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Figure 1: Illustrative process of anomaly detection on a toy-example simplicial complex sequence. Starting from a time-evolving
simplicial complex, we compute the Hodge Laplacians for each snapshot and extract spectral features for each. We employ
a sliding window approach to identify anomalies by evaluating the deviation of current spectral features from established
temporal patterns. In this illustrative example, HLSAD successfully detects all three artificially introduced anomalies, whereas
traditional graph-based analysis fails to identify the final anomaly that manifests in higher-order interactions.

Abstract
In this paper, we propose HLSAD, a novel method for detecting
anomalies in time-evolving simplicial complexes. While traditional
graph anomaly detection techniques have been extensively stud-
ied, they often fail to capture changes in higher-order interactions
that are crucial for identifying complex structural anomalies. These
higher-order interactions can arise either directly from the under-
lying data itself or through graph lifting techniques. Our approach
leverages the spectral properties of Hodge Laplacians of simplicial
complexes to effectively model multi-way interactions among data
points. By incorporating higher-dimensional simplicial structures
into our method, our method enhances both detection accuracy
and computational efficiency. Through comprehensive experiments
on both synthetic and real-world datasets, we demonstrate that our
approach outperforms existing graph methods in detecting both
events and change points.

CCS Concepts
• Mathematics of computing → Graph theory; Topology; • Com-
puting methodologies → Anomaly detection; Temporal rea-
soning; Spectral methods; • Theory of computation→ Dynamic
graph algorithms.
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1 Introduction
Anomaly detection within time-evolving networks has widespread
applications across diverse domains, including network security
for detecting intrusions and system faults [6, 22, 31], social net-
work analysis for identifying collective behavioral changes induced
by external factors [27, 34], and ecological monitoring for detect-
ing ecosystem disturbances [5]. Accordingly, many graph-based
techniques have been developed for identifying events and change
points in dynamic networks [2, 29, 35]. Despite their utility, graph-
based approaches are however limited by their focus on dyadic
relationships, and fail to capture higher-order interactions that can
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be essential for identifying complex structural anomalies in the un-
derlying system. Such higher-order data can manifest itself through
different mechanisms:

Higher-Order Data Many real-world datasets inherently contain
multi-way interactions that extend beyond dyadic relation-
ships. Traditional graph-based methods are fundamentally
limited in their ability to capture and analyze these higher-
order structures. For instance, during the COVID-19 pan-
demic, social distancingmeasures disproportionately affected
large group gatherings compared to pairwise interactions,
creating structural changes that are more readily detectable
through higher-order methods [28].

Lifting Even when data only contains pairwise relations between
entities, we can employ graph lifting techniques to construct
a simplicial complex representation. A common approach
identifies cliques in the graph with equivalent simplices. The
effectiveness of lifting has been demonstrated in various con-
texts; notably, the Weisfeiler-Lehman isomorphism test ex-
hibits strictly greater discriminative power when applied to
clique complexes compared to their graph counterparts [3].

Building upon the graph anomaly detection frameworks developed
by Akoglu and Faloutsos [1] and Huang et al. [21], we propose a
novel method that leverages simplicial complexes to capture and
analyze multi-way interactions in temporal data sequences. It is
important to distinguish our focus on temporal anomaly detection
in time-evolving networks from the related but distinct problem
of identifying anomalous substructures within static networks, as
these two problems address fundamentally different analytical ob-
jectives despite their similar names.

The incorporation of higher-order interactions via simplices in
our method provides significant advantages over traditional graph-
based approaches: First, it enhances detection accuracy through the
explicit modeling of higher-order interactions that are inherently
absent in graph representations. These higher-order structures are
particularly relevant in domains such as epidemic modeling, where
large group gatherings may exhibit distinct response patterns to
intervention measures compared to dyadic interactions. Second,
even if we only have pairwise interaction data, the application of
graph lifting techniques results in improved anomaly detection
capabilities. Our experimental results indicate that our method
achieves superior accuracy when applied to lifted graph datasets
compared to conventional spectral approaches on graph skeletons
and can even offer enhanced computational efficiency.

HLSAD operates through the following systematic process: For
each snapshot within a temporal sequence of simplicial complexes,
we compute the corresponding Hodge Laplacians up to a user-
specified order. Subsequently, we extract the principal eigenvalues
from both up and down Hodge Laplacians and concatenate these
spectral features into a comprehensive feature vector for each tem-
poral instance. Employing a sliding window mechanism, we derive
a characteristic feature vector by computing a weighted average
across the window’s temporal span. When a new feature vector
exhibits significant deviation from this established characteristic
pattern, we designate the corresponding temporal instance as an

anomaly. We illustrate this systematic process in Figure 1 and high-
light a case where our higher-order approach successfully identifies
an anomaly that is overlooked by traditional graph-based methods.

Contribution. To the best of our knowledge, this paper presents
the first methodology for anomaly detection in temporal sequences
of simplicial complexes. Our experimental results demonstrate that
leveraging simplicial complex representations yields superior per-
formance compared to traditional graph-based approaches in two
key scenarios: First, when analyzing datasets containing inherent
higher-order interactions, and second, when applying graph lifting
techniques to enrich the topological structure.

Outline. The remainder of this paper is organized as follows: In
Section 2, we review the existing literature on graph anomaly detec-
tion methods. In Section 3, we introduce the mathematical frame-
work and notation used throughout this work. Section 4 formally
defines the anomaly detection problem on simplicial complexes
that we focus on. In Section 5, we present our spectral approach for
detecting anomalies using Hodge Laplacians. Section 6 evaluates
our method on synthetic and real-world datasets, demonstrating its
effectiveness for event and change point detection. Finally, Section 7
summarizes our findings and discusses future research directions.

2 Related Work
Following the taxonomy established by Ranshous et al. [29], exist-
ing graph anomaly detection algorithms can be categorized into five
principal categories: (1) community-based, (2) compression-based,
(3) decomposition-based, (4) similarity/distance-based, and (5) prob-
abilistic model-based approaches. Many methods can be subsumed
under the following common framework: Initially, the algorithm
extracts a low-dimensional feature representation from each tem-
poral snapshot. Subsequently, these feature vectors are analyzed
to establish baseline dissimilarity metrics that characterize normal
temporal fluctuations of the data in the absence of an anomaly.
When a snapshot exhibits dissimilarity exceeding an established
threshold, it is identified as an anomaly. Events and change points
can be detected by whether the shift in dissimilarity is localized or
persists over the following snapshots.

