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ABSTRACT

Accurate medical image segmentation plays a crucial role in improving the precision of computer-aided diagnosis. However,
complex boundary shapes, low contrast and blurred anatomical structures make fine-grained segmentation a challenging task.
Variational Bayesian inference quantifies uncertainty through probability distributions and can construct robust probabilistic
models for the boundaries of ambiguous organs and tissues. In this paper, we apply variational Bayesian inference to medical
image segmentation and propose variational attention to model the uncertainty of low-contrast and blurry tissue and organ
boundaries. This enhances the model's ability to perceive segmentation boundaries, improving robustness and segmentation
accuracy. Variational attention first estimates the parameters of the probability distribution of latent representations based on
input features. Then, it samples latent representations from the learnt distribution to generate attention weights that optimise
the interaction between global features and ambiguous boundaries. We integrate variational attention into the U-Net model by
replacing its skip connections, constructing a multi-scale variational attention segmentation model (V-UNet). Experiments on
the ISBI 2012 and MoNuSeg 2018 datasets show that our method achieves Dice scores of 95.89% and 82.18%, respectively.
Moreover, we integrate V-UNet into the Mask R-CNN framework by replacing the FPN feature extraction head and propose a
two-stage segmentation method. Compared to the original Mask R-CNN, our method improves the Dice score by 0.81%, mAP by
8.06% and F1 score by 0.51%.

1 | Introduction

Medical image segmentation plays a critical role in healthcare
image analysis, directly impacting diagnostic and therapeutic
outcomes in applications ranging from cancer screening and
tumour detection to organ segmentation and lesion identification.
The primary objective is to achieve precise boundary annotation

and regional segmentation of anatomical structures and patho-
logical areas, which forms the foundation for subsequent quali-
tative and quantitative analysis. However, manual segmentation
of medical images remains labour-intensive, time-consuming and
susceptible to inter-observer and intra-observer variability [1].
With rapid advancements in computer technology, particularly
breakthroughs in artificial intelligence, computer-aided
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segmentation techniques have emerged. These techniques enable
automated and accurate processing of large-scale medical images,
significantly improving diagnostic efficiency and precision.

Among existing segmentation methods, deep learning tech-
niques, especially convolutional neural networks (CNNs), have
demonstrated remarkable capabilities in various medical image
segmentation tasks [2]. Compared to traditional feature-
engineered approaches, deep learning models possess the abil-
ity to automatically learn effective feature representations from
data, thereby substantially enhancing segmentation perfor-
mance [3]. Nevertheless, medical image segmentation still faces
several challenges:

e Complex Structures and Blurred Boundaries: Cellular im-
ages often contain target structures such as nuclei and
cytoplasm with considerable variability in morphology,
scale and spatial distribution. These structures frequently
exhibit adhesion, overlap or uneven staining, resulting in
ambiguous and poorly defined boundaries. For example, in
haematoxylin and eosin (H&E) stained histopathological
slides or datasets like MoNuSeg, cell boundaries are often
indistinct due to low contrast, posing significant challenges
to precise segmentation.

o [Insufficient Modelling of Uncertainty: Cell images are sus-
ceptible to various sources of uncertainty, including stain-
ing artefacts, imaging noise and section thickness variation.
However, most existing segmentation approaches rely on
deterministic frameworks and lack mechanisms to explic-
itly model predictive uncertainty. This limitation reduces
robustness, particularly in the presence of ambiguous re-
gions or distributional shifts between training and testing
data.

e Limited Capability in Capturing Global Contextual Features:
Accurate segmentation in histological images often re-
quires modelling long-range dependencies, as the contex-
tual relationship among distant regions can be critical for
disambiguating local structures. Conventional convolu-
tional networks are constrained by their local receptive
fields, leading to suboptimal global context representation
and inconsistent segmentation performance in densely
populated or structurally complex scenarios.

As shown in Figure 1, cell images may exhibit issues such as low
tissue clarity, contamination, uneven staining, blurred bound-
aries and indistinct features due to the methods used in tissue
preparation and image acquisition. These factors lead to
ambiguous criteria and poor recognisability, making it difficult
to determine whether a specific region corresponds to a
particular tissue structure based solely on simple observations.
Therefore, it is essential to explore contextual relationships from
their underlying structural distributions in order to eliminate
ambiguities in these uncertain areas.

