RWTH

Performance
Computing

Diese Arbeit wurde vorgelegt am
Lehrstuhl fiir Hochleistungsrechnen (Informatik 12), IT Center.

Bewertung und Vergleich von
Datenplatzierungs-
Optimierungswerkzeugen fiir heterogene
Speicherarchitekturen

Evaluating and Comparing Data Placement
Optimization Frameworks for Heterogeneous
Memory Systems

Bachelorarbeit

Ben-Jay Huckebrink
Matrikelnummer: 445219

Aachen, den 29. September 2025
Communicated by Prof. Dr. Matthias S. Miiller

Erstgutachter: Prof. Dr. rer. nat. Matthias S. Miiller (’)
Zweitgutachter:  Dr.rer. nat. Stefan Lankes (*)

Betreuer: Dr.rer.nat. Jannis Klinkenberg (’)

(") Lehrstuhl fur Hochleistungsrechnen, RWTH Aachen University
IT Center, RWTH Aachen University
(*) Lehrstuhl fiir Automation of Complex Power Systems, RWTH Aachen
University






Ich versichere hiermit, dass ich die vorliegende Arbeit selbstdandig und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die
wortlich oder sinngeméafl aus veroffentlichten und nicht verdffentlichten Schriften
entnommen sind, sind als solche kenntlich gemacht. Die Arbeit ist in gleicher oder
ahnlicher Form noch nicht als Priifungsarbeit eingereicht worden.

Aachen, den 29. September 2025






Kurzfassung

Die speicherbezogenen Anforderungen von wissenschaftlichen Anwendungen stei-
gen in immer héherem Tempo. Der traditionell genutzte Hauptspeicher, Dyna-
mic Random Access Memory (DRAM), halt mit diesen steigenden Kapazitéts-,
Geschwindigkeits- und Energieeffizienzanforderungen nicht mit. Daher werden he-
terogene Speicherarchitekturen, welche mehrere Speichertypen wie z.B. Non-Volatile
Memory (NVM) und High-Bandwidth Memory (HBM) neben DRAM nutzen, im-
mer prasenter. Um die Vorteile solcher Architekturen zu nutzen, werden einzelne
Datenstrukturen der Anwendungen je nach deren Speicherzugriffsmustern in ver-
schiedene Speichertypen platziert. Da eine solche Datenplatzierungs-Optimierung
manuell vorzunehmen viel Wissen iiber die Anwendung und viel Zeit erfordert, wur-
den Datenplatzierungs-Optimierungswerkzeuge entwickelt, um diesen Prozess zu au-
tomatisieren und die getroffenen Entscheidungen zu verbessern. Jedoch hat die For-
schung an diesen Werkzeugen deren Wirksamkeit nicht ausreichend untersucht. Zu-
meist wird nur die ausfithrungszeitbezogene Leistung der Platzierungsentscheidun-
gen getestet, nicht aber die Benutzerfreundlichkeit der Werkzeuge oder deren Ener-
gieeffizienzvorteile. Zudem vergleicht diese existierende Forschung die verschiedenen
Werkzeuge nicht miteinander. Zusammengenommen behindern diese Unzulédnglich-
keiten die weitere Forschung an solchen Werkzeugen, da die spezifischen Stiarken und
Schwéchen von bereits existierenden Ansitzen unbekannt bleiben und daher deren
Schwéchen nicht systematisch behoben werden konnen.

In dieser Arbeit adressiere ich diese Méangel, indem ich drei Datenplatzierungs-
Optimierungswerkzeuge vergleiche und tiefergehend bewerte. Zu diesem Zweck ent-
wickle ich einen hochgradig konfigurierbaren synthetischen Benchmark, welcher sys-
tematisch seine Speicherzugriffsmuster dndern kann. Diese Konfigurierbarkeit er-
laubt mir, die spezifischen Starken und Schwéchen jedes dieser Werkzeuge zu unter-
suchen und deren Auswirkungen auf die Ausfithrungszeit und Energieeffizienz der
getroffenen Platzierungsentscheidungen zu quantifizieren. Indem ich die Werkzeu-
ge zusitzlich mit vier Proxy-Anwendungen teste, kann ich die realen Auswirkun-
gen der identifizierten Vor- und Nachteile beurteilen. Zudem decken diese Proxy-
Applikationen Schwichen in der Benutzerfreundlichkeit der Werkzeuge auf. Basie-
rend auf meinen Ergebnissen schlage ich Modifikationen fiir diese Werkzeuge vor,
die deren Platzierungsentscheidungen und Benutzerfreundlichkeit verbessern.

Stichworter: Heterogene Speicherarchitekturen, Non-Volatile Memory, High-
Bandwidth Memory, Datenplatzierungs-Optimierung






Abstract

The memory-related demands of scientific applications rise at an ever-accelerating
pace. However, traditional dynamic random access memory (DRAM) has not kept
up with these increasing memory capacity, speed, and energy efficiency demands. In
response, heterogeneous memory systems employing multiple memory types, such as
non-volatile memory (NVM) or high-bandwidth memory (HBM), alongside DRAM
have risen to prevalence. Leveraging the advantages of such systems involves plac-
ing individual application data structures into different memory types depending
on their memory access behaviors. Since manually conducting such a placement
optimization requires detailed application knowledge and a large time investment,
previous research developed data placement optimization frameworks to automate
this process and improve the placement decisions made. However, previous research
on these frameworks has not adequately evaluated their efficacy. Most existing work
tests only the execution time performance of the frameworks’ placement decisions,
leaving the frameworks’ user experience and energy efficiency benefits unquantified.
Crucially, existing research also does not compare the different frameworks against
one another. In combination, these shortcomings impede research on future frame-
works, since the specific strengths and weaknesses of already existing approaches
remain unknown, meaning their weaknesses cannot be improved systematically.

In this thesis, I address this shortage by evaluating and comparing three state-
of-the-art data placement optimization frameworks in-depth. For this purpose, I
develop a custom, highly configurable synthetic benchmark that can systematically
alter its memory access behaviors. This configurability allows me to detail specific
strengths and weaknesses of each framework’s placement optimization algorithm
and quantify their impact in terms of the execution time and energy efficiency the
made placement decisions achieve. By also testing the frameworks on four proxy
applications, I assess the real-world implications of the identified advantages and
disadvantages. Further, using the proxy applications, I uncover shortcomings in the
frameworks’ user experience. Based on my observations, I propose modifications to
the frameworks to improve their decision-making and their user experience.

Keywords: Heterogeneous memory, Non-volatile memory, High-bandwidth mem-
ory, Data placement optimization
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1. Introduction

Within High Performance Computing (HPC) systems, the gap between memory and
computational performance has steadily increased. This trend and its consequences
have been exacerbated vastly by applications becoming ever more bound by mem-
ory performance in recent years [41}, 45| |33]. However, modern applications not only
pose heightened requirements in terms of the memory’s speed but also its capacity.
Further, to meet wider sustainability goals, the energy consumption of HPC sys-
tems has come under increasing scrutiny, with the memory being one of the main
contributors to an HPC system’s energy consumption.

To address these concerns, heterogeneous memory systems (HMSes) have become
increasingly popular in the HPC domain. These systems employ multiple, special-
ized memory types such as non-volatile memory (NVM) or high-bandwidth mem-
ory (HBM) alongside the traditional main memory type, dynamic random access
memory (DRAM), to match the heterogeneous memory-related demands of modern
workloads [41, |33]. Accelerators such as Graphics Processing Units (GPUs), whose
usage also increases in contemporary HPC systems, further this memory hetero-
geneity by introducing their own memory spaces. However, in this work, I will limit
my discussion to only CPU-side memory heterogeneity.

To use these heterogeneous memory systems to their fullest extent, the individual
memory objects each application allocates must be distributed among the different
memory types [41], 24} |27]. The optimal solution to this placement decision problem
depends on the objects’ memory access behaviors and the overarching optimization
goal. For instance, placement decisions optimizing application performance might
not yield the best energy efficiency [29]. Thus, optimizing the data placement of an
application requires its programmer to have detailed knowledge of their application’s
memory access behaviors and the performance and energy characteristics of each
memory type in their system. Furthermore, the programmer must manually decide
for each of the (potentially hundreds of) objects their application allocates in which
memory type to place it. Since not all programmers have such knowledge and time
to manually conduct this placement optimization, previous research has developed
data placement optimization frameworks to automate this decision process.

However, previous research on such frameworks does not sufficiently evaluate their
promulgated tools and algorithms. Most existing work only tests the execution time
performance of the frameworks’ placement decisions by employing small sets of ap-
plications. These sets often do not systematically cover all possible memory access
behaviors, meaning they are insufficient to identify specific weaknesses in the frame-
works’ placement optimization algorithms on their own. Further, focusing on the
performance of the placement decisions alone fails to discuss the user experience of
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applying these frameworks to any given application. Yet, said user experience is vital
for these frameworks to see widespread use in the future. Lastly, existing work does
not compare the already existing frameworks and their approaches. In combination,
all the forenamed shortcomings imply that future frameworks cannot systematically
improve upon existing solutions since the exact advantages and disadvantages of
each of them have not been identified.

Consequently, this thesis provides an all-encompassing, in-depth evaluation and
comparison of three state-of-the-art placement optimization frameworks. In my
evaluation, I focus on the execution time performance of these frameworks since all
three frameworks I compare seek to optimize application performance. Yet, I also
quantify the secondary energy consumption benefits this performance-focused opti-
mization entails. Additionally, I detail the user experience of each framework. For
said evaluation, I use a custom-developed synthetic benchmark, which can alter its
memory access behaviors systematically, thereby delivering detailed insights into the
frameworks’ placement optimization algorithms. These detailed results then assist
in understanding the second set of results received from running these frameworks
on simplified versions of four real-world HPC applications. Using this “symbiotic”
evaluation approach, I contribute answers to the following research questions:

o What systemic strengths and weaknesses does each framework’s optimization
algorithm have?

o If any weaknesses are identified, how large is the real-world impact of said
weaknesses?

o How high is the time and effort the programmer needs to expend to apply
these frameworks to any given application?

o How can future frameworks improve their optimization algorithms and user
experience?

The rest of this thesis is structured as follows. Chapter [2| provides the neces-
sary background to understand the intricacies of the data placement optimization
problem. Chapter [3| discusses related work, enumerating proposed data placement
optimization frameworks and the evaluation conducted on them. Chapter [ presents
the three frameworks I evaluate from said related work in more detail. In Chapter [5]
I evaluate and compare these frameworks using the aforementioned methodology. 1
discuss the obtained results in Chapter [0 where I also give recommendations for
future placement optimization frameworks based on my results. This directly leads
into the conclusion of this thesis in Chapter [7]



2. Background

As illustrated in the introduction, deploying heterogeneous memory systems seeks
to serve diverse goals. While some of these goals are achievable rather simply (such
as increasing memory capacity by installing lower-cost, slower memory), others are
more difficult to satisfy. Into this second category fall the goals of increasing energy
efficiency and increasing application performance. As I will explain in this chapter,
this is because the performance and energy efficiency of the memory technologies
used in heterogeneous memory systems not only depend on the technology itself but
also on the application’s individual memory access behaviors. Thus, optimizing the
data placement in such systems requires (a) understanding this interaction between
hardware characteristics and software behavior and (b) knowing how to identify the
relevant access behaviors in an application.

To that end, this chapter provides an overview of the most commonly used memory
types along with their characteristics (Section and a review of the most prevalent
approaches to obtain information about an application’s memory-related behavior
(Section . Also, this chapter demonstrates how to control the data placement in
heterogeneous memory systems in practice (Section .

2.1. Memory Hardware

To meet the increasing performance and energy efficiency demands, hardware ven-
dors have developed new memory typedl] to exist alongside the traditional main
memory type, dynamic random access memory (DRAM). These new types, such
as high-bandwidth memory (HBM) and non-volatile memory (NVM), are each opti-
mized for one specific goal. For example, HBM is optimized for higher bandwidths
and thus performance, while NVM is optimized for delivering higher capacities at
lower energy consumption [32].

Focusing on the optimization of one characteristic at a time is necessary, as con-
structing one “best” memory type that combines the highest achievable performance,
energy efficiency, and capacity is infeasible |41} [27]. Thus, systems must use mul-
tiple memory types together to meet the diverse memory-related demands of their
users. Currently, most such heterogeneous memory systems use two memory types
in tandem, typically DRAM plus either NVM or HBM. Hence, I am going to focus
my discussion on these memory types.

In this thesis, I use the term memory type to describe distinct hardware-level memory imple-
mentations, following the nomenclature of, e.g., Narayan et al. [41]. Other authors, such as
Klinkenberg et al. [32] or Dulloor et al. |16] use the term memory technology for this.



2. Background

Memory type Latency (idle — loaded) Bandwidth (peak) Power draw (peak)

DRAM 80 — 230 ns 78 — 105 GB 55—-60 W
NVM 169 — 800 ns 12 - 38 GB 5—-15 W
HBM 130 — 194 ns 340 — 550 GB 45 — 60* W

2 To the best of my knowledge, no direct power measurements are available for HBM as it is often
located on-chip, complicating such measurements 3|, |20]. These power figures are extrapolated
from the energy efficiency results of Allen et al. [3] assuming a 55 — 60W window for DRAM.

Table 2.1.: General performance metrics for DRAM, NVM & HBM (data taken from
[43, 13, [24) 45| 163, 139])

Generally, DRAM has traditionally provided good performance, i.e., high band-
widths and low latencies, at high capacities. However, due to reaching physical lim-
itations, DRAM is unable to meet the rapidly increasing performance and capacity
demands [44}, 32]. Further, its high energy consumption has come under scrutiny
in recent times. NVM provides higher capacities than DRAM with lower costs and
energy consumption, at the cost of significantly lower bandwidths and higher laten-
cies. Its performance and capacity place NVM between traditional main memory
and secondary storage devices such as SSDs [16, 44, 63]. HBM provides signifi-
cantly higher sustainable bandwidths than DRAM (circa 3x to 5x higher). Yet, it
sacrifices latency and (at least in products available today) significant capacity in
comparison to DRAM [47, 51}, 39].

Table demonstrates these general trends, showing typical ranges for the previ-
ously discussed key metrics for each memory type. However, it is wrong to assume
that the concrete performance of any memory type falls randomly within the pre-
sented ranges. Rather, the achieved metrics depend on how the memory is accessed.
Previous research identified the three following factors as most influential for mem-
ory performance [43| 24| 45, 63, [39]:

1. Read-write ratio of the memory accesses
2. The pattern of memory accesses (e.g., sequential vs. random accesses)

3. Thread-level contention (i.e., the number of parallel accessing threads)

Due to its importance for this thesis, I am going to briefly discuss how these three
factors affect each memory type’s performance.

2.1.1. Dynamic Random Access Memory

DRAM'’s performance is relatively stable in that neither different access patterns nor
the accesses’ read-write ratio affect its performance significantly. Regarding access
patterns, DRAM’s latency is only 10 % to 20 % higher and its bandwidth at most
10 % lower for random accesses than for sequential ones [32, 45 63]. Further, power
draw sees virtually no change between different access patterns [3]. Similarly, DRAM
is minimally impacted by the read-write ratio of the accesses, i.e., how many writes
are done for each read. At most, bandwidth decreases and power draw increases by
10 % each when increasing the number of writes in the workload [45] [32] F]

2The impact of writes on DRAM latency is, to the best of my knowledge, not well explored. I
discuss the reason behind this lack of latency information for writes in Section
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Figure 2.1.: Memory performance under different access patterns (plots taken
from [32], measured with Intel’s Memory Latency Checker [11])

Figure2.1| (a) visualizes DRAM’s performance in a bandwidth-latency curve. Such
curves plot the changes in bandwidth (z-axis) and latency (y-axis) as the number
of threads accessing the memory increases (indicated by color). The two sets of
measurements for a sequential and random access pattern are only slightly separated,
indicating DRAM’s invariance to access patterns.

However, Figure (a) also shows that DRAM is, in fact, significantly affected
by thread-level contention. This pictures the differences between idle latencies and
loaded latencies also seen in Table 2.1l Idle latencies are the latencies measured
when no other accesses to the memory are done in parallel. In contrast, loaded
latencies refer to the latencies measured when there are parallel and thus “compet-
ing” accesses. Such differences between idle and loaded latencies must exist for all
memory types due to Little’s law, which establishes a relationship between memory
latency and bandwidth |60, 39):

Concurrency = Bandwidth x Latency (2.1)

In Equation 2.1], concurrency refers to the number of memory request buffers being
used [39]. Since it is impossible to increase this concurrency ad infinitum (as the
number of available request buffers is determined by the hardware), an increase in
bandwidth will inevitably cause an increase in latency at some point. Figure (a)
shows this consequence of Little’s law for DRAM: As DRAM hits its concurrency
limit due to being accessed by many threads in parallel, the curve’s incline increases,
indicating a sharper increase in latency for less gain in bandwidth.

2.1.2. Non-Volatile Memory

In contrast to DRAM, NVM is very sensitive to changes in access pattern, read-write
ratio, and thread-level contention. Regarding access patterns, idle latencies almost
double when switching from sequential to random reads (169ns vs. 309ns) [63]. As
illustrated in Figure (b), this already significant gap widens vastly for loaded
latencies. Similarly, bandwidth deteriorates up to 75 % when switching from sequen-
tial to random accesses |24}, 32]. Interestingly, power draw decreases by as much as
67 % for random over sequential accesses [48].
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As for the read-write ratio, NVM’s write performance is substantially lower than
its read performance. This causes bandwidth to decrease from 38 GB/s to 12 GB/s
when switching from a read-only to a read-write workload [45, 46]. At the same
time, power draw surges, increasing up to 11x over read-only accesses [48]. Thread-
level contention also affects NVM considerably more than DRAM. As Figure (b)
shows, NVM’s bandwidth decreases by as much as 15 % from its peak when increas-
ing the thread-level contention beyond NVM'’s physical concurrency limit. Latency
increases even more severely, with, e.g., sequential read latencies rising from the
forenamed 169ns to 600ns.

The reason for the access behaviors’ large performance impact is NVM’s physical
implementation. Most NVM modules, such as the Intel Optane PMem module used
by all previously cited works, employ so-called phase-change memory (PCM) [12,
44]. This explains NVM’s lower write performance, since writing to PCM involves
changing the resistance of a phase-change material through a thermal process. Said
process takes longer and requires more energy than the purely electrical writes to
DRAM. The cause for NVM’s access pattern sensitivity is an implementation detail
of the used Optane modules. They employ small DRAM caches to hide the higher
access latencies of PCM [45, 63]. Such small caches and their prefetchers are highly
sensitive to access regularity. Further, to better utilize these caches, Optane uses
access-combining read and write pending queues [46, 63]. These combine physically
adjacent read and write operations to increase access locality. However, they be-
come a bottleneck when increasing thread-level contention, thus explaining NVM’s
sensitivity to this factor.

