
Diese Arbeit wurde vorgelegt am
Lehrstuhl für Hochleistungsrechnen (Informatik 12), IT Center.

Usecase Analyse und Hyperparameter
Optimierung von targetDART

Anwendungen

Usecase Analysis and Hyperparameter
Optimization for targetDART Applications

Bachelorarbeit

Felix Knierim
Matrikelnummer: 445677

Aachen, den 13. November 2025

Erstgutachter: Prof. Dr. rer. nat. Matthias S. Müller (’)
Zweitgutachter: Prof. Michael Bader
Betreuer: Adrian Schmitz, M.Sc. (’)

(’) Lehrstuhl für Hochleistungsrechnen, RWTH Aachen University
IT Center, RWTH Aachen University

(*) Lehrstuhl für Betriebssysteme, RWTH Aachen University
communicated by Prof. Matthias S. Müller

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die
wörtlich oder sinngemäß aus veröffentlichten und nicht veröffentlichten Schriften
entnommen sind, sind als solche kenntlich gemacht. Die Arbeit ist in gleicher oder
ähnlicher Form noch nicht als Prüfungsarbeit eingereicht worden.

Aachen, den 13. November 2025

Abstract
For all kinds of projects that require a lot of computations, multiple computation
devices are used in parallel, in order to speed up the execution. Not just multiple
nodes, but also accelerators and CPUs are used simultaneously. Load imbalances
often occur on applications that utilize multiple devices. The occurrence of load
imbalances means that a computation unit has more workload than another compu-
tation unit. Load imbalances slow down the executions because computing devices,
which have less workload than other devices, will finish earlier and stay idle. If a
device stays idle while others are processing workload, the runtime can be decreased
by offloading parts of the workload to the idle devices. A common cause for load
imbalances is that they are induced by the algorithm that the application uses or
by external factors, like a computation device that processes computations faster or
slower than others.

The workload can be balanced during the execution of the program, which is
called dynamic load balancing. Static load balancing balances the workload before
it is executed and cannot react to imbalances that occur during the execution. Most
of the tools that apply dynamic load balancing balance the load between CPU and
an accelerator or between multiple nodes. A solution that is able to apply both
is targetDART. targetDART provides runtime support that applies dynamic load
balancing within a node, between CPU and accelerators, and across different nodes.
It is integrated into the LLVM project and is available as a plugin for the clang
compiler. This thesis conducts benchmarks to test the capabilities and limits of
targetDART regarding different use cases. Furthermore, the hyperparameters of
targetDART are also tested, in order to provide guidelines for their usage.

The results of this thesis show that targetDART scales efficiently. Although a lot
of factors that depend on the use case induce small overheads of 14-16% or 400ms.
The use case that induced high overhead was for using CPU-only as a computation
device. Another plugin that targetDART utilizes induces that overhead. For the
hyperparameters, a comparison of a naive case with no hyperparameters set and a
best case, which combines all optimal hyperparameter settings, shows that with the
guidelines for hyperparameters, a speedup of 2.06× can be achieved.

Keywords: HPC, OpenMP, MPI, targetDART, load balancing, dynamic load
balancing, device offloading

v

Contents
List of Figures ix

List of Tables xi

1. Introduction 1

2. Related Works 3

3. targetDART and the Underlying Hardware Concepts 5
3.1. Memory . 5

3.1.1. Virtual and Physical Memory 5
3.1.2. NUMA nodes . 6

3.2. TargetDART . 6
3.2.1. Runtime Support . 7
3.2.2. Load Balancing . 12
3.2.3. Hyperparameters . 14

3.3. Existing Benchmarks . 15
3.3.1. Weak Scaling . 16
3.3.2. Overhead Against OpenMP 16
3.3.3. Application Induced Imbalance 17
3.3.4. Hardware Induced Imbalance 18
3.3.5. ExaHyPE Case Study . 18

4. Benchmarks 21
4.1. Setup . 21

4.1.1. The Base Scenario . 22
4.2. Use case tests . 23

4.2.1. Scaling the Load Imbalance 24
4.2.2. Overhead of the Host Plugin 26
4.2.3. Random Load Imbalances . 26
4.2.4. Load Imbalances with multiple Nodes 28
4.2.5. Scaling the Task size . 29
4.2.6. Heterogeneous Task sizes . 30
4.2.7. Delayed Task Generation . 32
4.2.8. Scaling the Number of Tasks 33
4.2.9. Guidelines for Use Cases . 36

4.3. Testing the Hyperparameterspace . 38
4.3.1. Pinned Memory . 39

vii

Contents

4.3.2. Thread Placement . 40
4.3.3. NUMA nodes . 42
4.3.4. Multiple Executor Threads . 42
4.3.5. Setting OMP_NUM_TEAMS 44
4.3.6. Static Loads . 44
4.3.7. Different Scheduling Strategies 45
4.3.8. Best Case vs. Naive Case vs. Worst Case 46
4.3.9. Guidelines for the hyperparameters 48

5. Conclusion and further Research 51

A. Appendix for the Benchmarks 53

Bibliography 101

viii

List of Figures
3.1. All runtime threads and their relation to each other. For simplifica-

tion, not all task queues are displayed. Inspired by figure 1 of [25] . . 11
3.2. The priorities of the task queues sorted. The figure is self-drawn. . . . 11
3.3. Both load balancing algorithms in the migration phase. Both inspired

by Figure 2 of [25] . 13
3.4. Benchmark results for increasing the initial load shift. The figure was

copied from [25]. 17
3.5. Benchmark results from using targetDART on ExaHyPE. The figure

was copied from [25]. 19

4.1. Results of the targetDART GPU and ANY versions, as well as the
reference results for increasing the load shift. Lower is better. 23

4.2. Results of the targetDART CPU version, as well as the reference
results for increasing the load shift. Lower is better. 25

4.3. Results of the targetDART GPU versions, as well as the reference
results for increasing the number of tasks. Lower is better. 34

4.4. Results of the targetDART CPU version, as well as the reference
results for increasing the number of tasks. Lower is better. 35

4.5. Testing each targetDART version with pinned and with unpinned
memory. Lower is better. 39

4.6. Testing the OFFLOAD and ANY devices of targetDART with mul-
tiple executor threads. Lower is better. 43

4.7. The best case compared to the naive and the worst case. Lower is
better. 47

A.1. The topology of a single GPU node of Claix23. 87
A.2. Results of the Benchmark 4.2.2. Lower is better. 88
A.3. Results of the Benchmark 4.2.4. Lower is better. 89
A.4. Results of the Benchmark 4.2.4. Lower is better. 90
A.5. Results of the Benchmark 4.2.5. Lower is better. 91
A.6. Results of the Benchmark 4.2.6. Lower is better. 92
A.7. Results of the Benchmark 4.2.6. Lower is better. 93
A.8. Results of the Benchmark 4.2.7. Lower is better. 94
A.9. Results of scaling the number of tasks according to 4.2.8, but with the

bug that increases the runtime if a node starts with 0 tasks. Lower
is better. 95

A.10.Results of the Benchmark 4.3.3. Lower is better. 96

ix

List of Figures

A.11.Results of the Benchmark 4.3.5. Lower is better. 97
A.12.Results of the Benchmark 4.3.6. Lower is better. 98
A.13.Testing different configurations for the scheduling algorithm. Results

for the targetDART ANY device. Lower is better. 99
A.14.Testing different configurations for the scheduling algorithm. Results

for the targetDART CPU device. Lower is better. 100

x

List of Tables
4.1. A table of the results of the ANY version for the random load imbal-

ance benchmark. Lower is better. 27
4.2. The median runtime and the standard deviation of the benchmark

4.3.2. The test case number refers to the enumeration in 4.3.2. Lower
is better. 41

A.1. A table of the results of the CPU version for the random load imbal-
ance benchmark. Lower is better. 87

A.2. Hyperparameters for the best, naive and worst case. 87

xi

1. Introduction
In order to execute computations faster, programs are parallelized. Throughout the
past, this approach has proved itself to be more scalable and energy efficient. Pro-
grams are parallelized on multiple cores of a single CPU, but different computation
devices like GPUs are also used to speed up the execution. If a different computation
device is used, it can run in parallel with the CPU on different computations. An-
other approach to parallelize the computations is to use multiple computers. This
way, the computations are executed on multiple CPUs. If multiple computation
devices are used (which also includes multiple CPUs), so-called load imbalances can
occur. A load imbalance occurs if a computation device has more computations to
process than another device. Load imbalances extend the execution time, since some
devices have more workload than others, which will finish their computations earlier.
Devices with a lot of workload take more time, while other devices remain idle. The
computation can be accelerated by balancing the workload. These load imbalances
can occur during the program execution between different computers. A common
cause of load imbalances is that the duration of the computations depends on the
input data. Since every node is dedicated to a fixed part of the input data, some
nodes get more workload than others. The parts of the input that cause more com-
putation are often unknown before the computation begins, making it impossible to
balance the workload beforehand.

An example of such computation methods is adaptive mesh refinement [7]. It
refines the accuracy of the result values of some subspaces of a mesh. Which parts
of the mesh are refined are chosen by the program based on the previous results
and, therefore, it is not possible to predict which parts will cause more workload
than others, until prior computations finish. External causes for load imbalances,
like power capping, which is sometimes applied in datacenters, can also occur during
execution.

To balance the workload during execution, dynamic load balancing has to be
applied. Dynamic load balancing balances the workload between multiple computing
devices during the computations. Static load balancing, on the other hand, can only
balance the workload before the computations start. Besides balancing the workload
between different nodes, it is also possible to balance the workload between different
computation devices, such as CPUs and GPUs. targetDART [25], which is developed
by the RWTH Aachen’s chair for High Performance Computing, can dynamically
load balance between different computation devices and between different nodes.
Furthermore, it is integrated into the LLVM project as a plugin and utilizes OpenMP
pragmas. With the OpenMP pragmas, it is easy to use targetDART and it generates
low overhead because of the integration into the compiler.

1

1. Introduction

In the work of Schmitz et al. [25], targetDART was tested with different bench-
marks and with a case study using ExaHyPE [23]. This thesis aims to conduct
more benchmarks in order to provide a better understanding of targetDART’s be-
havior. With the results of the benchmarks, suitable use cases for targetDART are
determined. Furthermore, the benchmarks test the impact of various hyperparam-
eters of targetDART in order to tune the execution time. With the results of both,
guidelines for the use cases and the optimal hyperparameter tuning are derived.

The following chapter 2 provides an overview of existing solutions for dynamic
load balancing and prior work to targetDART. After that, the background section
3 explains the technical basics that are needed to understand targetDART. The
background section also describes how targetDART works and focuses on runtime
support, task management and hyperparameters. At the end of the Background
section, the benchmarks and their results from previous work are presented. In the
benchmark section 4, which follows after that, the setup is described, as well as every
benchmark that was conducted. The description of the setup first describes a base
scenario, which is the base for every other benchmark, with single parameters of the
setup being derived from that base scenario. In the benchmark section, the results
are presented and discussed. The guidelines that are derived for the use cases and
hyperparameters are presented in that section as well. At the end, a final conclusion
in Chapter 5 summarizes the key findings and lists possibilities for further research.

2

2. Related Works
In the work of Schmitz et al. [25], the author shows that there are many other tools
that have introduced the tasking concept and allowed the offloading of these to an
accelerator, like a GPU or another node. One example is HPX, which enables task
offloading over MPI [1]. HPX can also be combined with OP2 [21], a framework
that translates written code into different parallel implementations, which can also
utilize GPUs. With the combination of these tools, it is possible to migrate tasks to
MPI nodes, which can then utilize GPUs to compute the tasks [15]. To evaluate this
approach, the authors used the Airfoil application to measure the performance gain
with strong and weak scaling. But no systematic testing of the possible use cases
of this tool was conducted, nor of the hyperparameters that HPX and OP2 have.
HPX itself has a few more case studies that compared HPX mostly with handwritten
OpenMP or OpenMP+MPI versions [16]. Kalkhof et al. [14] considered in their case
study with HPX various accelerators like GPUs, FPGAs and AI engines, whereby
most case studies are limited to using only GPUs as accelerators since they are the
most common ones in datacenters.

The work of Samfass et al. [24] focused on load balancing between MPI nodes
without considering GPU offloading. They proposed multiple load balancing algo-
rithms, which are refined versions of existing algorithms or propose additions like
blacklisting to prevent overbooking of single nodes. In the paper, they evaluate their
approach with a simulation in ExaHyPE.

DCUDA [30] is a wrapper library for CUDA that performs dynamic load balanc-
ing between multiple GPUs. The tool is also able to load balance between multiple
applications, but unlike the previous example, it is not able to load balance between
multiple nodes. The performance of the tool was compared to the static load bal-
ancing algorithm, least-loaded, but was also tested with regard to the overhead of
the library and the fairness between different applications. About 20 benchmarks
from the CUDA samples were taken for the measurements, so DCUDA was tested
with different kinds of small real-world use cases.

The tool StarPU [27] focuses on interdisciplinary use cases. It was designed to
process real-time data of autonomous driving vehicles. It was implemented as a
library for task scheduling on heterogeneous systems to provide fast data processing
and decision-making for autonomous vehicles. The tool was tested on a simulator
that provides realistic scenarios for autonomous vehicles.

Another example of interdisciplinary tools that aims to load balance tasks is the
work of Thavappiragasam et al. [28]. In this paper, they propose a load balancing
library for applications in bioinformatics, like sequence analysis and protein structure
prediction. The tool was implemented using OpenMP and focuses on dynamic

3

2. Related Works

load balancing between multiple GPUs on a single node. Variable task sizes and
convergence rates are common for applications in bioinformatics, so the tool was also
tested with matrix multiplications, which have variable input sizes and a random
number of matrices that are multiplied to simulate a convergence rate.

The tool IRIS [17] has a similar range of features compared to targetDART, which
includes static and dynamic load balancing across multiple nodes and accelerators.
It focuses on supporting as many devices with different runtime libraries as possible.
It supports, for example, OpenMP, CUDA, HIP, OpenCL and SYCL but also more
devices. The tool is implemented as a framework and does not require source code
modification for integration, but it also supports complex execution chains. In
the work of Jungwon et al. [17], they conducted benchmarks which measured the
overhead compared to handwritten code and the potential speedup that is achievable
by load balancing. They also conducted more benchmarks in a different paper [13]
where they compared the peak performance for a simple use case with more complex
task chains to see how the tool performs with increased complexity. In that paper,
the performance of different scheduling strategies was also compared. IRIS was also
integrated in some toolchains [9], [8], [22] and was used in a case study [19] with
ProtoX [20] to compute 3-dimensional Euler equations.

Just like the previous examples, most of the tools that try to load balance between
nodes or GPUs have a case study and a few tests, but no systematic testing of
changes in the environment and the workload. This also holds for targetDART. In
the work of Schmitz et al. [25], several benchmarks were performed that aim to
prove that targetDART is suitable for load balancing across multiple nodes with
accelerators. It also has a case study: Simulating the Tohoku tsunami in ExaHyPE.
But the paper does not systematically test for which use cases the tool is suited or
which hyperparameter might increase the performance.

Hyperparameter optimization is also important for other fields of computer sci-
ence, like machine learning. There are some strategies in machine learning for
searching through the hyperparameter space, like grid search, where all possible
combinations of parameters are systematically tested, or random search, where ran-
domized configurations of hyperparameters are tested. Since a full grid search is
often too much computational effort, the configurations are often manually chosen.
For random search, it is surprisingly efficient compared to grid search [11] because
often just a few hyperparameters have a high impact on the precision of a model.
Random search explores the dimensions of these few important parameters with less
computation effort than grid search. Although grid search and random search have
not been used in this thesis, it shows that exploring the entire hyperparameter space
is often unnecessary.

This thesis will not conduct any further case studies and instead use simple test
programs to limit the complexity of the benchmarks. It aims to supplement the
tests of the previous work of Schmitz by further exploring the performance under
various circumstances. The effect of hyperparameters is also tested to determine in
which ways they can influence the performance. With that insight, guidelines on
how to use targetDART in the best way possible can be provided.

4

3. targetDART and the Underlying
Hardware Concepts

This chapter will explain the fundamentals of memory architecture that are needed
to understand the performance behaviour and it will also explain targetDART itself.
First, the memory topology that is relevant for the benchmarks is explained. This
includes the difference between virtual and physical memory, as well as page locked
memory, but also the NUMA architecture. Then the following section will explain
how targetDART works in general, but will also go into detail for the runtime
support and the load balancing. The explanation of targetDART will also introduce
the hyperparameters of targetDART and present the benchmarks of the work of
Schmitz et al. [25].

3.1. Memory
This section will explain the difference between virtual and physical memory and the
implications this has for performance. Furthermore, it will explain how the NUMA
architecture works and its influence on performance.

3.1.1. Virtual and Physical Memory
Physical memory refers to all kinds of hardware memory that are built into a com-
puter, for example, the RAM or the GPU memory. Therefore, the physical memory
addresses directly point to a location in the hardware memory.

Virtual memory refers to an address space that is created by the OS. This address
space can be larger than the space of physical addresses, so programs that only use
the virtual address space can allocate more memory than is physically available. In
that case, the data can also be stored on a hard drive (called swap memory). Virtual
memory addresses point to the virtual address space and need to be translated by
the CPU to get the physical address and the data that is stored there [29]. The
data, to which the virtual addresses point, may be moved by the OS during runtime.

When offloading data to a GPU, it can be CPU-driven or GPU-driven offloading.
CPU-driven offloading utilizes a virtual address, and the CPU translates it as usual.
GPU-driven offloading is done by the GPU, which means that the addresses are
not translated by the CPU and the GPU copies the data directly. During the
copy process, it is not allowed to move the data, like the OS sometimes does, so
the physical address needs to stay the same. Pinned virtual memory fulfills these

5

3. targetDART and the Underlying Hardware Concepts

requirements by locking the position of the data in the physical memory. If memory
is unpinned, which is the default, then the memory first needs to be copied to
a pinned memory address before it is offloaded. With pinned memory, a GPU
can also access the data without a translation of the CPU and can copy the data
asynchronously.

3.1.2. NUMA nodes
The concept of NUMA (Non-Uniform Memory Access) nodes was invented to address
the problem of the memory wall [2]. This problem is caused if multiple CPU cores,
which can work independently, need to share the hardware bus to the memory and
therefore the bandwidth.

The solution to this is to partition the cores of a CPU and the memory into NUMA
nodes and give each NUMA node its own link to its memory section, which leads
to a higher bandwidth per core. NUMA nodes also have interconnects to memory
sections of other NUMA nodes, but this link is slower and has a lower bandwidth.
This architecture is called NUMA[12].

If a node has multiple CPUs and each of them has NUMA nodes, the bandwidth
between NUMA nodes of different CPUs is lower than the interconnect between
NUMA nodes on the same CPU. For a single device that is connected by PCIe,
there are not multiple PCIe buses to each NUMA node; instead, the device has
a single link to one of the NUMA nodes. So if a process utilizes this device, the
latency and bandwidth are better if the process runs on the NUMA node to which
the device is connected. [12]

3.2. TargetDART
targetDART [3] is implemented as an LLVM plugin and utilizes OpenMP pragmas
for offloading to a device and MPI for communication. The LLVM project is a
library that is used for building compilers, such as the clang compiler. The goal
of targetDART is to dynamically balance a given workload by offloading tasks to
GPUs, as well as to other MPI nodes. It accomplishes that by providing runtime
support that handles the load balancing and execution of tasks.

An example of a program that utilizes targetDART for matrix multiplications is in
Listing 3.1. As illustrated in the example, the setup for MPI must be implemented
in the program with the initialization and the finalization at the end. Just like for
OpenMP, the code is executed on a single core until an OpenMP pragma is used. In
the example, the code before line 19 and after line 27 is executed on multiple MPI
nodes, but on a single core. In line 19, the pragma is used to generate a single task
that will execute the following for loop in parallel. In total, the pragma is executed
10 times, so 10 tasks are generated. The device to which these tasks are offloaded
is named TARGETDART_ANY and refers to a targetDART device, which, in this case,

6

3.2. TargetDART

executes the tasks on CPUs and GPUs. targetDART offers several targetDART
devices to which a user can offload tasks:

• TARGETDART_CPU: The tasks will be executed only on the CPU.

• TARGETDART_OFFLOAD: The tasks will only be executed on accelerators like
GPUs.

• TARGETDART_ANY: The tasks will be distributed to CPUs and accelerators

• TARGETDART_DEVICE(n): The tasks will be executed on the device with the id
n. It works similarly to the OpenMP clause device(n), but the tasks will be
considered at the load balancing process. The tasks will not be migrated to a
different node.

• TARGETDART_X_LOCAL: The X can be replaced with one of the first three options
of this list, for example TARGETDART_CPU_LOCAL. The tasks will be executed
on the corresponding device(s), but they will not be migrated to a different
node.

The remaining part of the pragma is designed identically to GPU offloading. The
kernel of the matrix multiplication does not need to be modified.

The following subsection will explain the task queues of the targetDART devices
and their priorities, as well as the threads that organize the execution and scheduling
of tasks. For this explanation, it will take Listing 3.1 as an example and provide a
rundown of the most significant events. Next, the two scheduling algorithms that are
used by targetDART are explained. At last, the hyperparameters of targetDART
are explained and the benchmarks and the case study that were presented in the
work of Schmitz et al. [25] are explained briefly.

3.2.1. Runtime Support
This section will describe the runtime support in detail. It will focus on the runtime
threads that handle the execution and load balancing, the task queues and the task
structure. To illustrate how these parts work together, an example run of a process
that utilizes targetDART will illustrate the purpose of all components.

