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1 | INTRODUCTION

| Mengmeng Zhou'* |

Xiuli Du?> | Pengfei Liu®

Abstract

To overcome the limitations of conventional single-factor analysis, this study pro-
posed a framework for investigating interaction effects of influencing factors on
the resilient modulus (M,) of stabilized aggregate base. First, cross-validation
was utilized to compare the predictive accuracy and generalization capability of
gradient boosting (GB) and random forest (RF) in predicting the M,. The grid
search algorithm was used to optimize hyperparameters. After optimization, the
coefficient of determination for GB reached 0.99 on the training set and 0.96
on the test set, while those for RF were 0.98 and 0.94, respectively. The results
indicated that GB demonstrated higher predictive accuracy for the M;. Finally,
the importance analysis, univariate sensitivity analysis, and bivariate interaction
sensitivity analysis of influencing factors were systematically conducted using
partial dependence plots (PDP) and Shapley additive explanations (SHAP). The
research results showed that the importance of influencing factors on the M;
decreases in the order of maximum dry density to optimum moisture content
ratio, wet-dry cycles (WDC), deviator stress, confining pressure, and ratio of
oxide compounds in the cementitious materials. The bivariate interaction sensi-
tivity analysis of the WDC, deviator stress, confining pressure, and ratio of oxide
compounds in the cementitious materials did not disrupt their single-variable
sensitivity relationships with the M. The variation of the WDC would destroy the
single variable sensitivity relationship between the optimum moisture content
ratio and M.

and material selection, the performance and durability
of asphalt pavement can be ensured (Swarna & Hossain,

The structure composition of asphalt pavement is a multi-
level system, which is primarily constituted by surface
layer, base layer, bottom base layer, and cushion layer
(P. Liu et al., 2023). Each level has its specific function
and requirements. Through reasonable structural design

2023). The stabilized aggregate base of asphalt pavement
refers to the pavement base formed by mixing, spreading
and compacting cementitious material with soil, gravel,
or other aggregates (Kamran et al., 2021; Rust et al., 2022;
Sharma et al., 2024). This base has good stability and
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durability and is an important part of the asphalt pavement
structure. For some highway sections with large traffic vol-
ume and heavy load, the use of high-quality stabilized
aggregate base demonstrates remarkable enhancement in
load-bearing capacity and structural longevity of the road
surface.

Resilient modulus (M,) is a key design parameter in
civil infrastructure systems that quantifies the stiffness of
unbound materials. M, refers to the stress-to-strain ratio
in the phase of elastic deformation of the material, which
is employed for describing the capability of the mate-
rial to resist elastic deformation (Alzubi et al., 2024; A.
Khan et al., 2023). The M, of stabilized aggregate base
is a key index to evaluate its mechanical properties and
deformation characteristics (Arulrajah et al., 2021; Gha-
nizadeh & Rahrovan, 2016; X. Zhang et al., 2023). The
M, of aggregate stabilized base directly influences the
load-bearing capacity and resilience of the pavement. The
M, value at any site is the result of several factors that
interact in multiple ways (Chowdhury, 2021; Jahanshahi
& Ghanizadeh, 2025). To explore the effects stemming
from different factors on the M, of asphalt stabilized base,
the researchers conducted lots of research. Wilde et al.
(2016) proposed to improve the quality of aggregate base
by considering the grading and shape of aggregates and
finally determined an effective method with a gravel ratio
of 1.4. Mizher et al. (2024) conducted unconfined com-
pressive strength tests and monotonic triaxial tests to
evaluate the interaction influence that exerts on asphalt
and rubber particles on the properties of pavement base
materials under certain confining pressures. The study
findings revealed that the increase in the M, caused by 3%-
5% asphalt content was not enough to resist the decrease
in the M, caused by 25%-45% rubber content. Kim et al.
(2014) demonstrated, with the aid of artificial neural net-
work (ANN), that the stress state and physical properties
have a significant impact on the M, of subgrade. Hu et al.
(2023) analyzed the feasibility of using foam asphalt for
cold recovery cement-stabilized aggregate base by using
compressive elastic modulus test, splitting strength test,
and dynamic modulus test. The research results indi-
cated that the recycled stabilized aggregate base can be
used for road base construction. In the last few years,
machine learning methodologies have witnessed signif-
icant advancements, providing new avenues for solving
complex problems. In the domain of road engineering,
researchers typically adopt laboratory testing methods to
explore complex issues. However, laboratory testing meth-
ods have limitations such as long test cycles and high
costs. To address these limitations, researchers have begun
investigating the application of machine learning to deal
with these research challenges. Tkeagwuani and Nwonu
(2022) demonstrated the prediction accuracy of machine
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learning models by comparing their performance with
that of traditional prediction models in predicting the M,
of highway base courses. Heidarabadizadeh et al. (2021)
constructed a support vector machine (SVM) hybridized
with the colliding bodies optimization algorithm for pre-
dicting the M, of road materials and demonstrated the
predictive accuracy of this model through model compar-
ison. Shah et al. (2024) constructed predictive models for
the M, of pavement base using machine learning models
such as SVMs, neural networks, and decision trees and
employed Bayesian to achieve hyperparameter tuning for
the models. The research results showed the optimized
least squares boosting demonstrated the best predictive
performance. K. Khan et al. (2022) developed ANN and
gene expression programming (GEP) predictive models
for the M, of stabilized aggregate base. The accuracy of
models was evaluated using coefficient of determination
(R?) as the performance metric, and the results demon-
strated that the ANN significantly outperformed the GEP
in predicting the M,. Ikeagwuani et al. (2022) utilized the
long-term pavement performance dataset to develop gradi-
ent boosting (GB), adaptive neuro-fuzzy inference system,
and ANN for predicting the M, of subgrade soils. All
three machine learning methods achieved high predic-
tion accuracy with R? values exceeding 0.9, demonstrating
the reliability of the constructed models. Maalouf et al.
(2012) used SVM to analyze the behavior of the stabilized
foundation layer subjected to alternating dry and wet con-
ditions and evaluated the influence of various factors on
the M, of stabilized aggregate base. The research results
showed that SVM could accurately assess the M,, and
the dry and wet cycles had a certain influence on the M,
of stabilized aggregate base. Although some researchers
have recognized the significance of machine learning in
evaluating the importance and sensitivity of influencing
factors for the M,, the existing research has limitations
such as low model prediction accuracy and only analyz-
ing the sensitivity of a single factor without considering the
influence patterns of the interaction between variables on
the M.