Further, anomaly detection algorithms can be characterized by
several essential properties, with existing methods exhibiting vary-
ing combinations of these attributes [21, 33]: First, the approach
should maintain generality without imposing assumptions about
the underlying data distribution, such as conformity to a specific
graph model. Second, algorithms should be applicable to both event
and change point detection scenarios. Third, computational scala-
bility is crucial, particularly for large-scale networks with dynamic
node populations. Within this context, we can also consider offline
and online-style algorithms, where the former analyzes the entire
time-series at once, while the latter flags anomalies in real-time as
new data arrives. Fourth, node permutation invariance is essential
to accommodate datasets where consistent node ordering across
temporal snapshots cannot be guaranteed. Fifth, the method should
provide quantitative confidence measures for anomaly predictions,
enhancing interpretability and decision-making capabilities.

Model-based detection algorithms are a prominent approach in
literature, wherein probabilistic graph models are fitted to observed
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data and anomalies are identified through parameter changes. These
approaches offer significant advantages in terms of interpretabil-
ity, as detected parameter shifts directly correspond to identifiable
large-scale structural changes in the network. Peel and Clauset
[27] developed an online learning algorithm for change point de-
tection in dynamic networks, learning probabilistic distributions
over graphs and detecting when these distributions shift due to
external events. Their method utilizes a generalized hierarchical
random graph model for temporal network representation, though
the framework remains model-agnostic. Notably, they identified
a list of different types of change points, including community
formation and merge events. In a similar direction, Wang et al.
[33] proposed EdgeMonitoring, which derives snapshot features
through joint edge probability estimation. Their method quantifies
temporal dissimilarity using Kolmogorov-Smirnov statistics and
Kullback-Leibler divergence measures. Gahrooei and Paynabar [12]
developed a framework that fits generalized linearmodels to sequen-
tial network snapshots, employing extended Kalman filtering for
continuous parameter estimation. They identify structural changes
through significant deviations in the estimated model parameters.

Idé and Kashima [22] (Activity Vector), Akoglu and Faloutsos
[1] and Huang et al. [21] (LAD) proposed different spectral-based
methods for anomaly detection in dynamic graphs, which all rely
on identifying changes in the graph spectrum as proxy for struc-
tural changes. These methods have been shown to be effective in
detecting both event and change points in dynamic networks. In
particular, LADwas later extended to attributed [20] andmulti-view
graphs [19].

Complementing these approaches, Koutra et al. [23] developed
TENSORSPLAT, a decomposition-based method that leverages ten-
sor factorization to identify structural changes in dynamic net-
works. Koutra et al. [24] introduced DeltaCon, which utilizes di-
rect similarity-based comparisons between consecutive graph snap-
shots rather than utilizing intermediate feature representations.
While this method offers an alternative perspective on structural
change detection, it imposes significant constraints: the framework
requires both a static node set and consistent node identification
across temporal snapshots.

With the increased interest in deep learning approaches in re-
cent years, several methods have emerged that leverage neural
network architectures for anomaly detection in dynamic graphs.
Notably, Gong et al. [13] conceptualized change point detection
as a temporal prediction framework, employing a latent evolution
model to forecast subsequent graph snapshots. Their approach
identifies anomalies when significant discrepancies arise between
predicted and observed network states. Sulem et al. [30] proposed
a method based on siamese graph neural networks to learn a simi-
larity function between graph snapshots and detect change points
based on deviations from this learned similarity. To the best of our
knowledge, however, again no deep learning approach explores
higher-order data in a simplicial complex setting.

For an in-depth review of existing anomaly detection methods on
dynamic graphs, readers are directed to the recent surveys by Zhou
et al. [35] and byHo et al. [18]. Additional foundational perspectives
can be found in the older surveys by Akoglu et al. [2] and Ranshous
et al. [29].
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Figure 2: Illustration of a simplicial complex with associ-
ated boundary matrices. The simplicial complex contains
a 2-simplex as shaded area. The rows and columns of the
boundary matrices are ordered lexicographically.

3 Preliminaries
Notation. We denote vectors with boldface lowercase letters 𝒗

and matrices with boldface capital letters 𝑭 throughout this work.
The temporal index of a variable at time step 𝑡 is indicated by the
superscript notation (·) (𝑡 ) .

Simplicial Complexes. Given a set of pointsV , a 𝑘-simplex S𝑘
is a subset of 𝑘 + 1 points. An (abstract) simplicial complex (SC)
X comprises a collection of simplices that satisfies the following
simplicial closure property: for any 𝑘-simplex S𝑘 ∈ X, all of its
proper subsets S𝑘′ ⊊ S𝑘 with 0 < 𝑘 ′ < 𝑘 are also elements of X.
We denote the set of 𝑘-simplices in X by X𝑘 . The rank 𝑘max of a
simplicial complex is defined as the maximum dimension among
all its simplices, i.e., 𝑘max = max{|S𝑘 | | S𝑘 ∈ X}. Following stan-
dard terminology for graphs, we refer to 0-simplices as vertices,
1-simplices as edges, and 2-simplices as triangles.

The algebraic structure of a simplicial complex can be encoded
through boundary matrices 𝑩𝑘 , which formalize the incidence rela-
tionships between simplices of adjacent dimensions [4, 17]. Specifi-
cally, the rows of 𝑩𝑘 correspond to (𝑘 − 1)-simplices and columns
correspond to 𝑘-simplices. The entry (𝑖, 𝑗) takes value 1 if the 𝑖-th
(𝑘 − 1)-simplex is incident to the 𝑗-th 𝑘-simplex, and 0 otherwise.
In particular, 𝑩1 represents the (unsigned) vertex-to-edge incidence
matrix, 𝑩2 captures the edge-to-triangle incidence relations, and
so on. For notational convenience, we define 𝑩0 = 𝑩𝑘max+1 = 0. We
illustrate these constructs in Figure 2.