Runtime Threads

The targetDART runtime support operates three different types of runtime threads.
The scheduler thread coordinates the dynamic load balancing, together with the
receiver thread. The executer threads are responsible for dispatching the execution
of the code on the devices. All threads and their relation to each other are depicted in
Figure 3.1. In that figure, it is illustrated that the executor threads take tasks from
the task queues of their devices and use another plugin to dispatch the execution
of the task. For each distinct physical device, there is at least one executer thread,

7

3. targetDART and the Underlying Hardware Concepts

Listing 3.1: An example of C++ matrix multiplication which utilizes targetDART -
copied from [25]

1 # include <stdlib.h>
2 # include <cstdlib >
3 # include <omp.h>
4 # include <mpi.h>
5
6 int main(int argc , char ** argv) {
7 int rank , size;
8 MPI_Init (&argc , &argv);
9 MPI_Comm_rank (MPI_COMM_WORLD , &rank);

10 MPI_Comm_size (MPI_COMM_WORLD , &size);
11 int d = 1000;
12 int ntasks = 10 * rank;
13 double *A =(double *) malloc(d * d * sizeof(

double));
14 double *B =(double *) malloc(d * d * sizeof(

double));
15 double *C =(double *) malloc(ntasks * d * d *

sizeof(double));
16
17 for(int t = 0; t < ntasks; t++) {
18 double *C_l = C + t * d * d;
19 #pragma omp target teams distribute parallel for
20 map(from:C_l[0:d*d]) map(from:C_l[0:d*d])
21 map(to:A[0:d*d]) map(to:B[0:d*d]) map(to:d)
22 device(TARGETDART_ANY) collapse(2) nowait
23 for(int i = 0; i < d; i++) {
24 for(int j = 0; j < d; j++) {
25 C_l[i * d + j] = 0;
26 for(int k = 0; k < d; k++) {
27 C_l[i * d + j] += A[i * d + k] *

B[k * d +j];
28 }
29 }
30 }
31 }
32
33 #pragma omp taskwait
34 MPI_Barrier (MPI_COMM_WORLD);
35 free(A); free(B); free(C);
36 MPI_Finalize ();
37 return 0;
38 }

8

3.2. TargetDART

although not all of them are displayed in the figure. For accelerators, multiple
threads can be used; for CPUs, just one thread per node can be used. After the
tasks are executed, the results are returned. If a task was migrated, the executer
thread sends the results to the receiver thread of the node on which the task was
created.

The receiver thread receives not just results from offloaded tasks, but it also
receives tasks that are migrated to a node. The scheduler thread runs the load
balancing algorithm. If the algorithm decides to migrate tasks, the scheduler thread
takes a task from a task queue and sends it to the receiver thread of the other node.
The receiver thread sorts the received tasks into the task queues. This process of
a task migration is illustrated in the figure for two nodes, but the task queues for
the second node are left out. For the second node, all works identically to the first
node.

Task Queues

The targetDART runtime is supported by the plugin manager of the LLVM project.
The plugin manager will generate the tasks from the OpenMP pragmas and forward
them to targetDART. The tasks are sorted into the task queues of the corresponding
devices. This is also illustrated in Figure 3.1, but unlike the figure suggests, there
are more than three task queues. For each device that can be accessed with the
TARGETDART_DEVICE(n) device, there is a task queue. For the targetDART devices
TARGETDART_CPU, TARGETDART_OFFLOAD and TARGETDART_ANY, there are three task
queues each: local, remote and migratable. The "local" task queues are for tasks
that were created with the TARGETDART_X_LOCAL device. The remote queues are for
tasks that were generated on a different node and were migrated to this node. The
migratable queues are for the remaining tasks. The task queues also have different
priorities that determine which tasks are executed first. [3]

Task Structure

When the program is executed and reaches the OpenMP pragmas, the plugin man-
ager of the LLVM project will generate the tasks. All tasks consist of six components:

• A uid that identifies a task. The uid consists of the MPI rank of the node,
where the task was created and an identifier that identifies the task on that
node.

• A host base pointer that is an address offset for the computation kernel within
the binary. To execute the code of the kernel on a different node, the position
of the kernel within the binary is stored in the host base pointer. So if the task
is migrated, the host base pointer is added to the address of the entry point
for the binary on that node and the result will be the address of the kernel.

• The KernelArgs struct, which is defined by liboffload. It contains launch
configurations of the kernel, as well as pointers to the input parameters.

9

3. targetDART and the Underlying Hardware Concepts

• The device affinity that defines on which device the kernel is executable.

• The Loc data, which holds location data for debugging purposes.

• A return code that signals if the kernel was executed successfully or which
error occurred.

An Execution Example

To illustrate how the runtime support handles the load balancing and the execution
of the tasks, an example where multiple tasks are generated on two nodes that have
Nvidia GPUs as accelerators is introduced. For this example, the code of Listing
3.1 is used, but with a small modification: The first rank starts with significantly
more tasks than the second rank. The example will focus on one specific task that
will be offloaded to the other node and will be executed on a GPU.

The task was generated on node 0 and is identified on that node with the identifier
3, so the uid of that task is 03. Since the tasks were generated with the targetDART
device TARGETDART_ANY, the plugin manager will put them all into the migratable
queue of the TARGETDART_ANY device. The tasks also get the affinity ANY. In this
case, the host base pointer would refer to the code line 20, because the kernel starts
there. Since the host base pointer is a relative address, the address 0 would, for this
address, refer to the beginning of the binary.

The task queues also have different priorities to determine which tasks will be
executed first. The priorities of the task queues are illustrated in Figure 3.2. The
task queues of the TARGETDART_DEVICE(n) device have the highest priority, followed
by the device queues of the TARGETDART_CPU and TARGETDART_OFFLOAD devices,
which have the same priority. The task queues of the TARGETDART_ANY device have
the lowest priority.

For the last three devices, all of their task queues have the same priority ordering.
In the figure, the task queues of the last three devices are drawn within the box
of the device, but the box itself is not a task queue. The priority ordering of the
queues of the CPU, offload and "any" devices is that the local queue has the highest,
the remote queue the second highest and the migratable the lowest priority. [3]

So for this example, all tasks have the lowest priority, because they are in the
migratable queue of TARGETDART_ANY. At this moment, it does not make a big
difference because all tasks are in the same queue.

As described previously, the first rank has significantly more tasks than the second
one. So when the scheduling algorithm is executed by the two scheduler threads of
both ranks, they will decide that rank 0 needs to migrate some tasks to rank 1. How
the scheduling algorithms work is explained in Section 3.2.2.

To migrate the tasks to the other node, the scheduler thread of rank 0 takes the
tasks from the migratable queues of the any device and sends them to the receiver
thread of rank 1 [25]. This process is drawn in Figure 3.1, but in this figure, the
number of task queues is reduced. To send a task, the scheduler thread of rank 0
will first send the sizes of the data in the map clauses and wait for an answer that

10

3.2. TargetDART

Figure 3.1.: All runtime threads and their relation to each other. For simplification,
not all task queues are displayed. Inspired by figure 1 of [25]

will tell the scheduler if there is enough memory available on node 1. After that, the
sender will send the task components and all the input data that were declared by
the map clauses. The host base pointer of each task is added to the entry address
of the binary in order to get the address of the task kernel, so it can be executed.
The receiver thread puts the task into the remote queue of the device to which the
task was assigned, like TARGETDART_ANY in this case.

Figure 3.2.: The priorities of the task
queues sorted. The figure is
self-drawn.

The task with uid 03 was migrated
first and now has a higher priority than
the other tasks, which were created on
rank 1. So as soon as a device finishes
its task, the executer thread of that de-
vice will take task 03 from the remote
queue before taking one of the migrat-
able queue. Like depicted in the figure,
they might also use other plugins to ex-
ecute a task.

In our example, an Nvidia GPU of
node 1 finishes its task before the CPU,
so it will take task 03 from the remote
queue of the "any" devices. For offload-
ing the task to the GPU, the CUDA plu-
gin is used. The data and the kernel are
offloaded to the GPU and the result is
computed and sent back to the executer
thread. The executer thread will then send the result back to the receiver thread
of the first node with the return code for success. When all tasks are finished, the
program ends.

11

3. targetDART and the Underlying Hardware Concepts

3.2.2. Load Balancing
When a program generates tasks that need to be computed on nodes, the tasks
need to be distributed to the nodes. There are two ways to distribute the tasks
to the nodes. The first one is called static load balancing and it assigns a fixed
amount of tasks to each node before the computation begins. This can happen, for
example, when coding the mapping in the source code or at runtime, just before
the computation starts. The second option is dynamic load balancing, which may
reassign tasks during runtime. This is used for adapting to load imbalances that
occur during runtime. For example, if some of the tasks require more computation
time than others or one node computes the workload more slowly for reasons like
power capping, it might happen that one node takes significantly more time than
the others. This would slow down the overall computation time, so a dynamic load
balancing algorithm could reassign tasks from a node that slows the computation
down to nodes that will finish earlier. This way, the node that slows down the
computation has less workload and will finish earlier, while the other nodes will
have less idle time. A static load balancing algorithm cannot do this after the
computation starts and can therefore not handle load imbalances that occur during
runtime. But dynamic load balancing also induces more overhead compared to static
load balancing, which makes it more suitable for potentially high load imbalances.

targetDART applies load balancing for distributing tasks between CPUs and ac-
celerators, and between different nodes. For balancing between CPU and accelera-
tors, targetDART utilizes task stealing, which means that a device would take tasks
if it has nothing to process left. The implementation of task stealing in targetDART
was described in Section 3.2.1, where tasks that are assigned to the "any" device are
in a queue from which the executer threads from the CPU and accelerators could
take them. For load balancing the tasks between computation nodes, targetDART
uses task offloading, which means that if a node has too many tasks, it would give
tasks to other nodes. targetDART offers two different algorithms for task offloading,
which will be presented in the following sections.

Fine Grained Scheduling

This algorithm was defined by Klinkenberg et al. [18]. For the first step of this
algorithm, every node needs to get the computational workload of all nodes, which
is realized with one of MPI’s collectives: MPI_Allgather(). The second step is
that each node applies a stable sorting algorithm to the list that was acquired
from MPI_Allgather(). On the last step, each node selects a "victim" for task
migration, so the node to which it will migrate tasks. These three steps are executed
permanently by every scheduler thread.

For the last step, the upper half of the sorted list selects a victim by taking the
highest index of the list and subtracting their own index from it (assuming the list
index starts at 0). In Figure 3.3a, the resulting mapping is illustrated. Each node
that migrates tasks to another node will migrate just one task per iteration. But it

12

3.2. TargetDART

(a) A figure of the task migration phase of
the fine grained load balancing, where
each node decides where it will migrate
tasks to.

(b) A figure of the task migration phase of
the coarse grained load balancing after
the prefix sum and the average work-
load were computed.

Figure 3.3.: Both load balancing algorithms in the migration phase. Both inspired
by Figure 2 of [25]

also causes overhead to migrate tasks, so for a small number of tasks, it would not
benefit the performance to migrate them. Therefore, a threshold is introduced. The
difference in workload of a node and its migration victim must exceed this threshold
to trigger the task migration. For targetDART, this threshold is set to 3 tasks.

The complexity of this algorithm is 𝑂(𝑛·𝑙𝑜𝑔(𝑛)) with 𝑛 being the number of nodes.
The complexity is determined by the number of messages that are exchanged, which
is 𝑂(𝑙𝑜𝑔(𝑛)) and the sorting algorithm, which is 𝑂(𝑛 · 𝑙𝑜𝑔(𝑛)). But it can be reduced
to a minimum of 𝑂(𝑙𝑜𝑔2(𝑛)) by implementing parallel sorting [26].

This scheduling algorithm is the default option in targetDART and is deactivated
if the environment variable SKIP_FINE_GRAINED_SCHEDLING is set to a non-null
value.

Coarse Grained Scheduling

The coarse grained scheduling algorithm as defined by Harlacher et al. [10] is based
on space-filling curves (SFC). The total workload is represented as a one-dimensional
SFC, which is used to determine which process needs to offload tasks to its neigh-
bours.

For the algorithm, the nodes are first aligned in a row and the prefix sum of the
workload is computed. The prefix sum computes for a node the sum of all tasks that
the previous nodes have combined with its own workload. The formal definition of
the prefix sum is 𝑝𝑟𝑒𝑓𝑖𝑥(𝐼) = Σ𝑁−1

𝑖=0 𝑤𝑖, whereby 𝐼 is the node for which the prefix
sum is computed and 𝑤𝑖 is the workload of the node with index 𝑖. So with the prefix
sum, each node can compute how much workload all previous nodes have and knows
where its own subspace in the SFC starts and ends. The prefix sum is collected with
the MPI call MPI_EXscan().

Besides the prefix sum, the total sum of all workloads of every node is collected
using MPI_Allreduce() with the sum as the reduction operation. With the total

13

3. targetDART and the Underlying Hardware Concepts

sum, the average workload is computed, which is considered as the target workload.
With the average workload as the target, each node can deduce where its own
subspace would begin and end if every node had the average workload. In Figure
3.3b, there is an example of how an SFC with multiple nodes looks. The borders
of the subspaces of each node are marked in black and the red markers indicate the
subspaces that would result if every node had the average workload.

Each node will send tasks to a neighbour if its border exceeds the optimal border
for the average workload. In Figure 3.3b, for example, Node1 exceeds the optimal
border for its subspace and therefore offloads tasks to Node2, so the borders of the
subspace would match the optimal border. This also means that a node can send
tasks to another node while receiving tasks from another node, like for Node3, which
induces more overhead.

The complexity of the algorithm is mostly determined by the complexity of the
two MPI calls, which together have a complexity of 𝑂(𝑙𝑜𝑔(𝑛)).

In targetDART, this balancing algorithm is deactivated by default and needs to
be called in the source code. If the function for coarse grained scheduling is called,
the algorithm is used for the next five iterations and then the iterative scheduling is
used as normal (if not deactivated).

3.2.3. Hyperparameters
Hyperparameters are parameters for a process that are not the input for an algo-
rithm, but they configure how the process works. The LLVM project already has a
lot of hyperparameters and most of them do not change the way that targetDART
works. This section will present the most significant parameters for targetDART,
which will be used to tune the performance.

TargetDART inherited some hyperparameters from OpenMP, like the environ-
ment variables OMP_NUM_THREADS and OMP_NUM_TEAMS. The first one defines the
maximum number of generated threads when a parallel construct is called. The
second one defines the maximum number of teams, which are created when using
the teams construct [4].

Besides the inherited hyperparameters, there are also four more hyperparameters.
The first of them directly determines on which CPU cores the runtime threads,
scheduler, receiver and executer threads are placed and is called TD_MANAGEMENT.
This hyperparameter is set as an environment variable, so it does not need to be
set while compiling the code, but during execution. The indices of the cores must
be listed for this parameter in this order: scheduler thread, receiver thread, all
GPU executer threads, CPU executer thread. As an example, let’s assume that
TD_MANAGEMENT=5,6,8,9,7 is set on a node with two GPUs. Then the scheduler
thread would be pinned to core 5, the receiver thread on core 6 and the CPU executer
thread is placed on core 7. The two executor threads for the GPUs are placed on the
cores 8 and 9. [25] If this variable is not set, the second hyperparameter determines
the placement of the executer threads.

The second hyperparameter is called TD_EXECUTOR_NPROCS and determines how

14

3.3. Existing Benchmarks

many cores are used for the executor threads, but it will just be used if the hyper-
parameter TD_MANAGEMENT is not set. If TD_MANAGEMENT is not set, the scheduler
thread is placed at core 0, the receiver thread is pinned to core 1 and all of the
executer threads are evenly distributed to a number of cores that is defined by
TD_EXECUTOR_NPROCS. The first core that would be used by the executer threads is
core 2 and the other cores that are used will have an increasing CPU-index from
there on. If there are more executer threads than available CPU cores as specified
by TD_EXECUTOR_NPROCS, then some executer threads need to share a core and the
threads are evenly distributed to the cores. If TD_EXECUTOR_NPROCS is not defined,
it will default to the number of created executer threads, so each executer thread
will have an entire core. [3]

The third hyperparameter is called TD_EXECUTERS_PER_DEVICE, which will specify
how many executer threads should be used for each GPU [25]. With additional
executor threads, the computation and data transfer can be overlapped to speed up
the overall runtime. As described in 3.1.1, page-locked memory is required for GPU-
driven offloading, which is utilized by multiple executer threads for asynchronous
data transfer. If this hyperparameter is set to a value greater than one, then 2
threads per GPU need to be placed with TD_MANAGEMENT. If this parameter is not
specified, it defaults to one.

The last hyperparameter is the load balancing algorithm. The two possible load
balancing algorithms were described in 3.2.2 and in 3.2.2. The default algorithm
is the fine-grained algorithm, which is executed permanently. The coarse-grained
algorithm needs to be called in the source code, which will make the program run the
coarse-grained algorithm for the next five iterations and then use the fine-grained
algorithm as it usually does. The fine-grained algorithm can also be deactivated
entirely by setting the environment variable SKIP_FINE_GRAINED_SCHEDULING to a
non-null value. [3]

Although it is technically not a hyperparameter, pinned memory will be considered
as a hyperparameter since a programmer can switch easily from using unpinned
memory to pinned memory. To achieve that, one has to use calls like omp_malloc()
instead of malloc() and will get a pinned memory address.

Static load is a workload that is computed on the node on which it was created,
so it is not migratable. A static load can be part of the use case, but it can also
be used to tune the performance. Therefore, static loads are also considered as a
hyperparameter for these test cases.

3.3. Existing Benchmarks
In the work of Schmitz et al. [25], four benchmarks and a case study were conducted.
This is so far the only evaluation of the tool targetDART. This section will briefly
explain how these benchmarks were conducted to provide important results that are
known so far.

The benchmarks of Schmitz et al. [25] were conducted on eight GPU nodes of

15

3. targetDART and the Underlying Hardware Concepts

Claix23 [5] with a custom LLVM build version 20.1.5 as compiler and MPICH version
4.2.2, CUDA runtime version 12.6, and a CUDA driver in version 565.57.01. Refer-
ence programs used a custom-built LLVM of the same version, but targetDART was
deactivated as a plugin. As a benchmark, they used dense matrix multiplication,
whereby the dimensions of the matrices were always 8000 × 1000 and 1000 × 1000.
They generated 100 tasks on each node, with one task being a single matrix mul-
tiplication and all tasks were assigned to the same targetDART device. For each
benchmark, multiple targetDART devices were used to compare them.

3.3.1. Weak Scaling
The first benchmark is a weak scaling test, where the number of GPUs increases,
while the workload per GPU remains constant. For each GPU, 25 tasks were dis-
patched, which equals 100 tasks per Claix23 GPU node. The experiment was con-
ducted two times, with the targetDART device TARGETDART_ANY and with the device
TARGETDART_GPU.

The results show that the scheduler and receiver thread induce an overhead of
about 1.5%. Scaling the number of GPUs induces more overhead of about 2%. This
scaling behaviour is very good and was likely achieved because of the initial load
balancing. Every node started with the same number of tasks to process, so the
scheduler thread probably did not need to migrate tasks to other nodes very often.
The load balancing algorithm is also implemented in a non-blocking way, which
means that the execution is not paused for scheduling. Therefore, the scheduling
across nodes and the task migration likely did not cause the 2% overhead that is
induced by scaling the number of GPUs. The results also show that the targetDART
device TARGETDART_ANY is faster than just using the GPUs.

3.3.2. Overhead Against OpenMP
For this benchmark, the task size was increased. This means that the dimensions
of the input matrices were changed. For the size 𝑋, the dimension of the first
matrix was changed to 8000 × 𝑋 and the dimensions of the second matrix to 𝑋 ×
1000. The size was increased from 100 to 10000. Multiple targetDART versions and
two OpenMP baselines were used for this measurement, in order to measure the
overhead. The task distribution was again the same, so the scheduler and receiver
thread probably did not have to migrate any tasks.

The results show that the scheduling did not induce much overhead on a perfectly
balanced scenario, like in the previous measurement. Compared to the OpenMP
baseline, targetDART is about 0.2-0.25 seconds slower for a small task size, which
is likely because of the initialization of the CUDA devices. For bigger task sizes,
targetDART is about 5% slower. The computation takes the same time for both
versions, but the data management of targetDART and the hand-tuned version is
different, which is likely the reason for the increasing overhead.

16

3.3. Existing Benchmarks

0 20 40 60 80
0

1

2

3

4

5

6

7

8

9

10

11

12

13
TARGETDART_OFFLOAD
TARGETDART_ANY
TARGETDART_OFFLOAD multi
TARGETDART_ANY multi
OMP target
OMP target w/o data-transfer

Load Shift in %

Ru
nt

im
e

[s
]

Figure 3.4.: Benchmark results for increasing the initial load shift. The figure was
copied from [25].

3.3.3. Application Induced Imbalance

For this benchmark, the number of tasks on each node was different, which creates
a load imbalance between the nodes. The test was conducted with 4 nodes and 400
tasks in total, so the overall workload was not changed. The authors introduced
the term load shift, which denotes the load imbalance between at least two nodes.
For this experiment, a load shift of 10% means that two of the nodes start with 110
tasks and the other two start with 90 tasks. So the load shift was increased and
measured with two OpenMP baselines: the basic version and a data optimized ver-
sion, and with four targetDART versions: TARGETDART_OFFLOAD, TARGETDART_ANY,
TARGETDART_OFFLOAD_multi and TARGETDART_ANY_multi. The targetDART ver-
sions with the multi appendix are utilizing multiple executor threads per GPU,
which improves the data offloading.