Traditional analytical methods can only analyze the
linear interactive effects between influencing factors and
response indicators, whereas non-linear interactive rela-
tionships commonly exist between the M, and the influ-
encing factors. Forcing a linear model to fit such rela-
tionships would severely distort the actual interactions.
To uncover the internal complex relationships of how
different factors influence the M, of stabilized aggre-
gate base and to avoid the limitations of single-factor
analysis, this study developed a novel framework for
analyzing the interactive influence patterns of various
influencing factors on the M, of stabilized aggregate base,
based on methods including GB, random forest (RF),
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FIGURE 1 Research flow chart. RF, random forest.

cross-validation, PDP, SHAP, and so forth. First, the pre-
diction accuracy and generalization ability of RF and GB
for the M, of stabilized aggregate base were compared
through cross-validation. Then the hyperparameter of RF
and GB were tuned using a grid search algorithm. Finally,
based on the model with superior prediction performance,
the analysis was conducted to assess the importance, indi-
vidual sensitivity, and bi-variable interaction sensitivity
of different influencing factors on the M, of stabilized
aggregate base. Figure 1 displays the specific research
ideas.

2 | RESEARCH METHODS

2.1 | Description of the input variables

The input variables are the ratio of oxide compounds
in the cementitious materials (CSAFR), wet—dry cycles
(WDC), the ratio of maximum dry density to the opti-
mum moisture content (DMR), deviator stress (g4) and
confining pressure (o3), and the output variable is M,.
CSAFR directly affects the hydration reaction, influenc-
ing the cementation strength and stiffness of the material,

thereby impacting the M, of stabilized aggregate base.
WDC cause repeated freezing expansion and thawing con-
traction of internal moisture in the material, leading to
structural damage. This reduces the stiffness and perfor-
mance of the material. In cold regions, WDC is one of
the main influencing factors for the performance of stabi-
lized aggregate base. The maximum dry density reflects the
compactness of the material, directly affecting its strength
and stiffness. The optimum moisture content refers to the
water content at which maximum compaction is achieved.
The DMR can comprehensively characterize the influence
of compaction quality on the M, of stabilized aggregate
base. o, reflects shear loading, directly influencing the
stress—strain behavior of material. It can be used to sim-
ulate real-world traffic load conditions on the stabilized
aggregate base. o5 represents the simulation of lateral con-
finement on the material. It can be used to model the
pressure from overlying pavement layers or surrounding
soil on the stabilized aggregate base. The selection of the
five factors (CSAFR, WDC, DMR, o4, and o3) achieves
multi-scale coverage of influencing factors from both
macroscopic and microscopic perspectives. It encompasses
chemical-level influences (CSAFR), pore structure-level
influences (DMR), mechanical response-level influences
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FIGURE 2 Violin diagram of variables.

(04 and o3), and environmental effect-level influences
(WDC). This effectively avoids the singularity in the selec-
tion of influencing factors for stabilized aggregate base.
The 704 datasets were collected from the literature pub-
lished by the Khoury research group (Khoury & Zaman,
2007; Maalouf et al., 2012). They have conducted sys-
tematic research in the field of stabilizing aggregate base
for many years and published multiple research achieve-
ments. In recent years, other researchers have also carried
out corresponding studies based on their experimental
data, with the research findings published in authoritative
journals within the field (Kaloop et al., 2019; A. Khan et al.,
2023). However, the aforementioned studies did not delve
into the research on how the interactive effects among
influencing factors impact the M, of stabilized aggregate
base. This study primarily utilizes the experimental data
from Khoury research group to analyze this research gap.
Before establishing a regression prediction model, statis-
tical analysis of datasets is an indispensable step. It helps
verify the precision and reliability of the datasets and pro-
vides strong support for the construction of the model. By
conducting descriptive statistical analysis, researchers can
gain insights into the distribution patterns of the datasets.
Violin diagram is an important way to show the distribu-
tion of data. The violin diagram of the data distribution
after standardizing is displayed in Figure 2. The findings
in Figure 2 show that the data distribution of WDC, DMR,
03, and o, among the input variables is relatively uniform.
To further understand the data of variables, this study ana-
lyzed the maximum, minimum, mean value, and other
mathematical statistical indicators of input variables. The
mathematical statistical analysis of the input variables is
displayed in Table 1. As revealed in Table 1, the coverage of
CSAFR, WDC, DMR, o3, and o, is extensive, with a rela-
tively small difference between the median and the mean,
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and the standard deviation is also small. These results
demonstrate that the input variables have a wide cover-
age and a reasonable distribution, proving the reasonable
of the datasets used for evaluating the M,.