Utilizing these boundary matrices, we define the 𝑘-th combina-
torial Hodge Laplacian 𝑳𝑘 of the simplicial complex X as follows:

𝑳𝑘 = 𝑩⊤
𝑘
𝑩𝑘 + 𝑩𝑘+1𝑩

⊤
𝑘+1 . (1)

Notably, when 𝑘 = 0, we recover the classical graph Laplacian
𝑳0 = 𝑩𝑘+1𝑩

⊤
𝑘+1. To facilitate our analysis, we decompose the Hodge

Laplacian into its constituent components: the down-Laplacian
𝑳down
𝑘

= 𝑩⊤
𝑘
𝑩𝑘 and the up-Laplacian 𝑳

up
𝑘

= 𝑩𝑘+1𝑩
⊤
𝑘+1, which cap-

ture distinct aspects of the complex’s structure.
In practical applications, it is often advantageous to assign non-

negative weights to simplices to quantify their relative importance
in the complex. Let𝑤𝑘 : X𝑘 → R≥0 denote the weight function for
𝑘-simplices and𝑾𝑘 the corresponding diagonal weight matrix. The
boundary operators can be generalized to incorporate these weights
by defining the weighted boundary matrix 𝑩̃𝑘 =𝑾−1

𝑘−1𝑩𝑘𝑾𝑘 [14].
Consequently, the weighted 𝑘-th Hodge Laplacian takes the form:

𝑳̃𝑘 =𝑾𝑘𝑩
⊤
𝑘
𝑾−2
𝑘−1𝑩𝑘𝑾𝑘 +𝑾−1

𝑘
𝑩𝑘+1𝑾

2
𝑘+1𝑩𝑘+1𝑾

−1
𝑘
. (2)

Synthetic Model and Continuity Rate. Consider a temporal se-
quence of graphs and an underlying generative model that governs
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A: Simplicial Data

Latent Generative
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X (1) X (2) X (3) · · ·
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𝛼 (2) 𝛼 (3)
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B: Graph Lifting
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𝛼 (2) 𝛼 (3)

1 − 𝛼 (2) 1 − 𝛼 (3)
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Figure 3: Illustration of the continuity rate 𝛼 (𝑡 ) governing the
temporal evolution of a simplicial complex in a generative
model setting. The latent variables 𝑀 (𝑡 ) denote the under-
lying generative model, while X (𝑡 ) represents the observed
simplicial complex snapshots. In (A), we show the case of
underlying higher-order data, while (B) illustrates the sce-
nario of graph lifting. The continuity rate 𝛼 (𝑡 ) determines the
proportion of simplices or edges that persist versus those re-
sampled between consecutive temporal instances. A change
in the model parameters at time step 3 illustrates an anoma-
lous event that the detection algorithm aims to identify.

the evolution of the graph structure over time. The temporal evo-
lution between consecutive graph snapshots is regulated by the
continuity rate 𝛼 (𝑡 ) [33], which determines the balance between
preserved and resampled dyadic relationships. Specifically, for each
dyad 𝑒 , the probability 1 − 𝛼 (𝑡 ) governs whether its connection
status persists from time step 𝑡 − 1, while with probability 𝛼 (𝑡 )

its status is resampled according to the current generation model.
Thus, the structural similarity between adjacent temporal snap-
shots exhibits an inverse relationship with 𝛼 (𝑡 ) , where lower values
yield higher topological preservation.

The extension of continuity rates to simplicial complexes presents
significant challenges due to the inherent dependencies between
simplices of different ranks: The removal of an edge that forms
part of a triangle’s boundary necessitates the removal of the tri-
angle, regardless of the continuity rate acting upon it. Conversely,
when a resampled edge completes a triangle’s boundary that was
previously incomplete, it creates the potential for a new triangle.
We address these dependencies through two distinct approaches,
determined by the origin of the higher-order interactions:

For graph lifting scenarios, we apply the continuity rate exclu-
sively to the graph skeleton. Higher-order simplices are derived
through clique lifting, independent of the continuity rate.

For data-informed higher-order simplices, we restrict the appli-
cation of the continuity rate to simplex candidates that maintain
validity across consecutive snapshots. Invalid simplices are system-
atically removed, while new simplex candidates are always sampled
from the generation model. This approach facilitates the emergence
of new higher-order simplices in subsequent snapshots, a practical
consideration for evolving complex structures.

Figure 3 illustrates the continuity rate 𝛼 (𝑡 ) governing the tempo-
ral evolution of a sequence of simplicial complexes in a generative
model setting.

4 Problem Statement
Let X denote a dynamic simplicial complex represented as a se-
quence of snapshots {X (𝑡 ) }𝑇𝑡=1. Each simplex exists at specific times-
tamps 𝑡 and may dynamically appear or disappear throughout the
time series. Furthermore, we do not require identification of sim-
plices across temporal instances, permitting arbitrary vertex and
simplex orderings within each snapshot. Unlike some graph-based
methods that require a fixed number of vertices [23, 33], our formu-
lation does not impose such constraints. Specifically, we allow for
a varying number of nodes across timestamps and do not require
knowledge of the total number of vertices in the system.

Based on this formulation, our objective is to identify anomalous
simplicial complexes X (𝑡 ) within the time series X. Specifically,
given an anomaly scoring function 𝑓 : X → R, we aim to detect time
steps 𝑡 exhibiting anomalous behavior. Following the taxonomy
proposed by Ranshous et al. [29], we differentiate between two
distinct types of anomalies:

• Event points represent temporal instances where a snapshot
exhibits significant deviation from the typical behavior of
the system. These deviations may arise from various sources
including sensor errors, data corruption, or external pertur-
bations. More formally, we characterize an event point 𝑡
by the condition |𝑓 (X (𝑡 ) ) − 𝑓 (X(𝑊 )) | > 𝜖 , where X(𝑊 )
denotes the short-term behavior within a recent context
window𝑊 and 𝜖 represents a significance threshold.