2.1.3. High-Bandwidth Memory

HBM'’s performance behavior is similar to DRAM in that it is mostly invariant
to differing access patterns and read-write ratios. Yet, in contrast to DRAM, its
performance is also unaffected by thread-level contention. Figure (c) visualizes
this fact: latencies stay almost constant while bandwidth monotonically increases
with increasing thread-level parallelism. This is because HBM is typically imple-
mented through specialized 3D-stacked DRAM modules (so-called multi-channel
DRAM) [43, |47, 39], thereby “inheriting” DRAM’s invariances while increasing tol-
erance to thread-level contention.

However, some intricacies regarding HBM’s performance remain. While its la-
tency remains unchanged when altering access behaviors, its idle latency is 65 %
higher than DRAM [32]. Per Little’s law, this higher latency implies a lower peak
bandwidth than DRAM for random accesses. That is because the hardware prefetch-
ers cannot make as many concurrent memory requests in these scenarios due to
random accesses being unpredictable [47]. Also due to Little’s law, utilizing HBM’s
higher peak bandwidth requires fully saturating its available memory-level concur-
rency. Applications may have difficulties in doing so, as Figure (c) demonstrates:
31 threads do not supply enough memory-level parallelism to surpass DRAM in
bandwidth. In such cases, HBM’s bandwidth advantage may only be exploited by
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using hyperthreading, i.e., using more application threads than CPU cores 7 .

Concerning HBM’s write performance, it is noteworthy that its achievable band-
width improves when switching from a read-only to a mixed read-write workload.
Klinkenberg et al. report that a read-write workload achieves 38 % higher band-
width than pure reads (440GB/s vs. 320GB/s). This behavior is diametrically op-
posite to NVM and further hints at the difficulties in saturating HBM’s available
concurrency.

2.1.4. Other Factors Affecting Memory Performance

The three discussed access behaviors are only a very small subset of performance-
influential factors. For example, the non-uniform memory access (NUMA) archi-
tecture of modern systems also majorly affects memory performance. In NUMA
architectures, some memory modules are physically closer to (and thus, faster to
access for) one set of CPU cores than others [64, [21]. As depicted in Figure the
closer accesses are often referred to as local, while the other accesses are considered
remote. Such remote accesses impact the performance of different memory types to
different degrees. For example, NVM’s performance declines significantly more than
DRAM’s when switching from local to remote accesses , .

Other performance-influential factors are the use of non-temporal stores, i.e.,
writes that bypass the cache hierarchy, or data alignment. Non-temporal stores
can improve the write bandwidth for all memory types significantly (as much as
40 %), but are highly dependent on circumstance , . Data alignment affects
HBM’s achievable bandwidth by up to 100 %, but does not impact DRAM .

And even this list is non-exhaustive (the interested reader may find more factors
in the cited works). Yet, they further illustrate the main point of this section: The
performance of different memory types is subject to manifold factors, some of which
are more predictable and/or influencable, whereas others are less so.

2.2. Measuring Memory Access Behaviors

As presented in the previous section, plenty of factors affect memory performance.
However, knowledge of these factors alone is insufficient to optimize the data place-
ment in heterogeneous memory systems. This is because application programmers
usually lack the knowledge required to manually identify the performance-relevant
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factors discussed in Section[2.1]in such detail as to allow for data placement optimiza-
tion [32]. Hence, optimizing data placement requires sound methods to determine a
program’s memory-related behavior, which I briefly present in this section.

2.2.1. Performance-Related Measurements

For performance-related program analysis, the following techniques exist |34} [18]:

1. Static analysis
2. Dynamic profiling, which can be further distinguished into
a) Binary instrumentation

b) Hardware-assisted sampling

Static analysis refers to analyzing a program’s source code to obtain informa-
tion about the program. Regarding memory-related behavior, static analysis can
determine the read-write ratio and some (!) access patterns at a per-variable gran-
ularity [30]. Requiring no execution of the application, static analysis entails little
overhead compared to the other measurement techniques.

However, its static nature imposes inherent theoretical limits on its capabilities.
For example, pointer aliasing may break the 1 : 1 correspondence between variables
and distinct data objects. Pointer aliasing is a property known to be undecidable [50],
which may cause static analysis to misattribute memory-related behavior. Further,
some performance-relevant factors arise only during program execution (such as
NUMA effects) or are otherwise undetectable without program execution [16, 34].
Thus, static analysis is best suited as a tool supplementing the information gained
through dynamic profiling techniques.

Dynamic profiling (profiling for short) describes the act of executing a program
while measuring certain aspects of it [25]. It is often used to, e.g., find the time
spent in a certain function over the program’s execution. However, it can also
measure memory-related metrics such as the number of memory accesses or even
how many cache misses occurred during program execution. These detailed metrics
make profiling more versatile than static analysis for determining memory-related
behavior; they can help compute the read-write ratio, access pattern, and thread-
level contention of each memory object allocated by the program |16, |53} 27].

Within dynamic profiling, instrumentation and sampling differ in how they ob-
tain the forenamed metrics. Instrumentation takes the approach of tracking each
individual relevant CPU instruction in the final executable [53]. Tools employing
instrumentation-based profiling, such as Intel’s Pin [14} 37] or LLVM’s AddressSan-
itizer [52], have the advantage of yielding high-accuracy data due to profiling each
and every memory access. Thereby, instrumentation can enable a far more detailed
analysis of memory access behaviors than static analysis.

However, these tools have a very high overhead. They not only require executing
the program but also slow down the program’s execution drastically. For instance,
Intel’s Pin introduces a 40x slowdown in program execution time, making this pro-
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filing method borderline unusable for production-scale applications |16} 61]. Further,
instrumenting a program requires recompiling the program and linking it against
the profiler [52, 53, 132]. The inserted instrumentation instructions may also prevent
the compiler from performing optimizations, thus altering the application’s behavior
from the non-profiled version. Hence, instrumentation tools are unable to provide
accurate hardware-level information such as the program’s memory access latencies.

To address these problems of instrumentation, sampling does not profile each and
every relevant instruction. Instead, it uses specialized hardware counters provided
by modern CPUs (called Processor Event-Based Sampling (PEBS) for Intel [10, Vol.
3, Ch. 21] and Instruction-Based Sampling (IBS) for AMD [15]) to only periodically
capture the desired profiling data.

As sampling only relies on these hardware counters, sampling-based profilers do
not require recompiling the profiled application. Instead, they may be directly
applied to the production-grade executable via the LD_PRELOAD mechanism of the
Linux dynamic loader. Further, as they do not capture every CPU instruction, over-
heads are substantially lower than for instrumentation; typical sampling-based pro-
filers such as Extrae [8,27] and NumaMMA [57, 33| induce overheads between 1 %
and 25 %, depending on the chosen sampling frequency. Due to being intertwined
with the hardware, sampling can also provide more hardware-level information than
instrumentation, such as accurate access latencies or cache hit rates.

However, sampling has reduced accuracy compared to instrumentation since only
a subset of instructions is profiled [16, 53]. Thus, sampling is unable to, e.g., identify
more complex access patterns. Additionally, the metrics available to sampling-based
profiling are processor-specific, with memory-related information being limited in
some systems [27,32]. For example, modern processors provide neither the latencies
of nor detailed cache hit information for writes, which is due to the complexity of
how writes to memory are effectuated in modern architectures.

2.2.2. Energy Measurements

Energy consumption can be measured via two different approaches: external instru-
mentation or intra-hardware measurements. External instrumentation involves
attaching external power meters to the system or a selection of its components.
While straightforward in its approach, it poses practical difficulties due to requiring
specialized equipment (especially when taking measurements for only certain system
components such as the memory modules) and physical deployment [31, |4].
Because of these difficulties, modern Intel and AMD processors include hardware
registers that enable intra-hardware measurements without external tooling.
This Running Average Power Limit (RAPL) interface enables energy monitoring
and regulation of different combinations of components within the system (so-called
domains) [10, Vol. 3B, Ch. 16, 49]. Figure [2.3|shows the different domains and their
names for Intel processorsf]| however, not all domains are available for all processors.

3In the following, I focus my discussion on Intel systems, since I conduct my tests later in this
thesis on an Intel system.
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Tools such as LIKWID or Linux’ perf may then periodically access RAPL’s
hardware registers and capture the energy data, introducing negligible (< 1 %)
overhead . This data linearly correlates with externally made measurements
(correlation coefficient > 0.99), but only at a constant offset [31, 4 [49]. Thus,
RAPL’s energy figures may not reflect reality exactly in all circumstances, meaning
it cannot serve as a full replacement for external instrumentation. However, due
to the high linear correlation, RAPL still provides an internally consistent frame
of reference to evaluate how changes to an application generally affect its energy
consumption.

2.3. Controlling Data Placement in an HMS

Once the programmer has used the knowledge from Sections 2.1 and [2.2] to optimize
their application’s data placement, the programmer must then facilitate these opti-
mized placements. How exactly they can do so depends on the configuration of the
heterogeneous memory systems. Heterogeneous memory systems with two memory
types (which I focus on in this thesis) can be configured in three ways: cache mode,
direct mode, or hybrid modeEl Figure depicts these configuration options and
their differences. As the figure shows, hybrid mode is a mere combination of cache

4The names of the modes differ from one hardware vendor to another. I chose the given names
to be brand-neutral.
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and direct mode, which is why I will not discuss it further.

Cache mode allocates the “faster” memory type in the HMS (e.g., DRAM in a
DRAM + NVM system) as an additional cache layer in front of the other, “slower”
memory type [45]. Therefore, the hardware and operating system control the appli-
cation’s data placement; the programmer need not (and, in fact, cannot) perform
any placement optimization themselves.

Cache mode thereby lets the programmer use the system’s memory heterogeneity
without altering their application’s code. Yet, this ease of use sacrifices significant
performance over manual placement optimization [47, 53, 3, 45]. In some circum-
stances, it may even deteriorate memory performance below the level of the slower
memory type in the system. Further, cache mode nullifies the potential energy effi-
ciency benefits of heterogeneous memory systems due to running all memory types
in the system under constant load. Also, cache mode makes significant portions of
the system’s full memory capacity (i.e., the sum of the capacities of the memory
types) unusable since the faster memory is used as a cache layer.

Thus, the programmer must manually optimize their application’s data place-
ment using direct mode to fully exploit the advantages of heterogeneous memory
systems. Direct mode exposes all of the system’s memory types to the user level,
typically as separate NUMA domains or block devices [47], 45].

The programmer has multiple choices to control their application’s data placement
in direct mode. If they only desire coarse-grained control, they may use NUMA
control tools such as numactl to place all application data into a specific memory
type. Yet, this does not exploit the system’s memory heterogeneity in any way, as it
does take the performance differences discussed in Section into account. Thus,
to maximize their usage of heterogeneous memory, the programmer ought to control
their application’s data placement for each individual data object [41], 45].

To achieve such fine-granular control, the programmer needs to either modify
their application’s source code or use interception tools. For the former option,
special allocation libraries such as memkind [7] provide drop-in replacements for the
malloc family of memory allocation routines. Yet, directly modifying the source
code imposes a high burden for the programmer and intertwines the placement
optimization with the rest of the source code [53, 27, 33]. Further, the programmer
cannot (easily) modify the internal allocation calls made by standard library data
structures such as C++’s vector class.

Interception tools such as FlexMalloc [23] mitigate these drawbacks, using only
configuration files instead of source code modification. Listing [1| shows how to
use these configuration files to direct data placement. The first configuration file
(Listing [1] (¢)) is system-specific and lists the available memory allocators. These
allocators direct the made allocations to the different memory types. In this exam-
ple, the system contains DRAM (allocated to through the default posix allocator)
and NVM (allocated to through the pmem allocator from the memkind library). The
former has a size of 2048MB, while the latter is exposed as a block device and
self-reports its capacity to FlexMalloc. Note that the usage of the memkind/pmem
allocator still requires installation of the memkind library. The second configuration

11
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1 int main(void) {
2 double *a = (double *) malloc(...);
3 std: :vector<double> b;
4 compute.cpp:2 @ posix
5 // Computation involving a & b compute.cpp:3 @ memkind/pmem
6
7 free(a);
s
(a) Example C++ program (b) FlexMalloc location file

(file named compute.cpp)

# Memory configuration for allocator posix

Size 2048 MBytes

# Memory configuration for allocator memkind/pmem
@ /mnt/pmem0 @ /mnt/pmeml

(c) FlexMalloc configuration file

Listing 1: Using FlexMalloc to control application data placement

file (Listing[1] (b)) is application-specific, listing for each allocation call which alloca-
tor (and thus, memory type) to use. In this example, array a (allocated in line 2 of
compute.cpp) is placed into DRAM via the posix allocator and vector b (allocated
in line 3) is placed into NVM via the memkind/pmem allocator.

While interception tools mitigate some disadvantages of manual source code mod-
ification, they do not alleviate all issues. They still require the programmer to go
through the application’s code and decide the placement of each allocated object [61,
27, 32].E| Further, both approaches do not offer portability; they require “hardcod-
ing” the specific allocators and memory types into them instead of providing a
portable mechanism to detect the memory types present in a system at runtime.

Additionally, FlexMalloc distinguishes allocations only via their callstack, i.e., all
function calls leading up to the allocation call. As such, FlexMalloc cannot separate
objects that are allocated within a loop, since they all have the same allocation
callstack. Yet, manual source code modification is also unable to deal with such
loop allocations unless the programmer introduces branches with different allocation
calls into the loop; at that point, FlexMalloc would also be able to distinguish the
loop allocations since they now have different callstacks.

5FlexMalloc provides a fallback allocator mechanism through which the programmer may specify
where to allocate objects not listed in the location file. Yet, this still requires the programmer
to consciously decide for each object whether to omit it from the configuration file.
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Numerous works have proposed techniques for optimizing data placement in hetero-
geneous memory systems. Efforts therein range from simple heuristics to advanced,
automated frameworks. The hardware studies cited throughout Section offer
first heuristics to guide usage of the different memory types based on their per-
formance characteristics. For instance, Peng, Gokhale, and Green [45] recommend
placing write-intensive objects into DRAM in DRAM + NVM systems because of
NVM’s low write performance. Yang et al. [63] further recommend placing objects
with random accesses into DRAM, as they identified this access pattern to be detri-
mental for NVM. Similar recommendations exist for HBM + DRAM systems: Peng
et al. [47] and Allen et al. [3] advise placing randomly accessed objects into DRAM
rather than HBM due to HBM'’s higher latency.

The forenamed studies thoroughly tested these heuristics for their efficacy, finding
them to significantly improve performance over cache mode setups. Peng, Gokhale,
and Green even evaluated the energy efficiency implications of their write-aware
placement, showing that it considerably reduces energy consumption. However, in
their evaluation, the cited works did not discuss the difficulty of applying these
heuristics to real-world applications. However, this is unsurprising, given that the
focus of the aforementioned works lies in the evaluation of the different memory
types rather than providing a user-focused placement optimization workflow.

Such optimization workflows (which I will refer to as frameworks for the rest
of this thesis) exist aplenty, using application profiling to automatically identify
performance-critical data objects. However, they differ in the extent to which they
implement and build upon the aforementioned heuristics. For example, Servat et
al. [53] use a simple cache miss density metric to guide data placement, a metric not
found in any of the named studies. In their later work [27], they amend this metric
with a bandwidth-aware object classification. With that, they seek to reduce NVM
access contention in DRAM + NVM systems, which the hardware studies did find to
be performance-relevant. Klinkenberg et al. [33] use an analytical model to predict
how much time the application would spend accessing each object if it were placed
in a specific memory type. Said model differentiates reads and writes, but not other
performance-influential access behaviors such as access patterns. Dulloor et al. [16]
take a very similar approach of estimating access times for their placement optimiza-
tion but focus on differentiating access patterns instead of reads and writes. To that
end, they employ instrumentation-based profiling rather than the sampling used by
all previously listed works. Narayan et al. [41] experiment with entirely different
profiling metrics not used in any other work. They classify objects into latency-
and bandwidth-sensitive using the memory’s reorder buffer (ROB) stall time. Wen
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et al. [61] do not use any heuristics or analytical models for their placement opti-
mization. Instead, they use a “differential analysis” [61] approach, in which they
profile the application multiple times with different system configurations to detect
performance-relevant objects.

Other frameworks focus on specific types of applications, seeking to use domain
knowledge to achieve better placement decisions. Lasch et al. [35] target in-memory
databases, building their placement optimization around what database accesses
are favorable for each memory type. Han et al. [21] optimize data placement for
deep learning model training in HBM + DRAM systems. To that end, they define
custom notions of “tensor hotness” and “tensor lifetime” for deciding what tensors
should be placed into HBM to accelerate the training process. Wu, Ren, and Li [62]
target task-based applications, introducing the concept of “representative tasks”
to minimize profiling overhead. Also, they use a machine-learning model for their
placement decisions, differing from all forenamed works.

Still other frameworks implement a multi-goal placement optimization instead of
targeting application performance alone. Gupta et al. [19] design heuristics for HBM
+ DRAM systems to optimize the application’s data placement for both improved
performance and increased HBM reliability. Katsaragakis et al. [29] employ Pareto
optimization to conjointly optimize for performance, energy efficiency, and memory
wear reduction in DRAM 4+ NVM systems.

As evident by this list, previous work does not lack ingenuity in terms of possible
optimization approaches. Yet, as already mentioned in the introduction to this
thesis, said work lacks a comprehensive evaluation of these different approaches.
Virtually all cited works test their frameworks only on an arbitrary selection of
proxy applications, i.e., simplified versions of production-level HPC applications.
These applications do not cover the full range of all performance-influential access
behaviors discussed in Section [2.1] especially not in a systematic manner allowing for
an in-depth evaluation of each approach’s efficacy. Further and especially, the cited
works rarely compare their newly developed frameworks to one another; of the cited
works, only Wu, Ren, and Li [62] and Jorda et al. [27] make such comparisons. Yet,
such comparisons in particular are a strict requirement to reason about (a) what
benefits and drawbacks each optimization approach has and (b) how to potentially
combine the advantages of the different frameworks.