2.2 | Correlation analysis of the input
variables

Correlation analysis is a quantitative technique for evaluat-
ing the magnitude and orientation of associations among
variables. It helps understand whether there is a certain
connection between variables and the extent of the connec-
tion. Correlation analysis can help recognize collinearity
issues among input variables (Wang et al., 2023; H. Zhang
et al., 2022). If there exists a high degree of correlation
between input variables, it may lead to unstable estimation
results of the model or produce misleading conclusions.
Through correlation analysis, these problems can be found
and dealt with in time to ensure the robustness of the
model. Figure 3 displays the Pearson correlation analy-
sis findings of the input variables. There exists a negative
correlation between WDC and CSAFR, WDC and DMR,
and the correlation coefficients are —0.063 and —0.0052,
respectively. There is also a negative correlation between
o, and CSAFR, o, and DMR, with correlation coefficients
of —0.019 and —0.021, respectively. All other input vari-
ables are positively correlated. The correlation coefficients
between WDC and o3, WDC and o, are 0.0059 and 0.015,
respectively. The correlation coefficient between CSAFR
and o3 is 0.015. CSAFR and DMR have the correlational
statistics of —0.11, which is the largest correlation. On the
whole, the correlations between the input variables are
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TABLE 1 The description statistics of the input variables.
Wet-dry cycles
(cycles) (%)
Maximum 30.00 0.51
Minimum 0.00 0.11
Median 8.00 0.13
Mean value 12.80 0.25
Standard deviation 11.16 0.18

small. The above analysis demonstrates that the influenc-
ing factors employed in this research to analyze the M, of
the stabilized aggregate base exhibit no strong correlation
with one another. Consequently, the phenomenon of mul-
ticollinearity, which undermines the accuracy of model
evaluation, will be absent.

2.3 | Machine learning models

231 | RF

As a decision tree-based algorithm, RF introduces random
selection attributes into the training process by leveraging
Bagging technology (Bui et al., 2022; Ribeiro et al., 2023;
Zhu et al., 2025). The characteristics of RF are direct prin-
ciple, simple implementation, and high computational
efficiency. It has shown excellent performance in small-
and medium-sized datasets (hundreds of datasets; J. D.
Huang et al., 2022; Qi et al., 2022; J. F. Zhang et al,,
2025). The difference between RF and Bagging is that RF
constructs decision trees by randomly selecting feature
sets. First, establish a dataset D, D = {X;,Y;},X; € Rk, Y €
{1,2,3,...C}. Construct several decision trees randomly,
and use the constructed decision trees to shape into the
RF. The outcomes estimated by every single decision tree
are summarized, and the ultimate prediction outputs are
obtained by voting or averaging. RF improves the stability
and accuracy through lowering the noise and sensitivity of
the data (Xiao et al., 2024). The steps of RF construction
are as follows.

1. Randomly sample n data points from the dataset (with
replacement), and randomly choose k features along
with the best feature node to execute splitting.

2. The newly formed collection of samples containing
n data points and k features. It has a distribution of
probabilities of Gini for node n, denoted as Is;y,;(n)
= ZIk{:l pk(1—p)=1- ZIk{:l pi°. Classification and
Regression Trees (CART) is a binary tree of k = 2 and is
represented by I5;,:(n) = 2p(1 — p).

CSAFR

59 WILEY-=

DMR g3 g,
(%kN/m?3) (kPa) (kPa)
4.63 138.00 277.00
2.34 0.00 69.00
3.37 69.00 138.00
3.27 70.13 171.92
0.71 48.86 71.73

3. Regarding attribute A, compute
ID

Gini(D, A) = FlllGini(Dl) + %Gini(Dz).

4. Select the best features and split nodes. Select a fea-
ture based on the principle of maximizing Gini, which
will divide the values on the point into left and right
offspring nodes.

5. Repeat Steps (1) to (4) to form RF.

Gini(D, A),

In this study, RF was used to achieve regression pre-
diction on the M, of stabilized aggregate base, and grid
search algorithm and cross-validation were used to achieve
hyperparameter optimization and prediction accuracy ver-
ification.

232 | GB

GB is a prediction method in which a strong prediction
model is constructed by combining multiple weak learn-
ers (Berangi et al., 2025; R. Huang et al., 2024). GB has
demonstrated outstanding prediction results in datasets of
less than a thousand groups due to its excellent perfor-
mance (Y. M. Huang et al., 2023; Wu et al., 2023; Zhao
et al., 2025). GB can learn models from structured datasets
while maintaining high model performance, thus estab-
lishing its dominant position in the domain of predictive
modeling (Khattak et al., 2023; Liang et al., 2022). In each
iteration learning process, the algorithm can evaluate the
deviation between the actual value and the predicted value
of each sample and train a new decision tree to fit the resid-
ual with the training sample. Significantly, the research
demonstrates that GB uses gradient information at each
iteration to guide the construction of weak learners. Specif-
ically, it computes the gradient of the loss function defined
with respect to the parameters of the model and uses this
gradient to guide the training process of the weak learners.
In this way, GB can gradually optimize the performance
of the model and eventually get a strong learner with good
performance. Each iteration will improve the model on the
basis of the results of the last iteration so as to minimize
the prediction discrepancy of the model and build a model
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with higher precision. The training sample set is denoted
as D.