The two OpenMP versions do not utilize load balancing across nodes, which is also
clearly visible in the result. With increasing load shift, the runtime of the OpenMP
versions increases linearly, while the runtime of the targetDART versions remains
almost constant, as Figure 3.4 shows. So the speedup of the two targetDART
GPU versions in comparison to the basic OpenMP version is about 1.7. Among
the targetDART versions, the multi versions always have less runtime than their
counterparts.

17

3. targetDART and the Underlying Hardware Concepts

3.3.4. Hardware Induced Imbalance
For the last benchmark, the authors used eight GPU nodes and for one of them,
they lowered the core frequency of all GPUs. The core frequency of the GPU was
decreased to simulate power capping, which is utilized in datacenters. The tests
were conducted using the same OpenMP and targetDART versions as in the prior
benchmark.

The results show a similar behavior to that in the previous benchmark. The
runtime of the OpenMP versions increases from about six seconds to almost 30
seconds, which is a slowdown of 4.71× and 4.85×. The targetDART versions have
a slowdown ranging from 24% to 35% more runtime. So the overall speedup ranges
from 3.46× to 4.1×.

3.3.5. ExaHyPE Case Study
In the work of Schmitz et al. [25], there is also a case study that uses ExaHyPE [23],
an engine for solving first-order hyperbolic partial differential equations. ExaHyPE
defines the domain in a tree-structured way and refines the tree structure recursively.
In order to utilize multiple nodes, it creates subtrees and migrates those subtrees
to a different MPI rank, which refines the given subdomain. For GPU offloading,
ExaHyPE collects dependencyless tasks and fuses them together into a single task
that is offloaded to a GPU. ExaHyPE also has its own load balancer that determines
how to split the tree and distribute the resulting subtrees.

For utilizing targetDART, just a few changes were necessary. The authors added
a "nowait" to the OpenMP clauses and an "omp taskwait" after the kernel to enable
asynchronous execution of the kernel. They also changed the device to which the
kernel is offloaded to a targetDART device.

The authors simulate the Tohoku tsunami with ExaHyPE and measure the per-
formance in the average number of cell updates per second, which is depicted in
Figure 3.5. They created two scenarios with an imbalanced decomposition of the
tree and a well-balanced decomposition of ExaHyPE’s load balancer. In contrast to
the previous benchmarks, there is just one OpenMP version for the case study. The
figure shows that all targetDART versions improved the performance significantly
over the OpenMP version for both scenarios. Among the targetDART versions,
both versions that only utilize GPUs outperform the other versions, whereby the
GPU version that uses multiple executor threads performs slightly better in both
scenarios. For the ill-balanced scenario, the GPU versions have a speedup of about
10× compared to the OpenMP baseline. For the well-balanced scenario, the GPU
version achieves a speedup of 1.59×. Surprisingly, all targetDART versions perform
better at the imbalanced scenario than at the well-balanced scenario. The reason
for this might be that the overhead by the load balancing algorithm of ExaHyPE
induces more overhead than targetDART.

18

3.3. Existing Benchmarks

30.34M

125.37M

300.78M

198.89M

222.32M

172.28M

307.79M

199.64M

224.19M

173.21M

Ill-Balanced Well-Balanced
0

50M

100M

150M

200M

250M

300M

350M
Baseline OpenMP target
TARGETDART_OFFLOAD
TARGETDART_ANY
TARGETDART_OFFLOAD multi
TARGETDART_ANY multi

Load Distribution

Ce
ll

U
pd

at
es

 /
Se

co
nd

Figure 3.5.: Benchmark results from using targetDART on ExaHyPE. The figure
was copied from [25].

19

4. Benchmarks
The tests of this thesis aim to supplement previous work and testing of targetDART.
Furthermore, the results of the tests aim to provide guidance on how to use target-
DART. First, the experimental setup is described, including the source code, the
hardware, tools like MPI and the environment that was used to set up the bench-
marks. Secondly, this chapter will define a "base scenario". This base scenario is
a setup of the used parameters, including the hyperparameters. All test cases will
be derived from that base scenario by changing a single aspect, like one hyperpa-
rameter, to observe the impact of that aspect. The derivation from the base case of
each benchmark will be described. This thesis will distinguish between benchmarks
that test for which use cases targetDART is suitable and benchmarks that test the
impact of hyperparameters. For all benchmarks, the results of the benchmark are
presented after the description and are discussed afterward. At the end of the use
case benchmarks and at the end of the hyperparameter benchmarks, the implica-
tions of the results are concluded. Based on the conclusions, guidelines for the use
cases and hyperparameters are proposed.

4.1. Setup
This section briefly describes what hardware and software tools are used to conduct
the benchmarks. Furthermore, there are also some settings in the environment that
are used to increase the stability of the measurements, which are explained in this
section. There is also a short description of the source code that is used to test
targetDART. At the end, a base scenario is presented. For each benchmark, the
base scenario is used and a single aspect or parameter is changed to see the impact
that change has.

Hardware: The benchmarks are conducted on Claix23 nodes with two Intel Xeon
8468 Sapphire Rapids with 48 cores each and 96 cores combined. The nodes are
connected via NDR Infiniband in a fat tree topology. Some of the tests are conducted
on CPU-only nodes with 256 GB memory and some on GPU nodes with 512 GB
memory and four NVIDIA H100 96 GB HBM2e GPUs. [5] On which nodes the
benchmarks are conducted depends on the need for GPUs. The figure in Figure
A.1 describes the topology of a GPU node. In this figure, the GPUs are described
as "cudaX", whereby "X" can be a number between 0 and 3 and the InfiniBand
connections as "Net ib0" and "Net ib1". Both are PCIe devices and are mapped

21

4. Benchmarks

to NUMA nodes, which are also depicted, as well as the CPU cores that belong to
those NUMA nodes.

Software/Tools: The OS on the nodes is Rocky Linux 9.6, which utilizes Slurm
as a workload manager. For targetDART, a custom LLVM1 is used together with
MPICH version 4.2.2, the CUDA runtime version 12.6 and CUDA drivers version
570.172.08. For the CPU reference, a custom build of the clang compiler version
17.0.6, for compatibility reasons, and MPICH version 4.2.2 are used. For the GPU
reference, a custom build of the clang compiler version 20.1.5, OpenMPI version
5.0.3, CUDA runtime version 12.8.0 and CUDA drivers version 570.172.08 are used.

Environment: For the environment, the tests are executed on nodes that are con-
nected by a single switch to guarantee minimal latency and increase the stability of
performance measurements. For using Slurm jobs, one can specify the number of
GPUs for the entire job or per node. The second option is always used, but if this
parameter is lower than four (a GPU node only has four GPUs), the GPUs are cho-
sen randomly. To prevent this, the benchmarks use all GPUs and select the GPUs
needed with the CUDA_VISIBLE_DEVICE environment variable. For benchmarks that
only required one GPU per node, the GPU 1 (on NUMA node 2, as in Figure A.1
depicted) is used.

Source Code: The benchmarks use a program that generates tasks, which consist
of a single dense matrix multiplication. After all matrix multiplication kernels are
executed, the program checks if all results are correct. The program is compiled
with the optimization flag -O3. The references that do not utilize targetDART and
are used as comparison consist of similar code that just uses unpinned memory
and changes the OpenMP pragmas. The references are also compiled with the
optimization flag -O3 too. The code of the targetDART version is in Listing A.1,
the CPU reference in Listing A.2 and the GPU reference in Listing A.3.

4.1.1. The Base Scenario
The base scenario uses 2 nodes with 100 tasks for each of them. In case the bench-
mark needs to be tested with load imbalance, the first node gets 150 tasks and the
second one 50 tasks. The size of the matrices is fixed to 8000×1000 and 1000×1000.
Pinned memory is used for the input and the output matrices, because only then hy-
perparameters like TD_EXECUTERS_PER_DEVICE have an effect. One executor thread
per device is used and only one GPU is utilized. Furthermore, the runtime threads
are placed like this TD_MANAGEMENT=24,25,26,27, so all threads are on NUMA node
2, which also has a GPU and an infiniband port. All generated tasks are assigned
to one targetDART device, but the base scenario does not define which, because

1LLVM 20 at commit <eff79605c69566ba96c74cd8d25716e0488c2c3b>

22

4.2. Use case tests

Figure 4.1.: Results of the targetDART GPU and ANY versions, as well as the
reference results for increasing the load shift. Lower is better.

most of the test cases will test multiple targetDART devices. The environment vari-
able OMP_NUM_THREADS is set to 96. For each configuration that is measured for a
benchmark, 27-30 measurements are taken. Due to a bug in LLVM, about 1 of 10
measurements is aborted and not remeasured.

4.2. Use case tests

This section introduces the benchmarks for testing the use cases of targetDART.
For these benchmarks, various factors that depend on the tasks and the available
resources are tested, such as different task sizes or the number of nodes. First,
four benchmarks that test the impact of load imbalances in different situations are
presented. The following two benchmarks focus on the impact of the task size.
The last two benchmarks test the performance for delayed task generation and for
different numbers of tasks.

23

4. Benchmarks

4.2.1. Scaling the Load Imbalance
For measuring the load imbalance, the term load shift as defined in 3.3.3 by Schmitz
et al. [25] is used. For both nodes, the load shift increases from 1% in 1% steps.
For the targetDART devices TARGETDART_OFFLOAD, which is often referred to as the
GPU version, and TARGETDART_ANY, the maximum load shift is 24% and for the
TARGETDART_CPU the maximum load shift that is measured is 70%. The CPU device
is measured with higher load imbalances because it has more overhead and needs
higher load imbalances in order to compete with the CPU reference. For the GPU
and CPU versions, there are handwritten references that do not apply dynamic load
balancing. These references are tested with the same load shifts as the other version,
in order to compare the performance of targetDART with them and evaluate its
performance. Every step of the load shifts of all versions (targetDART versions and
the references) is measured 9-10 times2. This experiment resembles the benchmark
described in 3.3.3, but also tests the CPU device of targetDART and compares it
to a reference.

Results GPU: The results of the GPU versions and the ANY version of the bench-
mark are plotted in Figure 4.1. The GPU and ANY versions of targetDART perform
similarly, whereby the ANY version slightly outperforms the GPU version. Both of
them are faster than the handwritten reference for all load shifts. The runtime of
all versions increases with higher load shift. Compared to a 1% load shift, both
targetDART versions, GPU and ANY, get a slowdown of about 11%. The reference
version gets a slowdown of 21%. For a 1% load shift, the speedup of the GPU version
is 1.15× and for the ANY version 1.18×. The speedup for 24% load shift of the
GPU version is 1.26× and the ANY version has a speedup of 1.29×.

Results CPU: The results of the CPU versions are plotted in Figure 4.1. For low
imbalance, the targetDART version needs significantly more time than the reference
at 1% load shift. The runtime of the reference increases with higher load imbalances,
until it has about the same runtime as the targetDART version at a load shift of 58%.
For load imbalances above 58%, the targetDART CPU version does not outperform
the reference, but has about the same performance. The slowdown of the reference
at 24% load shift is 22%, so about the same slowdown as the GPU reference for that
load shift. For a 70% load shift, the slowdown reaches 64%. The slowdown of the
targetDART CPU version for 70% load shift is 6%.

Discussion: For small load imbalances, the reference is supposed to be faster than
targetDART, because starting the runtime threads and orchestrating the task ex-
ecution should provide some overhead, which the references do not have. But the
GPU and ANY version of targetDART always outperform the reference. The rea-
son for this is that targetDART barely induces overhead and uses pinned memory

2in about 1 of 10 cases, a measurement is aborted because of a bug in LLVM

24

4.2. Use case tests

Figure 4.2.: Results of the targetDART CPU version, as well as the reference results
for increasing the load shift. Lower is better.

in comparison to the reference. The consequences of this are that the memory of
the reference tasks is copied into page-locked memory regions, to offload it to the
GPU, as described in 3.1.1, which leads to more runtime overhead. The CPU ver-
sion of targetDART needs significantly more time than the reference solution. The
reason for this is a high overhead, which is induced by the host plugin. In Section
4.2.2, a benchmark compares the host plugin, which targetDART utilizes for kernel
execution on the CPU, with targetDART and the CPU reference.

The increasing runtime of all versions results from the increased load shift. For
the reference versions, the imbalance causes one node to need more time than the
other node, which slows down the entire execution. The targetDART versions have
a lower slowdown than the references because they apply dynamic load balancing.
The dynamic load balancing also induces overhead for each task that is sent between
nodes, which causes the slowdown of the targetDART versions. The scheduler and
receiver threads are non-blocking, which means that the execution of tasks is not
interrupted for a task migration. So the overhead that is induced by the task
migration is small, compared to the overall runtime of the CPU version, which
leads to a small relative slowdown. The GPU and ANY versions of targetDART are

25

4. Benchmarks

much faster, so the overhead is bigger compared to their runtime, which explains
the higher relative slowdown. Another factor that increases the slowdown of the
GPU and ANY versions is that the tasks are also offloaded to the GPUs.

4.2.2. Overhead of the Host Plugin
In the previous benchmark, the overhead of the targetDART CPU version was,
compared to the reference, very high. Since targetDART utilizes the host plugin to
execute the kernel on the CPU, this benchmark compares the runtime of the host
plugin with targetDART and the CPU reference. To test the performance of the
host plugin, a custom LLVM is built, just like for targetDART, but the host plugin
is the only plugin that is used. The host plugin LLVM build was used to compile
the same code as for the targetDART versions A.1. The performance of all versions
is tested with 0% and 50% load shift as it is defined for the base scenario with
imbalance.

Results: A graph of the results is in Figure A.2. The host plugin version is for 0%
load shift about 14% slower than the targetDART version and for 50% load shift,
it is 48% slower than the targetDART version. The CPU reference outperforms the
targetDART version just like in the previous benchmark.

Discussion: The host plugin version has a higher runtime than the reference, which
indicates a significant overhead for the execution. Even the targetDART version
outperforms the host plugin version. Since targetDART utilizes the host plugin, the
overhead of the targetDART CPU version is caused by the host plugin. The reason
why the targetDART version outperforms the host plugin is that it manages the
invocation of the code more efficiently than the host plugin.

4.2.3. Random Load Imbalances
The first benchmark tested the impact of different load shifts for a fixed interval
of load shifts. This benchmark tests random load shifts across four nodes, which
allows higher load shifts and different scenarios to happen. The random load shift
is implemented with the Mersenne Twister of the Python random library [6] as a
pseudo-random number generator that outputs the load shift of each node. The
average workload remains at 100 tasks per node, so in total, 400 tasks across the
four nodes. The Python code for realizing the load balance is in Listing A.4. In the
code, the maximum output for the Mersenne Twister is the number of remaining
tasks, except for the last node, which gets all remaining tasks. For the first node, the
remaining tasks are 400, as this is the total number of tasks. As later benchmarks
discovered, a CPU node does not have enough memory to store more than about 250
tasks in its memory, so whenever the Mersenne Twister gives more than 250 tasks, it
sets the value to 250 tasks. This also means that the probability of drawing 250 tasks

26

4.2. Use case tests

Test case No. Task distribution median runtime standard deviation
0 100 100 100 100 2.34 0.17
1 53 250 74 23 4.05 0.23
2 250 142 0 8 13.86 0.42
3 95 165 51 89 2.81 0.22
4 94 31 108 167 2.86 0.27
5 249 112 31 8 4.01 0.2
6 250 123 13 14 4.04 0.28
7 129 40 150 81 2.76 0.12
8 90 250 7 53 3.97 0.22
9 185 80 18 117 3.15 0.25

Table 4.1.: A table of the results of the ANY version for the random load imbalance
benchmark. Lower is better.

for the first node is higher than for any other number of tasks. Nine configurations
of random load shifts with seeds from 1 to 9 were generated and tested with the
CPU and ANY devices. For comparison, a reference with an even task distribution
is also tested.

Results GPU: The results are listed in 4.1 for the ANY devices and in Table A.1
for the CPU devices. The test cases with better performance always have no node
that has more than 185 tasks. To this test cases belong the test cases 0,3,4,7,9 for
the ANY device, which all have a runtime of 2.3 to 3.1 seconds. The test cases that
perform less well all have one node with at least 249 tasks with a runtime between
3.9 and 13.8 seconds. One outlier is the test case 2 with 13.8 seconds. The test case
with the second-highest runtime is test case 1, with about 4 seconds, so the outlier
has a runtime that is 3 times higher than the second-highest runtime.

Results CPU: For the CPU device, the test cases 0,3,4,7,9 have runtimes between
11,2 and 23.9 seconds and the other test cases have runtimes ranging from 28.2 to
35.7 seconds. For the CPU version, test cases 4 and 7 manage to outperform the
balanced test case.

Discussion: Considering the mechanism of the fine-grained scheduling, the test
cases with 250 tasks on a single node are a worst case for the scheduling algorithm.
This worst case was discovered in benchmark 4.2.4. If a single node has 250 tasks,
it would need to migrate tasks to at least two more nodes in order to load balance
the tasks. The remaining nodes balance the workload among themselves and finish
before the node with 250 tasks does. This node will then send tasks to all other
nodes and will be the only node that sends tasks to different nodes. The fine-grained
scheduling algorithm works better if the workload is distributed more equally, so

27

4. Benchmarks

multiple nodes will send tasks at the same time. So if a major part of the workload
is concentrated on one node, it is a worst-case scenario for the scheduling algorithm.

The outlier for the ANY device takes a lot more time than the other test cases,
which does not result from a worst-case scenario for the scheduling algorithm. In
the benchmark 4.2.8, any node that gets 0 tasks results in some kind of bug, where
the runtime increases significantly if the CPU device is used. Since the ANY device
also utilizes the CPU device, this bug also occurs for the ANY device. For the CPU
device, this bug does not seem to increase the runtime as much as for the ANY
device. For the CPU device, the same test case took about 2 seconds longer than
the second-worst runtime.

The CPU version with test cases 4 and 7 outperforms the test case with even task
distribution. This behaviour still needs further research in order to determine the
cause of it, but the only factor that changed was the task distribution, which was
likely the cause of the decreased runtime. Since it outperforms the test case with
the optimal task distribution, it might cause some kind of optimization if the task
distributions of those test cases are chosen.

4.2.4. Load Imbalances with multiple Nodes

The results of the previous benchmark show that targetDART is also able to handle
four nodes, but with significant overhead in case one node has about 250 tasks. This
benchmark tests if targetDART can handle an arbitrary number of nodes. It uses
two to eight nodes and tests the runtime with a balanced task distribution and with
an imbalance. In order to regularly increase the load imbalance with the number of
nodes, the imbalance is created by assigning 100 tasks to the first node and adding
20 tasks to each of the other nodes that are used. So the formula for the number of
tasks for the first node for testing with load imbalance is 80 + 𝑁 · 20, whereby 𝑁 is
the number of nodes used.

Results GPU: The results of the ANY version are illustrated in Figure A.3 and
the results of the CPU version in Figure A.4. For the results of the ANY version,
all tests with an even distribution have a similar runtime. The medians range from
2.3 to 2.38 seconds. Tests with load imbalance have slightly higher runtimes for
the test case with two to four nodes. The median of the runtime of the test case
with four nodes, which also has the highest imbalance, reaches a runtime of about
2.7 seconds. The test cases with more than 4 nodes and an even higher imbalance
have faster-increasing runtimes. The test case with five nodes has a median of 3.18
seconds, which is about 0.5 seconds more than for the test case with 4 nodes. For the
remaining nodes, they increase their runtime with each additional node by a time
between 0.21 and 0.32 seconds. For the tests with two to four nodes, the runtime
increased by 0.03 to 0.09 seconds.

28

4.2. Use case tests

Results CPU: The runtimes of the CPU test cases are all higher than those of
the GPU versions. For an even distribution, all test cases have about the same
runtime, although the variance of all measurements is higher than for the GPU test
cases. For the measurements with imbalance, the median of all tests is between 18.1
and 19.7 seconds. There is no increasing runtime over all test cases with increasing
imbalance, as for the GPU test cases.

Discussion: The test cases with imbalance resemble the worst-case scenario that
was presented in the previous test case. The median of the runtime increases faster
when one node has 180 tasks or more. This provides more insight into how high
the load imbalance needs to be in order to behave like the worst case. The load
imbalance of the test case with five nodes indicates that the worst-case behaviour
appears if one node has more than twice as much workload as all other nodes have.

In contrast to the GPU test cases, the CPU test cases do not show that worst-case
behaviour. The CPU versions have a higher runtime than the GPU versions. The
additional time of the worst case is induced by the scheduler, which is non-blocking.
All CPU test cases have additional runtime that each task needs, which covers the
additional time that is caused by the worst case.

Since the test cases with lower imbalance with two to 4 nodes just slightly in-
creased the runtime in comparison to the even distribution, targetDART performs
well for that amount of nodes as long as the worst case is not caused. For predicting
the scaling behavior for more than four nodes, more research is required.

4.2.5. Scaling the Task size
A different factor that can influence the scaling behavior is the size of the tasks.
This benchmark tests the influence the size of a task can have on the runtime. The
size of a task in general, is defined by the processing time for a single task. For this
benchmark, the task size is defined by the size of the matrices that are multiplied.
For the first matrix, the number of columns and for the second matrix, the number
of rows is increased from 100 to 2000 in 100 steps. A formula that illustrates the
matrices that are multiplied for a task size 𝑋, looks like this: 𝐴8000×𝑋 · 𝐵𝑋×1000.
The measurements are conducted with the GPU and ANY devices for targetDART
and with a GPU reference. Each of the devices was tested with a balanced task
distribution and with a 50% load shift. A benchmark with a similar setup, but
without a load shift, was tested in the work of Schmitz et al. [25].