Such comparisons should also include the frameworks’ user experience because
the user experience heavily influences how much use the frameworks see in future
heterogeneous memory systems. However, the previously cited works cover at most
how many application code changes each framework requires, despite “user experi-
ence” encompassing more than just code changes (e.g., the time the framework takes
for its placement optimization or the effort required to use the framework). To ad-
dress these shortcomings, the following chapters evaluate and compare three of the
frameworks cited in this chapter with regard to both their placement optimization
algorithms and their user experience. This will provide future research with the
knowledge as to what optimization approaches should and should not be pursued
further, along with recommendations for improving the user experience.
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Placement Optimization

As noted in Section [2.3] manually optimizing the data placement in heterogeneous
memory systems is tedious and difficult to do well for the programmer. This sparked
the creation of the several frameworks presented in Chapter [3| which, as noted
therein, must be evaluated in-depth to guide future work on HMS data placement
optimization. Yet, the list presented in Chapter [3]is so extensive that it is infeasible
for a singular thesis to evaluate all named frameworks in-depth. Hence, I focus my
evaluation on three representative frameworks that cover a wide range of optimiza-
tion approaches: H2M of Klinkenberg et al. [32, [33], ecoHMEM of Jorda et al.
27], and ProfDP of Wen et al. [61].

However, drawing conclusions from the evaluation results in Chapter[5]requires un-
derstanding the mechanisms underlying each framework. To that end, this chapter
presents the placement optimization algorithms each framework uses for its place-
ment decisions. Also, I discuss the overarching workflow these algorithms are embed-
ded in, focusing on the “intended workflow” each framework seeks to provide; any
practical issues or bugs these frameworks entail are instead discussed in Chapter

4.1. H2M

H2M started as a partially manual placement optimization library; for each object,
the programmer specified how that object is accessed, which H2M used as the basis
for its optimization. Only later did its authors evolve it into a fully automated
framework. Figure shows H2M’s general workflow. It profiles the application
once, obtaining memory access metrics for each object dynamically allocated by the
program . Together with performance data for the memory types present in the
system, H2M uses this information to optimize the application’s data placement. It
then executes the optimized placements with the FlexMalloc interception tool.

4. Execute
optimized app.

1. Benchmark memory types
(once per system)

2. Profile application 3. Optimize data placement

Memory profiler Interception tool

Memory I\ﬁemory (sampling-based) Placement Placement (GEUWEI9]
benchmark pertormance optimizer decisions
data
|
- H2M'’s software User application . Data/artifacts # Information flow

Figure 4.1.: H2M’s workflow (adapted from )
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4.1.1. Optimization Algorithm

H2M bases its placement optimization on access time estimates. For each of the
application’s objects, it estimates how much time the application would spend ac-
cessing that object if it were placed in a certain memory type. H2M subsequently
seeks to minimize this access time via its placement decisions. For this estimation,
H2M employs a sophisticated analytical model that uses the profiling information
obtained in the first steps of the workflow. This model specifically is why I chose
H2M as one of the frameworks I evaluate, as it represents several other frameworks
using similarly sophisticated models for their optimization.

Nze¢ . Lat Niee - CLS
Achc,mem — 7 mem . 1 _ H acc 1 . H ace 41
! CLS =+ sizeof (double) (1 — CHR) + Bwae CHR™ (4.1)

Equation shows the forenamed model estimating the access time for object ¢
if placed in memory type mem; acc € {read, write} determines whether to estimate
the access time for reads or writes. N denotes the number of profiled (read or
write) accesses to i, and CHRI® € [0, 1] is the cache hit rate of these accesses. For
reads, CHR}“ is the last level cache (LLC) hit rate; for writes, it is the level 1 data
cache (L1D) hit rate since other cache data is unavailable for writes as discussed in
Section [33]. CLS = 64B is the cache line size of the system. Its usage reflects
that memory accesses gather one cache line of data at a time rather than singular
bytes. BW2% and Latem denote the bandwidth and latency of the memory type,
with the bandwidth further depending on the access type.

Put briefly, Equation consists of two parts. The first summand determines
the access time for all accesses that miss the cache and thus incur the memory’s full
latency. The second summand determines the access time for the accesses that hit
the cache and are thus bound by the memory’s bandwidth instead of its latency.

From AT;““™™ H2M computes the total access time for each object as the sum
of its read and write access times, i.e., TATRe™ — ATieadmen L Apwritemen 1y ¢hop
uses TAT"™ to assign each object a value in a 0/1 knapsack problem that represents
the placement optimization problem [33]. The knapsack’s capacity is the capacity
of the faster memory type in the systemf_-] with each object’s weight being its size.
The value of each object is the access time saved by placing that object into the
faster memory type instead of the slower:

V; = (TATSY — TAT®Y) . Freqg (4.2)

Scaling the value with the sampling frequency Freqg offsets the underestimation
of the access time incurred by only sampling a subset of memory accesses [33].

H2M’s optimization uses not one fixed 0/1 knapsack formulation but offers the
user a choice between three different formulations [33]:

TH2M mainly assumes a system with one faster and one slower memory type. For systems with
more than two memory types, H2M iteratively solves the knapsack: In the first iteration, the
knapsack represents the fastest memory type, in the second iteration the second-fastest, etc. [33]
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o Initial data placement (IDP)
o Initial data placement with lifetimes (IDP-LT)
 Phase-based data placement (PBDP)

In IDP, H2M assumes that each object is allocated for the entire runtime of
the application. This allows H2M to formalize the decision problem as a basic 0/1
knapsack, represented by the following integer linear program [33]:

L (4.3)
s.t. Z x; - Size; < FastMemCap z; € {0,1}

=1

Object 7 is placed into fast memory if and only if ; = 1 in the optimal solution of
Equation [£.3] Yet, the assumption that all objects are “alive” for the application’s
entire runtime is often false, leading to suboptimal usage of the available fast memory
space [33]. Thus, IDP-LT additionally considers each object’s lifetime, i.e., its
allocation and deallocation times, allowing H2M to potentially place more objects
into fast memory. To do so, IDP-LT solves Equation recursively for objects with
overlapping lifetimes [33].

PBDP allows H2M to migrate objects between memory types at runtime to fur-
ther optimize the usage of the limited fast memory space. For that, the programmer
divides their application into phases (explained in more detail in Section . In
its optimization, H2M can then decide to migrate objects when transitioning from
one phase into the next [33]. Of the three frameworks I cover, H2M is the only
framework with such capabilities.

PBDP solves Equation {4.3| separately for each phase in the program. However, to
take the overhead of runtime data migration into account, the objective function of
Equation [4.3] changes to

max Z z; - Vi — a (yi(l — xi)TCgaSt_’SIOW +(1- yi)xiTleow_’faSt) (4.4)
i1

Migrating object i causes overhead only if it was allocated prior to the current
phase, which the constant a; € {0,1} indicates. Further, overheads only occur if
the object is placed in different memory types in the prior and current phases. To
determine this, the constant y; € {0,1} indicates whether the object was placed
in the faster (y; = 1) or slower memory type (y; = 0) in the previous phase, with
z; having the same semantics as before. TCHV7st and TCES" denote the
overhead of transferring the object from slow into fast and from fast into slow mem-
ory, respectively. This transfer time equals the object’s size divided by the copying
bandwidth [33].

Also, V; differs from the previous object value V; in that it only includes the
profiled accesses starting from the current phase instead of all accesses across the
entire program’s runtime.
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4.1.2. User Experience

For the end user, H2M aims to be a fully automated framework [33]. To investigate
whether H2M meets this goal, I subsequently detail for each step in H2M’s workflow
whether (a) it provides all necessary tooling to automate this step and whether (b)
it guides the user in the application of said tools.

Step 1 of H2M’s workflow involves discovering what memory types are present in
the target system and consequently benchmarking them (cf. Figure . In contrast
to the other steps, this step only needs to be done once per system instead of once
per application. For the discovery task, the programmer can use the hwloc tool [6],
which Klinkenberg et al. have extended for this purpose. For the benchmarking task,
H2M provides a benchmarking suiteﬂ comprising the STREAM [40] and Imbench [55]
memory benchmarks and Intel’s Memory Latency Checker [11]. The programmer
only needs to set up the suite’s execution environment (which H2M documents how
to do), after which the suite automatically runs all tests necessary to determine
the memory metrics required by the optimizer (i.e., BW2 ' Latyem, and the copy
bandwidths for calculating TC5lov st pCfast=slowy “The suite outputs these results
into a configuration file that H2M can directly use.

Step 2 is the application profiling step, for which H2M uses the NumaMMA
sampling profiler [57]. As mentioned in Section [2.2] the programmer need not re-
compile their application for the profiling. However, they also must not recompile
their application after the profiling step has taken place; otherwise, the optimized
placements cannot be executed correctly. This fact is, however, not documented,
despite H2M otherwise providing sufficient documentation for the profiling step.

One exception where the programmer does need to modify their application (before
the profiling step) is if they want to use PBDP. In this case, they must add calls
to h2m_phase_transition in their application (to denote a transition between two
application phases) and link it to the H2M runtime [33]. The programmer is given no
guidance on how they should identify phases in their application or what granularity
the phases should be for optimal results. Klinkenberg et al. only recommend using
common tracing tools such as Intel’s VTune [13] for this purpose.

In step 3, the programmer provides the placement optimizer with the memory
metrics and profiling data from the first two steps. The optimizer then outputs its
placement decisions into a JSON file [33]. For the optimizer to run, the programmer
must also manually input the following information: (1) the capacity of the faster
memory type in the system, (2) whether to use IDP, IDP-LT, or PBDP, and (3) how
many threads were used to execute the application in the profiling step. Yet, H2M
does not document that this information must be provided manually by the user,
nor does it document how the user ought to provide it. This is especially conse-
quential since (1) and (2) must be specified to the optimizer via opaque environment
variables. Also, H2M gives the user no guidance on when using PBDP over the IDP
variants might be beneficial for the application.

2The benchmarking suite, along with all other software that H2M requires, is available under
https://gitlab.inria.fr/h2m
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Figure 4.2.: ecoHMEM’s workflow
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Figure 4.3.: ecoHMEM'’s three-step optimization algorithm

For step 4, the execution of the application with the optimized placements, H2M
uses a customized FlexMalloc fork. Klinkenberg et al. have modified FlexMalloc
to work with the JSON output from the optimizer, which, in contrast to the nor-
mal FlexMalloc presented in Section [2.3] can also distinguish allocations made by
the same callstack. However, as with step 3, H2M does not document the made
customizations nor that the JSON file needs to be input via an undocumented en-
vironment variable (instead of FlexMalloc’s usual command-line interface).

4.2. ecoHMEM

ecoHMEM, in contrast to H2M, immediately started as a fully automated placement
optimization framework for HBM + DRAM systems . Its authors later expanded
it with bandwidth-aware heuristics for DRAM + NVM systems [27]. In its workflow,
it is very similar to H2M, as Figure .2 shows. The only difference between the two is
in the first step, with ecoHMEM having the user manually provide basic information
on the system’s memory types instead of running a full memory benchmark.

4.2.1. Optimization Algorithm

ecoHMEM’s placement optimization is a three-step process, which Figure de-
picts. First, ecoHMEM assigns each dynamically allocated object a value via a
simple cost metric, which it uses to derive initial placement decisions . In a
second step, ecoHMEM amends these placements using object lifetime information,
thus placing more objects into fast memory. Lastly, ecoHMEM classifies all objects
based on their bandwidth demand and alters their placements accordingly. This
three-step approach is why I chose ecoHMEM as one of the frameworks I evaluate
since many frameworks use such an iterative refinement approach.
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4. Tools for Automated Data Placement Optimization

In step 1, ecoHMEM uses a cache miss density metric to determine the value of
placing object i into memory type mem [27]:

readMiss read writeMiss write
mem __ Nz ) Cmeerl + Nz ’ Cmeerl
yjmem — (4.5)

Sizei

NNreadMiss g NpriteMiss denote the number of read and write cache misses profiled for
the accesses to object 7. As with H2M, read cache misses are LLC misses, while write
cache misses are L1D misses since other cache data is unavailable for writes [27].
cead | and ¢¥ite | are user-definable coefficients representing the cost of each read
and write miss for the memory type. Note that the formula uses the coefficients of
the next slower memory type (denoted as mem + 1 in Equation so that Vmem
represents the gain of placing object ¢ into memory type mem instead of mem + 1.
ecoHMEM uses this metric in a greedy relaxation of the 0/1 multiple knapsack
problem to derive initial placements |27]. It sorts the memory types by their speed
and the objects by their value in descending order. Subsequently, it fills the fastest
memory type with as many high-value objects as possible before moving to fill the
next slower memory. Of note for this optimization is that ecoHMEM, in contrast to
H2M, distinguishes objects solely by their callstack [53]. This downside is caused by
ecoHMEM'’s profiler, Extrae [§], which considers all allocations made through the
same callstack to be one object. Further, Extrae does not accumulate the profiling
metrics across all allocations associated with the same callstack. Instead, it reports
only the maximum recorded for one allocation as that object’s profiled metrics.

Step 2 modifies the obtained placements, using object lifetime information to fit
more objects into faster memory spaces. Therein, ecoHMEM prioritizes objects with
high values (as determined in step 1) to “move up” into faster memory. Interestingly,
Jorda et al. do not mention this second step in their description of ecoHMEM, with
me only finding it through source code inspection. Said inspection also reveals that
step 2 is hardcoded for DRAM + NVM systems, while step 3 (which Jorda et al.
specifically designed for DRAM + NVM systems [27]) is not.

Step 3 aims to minimize the bandwidth usage of the slower NVM (in DRAM
+ NVM systems) to avoid thread-level contention deteriorating NVM'’s perfor-
mance [27]. For this step, Jorda et al. made the following observations when inves-
tigating application profiling data [27]: (1) Objects/callstacks with many associated
allocations typically have a shorter lifetime, and (2) objects with shorter lifetimes
usually have a uniform bandwidth demand over their lifetime (in contrast to long-
living objects). To use these observations, ecoHMEM classifies all objects into three
categories via their average bandwidth usage and number of associated allocations:

o Fitting: objects currently placed in DRAM with few associated allocations
and low bandwidth usage

o Streaming-D: objects currently placed in DRAM with many associated alloca-
tions and low bandwidth usage

o Thrashing: objects currently placed in NVM with many associated allocations
and high bandwidth usage
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Following the aforementioned observations, objects classified in Streaming-D likely
have low bandwidth demands over their entire lifetime. Hence, they can be re-
assigned into NVM instead of DRAM as they are not performance-critical [27].
Analogously, objects classified in Thrashing likely have high bandwidth demands
over their lifetime. Hence, ecoHMEM places these objects into DRAM, reassigning
objects from the Fitting category into NVM to free up DRAM space as necessary.

4.2.2. User Experience

ecoHMEM makes similar promises regarding its automation as H2M [27]. As such,
I subject ecoHMEM to the same analysis as H2M, investigating whether it provides
all tools for each workflow step and whether it guides the user through their usage.

Step 1 requires the programmer to identify all memory types present in their
system and manually write them down in a configuration file, along with the cr¢ad
and ¢ weighting coefficients. Yet, contrary to H2M, ecoHMEM does not guide
the user on how they should identify their target system’s memory types, nor how
they should intelligently choose the weighting coefficients. Jorda et al. only mention
that the coefficients should represent the read and write latencies of the memory
types [27]. However, this assertion is inconsistent with the example configuration
files they provide alongside ecoHMEM. In said examples, they set ci¢2d = 5 cyrite —
10 for NVM and both coefficients to 1 for DRAM, which are not correct latency
numbers in either the absolute or relative sense (cf. Section[2.1]). Therefore, choosing
these coefficients poses a hyperparameter optimization problem for the user.

Also, the documentation omits the crucial fact that the order in which the memory
types appear in the configuration file is important. The optimizer presumes the
memory system in the first line of the configuration file to be the fastest, the second
line to list the second-fastest memory type, etc., regardless of the chosen coefficients.

For step 2, the profiling step, ecoHMEM uses the Extrae sampling profiler. As
with H2M, the user must not modify their application after profiling has taken place,
which ecoHMEM also does not document. Otherwise, ecoHMEM provides the user
ample documentation on how to conduct the profiling step.

In step 3, ecoHMEM uses the profiling data along with the memory type con-
figuration file to optimize the placements, yielding a standard FlexMalloc location
file (cf. Section [2.3] Listing[1] (b)). In contrast to H2M, ecoHMEM sufficiently doc-
uments how to use this placement optimizer. Further, Jorda et al. provide shell
scripts that assist the user in executing all steps of ecoHMEM’s workflow (bar the
initial discovery step). While H2M provides similar scripts, ecoHMEM actually
documents those scripts and what the user needs to modify in them to fit their
application. Thus, ecoHMEM is more ergonomic to use than H2M.

Step 4 uses FlexMalloc to execute the optimized placements. Since ecoHMEM
does not use a customized FlexMalloc fork, using the optimizer’s output requires the
user to install a heterogeneous memory library such as memkind. Yet, Jorda et al. fail

3Both available under https://github.com/accelcom-bsc/ecoHMEM
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Figure 4.5.: ProfDP’s two differential analysis approaches (adapted from )

to document this dependency. Apart from this lapse, ecoHMEM sufficiently guides
the user through the necessary FlexMalloc setup. For example, the documentation
shows the user how to manually create the required FlexMalloc configuration file
listing the system’s memory types (cf. Section , Listing 1] (c)).

4.3. ProfDP

ProfDP is the framework of Wen et al. . In contrast to the other presented frame-
works, it is not a fully automated toolchain. Rather, it is a “lightweight profiler” [61]
that merely assists the programmer in manually optimizing their application’s data
placement. Figure [£.4] shows this difference in workflow. Instead of making place-
ment decisions itself, ProfDP only outputs so-called moving factors, leaving the
usage of these metrics entirely up to the programmer.

4.3.1. Optimization Algorithm

ProfDP’s optimization profiles the application twice with different system configu-
rations [61]. It then uses the difference in average access latencies between these
two runs to identify performance-critical objects, which should be placed in the
fastest available memory. While this “differential analysis” [61] approach is unique
to ProfDP, its usage of the average access latency represents multiple frameworks
using similarly detailed metrics for their optimization. This is why I chose ProfDP
as one of the frameworks I evaluate.

ProfDP offers two different approaches to the forenamed differential analysis ,
which Figure shows. Its bandwidth-aware approach aims to identify the appli-
cation’s bandwidth-demanding objects, while the latency-aware approach seeks to
find latency-sensitive objects. Wen et al.’s rationale behind having two approaches
is that they assume an HMS to contain one faster and one slower memory type,
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4.3. ProfDP

with the slower memory having either higher latency or lower bandwidth than the
faster memory [61]. Thus, placement optimization should focus on placing either
bandwidth- or latency-sensitive data objects into the faster memory.