Various segmentation techniques have been proposed to tackle
these challenges. Recent deep learning-based methods demon-
strate particular advantages in handling complex scenarios and
feature representation. Attention, as a technique to enhance
model focus, has been widely adopted in image processing tasks.
By dynamically weighting features across spatial regions,

FIGURE1 | The inherent uncertainty in the data is evident. The area
within the green box, characterised by distinct and clear contours, is
likely to be misclassified as a cellular structure, although it is not.
Conversely, the structure within the red box that appears to lack
cellular characteristics is actually a cellular structure.

attention enables models to better concentrate on critical image
areas, thereby improving performance. However, existing
attention inadequately accounts for image uncertainties,
potentially compromising robustness and accuracy when
dealing with complex backgrounds and ambiguous boundaries.
Bayesian inference addresses this limitation by updating model
posterior distributions through data observation to capture un-
certainties. Nevertheless, direct computation of posterior dis-
tributions in Bayesian inference typically involves intractable
high-dimensional integrals. Variational Bayesian inference
overcomes this challenge by introducing a tractable variational
distribution and minimising the Kullback-Leibler (KL) diver-
gence between the variational and true posterior distributions.
Integrating variational Bayesian inference with attention en-
ables effective uncertainty modelling in images, thereby
enhancing global feature capture capabilities and demonstrating
superior robustness and generalisability, Figure 2 illustrates the
computation process of variational attention.

This paper proposes V-UNet, which combines a variational
attention with the U-Net architecture [4]. The variational
attention addresses computational overhead in high-resolution
medical images through multi-scale pooling operations. By
performing pooling at multiple scales (e.g., 3 X 3, 6 X 6,
9 X 9), the network extracts multi-scale contextual information
while reducing computational complexity and preserving se-
mantic richness. For latent variable modelling, we employ the
reparameterisation trick [5] to enable gradient backpropagation
through sampling operations. Specifically, instead of direct
sampling from the latent distribution, the model generates
latent representations through differentiable affine trans-
formations of noise variables sampled from a standard normal
distribution € ~ A(0,I), combined with learnt mean (u) and
variance (o) parameters. This approach combines stochasticity
with differentiability, supporting gradient propagation through
computational graphs.

Experimental results demonstrate that the proposed method
achieves excellent performance on both ISBI 2012 and MoN-
uSeg 2018 datasets, particularly outperforming most existing
mainstream methods in boundary recognition and segmenta-
tion accuracy. To enhance instance segmentation performance,
this paper further optimises Mask R-CNN [6] by replacing the
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FIGURE 2 | The principle of variational attention. The input features are first processed by a variational encoder to compute the mean and

variance, from which a latent representation z is sampled. This latent code is then used by a decoder to generate an attention map, which is

subsequently combined with the feature map to produce the final output.

original FPN-extracted multi-scale feature maps with those
generated during the upsampling process of V-UNet. This
modification removes the FPN layer and constructs an efficient
two-stage segmentation framework. This design significantly
improves the model's precision in handling complex instances,
especially in scenarios with ambiguous boundaries, demon-
strating superior generalisation capability and robustness.

To address challenges in medical image segmentation, this pa-
per proposes V-UNet, an innovative segmentation method that
integrates a variational attention into U-Net. The method
models uncertainty in the latent space of images through vari-
ational inference, thereby enhancing the model's perception of
ambiguous boundaries and global semantic information. While
maintaining segmentation accuracy, the network introduces
multi-scale pooling operations to reduce computational over-
head caused by high-resolution images, effectively decreasing
parameter count and computational complexity while efficiently
capturing multi-scale image information. Based on the above
design, the main contributions of this paper are as follows:

1. Application of variational attention to medical image seg-
mentation, improving the accuracy of complex boundary
detection and global feature capture.

2. Proposal of V-UNet, a variational attention-based image
segmentation network.

3. The implementation of a novel two-stage segmentation
approach combining V-UNet with Mask R-CNN to opti-
mise instance segmentation performance.

The remainder of this paper is organised as follows: Section 2
reviews related work in the field of image segmentation. Sec-
tion 3 presents the proposed V-UNet architecture based on
variational attention, detailing its implementation and discus-
sing a two-stage segmentation framework that integrates V-
UNet with Mask R-CNN. Section 4 describes the experimental
setup, dataset configurations and evaluation metrics and reports
comparative results on several public medical image segmen-
tation datasets and summarises the segmentation performance
of V-UNet. Finally, Section 5 discusses the limitations of the
proposed method and outlines future research directions.