Results: The results are plotted in Figure A.5. The balanced GPU and ANY
version have the best performance and have a lower runtime for all task sizes than
almost any other version. The balanced GPU reference has the second slowest
version for low task sizes, but scales better than the unbalanced targetDART versions
and reaches a similar runtime as the balanced targetDART versions at a task size of
1600. For the task size of 100, the balanced targetDART versions are about 1 second

29

4. Benchmarks

faster than the balanced GPU version. For the task size of 2000, the GPU reference
is about as fast as the balanced GPU version of targetDART and 0.4 seconds faster
than the ANY version. The unbalanced GPU reference has the slowest runtime for
all task sizes, but it scales similarly to the unbalanced targetDART GPU version.
For a task size of 100, the unbalanced GPU reference is 1.1 seconds slower and for
a task size of 2000, it is 1.2 seconds slower. For the unbalanced targetDART ANY
version, the unbalanced reference has a better scaling behavior, with a decrease in
the runtime gap from 1.6 seconds to 0.7 seconds.

The unbalanced targetDART versions scale differently. The unbalanced ANY
version performs better than the unbalanced GPU version for small task sizes, but
with increasing task size, the gap between the two versions gets smaller until they
have about the same runtime for a task size of 1100. For the higher task sizes, the
GPU version has lower runtimes than the ANY version. The gap between those
versions is 0.4 seconds for a task size of 100, with the ANY version being faster and
0.47 seconds for a task size of 2000, with the GPU version being faster.

Discussion: The balanced targetDART versions have the best performance. De-
spite having a high overhead for small tasks, the GPU reference has better scaling
behaviour with less runtime increment per task size. For the unbalanced versions,
the reference has the worst runtime but manages to scale better than the ANY
version, similar to the targetDART GPU version. A possible root cause for the
targetDART ANY version is that the CPU takes longer to process a task than a
GPU. The task stealing implementation of targetDART does not consider that an
accelerator could finish a certain number of tasks before a CPU finishes a single one.
If, at the end of an execution, just a few tasks remain, this allows the CPU to exe-
cute a task, even if an accelerator could finish all remaining tasks faster, if it finishes
its task earlier than the accelerator. This would increase the runtime and leave the
accelerators idle at the end of the execution. This can happen for arbitrary task
sizes, but with increasing task size, the execution becomes more compute-bound,
which gives GPUs an advantage for this setup. So the time for which the acceler-
ators remain idle would increase with the task size. This effect increases with the
overhead that the host plugin induces.

4.2.6. Heterogeneous Task sizes
Heterogeneous tasks are often part of scientific computations. Different types of
tasks can also have different processing times, which the scheduler needs to handle.
This benchmark tries to simulate different tasks by giving them different sizes and
testing them with a balanced and an unbalanced scenario. For the balanced version,
all tasks of the first node get a task size of 1500, whereby the task size is defined
as in the previous benchmark 4.2.5. To keep the original workload, all tasks of the
second node get a task size of 500, so the overall workload does not change. For the
unbalanced scenario, the first node gets 150 tasks, but only the first 100 of them
have a task size of 1500; the remaining tasks have a task size of 500. The second

30

4.2. Use case tests

node has 50 tasks with a task size of 500, so the overall workload does not change
here either. The benchmark is conducted with the targetDART CPU, GPU and
ANY versions, as well as a CPU reference and a GPU reference. The code for all
versions was modified to implement the heterogeneous task sizes. The code for the
targetDART versions is in Listing A.5, the code for the CPU reference in Listing
A.6 and the code for the GPU reference in Listing A.7.

Results GPU: Both targetDART versions perform similarly, as shown in Figure
A.6. The median of the ANY version outperforms the median of the GPU version in
the balance scenario by less than 1%, and for the unbalanced version, the GPU ver-
sion performs about 1% better. The ANY version has higher variance in its results
than the GPU version. Compared to the previous benchmark, the balanced target-
DART versions with a task size of 1000 are 14-16% faster than in this benchmark.
But both targetDART versions are also 22-28% faster than their counterparts of the
previous benchmark with a task size of 1500. For the balanced scenario, both target-
DART versions are about 31,9% faster than the GPU reference. For the unbalanced
scenario, the GPU and ANY versions are 45-46% faster than the reference. In the
previous benchmark, the unbalanced targetDART version is about 4% faster for a
task size of 1000. In comparison to the balanced version, the targetDART versions
are about 18% slower. This gap is smaller than in the previous benchmark, where
the balanced versions are 27% faster than their unbalanced counterparts.

Results CPU: The results of the CPU versions are plotted in Figure A.7. The
balanced targetDART CPU version has a higher runtime than the reference, just
like for the other benchmarks. Compared to the targetDART CPU version in 4.2.2,
it is 15.3% slower in this benchmark. In contrast to all previous benchmarks, the
CPU version gets faster by 4% with a load shift. With that, it is just 2% slower than
the reference and 8% slower than the targetDART CPU version of the benchmark
that measured the overhead of the host plugin.

Discussion: The scheduler of targetDART does not consider the task size when
deciding how many tasks are supposed to be migrated. So with a balanced task
distribution, the scheduler will decide that no tasks need to be migrated, despite
the first node having the majority of the workload. But the scheduler will decide to
migrate tasks as soon as the difference in task numbers between the nodes is higher
than a predefined threshold. This will inevitably happen because the second node
finished its tasks faster. It still causes a delay in the load balancing. This induces
overhead and slows down the execution by 14-16%. With that overhead, it still
performs better than the balanced versions of the previous benchmark, which have
a task size of 1500.

For the CPU version, adding load shift does not increase the runtime, nor does
it stay the same; it decreases. The same effect as in benchmark 4.2.4 could prevent
an increased runtime for adding load shift, but it does not explain why the runtime

31

4. Benchmarks

decreases. The reason for this is that after targetDART is started and dispatches
the execution of the first tasks, it migrates the first tasks in the queue. On the first
node, the tasks with a size of 1500 are generated first and will therefore be migrated
to the second node. All tasks with a size of 500 that are generated on the first node
will stay there. The task migration occurs immediately since the threshold for the
task difference is exceeded. Since the bigger tasks are migrated to the second node,
which only has small tasks, it balances the workload better than in the balanced
scenario right at the beginning of the execution. The GPU and ANY version might
benefit from this, since the gap between the balanced and unbalanced versions is
smaller in this benchmark than in the previous one. After some task migrations,
the unbalanced scenario will have a better load balance than the balanced scenario.
The overhead for the unbalanced version is still bigger, but the balanced version has
an overproportional disadvantage through that.

4.2.7. Delayed Task Generation
For some real-world examples, not all tasks are generated at the beginning of the
computations. To test which overhead a scenario like this might add to the runtime
of targetDART, a benchmark that will generate all tasks in two batches is tested.
The first batch is generated at the beginning and the other one after a certain
amount of time, which is specified by the last parameter. Each batch generated half
of all tasks that are generated on that node. The source code for this benchmark is
in Listing A.8. The benchmark was conducted with the targetDART ANY device
with a balanced and an unbalanced task distribution. The delays that are tested
range from 0 to 2000 milliseconds in 250ms steps.

Results: The results are depicted in Figure A.8. For all delays, the balanced version
outperforms the unbalanced one by 8-29%. The tests with no delay between the two
task generations have the lowest runtime. The first step with 250 ms induces the
highest overhead with 26% or 0.6 seconds for the balanced scenario and 12% or 0.4
seconds for the unbalanced scenario. For the unbalanced scenario, that delay causes
the highest runtime, but for the other delays of up to 1750ms, the median runtime
stagnates between 3.2 and 3.5 seconds. With a 2000ms delay, the runtime of the
unbalanced version increases by 8.6% to its global maximum.

The runtime of the balanced version stagnates for delays between 250 and 1000
ms and has a local minima for 1250 ms, which is 13.4% faster than with a 1000ms
delay. Starting at a 1500ms delay, the runtime of the balanced version increases
with higher delays to its global maximum at a 2000ms delay.

Discussion: Generating and queuing half of the tasks induces overhead. The rea-
son why overhead is induced by this is unknown. The overhead for the unbalanced
version is lower than for the balanced version when the delay is introduced. The
reason for this could be that the overhead, which is induced by load balancing, over-

32

4.2. Use case tests

laps with the overhead that is induced by the delayed task generation. For a delay
of 1500ms and for 1750ms, the balanced and unbalanced versions start to get more
overhead for higher delays. Since the runtime without any delay is about 2.3 seconds
for the balanced and 3 seconds for the unbalanced version, the first half of the tasks
finishes its execution in about half of the time. So, targetDART finishes before the
second half is generated and the runtime increases for higher delays almost linearly.
For smaller delays, the runtime remains for both versions almost constant, which
indicates that the overhead is not related to the duration of the delay, as long as
the second half is generated before the execution of the first half finishes.

4.2.8. Scaling the Number of Tasks
The final benchmark of testing targetDART for certain use cases is to scale the num-
ber of tasks. The number of tasks is scaled from 1 to 30 by adding a single task each
step. The maximum was set to 30 tasks because of limited computation resources.
The benchmark is tested with the CPU, GPU and ANY versions of targetDART
and four references. For those three, all tasks are generated on the first node. The
four references consist of two CPU references and two GPU references. For both
devices, one reference generates all tasks on the first node, like the targetDART
versions. The other reference has a balanced task distribution. Each configuration
is measured 9-10 times3. Due to a bug in TargetDART that increases the runtime
drastically for the CPU and ANY device if a node starts with zero tasks, each node
that would start with zero tasks starts instead with one task (all versions). In Fig-
ure A.9, the runtimes for the CPU and ANY version are plotted with the same
environment as this benchmark, but with the second node starting with 0 tasks, so
with the bug. The consequence of this is that the overall workload is increased a
little bit. For the references, this barely makes a difference. For the targetDART
version, this effectively would shift the graphs on the x-axis, but it will not affect
how it scales with an increasing number of tasks.

Results GPU: For the GPU references and the targetDART GPU and ANY ver-
sion, the results are depicted in 4.3 and for the CPU results, in 4.4. All versions
have for one task about the same runtime, except the ANY version, which starts
with an overhead of 0.2 seconds compared to the other versions. While the run-
time of all GPU versions increases linearly, the runtime of the ANY version remains
constant for up to ten tasks, then it starts increasing like the other versions. The
balanced GPU reference outperforms every other version, unlike the unbalanced ref-
erence, which is outperformed by every other version, after the targetDART ANY
version surpasses it at 14 tasks. The targetDART GPU version performs better
than the unbalanced reference, but worse than the balanced one. The ANY version
surpasses the unbalanced reference at 14 tasks, but never performs better than the
targetDART GPU version or the balanced reference. For 30 tasks, the GPU version

3in about 1 of 10 cases, a measurement is aborted because of a bug in LLVM

33

4. Benchmarks

Figure 4.3.: Results of the targetDART GPU versions, as well as the reference results
for increasing the number of tasks. Lower is better.

was 45% slower than the balanced reference, but 37% faster than the unbalanced
reference. The ANY version is for 30 tasks, 73% slower than the balanced reference
and 15% faster than the unbalanced reference.

Results CPU: From the CPU versions, all of them start with about the same
runtime for one task. All of them scale linearly, with the balanced reference out-
performing the other two. The targetDART CPU version performs similarly to the
unbalanced CPU reference for all numbers of tasks. For 30 tasks, the balanced
reference is 79% faster than the other reference and the targetDART version. The
runtime medians of the unbalanced reference and of the targetDART version have
less than 1% difference for 30 tasks.

Discussion: The ANY and the GPU versions of targetDART perform better than
the unbalanced reference, so they provide a benefit in the execution. The tar-
getDART GPU version always outperformed the unbalanced reference, so it can
be used to gain a performance benefit independently of the number of tasks. The
ANY version outperformed the unbalanced reference with more than 14 tasks, so for

34

4.2. Use case tests

Figure 4.4.: Results of the targetDART CPU version, as well as the reference results
for increasing the number of tasks. Lower is better.

more than 14-15 tasks are required for the ANY version to speed up the execution.
The ANY version did not outperform the GPU version, which contradicts previous
benchmarks. In the first benchmark, for example, the ANY version outperformed
the GPU version of targetDART independently of load shift. In this benchmark,
the load shift is very high and the GPU version is outperforming the ANY version
instead. The results of the first benchmark 4.2.1 indicate that the GPU version does
not outperform the ANY version in this benchmark because of the load shift, but
because of the number of tasks. Since the load shift is higher in this benchmark,
more testing is required to be sure what caused this anomaly.

The CPU version performs similarly to the unbalanced reference. Because of the
additional task, which was added as described earlier, the targetDART CPU version
might perform a bit better than the unbalanced reference, since the additional task
barely influences the reference. But it does not influence the scaling behaviour,
which remains the same. So it does not decrease the runtime significantly to use the
CPU version for any number of tasks.

35

4. Benchmarks

4.2.9. Guidelines for Use Cases
In this section, the conclusions on the results of the previously presented benchmarks
are listed. Based on those conclusions, guidelines that indicate in which situations
the performance can be increased using targetDART are derived. The guidelines
will also point out in which situations, which targetDART devices will increase the
performance more.

Conclusions on benchmark 4.2.1: The results show that the use of the GPU and
ANY versions of targetDART can increase the performance and that it performs
better than a reference version with load imbalance. Therefore, these two versions
fulfill the purpose of targetDART. For the CPU version of targetDART, the over-
head is a lot higher. If computations can just be conducted on nodes with CPUs,
targetDART should not be used since it performs worse for load shifts below 58%
and has about the same performance as the reference for load shifts above 58%. It is
unknown if the targetDART CPU version would outperform the reference for higher
load imbalances.

Conclusions on benchmark 4.2.2: The runtime of the version with the host plugin
is longer than the runtime of the targetDART version. This shows that the overhead
is generated by the host plugin. The code optimizations of the host plugin are less
advanced and therefore, the execution consumes more time.

Conclusions on benchmark 4.2.3: targetDART is also able to load balance the
load efficiently with four nodes. In case a single node has about 250 tasks of the
workload, targetDART’s scheduling algorithm will perform significantly worse be-
cause putting that much workload on a single node is the worst-case scenario of the
algorithm. For other task distributions, targetDART performs similarly to the first
benchmark.

Conclusions on benchmark 4.2.4: The worst case is likely to occur if a single
node has about twice as many tasks as the other nodes have. As the results of the
previous benchmark show, the remaining nodes do not need to have the same work-
load. For a small number of nodes, targetDART induces little overhead, compared
with a perfectly balanced test case. In previous research to targetDART [25], some
benchmarks were conducted on eight nodes without the worst case for load balanc-
ing. These benchmarks show good scaling behaviour, so targetDART also induces
little overhead for eight nodes. These data samples indicate that targetDART is
able to scale with an arbitrary number of nodes.

Conclusions on benchmark 4.2.5: The GPU version of targetDART shows re-
silient scaling behaviour, in contrast to the ANY version. For small task sizes, the
ANY is still very fast, but the scaling behaviour indicates that for a certain task

36

4.2. Use case tests

size, the reference could outperform the ANY version. For real-world scenarios, the
task sizes can be quite large, making the ANY device less attractive.

Conclusions on benchmark 4.2.6: The GPU and ANY versions of targetDART
perform better than their counterparts in the previous benchmark with a task size
of 1500. There is still some more overhead of about 14-16% compared to other
measurements, but targetDART is able to compensate for the load imbalance that
is induced by heterogeneous tasks. The CPU version has similar overhead because
of the heterogeneous tasks, but it is still slower than the reference. The target-
DART versions are also suited for use cases with heterogeneous tasks, although the
CPU version still just provides a benefit in cases of very high load imbalances. All
targetDART versions benefit in the unbalanced scenario from the order of the task
generation, which causes the CPU version to perform better than in the balanced
scenario. To estimate the overhead caused by heterogeneous tasks with a load im-
balance, more research is recommended.

Conclusions on benchmark 4.2.7: Since the regular use case of targetDART will
be that the workload is unbalanced, the expected overhead for a delayed task gen-
eration is not very high, with a constant overhead of about 400ms. A possible cause
for the overhead could be the scheduler. Previous benchmarks show that increased
task size reduces overhead that is induced by the scheduler, like for the worst case
scenario, which had less overhead for the CPU device in 4.2.4. Therefore, a promis-
ing benchmark for further research would be to test if the overhead is reduced for
increased task sizes.

Conclusions on benchmark 4.2.8: The targetDART OFFLOAD device provides,
for any number of tasks, a benefit, while the ANY device does for a number of tasks
that is greater than 14, which is not very much. Since the GPU version outperformed
the ANY version in this benchmark and the tested numbers of tasks that were
tested in this benchmark, the OFFLOAD device is recommended for a small number
of tasks. For higher numbers of tasks, other benchmarks like 4.2.1 indicate that
the ANY device performs better. More research is required to understand some
anomalies of this benchmark. Since the number of tasks depends on the granularity
of the tasks, testing the number of tasks and the task size combined would make
sense and is recommended for further research.

Guidelines:

• Do not use the CPU device of targetDART. In Benchmark 4.2.1, the load
shift for which targetDART is equally fast to a reference was about 58%. It is
unknown if the targetDART CPU device performs better for high load shifts
above 70% and therefore the CPU device is not recommended for load shifts
of that range either. The overhead for the CPU device is caused by the host
plugin.

37

4. Benchmarks

• Avoid putting a lot of tasks on a single node, so that it has about twice as
many tasks as all other nodes. The scheduler of targetDART performs better
if the workload is distributed more evenly.

• Avoid giving a node 0 tasks, because this will increase the runtime drastically
as mentioned in 4.2.8.

• targetDART scales efficiently for different task sizes and number of tasks and
therefore supports arbitrary task granularity.

• For small task sizes, the ANY device of targetDART is recommended, since it
outperformed the OFFLOAD device in 4.2.5.

• For a small number of tasks, the targetDART OFFLOAD device is recom-
mended, because it performs better than the ANY device in 4.2.8.

• targetDART can operate efficiently on 2-8 nodes, but might also be able to
work efficiently with more nodes.

• Using heterogeneous tasks with different task sizes and using delayed task
generation induces a small overhead. This overhead should be avoided, but
since it is a low overhead of 14-16% for heterogeneous tasks and 400ms for the
delayed task generation, targetDART is still suitable for use cases where these
conditions are inevitable.

There are still a lot of anomalies that cannot be explained with the current knowl-
edge about the behavior of targetDART. To understand these anomalies, more re-
search is required, as well as testing targetDART for more scenarios. Another reason
for conducting more research is that for some benchmarks like 4.2.4 or 4.2.6, the
overhead was reduced when using the CPU device. A possible root cause for this
could be that the task size is automatically increased for executions on the CPU,
because the CPU cannot process the tasks as fast as the GPU can. Therefore,
retrying some of the benchmarks with manually increased task size could reduce the
overhead in some cases, which would increase the performance for coarse-grained
tasks.

4.3. Testing the Hyperparameterspace
This section presents the benchmarks that tested various hyperparameters of target-
DART. For each hyperparameter, there is a benchmark, which tests the impact of
the hyperparameter. Each section will explain the benchmark, present the results,
discuss the results and conclude on the impact of that hyperparameter. All hyper-
parameters of the Section 3.2.3 are tested, except TD_EXECUTOR_NPROCS because the
effect of that hyperparameter can also be achieved by setting TD_MANAGEMENT ac-
cordingly and the OMP_NUM_THREADS because it is known that this parameter should

38

4.3. Testing the Hyperparameterspace

Figure 4.5.: Testing each targetDART version with pinned and with unpinned mem-
ory. Lower is better.

be set to the number of cores. At the end, a best-case, a naive-case and a worst-case
scenario in terms of hyperparameters are tested and compared, to see what impact
the hyperparameters combined have.

4.3.1. Pinned Memory
The first hyperparameter benchmark tests the impact that pinned memory or page-
locked memory has. As explained in 3.1.1, if data is offloaded to an accelerator
and the accelerator manages the data transfer, then it needs to be stored in pinned
memory. If the data is not stored in such memory, it is copied to a pinned mem-
ory section, which creates overhead. The benchmark is tested with the ANY, the
OFFLOAD and the CPU devices of targetDART.

Results: The results are plotted in Figure 4.5. For the GPU and ANY versions,
the medians of the runtimes decrease, as well as the variance of the runtime, which
is indicated by the flattened boxplots in the figure. The ANY version with pinned
memory has a speedup of 1.369× compared to the unpinned version. For the GPU

39

4. Benchmarks

version, the speedup is 1.168×.

Results CPU: The performance of the CPU version barely changes. The median
of the runtime decreases by less than 1% and 100ms in total. The variance of the
runtimes also hardly changes, as shown by the upper and lower fences in the figure.

Discussion: For the CPU version, the pinned memory does not have a significant
impact and does not provide any performance benefit. For the GPU and ANY
versions, pinned memory reduces the runtime significantly. The reason for this is
that in order to copy data to a GPU, the data has to be in a pinned memory region.
If it is not stored in pinned memory, it is copied into one before the data is offloaded
to the GPU. In our setup, the input data consists of two matrices, which are copied
to a GPU every time a task is executed on a GPU. If the matrices are stored in
unpinned memory, they are copied for each task execution on a GPU to pinned
memory before they are offloaded. Therefore, for all tasks of the GPU version, the
input needs to be copied. For the ANY version, the memory does not need to be
copied to pinned memory if the task is executed on a CPU. Surprisingly, the speedup
for using pinned memory is higher for the ANY version than for the GPU version.
The reason for that needs further investigation.