• Change points indicate temporal locations where fundamen-
tal shifts occur in the underlying data distribution. Such
transitions may result from external events altering the
environment or modifications in the intrinsic data gener-
ation process. Formally, a change point 𝑡 satisfies |𝑓 (X (𝑡 ) ) −
𝑓 (Xnorm) | > 𝛿 , where Xnorm captures the normal behavior
in the global context and 𝛿 denotes a threshold parameter.

The anomaly scoring function should provide clear discrimination
between anomalous and normal points while maintaining mono-
tonicity with respect to the degree of anomalousness. We note that
in the literature, event points are sometimes referred to as anomaly
points, and a unified terminology for both types of anomalies is not
always consistently employed.

5 Method
In this section, we present our method HLSAD for detecting event
and change points in temporal sequences of simplicial complexes.
This essentially implements the anomaly scoring function 𝑓 intro-
duced in the previous section, which assigns an anomaly score to
each snapshot by analyzing its deviation from both short-term and
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long-term temporal contexts, defined by window sizes𝑤𝑠 and𝑤ℓ
respectively.

On a high level, HLSAD consists of the following steps: First,
given an input time series {𝑋 (𝑡 ) }𝑇𝑡=1 of simplicial complexes, we
compute the combinatorial Hodge Laplacians 𝑳𝑘 up to a user-
specifiedmaximum rank𝐾 for each temporal snapshot. These Lapla-
cians capture the topological information at different dimensional
levels of the simplicial complex. Second, we extract spectral fea-
tures by computing the ℓ largest singular values from each Hodge
Laplacian, concatenating them into a feature vector. This step ef-
fectively compresses the high-dimensional structural information
into a lower-dimensional representation while preserving the most
significant topological characteristics. Finally, we employ a sliding
window approach to detect anomalies by comparing the current
feature vector against both short-term and long-term temporal
contexts. Significant deviations from these temporal contexts are
flagged as potential anomalies.

5.1 Spectrum
HLSAD leverages spectral features obtained through singular value
decomposition (SVD) of the Hodge Laplacians for each tempo-
ral snapshot, extending established graph-based techniques to the
simplicial domain. The choice of singular values as discriminative
features is motivated by several theoretical considerations:

First, the Hodge Laplacian spectrum captures fundamental struc-
tural and topological properties of the simplicial complex: for in-
stance, the dimension of the kernel space of the 𝑘-th Hodge Lapla-
cian equals the 𝑘-th Betti number of the complex [9]. This provides
information about its topological features such as connected com-
ponents, cycles, and holes.

Second, by considering both up and down Laplacians at each
dimension, we capture distinct aspects of the simplicial structure.
The up-Laplacian 𝑳

up
𝑘

encodes how 𝑘-simplices combine to form
(𝑘 + 1)-simplices, while the down-Laplacian 𝑳down

𝑘
describes how

𝑘-simplices decompose into (𝑘 − 1)-simplices. This bidirectional
analysis provides a comprehensive view of the complex’s structure
that would be impossible to achieve through graph-based methods.

Third, truncated SVD provides optimal low-rank approxima-
tions of matrices with respect to both the Frobenius and 2-norm [8].
The (𝑘 + 1)-th singular value 𝜎𝑘+1 quantifies the reconstruction
error of the best rank-𝑘 approximation in the 2-norm. Thus, the or-
dered singular spectrum 𝜎1, 𝜎2, . . . , 𝜎𝑟 encodes the information loss
that would occur at different levels of approximation. Significant
changes in these values indicate structural modifications that affect
the complex’s topology.

Fourth, our method maintains permutation invariance with re-
spect to the ordering of simplices. This property is crucial for prac-
tical applications where consistent ordering cannot be guaranteed
across temporal snapshots. Row or column permutations of the
Hodge Laplacian matrices do not affect their singular values, en-
abling our method to handle arbitrary simplex orderings.

Finally, the computational efficiency of sparse SVD algorithms
makes our approach practical for large-scale datasets. Real-world
simplicial complexes often exhibit sparsity, particularly at higher
dimensions where the number of simplices typically decreases. By
computing only the top 𝑘 singular values through truncated SVD,

we can achieve significant computational savings compared to full
decomposition while maintaining high detection accuracy.

The selection of spectral features fromHodge Laplacians presents
multiple strategic approaches, each capturing distinct topological
characteristics of the simplicial complex while offering different
computational trade-offs. These methodological choices signifi-
cantly influence both the structural information preserved and the
algorithmic efficiency of the detection process and can be tuned on
a per-dataset basis. We discuss this decision matrix further in the
next section. For simplicity, here we use the first 𝐾 Hodge Lapla-
cians and extract the first ℓ singular values from each, resulting
in a feature vector of length 𝐾 · ℓ for each temporal snapshot. If a
simplicial complex has a rank lower than 𝐾 , or if the number of
singular values is less than ℓ , we pad the feature vector with zeros.

5.2 Selection of Singular Values
The selection of singular values exhibits multiple dimensions of
choice: First, we can compute singular values for different ranks 𝑘
of Hodge Laplacians, enabling analysis of distinct structural prop-
erties within the simplicial complex. In our implementation, we
consider the first 𝐾 Hodge Laplacians, which is motivated by two
key observations: For one, dyadic interactions serve as fundamental
indicators for anomaly detection, and second, these lower-order
interactions inherently influence higher-order connections through
the simplicial closure property. From a practical perspective, sim-
plicial complexes typically exhibit increasing sparsity at higher
dimensions, allowing for the selection of a relatively small value of
𝐾 without significant loss of structural information.

Second, the selection of ℓ singular values per Hodge Laplacian
determines the dimensionality of the spectral representation. This
parameter establishes a fundamental trade-off between computa-
tional efficiency and structural information retention: A larger value
of ℓ enables us to capture more nuanced topological features at the
cost of increased computational complexity of the anomaly detec-
tion algorithm. Retaining only a relatively small number of singular
values usually sufficiently characterizes the dominant structural
properties while maintaining computational tractability. While one
could theoretically optimize this parameter independently for each
order, our code and experimentsmaintain a uniform selection across
ranks to reduce the parameter space complexity.