2 | Related Works
Traditional medical image segmentation methods primarily rely

on morphological operations, thresholding and image filtering.
However, they have limitations when dealing with images that

feature complex shapes and blurred boundaries. To address
these issues, model-based segmentation methods have emerged,
including random walks, conditional random fields and active
contour models [7-9]. These methods perform well in certain
scenarios, but their generalisation ability is limited, and they
struggle to handle complex shapes and noise interference [10].
With the rise of deep learning, convolutional neural networks
(CNNs) have demonstrated significant advantages in medical
image segmentation. CNNs automatically learn features, mak-
ing it easier to handle complex shapes and blurred boundaries.
Among these, U-Net is a fully convolutional network based on
an encoder-decoder architecture. By utilising symmetric struc-
tures and skip connections, it combines multi-scale features
with local details, achieving remarkable results. Building upon
this, Oktay introduced Attention U-Net, which incorporates a
self-attention to enhance feature representation, significantly
improving segmentation accuracy, especially when dealing with
complex boundaries and blurred regions [11]. Zhang proposed
Res-UNet, which integrates a residual network architecture into
U-Net, enhancing the model's segmentation performance and
training efficiency [12]. Furthermore, Ibtehaz and Rahman
proposed MultiResUNet, which adopts a multi-resolution
feature fusion strategy to enhance the recognition capability of
structures at different scales, though it also increases training
time [13]. Although U-Net and its variants have made sub-
stantial progress in medical image segmentation, they still face
limitations in capturing global contextual information and
handling scenarios with complex shapes. To overcome these
limitations, researchers have introduced transformer architec-
tures to compensate for CNNs' shortcomings in capturing global
features [14, 15]. Cao et al.’s Swin-Unet combines the hierar-
chical structure of the Swin Transformer, enhancing the ability
to capture boundaries and fine details, although it incurs sig-
nificant training overhead [16]. Chen et al.’s TransUNet com-
bines the strengths of transformer and CNN, achieving
outstanding performance on small sample datasets by inte-
grating global semantic information with local features, but it
also introduces high computational costs [17].

Besides classical convolutional and transformer-based methods,
Mask R-CNN is a network framework based on instance seg-
mentation that combines object detection with semantic seg-
mentation, enabling precise organ and lesion area segmentation
at the instance level. Recent research has further optimised
Mask R-CNN. Wang et al. improved Mask R-CNN through
context fusion and deconvolution pyramid modules, enhancing
the detection and segmentation performance of overlapping
regions [18]. However, even the optimised Mask R-CNN still has
limitations in capturing boundary details. Despite the progress
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made by existing improvements in enhancing segmentation
performance, it remains challenging to accurately capture subtle
boundary information, especially in scenarios with blurry or
complex shapes. In other areas of deep learning, technologies
for image analysis tasks are also continuously advancing. Zhang
et al. proposed MHKD, which achieved effective recognition of
glomerular structures in low-resolution whole-slide images,
significantly improving the detection of small targets through a
multi-stage distillation strategy [19]. Yao et al. further proposed
a position-based anchor optimisation method, combined with a
point supervision mechanism, which effectively enhanced the
accuracy of high-density cell nucleus detection, particularly
demonstrating strong application values under weak supervi-
sion [20].

Despite the significant progress made by traditional methods and
deep learning-based segmentation models in medical image
segmentation, they still face certain challenges when dealing with
blurred boundaries, complex shapes or multi-modal images. To
address these issues, methods based on attention have gradually
become a research hotspot in recent years. Attention-based
methods dynamically adjust the focus on key regions, effec-
tively improving the model's segmentation accuracy under com-
plex structures and blurred boundaries. SMFNet, proposed by Li
et al. [21], utilises a sub-pixel-level multi-scale fusion attention,
effectively enhancing the segmentation accuracy of boundary
regions. Vman, proposed by Song et al. [15], introduces a visual-
modified attention, significantly improving the semantic fusion
ability in multi-modal images, but its performance drops notice-
ably when handling single-modal images. ATTransUNet,
designed by Li et al. [22], combines spatial and channel attention
for joint modelling, utilising transformers to enhance contextual
understanding, effectively addressing the shortcomings of tradi-
tional CNNs in modelling long-range dependencies. Further-
more, feature fusion-based methods have also shown superior
performance in medical image segmentation, particularly in
multi-source information fusion and complex region recognition.
Zhengetal. [23] combined the advantages of asymmetric adaptive
heterogeneous networks and graph neural networks to improve
the recognition ability of complex structures and boundary re-
gions in multi-modal medical image segmentation, but the model
structure is complex, and the high computational resource con-
sumption makes it less suitable for lightweight deployment.
SwinURNet, proposed by Wang et al. [24], combines transformer
and CNN architectures, suitable for irregular road segmentation
tasks, and performs excellently in real-time applications, espe-
cially in autonomous driving. However, it is highly dependent on
the diversity of training data and has limited generalisation abil-
ity. CISA-UNet, proposed by Lu et al. [25], improves the seg-
mentation accuracy of structural details in CBCT dental images
by fusing structural priors and contextual information in dual
auxiliary paths, but its robustness is weak under different reso-
lutions and scanning conditions. Combining attention and
feature fusion, Yu et al. [26] proposed a serial-parallel network
structure that combines convolutional neural networks and
transformers for 3D medical image segmentation. This method
effectively promotes the interaction between global and local
features through cross-window self-attention and multi-scale
local enhancement modules. Xie et al. [27] proposed a network
structure called U-shaped deformable transformer (UDT) for
subarachnoid haemorrhage (SAH) image segmentation. This

method improves the feature modelling of SAH lesions through
multi-scale deformable attention and cross-deformable attention
modules, enhancing segmentation performance.