4.3.2. Thread Placement
In this benchmark, different placements for the runtime threads, which are explained
in Chapter 3.2.1, are tested. To place the runtime threads on certain cores, the hy-
perparameter TD_MANAGEMENT was used. The tests are only conducted with cores
from the first NUMA node. Tests where different NUMA nodes are used are con-
ducted in the following benchmark 4.3.3. In total, this benchmark contains six
configurations, which are tested:

1. All runtime threads on one core (TD_MANAGEMENT=0,0,0,0).

2. All threads on different cores (TD_MANAGEMENT=0,1,2,3).

3. Scheduler and receiver thread on different cores, but the executor thread for
the GPU and CPU are placed together (TD_MANAGEMENT=0,1,2,2).

4. Scheduler and receiver thread are placed together and each executor thread is
placed on its own core (TD_MANAGEMENT=0,0,1,2).

5. The scheduler thread and all executor threads are placed on the same core.
The receiver thread is placed on a different core (TD_MANAGEMENT=0,1,0,0).

6. The receiver thread and all executor threads are pinned to the same core and
the scheduler thread has its own core (TD_MANAGEMENT=0,1,1,1).

40

4.3. Testing the Hyperparameterspace

Test case Nr. median of the runtime standard deviation
1 3.26 0.51
2 2.93 0.13
3 2.99 0.33
4 2.76 0.05
5 3.17 0.24
6 3.06 0.41

Table 4.2.: The median runtime and the standard deviation of the benchmark 4.3.2.
The test case number refers to the enumeration in 4.3.2. Lower is better.

These test cases are not all possible combinations for the placement of the runtime
threads. The benchmark was just tested with the targetDART ANY device. Each
configuration is measured 9-10 times4.

Results: The results are presented in Table 4.2 with the indices of the previously
presented test cases. The best performance is achieved by test case 4. It does not
just have the lowest median runtime but also the lowest standard deviation. The
second-best result has test case 2, which places all threads on different cores. It is
about 6% slower than test case 4 and also has a very low standard deviation. The
third best result has test case 3, which does the same as test case 2, but it places the
executor threads on the same core. This test case also has a standard deviation that
is nearly three times higher than that of test case 2 and it is about 2% slower than
test case 2. The worst-performing test case is test case 1, which puts all threads on
a single core. The runtime of that test case is 18% slower than that of the test case
with the best performance and has a very high standard deviation.

Discussion: The best performance has the testcase that places the scheduler and
receiver thread together. Therefore, this configuration is recommended. This bench-
mark used the fine-grained scheduling algorithm, as defined by the base scenario.
For this algorithm, it is impossible for a node to migrate some of its own tasks to a
different node and simultaneously receive tasks from a different node. This means
that sending tasks and receiving tasks never happen on one node at the same time.
This explains why test case 4 performs well. The receiver thread is also responsible
for receiving the results of migrated tasks, which can happen while sending tasks,
but it does not seem to induce a lot of overhead. Test case 2 outperforms test case
3, which leads to the conclusion that it does not provide any performance benefit to
place executor threads on the same core.

4in about 1 of 10 cases, a measurement is aborted because of a bug in LLVM

41

4. Benchmarks

4.3.3. NUMA nodes
After testing, which placement of threads on a single NUMA node achieves the
best performance, this benchmark tests which NUMA node achieves the best per-
formance. Since PCI devices are assigned to different NUMA nodes, as explained
in Chapter 3.1.2, and the NUMA nodes span across two CPU sockets, the NUMA
node that is used could potentially influence the performance. A figure of a Claix23
GPU node is in Appendix A.1. The PCI devices that are suspected to influence the
performance are the GPUs and the InfiniBand connections, which are used for the
internode communication. The GPU that was used is GPU 2, according to the base
scenario.

The configuration that had the best performance in the previous benchmark is
used and tested on all eight NUMA nodes. The cores to which the runtime threads
are pinned will change for each NUMA node that is tested, but the scheduler and
receiver threads are placed together and all other threads are placed on their own
core. The benchmark was conducted with just the ANY device of targetDART.

Results: The results of the benchmark are plotted in Figure A.10. The NUMA
node that achieves the highest performance gain is NUMA node 3, which has no
PCI devices assigned to it. It performs 1-3% better than all other NUMA nodes of
the first socket and 3-5% better than all NUMA domains of the other socket. All
NUMA nodes of the first socket perform better than the nodes of the second socket.
The variance of all NUMA nodes is similar.

Discussion: The reason why NUMA node 3 has the best performance needs further
investigation. A possible root cause for the increased performance of all NUMA
nodes of the first socket is that the GPU, which is used, is located on the first
socket. That would also lead to the conclusion that the NUMA node to which the
GPU is connected performs best, but it is outperformed by node 3. This means
that there is some anomaly that makes node 2 slower than node 3. To determine
the reason for that anomaly, further investigation is required.

4.3.4. Multiple Executor Threads
The hyperparameter TD_EXECUTORS_PER_DEVICE is tested in this benchmark. The
usage of multiple executor threads enables targetDART to overlap the data offload-
ing and computation for tasks that are offloaded to accelerators. A requirement for
this is that the data needs to be stored in pinned memory, which is defined in the
base scenario. The benchmark is conducted with the targetDART OFFLOAD and
ANY devices. For both devices, the number of executor threads is scaled from one
to four.

Results: The results are plotted in Figure 4.6. For both GPU and ANY version,
the runtime decreases when using multiple executor threads. Using two executor

42

4.3. Testing the Hyperparameterspace

Figure 4.6.: Testing the OFFLOAD and ANY devices of targetDART with multiple
executor threads. Lower is better.

threads instead of one decreases the runtime a lot, while using three or four executor
threads just slightly improves the performance compared to two executor threads.
Compared to one executor thread, the GPU version is executed 27.2% faster with
two executor threads, 29.3% faster with three executors and 29.4% with four. For
the ANY version, using two executor threads instead of one decreases the runtime
by 31.2%. For three executors, the runtime decreases by 36.3%, compared with one
thread, and for four executors, the runtime decreases by 36.6%.

Discussion: Using two executor threads instead of one creates a big performance
benefit. Using three executor threads instead of two creates a much smaller benefit
of about 2.1% for the GPU version and 5.1.% for the ANY version. For the use of
four executors, the performance benefit is almost negligible, with below 1% for both
versions.

The impact for the ANY version is higher, although it should also decrease the
performance of the CPU because fewer cores can be used for computation. But
instead, the performance gain is higher for the ANY version. The reason for this is
unknown.

43

4. Benchmarks

4.3.5. Setting OMP_NUM_TEAMS
This benchmark tests what impact the hyperparameter OMP_NUM_TEAMS has. This
parameter sets the number of teams that are spawned for code executions on the
GPU. It is tested with not being defined, like in the base scenario, and with 512,
1024, 2048 and 4096. The benchmark is conducted with the ANY device.

Results: The results of the benchmark are represented in Figure A.11. If the
environment variable is undefined, targetDART performs better than if the variable
is set to any of the tested values. Setting the hyperparameter to 512 caused the
worst performance, which has a 15.2% slower median than the version where it is
undefined. For the values 1024,2048 and 4096, the performance was similar, with
the medians being between 3.07 and 3.1 seconds, which is 5.2-6.2% slower than the
version, where it is undefined. The variance for all configurations is very similar.

Discussion: Leaving the parameter undefined accomplishes the best results. The
reason for this needs further research. Setting the parameter to 512, results in the
worst performance. A reason for this could be that this value is too small to fully
utilize the GPUs For the values 1024, 2048 and 4096, the runtimes stagnate on values
that are 5-6% slower than the values for leaving the parameter undefined. Possible
causes for that could be that the CUDA plugin scales the value for OMP_NUM_TEAMS
down if it is too large.

4.3.6. Static Loads
This benchmark tests the impact that statically assigned tasks have on the run-
time. With the TARGETDART_X_LOCAL device, as described in 3.2, the user can
assign tasks, which will not be migrated, to a node. This benchmark used two
binaries, which generate the local and non-local tasks in a different order. Both
generate a number of tasks with the TARGETDART_X_LOCAL and generate more tasks
with a non-local device. The binaries are used for a balanced and an unbalanced
scenario, where on both nodes the total number of generated tasks is the same as
defined in 4.1.1. If, for example, 5 tasks are statically assigned to each node with the
TARGETDART_ANY_LOCAL device, for the balanced scenario, 95 more tasks are gener-
ated with the TARGETDART_ANY device, making a total of 100 tasks on each node.
The source code of the first one is in Listing A.9. It generates the static tasks first
and generates all other tasks secondly, so this version will be called the static-first
version. The source code of the other version is in Listing A.10 and it generates
the static tasks after the other tasks. Since the task generation order is reversed,
this version will be referred to as the reversed version. The number of static tasks
for this measurement will be between 5 and 50 and will be incremented by 5 tasks.
The benchmark is tested with the ANY and the GPU device and with a balanced
scenario and an unbalanced one. For comparison, the balanced and unbalanced
versions are also executed with no statically assigned tasks.

44

4.3. Testing the Hyperparameterspace

Results: The results of the benchmark are plotted in A.12. The unbalanced ver-
sions both have higher runtimes than the balanced versions. For the balanced ver-
sions, the static-first and the reversed versions both perform similarly. The perfor-
mance of both versions stagnates with increasing static workload. The two versions
often perform better than the baseline for the balanced scenario, but the best result,
which is achieved with five static tasks, is just 3.5% faster than the baseline, so both
versions are very close to the baseline.

For the unbalanced versions, both runtimes are getting higher with an increasing
number of static tasks. In the majority of the measurements, the static-first version
slightly outperforms the reversed version. For the static-first and the reversed ver-
sion, both outperform the unbalanced baseline with just five static tasks and with
no other number of static tasks. The static first version manages to decrease the
runtime by 2.4% in comparison.

Discussion: Reversing the order of task generation does not provide any perfor-
mance benefit, since the reversed version performs similarly to the static-first version
or slightly worse. The only number of static tasks that was able to outperform the
baseline, in the balanced and unbalanced scenario, was with 5 static tasks. Since the
measurements are conducted by increasing the number of static tasks always by 5, it
requires more measurements to determine the exact optimum. For the unbalanced
scenario, some kind of overhead is caused during the execution, if more than 5 static
tasks are assigned to each node, because the runtime increases for those measure-
ments. A possible root cause for that overhead could be that the overhead is caused
by the scheduler. The perfect load balance could be achieved for all configurations
because there were never more than 50 static tasks, so half of the tasks for a perfect
distribution.

4.3.7. Different Scheduling Strategies
There are two different scheduling algorithms implemented into targetDART, which
can also be combined. This benchmark tests three different configurations for the
scheduling algorithm:

1. Default: It will use the fine-grained algorithms, which is the default algorithm.

2. Coarse-grained: It will also test the coarse-grained algorithm, which was ex-
plained in Section 3.2.2. The coarse-grained algorithm is called with the func-
tion td_phase_progress() once, so this algorithm is applied for five itera-
tions.

3. combined: This configuration uses both algorithms combined. So for the first
five iterations, the coarse-grained algorithm is used and after that the fine-
grained algorithm is applied till the execution finishes.

The different configurations are tested with a balanced and an unbalanced scenario,
both of which are tested with the targetDART ANY and CPU device.

45

4. Benchmarks

Results ANY: The results for the ANY device are plotted in Figure A.13, where
"ANY with coarse grained" describes the third configuration, which utilizes both
algorithms and "ANY with coarse without fine" describes the configuration that only
utilizes the coarse-grained scheduling. For the balanced scenario, the default and
the combined configuration perform almost identically with about a 1% difference in
the median runtime. The coarse-grained configuration consumes about 2.27× more
runtime than the other two configurations. For the unbalanced scenario, the default
configuration outperforms the others. The combined configuration takes 31.1% more
time than the default configuration and the coarse-grained configuration takes 89.5%
more time.

Results CPU: The results for the CPU device are illustrated in A.14. The default
configuration outperforms the others for both scenarios. For the balanced scenario,
the default configuration is 4.5% faster than the combined configuration and 5.3%
faster than the coarse-grained one. For the unbalanced scenario, the default con-
figuration is 3.2% faster than the combined configuration and 6.3% faster than the
coarse-grained configuration. The variance of all measurements is higher than for the
ANY device. For each configuration, the results have a range of about 2.5 seconds.

Discussion: Using the coarse-grained scheduling algorithm does not provide any
performance benefit, nor does the combination of the two algorithms. The coarse-
grained scheduling algorithm has a lower complexity than the fine-grained one and
should be able to balance the workload for the unbalanced scenario within one
iteration. Furthermore, the coarse-grained algorithm also induces overhead for the
balanced scenario, where the algorithm should not migrate any tasks. This indicates
that the coarse-grained scheduling algorithm does not work as intended.

4.3.8. Best Case vs. Naive Case vs. Worst Case
This benchmark does not intend to test which values for a certain hyperparameter
achieve the best performance, but to give a comparison of how a tuned targetDART
version performs compared to a non-tuned or badly-tuned version. The benchmark
will compare a best case with the best performing hyperparameters, a naive case
which barely uses any hyperparameters and a worst case, which uses the worst
performing hyperparameters. A table of the used hyperparameters for the best,
naive and worst case is in Table A.2. To keep the hyperparameters in a more
realistic frame, the parameters OMP_NUM_TEAMS and the scheduling algorithm are
manually chosen. For the worst case, the variable OMP_NUM_TEAMS is set to 1024
because this is rather the default value for many applications. The results of 4.3.7
indicate that the coarse-grained scheduling algorithm does not work as intended.
Therefore, the default scheduling algorithm is used for the worst case. For the worst
case, no static tasks were used either. Other configurations, like the matrix size,
are the same as in the base scenario. The measurements were conducted with an

46

4.3. Testing the Hyperparameterspace

Figure 4.7.: The best case compared to the naive and the worst case. Lower is better.

unbalanced scenario since it tests the purpose of targetDART appropriately. For
the measurements, the ANY device was used, since it had the best performance for
the task size and imbalance of the base scenario.

Results: The results are plotted in Figure 4.7. The best case outperforms the
other two cases with a speedup of 2.06× in comparison to the naive case and 3.4×
in comparison to the worst case. The variance of the best case is very low, with a
difference of 0.27 seconds between the upper and lower fences of the box plot. The
difference between the upper and lower fence for the naive case is 0.88 seconds and
for the worst case 3.42 seconds.

Discussion: The results show that tuning targetDART with the right hyperpa-
rameters can accelerate the execution a lot. Since none of the hyperparameters was
able to achieve a speedup that was higher than about 1.36×, some of the benefits
from the hyperparameters can be combined and stacked to higher overall speedups.
This way, an overall speedup of 2.06× can be achieved. There are also differences
between the base scenario and the naive case, but the difference between the naive
case and the unpinned base scenario (measurement from 4.3.1) is about 300ms or

47

4. Benchmarks

7.1%.

4.3.9. Guidelines for the hyperparameters
This section gives a short summary of the key findings for the hyperparameters and
gives a guideline on what hyperparameters should be used.

Conclusion on benchmark 4.3.1: Using pinned memory provides a significant
performance gain and should always be used, since it also does not change the
performance of the CPU device. To determine why the ANY device has more
overhead with unpinned memory than the OFFLOAD device needs more research.

Conclusion on benchmark 4.3.2: Placing the receiver thread and the scheduler
thread resulted in the highest performance gain. It also produces stable results with
low standard deviation. On the other hand, placing all threads on the same core
resulted in the worst performance.

The benchmark did not test all possible configurations, but most of those are
not promising. For example, placing the scheduler and receiver thread together and
placing the executor threads on one core. This is similar to the best performing
configuration so far, but the results of test cases 2 and 3 indicate that placing
executor threads together decreases the performance. Other options would include
placing threads on different NUMA nodes or on the other CPU socket, which could
increase the performance if the application is memory-bound, but would rather
decrease the performance because the threads would need to communicate across
NUMA domains.

Conclusion on benchmark 3.1.2: NUMA node 3 performs best for Claix23 nodes
and is recommended to use that node. For other compute nodes, the runtime threads
should be located on the same CPU socket as the used GPUs.

The performance differences between the NUMA nodes are, in general, very small
with a maximum of 5%. Therefore, optimizing that parameter is not as important
as other parameters and might need specific tests for each distinct node that is used.

Conclusions on benchmark 4.3.4: The usage of multiple executor threads pro-
vides a high performance benefit. Using two executor threads already increases the
performance by 27-31%. For using three executors, the performance gain is smaller,
with about 2-5% and using one more thread increases performance by less than 1%.
Therefore, using three executors is recommended, since using more executors than
that barely improves the performance.

The behaviour of this parameter is strongly related to the hardware. It depends
on the accelerator that is used, but it also depends on the CPU and the bandwidth
of the PCI link. For other compute nodes, more executor threads might perform a
lot better or might decrease the performance compared to fewer executors.

48

4.3. Testing the Hyperparameterspace

Conclusions on benchmark 4.3.5: Leaving OMP_NUM_TEAMS undefined achieves
the best results. OpenMP internally handles the definition of that variable in that
case. A common value for this parameter is 1024. For this value, the performance is
very similar to the values 2048 and 4096. Leaving the parameter undefined improves
the performance by 5-6%, which is also the recommendation for that parameter.

Conclusions on benchmark 4.3.6 The exact mechanisms for the overhead gen-
eration and for achieving performance benefits are unknown. Despite that, a low
performance benefit was observed for 5 static tasks on each node, which equals 5%
of the entire workload. Assigning 5% of the tasks statically to nodes is recom-
mended, with the static tasks being equally distributed across all nodes, like in the
benchmark.

Conclusions on benchmark 4.3.7: The results indicate that the coarse-grained
algorithm does not work as intended, which also means that the combination of the
coarse-grained and the fine-grained scheduling does not achieve good performance.
Therefore, the fine-grained scheduling algorithm is recommended, since it always
outperformed the coarse-grained algorithm in the unbalanced scenario by 89.5% for
the ANY device or 6.3% for the CPU device and also outperformed the combination
of both algorithms with 31.1% and 3.2%.

Based on the results of these benchmarks, the hyperparameters are separated into
parameters that have a low impact on the performance with < 5% and parameters
that have a high impact ≥5%.

Guidelines for hyperparameters: High impact(≥ 5%):

• Always use pinned memory. In the measurements, it improved the performance
by 36.9% for the ANY device and 16.8% for the OFFLOAD device. For the
CPU device, it barely increased the performance, but also did not decrease
the performance. Therefore, using pinned memory is always recommended.

• Use multiple executor threads(3-4 threads). It decreased the runtime for the
ANY device by about 36% and by 29% for the OFFLOAD device. To utilize
this hyperparameter, pinned memory is required.

• Do not use coarse-grained scheduling. If coarse-grained scheduling was used,
with or without the fine-grained scheduling combined, the performance dropped
for unbalanced scenarios by at least 31.1% for the ANY device and by 3.2% for
the CPU. Therefore, it is not recommended to use the coarse-grained schedul-
ing strategy.

• Leave OMP_NUM_TEAMS undefined. Setting this hyperparameter to any of the
tested values decreased the performance.

• Place scheduler and receiver thread together. This increased the performance
by about 6% in comparison to placing all runtime threads on their own core.

49

4. Benchmarks

Low impact(< 5%)

• Place the runtime threads on the same socket as the GPU. Placing the runtime
threads on the same socket as the GPU achieved about 3-5% performance gain.

• Assign about 5% of the overall workload statically to different nodes. The
static tasks should be evenly distributed to all nodes. This decreased the
runtime by about 2.4% for the measurements.

Comparing a best case, a naive case and a realistic worst case for the hyperpa-
rameter selection, the best case outperformed the other cases. The speedup of the
best case was 2.06× compared to a naive case. This shows that tuning the hyperpa-
rameters can significantly speed up the application. The speedup compared to the
worst case is 3.4×, so one can also decrease the performance significantly by setting
the hyperparameters accordingly.

50

5. Conclusion and further Research
This thesis tested the possible use cases for which targetDART is useful and how
to tune it with hyperparameters. Various benchmarks were conducted in order to
derive guidelines for the use cases and hyperparameters.

For the use cases, targetDART generated for many situations small overheads of,
for example, 400ms in 4.2.7 or 14-16% in 4.2.6, but often outperformed the references
and scaled resiliently. Therefore, targetDART is useful for many scenarios and fulfills
its purpose of accelerating the execution of imbalanced applications.

For the hyperparameters, the user can tune targetDART with its hyperparameters
to half the execution time, as the comparison of the best and naive cases showed. But
the worst case also shows that badly configured hyperparameters can decrease the
performance in comparison to the naive case, so if no hyperparameters are manually
tuned.

Further Research As pointed out at some benchmarks, like 4.2.7 and 3.1.2, more
testing is required to understand the behaviour of targetDART. For example, the
task size could potentially cover the overhead of the scheduling, like in Section
4.2.4. Further tests with scaling the task size for some benchmarks could reduce the
overhead. The research about the task size could be used to refine the guidelines
regarding task granularity.

Another topic for further investigation would be why the coarse-grained algorithm
does not work as intended. The coarse-grained algorithm could be used to neutralize
the worst case of the fine-grained scheduling algorithm. Furthermore, there are a
lot of scheduling algorithms that could be used by targetDART. Other scheduling
algorithms have the potential to speed up the balancing process, which currently
induces overhead, although it is implemented in a non-blocking way.