Third, in contrast to the graph Laplacian, the Hodge Laplacian is
composed of two distinct components: the down-Laplacian 𝑳down

𝑘

and the up-Laplacian 𝑳
up
𝑘

(with the graph Laplacian consisting
solely of the latter component). This decomposition introduces an
additional dimension for spectral feature optimization, enabling
selective focus on the spectral properties of either component in-
dividually or a combination of both. This way, depending on the
dataset, one can fine-tune the algorithm to emphasize different
structural aspects of the simplicial complex.

5.3 Context Matrix and Typical Behavior
Following established practices in anomaly detection literature, we
evaluate anomalies relative to a temporal context window of size
𝑤 containing previous observations. To that end, we maintain a
context matrix 𝑪 (𝑡 ) comprising the ℓ2-normalized spectra from the
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last𝑤 snapshots:

𝑪 (𝑡 ) =
©­«

| | |
𝝈 (𝑡−𝑤−1) 𝝈 (𝑡−𝑤 ) . . . 𝝈 (𝑡−1)

| | |

ª®¬ ∈ R𝑛×𝑤 . (3)

This context matrix enables derivation of a “typical” spectrum 𝝈̃ (𝑡 )

over the preceding 𝑤 snapshots, which serves as a baseline for
comparison with the current snapshot 𝝈 (𝑡 ) . Akoglu and Faloutsos
[1] investigated two methodologies for obtaining such a typical
feature vector: First, they used

𝝈̃ (𝑡 )
=

1
𝑤

𝑤∑︁
𝑖=1

𝑪 :,𝑖 =
1
𝑤

𝑤∑︁
𝑖=1

𝝈 (𝑡−𝑖−1) (4)

as the arithmetic average of the last𝑤 feature vectors. Second, they
computed the left singular vector of the context matrix 𝑪 (𝑡 ) using
SVD decomposition, which can be interpreted as aweighted average
of the preceding feature vectors. Both their empirical analysis and
our experiments demonstrated superior performance of the SVD-
based approach, leading us to adopt the SVD-based averaging.

5.4 Scoring Function
Let 𝝈̃ (𝑡 )

𝑠 and 𝝈̃ (𝑡 )
ℓ

denote the characteristic spectral features derived
according to the previous section within the short-term and long-
term context windows 𝑤𝑠 and 𝑤ℓ , respectively. Our goal now is
to quantify the dissimilarity between the current spectral features
𝝈 (𝑡 ) and these characteristic behaviors.

To quantify the structural deviation, we employ the angular
distance between the current feature vectors and the established
typical spectra:

𝑍 (𝑡 )
𝑠 = 1 −

(
𝝈 (𝑡 )
𝑠

)⊤
𝝈̃ (𝑡 )
𝑠 (5)

𝑍 (𝑡 )
ℓ

= 1 −
(
𝝈 (𝑡 )
ℓ

)⊤
𝝈̃ (𝑡 )
ℓ
. (6)

This normalized dissimilarity measure yields values in the interval
[0, 1], where 𝑍 = 0 corresponds to perfect structural alignment
between current and characteristic features, while 𝑍 = 1 indicates
maximal topological deviation manifested through orthogonality
of the feature vectors. We define the final anomaly score

𝑍 (𝑡 ) =max{𝑍 (𝑡 )
𝑠 , 𝑍 (𝑡 )

ℓ
} (7)

as the maximum deviation across both short-term and long-term
contexts.

Having established the anomaly scoring function, we can employ
multiple strategies to identify events and change points: The first
approach establishes a fixed threshold 𝜏 and classifies temporal
instances 𝑡 where 𝑍 (𝑡 ) > 𝜏 as anomalies. This threshold can be
calibrated using an initial training period, during which we assume
normal system behavior, by analyzing the distribution of𝑍 (𝑡 ) scores
for a fixed “initializationwindow” at the beginning of the time series.
Alternatively, we can adopt a rank-based approach that identifies
the 𝑘 snapshots with the highest anomaly scores. This latter method
proves particularly effective when focusing on the most significant
structural deviations, as it automatically adapts to the scale of the
anomaly scores without requiring explicit threshold calibration.

Having defined our anomaly scoring function 𝑍 (𝑡 ) , we can dif-
ferentiate between event and change points by analyzing the per-
sistence of high scores across consecutive time steps: Event points
typically manifest as isolated spikes in the anomaly score, where
𝑍 (𝑡 ) exhibits a sharp increase followed by an immediate return
to baseline levels. In contrast, change points are characterized by
sustained elevations in 𝑍 (𝑡 ) across multiple consecutive time steps,
reflecting a persistent shift in the underlying network structure.
Formally, we classify a time step 𝑡 as a change point if both 𝑍 (𝑡 ) > 𝜏
and the moving average of 𝑍 (𝑡 ) over the next𝑤 time steps exceeds
𝜏/2, where 𝜏 is our anomaly threshold and𝑤 is a user-defined win-
dow size. Time steps that exceed the threshold 𝜏 but do not meet
the persistence criterion are classified as event points.

5.5 Performance Considerations
The computational complexity of HLSAD is dominated by the trun-
cated singular value decomposition. For a matrix 𝑨 ∈ R𝑛×𝑛 , com-
puting a rank-ℓ decomposition requires O(𝑛2ℓ) operations. This
complexity can be significantly reduced to O(𝑛2 log ℓ) using a ran-
domized SVD algorithm [16], which provides efficient approxima-
tions while maintaining high accuracy. In practical applications, we
can leverage the inherent sparsity structure of the Hodge Laplacians
to achieve substantial computational efficiency gains.

Let 𝑛𝑘 denote the maximum number of 𝑘-simplices across all
temporal instances of the simplicial complex sequence {X (𝑡 ) }𝑇𝑡=1.
The computational complexity of HLSAD is then given by

O
(
𝑇 ·

𝐾∑︁
𝑘=0

𝑛2
𝑘
log ℓ

)
, (8)

where the summation over 𝑘 accounts for the spectral computations
required for each Hodge Laplacian up to order 𝐾 .