In recent years, generative models and probabilistic graphical
models have made significant progress in the field of cell image
segmentation. As one of the important generative models, the
variational autoencoder (VAE), first proposed by Kingma and
Welling [5], aims to efficiently learn the latent distribution of
complex data through variational inference. In the field of im-
age processing, VAE not only generates images with a contin-
uous latent space structure but is also widely used in tasks such
as image reconstruction, denoising, style transfer and data
augmentation, providing rich latent feature representations for
subsequent image segmentation and analysis. Kebaili et al. [28]
proposed a hybrid architecture called the Discriminative
Hamiltonian Variational Autoencoder (HVAE) for tumour
segmentation in medical images, particularly suitable for data-
scarce scenarios. This method combines discriminative regu-
larisation with Hamiltonian dynamics, effectively improving the
generation quality of images and masks, reducing artefacts and
abnormal distributions. Labbihi et al. [29] proposed a hybrid
network for 3D medical image segmentation, combining CNN,
frequency transformers and VAE. The VAE branch in the
encoder-decoder structure is used to learn the latent distribu-
tion of 3D spatial features, enhancing feature representation and
improving segmentation accuracy. Ichou et al. [30] proposed the
VAE-AL-UNet model, which combines VAE with active
learning for lung segmentation in chest X-ray images. The VAE
branch effectively extracts latent feature distributions, reducing
the dependency on a large amount of labelled data and
improving segmentation accuracy under small sample condi-
tions. Therefore, VAE can effectively learn latent feature dis-
tributions when dealing with small datasets, data scarcity or
complex image tasks, enhancing the model's ability to capture
details, thus playing a crucial role in fields such as medical
image segmentation.

3 | Methodology

Medical image segmentation faces challenges when processing
images with complex morphologies, ambiguous boundaries and
noise interference. Although the symmetric encoder-decoder
structure of U-Net and its variants is effective to some extent,
its performance remains limited for images with complex
morphologies, blurred boundaries and low contrast, making it
difficult to meet the requirements of high-precision segmenta-
tion tasks. At the same time, existing methods also fall short in
capturing global contextual information and detailed features.
To solve these problems, this paper proposes an improved seg-
mentation network based on the U-Net structure, introducing a
variational attention module (VAEM) to enhance segmentation
performance. The overall network architecture includes an
encoder, decoder, bottleneck layer and VAEM, as shown in
Figure 3.

The encoder stage is designed to gradually extract image feature
information through multi-layer convolutional modules and
pooling operations. In implementation, each convolutional
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FIGURE 3 | Schematic diagram of the V-UNet architecture. f, C’fi is the down-sampled feature map of the k-th layer, f; is the top-level down-
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sampled feature map and f; represents the fusion of the k-th layer up-sampled feature map after variational attention, where c represents

. ~k+1 . . . s . . .
the number of channels. f; is the fusion of f, C’fi and f, E,i+ , with varying attention. The attention map (variational attention map) is obtained by
sampling and reconstructing fj.

module adopts a double convolution design, and we first apply a
standard 3 X 3 convolution to extract spatial features, followed
byal X 1 convolution to further adjust the feature dimensions.

This convolution combination can not only fully capture
spatial contextual information but also effectively reduce
computational overhead. After each convolution, a ReLU
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activation function is used for nonlinear transformation, thereby
effectively capturing local details and complex boundary infor-
mation. To further enhance feature stability and representation
ability, normalisation is added after convolution. In the decoder
stage, the spatial resolution of the image is gradually restored
through upsampling modules, using a combination of trans-
posed convolution and bilinear interpolation to ensure the
gradual reconstruction of fine target structures. At each
upsampling step, VAEM is introduced to dynamically recon-
struct the features.

3.1 | Variational Attention

The core of the VAEM lies in projecting feature representations
to latent variables that are presumed to follow a multivariate
Gaussian distribution. By constructing a multivariate Gaussian
model, latent variables are sampled and used to generate refined

. . ak+1
attention maps. Specifically, fc,;r and fclfi are processed through
two convolution layers, batch normalisation and activation

. ~k+1 . . . .
functions. f.; is also resized to match the dimensionality of

fc’fi, and then element-wise addition is performed. This is fol-
lowed by multi-scale pooling (PL), where features are extracted
at multiple scales, and the processed feature maps are concat-
enated to form a fused feature map fy. Pooling results at
different scales are flattened and concatenated into a one-
dimensional vector to provide global contextual information.
The fused feature map is then passed through two fully con-

nected branches to calculate the mean y* and variance log afz,
where the standard deviation is computed as follows:

c’,‘l = exp(O.S -log a,’fz>. (1)