Comparing targetDART to other tools could show how efficient targetDART is
and could reveal how to implement a load balancing tool like targetDART with
less overhead. It could also reveal that other tools are more suitable for certain
scenarios. For example, if another tool like IRIS [17] or the work of Samfass et al.
[24] would induce less overhead for CPU-only applications. The benchmark in 4.2.2
shows that the overhead of the targetDART CPU device is very high, so other tools
could outperform targetDART for CPU-only applications.

51

A. Appendix for the Benchmarks

Listing A.1: The source code that was used to test the targetDART versions.
1 # include <stdlib.h>
2 # include <iostream >
3 # include <cstdlib >
4 # include <omp.h>
5 # include <mpi.h>
6 # include <string >
7
8 int main(int argc , char ** argv) {
9

10 int rank , size;
11 int provided ;
12 int device;
13
14 MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE

, & provided);
15 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
16 MPI_Comm_size (MPI_COMM_WORLD , &size);
17
18 // targetDART initialization
19 // td_init ((void *) &main);
20
21 if (std :: getenv("MODE") == NULL) {
22 device = TARGETDART_ANY ;
23 } else {
24
25 std :: string mode = std :: getenv("MODE");
26 if (mode == " ANY_LOCAL ") {
27 device = TARGETDART_ANY_LOCAL ;
28 } else if (mode == " GPU_LOCAL ") {
29 device = TARGETDART_OFFLOAD_LOCAL ;
30 } else if (mode == "CPU") {
31 device = TARGETDART_CPU ;
32 } else if (mode == "GPU") {
33 device = TARGETDART_OFFLOAD ;
34 } else {

53

A. Appendix for the Benchmarks

35 device = TARGETDART_ANY ;
36 }
37 }
38
39 // std :: cout << "MPI size , rank: " << size << ", "

<< rank << std :: endl;
40
41 if (argc < 4 + size) {
42 std :: cerr << "not enough arguments : For " <<

size << " MPI processes you need at least
" << 4 + size << " Arguments " << std :: endl
;

43 exit (1);
44 }
45
46 int d1 = std :: atoi(argv [1]);
47 int d2 = std :: atoi(argv [2]);
48 int d3 = std :: atoi(argv [3]);
49
50
51 int iter = std :: atoi(argv[rank + 4]);
52
53 // enable pinned memory only when PINNED is

explcitly enabled
54 bool pinned = false;
55 if (auto * pinned_env = std :: getenv("PINNED")) {
56 std :: string pinned_str = pinned_env ;
57 pinned = !(pinned_str == "0" || pinned_str .

empty ());
58 }
59
60 double *A, *B, *C;
61
62 if (pinned) {
63 A = (double *) omp_alloc (d1 * d2 * sizeof(

double), llvm_omp_target_host_mem_alloc);
64 B = (double *) omp_alloc (d2 * d3 * sizeof(

double), llvm_omp_target_host_mem_alloc);
65 C = (double *) omp_alloc (iter * d1 * d3 *

sizeof(double),
llvm_omp_target_host_mem_alloc);

66 } else {
67 A = (double *) malloc(d1 * d2 * sizeof(double)

);

54

68 B = (double *) malloc(d2 * d3 * sizeof(double)
);

69 C = (double *) malloc(iter * d1 * d3 * sizeof(
double));

70 }
71
72 for (int i = 0; i < d1 * d2; i++) {
73 A[i] = 1;
74 }
75 for (int i = 0; i < d2 * d3; i++) {
76 B[i] = 1;
77 }
78 for (int i = 0; i < iter * d1 * d3; i++) {
79 C[i] = 0;
80 }
81
82 MPI_Barrier (MPI_COMM_WORLD);
83 double time = omp_get_wtime ();
84
85 for (int l = 0; l < iter; l++) {
86 double *C_l = C + l * d1 * d3;
87 #pragma omp target teams distribute parallel

for map(from:C_l [0: d1*d3]) map(to:A[0: d1*
d2]) map(to:B[0: d2*d3]) device(device)
collapse (2) nowait

88 for (int i = 0; i < d1; i++) {
89 for (int k = 0; k < d3; k++) {
90 C_l[i * d3 + k] = 0;
91 for (int j = 0; j < d2; j++) {
92 C_l[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
93 }
94 }
95 }
96 }
97
98 #pragma omp taskwait
99

100 MPI_Barrier (MPI_COMM_WORLD);
101 time = omp_get_wtime () - time;
102
103 if (rank == 0) {
104 std :: cout << " duration on process " << rank

<< ": " << time << std :: endl;

55

A. Appendix for the Benchmarks

105 // std :: cout << "Result: " << C[0] << std ::
endl;

106 int sum = 0;
107 for (int j = 0; j < d2; j++) {
108 sum += A[0 * d2 + j] * B[j * d3 + 0];
109 }
110 for (int i = 0; i < d1 * d3 * iter; i++) {
111 if (C[i] != sum) {
112 std :: cout << "Error: C[" << i << "] =

" << C[i] << " != " << sum << std
:: endl;

113 break;
114 }
115 }
116 }
117
118 if (pinned) {
119 omp_free (A, llvm_omp_target_host_mem_alloc);
120 omp_free (B, llvm_omp_target_host_mem_alloc);
121 omp_free (C, llvm_omp_target_host_mem_alloc);
122 } else {
123 free(A);
124 free(B);
125 free(C);
126 }
127
128 // finalizeTargetDART ();
129 MPI_Finalize ();
130 return 0;
131 }

Listing A.2: The source code that was used to test the CPU reference.
1 # include <stdlib.h>
2 # include <iostream >
3 # include <cstdlib >
4 # include <omp.h>
5 # include <mpi.h>
6
7
8 int main(int argc , char ** argv) {
9

10 int rank , size;
11 int provided ;
12

56

13 MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE
, & provided);

14 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
15 MPI_Comm_size (MPI_COMM_WORLD , &size);
16
17 if (argc < 4 + size) {
18 std :: cerr << "not enough arguments : For " <<

size << " MPI processes you need at least
" << 4 +size << " Arguments " << std :: endl;

19 exit (1);
20 }
21
22 int d1 = std :: atoi(argv [1]);
23 int d2 = std :: atoi(argv [2]);
24 int d3 = std :: atoi(argv [3]);
25
26 int iter = std :: atoi(argv[rank + 4]);
27
28 double* A = (double *) malloc(d1 * d2 * sizeof(

double));
29 double* B = (double *) malloc(d2 * d3 * sizeof(

double));
30 double* C = (double *) malloc(iter * d1 * d3 *

sizeof(double));
31
32 for (int i = 0; i < d1 * d2; i++) {
33 A[i] = 1;
34 }
35 for (int i = 0; i < d2 * d3; i++) {
36 B[i] = 1;
37 }
38 for (int i = 0; i < iter * d1 * d3; i++) {
39 C[i] = 0;
40 }
41
42 MPI_Barrier (MPI_COMM_WORLD);
43 double time = omp_get_wtime ();
44
45 for (int l = 0; l < iter; l++) {
46 double *C_l = C + l * d1 * d3;
47 #pragma omp parallel for collapse (2)
48 for (int i = 0; i < d1; i++) {
49 for (int k = 0; k < d3; k++) {
50 C_l[i * d3 + k] = 0;

57

A. Appendix for the Benchmarks

51 for (int j = 0; j < d2; j++) {
52 C_l[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
53 }
54 }
55 }
56 }
57
58 #pragma omp taskwait
59
60 MPI_Barrier (MPI_COMM_WORLD);
61 time = omp_get_wtime () - time;
62
63 if (rank == 0) {
64 std :: cout << " duration on process " << rank

<< ": " << time << std :: endl;
65 // std :: cout << "Result: " << C[0] << std ::

endl;
66 int sum = 0;
67 for (int j = 0; j < d2; j++) {
68 sum += A[0 * d2 + j] * B[j * d3 + 0];
69 }
70 for (int i = 0; i < d1 * d3 * iter; i++) {
71 if (C[i] != sum) {
72 std :: cout << "Error: C[" << i << "] =

" << C[i] << " != " << sum << std
:: endl;

73 break;
74 }
75 }
76 }
77
78 free(A);
79 free(B);
80 free(C);
81
82 MPI_Finalize ();
83 return 0;
84 }

Listing A.3: The source code that was used to test the GPU reference.
1 # include <stdlib.h>
2 # include <stdint.h>
3 # include <iostream >

58

4 # include <cstdlib >
5 # include <omp.h>
6 # include <mpi.h>
7
8
9 int main(int argc , char ** argv) {

10
11 int rank , size;
12 int provided ;
13
14 MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE

, & provided);
15 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
16 MPI_Comm_size (MPI_COMM_WORLD , &size);
17
18 if (argc < 4 + size) {
19 std :: cerr << "not enough arguments : For " <<

size << " MPI processes you need at least
" << 4 +size << " Arguments " << std :: endl;

20 exit (1);
21 }
22
23 int d1 = std :: atoi(argv [1]);
24 int d2 = std :: atoi(argv [2]);
25 int d3 = std :: atoi(argv [3]);
26
27 int iter = std :: atoi(argv[rank + 4]);
28
29 double * A = (double *) malloc(d1 * d2 * sizeof(

double));
30 double * B = (double *) malloc(d2 * d3 * sizeof(

double));
31 double * C = (double *) malloc(iter * d1 * d3 *

sizeof(double));
32
33 for (int i = 0; i < d1 * d2; i++) {
34 A[i] = 1;
35 }
36 for (int i = 0; i < d2 * d3; i++) {
37 B[i] = 1;
38 }
39 for (int i = 0; i < d1 * d3; i++) {
40 C[i] = 0;
41 }

59

A. Appendix for the Benchmarks

42
43 MPI_Barrier (MPI_COMM_WORLD);
44 double time = omp_get_wtime ();
45
46 for (int l = 0; l < iter; l++) {
47 double *C_l = C + l * d1 * d3;
48 #pragma omp target teams distribute parallel

for map(from:C_l [0: d1*d3]) map(to:A[0: d1*
d2]) map(to:B[0: d2*d3]) map(to:d1 ,d2 ,d3)
device(l% omp_get_num_devices ()) collapse
(2) nowait

49 for (int i = 0; i < d1; i++) {
50 for (int k = 0; k < d3; k++) {
51 C_l[i * d3 + k] = 0;
52 for (int j = 0; j < d2; j++) {
53 C_l[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
54 }
55 }
56 }
57 }
58
59 #pragma omp taskwait
60
61 MPI_Barrier (MPI_COMM_WORLD);
62 time = omp_get_wtime () - time;
63
64 if (rank == 0) {
65 std :: cout << " duration on process " << rank

<< ": " << time << std :: endl;
66 // std :: cout << "Result: " << C[0] << std ::

endl;
67 int sum = 0;
68 for (int j = 0; j < d2; j++) {
69 sum += A[0 * d2 + j] * B[j * d3 + 0];
70 }
71 for (int i = 0; i < d1 * d3 * iter; i++) {
72 if (C[i] != sum) {
73 std :: cout << "Error: C[" << i << "] =

" << C[i] << " != " << sum << std
:: endl;

74 break;
75 }
76 }

60

77 }
78
79 free(A);
80 free(B);
81 free(C);
82
83 MPI_Finalize ();
84 return 0;
85 }

Listing A.4: The source code of the script that generated the random load shifts.
This function was executed 10 times with different seeds from 1 to 10.

1 def new_loads (seed , n=4):
2 res = []
3 limiter = 250
4 remain = 100 * n
5 random.seed(seed)
6 for i in range(n -1):
7 load = int(remain*random.random ())
8 if load > limiter :
9 load = limiter

10 res.append(load)
11 remain -= load
12 res.append(remain)
13
14 # correctness check
15 sum = 0
16 for j in res:
17 sum += j
18 if sum != 100*n:
19 print(’Error total load balance exceeds

expected value ’)
20
21 return res

Listing A.5: The source code for heterogeneous task sizes for targetDART.
1 # include <stdlib.h>
2 # include <iostream >
3 # include <cstdlib >
4 # include <omp.h>
5 # include <mpi.h>
6 # include <string >
7
8 int main(int argc , char ** argv) {

61

A. Appendix for the Benchmarks

9
10 int rank , size;
11 int provided ;
12 int device;
13
14 MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE

, & provided);
15 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
16 MPI_Comm_size (MPI_COMM_WORLD , &size);
17
18 // targetDART initialization
19 // td_init ((void *) &main);
20
21 if (std :: getenv("MODE") == NULL) {
22 device = TARGETDART_ANY ;
23 } else {
24
25 std :: string mode = std :: getenv("MODE");
26 if (mode == " ANY_LOCAL ") {
27 device = TARGETDART_ANY_LOCAL ;
28 } else if (mode == " GPU_LOCAL ") {
29 device = TARGETDART_OFFLOAD_LOCAL ;
30 } else if (mode == "CPU") {
31 device = TARGETDART_CPU ;
32 } else if (mode == "GPU") {
33 device = TARGETDART_OFFLOAD ;
34 } else {
35 device = TARGETDART_ANY ;
36 }
37 }
38
39 // std :: cout << "MPI size , rank: " << size << ", "

<< rank << std :: endl;
40
41 if (argc < 4 + size) {
42 std :: cerr << "not enough arguments : For " <<

size << " MPI processes you need at least
" << 4 + size << " Arguments " << std :: endl
;

43 exit (1);
44 }
45
46 int d1 = std :: atoi(argv [1]);
47 int total_load = 0;

62

48 for(int i = 4; i < argc; i++) {
49 total_load += std :: atoi(argv[i + 4]);
50 }
51
52 int d2;
53 int d2_secondary ;
54 if(rank == 0){
55 d2 = (int) std :: atoi(argv [2]) * 1.5;
56 d2_secondary = (int) std :: atoi(argv [2]) *

0.5;
57 } else {
58 d2 = (int) std :: atoi(argv [2]) * 0.5;
59 d2_secondary = (int) std :: atoi(argv [2]) *

1.5;
60 }
61 int d3 = std :: atoi(argv [3]);
62
63
64 int iter = std :: atoi(argv[rank + 4]);
65
66 // enable pinned memory only when PINNED is

explcitly enabled
67 bool pinned = false;
68 if (auto * pinned_env = std :: getenv("PINNED")) {
69 std :: string pinned_str = pinned_env ;
70 pinned = !(pinned_str == "0" || pinned_str .

empty ());
71 }
72
73 double *A, *B, *C;
74
75 if (pinned) {
76 A = (double *) omp_alloc (d1 * d2 * sizeof(

double), llvm_omp_target_host_mem_alloc);
77 B = (double *) omp_alloc (d2 * d3 * sizeof(

double), llvm_omp_target_host_mem_alloc);
78 C = (double *) omp_alloc (iter * d1 * d3 *

sizeof(double),
llvm_omp_target_host_mem_alloc);

79 } else {
80 A = (double *) malloc(d1 * d2 * sizeof(double)

);
81 B = (double *) malloc(d2 * d3 * sizeof(double)

);

63

A. Appendix for the Benchmarks

82 C = (double *) malloc(iter * d1 * d3 * sizeof(
double));

83 }
84
85 for (int i = 0; i < d1 * d2; i++) {
86 A[i] = 1;
87 }
88 for (int i = 0; i < d2 * d3; i++) {
89 B[i] = 1;
90 }
91 for (int i = 0; i < iter * d1 * d3; i++) {
92 C[i] = 0;
93 }
94
95 // just works for less than 200 tasks per node
96 int upper_bound = 100;
97 int rest = iter % upper_bound ;
98 int firstloop = upper_bound * (int)(iter >= 100);
99

100 MPI_Barrier (MPI_COMM_WORLD);
101 double time = omp_get_wtime ();
102
103 for (int l = 0; l < firstloop ; l++) {
104 double *C_l = C + l * d1 * d3;
105 #pragma omp target teams distribute parallel

for map(from:C_l [0: d1*d3]) map(to:A[0: d1*
d2]) map(to:B[0: d2*d3]) device(device)
collapse (2) nowait

106 for (int i = 0; i < d1; i++) {
107 for (int k = 0; k < d3; k++) {
108 C_l[i * d3 + k] = 0;
109 for (int j = 0; j < d2; j++) {
110 C_l[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
111 }
112 }
113 }
114 }
115 if(firstloop > 0) {
116 for (int l = 0; l < rest; l++) {
117 double *C_l = C + (l + firstloop) * d1 *

d3;
118 #pragma omp target teams distribute

parallel for map(from:C_l [0: d1*d3])

64

map(to:A[0: d1* d2_secondary]) map(to:B
[0: d2_secondary *d3]) device(device)
collapse (2) nowait

119 for (int i = 0; i < d1; i++) {
120 for (int k = 0; k < d3; k++) {
121 C_l[i * d3 + k] = 0;
122 for (int j = 0; j < d2_secondary ;

j++) {
123 C_l[i * d3 + k] += A[i *

d2_secondary + j] * B[j *
d3 + k];

124 }
125 }
126 }
127 }
128 } else {
129 for (int l = 0; l < rest; l++) {
130 double *C_l = C + l * d1 * d3;
131 #pragma omp target teams distribute

parallel for map(from:C_l [0: d1*d3])
map(to:A[0: d1*d2]) map(to:B[0: d2*d3])
device(device) collapse (2) nowait

132 for (int i = 0; i < d1; i++) {
133 for (int k = 0; k < d3; k++) {
134 C_l[i * d3 + k] = 0;
135 for (int j = 0; j < d2; j++) {
136 C_l[i * d3 + k] += A[i * d2 +

j] * B[j * d3 + k];
137 }
138 }
139 }
140 }
141 }
142
143 #pragma omp taskwait
144
145 MPI_Barrier (MPI_COMM_WORLD);
146 time = omp_get_wtime () - time;
147
148 if (rank == 0) {
149 std :: cout << " duration on process " << rank

<< ": " << time << std :: endl;
150 // std :: cout << "Result: " << C[0] << std ::

endl;

65

A. Appendix for the Benchmarks

151 /*
152 int sum = 0;
153 for (int j = 0; j < d2; j++) {
154 sum += A[0 * d2 + j] * B[j * d3 + 0];
155 }
156 for (int j = 0; j < d2_secondary ; j++) {
157 sum += A[0 * d2_secondary + j] * B[j * d3

+ 0];
158 }
159 for (int i = 0; i < d1 * d3 * firstloop ; i++)

{
160 if (C[i] != sum) {
161 std :: cout << "Error: C[" << i << "] =

" << C[i] << " != " << sum << std
:: endl;

162 // break;
163 }
164 }
165 // ... further checks
166 */
167 }
168
169 if (pinned) {
170 omp_free (A, llvm_omp_target_host_mem_alloc);
171 omp_free (B, llvm_omp_target_host_mem_alloc);
172 omp_free (C, llvm_omp_target_host_mem_alloc);
173 } else {
174 free(A);
175 free(B);
176 free(C);
177 }
178
179 // finalizeTargetDART ();
180 MPI_Finalize ();
181 return 0;
182 }

Listing A.6: The source code for heterogeneous task sizes for the CPU reference.
1 # include <stdlib.h>
2 # include <iostream >
3 # include <cstdlib >
4 # include <omp.h>
5 # include <mpi.h>
6

66

7
8 int main(int argc , char ** argv) {
9

10 int rank , size;
11 int provided ;
12
13 MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE

, & provided);
14 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
15 MPI_Comm_size (MPI_COMM_WORLD , &size);
16
17 if (argc < 4 + size) {
18 std :: cerr << "not enough arguments : For " <<

size << " MPI processes you need at least
" << 4 +size << " Arguments " << std :: endl;

19 exit (1);
20 }
21
22 int d1 = std :: atoi(argv [1]);
23 int total_load = 0;
24 for(int i = 4; i < argc; i++) {
25 total_load += std :: atoi(argv[i + 4]);
26 }
27
28 int d2;
29 int d2_secondary ;
30 if(rank == 0){
31 d2 = (int) std :: atoi(argv [2]) * 1.5;
32 d2_secondary = (int) std :: atoi(argv [2]) *

0.5;
33 } else {
34 d2 = (int) std :: atoi(argv [2]) * 0.5;
35 d2_secondary = (int) std :: atoi(argv [2]) *

1.5;
36 }
37 int d3 = std :: atoi(argv [3]);
38
39 int iter = std :: atoi(argv[rank + 4]);
40
41 double* A = (double *) malloc(d1 * d2 * sizeof(

double));
42 double* B = (double *) malloc(d2 * d3 * sizeof(

double));
43 double* C = (double *) malloc(iter * d1 * d3 *

67

A. Appendix for the Benchmarks

sizeof(double));
44
45 for (int i = 0; i < d1 * d2; i++) {
46 A[i] = 1;
47 }
48 for (int i = 0; i < d2 * d3; i++) {
49 B[i] = 1;
50 }
51 for (int i = 0; i < iter * d1 * d3; i++) {
52 C[i] = 0;
53 }
54
55 // just works for less than 200 tasks per node
56 int upper_bound = 100;
57 int rest = iter % upper_bound ;
58 int firstloop = upper_bound * (int)(iter >= 100);
59
60 MPI_Barrier (MPI_COMM_WORLD);
61 double time = omp_get_wtime ();
62
63 for (int l = 0; l < firstloop ; l++) {
64 double *C_l = C + l * d1 * d3;
65 #pragma omp parallel for collapse (2)
66 for (int i = 0; i < d1; i++) {
67 for (int k = 0; k < d3; k++) {
68 C_l[i * d3 + k] = 0;
69 for (int j = 0; j < d2; j++) {
70 C_l[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
71 }
72 }
73 }
74 }
75 if(firstloop > 0) {
76 for (int l = 0; l < rest; l++) {
77 double *C_l = C + (l + firstloop) * d1 *

d3;
78 #pragma omp parallel for collapse (2)
79 for (int i = 0; i < d1; i++) {
80 for (int k = 0; k < d3; k++) {
81 C_l[i * d3 + k] = 0;
82 for (int j = 0; j < d2_secondary ;

j++) {
83 C_l[i * d3 + k] += A[i *

68

d2_secondary + j] * B[j *
d3 + k];