In both approaches, the first profiling run is a reference run that uses the appli-
cation’s desired parallelism and places its data on a local NUMA domain. How the
second run changes this configuration depends on the chosen optimization approach.

In the bandwidth-aware approach, the second run changes the application’s
parallelism to use only one singular core, as Figure[4.5](a) shows. Wen et al. motivate
this approach via Little’s law, by which bandwidth should increase proportional to
the application’s parallelism unless latency increases [61]. Hence, they deem an
object bandwidth-insensitive “if the average latency of its memory accesses does
not change when the program |[...] scales from one [...] to more [...] cores” [61].

The latency-aware approach keeps the application’s parallelism fixed across runs
but places the application data on a remote NUMA domain in the second run, as
Figure (b) depicts. Wen et al. base this approach on the expectation that an
object is latency-insensitive “if the average latency of its accesses does not change
when the program [...] runs on a machine with higher memory access latency” [61].

In both approaches, ProfDP profiles the average access latency for each object in
each run (hereafter denoted as ff{umj for object 7). Contrary to H2M and ecoHMEM,
ProfDP samples this information not only for dynamically allocated objects but
also globally allocated static data [61]. Using the latency data, ProfDP assigns
each object a bandwidth sensitivity (BS;) or a latency sensitivity (LS;), depending
on the chosen optimization approach. Mirroring Wen et al.’s expectations of when
an object is bandwidth- or latency-(in)sensitive, these metrics are defined as the
relative increase in average access latency between the two runs [61]:

—Run2 —Runl —Runl —Run2
L, — L, L, — L.
LSZ = *Runll BS’ = — *RunQZ (46)

L L

2 K3

ProfDP weighs the obtained sensitivity (denoted as S; below) with the object’s
relative size in comparison to the application’s memory footprint (relSize;) and a
custom-defined importance metric (1;) to obtain the object’s moving factor [61]:

h I, = 4.7
relSize; where > 0cObjects 10tLo (47)

TotL; is the cumulative latency incurred by all memory accesses to ¢. Thus, the
importance of object i is the total latency that accessing ¢ caused, relative to the
cumulative access latencies throughout the entire program.

ProfDP presents these moving factors to the programmer. While providing the
hint that the object with the highest moving factor is the “top candidate” [61] to be
placed into the faster memory, ProfDP ultimately lets the programmer decide the
placement of each object. Thus, it is solely at their discretion to what extent they
follow ProfDP’s guidance. Such a user-curated approach greatly differs from H2M’s
and ecoHMEM'’s knapsack-based optimization.
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4. Tools for Automated Data Placement Optimization

4.3.2. User Experience

In contrast to H2M and ecoHMEM, ProfDP only automates steps 1 and 2 of its
workflow, the profiling and metric calculation step. For these steps, Wen et al.
extended the HPCToolkit suite [1] to provide the necessary tools.

However, this extended version of HPCToolkit is not available anywhere. Jorda et
al. [27] encountered the same issue when they wanted to compare their ecoHMEM
framework to ProfDP. Thus, any programmer wanting to use ProfDP must fully
reimplement its methodology, which is the route Jorda et al. and I took. Apart
from the effort such a reimplementation requires, the original paper (which is the
only available documentation on ProfDP) contains multiple ambiguities that impede
a faithful reimplementation. For example, it remains unclear whether to use the
latencies from the first or second run to compute each object’s importance metricf_f]

Yet, even if ProfDP’s original implementation were available, it would still have
shortcomings in its user experience. For example, Wen et al. do not discuss how
the user could apply ProfDP to heterogeneous memory systems with more than two
memory types. Further, even if the system only has two memory types, the user may
still be unable to choose between ProfDP’s optimization approaches. This is because
Wen et al.’s assumption that the slower memory type has either higher latency or
lower bandwidth is false for, e.g., DRAM + NVM systems (cf. Section .

ProfDP also requires two profiling runs instead of one, causing significantly higher
overheads than H2M or ecoHMEM. This issue is exacerbated by the second run in
the bandwidth-aware approach (using only one core) likely being orders of magni-
tude slower than running the application normally. Further, running the program
with only one core might alter its allocation and memory access behavior, yield-
ing inaccurate results. Wen et al. also fail to address hardware capability issues.
For example, in the latency-aware approach, each NUMA domain on its own might
have insufficient space to host all the application’s data. Also, the latency data that
ProfDP requires might be unavailable on some platforms; latencies for writes in par-
ticular are not available in modern systems [27] [33], decreasing ProfDP’s accuracy.

After (somehow) obtaining the moving factors, steps 3 to 5 of ProfDP’s workflow
are fully manual. In step 3, the programmer must sort through the moving factors
and decide which objects to place into the faster memory type. For real-world
applications, this entails sorting through hundreds or thousands of allocation sites,
where the programmer must consider the moving factor and size of each object.

Steps 4 and 5 require the programmer to facilitate the placements they decided
upon. Wen et al. leave open whether the programmer should use an interception
tool such as FlexMalloc or modify the source code with libraries such as memkind
for this purpose. However, both cases require manual intervention since ProfDP
does not generate FlexMalloc location files or similar artifacts. This non-negligible
programmer input ProfDP requires at every step in its workflow is vastly detrimental
to its user experience, with missing documentation worsening this issue.

41 tried reaching out to Wen et al. to answer this and other questions regarding ProfDP. However,
my e-mail asking these questions remains unanswered to this day.
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As highlighted in Chapter [3| previous work has a shortage of thorough comparisons
of different placement optimization frameworks. To address this shortage, I eval-
uate and compare the three frameworks presented in Chapter 4] under the aspects
of application performance, energy consumption, and user experience. Further con-
trasting previous work, I employ a custom synthetic benchmark alongside proxy
applications to compare the frameworks’ optimization algorithms in-depth.

In this chapter, I first present the overall testing setup (Section as well as
the design of my synthetic benchmark along with the chosen proxy applications
(Section . Using these applications, I conduct a set of experiments designed to
each test different aspects of the frameworks’” performance and energy optimization
capabilities (Section. While running my tests, I experienced the workflow of each
framework firsthand. Combined with user experience-related tests, this allows me to
evaluate the practical hardships associated with using each framework (Section .

5.1. Testing Setup

I ran all tests on a DRAM + NVM heterogeneous memory system from RWTH
Aachen University. Its specs are listed in Table The memory modules are
set up in an interleaving manner, i.e., one 32GiB DRAM module and one 128GiB
NVM module are attached to each memory channel. Further, NVM is exposed as a
separate NUMA domain instead of as a block device, and hyperthreading is disabled.
I limited all experiments to use only one CPU socket with the closest DRAM and
NVM NUMA domains via the numactl tool [l This serves to eliminate NUMA effects
from the benchmarks to increase the reproducibility of the test results.

The system runs Rocky Linux version 8.10. All applications are compiled with
GCC 11.3.0 and the flags -g -03 -march=native -fopenmp. To further improve re-
sult consistency, I bind the OpenMP threads to physical cores by using OMP_PLACES=
cores and OMP_PROC_BIND=close as environment variables. Timing measurements

IThis excludes ProfDP’s second profiling runs in the latency-aware approach. These are limited
to using a remote NUMA memory domain as discussed in Section [£.3.1]

Parameter Processor Cores Memory (DRAM) Memory (NVM)

16 x 32GiB = 512GiB 16 x 128GiB = 2TiB
DDR4 DRAM Intel Optane PMem
(8% per socket) (8% per socket)

2x Intel Xeon Gold 32 per socket (total:

Specification " coa0 (w1ce Lake”) 64) @ 2.00GHz

Table 5.1.: Specifications of the used DRAM + NVM system
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5. Evaluation and Comparison

are taken within the applications themselves, while energy measurements use the
LIKWID toolchain [59] version 5.3.0 (using likwid-perfctr -g ENERGY). I measure
time and energy separately to avoid LIKWID’s overheads skewing results.

All tests for the H2M framework use NumaMMA (commit [73ecec43) for the pro-
filing step. H2M’s runtime (commit da465fab) and custom FlexMalloc fork (commit
6b4215a6) then execute the optimized placements. The placement optimizer (com-
mit 1116a390) already includes configuration files for the used DRAM + NVM
system since Klinkenberg et al. [33] ran their tests on the very same system. Hence,
I use this configuration file instead of running step 1 of H2M’s workflow again.

The tests for eccoHMEM use Extrae version 4.0.3 (commit dad4f11e) for the pro-
filing step. Notably, version 4.0.3 is not the newest version of Extrae currently avail-
able but is the version explicitly linked to in the ecoHMEM repository. ecoHMEM’s
optimizer (commit 27e3be81) already provides configuration files for a DRAM +
Optane NVM system since Jorda et al. [27] used almost the same memory hardware
as my test system in their tests. I do not modify these configuration files and their
weighting coefficients. For executing ecoHMEM’s data placements, I use H2M’s
customized FlexMalloc fork instead of a non-custom FlexMalloc + memkind. This
is because memkind did not recognize the system’s NVM, irrespective of whether it
was exposed as a NUMA domain or block device. However, the memory allocators
(cf. Section H2M’s FlexMalloc provides did recognize the system’s NVM.

ProfDP’s tests use my custom reimplementation of the ProfDP workflow | Said
reimplementation uses the Extrae profiler and H2M’s custom FlexMalloc fork.

For all frameworks, I configured FlexMalloc to place objects into NVM if it cannot
find placement decisions for the object. This can occur for objects whose lifetime is
so short that they were not profiled by the sampling-based profilers.

5.2. Applications

As mentioned in this chapter’s introduction, I evaluate the frameworks using not
only proxy applications but also a synthetic benchmark. To elicit why I chose this
approach and what benefits it brings over using proxy applications alone, I am going
to present the design of my synthetic benchmark and the chosen proxy applications.

5.2.1. Synthetic Benchmark

My synthetic benchmark design serves two goals. First, it is highly configurable
in the memory access behaviors discussed in Section such that it can cover all
possible combinations of these behaviors. Second, it is simple enough such that for
each access behavior combination I can test which placement decisions are optimal
via brute force. In combination, these two goals allow me to (a) test when each
framework makes optimal placement decisions and (b) if they make non-optimal
decisions, determine which access behavior(s) caused this non-optimal choice.

2 Available under https://git-ce.rwth-aachen.de/sesam120063/profdp-reimpl
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Algorithm 1 Synthetic benchmark
1: int *p_1, *p_2, *p_3, *crit_obj
2: Allocate & parallely initialize p_1, p_2, p_3, crit_obj with writes
3: for iter € {1,...,NUMREPEATS} do

4: pStart, pEnd < PARTITIONARRAYS(p_1,p_2,p_3, THREADS)

5

6

7

cStart, cEnd < PARTITIONARRAY (crit_obj, THREADS + ADDTHREADS)
parallel for i € [pStart,pEnd), j € [cStart,cEnd); i += 8, j += 8 do
L GENERATEACCESSES(p_1, i); GENERATEACCESSES(p_2, 1); |
— GENERATEACCESSES(p_3, i)
GENERATEACCESSES(crit_obj, j)

9: function GENERATEACCESSES(array, baseldx)
10: idrl,...,idx8 < GETINDICES(array, ACCESSPATTERN(array), baseldx)
11: | ACCESSARRAY(array, WRITERATIO(array), idzl, ..., idz8)

Stride width S

[ HEEEEEEEEEEEEE | HNERN HESEN BEEEE HEERS
(a) Sequential access pattern (b) Strided access pattern
Stride width S > T B = Accessed index
Tile width T' =4 4 more random accesses in rest of array
C snjtls  sussssfCRNNN & ssssssss sssssiOREs =
(c) Tiled access pattern (d) Random access pattern

Figure 5.1.: Access patterns supported by the GENERATEACCESSES function

Algorithm [1] shows the general structure of my synthetic benchmark. It con-
tains four objects: three placeholder objects (labelled p_1, p_2, and p_3) and one
critical object (labelled crit_obj). The idea is to have the placeholder objects be
“distractions” for the frameworks, which are accessed in the same, non-performance-
critical manner across all configurations of the benchmark. The critical object, on
the other hand, is the object for which I alter the access behaviors as previously
described, making them less and less favorable for the slower NV M.

In the tests, I then give each framework only enough DRAM space to hold one
of the four objects. By altering the accesses to the critical object, I can thus de-
termine when each framework hits a decision boundary, i.e., when it deems the
accesses to crit_obj so performance-critical as to warrant placing it into DRAM
instead of NVM. Further, since the benchmark comprises only four objects, I can
easily test which object should be placed into DRAM to yield optimal performance
and/or energy consumption for each configuration. Hence, I can check whether the
frameworks’ decision boundary corresponds with the optimal decision boundary.

To discuss the details on how I implement this strategy, consider again the bench-
mark’s pseudocode in Algorithm [I, The most important part of the benchmark is
the GENERATEACCESSES function (lines . Drawing inspiration from the Hop-
scotch [2] and Mess [17] benchmarking suites, this function generates eight memory
accesses at a time with a configurable access pattern and read-write ratio. Thus,
GENERATEACCESSES covers two of the three access behavior dimensions discussed
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Figure 5.2.: Optimal object to place into DRAM to minimize execution time

in Section It supports four different access patterns (shown in Figure and
can vary the WRITERATIO in steps of 12.5 %.

To have the placeholder objects be the non-performance-critical “distractions”
I intend them to be, the WRITERATIO for p_1, p_2, and p_3 is 0 %, i.e., they
are never written to except for their initialization. This is because any writes to
NVM vastly diminish its performance (cf. Section , meaning that writing to
the placeholder objects would cause them to become performance-critical. Further,
since irregular access patterns also considerably decrease NVM’s performance, [
configured the placeholder objects to have regular, cache-friendly access patterns.
Specifically, p_1 is accessed sequentially, p_2 in a strided fashion, and p_3 in a tiled
manner. | chose different access patterns for the placeholder objects to not trivialize
the frameworks’ decision process. If all placeholder objects were accessed the same,
this would reduce the decision process to a mere binary decision between putting
the critical object or one of the indistinguishable placeholders into DRAM.

The third dimension discussed in Section thread-level contention, can be
configured via the ADDTHREADS constant used in the array partitioning in lines [4-
All objects are accessed in parallel by a baseline number of threads (in my
tests I chose THREADS = 8), with crit_obj having more parallel accessing threads
depending on the value of ADDTHREADS. Note that ADDTHREADS does not change
the overall number of accesses to crit_obj but distributes the same number of
accesses across more threads, thereby yielding higher thread-level contention for it.

For ease of notation, I am going to denote each configuration of my benchmark,
i.e., each combination of access pattern, read-write ratio, and thread-level contention
used for the critical object’s accesses, as a 3-tuple (a,z,y). a denotes the access
pattern, x € [0,100] is the write ratio in percent, and y € {0,4,8,12} is the used
ADDTHREADS constant. In case the access pattern is obvious from the context, I
omit it from the tuple (yielding the 2-tuple (z,y)).

To verify that my setup achieves the desired effects, I conducted baseline tests for
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the synthetic benchmark. For each benchmark configuration, I placed each object
into DRAM individually and measured the resulting execution time and energy
usage. From these measurements, I can determine the optimal object to place into
DRAM to minimize execution time or energy consumption.

Figure [5.2] shows the optimal placements for minimizing execution time. Each
tile in each heatmap corresponds to one benchmark configuration, with the color
and label indicating which of the four objects should be placed into DRAM to
minimize execution time. For example, the leftmost-uppermost tile in the heatmap
titled “Sequential Access Pattern” shows that to minimize the execution time of the
(Sequential, 0, 0) configuration, p_3 should be placed into DRAM.

In most configurations, placing crit_obj into DRAM is the optimal decision,
showing that my design succeeded in having the placeholder objects only be non-
performance-critical distractions most of the time. Only two exceptions break this
rule. First, if crit_obj is accessed sequentially, placing p_3 into DRAM is always
the optimal decision irrespective of the writes to the critical object. These results
corroborate Yang et al., who report that NVM “can efficiently handle small stores, if
they exhibit sufficient locality” [63]. Second, if crit_obj is not written to, the access
pattern becomes the main performance-influential dimension. Therein, p_3’s tiled
access pattern is more performance-critical than the sequential and strided access
patterns of crit_obj in the top heatmaps. Further, even if crit_obj is accessed
in a tiled fashion, placing p_3 into DRAM instead is still the optimal choice. This
indicates that increasing the thread-level contention on crit_obj does not outweigh
the runtime decrease caused by distributing the accessing work over more threads.

These placements minimizing execution time also minimize the energy consump-
tion, since the differences in power draw between the different placement options are
minimal. Thus, the energy usage (which equals Power x Time) is dominated by the
runtime. The interested reader may find the exact timing, energy, and power data
to verify these claims in Appendix [A] Said appendix also discusses how my baseline
results corroborate the existing hardware studies cited in Section [2.1]

5.2.2. Proxy Applications

For my tests, I further chose the following four proxy applications:

« CloverLeaf [38]: structured grid Lagrangian-Eulerian hydrodynamics code
o Ligra [54]: shared memory graph processing framework
« LULESH [28]: hydrodynamics simulator on unstructured grids
« XSBench [58]: neutron simulation code using Monte Carlo methods
I chose these specific proxy applications for two reasons. First, they cover a wide
range of computational patterns and application domains, making my results as
generalizable as possible. To achieve this, I oriented myself on the Berkeley dwarf

taxonomy [5] and picked applications from different dwarfs. This approach differs
from previous work, which often chose applications too similar to one another for
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Application Parameters/Input Memory Footprint # Allocated Objects
CloverLeaf bm64_short input file 11811 MB 38
Ligra Graph generated with .
(PageRank algorithm) ./rMatGraph 12000000 5634 MB 24
LULESH -s 192 -i 50 6524 MB 6714
XSBench -t 32 -s large -1 1024 5923 MB 364

Table 5.2.: Chosen proxy applications and inputs

their evaluation. For example, Jorda et al. [27] evaluate ecoHMEM separately on
the LULESH, HPCG |[22], and miniFE [36] proxy applications despite them having a
very similar computational pattern |22} 47]. Second, these proxy applications cover
a wide range in the number of objects they allocate, as Table [5.2| shows. Thus, I can
test how the number of objects in an application affects the frameworks’ efficacy.

In combination, the synthetic benchmark and the named proxy applications en-
able a “symbiotic” evaluation approach. The detailed results from the synthetic
benchmark are going to assist in understanding the results for the proxy applica-
tions. On the other hand, the results for the proxy applications will cross-validate
the relevance of the insights generated from the synthetic benchmark results.

