001019969 001__ 1019969 001019969 005__ 20251209121720.0 001019969 0247_ $$2ISSN$$a2835-8856 001019969 037__ $$aRWTH-2025-08684 001019969 041__ $$aEnglish 001019969 082__ $$a004 001019969 1001_ $$aCayci, Semih$$b0 001019969 245__ $$aRecurrent Natural Policy Gradient for POMDPs$$honline 001019969 260__ $$a[Amherst, Massachusetts]$$bOpenReview.net$$c2025 001019969 3367_ $$00$$2EndNote$$aJournal Article 001019969 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1760537751_1171932 001019969 3367_ $$2BibTeX$$aARTICLE 001019969 3367_ $$2DRIVER$$aarticle 001019969 3367_ $$2DataCite$$aOutput Types/Journal article 001019969 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001019969 536__ $$0G:(DE-82)EXS-SF-OPSF854$$aOPSF854 - Mathematical and Practical Properties of Policy-Based Reinforcement Learning (EXS-SF-OPSF854)$$cEXS-SF-OPSF854$$x0 001019969 536__ $$0G:(DE-82)EXS-SF$$aERS Seed Fund - Exploratory Research Space: Seed Fund (2) als Anschubfinanzierung zur Erforschung neuer interdisziplinärer Ideen (EXS-SF)$$cEXS-SF$$x1 001019969 536__ $$0G:(DE-82)EXS$$aEXS - Excellence Strategy (EXS)$$cEXS$$x2 001019969 7001_ $$aEryilmaz, Atilla$$b1 001019969 773__ $$0PERI:(DE-600)3159347-1$$n10$$p1-36$$tTransactions on machine learning research$$v2025$$x2835-8856$$y2025 001019969 8564_ $$uhttps://openreview.net/pdf?id=6G01e0vgIf$$yFulltext 001019969 9151_ $$0StatID:(DE-HGF)0031$$2StatID$$aPeer reviewed article$$x0 001019969 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-07-07 001019969 9201_ $$0I:(DE-82)119730_20221018$$k119730$$lJuniorprofessur für Mathematik des Maschinellen Lernens$$x0 001019969 9201_ $$0I:(DE-82)110000_20140620$$k110000$$lFachgruppe Mathematik$$x1 001019969 961__ $$c2025-10-15T16:22:10.818457$$x2025-10-15T16:22:10.818457$$z2025-10-15 001019969 980__ $$aI:(DE-82)119730_20221018 001019969 980__ $$aUNRESTRICTED 001019969 980__ $$aVDBINPRINT 001019969 980__ $$ajournal 001019969 980__ $$aI:(DE-82)110000_20140620