84 }
85 }
86 }
87 }
88 } else {
89 for (int l = 0; l < firstloop ; l++) {
90 double *C_l = C + l * d1 * d3;
91 #pragma omp parallel for collapse (2)
92 for (int i = 0; i < d1; i++) {
93 for (int k = 0; k < d3; k++) {
94 C_l[i * d3 + k] = 0;
95 for (int j = 0; j < d2; j++) {
96 C_l[i * d3 + k] += A[i * d2 +

j] * B[j * d3 + k];
97 }
98 }
99 }

100 }
101 }
102
103 #pragma omp taskwait
104
105 MPI_Barrier (MPI_COMM_WORLD);
106 time = omp_get_wtime () - time;
107
108 if (rank == 0) {
109 std :: cout << " duration on process " << rank

<< ": " << time << std :: endl;
110 // std :: cout << "Result: " << C[0] << std ::

endl;
111 /*
112 int sum = 0;
113 for (int j = 0; j < d2; j++) {
114 sum += A[0 * d2 + j] * B[j * d3 + 0];
115 }
116 for (int i = 0; i < d1 * d3 * iter; i++) {
117 if (C[i] != sum) {
118 std :: cout << "Error: C[" << i << "] =

" << C[i] << " != " << sum << std
:: endl;

119 break;
120 }

69

A. Appendix for the Benchmarks

121 }
122 */
123 }
124
125 free(A);
126 free(B);
127 free(C);
128
129 MPI_Finalize ();
130 return 0;
131 }

Listing A.7: The source code for heterogeneous task sizes for the GPU reference.
1 # include <stdlib.h>
2 # include <stdint.h>
3 # include <iostream >
4 # include <cstdlib >
5 # include <omp.h>
6 # include <mpi.h>
7
8
9 int main(int argc , char ** argv) {

10
11 int rank , size;
12 int provided ;
13
14 MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE

, & provided);
15 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
16 MPI_Comm_size (MPI_COMM_WORLD , &size);
17
18 if (argc < 4 + size) {
19 std :: cerr << "not enough arguments : For " <<

size << " MPI processes you need at least
" << 4 +size << " Arguments " << std :: endl;

20 exit (1);
21 }
22
23 int d1 = std :: atoi(argv [1]);
24 int total_load = 0;
25 for(int i = 4; i < argc; i++) {
26 total_load += std :: atoi(argv[i + 4]);
27 }
28

70

29 int d2;
30 int d2_secondary ;
31 if(rank == 0){
32 d2 = (int) std :: atoi(argv [2]) * 1.5;
33 d2_secondary = (int) std :: atoi(argv [2]) *

0.5;
34 } else {
35 d2 = (int) std :: atoi(argv [2]) * 0.5;
36 d2_secondary = (int) std :: atoi(argv [2]) *

1.5;
37 }
38 int d3 = std :: atoi(argv [3]);
39
40 int iter = std :: atoi(argv[rank + 4]);
41
42 double * A = (double *) malloc(d1 * d2 * sizeof(

double));
43 double * B = (double *) malloc(d2 * d3 * sizeof(

double));
44 double * C = (double *) malloc(iter * d1 * d3 *

sizeof(double));
45
46 for (int i = 0; i < d1 * d2; i++) {
47 A[i] = 1;
48 }
49 for (int i = 0; i < d2 * d3; i++) {
50 B[i] = 1;
51 }
52 for (int i = 0; i < d1 * d3; i++) {
53 C[i] = 0;
54 }
55
56 // just works for less than 200 tasks per node
57 int upper_bound = 100;
58 int rest = iter % upper_bound ;
59 int firstloop = upper_bound * (int)(iter >= 100);
60
61 MPI_Barrier (MPI_COMM_WORLD);
62 double time = omp_get_wtime ();
63
64 for (int l = 0; l < firstloop ; l++) {
65 double *C_l = C + l * d1 * d3;
66 #pragma omp target teams distribute parallel

for map(from:C_l [0: d1*d3]) map(to:A[0: d1*

71

A. Appendix for the Benchmarks

d2]) map(to:B[0: d2*d3]) map(to:d1 ,d2 ,d3)
device(l% omp_get_num_devices ()) collapse
(2) nowait

67 for (int i = 0; i < d1; i++) {
68 for (int k = 0; k < d3; k++) {
69 C_l[i * d3 + k] = 0;
70 for (int j = 0; j < d2; j++) {
71 C_l[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
72 }
73 }
74 }
75 }
76 if(firstloop > 0) {
77 for (int l = 0; l < rest; l++) {
78 double *C_l = C + (l + firstloop) * d1 *

d3;
79 #pragma omp target teams distribute

parallel for map(from:C_l [0: d1*d3])
map(to:A[0: d1*d2]) map(to:B[0: d2*d3])
map(to:d1 ,d2 ,d3) device(l%
omp_get_num_devices ()) collapse (2)
nowait

80 for (int i = 0; i < d1; i++) {
81 for (int k = 0; k < d3; k++) {
82 C_l[i * d3 + k] = 0;
83 for (int j = 0; j < d2_secondary ;

j++) {
84 C_l[i * d3 + k] += A[i *

d2_secondary + j] * B[j *
d3 + k];

85 }
86 }
87 }
88 }
89 } else {
90 for (int l = 0; l < firstloop ; l++) {
91 double *C_l = C + l * d1 * d3;
92 #pragma omp target teams distribute

parallel for map(from:C_l [0: d1*d3])
map(to:A[0: d1*d2]) map(to:B[0: d2*d3])
map(to:d1 ,d2 ,d3) device(l%
omp_get_num_devices ()) collapse (2)
nowait

72

93 for (int i = 0; i < d1; i++) {
94 for (int k = 0; k < d3; k++) {
95 C_l[i * d3 + k] = 0;
96 for (int j = 0; j < d2; j++) {
97 C_l[i * d3 + k] += A[i * d2 +

j] * B[j * d3 + k];
98 }
99 }

100 }
101 }
102 }
103
104 #pragma omp taskwait
105
106 MPI_Barrier (MPI_COMM_WORLD);
107 time = omp_get_wtime () - time;
108
109 if (rank == 0) {
110 std :: cout << " duration on process " << rank

<< ": " << time << std :: endl;
111 // std :: cout << "Result: " << C[0] << std ::

endl;
112 /*
113 int sum = 0;
114 for (int j = 0; j < d2; j++) {
115 sum += A[0 * d2 + j] * B[j * d3 + 0];
116 }
117 for (int i = 0; i < d1 * d3 * iter; i++) {
118 if (C[i] != sum) {
119 std :: cout << "Error: C[" << i << "] =

" << C[i] << " != " << sum << std
:: endl;

120 break;
121 }
122 }
123 */
124 }
125
126 free(A);
127 free(B);
128 free(C);
129
130 MPI_Finalize ();
131 return 0;

73

A. Appendix for the Benchmarks

132 }

Listing A.8: The source code for delayed task generation. This code generates 1
2 of

the at the beginning. The other half after the time of the last parameter
in milliseconds.

1 # include <stdlib.h>
2 # include <iostream >
3 # include <cstdlib >
4 # include <omp.h>
5 # include <mpi.h>
6 # include <string >
7
8 # include <chrono >
9 # include <thread >

10
11
12 int main(int argc , char ** argv) {
13
14 int rank , size;
15 int provided ;
16 int device;
17
18 MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE

, & provided);
19 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
20 MPI_Comm_size (MPI_COMM_WORLD , &size);
21
22 // targetDART initialization
23 // td_init ((void *) &main);
24
25 if (std :: getenv("MODE") == NULL) {
26 device = TARGETDART_ANY ;
27 } else {
28
29 std :: string mode = std :: getenv("MODE");
30 if (mode == " ANY_LOCAL ") {
31 device = TARGETDART_ANY_LOCAL ;
32 } else if (mode == " GPU_LOCAL ") {
33 device = TARGETDART_OFFLOAD_LOCAL ;
34 } else if (mode == "CPU") {
35 device = TARGETDART_CPU ;
36 } else if (mode == "GPU") {
37 device = TARGETDART_OFFLOAD ;
38 } else {

74

39 device = TARGETDART_ANY ;
40 }
41 }
42
43 // std :: cout << "MPI size , rank: " << size << ", "

<< rank << std :: endl;
44
45 if (argc < 4 + size) {
46 std :: cerr << "not enough arguments : For " <<

size << " MPI processes you need at least
" << 4 + size << " Arguments " << std :: endl
;

47 exit (1);
48 }
49
50 int d1 = std :: atoi(argv [1]);
51 int d2 = std :: atoi(argv [2]);
52 int d3 = std :: atoi(argv [3]);
53
54
55 int iter = std :: atoi(argv[rank + 4]);
56
57 int delay = std :: atoi(argv[argc -1]); // if

enabled there will be one task at the end
which will double the tasknumbers , else every
task will generate a new task

58
59 // enable pinned memory only when PINNED is

explcitly enabled
60 bool pinned = false;
61 if (auto * pinned_env = std :: getenv("PINNED")) {
62 std :: string pinned_str = pinned_env ;
63 pinned = !(pinned_str == "0" || pinned_str .

empty ());
64 }
65
66 double *A, *B, *C;
67
68 if (pinned) {
69 A = (double *) omp_alloc (d1 * d2 * sizeof(

double), llvm_omp_target_host_mem_alloc);
70 B = (double *) omp_alloc (d2 * d3 * sizeof(

double), llvm_omp_target_host_mem_alloc);
71 C = (double *) omp_alloc (2 * iter * d1 * d3 *

75

A. Appendix for the Benchmarks

sizeof(double),
llvm_omp_target_host_mem_alloc);

72 } else {
73 A = (double *) malloc(d1 * d2 * sizeof(double)

);
74 B = (double *) malloc(d2 * d3 * sizeof(double)

);
75 C = (double *) malloc (2 * iter * d1 * d3 *

sizeof(double));
76 }
77
78 for (int i = 0; i < d1 * d2; i++) {
79 A[i] = 1;
80 }
81 for (int i = 0; i < d2 * d3; i++) {
82 B[i] = 1;
83 }
84 for (int i = 0; i < 2 * iter * d1 * d3; i++) {
85 C[i] = 0;
86 }
87
88 MPI_Barrier (MPI_COMM_WORLD);
89 double time = omp_get_wtime ();
90
91 for (int l = 0; l < iter; l++) {
92 double *C_l = C + l * d1 * d3;
93 #pragma omp target teams distribute parallel

for map(from:C_l [0: d1*d3]) map(to:A[0: d1*
d2]) map(to:B[0: d2*d3]) device(device)
collapse (2) nowait

94 for (int i = 0; i < d1; i++) {
95 for (int k = 0; k < d3; k++) {
96 C_l[i * d3 + k] = 0;
97 for (int j = 0; j < d2; j++) {
98 C_l[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
99 }

100 }
101 }
102 }
103
104 std :: this_thread :: sleep_for (std :: chrono ::

milliseconds (delay));
105

76

106 for (int l = 0; l < iter; l++) {
107 double *C_f = C + (l + iter) * d1 * d3;
108 #pragma omp target teams distribute parallel

for map(from:C_f [0: d1*d3]) map(to:A[0: d1*
d2]) map(to:B[0: d2*d3]) device(device)
collapse (2) nowait

109 for (int i = 0; i < d1; i++) {
110 for (int k = 0; k < d3; k++) {
111 C_f[i * d3 + k] = 0;
112 for (int j = 0; j < d2; j++) {
113 C_f[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
114 }
115 }
116 }
117 }
118
119 #pragma omp taskwait
120
121 MPI_Barrier (MPI_COMM_WORLD);
122 time = omp_get_wtime () - time;
123
124 if (rank == 0) {
125 std :: cout << " duration on process " << rank

<< ": " << time << std :: endl;
126 // std :: cout << "Result: " << C[0] << std ::

endl;
127 int sum = 0;
128 for (int j = 0; j < d2; j++) {
129 sum += A[0 * d2 + j] * B[j * d3 + 0];
130 }
131 for (int i = 0; i < d1 * d3 * iter; i++) {
132 if (C[i] != sum) {
133 std :: cout << "Error: C[" << i << "] =

" << C[i] << " != " << sum << std
:: endl;

134 break;
135 }
136 }
137 }
138
139 if (pinned) {
140 omp_free (A, llvm_omp_target_host_mem_alloc);
141 omp_free (B, llvm_omp_target_host_mem_alloc);

77

A. Appendix for the Benchmarks

142 omp_free (C, llvm_omp_target_host_mem_alloc);
143 } else {
144 free(A);
145 free(B);
146 free(C);
147 }
148
149 // finalizeTargetDART ();
150 MPI_Finalize ();
151 return 0;
152 }

Listing A.9: The source code for statically assigned tasks according to benchmark
4.3.6. This version generates the static tasks first

1 # include <stdlib.h>
2 # include <iostream >
3 # include <cstdlib >
4 # include <omp.h>
5 # include <mpi.h>
6 # include <string >
7
8 int main(int argc , char ** argv) {
9

10 int rank , size;
11 int provided ;
12 int device;
13 int device_static ;
14
15 MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE

, & provided);
16 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
17 MPI_Comm_size (MPI_COMM_WORLD , &size);
18
19 // targetDART initialization
20 // td_init ((void *) &main);
21
22 if (std :: getenv("MODE") == NULL) {
23 device = TARGETDART_ANY ;
24 device_static = TARGETDART_ANY_LOCAL ;
25 } else {
26 std :: string mode = std :: getenv("MODE");
27 if (mode == "CPU") {
28 device = TARGETDART_CPU ;
29 device_static = TARGETDART_CPU_LOCAL ;

78

30 } else if (mode == "GPU") {
31 device = TARGETDART_OFFLOAD ;
32 device_static = TARGETDART_OFFLOAD_LOCAL ;
33 } else {
34 device = TARGETDART_ANY ;
35 device_static = TARGETDART_ANY_LOCAL ;
36 }
37 }
38
39 // std :: cout << "MPI size , rank: " << size << ", "

<< rank << std :: endl;
40
41 if (argc < 4 + size) {
42 std :: cerr << "not enough arguments : For " <<

size << " MPI processes you need at least
" << 4 + size << " Arguments " << std :: endl
;

43 exit (1);
44 }
45
46 int d1 = std :: atoi(argv [1]);
47 int d2 = std :: atoi(argv [2]);
48 int d3 = std :: atoi(argv [3]);
49
50 int st = std :: atoi(argv [2* rank + 4]);
51 int dy = std :: atoi(argv [2* rank + 4 + 1]);
52 int iter = st + dy;
53
54 // enable pinned memory only when PINNED is

explcitly enabled
55 bool pinned = false;
56 if (auto * pinned_env = std :: getenv("PINNED")) {
57 std :: string pinned_str = pinned_env ;
58 pinned = !(pinned_str == "0" || pinned_str .

empty ());
59 }
60
61 double *A, *B, *C;
62
63 if (pinned) {
64 A = (double *) omp_alloc (d1 * d2 * sizeof(

double), llvm_omp_target_host_mem_alloc);
65 B = (double *) omp_alloc (d2 * d3 * sizeof(

double), llvm_omp_target_host_mem_alloc);

79

A. Appendix for the Benchmarks

66 C = (double *) omp_alloc (iter * d1 * d3 *
sizeof(double),
llvm_omp_target_host_mem_alloc);

67 } else {
68 A = (double *) malloc(d1 * d2 * sizeof(double)

);
69 B = (double *) malloc(d2 * d3 * sizeof(double)

);
70 C = (double *) malloc(iter * d1 * d3 * sizeof(

double));
71 }
72
73 for (int i = 0; i < d1 * d2; i++) {
74 A[i] = 1;
75 }
76 for (int i = 0; i < d2 * d3; i++) {
77 B[i] = 1;
78 }
79 for (int i = 0; i < iter * d1 * d3; i++) {
80 C[i] = 0;
81 }
82
83 MPI_Barrier (MPI_COMM_WORLD);
84 double time = omp_get_wtime ();
85
86 for (int l = 0; l < st; l++) {
87 double *C_l = C + l * d1 * d3;
88 #pragma omp target teams distribute parallel

for map(from:C_l [0: d1*d3]) map(to:A[0: d1*
d2]) map(to:B[0: d2*d3]) device(
device_static) collapse (2) nowait

89 for (int i = 0; i < d1; i++) {
90 for (int k = 0; k < d3; k++) {
91 C_l[i * d3 + k] = 0;
92 for (int j = 0; j < d2; j++) {
93 C_l[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
94 }
95 }
96 }
97 }
98 for (int l = 0; l < dy; l++) {
99 double *C_l = C + (st + l) * d1 * d3;

100 #pragma omp target teams distribute parallel

80

for map(from:C_l [0: d1*d3]) map(to:A[0: d1*
d2]) map(to:B[0: d2*d3]) device(device)
collapse (2) nowait

101 for (int i = 0; i < d1; i++) {
102 for (int k = 0; k < d3; k++) {
103 C_l[i * d3 + k] = 0;
104 for (int j = 0; j < d2; j++) {
105 C_l[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
106 }
107 }
108 }
109 }
110
111 #pragma omp taskwait
112
113 MPI_Barrier (MPI_COMM_WORLD);
114 time = omp_get_wtime () - time;
115
116 if (rank == 0) {
117 std :: cout << " duration on process " << rank

<< ": " << time << std :: endl;
118 // std :: cout << "Result: " << C[0] << std ::

endl;
119 int sum = 0;
120 for (int j = 0; j < d2; j++) {
121 sum += A[0 * d2 + j] * B[j * d3 + 0];
122 }
123 for (int i = 0; i < d1 * d3 * iter; i++) {
124 if (C[i] != sum) {
125 std :: cout << "Error: C[" << i << "] =

" << C[i] << " != " << sum << std
:: endl;

126 break;
127 }
128 }
129 }
130
131 if (pinned) {
132 omp_free (A, llvm_omp_target_host_mem_alloc);
133 omp_free (B, llvm_omp_target_host_mem_alloc);
134 omp_free (C, llvm_omp_target_host_mem_alloc);
135 } else {
136 free(A);

81

A. Appendix for the Benchmarks

137 free(B);
138 free(C);
139 }
140
141 // finalizeTargetDART ();
142 MPI_Finalize ();
143 return 0;
144 }

Listing A.10: The source code for statically assigned tasks according to benchmark
4.3.6. This version generates the static tasks secondly

1 # include <stdlib.h>
2 # include <iostream >
3 # include <cstdlib >
4 # include <omp.h>
5 # include <mpi.h>
6 # include <string >
7
8 int main(int argc , char ** argv) {
9

10 int rank , size;
11 int provided ;
12 int device;
13 int device_static ;
14
15 MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE

, & provided);
16 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
17 MPI_Comm_size (MPI_COMM_WORLD , &size);
18
19 // targetDART initialization
20 // td_init ((void *) &main);
21
22 if (std :: getenv("MODE") == NULL) {
23 device = TARGETDART_ANY ;
24 device_static = TARGETDART_ANY_LOCAL ;
25 } else {
26 std :: string mode = std :: getenv("MODE");
27 if (mode == "CPU") {
28 device = TARGETDART_CPU ;
29 device_static = TARGETDART_CPU_LOCAL ;
30 } else if (mode == "GPU") {
31 device = TARGETDART_OFFLOAD ;
32 device_static = TARGETDART_OFFLOAD_LOCAL ;

82

33 } else {
34 device = TARGETDART_ANY ;
35 device_static = TARGETDART_ANY_LOCAL ;
36 }
37 }
38
39 // std :: cout << "MPI size , rank: " << size << ", "

<< rank << std :: endl;
40
41 if (argc < 4 + size) {
42 std :: cerr << "not enough arguments : For " <<

size << " MPI processes you need at least
" << 4 + size << " Arguments " << std :: endl
;

43 exit (1);
44 }
45
46 int d1 = std :: atoi(argv [1]);
47 int d2 = std :: atoi(argv [2]);
48 int d3 = std :: atoi(argv [3]);
49
50 int st = std :: atoi(argv [2* rank + 4]);
51 int dy = std :: atoi(argv [2* rank + 4 + 1]);
52 int iter = st + dy;
53
54 // enable pinned memory only when PINNED is

explcitly enabled
55 bool pinned = false;
56 if (auto * pinned_env = std :: getenv("PINNED")) {
57 std :: string pinned_str = pinned_env ;
58 pinned = !(pinned_str == "0" || pinned_str .

empty ());
59 }
60
61 double *A, *B, *C;
62
63 if (pinned) {
64 A = (double *) omp_alloc (d1 * d2 * sizeof(

double), llvm_omp_target_host_mem_alloc);
65 B = (double *) omp_alloc (d2 * d3 * sizeof(

double), llvm_omp_target_host_mem_alloc);
66 C = (double *) omp_alloc (iter * d1 * d3 *

sizeof(double),
llvm_omp_target_host_mem_alloc);