Based on the probabilistic model, the latent variable is sampled
for the change variable, and the latent variable in the repre-
sentation is obtained as follows:

E=pk 4+ ok, )
where € is sampled from a standard normal distribution N(0, I).
After resizing, the optimisation is carried out using the repar-
ameterisation (RE) method, and the advantages of obtaining the
attention map are obtained. The VAEM combines multi-
dimensional feature representation and latent variable models,
which improve the accuracy of the model and enhance the
sparsity and accuracy of the representation, and its complete
structure is shown in Figure 4.

3.2 | Loss Function of V-UNet
The network 10ss Liotal_loss consists of the segmentation loss and
the loss induced by variational learning, including reconstruc-
tion and KL divergence:

Etotal_loss = aLgmask + Lvars (3)

where Lgmask iS the segmentation loss term, and binary cross-
entropy loss (BCE Loss) is used to compute the difference

between the network prediction output ; and the ground truth
label y;. This loss can effectively address the foreground-
background imbalance issue in pixel-level segmentation tasks
by minimising the binary cross-entropy loss and optimising the
model's performance on the segmentation task. The formula is as
follows:

N
[fsmask = _% Z [yi IOg(-i}l) + (1 _yi)IOg(l _j}i)]’ (4)
i=1

where N denotes the total number of pixels, y; is the ground
truth label for the i-th pixel (value is 0 or 1) and ), is the pre-
dicted probability for the i-th pixel. Ly, is the variational loss,
composed of reconstruction loss and KL divergence loss:

Lyar = ﬁ[frecon + y‘cKL; (5)

where «a is a hyperparameter for weighting the segmentation
loss, with a value set to 0.74; 8 and y control the weights of the
reconstruction loss and KL divergence loss, respectively, and are
set to 8 = 0.15 and y = 0.11. These values are obtained through
hyperparameter tuning using the Bayesian optimisation method
on the validation set. In the VAE model, given data X and latent
variable z, the goal is to compute the posterior distribution. The
derivation process can be referred to in Equation (5):

P(X|2)P(z)

P(z|X) = 269

(6)

However, P(X) involves high-dimensional integration and is
difficult to compute. Therefore, a simpler distribution g(z|X) is
introduced to approximate the true posterior P(z|/X) through
optimisation. We formulate an optimization problem where the
objective is to minimize the KL divergence between a varia-
tional distribution q(z|X) and P(z|X). This divergence minimi-
zation ensures q(z|X) closely approximates P(z|X) when direct
computation of the latter is infeasible:

(7

KL(q@X)||P(z]X)) = [Eq(z|X)[10 . q(z|X)]'

P(z|X)

Through KL divergence decomposition, the intractable marginal
likelihood log P(X) can be approximated and optimised as
follows:

P(X,z)

logm +KL(gzX)|[P(z|X)).  (8)

IOg P(X) = [Eq(z|X)[

The first term is the evidence lower bound (ELBO), since
log P(X) is constant and the second term involves the true
posterior, the computation becomes intractable due to high-
dimensional integration. Therefore, maximising the ELBO is
equivalent to minimising KL(q(z|X)||P(z|X)). ELBO can be
further written as follows:

ELBO(g) = Eq¢gx[10g P(X[2)] — KL(q(z|X)||p(2))- O]
The first term is the reconstruction term, which measures the

reconstruction ability of latent variable z for the input data X, and
the second term is the KL divergence, which regularises the latent
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processed by PL and concatenated to form a fused feature map. The fused feature map is then passed to the mean and variance encoders

to extract n samples of means and variances. Based on these samples, a variational attention map is generated through the

reconstruction process.

space. The reconstruction term can be transformed into the
reconstruction loss Lrecon, Which is computed by averaging the
reconstruction losses L£X . at each layer. Lyecon measures

reconstruction quality using the mean squared error (MSE loss)
ak+1
between fm.Jr and fclfi:

1 K

Lrecon = E Z [’rlécon’ (10)

k=1

where
NE
1 &1 G k)2
k k

[’recon = ]T]C chNifk & (fc,i - fc,i> . (11)

Among them, f c’fi is the i-th element of the c-th feature map at the

k-th layer, and ]A“:;r ! is the i-th element of the c-th feature map at
the k-th layer. K represents the total number of layers, N, denotes
the number of channels in each layer and N ’]E represents the
number of feature elements in the k-th layer. The experimental
section of this paper introduces a simple distribution as a
Gaussian distribution g(z|X) = N(z|u, 0*), where the prior is set
as a multivariate standard normal distribution p(z) = N(0,I).
The KL divergence term in the ELBO can be derived. The detailed
derivation process can be found in ref. [5].