6 Experiments
In this section, we present a comprehensive evaluation of HLSAD
utilizing both synthetic and real-world datasets. Through these
experiments, we demonstrate the effectiveness of our approach
in detecting both event and change points both for data-informed
higher-order simplices and graph liftings. Statistics for all datasets
can be found in Table 5 in the appendix.

To quantitatively assess the performance of our anomaly detec-
tion method, we employ the Hits@𝑁 metric, which measures the
proportion of correctly identified anomalies among the top 𝑁 most
anomalous points detected by our algorithm. Specifically, a Hits@7
score of 0.5 indicates that 50% of the seven points identified as most
anomalous correspond to actual anomalies according to the ground
truth labels. If𝑁 equals the number of ground truth anomalies, then
the Hits@N score is equal to the recall. For synthetic experiments,
we utilize the ground truth labels inherent in the generation process
for evaluation purposes. In real-world datasets, we leverage known
significant external events as ground truth, while acknowledging
the limitation that additional unidentified external factors may have
influenced the temporal evolution of the data.
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Figure 4: Performance comparison on synthetic data. We compare the Hits@𝑁 scores as a function of the total number of
singular values used for anomaly detection. The solid line gives the Hits@𝑁 score for 𝑁 the number of true anomalies in the
data generation process. The dashed line gives the Hits@𝑁 + 2 score, i.e., the accuracy with up to 2 false positives.

6.1 Synthetic Experiments
To evaluate HLSAD’s effectiveness and demonstrate its advantages
over graph-based approaches, we conduct four synthetic exper-
iments: In the first two, we replicate the hybrid and resampled
synthetic experiments by Huang et al. [21]. The time series origi-
nates from graphs sampled from a stochastic block model (SBM),
which are lifted to simplicial complexes using a clique lifting. In a
third large experiment, we evaluate scalability by using the same
setting with 10 000 nodes. In a fourth experiment, we introduce a tri-
angle closing dataset where, instead of using clique lifting, triangles
are closed with a given probability. This setting reflects scenarios
where external events have a distinct influence on multi-way in-
teractions in the network, which may differ from their impact on
dyadic relationships. In all settings, we change the model parame-
ters at pre-selected time steps to simulate events and change points
in the data. The exact sampling parameters for all experiments are
given in Section B. We use a short term and a long term window of
𝑤𝑠 = 5 and𝑤ℓ = 10 snapshots, respectively.

The Hits@𝑁 scores for each dataset as a function on the total
number of singular values computed are shown in Figure 4. For
the higher-order cases, the plotted number of singular values refers
to the total number of singular values computed over all Hodge
Laplacians, i.e., for a value of 300 on the x-axis and maximum rank
𝐾 = 3, we computed 100 singular values for each Hodge Laplacian.
In other words, all points on the same x-axis correspond to the
same total number of singular values, though in the higher-order
cases, these are distributed over multiple Hodge Laplacians.

The experimental results demonstrate the superior performance
of HLSAD in leveraging higher-order structural information com-
pared to the graph-based LAD baseline across both the hybrid, large,
and triangle closing experiments. HLSAD consistently achieves
higher Hits@𝑁 scores while requiring significantly fewer singular
values to attain comparable detection accuracy, indicating enhanced
computational efficiency. Specifically, in the hybrid setting, HLSAD
successfully identifies all anomalies using only 40 singular values,
whereas LAD requires more than 300 singular values to achieve sim-
ilar performance. The advantage of HLSAD is particularly evident
in the triangle closing experiment, where it detects all anomalies

Table 1: Prediction scores on the UCI and Senate real-world
datasets. We compare HLSAD against several other state-of-
the-art anomaly detection techniques.

Dataset UCI Senate
Metric Hits@10 Hits@2
HLSAD (ours) 1.0 1.0
LAD 0.5 1.0
EdgeMonitoring 0.0 1.0
Activity Vector 0.5 0.5
TENSORPLAT 0.0 0.0

with merely 10 singular values, while LAD fails to identify anom-
alies that manifest exclusively in higher-order interactions due to
its inherent limitation to dyadic relationships.

The interpretation of the resampled experiment yields more nu-
anced results: While the general trends observed in other experi-
ments persist, namely superior overall performance and enhanced
efficiency with fewer singular values, there exist specific instances
where LAD marginally outperforms HLSAD. Specifically, LAD
achieves a Hits@7 score of 0.8 with 250 singular values, whereas
HLSAD requires approximately 320 singular values to attain equiv-
alent performance. However, examination of the Hits@9 metric
reveals that HLSAD consistently and significantly outperforms LAD
across all singular value quantities in a minor relaxed metric. This
suggests that while HLSAD may occasionally identify false posi-
tives, it demonstrates superior capability in detecting the complete
set of true anomalies within the data.

6.2 UCI Online Message Dataset
We further replicate the experiment on the UCI Online Message
dataset [26], which captures communication patterns within an
online student community at the University of California, Irvine.
The dataset comprises a weighted network where nodes represent
users and edges represent message exchanges between them. Edge
weights correspond to message lengths, quantifying interaction
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Figure 5: Precision and recall as a function of the detection
delay on the MIT Reality Mining dataset. We compare our
method HLSAD against the spectral-based LAD approach
and the model-based LetoChange framework.

intensity. The dataset encompasses 1899 users and records 59 835
messages exchanged between April and October 2004. On June 19,
the spring term ended and on September 20, the fall term began,
marking significant external events that influenced the commu-
nication patterns. We construct daily network snapshots for our
temporal analysis and use a clique lifting to transform the dyadic
interactions into higher-order simplices. Following the arguments
outlined in the previous works, we employ a short-term context
window of 7 days, with a corresponding long-term window of 14
days to capture broader temporal patterns.

Our analysis, summarized in Table 1, demonstrate the supe-
rior performance of HLSAD in detecting temporal anomalies. The
method achieves a perfect Hits@10 score, accurately identifying all
ground truth anomalies in the dataset. LAD correctly detected the
end of the spring term, but missed the beginning of the fall term by a
single timestep. Similarly, the Activity Vector method only success-
fully identified the end of the spring term. Both EdgeMonitoring and
TENSORPLAT prove ineffective, failing to identify any anomalies
in the dataset. Notably, all methods that demonstrate meaningful
detection capabilities—HLSAD, LAD, and Activity Vector—utilize
spectral-based approaches, underlining the effectiveness of spectral
features in temporal anomaly detection tasks.