D= {(xl’yl)a (x2’y2)’---(xmaym)} (1)

In the formula, x; € X C R",y; € Y C R, X represents
the input space, Y is the output space. Suppose T repre-
sents the maximum number of iterations, L(y, f(x)) is the
loss function, f(x) is the final output of the strong learner.
The GB process is as follows.

1. Initialization
m
fo(x) = argmin Y’ L(y;,c) 2
i=1

2. Tteration

where c represents the minimum value reached by the loss
function. Thus, a tree having only a root node is obtained.
Calculate the direction opposite to the gradient of the
loss function for sample i, and i = 1,2, ... m.
A
F)=f11(x)
where r,; is the magnitude of the negative gradient in the
present model, taking it as a surrogate for the residual.
For (x;,r;),i=1,2,..m, generate a CART-based
regression model. Through estimating the residual approx-
imation, the tth regression tree is generated. Terminal
node partitions of the regression tree is R;, J=12,..J.
Calculate the best fit.

¢,j =argmin D, Ly, fia(x) +¢) )

Xi€ERy j

J
fix) = fia() + Y e jI(x € Ry ) 5)
j=1

In the formula, I(x € R; ;) represents the indicator func-
tion. If x € R;; returns 1, otherwise returns 0. Get the
regression tree.

This study proposed to use the cross-validation and grid
search algorithm to evaluate the prediction accuracy and
optimize the hyperparameters of GB and to achieve an
interpretable analysis of the association between affect-
ing variables and the M, of stabilized aggregate base. This
study proposed to introduce PDP and SHAP into GB to
realize the importance and sensitivity analysis between
influencing factors and the M, of stabilized aggregate base.

@ GUO ET AL.

K-fold cross-validation

233 |

K-fold cross-validation is a generally used technique for
evaluating machine learning model, which is mainly
applied to measuring the generalization ability and accu-
racy of the model (Jeong et al., 2022; K. Liu et al., 2022).
The principle of K-fold cross-validation operationalizes by
evenly randomly and evenly divides the training set into k
parts, and then k-1 subsets are designated as training data
to train the model, with the remaining subset reserved for
validation to realize the verification of the model (Mathew
et al., 2023). Finally, the original test set is applied to
evaluating the effectiveness of the model in achieving its
objectives again, and the results are used as the ultimate
results of the model. This method makes full use of all
training data, avoiding the deviation of model performance
evaluation caused by improper data partitioning. Through
multiple iterations and averaging, it effectively reduces
the randomness of the results and improves the accuracy
and generalization. K-fold cross-validation has the follow-
ing advantages: (1) It reduces the performance fluctuation
caused by different data splits, by training and validating
multiple times. (2) Every sample is used for both train-
ing and validation, avoiding data wastage. (3) In cases of
limited data, K-fold cross-validation can provide a more
reliable performance evaluation.

This statistical validation technique is a simple and
effective approach to assessing predictive performance
that can provide more reliable performance estimates,
especially for small and medium-sized datasets. With mul-
tiple training and validation, it can reduce the variance
of model evaluation and help select more robust models.
K = 5 represents a commonly adopted value for K in K-
fold cross-validation (Fan et al., 2025; Yu et al., 2021). To
enhance the accuracy of the validation results, this study
additionally includes cross-validation outcomes for K = 4
and K = 6. The reliability of these two K values has also
been proven (Fernandes Filho et al., 2023; Y. Liu et al,,
2024; Rafie et al., 2023).

2.3.4 | Grid search algorithm

Grid search algorithm is a hyperparameter optimization
method that identifies the optimal parameters configura-
tion by exhaustively evaluating all possible combinations
of hyperparameters. The principle of the grid search
algorithm is to first define a list of candidate values
for each hyperparameter that requires tuning, and then
compute all possible combinations of these parameters.
The best-performing parameters combination is ultimately
selected based on the model evaluation results. Grid search
algorithm has the advantages of simplicity and ease of
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implementation, applicability to a wide range of models,
and comprehensive coverage in hyperparameter explo-
ration.

In this study, the grid search algorithm was employed to
optimize the hyperparameters of GB and RF. For GB, the
optimized hyperparameters included max_depth, subsam-
ple, learning rate, and n_estimators. The search range for
max_depth was set to (4, 10). For subsample, the candidate
values were [0.5, 0.625, 0.75, 0.875, 1.0]. The search space
for learning_rate included [0.05, 0.1, 0.15, 0.2, 0.25, 0.3],
while n_estimators was explored across [100, 500, 1000,
1500, 2000]. For the RF, the optimized hyperparameters
were max_depth and n_estimators. Specifically, the search
range for max_depth was set to (4, 10), while n_estimators
was explored across the candidate values [100, 500, 1000,
1500, 2000].