1 & 1 > > 2
L= N}‘(5 (1 + log<ar’f ) —uf gk )) (12)
k=1

where u* and o are the mean and standard deviations of the
n-th feature element of the k-th layer, obtained by sampling
from the fusion of features fj. This term is used to minimise the
variational loss Ly,r, which optimises the ELBO.

3.3 | Two-Stage Segmentation Method

Through Mask R-CNN using FPN for feature extraction seg-
mentation results analysis, although FPN can enhance target
detection and segmentation performance by fusing multi-scale
features, it still has shortcomings in handling complex bound-
aries and ambiguous regions in medical images. Specifically,
FPN mainly adopts a top-down feature fusion strategy,
combining features of different resolutions, but this approach is

prone to boundary detail processing errors and information loss,
negatively impacting segmentation performance, especially in
medical images that require precise boundary delineation. To
improve Mask R-CNN performance during feature extraction
and considering that multi-stage segmentation strategies inevi-
tably incur additional computational overhead, this work uti-

lises the multi-scale feature maps j‘fl (with k <4) generated
during the upsampling process of V-UNet as substitutes for the
FPN feature maps extracted in Mask R-CNN. These are fed into
the subsequent Mask R-CNN branches as inputs to the region
proposal network (RPN), directly pruning the FPN layers in
Mask R-CNN to control computational cost. Subsequently, the
regions proposed by RPN are precisely aligned using RoIAlign,
and through the remaining network, classification, bounding
box regression and binary mask prediction are performed to
complete the instance segmentation task. Figure 5 represents
the pipeline of the proposed model.

The loss function of the network model Lym 10ss cOmbines the
variational loss of V-UNet and the loss in Mask R-CNN,
expressed as follows:

ﬁvmfloss = [:var + l:m: (13)

where Ly, denotes the variational loss of V-UNet, including the
reconstruction loss and KL divergence loss. £, is the loss from
Mask R-CNN, mainly consisting of classification loss L,
bounding box regression loss Lppox and segmentation 10ss Lmask,
formulated as follows:

»Cm = [/cls + Ebbox + »Cmask' (14)

The classification loss uses cross-entropy to measure the
discrepancy between predicted class probabilities and ground
truth labels, expressed as follows:

P, log(p,). 1s)

J=1

where K, is the total number of classes, y; is the ground truth label
for class j and p; is the predicted probability for class j. The
bounding box regression loss Lypox employs the smooth L; loss
function to measure the difference between the predicted
bounding box and the ground truth bounding box, calculated as
follows:
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M
Libox = — Z smoothy, (. — 2,), (16)

e=1

where M is the number of bounding boxes, and ¢, and ?e denote
the ground truth and predicted bounding box parameters,
respectively. The segmentation loss Lyask Uses binary cross-
entropy loss to measure the discrepancy between the pre-
dicted mask and the ground truth mask, calculated similarly to
Equation (4).

4 | Experimental Results
4.1 | Experimental Setup
The proposed method was evaluated on three publicly available

image datasets, including tasks of semantic segmentation and
instance segmentation.

ISBI2012: This dataset consists of 2D image stacks acquired
from electron microscopy (EM) and is primarily used for neuron
structure segmentation. It includes images extracted from EM
slices for pixel-level segmentation and boundary detection of
cellular components. The dataset is widely used in the
biomedical image analysis field and has achieved notable per-
formance in segmentation precision and recall. In our experi-
ments, we used 30 2D EM images with a resolution of
512 X 512, splitting the dataset into training, validation and
testing sets in a 4:1:1 ratio. These images were utilised for
training models and evaluating generalisation ability.

MoNuSeg2018: This dataset is specifically designed for nuclear
segmentation in histopathology images and focuses on auto-
mating the detection of nuclear boundaries. The dataset in-
cludes images from multiple medical centres, capturing a wide
variety of image resolutions and complex morphologies. The
training set consists of 30 histopathology images, each with di-
mensions of 1000 X 1000, and contains over 21,000 annotated
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nuclei across diverse tissue types (e.g., kidney, liver, breast,
prostate, bladder). The test set includes 14 unannotated images
of the same size for evaluating the robustness of segmentation
models.

ISBI2014: This dataset is tailored for mitotic figure segmentation
under conditions of heavy cellular crowding. The primary task
is to accurately segment mitotic cells in densely packed regions.
The dataset includes 8-bit extended depth-of-field (EDF) images
generated from high-resolution microscopy, with image di-
mensions of 512 X 512. To introduce additional challenges, we
adopted a setting with 45, 90 and 180 images for training,
validation and testing, respectively.