6.3 Senate Network
We analyze the Senate co-sponsorship network [10, 11], which
represents legislative collaboration patterns through higher-order
interactions: whenmultiple senators co-sponsor a bill, they form a𝑘-
simplex in the complex. The dataset comprises biannual snapshots
spanning multiple congressional sessions.

Prior research has identified two notable anomalies in collabo-
ration patterns: the 100th Congress exhibited exceptionally high
levels of bipartisan cooperation, while the 104th Congress marked
a historical low point in cross-party collaboration [33]. Our experi-
mental results demonstrate that HLSAD successfully identifies both
these significant structural anomalies using only the top 6 singular
values of the Hodge Laplacians, as shown in Table 1.

6.4 MIT Reality Mining
For our third real-world experiment, we analyze the MIT Reality
Mining dataset [7], which documents proximal interactions be-
tween students through continuous Bluetooth device monitoring.
We construct weekly temporal networks from the raw proximity
data, where edges indicate detected device co-location between par-
ticipants. Higher-order simplices are derived though clique lifting.
To ensure data quality, we exclude participants with incomplete
or corrupted records, particularly when data was corrupted due
to power failures. For ground truth validation, we leverage the 16
external events identified by Peel and Clauset [27] that potentially
influenced interaction patterns throughout the study period.

In analogy to previous work [27], we compute the precision and
recall of our method as a function of the detection delay between
the ground truth events {𝑡 𝑗 } and the detected anomaly {𝑡𝑖 }. More
formally, the precision and recall are defined as

Precision(𝑠) = 1
𝑛pred

∑︁
𝑖

𝛿

(
inf
𝑗
(𝑡𝑖 − 𝑡 𝑗 ) ≤ 𝑠

)
(9)

Recall(𝑠) = 1
𝑛true

∑︁
𝑗

𝛿
(
inf
𝑖
(𝑡𝑖 − 𝑡 𝑗 ) ≤ 𝑠

)
, (10)

where 𝑠 is the allowed detection delay, 𝑛pred is the number of pre-
dicted anomalies, 𝑛true is the number of true anomalies, and 𝛿 (·) is
the indicator function.

In our experimental evaluation, we compare HLSAD against two
established baselines: the spectral-based LAD approach [21] and
the model-based LetoChange framework [27]. The comparative
analysis, presented in Figure 5, demonstrates that HLSAD achieves
comparable precision to LetoChange for instantaneous anomaly
detection (𝑠 = 0), while exhibiting superior detection capabilities
when allowing for some detection delays. Furthermore, HLSAD
consistently outperforms LetoChange in terms of recall across all
detection delays, indicating superior sensitivity in identifying true
anomalies within the dataset. Although the spectral-based LAD
method exhibits recall performance comparable to HLSAD, it gen-
erates additional false positives in temporal proximity to ground
truth events, resulting in diminished precision metrics. Overall, our
results highlight the effectiveness of HLSAD in detecting temporal
anomalies in real-world social interaction networks.

7 Conclusion
In this paper, we introduced a novel methodology for detecting
anomalies in time-evolving simplicial complexes. Our approach
leverages the spectral properties of Hodge Laplacians to capture
higher-order structural changes that traditional graph-based meth-
ods fail to detect. Through comprehensive experiments on both
synthetic and real-world datasets, we demonstrated that ourmethod
successfully identifies both event and change points in temporal
sequences of simplicial complexes.

The key advantages of HLSAD are threefold: First, it naturally
handles higher-order interactions that are either inherent in the
data or arise through graph lifting techniques. Second, it main-
tains computational efficiency through the use of truncated SVD
computations on sparse Hodge Laplacians. Third, it is invariant to
node permutations and growing simplicial complexes, making it
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applicable when consistent node ordering cannot be guaranteed or
a priori knowledge of the total number of nodes is unavailable.

Our experimental results show that our method achieves supe-
rior detection accuracy compared to traditional graph-based ap-
proaches, particularly when analyzing datasets with significant
higher-order structure. Furthermore, when applied to lifted graph
data, our method requires fewer eigenvalues to achieve comparable
accuracy, resulting in improved computational efficiency.

Future work could explore adaptive window sizes for the tempo-
ral context, automated parameter selection techniques, and exten-
sions to weighted or directed simplicial complexes. Additionally,
investigating the relationship between specific types of structural
changes and their manifestation in the Hodge spectrum could pro-
vide deeper insights into the nature of detected anomalies as well
as possibilities to fine-tune to specific anomaly kinds.

In many real-world applications, the presence of attributed data
or node features can provide additional context for anomaly de-
tection beyond the structural information captured by the Hodge
Laplacian. However, our current implementation focuses solely on
the topological structure of the simplicial complex. In future work,
we plan to extend our method to incorporate attributed data or node
features, allowing for a more comprehensive analysis of anomalies
in complex systems.
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A Teaser Figure
Table 2 lists the exact parameters for the time series illustrated in
Figure 1. Graph skeletons are sampled with 30 nodes from a SBM
using uniform community sizes. Triangles are closed (identified
with a 2-simplex) with probability 𝑝Δ. The continuity rate 𝛼 (𝑡 ) is
set to 1.0 for anomaly points and 𝛼 (𝑡 ) = 0.005 everywhere else.

Table 2: SBM parameters and triangle closing probability
for the time series used in Figure 1. Parameter changes are
marked in bold.

Step Type Communities Intra Inter Triangle
𝑁𝑐 𝑝in 𝑝ex 𝑝Δ

1–9 - 3 0.25 0.05 0.09
10 Event 3 0.15 0.05 0.09

11–19 - 3 0.25 0.05 0.09
20-29 Change 3 0.25 0.15 0.09
30-39 Change 3 0.25 0.15 0.03

B Experimental Setup
Table 3 lists the exact SBM parameters for the hybrid and resampled
synthetic experiments, which are derived from the work of Huang

et al. [21]. We excluded their pure experiment, as anomalous points
in this setting can be perfectly detected in the first singular values.
Table 4 and 6 lists the parameters for the large and triangle closing
synthetic experiment, respectively.