83

A. Appendix for the Benchmarks

67 } else {
68 A = (double *) malloc(d1 * d2 * sizeof(double)

);
69 B = (double *) malloc(d2 * d3 * sizeof(double)

);
70 C = (double *) malloc(iter * d1 * d3 * sizeof(

double));
71 }
72
73 for (int i = 0; i < d1 * d2; i++) {
74 A[i] = 1;
75 }
76 for (int i = 0; i < d2 * d3; i++) {
77 B[i] = 1;
78 }
79 for (int i = 0; i < iter * d1 * d3; i++) {
80 C[i] = 0;
81 }
82
83 MPI_Barrier (MPI_COMM_WORLD);
84 double time = omp_get_wtime ();
85 for (int l = 0; l < dy; l++) {
86 double *C_l = C + (st + l) * d1 * d3;
87 #pragma omp target teams distribute parallel

for map(from:C_l [0: d1*d3]) map(to:A[0: d1*
d2]) map(to:B[0: d2*d3]) device(device)
collapse (2) nowait

88 for (int i = 0; i < d1; i++) {
89 for (int k = 0; k < d3; k++) {
90 C_l[i * d3 + k] = 0;
91 for (int j = 0; j < d2; j++) {
92 C_l[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
93 }
94 }
95 }
96 }
97
98 for (int l = 0; l < st; l++) {
99 double *C_l = C + l * d1 * d3;

100 #pragma omp target teams distribute parallel
for map(from:C_l [0: d1*d3]) map(to:A[0: d1*
d2]) map(to:B[0: d2*d3]) device(
device_static) collapse (2) nowait

84

101 for (int i = 0; i < d1; i++) {
102 for (int k = 0; k < d3; k++) {
103 C_l[i * d3 + k] = 0;
104 for (int j = 0; j < d2; j++) {
105 C_l[i * d3 + k] += A[i * d2 + j]

* B[j * d3 + k];
106 }
107 }
108 }
109 }
110
111 #pragma omp taskwait
112
113 MPI_Barrier (MPI_COMM_WORLD);
114 time = omp_get_wtime () - time;
115
116 if (rank == 0) {
117 std :: cout << " duration on process " << rank

<< ": " << time << std :: endl;
118 // std :: cout << "Result: " << C[0] << std ::

endl;
119 int sum = 0;
120 for (int j = 0; j < d2; j++) {
121 sum += A[0 * d2 + j] * B[j * d3 + 0];
122 }
123 for (int i = 0; i < d1 * d3 * iter; i++) {
124 if (C[i] != sum) {
125 std :: cout << "Error: C[" << i << "] =

" << C[i] << " != " << sum << std
:: endl;

126 break;
127 }
128 }
129 }
130
131 if (pinned) {
132 omp_free (A, llvm_omp_target_host_mem_alloc);
133 omp_free (B, llvm_omp_target_host_mem_alloc);
134 omp_free (C, llvm_omp_target_host_mem_alloc);
135 } else {
136 free(A);
137 free(B);
138 free(C);
139 }

85

A. Appendix for the Benchmarks

140
141 // finalizeTargetDART ();
142 MPI_Finalize ();
143 return 0;
144 }

86

Machine (503GB total)

Package L#0

L3 (105MB)

Group0

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#0

PU L#0
P#0

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#1

PU L#1
P#1

12x total
L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#11

PU L#11
P#11

NUMANode L#0 P#0 (62GB)

0,6

0,6

0,6 PCI 02:00.0

0,6

0,6

PCI 03:00.0

Net eno1

PCI 03:00.1

Net eno2

PCI 00:17.0

63 63 7,9

63

63

7,9 PCI 18:00.0

Block nvme0n1
745 GB

63 PCI 1b:00.0

CoProc cuda0
93 GB
L2 (60 MB)
132 MP x (128 cores + 48 kB)

CoProc opencl0d0
132 compute units
93 GB

GPU nvml0

63 PCI 1c:00.0

Group0

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#12

PU L#12
P#12

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#13

PU L#13
P#13

12x total
L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#23

PU L#23
P#23

NUMANode L#1 P#1 (63GB)

Group0

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#24

PU L#24
P#24

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#25

PU L#25
P#25

12x total
L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#35

PU L#35
P#35

NUMANode L#2 P#2 (63GB)

63 63 63

63

63

63 PCI 2b:00.0

Net ib0

OpenFabrics mlx5_0

63 PCI 2c:00.0

CoProc cuda1
93 GB
L2 (60 MB)
132 MP x (128 cores + 48 kB)

CoProc opencl0d1
132 compute units
93 GB

GPU nvml1

63 PCI 2d:00.0

Group0

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#36

PU L#36
P#36

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#37

PU L#37
P#37

12x total
L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#47

PU L#47
P#47

NUMANode L#3 P#3 (63GB)

Package L#1

L3 (105MB)

Group0

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#48

PU L#48
P#48

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#49

PU L#49
P#49

12x total
L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#59

PU L#59
P#59

NUMANode L#4 P#4 (63GB)

63 63 63

63

63 PCI 9d:00.0

CoProc cuda2
93 GB
L2 (60 MB)
132 MP x (128 cores + 48 kB)

CoProc opencl0d2
132 compute units
93 GB

GPU nvml2

63 PCI 9e:00.0

Group0

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#60

PU L#60
P#60

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#61

PU L#61
P#61

12x total
L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#71

PU L#71
P#71

NUMANode L#5 P#5 (63GB)

Group0

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#72

PU L#72
P#72

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#73

PU L#73
P#73

12x total
L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#83

PU L#83
P#83

NUMANode L#6 P#6 (63GB)

63 63 63

63

63

63 PCI ac:00.0

Net ib1

OpenFabrics mlx5_1

63 PCI ad:00.0

CoProc cuda3
93 GB
L2 (60 MB)
132 MP x (128 cores + 48 kB)

CoProc opencl0d3
132 compute units
93 GB

GPU nvml3

63 PCI ae:00.0

Group0

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#84

PU L#84
P#84

L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#85

PU L#85
P#85

12x total
L2 (2048KB)

L1d (48KB)

L1i (32KB)

Core L#95

PU L#95
P#95

NUMANode L#7 P#7 (63GB)

3,9 3,9

3,9

PCI c8:00.0

Net ens7f0np0

PCI c8:00.1

Net ens7f1np1

Host: n23g0025.hpc.itc.rwth-aachen.de
Date: Mo 18 Nov 2024 10:25:24 CET

Figure A.1.: The topology of a single GPU node of Claix23.

Testcase Nr. Task distribution median runtime standard deviation
0 100 100 100 100 17.79 0.27
1 53 250 74 23 28.24 0.47
2 95 165 51 89 35.78 0.56
3 95 165 51 89 23.44 0.28
4 94 31 108 167 11.24 0.31
5 249 112 31 8 33.16 0.5
6 250 123 13 14 33.85 0.71
7 129 40 150 81 15.65 0.34
8 90 250 7 53 30.52 0.43
9 185 80 18 117 23.97 0.3

Table A.1.: A table of the results of the CPU version for the random load imbalance
benchmark. Lower is better.

Hyperparameters Best case Naive case Worst case
OMP_NUM_THREADS 96 96 96
Pinned memory yes no no

TD_EXECUTORS_PER_DEVICE 3 1 1
TD_MANAGEMENT 24,24,25,26,27,28,29 0,1,2,3 84,84,84,84
OMP_NUM_TEAMS None None 1024

Static load 5 tasks per node no no
Scheduling algorithm default default default

Table A.2.: Hyperparameters for the best, naive and worst case.

87

A. Appendix for the Benchmarks

Figure A.2.: Results of the Benchmark 4.2.2. Lower is better.

88

Figure A.3.: Results of the Benchmark 4.2.4. Lower is better.

89

A. Appendix for the Benchmarks

Figure A.4.: Results of the Benchmark 4.2.4. Lower is better.

90

Figure A.5.: Results of the Benchmark 4.2.5. Lower is better.

91

A. Appendix for the Benchmarks

Figure A.6.: Results of the Benchmark 4.2.6. Lower is better.

92

Figure A.7.: Results of the Benchmark 4.2.6. Lower is better.

93

A. Appendix for the Benchmarks

Figure A.8.: Results of the Benchmark 4.2.7. Lower is better.

94

Figure A.9.: Results of scaling the number of tasks according to 4.2.8, but with the
bug that increases the runtime if a node starts with 0 tasks. Lower is
better.

95

A. Appendix for the Benchmarks

Figure A.10.: Results of the Benchmark 4.3.3. Lower is better.

96

Figure A.11.: Results of the Benchmark 4.3.5. Lower is better.

97

A. Appendix for the Benchmarks

Figure A.12.: Results of the Benchmark 4.3.6. Lower is better.

98

Figure A.13.: Testing different configurations for the scheduling algorithm. Results
for the targetDART ANY device. Lower is better.

99

A. Appendix for the Benchmarks

Figure A.14.: Testing different configurations for the scheduling algorithm. Results
for the targetDART CPU device. Lower is better.

100

Bibliography
[1] H. Kaiser, T. Heller, A. Berge, and B. Adelstein-Lelbach, “HPX V0.9.11: A

general purpose C++ runtime system for parallel and distributed applications
of any scale,” 2015, http://github.com/STEllAR- GROUP/hpx. [Online].
Available: http://dx.doi.org/10.5281/zenodo.33656.

[2] Definition of the memory wall. Accessed 15.08.2025. https://link.springe
r.com/rwe/10.1007/978-0-387-09766-4_234.

[3] Source code of the targetDART plugin. Accessed 30. July 2025. https://git
hub.com/targetDART/llvm-project.

[4] The OpenMP documentation about the hyperparameter OMP_NUM_TEAMS.
Accessed 27. July 2025. https://www.openmp.org/spec-html/5.1/openmps
e80.html.

[5] Specifications of Claix23 nodes. Accessed 15. July 2025. https://help.itc
.rwth-aachen.de/en/service/rhr4fjjutttf/article/fbd107191cf14c4b
8307f44f545cf68a/.

[6] Documentation of the random python library. Accessed 01.09.2025. https:
//docs.python.org/3/library/random.html.

[7] Marsha J Berger and Joseph Oliger. “Adaptive mesh refinement for hyper-
bolic partial differential equations”. In: Journal of Computational Physics 53.3
(1984), pp. 484–512. issn: 0021-9991. doi: https://doi.org/10.1016/0021
-9991(84)90073-1. url: https://www.sciencedirect.com/science/arti
cle/pii/0021999184900731.

[8] Anthony Cabrera et al. “Toward Performance Portable Programming for Het-
erogeneous Systems on a Chip: A Case Study with Qualcomm Snapdragon
SoC”. In: 2021 IEEE High Performance Extreme Computing Conference (HPEC).
2021, pp. 1–7. doi: 10.1109/HPEC49654.2021.9622794.

[9] Norihisa Fujita et al. “CHARM-SYCL & IRIS: A Tool Chain for Performance
Portability on Extremely Heterogeneous Systems”. In: 2024 IEEE 20th Inter-
national Conference on e-Science (e-Science). 2024, pp. 1–10. doi: 10.1109
/e-Science62913.2024.10678717.

[10] Daniel F. Harlacher et al. “Dynamic Load Balancing for Unstructured Meshes
on Space-Filling Curves”. In: 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum. 2012, pp. 1661–
1669. doi: 10.1109/IPDPSW.2012.207.

101

http://github.com/STEllAR-GROUP/hpx
http://dx.doi.org/10.5281/zenodo.33656
https://link.springer.com/rwe/10.1007/978-0-387-09766-4_234
https://link.springer.com/rwe/10.1007/978-0-387-09766-4_234
https://github.com/targetDART/llvm-project
https://github.com/targetDART/llvm-project
https://www.openmp.org/spec-html/5.1/openmpse80.html
https://www.openmp.org/spec-html/5.1/openmpse80.html
https://help.itc.rwth-aachen.de/en/service/rhr4fjjutttf/article/fbd107191cf14c4b8307f44f545cf68a/
https://help.itc.rwth-aachen.de/en/service/rhr4fjjutttf/article/fbd107191cf14c4b8307f44f545cf68a/
https://help.itc.rwth-aachen.de/en/service/rhr4fjjutttf/article/fbd107191cf14c4b8307f44f545cf68a/
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://doi.org/https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/https://doi.org/10.1016/0021-9991(84)90073-1
https://www.sciencedirect.com/science/article/pii/0021999184900731
https://www.sciencedirect.com/science/article/pii/0021999184900731
https://doi.org/10.1109/HPEC49654.2021.9622794
https://doi.org/10.1109/e-Science62913.2024.10678717
https://doi.org/10.1109/e-Science62913.2024.10678717
https://doi.org/10.1109/IPDPSW.2012.207

Bibliography

[11] Yoshua Bengio James Bergstra. “Random Search for Hyper-Parameter Opti-
mization”. In: Journal of Machine Learning Research 13 (2012), pp. 281–305.
url: https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12
a.pdf.

[12] David A. Patterson John L. Hennessy. Computer Architecture. A Quantitative
Approach. Morgan Kaufmann Publishers, 2019, pp. 372–373. isbn: 9780128119051.

[13] Beau Johnston et al. “IRIS: Exploring Performance Scaling of the Intelligent
Runtime System and its Dynamic Scheduling Policies”. In: 2024 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW).
2024, pp. 58–67. doi: 10.1109/IPDPSW63119.2024.00017.

[14] Torben Kalkhof and Andreas Koch. “Speeding-Up LULESH on HPX: Useful
Tricks and Lessons Learned using a Many-Task-Based Approach”. In: SC24-
W: Workshops of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. 2024, pp. 1223–1235. doi: 10.110
9/SCW63240.2024.00164.

[15] Zahra Khatami, Hartmut Kaiser, and J. Ramanujam. “Using HPX and OP2
for Improving Parallel Scaling Performance of Unstructured Grid Applica-
tions”. In: 2016 45th International Conference on Parallel Processing Work-
shops (ICPPW). 2016, pp. 190–199. doi: 10.1109/ICPPW.2016.39.

[16] Zahra Khatami et al. “A Massively Parallel Distributed N-body Application
Implemented with HPX”. In: 2016 7th Workshop on Latest Advances in Scal-
able Algorithms for Large-Scale Systems (ScalA). 2016, pp. 57–64. doi: 10.1
109/ScalA.2016.012.

[17] Jungwon Kim et al. “IRIS: A Portable Runtime System Exploiting Multiple
Heterogeneous Programming Systems”. In: 2021 IEEE High Performance Ex-
treme Computing Conference (HPEC). 2021, pp. 1–8. doi: 10.1109/HPEC496
54.2021.9622873.

[18] Jannis Klinkenberg et al. “CHAMELEON: Reactive Load Balancing for Hy-
brid MPI+OpenMP Task-Parallel Applications”. In: Journal of Parallel and
Distributed Computing 138 (2020), pp. 55–64. issn: 0743-7315. doi: https:
//doi.org/10.1016/j.jpdc.2019.12.005. url: https://www.sciencedir
ect.com/science/article/pii/S0743731519305180.

[19] Het Mankad et al. “A Performance-Portable MultiGPU Implementation of 3D
Euler Equations using ProtoX and IRIS”. In: SC24-W: Workshops of the In-
ternational Conference for High Performance Computing, Networking, Storage
and Analysis. 2024, pp. 1723–1731. doi: 10.1109/SCW63240.2024.00215.

[20] Het Mankad et al. “ProtoX: A First Look”. In: 2023 IEEE High Performance
Extreme Computing Conference (HPEC). 2023, pp. 1–6. doi: 10.1109/HPEC5
8863.2023.10363547.

102

https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://doi.org/10.1109/IPDPSW63119.2024.00017
https://doi.org/10.1109/SCW63240.2024.00164
https://doi.org/10.1109/SCW63240.2024.00164
https://doi.org/10.1109/ICPPW.2016.39
https://doi.org/10.1109/ScalA.2016.012
https://doi.org/10.1109/ScalA.2016.012
https://doi.org/10.1109/HPEC49654.2021.9622873
https://doi.org/10.1109/HPEC49654.2021.9622873
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.12.005
https://www.sciencedirect.com/science/article/pii/S0743731519305180
https://www.sciencedirect.com/science/article/pii/S0743731519305180
https://doi.org/10.1109/SCW63240.2024.00215
https://doi.org/10.1109/HPEC58863.2023.10363547
https://doi.org/10.1109/HPEC58863.2023.10363547

Bibliography

[21] G.R. Mudalige et al. “OP2: An active library framework for solving unstruc-
tured mesh-based applications on multi-core and many-core architectures”. In:
2012 Innovative Parallel Computing (InPar). 2012, pp. 1–12. doi: 10.1109
/InPar.2012.6339594.

[22] Narasinga Rao Miniskar et al. “IRIS-BLAS: Towards a Performance Portable
and Heterogeneous BLAS Library”. In: 2022 IEEE 29th International Con-
ference on High Performance Computing, Data, and Analytics (HiPC). 2022,
pp. 256–261. doi: 10.1109/HiPC56025.2022.00042.

[23] Anne Reinarz et al. “ExaHyPE: An engine for parallel dynamically adaptive
simulations of wave problems”. In: Computer Physics Communications 254
(2020), p. 107251. issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc
.2020.107251. url: https://www.sciencedirect.com/science/article
/pii/S001046552030076X.

[24] Philipp Samfass et al. “Lightweight task offloading exploiting MPI wait times
for parallel adaptive mesh refinement”. In: Concurrency and Computation:
Practice and Experience 32.24 (2020), e5916. doi: https://doi.org/10.100
2/cpe.5916. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002
/cpe.5916. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/c
pe.5916.

[25] Adrian Schmitz et al. “targetDART: Dynamic Migration of OpenMP GPU
Kernels in Heterogeneous Clusters”. In: Submitted to: 31st ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Programming. ACM.
2018.

[26] Christian Siebert and Felix Wolf. “Parallel Sorting with Minimal Data”. In:
Recent Advances in the Message Passing Interface. Ed. by Yiannis Cotronis
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 170–177. isbn:
978-3-642-24449-0.

[27] Ericson Marquiere Reis Silva and Henrique Cota de Freitas. “Task Scheduling
for Autonomous Vehicles with Heterogeneous Processing via Integration of
the CARLA Simulator and StarPU Runtime”. In: 2025 IEEE International
Conference on Consumer Electronics (ICCE). 2025, pp. 1–6. doi: 10.1109
/ICCE63647.2025.10929988.

[28] Mathialakan Thavappiragasam et al. “Addressing Load Imbalance in Bioin-
formatics and Biomedical Applications: Efficient Scheduling across Multiple
GPUs”. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). 2021, pp. 1992–1999. doi: 10.1109/BIBM52615.2021.9669317.

[29] G. Vossen W. Oberschelp. Rechneraufbau und Rechnerstrukturen. 10. Auflage.
Oldenburg Wissenschaftsverlag GmbH, 2006, pp. 328–329. isbn: 3486578499.

[30] Xiaoyang Wang et al. “Dynamic GPU Scheduling With Multi-Resource Aware-
ness and Live Migration Support”. In: IEEE Transactions on Cloud Computing
11.3 (2023), pp. 3153–3167. doi: 10.1109/TCC.2023.3264242.

103

https://doi.org/10.1109/InPar.2012.6339594
https://doi.org/10.1109/InPar.2012.6339594
https://doi.org/10.1109/HiPC56025.2022.00042
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107251
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107251
https://www.sciencedirect.com/science/article/pii/S001046552030076X
https://www.sciencedirect.com/science/article/pii/S001046552030076X
https://doi.org/https://doi.org/10.1002/cpe.5916
https://doi.org/https://doi.org/10.1002/cpe.5916
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5916
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5916
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5916
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5916
https://doi.org/10.1109/ICCE63647.2025.10929988
https://doi.org/10.1109/ICCE63647.2025.10929988
https://doi.org/10.1109/BIBM52615.2021.9669317
https://doi.org/10.1109/TCC.2023.3264242

	Titelseite
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related Works
	3 targetDART and the Underlying Hardware Concepts
	3.1 Memory
	3.1.1 Virtual and Physical Memory
	3.1.2 NUMA nodes

	3.2 TargetDART
	3.2.1 Runtime Support
	3.2.2 Load Balancing
	3.2.3 Hyperparameters

	3.3 Existing Benchmarks
	3.3.1 Weak Scaling
	3.3.2 Overhead Against OpenMP
	3.3.3 Application Induced Imbalance
	3.3.4 Hardware Induced Imbalance
	3.3.5 ExaHyPE Case Study

	4 Benchmarks
	4.1 Setup
	4.1.1 The Base Scenario

	4.2 Use case tests
	4.2.1 Scaling the Load Imbalance
	4.2.2 Overhead of the Host Plugin
	4.2.3 Random Load Imbalances
	4.2.4 Load Imbalances with multiple Nodes
	4.2.5 Scaling the Task size
	4.2.6 Heterogeneous Task sizes
	4.2.7 Delayed Task Generation
	4.2.8 Scaling the Number of Tasks
	4.2.9 Guidelines for Use Cases

	4.3 Testing the Hyperparameterspace
	4.3.1 Pinned Memory
	4.3.2 Thread Placement
	4.3.3 NUMA nodes
	4.3.4 Multiple Executor Threads
	4.3.5 Setting OMP_NUM_TEAMS
	4.3.6 Static Loads
	4.3.7 Different Scheduling Strategies
	4.3.8 Best Case vs. Naive Case vs. Worst Case
	4.3.9 Guidelines for the hyperparameters

	5 Conclusion and further Research
	A Appendix for the Benchmarks
	Bibliography