2.3.,5 | SHAP

SHAP is a method designed to quantify the contribution
of each feature to the predictive output of machine learn-
ing model, providing explanations for the decisions of the
model. This method is grounded in the concept of Shap-
ley Value from game theory, decomposing the predictions
of complex black-box models into individual contribution
values for each feature, thereby enabling interpretability
analysis of the models. The calculation formula for the
SHAP values is as follows.

ISI'ANT — 15|

Pi = NI
SCN\{i}

- 1) .
(fSuih - f(s) (6

In the formula, N represents the set of all features. S iter-
ates over all subsets of features that do not contain feature
i. INI denotes the total number of features. |S| indicates the
size of subset S. %ASH)' is the weight factor, account-
ing for the probability of subset S appearing in all possible
permutations. f(x) represents the predicted value. f(SuU
{i}) — f(S) signifies the marginal contribution of feature i
to subset S.

The calculation formula of SHAP values considers the
marginal contribution brought by each feature when it
is added to all possible combinations of features. Then,
a weighting factor determined by the number of feature
combinations is applied to compute the weighted average
of marginal contributions. This ensures that SHAP values
fairly allocate the total predictive contribution across all
features. This study utilized SHAP to decompose the pre-
dictions of the M, of stabilized aggregate base layers into
feature contributions, thereby enabling interpretability
analysis of the black-box predictive model.
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2.3.6 | PDP

The core idea of PDP is to illustrate the marginal effect of
one or two features on the predictive output of machine
learning model. It reveals the relationship between fea-
tures and predicted values by fixing the target feature and
marginalizing the effects of other features. Its core assump-
tion is that features are mutually independent, meaning
the values of other features remain unaffected by the tar-
get feature during computation. This method is suitable
for interpreting both linear and complex nonlinear rela-
tionships among features. As the model interpretability
tool, PDP offers core advantages such as intuitiveness and
global scope, but it also has limitations, including the
masking of individual differences by averaged effects and
difficulties in capturing high-dimensional interactions.

In this study, PDPs were employed to systematically
demonstrate how model interpretability tools can eluci-
date the influence patterns of different features on the M,
of stabilized aggregate base. Additionally, the interactive
effects between two features on the M, were visualized.

2.3.7 | Optimized RF and GB

To achieve higher prediction fidelity of RF and GB on
the M, of stabilized aggregate base, this study introduced
cross-validation to evaluate the accuracy and grid search
algorithm to perform hyperparameter optimization of RF
and GB. SHAP is a method used to explain the results gen-
erated by a machine learning model. SHAP offers a unified
approach to interpreting the outputs of any machine learn-
ing model, applicable to regression, classification, and
other tasks. SHAP is a powerful tool for model interpreta-
tion that aids in understanding the prediction behavior of
complex models. This method is commonly applied in the
fields of machine learning and data science. SHAP not only
analyzes the average impact on the output magnitude but
also further reveals the impact of all samples on the output.
By examining the impact of each sample on the output, a
clear analysis of how individual samples contribute to the
output can be achieved. PDP serves as a graphical method
for explaining the results made by machine learning mod-
els. It demonstrates the dependency relationship between
the target variable and one or more features, while keeping
other features constant. PDP aids in understanding how
the model makes predictions based on specific features and
is applicable to both regression and classification models.
PDP is an effective model interpretation tool that helps
comprehend the relationship between features and predic-
tions, and the technique finds frequent employment across
areas like data analysis and algorithmic modeling. By visu-
alizing the marginal effect of features on predictions, PDP
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provides an intuitive method for model interpretation.
This study proposes the introduction of SHAP and PDP
to achieve importance analysis, single-variable sensitivity
analysis, and bivariate interaction sensitivity analysis of
input variables on the output.

3 | RESULT AND ANALYSIS

3.1 | K-fold cross-validation results

R? is a core metric in statistics and predictive models used
to measure the degree of agreement between the predicted
results and the actual observed data. Its essence is to eval-
uate the ability of model to uncover data patterns or its
fitting effectiveness. In this study, R? is used to measure
the fitting effectiveness between the predicted values and
the actual values. The closer R? is to 1, the better the fit-
ting effectiveness. Conversely, the closer it is to 0, the worse
the fitting effectiveness. Mean absolute percentage error
(MAPE) is a commonly used relative error evaluation met-
ric in predictive models, and its core function is to quantify
the deviation between the predicted values and the actual
values. The essence of MAPE is to calculate the arithmetic
mean of the absolute percentage errors for each sample,
thereby eliminating the randomness of individual sample
errors and reflecting the overall relative error level of the
model. A smaller MAPE indicates a smaller relative devi-
ation between the predicted values and the actual values,
implying higher prediction accuracy of the model. R?> was
selected as the prediction accuracy evaluation metric, and
MAPE was selected as the prediction error evaluation met-
ric for the models in this study. The calculation formulas
for R?> and MAPE are as follows.

nolyl -y
MAPE=12|’ ‘l| (7)
i=1 Vi
> G-y
" iy
Z[=1(yi_y)

In the formula, n represents the sample size, y{ stands
for the predicted value, y; is the actual value, and y stands
for the mean of the actual values.

In this study, prediction accuracy parameters (R?) and
error parameters (MAPE) were selected to evaluate the
prediction effect on the M, of RF and GB on stabilized
aggregate base.