5.3. Performance Experiments & Results

To evaluate the frameworks’ performance and energy optimization capabilities, I
conducted three experiments. The first two experiments run the frameworks on
my synthetic benchmark, and the third experiment runs them on the four proxy
applications. In the following, I present each experiment, its setup, and its results.

5.3.1. Synthetic Benchmark (DRAM Profiling)

The first experiment’s setup is the following: The frameworks profile each configu-
ration of the synthetic benchmark once. During this profiling step, all application
data is placed into DRAM. Since DRAM is relatively invariant to crit_obj’s chang-
ing access behavior dimensions compared to NVM (cf. Section , the gathered
data is not skewed by any hardware sensitivities. Therefore, the taken placement
decisions serve as a baseline to evaluate each framework’s efficacy, meaning this first
experiment can answer the following research questions:

1. In how many configurations do the frameworks make the optimal decision?

2. If the frameworks make non-optimal decisions: How consequential are they?

3. What systemic issues underly each framework’s optimization algorithm?

To answer the second question, I run each framework’s placement decisions five
times per benchmark configuration to measure their average execution time and

energy usage. Combining these measurements with the baseline tests conducted in
Section 5.2.1, T can compute the slowdown/overhead of any non-optimal decision.
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(a) Results for configurations accessing crit_obj with a sequential access pattern
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(b) Results for configurations accessing crit_obj with a strided access pattern
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(c) Results for configurations accessing crit_obj with a tiled access pattern
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(d) Results for configurations accessing crit_obj with a random access pattern

Figure 5.3.: Slowdown in execution time of the frameworks’ placement decisions over
the optimal placement decisions

Figure [5.3| shows the results of this experiment. Each subfigure contains four
heatmaps, one for each framework’s results for the configurations accessing crit_obj
with a certain access pattern. Each tile shows the slowdown of the frameworks’ deci-
sions over the optimal decisions as determined in the baseline tests. If any framework
made a non-optimal decision in a configuration, the object that the framework placed
into DRAM instead is shown in braces below the numeric slowdown. Note that
ProfDP has two heatmaps per subfigure, one each for the latency- and bandwidth-
aware optimization approach, since it is unclear which approach to use for DRAM +
NVM systems (cf. Section . Further, H2M uses the IDP-LT knapsack model,
since the synthetic benchmark has no distinct computational phases.

Since the optimal placement decisions for minimizing energy consumption are the
same as for minimizing execution time (cf. Section , the energy consumption
overheads of non-optimal decisions are similar to the shown slowdowns. Hence, I
omit them here; the interested reader may find them in Appendix

For the benchmark configurations accessing crit_obj sequentially, Figure (a)
shows that both of ProfDP’s optimization approaches always make the optimal
placement decision, placing p_3 into DRAM. ecoHMEM makes the same optimal
decision most of the time, with H2M mostly making the non-optimal decision of
placing the critical object into DRAM.

H2M’s non-optimal decisions are systemic in that they only occur once crit_obj is
written to. This is because H2M does not respect the access pattern of the writes. It
does not change the bandwidth and latency metrics it uses in its optimization based
on the access pattern, despite the access pattern significantly impacting NVM’s
write bandwidth and latency. Thus, H2M estimates that the writes to crit_obj are
more performance-critical than the reads to p_3. However, this is false when taking
the access pattern of both objects into account, as Section [5.2.1] showed.
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In contrast, ecoHMEM does not make the systemic error of overvaluing crit_obj’s
sequential writes. This is because ecoHMEM only uses cache misses in its placement
optimization, with sequential writes causing virtually no such misses. However, fo-
cusing on cache misses alone leads to ecoHMEM placing p_2 into DRAM instead
of p_3 in some configurations. The latter object has the higher cache miss rate of
the two, which should cause ecoHMEM to place it into DRAM. Yet, ecoHMEM’s
sampling-based profiling sometimes records more cache misses for p_2 than for p_3
due to a low sampling rate (100 Hz) and a short profiling runtime (~15 seconds).

ProfDP always makes the optimal decision of placing p_3 into DRAM in all con-
figurations, assigning it a moving factor between 1.7x and 2x higher than any other
object. This shows that ProfDP’s approach of using latency data for its optimization
can correctly identify the performance-critical nature of different access patterns.

Interestingly, the recorded slowdowns for ProfDP vary between 0.98x and 1.05x
despite it making the optimal decision in all cases. Not all of this variation is at-
tributable to run-to-run variance, since the maximum relative standard deviation is
only 2.5 %. The slowdown variations having the same pattern in both of ProfDP’s
optimization approaches hint at a systemic issue; yet, even after extensively review-
ing my testing setup, I cannot determine the cause of said issue.

For the benchmark configurations accessing crit_obj in a strided fashion, Fig-
ure (b) shows that H2M now always makes optimal placement decisions. eco-
HMEM also always makes optimal decisions except when crit_obj is only read,
with ProfDP now being the worst of the three frameworks.

H2M’s optimal decision-making is to be expected in light of the results for the
sequential access pattern configurations. It, this time correctly, identifies the writes
to crit_obj as performance-critical, leading to H2M assigning crit_obj a value
5x to 25x higher than any other object. When crit_obj is not written to, H2M
correctly identifies p_3 as the most performance-critical object due to its high cache
miss rate. In contrast to ecoHMEM, H2M’s profiler can recognize this higher miss
rate because of its higher sampling frequency (6000 Hz).

ecoHMEM places crit_obj into DRAM in all configurations due to its strided
access pattern causing significant amounts of cache misses. In contrast to the sequen-
tial access pattern configurations, ecoHMEM never places p_2 or p_3 into DRAM
despite their similar cache miss rates. This is because some of crit_obj’s cache
misses are write misses (at least in the configurations with a write ratio > 0 %),
which ecoHMEM values higher due to the chosen weighting coefficients (cf. Sec-
tion . However, even when the critical object is only read, ecoHMEM still
places it into DRAM instead of p_3. In the (0,0)- and (0, 4)-configurations, this is
again caused by ecoHMEM’s low sampling frequency not recognizing p_3’s slightly
higher cache miss rate. Yet, when ADDTHREADS increases above 4, cache misses
for the critical object increase significantly due to higher cache contention, which
ecoHMEM correctly profiles. Thus, ecoHMEM’s non-optimal decisions for these
configurations demonstrate the systemic issue of focusing on cache misses alone.
Note that this is not an issue of ecoHMEM’s bandwidth-aware object classification,
since that never altered any of ecoHMEM’s decisions in this entire experiment.
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ProfDP makes noticeably more non-optimal decisions than H2M and ecoHMEM.
Focusing on the configurations where crit_obj is only read, ProfDP at first makes
the optimal decision of placing p_3 into DRAM for the (0, 0)- and (0, 4)-configurations.
Yet, it then shifts to placing crit_obj into DRAM for higher ADDTHREADS val-
ues. Similar to ecoHMEM'’s results, this is due to crit_obj’s cache misses increasing
alongside thread-level contention. More cache misses cause higher cumulative laten-
cies, thus increasing crit_obj’s importance metric and, by extension, its moving
factor above that of p_3. The same pattern of more cache misses increasing the crit-
ical object’s importance continues when it is written to. However, when crit_obj
is written to, placing it into DRAM now becomes the optimal decision, explaining
ProfDP’s better performance for higher ADDTHREADS values. Yet, once the write
ratio increases over 75 %, crit_obj’s importance metric deteriorates due to miss-
ing latency information for writes (cf. Sections and [4.3.2)). Accordingly, ProfDP
places p_3 into DRAM instead of crit_obj in these configurations.

Notably, ProfDP’s bandwidth-aware optimization approach yields optimal place-
ment decisions in more cases than its latency-aware approach. That is because
increasing ADDTHREADS raises not only crit_obj’s importance metric but also its
bandwidth sensitivity metric. In combination, this leads to ProfDP placing crit_obj
into DRAM for lower ADDTHREADS values, as Figure (b) shows.

For the tiled access pattern configurations, Figure (c) shows that H2M per-
forms the best out of the frameworks, making only one non-optimal decision. eco-
HMEM makes more non-optimal choices, yet still considerably fewer than ProfDP.

H2M’s one “slip-up” for the (0, 8)-configuration is down to variance in the sampling-
based profiling. In this specific configuration, H2M profiled ~1000 more writes from
crit_obj’s initialization than in the other configurations. This caused its object
value to be larger than p_3’s, leading to the change in placement decisions.

ecoHMEM’s results are a combination of its previously discussed focus on cache
misses and its low-frequency sampling. For low ADDTHREADS values, its profiler
measures significantly more cache misses for p_3 than for crit_obj, leading to the
corresponding placement decisions. For higher ADDTHREADS values, the critical
object’s cache misses become more than p_3’s, changing ecoHMEM'’s placement de-
cisions. Noteworthy is that ecoHMEM places p_3 into DRAM at all in configurations
where the critical object is written to. The cause for this is that ecoHMEM profiles
10x fewer write cache misses than read misses for crit_obj. In combination with
the low relative difference between the read and write miss weighting coefficients,
this causes p_3’s higher read cache miss numbers to outweigh the critical object’s
write misses. Outliers in this regard are the configurations with write ratios of 50 %
and 100 %, where ecoHMEM profiles drastically more write cache misses (> 2000
write misses compared to 500-800).

ProfDP’s results follow the same pattern as its results for the strided access
pattern configurations, for exactly the same reason (i.e., crit_obj’s varying im-
portance metric). However, contrary to the results for the strided access pattern
configurations, p_3’s latency sensitivity metric is also higher than that of the crit-
ical object. Further, crit_obj’s latency sensitivity now decreases when increasing
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ADDTHREADS, explaining why ProfDP’s latency-aware approach places p_3 into
DRAM even for higher ADDTHREADS values. The root cause for this is the relative
nature of the aforementioned sensitivity metrics. Increasing thread-level contention
causes crit_obj’s absolute average access latency to rise above p_3’s (600 vs. 400
CPU cycles for the local NUMA domain run). Yet, switching from the local to the
remote NUMA domain in the second run causes a 200 cycle latency increase for both
objects, meaning the relative difference between runs is lower for crit_obj than for
p_3. The bandwidth-aware approach does not suffer from the same problems, hence
performing better than the latency-aware approach.

For the random access configurations, Figure (d) shows that H2M again has
one slip-up when crit_obj is only read. In contrast, ecoHMEM makes its non-
optimal decisions when the critical object is only written to. ProfDP again makes
the most non-optimal decisions of all frameworks in both optimization approaches.

H2M'’s non-optimal decision for the (0, 12)-configuration is notable in that the
critical object’s random access pattern has a higher cache miss rate than p_3’s tiled
access pattern, which should cause H2M to place crit_obj into DRAM. However,
for this configuration, H2M profiled ~2000 fewer read cache misses for crit_obj
than for p_3. Since the other configurations only reading the critical object do not
show the same behavior, this is again a profiling outlier rather than a systemic issue.

ecoHMEM’s optimal decisions for write ratios < 87.5 % are due to crit_obj’s
random access pattern causing the most cache misses. Yet, the number of profiled
write cache misses for the critical object is again significantly lower than the number
of profiled read misses (2000 write misses vs. 8500 read misses). Once the write ratio
is set to 100 %, the read misses disappear, leading to crit_obj only having 2000
cache misses in comparison to p_3’s 6100. Since the relative difference between the
read and write miss weighting coefficients is only % = 2, p_3’s object value is thus
larger than crit_obj’s. This shows the systemic issue of using arbitrary weighting
coefficients, especially considering the large slowdown of the non-optimal decisions.

ProfDP’s results for the latency-aware approach follow the exact same pattern
as the results for the tiled access pattern configurations for exactly the same rea-
sons discussed there. Yet, its bandwidth-aware approach now performs worse than
its latency-aware approach, in contrast to said previous results. The reason be-
hind ProfDP making only non-optimal decisions in this approach is that crit_obj’s
bandwidth sensitivity metric, and thus, moving factor, are very low. Specifically,
crit_obj’s moving factor is only ~30, while p_2 and p_3 have moving factors in the
interval [90,200]. However, this result makes sense, as the random access pattern is
the least bandwidth-bound of the four access patterns.

5.3.2. Synthetic Benchmark (NVM Profiling)

The setup of the second experiment is the following: The frameworks again profile
each synthetic benchmark configuration once. Yet, this time, the application’s data
is placed into NVM during said profiling. This setup mirrors the most likely usage
scenarios for heterogeneous memory placement optimizers, where the faster memory
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is not going to have enough space to host all application data for the profiling
step. Since NVM is significantly affected by crit_obj’s changing access behaviors,
this experiment is going to answer the research question of how these hardware
characteristics are going to change the frameworks’ decision-making.

Figure shows the results for this experiment. Except for the change of using
NVM for the profiling step instead of DRAM, the test setup is exactly the same as
in Section [5.3.1} Continuing these similarities, I show only the execution time slow-
downs since the energy consumption overheads are similar to the shown slowdowns.
The interested reader may find these plots in Appendix [B.2]

For the sequential access pattern configurations, Figure (a) shows significant
changes in the placement decisions for ecoHMEM and ProfDP. H2M, on the other
hand, makes almost the same decisions as in Section [5.3.1}

ecoHMEM improves over the DRAM profiling experiment, now only making two
non-optimal decisions instead of eight. The reason behind this change is that NVM’s
lower overall performance causes the profiling run to take significantly longer (~60
seconds instead of 15). Thus, even ecoHMEM’s low-frequency sampler can now
recognize p_3’s higher cache miss rate and place it into DRAM more often. The
two non-optimal decisions for the (100, 4)- and (100, 12)-configurations are the conse-
quence of profiling variance. In these configurations, ecoHMEM profiled significantly
more write cache misses for crit_obj than in any other configuration.

ProfDP, on the other hand, now makes non-optimal decisions for this set of con-
figurations, especially in the bandwidth-aware approach. This is because NVM’s
high sensitivity to thread-level contention causes crit_obj’s bandwidth sensitivity
metric to be significantly (sometimes over 10x) higher than in the DRAM profiling.
Writes in particular exacerbate this sensitivity to thread-level contention, explaining
why the non-optimal decisions only start when the critical object is written to. The
latency-aware approach makes two mistakes (instead of none in DRAM profiling)
for much the same reason. NVM’s high contention sensitivity also raises crit_obj’s
latency sensitivity metric with higher ADDTHREADS values, bringing its moving
factor much closer to (but still below) that of p_3. In the two specific configurations
where ProfDP now makes non-optimal decisions, the critical object’s access latencies
spiked by pure coincidence, causing its moving factor to exceed that of p_3.

H2M’s placement decisions see almost no changes over the DRAM profiling,
containing the same systemic error of overvaluing the critical object’s sequential
writes. The changes in placement decisions in the (25,0)-, (50,0)-, and (87.5,0)-
configurations are a product of the sampling-based profiling. In these configurations,
NumaMMA happened to profile significantly more write cache misses from p_3’s ini-
tialization than for any other object. Thus, H2M reports 37 % more write cache
misses for p_3 than for crit_obj, despite the latter receiving writes in the “main
computation” of the benchmark. Similar anomalies do not occur for configurations
with ADDTHREADS > 0, since the higher thread-level contention yields significantly
more cache misses for the critical object, offsetting any profiling variance.

For the benchmark configurations accessing the critical object in a strided fash-
ion, Figure (b) shows significant changes over the DRAM profiling experiment
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(a) Results for configurations accessing crit_obj with a sequential access
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(b) Results for configurations accessing crit_obj with a strided access pattern
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(d) Results for configurations accessing crit_obj with a random access pattern

Figure 5.4.: Slowdown in execution time of the frameworks’ placement decisions over
the optimal placement decisions

only for the ProfDP framework. H2M and ecoHMEM alter their placement decisions
in only one or two configurations, respectively.

ProfDP significantly benefits from the NVM profiling in this set of configurations,
with both approaches now performing equally well. The reason for this is ProfDP’s
importance metric. As explained in Section crit_obj’s importance metric
increases along with the ADDTHREADS constant. When profiling on NVM, this
increase is more pronounced due to NVM being more sensitive to thread-level con-
tention than DRAM. Thus, ProfDP places the critical object into DRAM even for
configurations with low ADDTHREADS values in both optimization approaches.

H2M, in contrast, now makes a single non-optimal decision for the (12.5,0)-
configuration, again due to its sampling-based profiling. NumaMMA, seemingly
systematically, now profiles more write cache misses from p_3’s initialization in all
configurations. This brings p_3’s object value closer to crit_obj, making it more
likely for a profiling outlier to cause a change in placement decisions.

ecoHMEM slightly improves over the DRAM profiling, now making optimal deci-
sions for the (0,0)- and (0,4)-configurations. This behavior has the same underly-
ing reason as the sequential access pattern results: The longer profiling time allows
ecoHMEM to more accurately recognize p_3’s slightly higher cache miss rate in com-
parison to crit_obj. Yet, once ADDTHREADS increases, the critical object’s cache
misses also increase, causing non-optimal decisions as in the DRAM profiling.

For the tiled access pattern configurations, Figure (c) shows no changes in
H2M’s placement decisions compared to DRAM profiling, while ecoHMEM and
ProfDP both improve significantly. ecoHMEM’s and ProfDP’s improvements occur
for the reasons already discussed in the previous configuration sets. ProfDP benefits
from a sharper increase in crit_obj’s importance metric, while the longer profiling
time allows ecoHMEM to profile more write cache misses for the critical object.
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Finally, in the random access pattern configurations, Figure (d) shows only
minute differences for H2M and ecoHMEM in comparison to DRAM profiling, while
ProfDP sees significant changes to its placement decisions.

H2M fixes its non-optimal placement decision for the (0, 12)-configuration from
the DRAM profiling experiment. This is because NumaMMA now profiles more
writes from crit_obj’s initialization, causing H2M to assign it a higher value than
p_3. Yet, as in the DRAM profiling, NumaMMA still records significantly fewer read
cache misses for the critical object than for p_3 in only this singular configuration.

ecoHMEM still makes the same systemic error for the configurations with a write
ratio of 100 % for exactly the same reasons discussed in Section [5.3.1] Interestingly,
ecoHMEM changes its placement decision in the (100, 12)-configuration, now placing
p_2 into DRAM instead of p_3. This is because ecoHMEM profiles more cache
misses for p_2 than for p_3 in this configuration. However, this does not change
the fact that both placement decisions are non-optimal, causing vast slowdowns
(~350 %) over the optimal placement decision.