Evaluation Metrics: To comprehensively evaluate the overall
performance of the networks, different performance metrics
were adopted for comparison across datasets, including the
Jaccard index (AJI), average Dice coefficient (Dice), precision
(AP), mean average precision (mAP), F1 score (F1) and Inter-
section over Union (IoU). Additionally, the number of param-
eters and computational complexity (GFLOPs) of each network
were compared on the ISBI2012 dataset Table 1.

4.2 | Comparative Analysis

Comparative experiments were conducted on the partitioned
ISBI2012 dataset involving several U-Net-based networks.
Figure 6 illustrates the segmentation performance of V-UNet
compared to other methods on the ISBI2012 dataset. In the
areas marked by the red box, V-UNet demonstrates superior
segmentation results, accurately identifying fine structures
within the cell images. However, there are still a few ambiguous
cell structures that have not been accurately segmented, as
indicated by the green box in Figure 6. The advantage of V-UNet
in segmentation performance is attributed to the introduced
variational attention mechanism, which significantly enhances
attention to key regions and successfully captures more global
features Table 2.

The proposed V-UNet outperforms other methods across mul-
tiple evaluation metrics. Specifically, V-UNet achieves a Dice
coefficient of 0.9589, significantly higher than other models,
indicating superior overall segmentation accuracy. Meanwhile,
V-UNet attains an AJI score of 0.9186, representing a notable
improvement over DC-UNet's 0.9117 and other networks,
demonstrating better segmentation performance on complex
boundaries. Additionally, V-UNet exhibits the best performance
in average precision (AP), reaching 0.9526, which indicates
higher robustness and stability in detecting and accurately

segmenting target regions. In this experiment, the V-UNet
model contains 6.91 million parameters, whereas the Atten-
tion U-Net model has 2.03 million. Moreover, the computational
complexity of Attention U-Net is 14.01 GFLOPs, whereas V-
UNet requires 19.71 GFLOPs. This difference is mainly attrib-
uted to the introduction of the variational attention. In the
variational attention module, fully connected layers during the
sampling process are inevitable, and their incorporation directly
increases the parameter count. In particular, during the varia-
tional sampling process, large-scale weight matrices are
required to ensure accurate latent space modelling, which in-
creases both the model parameters and computational
complexity to some extent. Furthermore, the multi-scale pooling
layers (3 X 3,6 X 6,9 X 9) in the V-UNet model also have a
significant impact on the total number of parameters. Increasing
the pooling sizes results in the capture and integration of more
extensive feature maps, consequently elevating computational
requirements. Adjusting the pooling sizes can effectively control
the parameter count.

The experimental results on the MoNuSeg2018 dataset further
validate the superior segmentation performance of V-UNet. V-
UNet achieved Dice and IoU scores of 0.8218 and 0.7053, re-
spectively, significantly outperforming state-of-the-art methods
such as FSA-Net (0.8032) and MBUTransUNet (0.8160), indi-
cating its superior overall segmentation accuracy and more
precise pixel-level classification. Furthermore, V-UNet's IoU
metric surpasses all comparative models, especially compared to
the traditional U-Net (0.6927) and the recent UCTransnet
(0.6668), demonstrating better coverage of target regions in
nucleus segmentation tasks.

The two-stage segmentation method combining V-UNet with
Mask R-CNN achieved a Dice score of 0.9189, outperforming
Mask R-CNN (0.9115), Cascade R-CNN (0.9129) and HTC
(0.9139), indicating a significant advantage in overall segmen-
tation accuracy. Additionally, in terms of mean average preci-
sion (mAP), V-UNet + Mask R-CNN achieved 0.6385,
surpassing Mask Scoring R-CNN's 0.6356 and Occlusion R-
CNN's 0.6235, validating its excellent performance in object
detection and precise segmentation region localisation. In terms
of the F1 score, our method achieved 0.9301, comparable to
Occlusion R-CNN's 0.9318 and substantially higher than all
other evaluated models Table 3.

4.3 | Ablation Analysis

To investigate the impact of network components, the variational
module was divided into the variational computation module

TABLE 1 | Segmentation results of V-UNet and other advanced U-Net architectures on the ISBI2012 dataset.

Method Dice 1 AJI 1 AP 1 Params (M) GFLOPs
U-Net [4] 0.9433 0.8931 0.9283 1.94 13.74
Attention U-Net [11] 0.9492 0.9030 0.9325 2.03 14.01
DC UNet [31] 0.9498 0.9117 0.9489 2.69 23.04
V-UNet (ours) 0.9589 0.9186 0.9526 6.91 19.71
Note: Bold values denote the optimal results within each comparison group.
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FIGURE 6 | Comparison of segmentation results on ISBI2012 between the proposed network and other methods. (a) Input image; (b) ground
truth; (c) U-Net [4]; (d) Attention U-Net [11]; (¢) DC UNet [31]; (f) V-UNet.