The K-fold cross-validation (K = four, five, and six)
results of RF and GB are displayed in Tables 2-4. The
data in the tables show that the results of GB verification
for four-fold cross-validation, five-fold cross-validation,

@ GUO ET AL.

and six-fold cross-validation are all higher than 0.97,
and MAPE are lower than 0.07. The four-fold cross-
validation, five-fold cross-validation, and six-fold cross-
validation results of RF are all higher than 0.91, and MAPE
are lower than 0.15. In cross-validation, the average R? val-
ues of GB are 0.974, 0.972, and 0.973 and that of RF are
0.920, 0.914, and 0.925. For mean MAPE, the average val-
ues of GB are 0.059, 0.062, and 0.058. The average values
of RF are 0.137, 0.143, and 0.130. In cross-validation, GB
demonstrated a higher R? and a lower MAPE than RF. The
above analysis proves that RF and GB have excellent per-
formance in evaluating the M, of stabilized aggregate base,
and the models have strong robustness and generalization
ability. In contrast, GB has a higher prediction accuracy
and stability for the M, than RF.

3.2 | Prediction accuracy analysis

To further improve the accuracy of RF and GB in evaluat-
ing the M, of stabilized aggregate base, this study applied
the grid search algorithm to adjust the hyperparameters of
RF and GB, and then used the optimized RF and GB to
evaluate the M, of stabilized aggregate base. The predictive
effect of RF and GB on the M, of stabilized aggregate base
is shown in Figure 4. Model outputs for the M, using GB
align nearly perfectly with observed values in the training
set, achieving an R? value approaching unity, with only a
few scattered points deviating from the line of R> = 1. Com-
pared to GB, RF exhibits poorer prediction performance on
the training set, with a deviation between the predicted and
actual values and the perfect fit curve (R?> =1). The R? value
for RF is 0.98. In the test set, GB also demonstrates supe-
rior prediction performance for the M,, with R? values of
0.96. Compared to GB, the prediction effect of RF is poorer,
with R? values between predicted and actual values in the
test set being 0.94. The aforementioned analysis demon-
strates that among the optimized RF and GB, GB exhibits
superior prediction accuracy for the M;, compared to RF.

3.3 | Importance and sensitivity analysis

3.3.1 | Importance analysis

This study utilized SHAP to explain the contribution of
different input variables to the M,. Figure 5 presents
the analysis results of the importance of influencing fac-
tors on the M;. The vertical axis signifies the influencing
factors, while the horizontal axis represents the mean
SHAP values in Figure 5. Figure 5 indicates that the impor-
tance of the influencing factors decreases in the order of
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TABLE 2 The outcomes of four-fold cross-validation.
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Repetition Mean absolute per-
Model number R? Mean value centage error (MAPE) Mean value
Random forest 1 0.924 0.920 0.136 0.137
(RF) 2 0.918 0.139
3 0.920 0.137
4 0.919 0.136
Gradient boosting 1 0.975 0.974 0.059 0.059
(GB) 2 0.972 0.060
3 0.974 0.058
4 0.975 0.059
TABLE 3 The outcomes of five-fold cross-validation. 10000
Fitti
Repetition Mean Mean 9000 - po_g 919 e
Model number R? value MAPE value 2000 '
RF 1 0.914 0.914 0.145 0.143
~ 7000 |
2 0.918 0.138 ‘f
3 0.915 0.142 S 6000
4 0.912 0.147 sF 5000 |
3
5 0.910 0.141 S 4000 |
GB 1 0973 0972  0.060  0.062 B 3000
-y
2 0.971 0.061
2000
3 0.971 0.065
1000
4 0.973 0.060
0 L 1 n 1 L 1 1 1 " 1 1 1 n 1 n 1 n 1 n
5 0.971 0.062 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TABLE 4 The outcomes of six-fold cross-validation.

Repetition Mean Mean
Model number R? value MAPE value
RF 1 0.926 0.925 0.132 0.130

2 0.925 0.130

3 0.926 0.131

4 0.925 0.129

5 0.923 0.130

6 0.925 0.130
GB 1 0974 0973 0.058 0.058

2 0.973 0.059

3 0.973 0.059

4 0.974 0.057

5 0.973 0.059

6 0.973 0.059

DMR, WDC, g4, o3 and CSAFR (A. Khan et al., 2023).
DMR has the utmost importance to the M,, significantly
outpacing all other affecting variables. CSAFR has the
least impact on the M,, with its average SHAP value being
roughly only one-tenth of that associated with the average

Measured M, (MPa)
(a) Training set of GB
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Measured M, (MPa)
(b) Training set of RF

FIGURE 4 The fitting effect of the predicted and actual
values. GB, gradient boosting; RF, random forest.

SHAP value of DMR. Although the importance analysis
can explore the importance of influencing factors to the
M,, it cannot be clear the change rule of the M, with the
change of influencing factors.
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FIGURE 5 Results of importance analysis. SHAP, Shapley

additive explanations.