ProfDP’s results for the latency-aware approach are surprising. It now places
crit_obj into DRAM even in configurations where it is only written to, even though
ProfDP has no latency information on it in these configurations. This behavior is
caused by an idiosyncrasy of my reimplementation of ProfDP. If an object has no
available latency data, I assign it a default moving factor of 0. In the (100, 8)- and
(100, 12)-configurations, the moving factors of the placeholder objects are negative,
leading to crit_obj having the highest moving factor. The placeholder objects
having negative moving factors is noteworthy, since this can only occur if their
latency sensitivity metrics are negative. This, in turn, implies that their average
access latencies were lower (!) when all data was placed into a remote NUMA
domain instead of a local one. I reason that this counterintuitive behavior is caused
by contention effects. Specifically, placing all application data into a remote NUMA
domain still measurably increases the access latencies for crit_obj. This lowers the
contention on NVM, allowing the placeholder object accesses to complete faster.

ProfDP’s bandwidth-aware approach benefits from the NVM profiling, now mak-
ing optimal placement decisions for 11 configurations instead of 0. This is because
NVM’s higher sensitivity to thread-level contention causes not only crit_obj’s im-
portance metric but also its bandwidth sensitivity metric to increase alongside the
ADDTHREADS constant. However, once the critical object’s write ratio exceeds
50 %, the bandwidth sensitivities of the placeholder objects also increase drastically,
leading to ProfDP placing them into DRAM instead. I opine this is because the ran-
dom writes to crit_obj stall the reads of the placeholder objects since NVM'’s write
performance is much lower than its read performance. Thus, the access latencies to
the placeholder objects increase as crit_obj is written to more and more.

5.3.3. Proxy Applications

For testing the proxy applications, I have the following setup: Each framework pro-
files each application once with all of its data placed in DRAM. Since the memory
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Figure 5.5.: Execution time results for the proxy applications

footprints of all applications are smaller than the physically available DRAM space,
I restrict the frameworks to use only 20 %, 40 %, and 60 % of the program’s memory
footprint as DRAM space to not trivialize the decision process. This setup will an-
swer the research question of how the systemic weaknesses identified in the previous
experiments affect the frameworks in real-world contexts. To that end, I run each
framework’s placement decisions for each application-capacity limit combination 10
times and measure their execution time and energy consumption.

Figure [5.5 shows the execution time results for this experiment. For reference,
each plot also includes execution times when placing all application data into either
DRAM or NVM. For H2M’s phase-based optimization (PBDP), I split each appli-
cation into phases based on the computational hotspots identified by Intel’s VTune
tracing tool. Therein, I tested setups with fewer and more phases, of which the
result plots always show the best-performing setup.

Noteworthy is that the difference in power draw between the frameworks’ place-
ment decisions is minimal, similar to the synthetic benchmark. Hence, the runtime
again dominates the energy consumption, meaning the energy consumption plots
are almost identical to the shown execution time plots. As such, I do not show them
here; they can be found in Appendix [C]

For CloverLeatf, Figure (a) shows that H2M performs best across all capacity
limits. For the 40 % and 60 % limits, ecoHMEM is the second-best framework, while
for the 20 % limit, ProfDP’s latency-aware optimization outperforms ecoHMEM.

The reason behind ecoHMEM’s and ProfDP’s worse performance is that they
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Object Cache hits Cache misses® Cache hit rate Avg. access latency

(R/W) (R/W) (R/W) (CPU cycles)
xarea 50694/147 3297/201 93.89 %/42.24 % 35.76
yarea 56897/188 2356/187 96.02 %/50.13 % 25.7
volume 44027/230 6207/197 87.64 %/53.86 % 61

2 Reported read misses are LLC misses, reported write misses are L1D misses

Table 5.3.: Select objects from CloverLeaf with their memory access metrics

place the xarea, yarea, and volume objects into DRAM, a decision which H2M
never makes. Table shows the access data for these objects as profiled by Nu-
maMMA. Inspecting these metrics reveals that all three objects are accessed in man-
ners performance-friendly for NVM. They have high read cache hit rates, with reads
further making up a supermajority of the accesses. Thus, xarea, yarea, and volume
are not as performance-critical as other objects within CloverLeaf, which have a
lower cache hit rate and receive more writes. H2M correctly identifies this non-
performance-critical nature, enabling it to place other, more performance-critical
objects into DRAM, whereas ecoHMEM and ProfDP do not.

ecoHMEM’s and ProfDP’s non-optimal decisions for these objects are a conse-
quence of the systemic weaknesses I identified in their optimization algorithms in
Section [5.3.1, ecoHMEM only considers cache misses in its optimization, without
any surrounding context such as the cache hit rate. While xarea, yarea, and volume
have high cache hit rates, they also have high absolute cache miss numbers in com-
parison to other objects within CloverLeaf. Thus, ecoHMEM incorrectly prioritizes
them in its placement optimization. ProfDP’s suboptimal decisions are due to the
relative nature of its sensitivity metrics. Table shows that the average access la-
tencies for all three objects are very low, further reinforcing the notion that they are
not performance-critical. Yet, due to the relative nature of the sensitivity metrics,
the small absolute latency increase between the profiling runs causes the sensitivity
metrics for these objects to become very large.

H2M'’s phase-based optimization changed almost no placement decisions in com-
parison to IDP-LT, no matter the chosen phase granularity. That PBDP performs
better than IDP-LT in the 60 % is only due to testing variance. In this capacity
limit, PBDP’s variance was abnormally large with a relative standard deviation of
1.9 %; in all other tests, the maximum relative standard deviation was 0.5 %.

For Ligra’s PageRank algorithm, Figure (b) shows that only H2M’s IDP-
LT and ProfDP’s bandwidth-aware approach make substantial improvements over
placing all of Ligra’s data into NVM. Interestingly, H2M and ProfDP reach their
similar performance levels through different placement decisions.

H2M gains performance over the all-NVM baseline by placing FL into DRAM,
which is an object used during graph initialization. ecoHMEM places this object
into NVM due to its low number of cache misses (70 misses in 6000 accesses), while
ProfDP places it into NVM since its low access latencies yield a low importance
metric. Yet, both frameworks miss that 50 % of FL’s accesses are writes. In this
case, FL’s writes are performance-critical despite their cache-friendly nature because
they contend with writes to other objects in the graph initialization. Hence, placing

41



5. Evaluation and Comparison

FL into DRAM reduces write contention on NVM, improving NVM’s performance.
H2M, which heavily prioritizes written-to objects in its placement optimization (cf.
Section [5.3.1)), is thus the only framework to identify FL’s performance-critical na-
ture. Its phase-based optimization, however, did not place FL into DRAM due to
profiling variance, instead placing some other, unimportant objects into DRAM.

ProfDP’s bandwidth-aware approach gains its performance not from placing one
particular object, but the group of the Sums, edges, and vertices objects into
DRAM. It thereby puts all objects on the critical path of PageRank’s computation
into DRAM, speeding up the algorithm substantially; placing any one of these ob-
jects back into NVM deteriorates performance to all-NVM levels. This demonstrates
that data placement optimization can benefit from considering that real-world ap-
plications often access objects together in logical groups. In such cases, placing any
singular objects from these groups into faster memory is not beneficial, as then the
other object’s accesses become the bottleneck on the computation path.

ecoHMEM’s poor performance is again a product of its pure focus on cache misses.
While it makes similar placement decisions to ProfDP’s bandwidth-aware approach
in that it places edges and vertices into DRAM, it critically does not place Sums
or FL into DRAM because their accesses cause very few cache misses. ecoHMEM’s
bandwidth-aware classification step did not fix this issue, as it classified neither Sums
nor FL into the Thrashing category (cf. Section in spite of them having the
highest bandwidth usage of any objects according to ecoHMEM.

For LULESH, Figure (c) shows that ecoHMEM performs best for the 20 %
capacity limit. In the other capacity limits, it is surpassed by either H2M’s IDP-LT
or PBDP, with ProfDP having the worst performance across the entire test.

The main challenge in LULESH is that it allocates and deallocates most of its
objects every computational iteration; I will call these objects temporary objects
from here on. Thus, LULESH makes over 3000 allocations but only has ~50 live
objects at any single time. In theory, this should benefit H2M, as it is the only
framework of the three properly equipped to handle allocations made in a loop (cf.
Section 4.2.1]). And, in fact, it does benefit H2M for the 60 % capacity limit test.

In this test, H2M places the x8n and y8n temporary objects into DRAM, which
ecoHMEM and ProfDP never place into DRAM. The reason for this is that each
instance of the objects (alive for one singular iteration) is accessed relatively often
compared to other temporary objects, but relatively little in comparison to the per-
manently allocated/alive objects. Since Extrae, which both ecoHMEM and ProfDP
use, does not accumulate accesses over all instances of the temporary objects (cf.
Section , both frameworks are unable to identify x8n and y8n as performance-
critical. Thus, H2M’s ability to distinguish different instances of the same allocation
callstack reveals itself as valuable for real-world, iterative applications.

H2M’s phase-based optimization only performs on par with IDP-LT when using
very fine-granular phases, with more coarse-grained phases performing significantly
worse than all other frameworks. Further, PBDP only beats IDP-LT for the 40 %
capacity limit. In this test, H2M’s PBDP places the fy_elem and fz_elem tem-
porary objects into DRAM by migrating other, less important permanent objects
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into NVM after they were initialized. Placing these two objects into DRAM yields
a 15-20 second improvement in execution time, fully explaining the gap between
IDP-LT and PBDP. Yet, PBDP does not place x8n and y8n into DRAM for the
60 % capacity limit, leading to it performing significantly worse than IDP-LT.

ecoHMEM outperforms H2M’s IDP-LT for the 20 % and 40 % capacity limits
despite Extrae being ill-equipped to deal with loop allocations. This is because
ecoHMEM makes different, more optimal placement decisions for the permanently
allocated objects. This, in turn, is due to H2M overvaluing sequential writes as dis-
cussed in Section [5.3.1] LULESH’s objects are all written to in very cache-friendly
(presumably sequential) patterns, meaning these writes are non-performance-critical
for NVM. Yet, H2M’s optimization does not consider this access pattern, causing
it to place these objects into DRAM. ecoHMEM'’s bandwidth-aware classification
step helps solidify this advantage by classifying many temporary objects into the
Streaming-D category, evicting them into NVM. Thus, despite Extrae’s aforemen-
tioned weakness, ecoHMEM and H2M made almost identical placement decisions
regarding the temporary objects. However, LULESH was the only tested application
where ecoHMEM’s bandwidth-aware step had any effect.

ProfDP’s poor performance across all capacity limits is because it places two large
objects, p_old and q_old, into DRAM. These objects are not performance-critical
since they are accessed very little (only ~5000 accesses, compared to ~15000 — 50000
for other objects) and mostly in a sequential, reading fashion. Yet, in the profiling
runs, access latencies for these objects spiked a few times by pure coincidence, pro-
ducing latencies of ~600-1500 cycles instead of the usual 50-100 cycles. As these
objects are accessed relatively little, such latency spikes skew the latency averages
and thus the moving factors, leading to non-optimal placement decisions. This
demonstrates that ProfDP relying on latency data alone for its placement optimiza-
tion can be a weakness, especially for objects that are accessed relatively little.

ProfDP’s bandwidth-aware approach does not place these objects into DRAM in
the 20 % capacity limit test, since no latency spikes occurred in the bandwidth-aware
profiling runs. Thus, ProfDP’s performance in this test is much closer to ecoHMEM.
Yet, for the 40 % and 60 % capacity limits, ProfDP again places p_old and q_old
into DRAM, detrimenting its performance. The cause for this is the relative nature
of the sensitivity metrics, identical to the results for CloverLeaf.

Lastly, for XSBench, all frameworks perform virtually identically across all
capacity limits and almost reach the all-DRAM reference measurement, as Fig-
ure (d) shows. This is because XSBench allocates only four objects with a size
larger than 1 MB, only three of which are frequently accessed. Further, one ar-
ray (index_grid) takes up over 80 % of the application’s memory footprint, thus
immediately making it too large for any of the 20 %, 40 %, and 60 % capacity lim-
its. Therefore, the placement decisions in XSBench are trivial, with all frameworks
placing the two remaining objects (nuclide_grid and unionized_energy_array)
into DRAM. Coincidentally, these objects are the most performance-critical objects
in XSBench, meaning their placement into DRAM yields almost all-DRAM perfor-
mance.
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Figure 5.6.: Time taken by each framework to optimize the data placement for
LULESH

5.4. User Experience Experiments & Results

My evaluation of the frameworks” user experience comprises two parts. First, in
Section I quantify the user-side overhead of applying each framework to a
given application in terms of the time and effort the programmer needs to expend.
Second, in Section I discuss the various bugs and hardships I encountered
when using the frameworks. Therein, I especially focus on how the user experience
issues I discussed on a theoretical level in Chapter [ affected my tests in practice.

5.4.1. Overhead of Framework Usage

To quantify the time-related overhead of the different frameworks, I execute the
optimization pipeline of each framework 10 times on the LULESH proxy application.
Therein, I record the average time taken by the profiling step, the postprocessing of
the profiling data that all frameworks perform, and the optimization algorithm itself.

Figure |5.6| shows the results of this experiment. This plot also includes a base-
line for running LULESH once with all data placed in DRAM, marking the low-
est possible time any profiling-based framework can achieve. In this experiment,
ecoHMEM is the fastest framework, followed by ProfDP’s latency-aware optimiza-
tion approach and H2M’s initial data placement (IDP-LT). H2M’s phase-based opti-
mization (PBDP) and ProfDP’s bandwidth-aware approach take by far the longest.

While H2M and ProfDP both take significantly longer than ecoHMEM to opti-
mize LULESH’s data placement, the underlying reasons for this are different. H2M’s
large time requirement is mostly due to its optimization algorithm taking longer,
which is a consequence of it solving a 0/1 knapsack exactly. Exactly solving the 0/1
knapsack also causes H2M’s phase-based optimization to take significantly longer
than IDP-LT, as it solves one knapsack for each phase in the application (cf. Sec-
tion . ProfDP’s heightened time requirement is due to its profiling step requir-
ing two profiling runs, with the second profiling run taking significantly longer in
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the bandwidth-aware approach in particular. These results confirm the concerns I
mentioned in Section For real-world applications with their longer execution
times, such overheads border on the edge of unusability, especially when considering
ProfDP’s mediocre optimization results from Section [5.3]

Figure [5.6) however, does not show the time required to set up the workflow for
each framework, as I did not measure it exactly when I put together the respective
pipelines. Thus, I will only give brief estimates on how much time and effort the
initial workflow setup required.

ecoHMEM was the fastest framework to set up since it provides fully documented,
ready-to-use shell scripts that only require setting a handful of environment vari-
ables. In total, ecoHMEM’s setup took me ~20-30 minutes of time. However, my
user experience in this regard is likely better than the average user’s, since I could
use the provided example configuration files as mentioned in Section Other
systems that do not use DRAM + Optane NVM would require the user to manually
discover their system’s memory types and their basic performance characteristics
(cf. Section [4.2.2)), adding to the aforementioned time overhead.

H2M was the second-fastest framework to set up. While it provides shell scripts
similar to ecoHMEM, it does not properly document them, leaving the programmer
to figure out the over a dozen environment variables contained in them (cf. Sec-
tions [4.1.2) and [4.2.2]). This was the main time sink in the setup process, which in
total took around 1.5-2 hours of time. Yet, this figure again excludes the first step
in H2M’s workflow, the memory benchmark, as I could directly use H2M’s included
configuration files for my test system (cf. Section [5.1]). However, since H2M’s mem-
ory benchmark requires no user input and only needs to be run once per system,
I would not consider its runtime to be significant overhead. Similarly, the source
code modifications required for H2M’s phase-based optimization were minimal. The
entire process, from applying Intel’s VTune to find LULESH’s computational phases
to recompiling the modified application, only took around 20 minutes.

ProfDP was by far the slowest framework to set up, as I needed to fully reimple-
ment it myself; I will detail the hardships of my reimplementation in Section [5.4.2]
Said reimplementation took ~10-15 hours of work, not including debugging and
various bug fixes. This work was also more demanding than for the other two
frameworks, requiring me to reread the entire ProfDP paper [61] multiple times to
ensure faithfulness to ProfDP’s original implementation.

5.4.2. Encountered Hardships

In all three frameworks that I tested, the biggest hardships I encountered were bugs
within the frameworks’ tools. Cumulatively, these bugs required ~40 hours of work
to fix or find workarounds for. As such, they were severely detrimental in terms of
the user experience, which is why I will subsequently detail them for each framework.

H2M’s largest source of bugs was its profiling tool, NumaMMA, with three bugs
in particular affecting my testing. First, NumaMMA aborted its profiling in 2 %
to 4 % of the proxy application tests due to an internal assertion failing. I did
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compute.cpp:2 @ posix compute.exe!00401121 @ posix
compute.cpp:3 @ memkind/pmem compute.exe!0040112¢c @ memkind/pmem
(a) Human-readable callstacks (b) Binary addresses

Listing 2: FlexMalloc’s different callstack formats

not debug this issue in-depth, since the workaround for it was simply rerunning the
profiling. Second, the Ligra proxy application always threw a segmentation fault
when profiled with NumaMMA. Debugging revealed this was caused by Ligra using a
customized memory allocation routine, which NumaMMA did not correctly interact
with. The fix for this bug was to set the undocumented (!) -c command-line option
in NumaMMA, which has NumaMMA ignore such custom allocation routines. Yet,
using -c also causes a segmentation fault, but only after outputting most of the
profiling data. While this is an improvement over not being able to profile the
application at all, it still irrecoverably loses some data and yields malformed output
files, which I needed to manually fix before passing them to H2M’s optimizer.

