmark instances and computational environment
	Parameter setting
	Performance of GTS-angular with different construction heuristics
	Comparison to the literature

	Conclusion
	Appendix
	Dominated and non-dominated algorithmic variants by stanvek2019geometric
	GTS-angular detailed results

	The capacitated team orienteering problem with multiple time windows and time-dependent score functions
	Introduction
	Literature review
	Problem description and model formulation
	C-TOP-TDPLSF with no waiting at customers (C-TOP-TDPLSF-nw)
	C-TOP-TDPLSF with flexible waiting strategy (C-TOP-TDPLSF-w)
	Preprocessing techniques and valid inequalities

	Iterated local search for the C-TOP-TDPLSF-nw and the C-TOP-TDPLSF-w
	Variable neighborhood descent
	Perturbation
	Finalization phase

	Computational experiments
	Description of the instances
	Effectiveness of the preprocessing techniques and valid inequalities
	Parameter tuning
	ILS-algo performance assessment
	Managerial insights

	Conclusion
	Appendix
	C-TOP-TDPLSF with constrained waiting strategy (C-TOP-TDPLSF-cw)
	Detailed results for small-scale instances
	Detailed results for the large-scale instances

	Conclusion and Outlook