3.3.2 | Univariate sensitivity analysis

PDP was used to further analyze the sensitivity of different
input variables to the M,. Univariate sensitivity analysis
refers to the process of analyzing the individual impact
of a single independent factor on the M, while keeping
other factors constant. Its physical significance lies in

@ GUO ET AL.

identifying key influencing factors, revealing the linear
or nonlinear relationships between them and M,, and
providing guidance for the optimal design of stabilized
aggregate base. Figure 6a shows that with the increase
of DMR, M, presents a trend of gradual increase (Hei-
darabadizadeh et al., 2021). When DMR is around the
range of 0-2.7%kN/m?3, the increasing trend of DMR has
a significant impact on the increase of the M,. when
DMR changes around the range of 2.7-4.2%kN/m?, the
positive correlation effect on the M, is relatively small.
When DMR exceeds 4.2%kN/m?, its significant influence
on the M, reappears. The physical reasons for the above
phenomenon are as follows. When the DMR is relatively
small, the material exists in a relatively loose state. As the
DMR increases, aggregate particles undergo reorganiza-
tion during compaction, with smaller particles filling the
voids between larger ones, thereby forming a denser skele-
tal structure. The reduction in porosity directly leads to
an increase in material stiffness, resulting in a significant
rise in the M,. Figure 6b shows that WDC is significantly
negatively correlated with the M,. This is because during
the dry-wet cycle, the base material may experience
volume change and stress concentration, resulting in the
destruction of the internal structure and the formation of
micro-cracks, which will reduce the stiffness and bearing
capacity of the base, thus showing a decrease in the
M,. Figure 6¢ indicates that as o4 increases, there is a
gradual increase trend of the M, (Heidarabadizadeh et al.,
2021). Furthermore, when o, reaches around 70 kPa, the
increasing trend of the M, becomes more significant. The
information in Figure 6d suggests that the influence pat-
tern of o3 on the M, exhibits a high degree of consistency
with the influence pattern of o4 on the M,. Both show an
increase in the M, as the influencing factor increases, and
when them reach around 70 kPa, this positive correlation
becomes even more pronounced. Under low o4 and o3,
aggregate particles remain loosely arranged with limited
contact points between them. Constrained by interparticle
friction, the M, increases only gradually as o4 and o;
rise. However, once o, and o3 exceed 70 kPa, partial
particle crushing occurs, generating finer fragments that
fill the voids. This leads to a denser skeletal structure,
and the positive correlation between o, and Mr, o3 and
Mr become more pronounced. Figure 6e manifests that
when the CSAFR is low, insufficient hydration occurs,
leading to localized enrichment of oxides on aggregate
surfaces. This prevents the formation of a continuous
cementitious layer, impeding interparticle contact friction
and reducing material stiffness. Consequently, the M,
decreases as CSAFR increases. However, when CSAFR
reaches approximately 0.2%, the quantity and quality
of hydration products improve significantly, forming a
dense cementitious—aggregate structure. This enhances
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FIGURE 6 Univariate sensitivity analysis.

interparticle bonding strength and stress transfer effi-
ciency, causing M, to increase with further rises in CSAFR.

333 |
analysis

Bivariate interaction sensitivity

Bivariate interactive sensitivity analysis refers to selecting
two variables from numerous uncertain factors and
analyzing the degree of influence and sensitivity of
these two variables on the output indicators when they
change simultaneously. Its physical significance lies in
uncovering the synergistic or antagonistic effects among
influencing factors, thereby guiding the optimal design of
stabilized aggregate base in complex environments where
two factors need to be considered concurrently. As shown
in Figure 7a, the increase of DMR has little impact on
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the positive correlation between WDC and M,. However,
when WDC is in the range of about 15 cycles to 21 cycles
and 2 cycles to 6 cycles, with the increase of DMR, M,
exhibits a dynamic pattern characterized by an initial rise,
a decline ensued after the increase, and then a subsequent
resurgence, which is inconsistent with the trend of the M,
increasing with the increase of DMR when considering the
single influence factor of DMR. The reasons for the cause
of this phenomenon are likely that WDC significantly alter
the microstructural and hydro-mechanical interactions
within stabilized aggregate bases, thereby affecting the
relationship between the DMR and the M,. Itindicates that
the interaction between WDC and DMR affects the impact
of DMR on the M, when only considering DMR as a single
influencing factor. Figure 7b shows the interaction influ-
ence rule of DMR and o, on the M,. The change of DMR
has little influence on the positive correlation between o,
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FIGURE 7 Bivariate interaction sensitivity analysis.

and M;. When o, is more than about 125 kPa and less than
250 kPa, the change of o4 has no influence on the positive
correlation between DMR and M,. However, when oy is
more than about 250 kPa or less than about 125 kPa, M,
increases first, subsequently undergoes a decline, followed
by a resurgence as the DMR increases.But the abnormal