Lastly, NumaMMA did not work with MPI applications. I originally planned to
include two real-world applications in my tests, OpenFOAM [26] and LAMMPS [56],
both of which use MPI. Yet, both applications immediately produced a segmentation
fault in MPI_Init when profiled with NumaMMA, independent of the used MPI
implementation. While using the -c option avoided these initial segmentation faults,
the profiling still did not complete successfully. Specifically, NumaMMA only output
a tiny, unusable fraction of the profiling data before it aborted after myriads of out-
of-memory errors. Thus, NumaMMA was one of the two reasons I could not use
MPI applications in my tests; I will detail the second reason shortly.

ecoHMEM showed bugs in all steps of its workflow. First, its profiler, Extrae, has
a race condition in the initialization of the sampling hardware counters. Said race
condition caused the profiling to either freeze or outright crash with a segmentation
fault in ~10 % of cases, thus necessitating a fix )| Further, Extrae’s profiling output
for the Ligra proxy application caused the optimization scripts to abort. ecoHMEM’s
scripts expect the profiling output to be sorted by timestamps, which it was not for
this specific application. Instead of debugging the underlying issue, I manually
sorted the output data to resolve the problem. The optimization scripts themselves
also had a bug in their callstack parsing, leading to malformed outputs for the
FlexMalloc location files in some cases. I fixed this bug with 10 lines of code changes.

ecoHMEM’s three most influential bugs, however, originated from FlexMalloc.
First, for its interception of memory allocation calls, FlexMalloc needs to match
the human-readable callstacks in the location file (cf. Section 2.3 Listing [I) with
the allocation calls in the compiled executable. Yet, this matching process (for
which FlexMalloc uses 1ibbfd) did not function properly. Due to the complex
nature of libbfd, I was unable to locate and fix this bug. As a workaround, I
used binary addresses instead of human-readable callstacks in FlexMalloc’s location

3 As mentioned in Section I do not use the newest version of Extrae for my tests. However,
this race condition is still present in the newest version of Extrae (4.3.1).
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file. For this, I set the -no-translate-data-addresses flag in Extrae to output the
binary addresses of the allocation calls in the compiled executable, which ecoHMEM
consequently used in the location files as exemplified in Listing[2] Using these binary
addresses revealed the second bug, which caused FlexMalloc to mistake the absolute
addresses in the location file for relative offsets in some circumstances. I fixed this
bug by adding 5 lines of code to handle this edge case.

The third FlexMalloc bug pertains not only to ecoHMEM but also to the other
two frameworks and my general test setup. As mentioned in Section I use
H2M’s customized FlexMalloc fork and its provided allocators for all frameworks
since memkind did not recognize the test system’s NVM. However, H2M’s provided
FlexMalloc allocators did not interact properly with MPI applications. As soon as
FlexMalloc redirected any allocation to them in an MPI environment, the applica-
tion immediately crashed with a segmentation fault. Even after extensive debugging
(> 15 hours) using memory checkers such as Valgrind [42], I could not identify what
exactly causes this issue. Since all three frameworks use FlexMalloc, I thus had to
abstain from testing any MPI applications with any framework.

ProfDP was also indirectly affected by all the aforementioned bugs, since my
ProfDP reimplementation uses both Extrae and FlexMalloc. However, since I reim-
plemented ProfDP myself, discussing any bugs that I found and fixed in the opti-
mization algorithm scripts is superfluous since these were of my own wrongdoing.

Apart from these bugs, I also encountered other hardships when using these
frameworks. However, in comparison to the previously discussed bugs, these were
rather minute in nature, which is why I will only mention them briefly.

For H2M, the biggest hardship apart from the bugs was the missing documentation
already mentioned in Sections [4.1.2] and While I was able to deduce the
meaning of most environment variables in the provided shell scripts, having no
documentation still had some consequences for my tests. For instance, at one point
I had to redo my tests for H2M’s phase-based optimization in Section because
I forgot to modify one environment variable (H2M_DUMP_DIR), without which H2M
does not output the necessary phase information its optimizer requires.

With ecoHMEM, I did not experience such hardships, courtesy of its thorough
documentation. The only issue I had to resolve apart from bugs was adding support
for my test system’s PEBS counters to Extrae. As mentioned in Section these
hardware registers used for the sampling-based profiling are processor-specific, and
Extrae did not include support for the used Ice Lake platform out of the box.

ProfDP had the biggest non-bug-related hardship associated with it by requiring
a full reimplementation of its workflow. Apart from the issues already discussed in
Section [4.3.2] further impediments arose during my reimplementation. For example,
since ProfDP requires two profiling runs, some short-lived objects might be profiled
in one profiling run but not the other due to the sampling-based nature of the
profiling step. Wen et al. [61] do not address how they dealt with such objects. I
decided to ignore objects whose allocation was recorded in only one run but kept
objects without profiled accesses if their allocation was found in both runs. Also,
reimplementing ProfDP requires the programmer to familiarize themselves with at
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least one profiling tool to extract the necessary latency data from it. I settled on
Extrae since I was already familiar with it from fixing its previously discussed bugs.

Yet, through my reimplementation efforts, I was able to improve ProfDP’s user
experience over the original workflow described in Section [£.3.2] Specifically, I au-
tomated steps 3 to 5 in ProfDP’s workflow, i.e., the placement optimization itself
and the facilitation of the optimized placements. For the placement optimization,
I chose a greedy decision algorithm. I sort the objects by their moving factors in
descending order and subsequently iterate through them, placing as many objects
with high moving factors into the faster memory type as possible. I settled on this
algorithm since I opine that this is the most likely approach a programmer would use
when applying the original, user-driven optimization workflow. To then facilitate
these optimized placements in an automated fashion, I use FlexMalloc.
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After testing each framework in-depth in the previous chapter, a high-level review
of the gathered results is necessary to succinctly compare the three frameworks
and establish areas of improvement for them. Thus, in this chapter, I compare
and discuss the results for the performance-related tests (Section and each
framework’s user experience (Section on a higher abstraction level. Based on
these observations, I then discuss how future work could combine the advantages of
the three tested frameworks to yield improved frameworks (Section [6.3).

6.1. Performance-Related Results

In terms of the execution time of the made placement decisions, H2M performed the
best out of the three frameworks in a supermajority of cases. The main weakness
of H2M’s optimization algorithm that my test suite identified is an overemphasis on
sequential writes. Put into context with the other frameworks’ results, however, this
is a minor weakness. In the few cases where said overemphasis had a negative effect
on H2M’s placement decisions, e.g., in the sequential access pattern configurations
of my synthetic benchmark, H2M’s placement decisions were the second-best; in this
concrete example, its placements were only 6 % to 18 % slower than the optimal
placements. Thus, H2M’s optimization approach overall is the most promising to
build upon, requiring only some “fine-tuning” to address these last weaknesses.
H2M'’s phase-based optimization yielded almost no benefits over IDP-LT, beating
IDP-LT in only the 40 % capacity limit test for LULESH. Further, as mentioned
in Section [5.3.3] PBDP can perform significantly worse than IDP-LT depending on
the chosen phase granularity. Thus, PBDP’s benefits over IDP-LT are currently
too speculative and too insignificant to justify the additional time the programmer
must afford to use said phase-based optimization. Yet, this might change if H2M’s
authors enact their plans to make H2M’s runtime data migration asynchronous [33].
ecoHMEM, across both the synthetic benchmarks and the proxy applications, was
consistently the second-best framework. Its biggest impediment performance-wise
was the simplicity of its object value metric, only using cache misses with no further
“context information”. Yet, in cases such as the synthetic benchmark’s sequential
access pattern configurations, this pure focus on cache misses benefitted ecoHMEM,
as it was thus (indirectly) able to distinguish different access patterns. Therefore,
ecoHMEM demonstrates that simple composite metrics can be beneficial for iden-
tifying specific characteristics but are ultimately insufficient to reflect the inherent
complexity of the data placement optimization problem. Further, one main compo-
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nent of its optimization algorithm, the bandwidth-aware object classification, proved
ineffective. It had no effect in both synthetic benchmark experiments and only al-
tered placements in one proxy application test (LULESH). Thus, while interesting in
its approach, it is too situational, requiring a specific iterative application structure
with many allocations per callstack to function (cf. Section .

ProfDP’s performance was the worst of the tested frameworks over all tests, with
no clear trend emerging as to whether its latency- or bandwidth-aware approach is
best for the used DRAM + NVM system. However, this does not mean its optimiza-
tion algorithm is fully without merit; for example, ProfDP was the only framework
that consistently identified p_3 as the performance-critical object in the synthetic
benchmark’s sequential access pattern configurations (at least in the DRAM profiling
experiment). This demonstrates that the latency data obtained from sampling-based
profiling can be valuable. However, relying on this latency data alone in relative
sensitivity metrics has shown too many weaknesses: the missing write latency data
causes suboptimal decisions for objects with many writes; the focus on relative
metrics causes suboptimal decisions for objects with high baseline access latencies;
NVM’s hardware sensitivities heavily affect ProfDP’s results; latency spikes during
profiling skew its placement decisions. In combination, the forenamed points show
that latency data can be a valuable addendum for already existing optimization
algorithms but should not form the sole basis for such.

Noteworthy for the performance-related results is that in all experiments, the
power draw differences between different placement decisions were minimal. There-
fore, the framework that optimized the execution time the most automatically op-
timized the energy consumption the most. This partially contradicts the results of
Katsaragakis et al. [29], who report that energy-focused optimization can reduce en-
ergy consumption by as much as 40 % over pure performance-focused optimization.
Yet, since they only give relative result numbers and do not specify how they mea-
sured the energy consumption, I question their measurements based on my results.
Still, future work could explore the potential benefits of adding energy-aware com-
ponents to the frameworks, since minute power draw differences did exist. Yet, my
results show that this should not be the main focus for improving the frameworks.

6.2. User Experience-Related Results

In terms of the user experience, the most significant problem of all frameworks by far
is the myriad of bugs that I encountered in my tests. I focus on these bugs and their
detrimental impact on the frameworks’ user experience to such an extent because,
in most cases, they were not edge cases caused by a specific combination of tools
in my tests[] For instance, discovering H2M’s non-support for MPI applications
required no specific setup. Instead, running any (!) MPI application through H2M’s
workflow reveals the bugs detailed in Section [5.4.2]

1Such bugs caused by a specific combination of tools did exist. However, I did not discuss those, as
they are specific to my test setup and thus irrelevant to the wider discussion of user experience.
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However, to put my critique into perspective, I must also consider that all tested
frameworks at the current point in time are research software and thus subject to
conference deadlines and grant allocations. As such, quality assurance is under-
standably not a main development focus. Nonetheless, the aforementioned bugs
deserve attention due to their wide-ranging consequences detailed in Section [5.4.2}
especially H2M’s missing support for MPI applications is a major disadvantage for
its user experience because of MPI’s ubiquity in the HPC domain. Further, the time
the programmer must expend to debug or work around these issues is the largest
impediment to these frameworks seeing widespread use across the HPC domain.

H2M'’s and ProfDP’s user experience was further affected by their incomplete (or
outright missing) documentation and their large time overheads. ProfDP’s profiling
overheads and the time required to (re-)implement its workflow in particular are so
large that I deem them unacceptable for any real-world use case, especially consid-
ering the availability of the other two frameworks and ProfDP’s mediocre perfor-
mance results. H2M’s optimization time overheads are also significantly larger than
ecoHMEM’s, on par with ProfDP for its phase-based optimization (cf. Section m
Figure [5.6)), but are more fixable than ProfDP as I will detail in Section [6.3]

Thus, overall, I rank H2M’s user experience higher than ProfDP’s, with ecoHMEM
providing a better experience than both of them. However, all frameworks have vast
room for improvement in terms of their user experience due to the presence of bugs.
Fixing these bugs would yield the highest benefit for improving the frameworks’ user
experience. Thus, this should be the main focus in the frameworks’ further devel-
opment instead of pursuing ever-diminishing gains by fine-tuning the optimization
algorithms.

6.3. Improvements for Future Frameworks

For discussing future improvements to the frameworks, I am going to take H2M as a
basis since my test results show that its optimization algorithm is the most promising
of the tested frameworks. For improving H2M’s optimization algorithm further,
the bandwidth and latency figures it uses are of particular interest.

H2M’s memory benchmark generates two bandwidth-latency curves for each of
the system’s memory types, one for estimating the read latencies and bandwidths
and one for estimating the write latencies and bandwidths. From these curves, H2M
chooses the bandwidth and latency figures it uses in its optimization rather simply:
the latency always is the measured idle latency, and the bandwidth is the bandwidth
measured for the number of threads that the application used during the profiling
step. This simple choice ignores how the access pattern or other performance-critical
access dimensions might skew these metrics, causing the overvaluing of sequential
writes explored in Section [5.3.1] To improve this selection process and avoid the
aforementioned biases, I contemplate two different approaches.

The first option uses the latency data profiled from the hardware counters, which
can provide valuable information, as ProfDP’s results demonstrated. Therein, H2M
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6. Discussion

takes the profiled latencies and compares them to the latency measured by its bench-
mark for the memory type the application’s data was placed in during the profiling
step and the number of threads the application used during said profiling (the “ex-
pected” latency). For each object, this yields a relative difference between both met-
rics (e.g., the profiled latency was 1.6x the expected latency). H2M then uses this
object-specific difference to scale the bandwidth-latency curves for all other memory
types, i.e., multiply the latency and bandwidth value of each point on the curve by
this relative difference. From these scaled curves, H2M finally selects its bandwidth
and latency numbers for this specific object, again based on the number of threads
used for the profiling step. Since NumaMMA already profiles the necessary latency
data, implementing this option would require relatively little effort.

The second option entails generating more bandwidth-latency curves for different
read-write ratios and access patterns, which memory benchmarks such as Mess [17]
or Hopscotch [2] can facilitate. Then, H2M determines which bandwidth-latency
curve to use for obtaining the bandwidth and latency numbers on a per-object basis
via the object’s read-write ratio and access pattern. However, this is significantly
more effort to implement correctly, since access pattern detection using sampling-
based profiling data is a non-trivial endeavor. As the results for ecoHMEM and
ProfDP show, using the number of cache misses at different cache levels in combina-
tion with the profiled access latencies could at least distinguish between sequential
and non-sequential access patterns. However, an extensive literature review shows
there is no ready-to-use solution for this problem.

Also, as shown by ProfDP’s results for the Ligra proxy application, including
a mechanism to treat logically related groups of objects as one for the placement
decisions might improve said decisions for real-world applications. However, imple-
menting such a mechanism is difficult, likely requiring static program analysis or
instrumentation to identify such groups. This would again increase the time taken
for the placement optimization. Further, the gain of including such features is un-
certain; in my tests, only one out of four proxy applications showed significant gains
because of such group effects. Nonetheless, group identification might be an area
worth exploring for further (if minute) improvements in optimization efficacy.

Improving H2M’s user experience is largely down to fixing the bugs identified
in Section [5.4.2 However, since implementing such bug fixes is a lengthy process, I
propose two easy-to-implement fixes to noticeably improve H2M’s user experience in
other ways. First, documenting the already existing shell scripts and their environ-
ment variables would ease the discussed configuration burdens. Further, while fixing
bugs can take a long time, merely providing the end user a list of known issues and
incompatibilities would already improve the user experience substantially. Second,
to improve H2M’s long optimization time, H2M could employ specialized algorithms
for solving, e.g., the temporal knapsack problem arising from its IDP-LT approach
instead of recursively solving knapsacks with general integer linear program solvers.
Clautiaux, Detienne, and Guillot [9] have already proposed such algorithms and
provide implementations for them, which H2M could use.
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7. Conclusion

In this work, I evaluated and compared the performance and user experience of
three state-of-the-art data placement optimization frameworks for heterogeneous
memory systems: H2M, ecoHMEM, and ProfDP. Using my custom-developed syn-
thetic benchmark, I identified the systemic strengths and weaknesses of each frame-
work’s optimization algorithm. Therein, H2M had the least consequential weakness
with its overvaluing of sequential writes, making it the best-performing framework
overall. ecoHMEM’s biggest weakness was its focus on cache misses. While this fo-
cus mostly weakened ecoHMEM’s performance, it helped ecoHMEM perform better
than H2M in some circumstances, making ecoHMEM the second-best framework
overall. ProfDP’s biggest weakness was its sole reliance on profiled latency data
in the form of relative sensitivity metrics. These caused its placement decisions
to be inconsistent for write-heavy objects accessed by few threads, leading to it
performing the worst out of the three frameworks. Using four proxy applications,
I confirmed that all the aforementioned weaknesses affect the frameworks’ place-
ment decisions in real-world circumstances in roughly the same magnitude as in my
synthetic benchmark tests.

Regarding the frameworks’ energy efficiency benefits, my tests showed that the
placement decisions optimizing the application performance automatically mini-
mized the energy consumption the most. This is because the differences in power
draw between the different frameworks’ placement decisions were minimal. As such,
H2M'’s placement optimization was also the best regarding the energy consumption,
with ecoHMEM being the second-best framework and ProfDP performing the worst.

In terms of the user experience, i.e., the time and effort the programmer must
afford to use each framework, my experiments revealed that all three frameworks
have major room for improvement. Especially the myriad of bugs found within each
framework severely harms their user experience, as these bugs require large time
investments to work around. Apart from these bugs, ecoHMEM had the best user
experience of the tested frameworks, as it provided ample documentation for the end
user. H2M did not supply such extensive user guidance but at least provided usable
scripts along with its source code. Thus, its user experience was the second-best in
my tests. ProfDP’s user experience was the worst of the three frameworks since its
authors no longer provide a ready-to-use implementation of ProfDP’s methodology.
Thus, any programmer wanting to use ProfDP must fully reimplement its workflow,
which I deem infeasible for any real-world use case.

My results demonstrate which improvements future frameworks should make to
increase their overall efficacy. Regarding performance-related improvements, my
tests showed that latency and cache miss data can be valuable additions to already
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7. Conclusion

existing placement optimization algorithms, especially when employed to facilitate a
coarse-grained access pattern detection. Yet, my results also establish that the main
area future frameworks should improve upon is their user experience. Improving
the frameworks’ documentation and fixing the myriad of bugs present within them
would yield significantly more benefits for the end user than further improving the
frameworks’ placement optimization algorithms.

Future work may employ my “symbiotic” evaluation strategy, using a synthetic
benchmark in combination with proxy applications, to evaluate more frameworks
on different heterogeneous memory systems. Especially covering non-performance-
focused placement optimization frameworks with my methodology would provide
the detailed insights necessary to advance research on multi-goal placement opti-
mization frameworks. Also, using my methodology to compare the frameworks to
cache mode setups, i.e., setups where the heterogeneous memory hardware itself
manages the data placement through a cache mechanism, would be valuable. Since
cache mode setups implicitly migrate data between memory types at runtime, quan-
tifying the exact performance difference between the two approaches could identify
in which scenarios dynamic data migration can provide performance benefits for the
frameworks. Yet, to yield a fair comparison, such tests necessitate restricting the
capacity of the individual memory types in cache mode. This is difficult to achieve,
and it is the reason why I did not undertake those comparisons myself.
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A. Baseline Results for the Synthetic
Benchmark

A.1. Execution Time

Figure shows the execution time for all possible combinations of benchmark
configurations and objects placed into DRAM. Its structure is similar to Figures|5.3
and in that each subfigure shows the results for the configurations accessing
crit_obj with a specific access pattern. Each of the bottom four heatmaps in each
subfigure then shows the execution time for these configurations when placing the
object named in the title of each heatmap into DRAM. Each subfigure further
provides two reference heatmaps at the top: one where all four objects are placed
into DRAM and one where all four objects are placed into NVM. These establish
best- and worst-case baselines for the execution times.