TABLE 2 | Segmentation results of V-UNet and other networks on
the MoNuSeg2018 dataset.

Method Dice 1 IoU 1
U-Net [4] 0.8185 0.6927
U-Net++ [32] 0.7528 0.6089
Attention U-Net [11] 0.7620 0.6264
MultiResUNet [13] 0.7754 0.6380
Bio-net [33] 0.7655 0.6252
TransUNet [17] 0.7920 0.6568
ATTransUNet [22] 0.7916 0.6551
UCTransNet [34] 0.7987 0.6668
MBUTransUNet [35] 0.8160 0.6902
Swin-Unet [16] 0.7956 0.6471
V-UNet (ours) 0.8218 0.7053

Note: Bold values denote the optimal results within each comparison group.

TABLE 3 | Comparative experiments of V-UNet combined with
Mask R-CNN on the ISBI2014 dataset.

Method Dice 1 mAP1{1 F1|

Mask R-CNN (6] 0.9115 0.5909 0.9254
Cascade R-CNN [36] 09129 0.6245 0.9251
Mask scoring R-CNN [37] 0.9128 0.6356 0.9187
HTC [38] 0.9139 0.5962 0.8808
Occlusion R-CNN [39] 0.9175 0.6235 0.9318
Xiao et al. [40] 0.9170 0.5734 0.9275

V-UNet + Mask R-CNN (ours) 0.9189 0.6385 0.9301

Note: Bold values denote the optimal results within each comparison group.

(VAE), pooling module (PL) and reconstruction module (RE).
The comparison results are shown in Table 4. After incorporating
the variational attention mechanism, improvements of 1.56%,

2.55% and 2.43% were observed in Dice, AJI and AP, respectively,
on the ISBI2012 dataset.

This paper proposes a variational attention-based image seg-
mentation network (V-UNet), aiming to address issues of
boundary ambiguity and complex morphology recognition in
medical image segmentation. V-UNet incorporates a variational
attention into the U-Net architecture, modelling the latent
probabilities of multi-scale features during the upsampling stage
by combining shallow and deep features. To handle the non-
differentiability of the sampling process, the reparameterisation
trick is employed to generate new feature representations from
the probabilistic model, which are then used to produce refined
attention maps. This design significantly enhances the model's
sensitivity to boundary details and its ability to capture global
semantic information. It demonstrates outstanding segmenta-
tion performance, particularly in handling complex shape var-
iations and expressing global features. Extensive experiments
show that V-UNet achieves superior performance in medical
image segmentation tasks, excelling in boundary recognition
and exhibiting strong potential in other complex visual appli-
cation scenarios.

5 | Limitations and Future Work

V-UNet has achieved outstanding segmentation performance
across multiple public datasets and has significantly improved
accuracy. However, there are still some limitations that require
further optimisation. Although V-UNet demonstrates notable
improvements in handling complex boundaries and capturing
global contextual information, it may struggle with the accurate
segmentation of fine-grained structures, particularly in regions
with highly irregular or morphologically complex shapes. This
limitation is primarily attributed to the stochastic nature of the
sampling process in V-UNet, which may lead to suboptimal
modelling of detailed structures, thus affecting the overall seg-
mentation integrity and accuracy. To address this issue, a con-
ventional attention branch could be introduced during the
variational inference stage and fused with the variational

10
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TABLE 4 | The impact of each module on segmentation results for ISBI2012 and MoNuSeg2018.

ISBI2012 MoNuSeg2018
Base VAE PL RE Dice AJl AP Dice IoU
v 0.9433 0.8931 0.9283 0.8185 0.6927
v v 0.9501 0.9053 0.9358 0.8135 0.6989
v v v 0.9541 0.9127 0.9484 0.8198 0.7031
v v v v 0.9589 0.9186 0.9526 0.8218 0.7053

Note: The v/'symbol indicates the inclusion of the corresponding module. Bold values denote the optimal results within each comparison group.

attention maps to compensate for the shortcomings of varia-
tional modelling in fine detail reconstruction. In future work,
we plan to integrate the variational attention with graph
reasoning methods [41], constructing a multi-layer sampling
graph neural network [42] to effectively capture complex re-
lationships among nodes. Additionally, the variational attention
can be extended to multi-modal interaction [43], capsule net-
works [44] and saliency detection [45], where its incorporation
could further enhance the model's robustness and accuracy.
Finally, considering the limited availability of annotated data in
practical medical applications, a self-paced semi-supervised
learning strategy [46] may serve as an effective approach to
achieving more robust segmentation performance under low-
resource settings. Through these improvements, V-UNet is ex-
pected to play a broader and more impactful role in the field of
medical image analysis.
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