All graphs except for the large dataset are sampled with 500
nodes and uniform community sizes. For the large dataset, the sam-
pled graphs have 10 000 nodes. For the hybrid and large setting,
the continuity rate was set to 𝛼 (𝑡 ) = 1.0 for anomaly points and
𝛼 (𝑡 ) = 0.1 everywhere else. For the resampled setting, the con-
tinuity rate was set to 𝛼 (𝑡 ) = 1.0 everywhere, i.e., a fresh graph
was resampled at each time step. For the first three experiments,
we used a clique lifting to obtain the simplicial complexes from
the graph skeletons sampled from the SBMs. For the triangle clos-
ing experiment, triangles are closed with a given probability 𝑝Δ,
simulating a data-informed higher-order structure where external
events have a distinct influence on multiway interactions in the
network.

Table 3: SBM parameters for the hybrid and resampled syn-
thetic experiments. Parameter changes are marked in bold.

Step Type Communities Intra-Prob. Inter-Prob.
𝑁𝑐 𝑝in 𝑝ex

1–16 - 4 0.25 0.05
17 Event 4 0.25 0.15

18–31 - 4 0.25 0.05
32–61 Change 10 0.25 0.05

62 Event 10 0.25 0.15
63–76 - 10 0.25 0.05
77–91 Change 2 0.5 0.05

92 Event 2 0.5 0.15
93–106 - 2 0.5 0.05
107–136 Change 4 0.25 0.05

137 Event 4 0.25 0.15
138–150 - 4 0.25 0.05

Table 4: SBM parameters for the large synthetic experiment.
Parameter changes are marked in bold.

Step Type Communities Intra-Prob. Inter-Prob.
𝑁𝑐 𝑝in 𝑝ex

1–16 - 4 0.0125 0.0025
17 Event 4 0.0125 0.0075

18–31 - 4 0.0125 0.0025
32–61 Change 10 0.25 0.0025

62 Event 10 0.25 0.0075
63–76 - 10 0.25 0.0025
77–91 Change 2 0.025 0.0025

92 Event 2 0.025 0.00755
93–100 - 2 0.025 0.0025

Table 5 lists the statistics for the synthetic and real-world datasets
used in our experiments. We implemented HLSAD in Python, lever-
aging the TopoX library [15] for topological computations and
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Table 5: Statistics for the datasets used in our experiments. We give the mean and standard deviation of the number of nodes,
edges, and triangles in the dynamic simplicial complexes.

Dataset 𝑇 avg |X (𝑡 )
0 | avg |X (𝑡 )

1 | avg |X (𝑡 )
2 |

Hybrid 150 500 19 266 ± 10 346 190 476 ± 284 845
Resampled 150 500 19 237 ± 10 254 188 018 ± 279 797
Triangle Closing 60 500 16 898 ± 6652 22 092 ± 31 509
Large 100 10 000 394 171 ± 215 818 211 516 ± 294 775
UCI 193 117 ± 121 134 ± 180 5 ± 11
Senate 12 101.0 ± 0.8 5033 ± 88 165 770 ± 4366
Reality Mining 32 94 ± 17 603 ± 302 2937 ± 2214

Table 6: SBM parameters and triangle closing probability for
the triangle closing synthetic experiment. Changes in the
parameters are marked in bold.

Step Type Communities Intra Inter Triangle
𝑁𝑐 𝑝in 𝑝ex 𝑝Δ

1–9 - 4 0.25 0.05 0.8
10 Event 4 0.25 0.15 0.8

11–19 - 4 0.25 0.05 0.8
20–29 Change 4 0.25 0.05 0.7

30 Event 4 0.25 0.15 0.7
31–39 - 4 0.25 0.05 0.7
40–49 Change 4 0.5 0.05 0.5
50–59 Change 4 0.5 0.05 0.5

SciPy [32] for efficient algebraic operations. HLSAD has been im-
plemented as a Snakemake pipeline [25]. We took inspiration from
the implementation of LAD by Huang et al. [21]. For comparative
analysis, we utilized reference implementations of baseline meth-
ods, except LAD, which we realized as a special case of HLSADwith
appropriate parameter settings. All source code and experimental
data will be made publicly available with the camera-ready version
to ensure reproducibility.

C Ablation Study: Influence of the Context
Window

In this section, we conduct an ablation study to investigate the in-
fluence of the context window sizes on the prediction performance
of HLSAD. The context window sizes have only small influence on
the computation time of HLSAD, as the computational complexity
is dominated by the SVD computation, which is independent of the
context window sizes, see Section 5.5.

To that end, Figure 6 shows the Hits@𝑁 scores for different
context window sizes on the synthetic datasets used in Section 6.1.
In this experiment, we set the number of singular values to 75 and
the maximal simplex rank to 2. We can see that the Hits@𝑁 scores
drop for large context windows. This is likely due to the fact that
large contexts smooth out any changes in the network structure,
i.e., 𝝈 (𝑡 ) and 𝝈 (𝑡+1) are more similar with larger context even if
the network structure changes. On the other hand, short windows
can also be problematic, see the resampled setting, as the infered
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Figure 6: Ablation study on the influence of the context win-
dow on the performance of HLSAD. We show the Hits@𝑁
scores for different context window sizes on the synthetic
datasets. The long window𝑤ℓ is set to double the short win-
dow𝑤𝑠 .

typical spectra tend to be noisy and lead to more false positives.
Interestingly, the large dataset shows a counterintuitive behavior,
where the accuracy drops in the middle and increases at its tails.
We don’t have an intuitive explanation for this behavior.

The results show that the context window sizes can have signifi-
cant influence on the performance of HLSAD, which is in line with
other algorithms for temporal graph anomaly detection employing
context windows. Moreover, the different behaviors even on the
relatively similar synthetic datasets highlight the importance to
fine-tune the context window size specifically for the dataset at
hand.
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