state is very slight. Figure 7c shows the interaction influ-
ence rule of DMR and o5 on the Mr. This influence pattern
is quite similar to that of the interaction influence rule of
DMR and o4 on the M,. DMR is essentially determined
by the forming state of materials, and since o, and o3 rep-
resent external forces, DMR will generally not affect the
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relationship between o, and M,, o3 and M,. Figure 7d
presents the results of the interaction between DMR
and CSAFR on the Mr. When DMR is less than approx-
imately 2.7%kN/m? or greater than 3.7%kN/m?, there is
a slight increasing trend in the M, with the increase in
CSAFR. However, when DMR falls within the range of
approximately 2.7 to 3.7 kN/m?, the correlation between
CSAFR and M, disappears. This state likely arises due
to the interaction between DMR and CSAFR, which
affects the correlation between CSAFR and M,. The
sensitivity relationship between DMR and M, appears
to be unaffected by the interaction between DMR and
CSAFR. Figure 7e-h depicts the sensitivity relationships
of M, to the interactions between WDC and g4, WDC and
03, WDC and CSAFR, o3 and gy, respectively. It can be
observed from the figures that the interactions between
them have little impact on their individual sensitivity
relationships with M,. Figure 7i,j shows the interaction
sensitivity relationship of o, and CSAFR, o3 and CSAFR
to M;. Since the sensitivity curves of M, to o, and o3 are
relatively similar, the interaction influence rules of o, and
CSAFR, o3 and CSAFR on M, also show a high consis-
tency. With the change of CSAFR, the positive correlation
between o, and o3 on M, basically does not change.
With the change of o, and o3, the sensitivity relationship
between CSAFR and M, shows an abnormal point at
about 0.2%. The above analysis proves that the interaction
between o, and CSAFR, o3 and CSAFR basically does
not affect the single sensitivity relationship between them
and M;.

4 | CONCLUSION

In practical applications, the M, of stabilized aggregate
base is often affected by many influencing factors, and
there may be complex interaction between these factors.
Sensitivity analysis of the interaction among variables that
affect the M, in stabilized aggregate bases can reveal how
these variables work together to influence M, by consid-
ering changes in multiple variables simultaneously. This
analytical process facilitates a more profound compre-
hension of the complexity and dynamics of the M, in
stabilized aggregate bases. To elucidate the impact pat-
terns of interactive effects among influential factors on
the M, of stabilized aggregate base, this study first estab-
lished a regression prediction model for the M, of stabilized
aggregate base using the machine learning and improved
the prediction accuracy of the models through hyper-
parameter tuning. Then, based on the model with high
prediction accuracy, the importance analysis, single sensi-
tivity analysis and bivariate interaction sensitivity analysis
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were analyzed. The primary findings of this investigation
are encapsulated as follows.

1. Prediction models for the M, of stabilized aggregate
base were developed leveraging RF and GB. Addition-
ally, the accuracy of these models was evaluated using
cross-validation. The results of cross-validation show
that GB has better performance in predicting the M,
than RF. The R? of the cross-validation of GB are greater
than 0.97, while that of RF are only around 0.91.

2. To improve the predictive accuracy of RF and GB for
M,, hyperparameter optimization was performed using
the grid search algorithm. Both RF and GB optimized
by grid search algorithm led to a substantial enhance-
ment in the precision of the predictions for the M, of
stabilized aggregate bases. The R? for GB in the train-
ing set and test set are 0.99 and 0.96, while the R? for RF
in the training set and test set are 0.98 and 0.94, respec-
tively. Compared to the two models, GB has an elevated
level of predictive accuracy for the M, of the stabilized
aggregate base.

3. Based on the GB demonstrating superior predictive per-
formance for M,, a framework integrating SHAP for
feature importance analysis and PDP for sensitivity
assessment was constructed. The importance analysis
indicated that DMR is the most significant indicator for
the M;, with a much greater importance than the other
four influencing factors. CSAFR has the least impor-
tance for the M. DMR, 0,4, and o5 all have demonstrated
a notably discernible positive association with the M,,
and the degree of influence of DMR on the M, is
about eight times greater than that of o4 and o3. As
WDC increases, M, shows a decreasing trend, and the
sensitivity curve between them is close to a smooth
curve, indicating that M, decreases regularly with the
increase of WDC. As CSAFR increases, M, exhibits a
phenomenon of first decreasing and then increasing.

4. Based on the pre-trained GB and PDP, a research
framework was established to investigate the inter-
action effects among influential factors on M,. PDP
was used to realize the bivariate interaction sensitiv-
ity analysis of the influential factors. The bivariate
interaction sensitivity analysis indicates that under the
pairwise interactive effects of the four influencing fac-
tors, namely, WDC, o,, 03, and CSAFR, the sensitivity
relationship between each single factor and M, is basi-
cally not disrupted. However, changes in WDC have a
certain disruptive effect on the sensitivity relationship
between DMR and Mr. The changes in o4 and o3 also
have a certain disruptive effect on the negative correla-
tion between DMR and M,, and the destructive patterns
are similar and both very small.
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This research provides an approach to understanding
the relationships between different affecting variables and
the M, of stabilized aggregate base, enabling a more
effective hybrid design process for more durable road
infrastructure. However, this study only considered five
influencing factors, which is relatively limited in scope.
Moreover, it could only analyze the sensitivity of single
variables and the interactive effects of bivariate inter-
actions, without the capability to explore the influence
patterns of interactions among a larger number of vari-
ables. Itisrecommended that future studies should include
publicly available datasets collected from different geo-
graphical regions to validate, evaluate, and expand the
universality of the model. Researchers can also inte-
grate mechanical models (such as finite element simu-
lations) with machine learning models to enhance the
interpretability and physical consistency of the models.
Additionally, they can consider incorporating more fac-
tors, including gradation, curing age, and dynamic load
frequency, to analyze the influence patterns of a broader
range of factors on the M, of stabilized aggregate base.
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