For the benchmark configurations accessing crit_obj sequentially, Figure (a)
confirms the claim from Section that placing p_3 into DRAM is always the
optimal decision when placing exactly one object into DRAM. As mentioned in Sec-
tion [5.2.1] this holds true even when the critical object is written to, corroborating
the findings of Yang et al. [63]. Yet, even sequential writes to NVM still have a
significant performance penalty associated with them; when crit_obj is not placed
into DRAM, the execution time increases by 10 seconds when switching from a 0 %
to a 12.5 % write ratio.

However, increasing the write ratio beyond 12.5 % does not increase the execution
time further, even when crit_obj is placed into NVM. The reason behind this is
that the Optane NVM in the test system conducts its writes in 256 byte chunks,
regardless of how many bytes within this chunk were actually modified [45, 63].
Thus, more writes to the same 256 byte region do not cause additional performance
degradation. Interestingly, when further increasing the write ratio from 87.5 % to
100 %, the execution time actually decreases in a small but measurable capacity.
The cause for this behavior is the access-coalescing nature of the read and write
pending queues briefly mentioned in Section 2.1.2] In an all-write scenario, the
write pending queues can coalesce all sequential (!) writes to a 256 byte region
into one singular operation with no “competing” read operation pending in the read
queues, thus reducing the overall number of slow NVM accesses.

The access-combining nature of NVM’s access queues is also the reason why in-
creasing thread-level contention causes increasing execution times only when crit_obj
is both read from and written to (i.e., 0 % < write ratio < 100 %). When the critical
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(c) Results for configurations accessing crit_obj with a tiled access pattern
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(d) Results for configurations accessing crit_obj with a random access pattern

Figure A.1.: Execution times when placing different objects into DRAM
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A. Baseline Results for the Synthetic Benchmark

object is only read from or written to, NVM'’s access-coalescing queues can combine
all sequential read or write accesses into one operation, with no competing write or
read operation occurring. Thus, execution time decreases alongside ADDTHREADS
in the configurations where crit_obj is only read or written, irrespective of whether
it is placed into DRAM or not. Yet, if crit_obj is both read and written, execution
times increase alongside ADDTHREADS if crit_obj is not placed into DRAM. This
is because the mixed reads and writes cannot be combined into one operation by
NVM’s access queues, leading to increased contention on NVM.

In contrast, when crit_obj is accessed in a strided fashion, Figure[A.1] (b) shows
that increasing the thread-level contention on the critical object always increases the
benchmark’s execution time if crit_obj is written to and not placed into DRAM.
Further, increasing the write ratio beyond 12.5 % now monotonically increases exe-
cution times. Both results are the product of the write pending queues being unable
to sufficiently coalesce the critical object’s strided writes to hide NVM’s worse write
performance. Thus, placing crit_obj into DRAM is optimal if it is written to.

Yet, if the critical object is only read, placing p_3 into DRAM yields the lowest
execution times. This shows that p_3’s tiled access pattern is more detrimental to
NVM’s performance than crit_obj’s strided access pattern.

Further noteworthy in this set of results is that the execution times for the all-
DRAM baseline increased over its sequential access pattern counterpart (top-left
heatmap of Figure[A.1] (a)) by as much as 54 %. This does not contradict the “access
pattern invariance” I attested for DRAM in Section[2.1.1] Rather, the strided access
pattern causes significantly more cache misses than a sequential access pattern (LLC
hit rates decrease from 99 % to 50 %). Thus, DRAM’s full latency is incurred more
often for the strided access pattern, which yields longer execution times.

For the tiled access pattern configurations, Figure (c) most notably shows
that the execution time does not increase monotonically when placing crit_obj
into NVM and increasing its write ratio. Rather, it rises in two distinct steps: when
transitioning from a 0 % to a 12.5 % write ratio and when transitioning from a 50 %
to a 62.5 % write ratio. This is caused by a combination of the access-combining
write pending queues and my implementation of the synthetic benchmark. The
write pending queues can combine the writes to each four-element-wide tile (cf.
Section [5.2.1] Figure (c)), but are unable to combine writes across tiles. When
the write ratio is between 12.5 % and 50 %, my synthetic benchmark only writes to
the first tile, meaning all writes can be combined into one operation. However, once
the write ratio increases above 50 %, the benchmark writes to both tiles, leading to
uncombinable writes and thus longer execution times.

Still, increasing the write ratio on crit_obj when it is placed in NVM does not
lead to the same drastic execution time increases as in the strided access pattern
configurations. Further, increasing the thread-level contention on the critical object
also does not impact execution time as much as in the mentioned strided access
pattern results. Both of these results corroborate Izraelevitz et al.’s [24] findings that
Optane’s access-combining write pending queues help decrease access contention
significantly.
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A.2. Power Draw
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Figure A.2.: Optimal object to place into DRAM to minimize the combined power
draw of the Package and DRAM RAPL domains

Interestingly, when crit_obj is only read, placing p_3 into DRAM yields execu-
tion times up to 2.5 seconds faster than placing crit_obj into DRAM. Since this
gap only forms when increasing ADDTHREADS, this indicates that the tiled access
pattern is unable to saturate NVM’s bandwidth. Thus, placing crit_obj into NVM
and accessing it with more threads uses more of NVM’s limited bandwidth than if
p_3 is placed into NVM. Since NVM’s bandwidth is the bottleneck slowing down
the synthetic benchmark’s execution time, placing crit_obj into NVM therefore
yields the lowest execution times.

When crit_obj is accessed randomly, Figure (d) shows that placing crit_obj
into DRAM over p_3 is the optimal decision even for a write ratio of 0 %. These
results corroborate the results of Yang et al. and Izraelevitz et al. that fully
random accesses constitute the worst possible access pattern for NVM. Identical to
the strided access pattern results, execution time monotonically increases when the
critical object is placed in NVM and its write ratio is increased, since the write
pending queues cannot combine the random accesses.

A.2. Power Draw

When considering the system’s power draw, results are more mixed than the timing
results discussed previously in Section Figure shows the optimal object to
place into DRAM to minimize the system’s total power draw, in the same format as
Figure[5.2)in Section Here, no clear pattern emerges as to what object should
be placed into DRAM to minimize the power draw across the different configurations.

Figure explains the reason behind this lack of pattern. It shows the power
draw for each configuration and placement decision in the same format as Figure[A.T]
As the figure shows, the differences in power draw between the different placement
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(b) Results for configurations accessing crit_obj with a strided access pattern
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(c) Results for configurations accessing crit_obj with a tiled access pattern
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(d) Results for configurations accessing crit_obj with a random access pattern

Figure A.3.: Power draw (from the Package and DRAM RAPL domains) when placing
different objects into DRAM
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A. Baseline Results for the Synthetic Benchmark
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Figure A.4.: Optimal object to place into DRAM to minimize the power draw of the
DRAM RAPL domain

decisions are minimal for each configuration. The only pattern emerging is that
placing p_3 into DRAM consistently yields the highest power draw, with all other
placement decisions being within 2 to 3 watts of each other. Further, placing all
objects into DRAM always yields the lowest (!) power draw across all benchmark
configurations. Both observations are highly interesting in their own regard. How-
ever, explaining the reasons behind them requires breaking down the system’s power
draw into the individual RAPL domains, which I will consequently do.

Figure shows the optimal object to place into DRAM to minimize the power
draw of the DRAM RAPL domain on its own. As a reminder from Section [2.2] note
that the DRAM domain measures the power draw of all attached memory, not just the
DRAM modules. As the figure demonstrates, placing crit_obj into DRAM when it
is written to is almost always the optimal decision to minimize memory power draw.
This is unsurprising, since writing to NVM requires significantly more power than
reading from it as explored in Section In the configurations where crit_obj
is only read, no clear pattern emerges.

However, when considering the detailed power draw results in Figure [A.5] one
very intricate pattern emerges. Placing all objects into DRAM consistently yields a
~30 watt lower (!) memory power draw than any other placement decision. Further,
these other placement decisions are all within 5 watts of each other. This latter
aspect explains the lack of patterns in the total power draw results discussed earlier:
If all placement decisions draw similar amounts of memory power, the system’s
total power draw is mostly determined by the CPU’s power draw (i.e., the Package
domain). Said CPU power draw is subject to more complex factors and interactions
(as I will detail shortly), causing the lack of pattern in the total power draw.

That an all-DRAM placement draws significantly less power than placing any ob-
ject(s) into NVM corroborates the findings of Klinkenberg et al. [32], Alt et al. [4],
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A.2. Power Draw
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(a) Results for configurations accessing crit_obj with a sequential access pattern
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(b) Results for configurations accessing crit_obj with a strided access pattern
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(c) Results for configurations accessing crit_obj with a tiled access pattern
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(d) Results for configurations accessing crit_obj with a random access pattern

Figure A.5.: Power draw (from the DRAM RAPL domain) when placing different ob-
jects into DRAM

64



A.2. Power Draw
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Figure A.6.: Optimal object to place into DRAM to minimize the power draw of the
Package RAPL domain

and Preisner et al. . At first, these results might appear counterintuitive consid-
ering that NVM has lower power demands than DRAM as detailed in Section
However, they are consistent with the power draw characteristics in Section 2.1 when
analyzing DRAM’s power draw in more detail. Most of DRAM’s high power de-
mand is due to it needing constant refreshing to hold its data . This static power
draw is always the same, irrespective of how much DRAM is accessed. Thus, by
placing objects into NVM, DRAM’s power draw reduces only slightly, while NVM
now draws power because it is accessed. Further, actively using NVM and DRAM
at the same time may require additional measures to ensure cache coherency ,
thus increasing power draw. Also, Alt et al.’s experiments show that RAPL over-
estimates NVM’s power draw substantially more than DRAM’s, skewing results in
favor of the alllDRAM placement [4]. In combination, these factors explain the
heightened memory power draw when placing any object(s) into NVM.

Reviewing the power draw results for the Package domain, Figure shows
that placing p_1 or p_2 into DRAM yields the lowest CPU power draw in most
configurations. This is because their sequential and strided accesses are the most
performance-friendly for NVM, taking the shortest time to complete. Therefore,
placing p_1 or p_2 into DRAM instead of the other objects (whose accesses take
significantly longer to complete on NVM) maximizes the CPU’s wait times, yielding
lower CPU utilization and power draw. This also explains why placing p_1 or p_2
into DRAM minimizes the system’s total power draw in some configurations as
previously depicted in Figure [A.2] The differences in CPU power draw outweigh
the minute differences in memory power draw in these configurations, leading to the
aforementioned results for the system’s total power draw.

The same wait time argument also explains the detailed power draw results de-
picted in Figure [A.7] The all-DRAM placement has a 15 to 20 watt higher power
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A. Baseline Results for the Synthetic Benchmark
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(a) Results for configurations accessing crit_obj with a sequential access pattern
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(b) Results for configurations accessing crit_obj with a strided access pattern
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(c) Results for configurations accessing crit_obj with a tiled access pattern
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(d) Results for configurations accessing crit_obj with a random access pattern
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Figure A.7.: Power draw (from the Package RAPL domain) when placing different
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A. Baseline Results for the Synthetic Benchmark

draw than all other data placements because DRAM’s higher bandwidth and lower
latency in comparison to NVM minimize the idle CPU time. Yet, the 20 watt in-
crease in CPU power draw is insufficient to offset the 30 watt lower memory power
for the all-DRAM placement. Thus, when considering the system’s total power draw
in Figure [A.3] the alllDRAM placement yields the lowest power draw.

Further, the wait time argument also explains why the power draw decreases when
placing crit_obj into NVM and increasing its write ratio. Since writes take sig-
nificantly longer to complete than reads on NVM (as explained in Section , not
placing the critical object into DRAM when it is written to causes higher wait times
for the CPU. This decrease is also significant enough to overcome the 5 watt differ-
ence between the memory power draw of the different placement options, explaining
why not placing the critical object into DRAM minimizes the system’s total power
draw in mostly write-intensive configurations.

As an aside, the power figures for the Package RAPL domain shown in Fig-
ure [A7] also serve as a sanity check for the power measurements, since increasing
ADDTHREADS consistently increases power draw. This exactly matches the ex-
pected behavior of more active threads increasing CPU power draw.
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A.3. Energy Consumption
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Figure A.8.: Optimal object to place into DRAM to minimize the combined energy
consumption of the Package and DRAM RAPL domains

A.3. Energy Consumption

The results for the energy consumption return to being similar to the results for the
execution time. As Figure shows, the optimal placement decisions to minimize
the system’s total energy consumption are identical to the placement decisions min-
imizing the benchmark’s execution time (cf. Section m Figure . In light of
the previously discussed power draw results, this is to be expected since the differ-
ences in power draw were minimal between different placement decisions. Thus, the
energy consumption (which equals Power x Execution Time) is mostly dictated by
the benchmark’s execution time.

For the same reason, the energy consumption for the DRAM RAPL domain also fol-
lows the same overall pattern as the execution time results, as Figure demon-
strates. Thus, the optimal decisions to minimize the memory energy consumption
are also identical to the execution time decisions, as shown in Figure [A.10] Yet,
the relative difference between the all-DRAM placement and the other placement
options is significantly higher for the DRAM RAPL domain than for the total system.
This is because the all-DRAM placement yields significantly lower memory power
draw figures compared to other placements but has a similar total power draw.

The execution time also dictates the energy consumption of the Package RAPL
domain, as Figure shows. Thus, the placement decisions minimizing CPU
power consumption are again the same as the optimal execution time placements, as
Figure[A.12|depicts. Here, the only notable deviation from the execution time results
is the heightened impact of the thread-level contention. Increasing ADDTHREADS
significantly increases the CPU’s energy consumption since more active CPU threads
increase the CPU’s power draw.
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(a) Results for configurations accessing crit_obj with a sequential access pattern
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(b) Results for configurations accessing crit_obj with a strided access pattern
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Figure A.9.: Energy consumption (from the Package and DRAM RAPL domains)
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A. Baseline Results for the Synthetic Benchmark
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Figure A.10.: Optimal object to place into DRAM to minimize the energy consump-
tion of the DRAM RAPL domain
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A.3. Energy Consumption
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(b) Results for configurations accessing crit_obj with a strided access pattern
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A. Baseline Results for the Synthetic Benchmark
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(c) Results for configurations accessing crit_obj with a tiled access pattern

Placing All Objects into DRAM Placing No Objects into DRAM

701070 05480 10092.13 11000.08
0 16000
P
[=}
5 4 7sa7a0 soaras osor.az 1008672
=1
Z
&=
2 8 N R | 14000
= )
El
12 — 7s25.04 s000.68 9970.80 1106526 2
12000 £
Placing p_1 into DRAM Placing p_2 into DRAM g
°
0 {morss 26713 ss0sss 1022677 1130768 a0s.20 702168 soszo1 sesacz 1055761 1159452 3
" - 10000 &
A <
S 4 ={rorior sw0.s sosser 10127.18 116167 61598 77637 ss00.66 956087 10608.90 ~
= =
=z =
& a
Q8 —[rosas sosrar e13236 1020891 1127462 6ior.02 7arasz sseors ees1as 1072636 | a.
a 8000
2 ]
2
12 —{ 700624 sosase 916637 10261.64 11345.40 —{ 640154 747208 sss9.40 970073 10785.38 R
T T T T T T T T T T =
- 6000 2
Placing p_3 into DRAM Placing crit_obj into DRAM S
&
0 —{ess417 752004 ss7osa 952052 1041421 11487.06 462716 464957 406544 4079.68 470103 4700.01 471820 ATEE22 ATHTAT oy
o
@ - 4000 =
=] @
D 4 —emess 7aese saars eassia 1043681 1157138 o577z 07335 408477 470330 471ES2 ATEE23 ATALES ATDLGS ATOT.04
==
jasf
E
Q8 —loisiss 727100 s3san2 9439.93 10517.06 1162050 u6r131 aes27s 469681 a7is64 472843 474058 ATS106 4763.59 477150
5 2000
<
12 —loi7is7 725095 837109 947241 10560.93 1167850 467228 4686.31 470011 4T1sd5 4730.98 474103 475576 4765.99 47TR.33
T T T T T T T T T T T T T
0.0 12.5 25.0 37.5 50.0 62.5 75.0 87.5100.0 0.0 12.5 25.0 37.5 50.0 62.5 75.0 87.5100.0
Write Ratio (%) Write Ratio (%)

(d) Results for configurations accessing crit_obj with a random access pattern

Figure A.11.: Energy consumption (from the DRAM RAPL domain) when placing
different objects into DRAM
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A.3. Energy Consumption
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Figure A.12.: Optimal object to place into DRAM to minimize the energy consump-
tion of the Package RAPL domain

75



A. Baseline Results for the Synthetic Benchmark
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(a) Results for configurations accessing crit_obj with a sequential access pattern
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Figure A.13.: Energy consumption (from the Package RAPL domain) when placing
different objects into DRAM
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Figure B.1.: Execution time, power draw, and energy consumption of H2M’s place-
ment decisions
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Figure B.3.: Execution time, power draw, and energy consumption of ecoHMEM’s
placement decisions
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Figure B.5.: Execution time, power draw, and energy consumption of ProfDP’s
latency-aware placement decisions
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Figure B.6.: Power draw and energy consumption overheads of ProfDP’s latency-
aware placement decisions over the optimal placements 93
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Figure B.7.: Execution time, power draw, and energy consumption of ProfDP’s
bandwidth-aware placement decisions
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Figure B.8.: Power draw and energy consumption overheads of ProfDP’s bandwidth-
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Figure B.9.: Execution time, power draw, and energy consumption of H2M’s place-
ment decisions
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Figure B.11.: Execution time, power draw, and energy consumption of ecoHMEM’s
placement decisions
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Figure B.12.: Power draw and energy consumption overheads of ecoHMEM’s place-
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Figure B.13.: Execution time, power draw, and energy consumption of ProfDP’s
latency-aware placement decisions
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Figure B.14.: Power draw and energy consumption overheads of ProfDP’s latency-
aware placement decisions over the optimal placements 113
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Figure B.15.: Execution time, power draw, and energy consumption of ProfDP’s
bandwidth-aware placement decisions
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Figure B.16.: Power draw and energy consumption overheads of ProfDP’s
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Figure C.1.: Power draw for the proxy applications (Package and DRAM RAPL do-
mains combined)
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Figure C.3.: Power draw for the proxy applications (Package RAPL domain)
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Figure C.4.: Energy consumption for the proxy applications (Package and DRAM
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Figure C.5.: Energy consumption for the proxy applications (DRAM RAPL domain)
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