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SUMMARY

Battery state-of-health (SOH) estimation is vital for the safety of energy storage systems, yet full-life-cycle 

data curation remains resource intensive. Here, we present an empirical examination of data sufficiency 

(DS) to identify the data amount needed for SOH estimation algorithms with anticipated predictability and 

transferability. DS is defined as a linear function of normalized predictability and transferability of physical 

features. The effectiveness of DS is validated on 7 datasets (involving 310 batteries over 300,000 cycles), en

compassing 6 materials (i.e., LFP, NCM811, NCM333, NCM523, NCA, and LCO) and 7 transfer scenarios (i.e., 

temperature, charging rate, discharging rate, and cutoff voltage). Results show that, on average, no more 

than 8% of lifetime data can achieve a median mean absolute percentage error (MAPE) of 1% under the inves

tigated transfer scenarios, with the calculated DS aligning with post hoc DS. This work suggests the careful 

evaluation of DS for building data-driven battery algorithms before massive, expensive, and time-consuming 

data curation.

INTRODUCTION

Lithium-ion batteries (LIBs) have been widely adopted in 

extended industries, including electric vehicles, renewable en

ergy storage, and portable electronics.1–5 A common challenge 

across these applications is to estimate the remaining capacity 

of batteries under given and stochastic operation conditions, 

which ensures efficient and safety-informed use.6,7 Data-driven 

state-of-health (SOH) estimation offers significant advantages 

by enabling timely health monitoring and maintenance decisions. 

These methods can also provide insights for periodic battery 

checks, help optimize battery operation, and enhance safety, 

thereby contributing to a safer, more durable and sustainable 

battery energy ecosystem.

Data-driven battery SOH estimation has garnered widespread 

attention in both academia and industry.8,9 The fundamental 

concept is to estimate the battery’s remaining capacity by 

computing the SOH as the ratio of remaining to initial capacity.10

However, in real-world applications, batteries operate under 

diverse and complex conditions.11,12 Models developed from 

past data are often not directly applicable to new batteries under 

different operating scenarios. With advances in data science and 

artificial intelligence, data-driven methods have been applied for 

battery SOH estimation. The main idea is to obtain a statistical 

relationship between the already measured data and the aging 

state of batteries through machine learning algorithms.13–21

However, these methods typically require large volumes of his

torical data, which creates challenges for data storage and 

computation, especially in edge devices with considerable 

resource constraints. To reduce data curation demands, some 

studies have introduced data generation or transfer learning 

strategies.22 Yet, the fidelity of generated data remains chal

lenged by a lack of understanding of underlying degrada

tions.23–27 In parallel, numerous studies have attempted to trans

fer pre-trained models to new operating conditions by retraining 

them using limited data from those conditions. Unfortunately, ex

isting studies rely on subjective choices regarding the amount of 

training data, for example, using the first 100 cycles, 30%, or 

66% of the battery life to retrain or fine-tune models.28–31 These 

approaches lack justification and are inconsistent across data

sets and operating conditions. As a result, a key limitation re

mains unresolved: there is no unified framework to determine 

how much early-cycle data from the target domain is sufficient 

to enable reliable model adaptation for accurate SOH estimation.

This gap presents a fundamental dilemma in practical applica

tions: without a clear benchmark for early data sufficiency (DS), it 
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is difficult to decide when a pre-trained model can be confidently 

deployed to a new battery system under different operating con

ditions. The lack of such a criterion limits the efficiency of transfer 

learning and results in unnecessary data curation, repeated re

training, and high storage costs. This issue is particularly critical 

in resource-constrained environments, such as on-board sys

tems or distributed controllers, where minimizing data curation, 

storage, and processing is key to efficient edge deployment. 

Therefore, it becomes essential to record and utilize only the 

early but informative portion of data under new operation condi

tions rather than collecting and storing them throughout the 

entire lifespan. However, the predictive capability (PC) of early 

battery data to map to SOH has not yet been clearly defined 

and quantified.32,33 Given the sensitivities of battery degradation 

over varied operating conditions, the cross-domain stability of 

early data for SOH estimation, i.e., the transferable capability 

(TC), also remains unresolved.34–38 Therefore, investigating the 

PC and TC of using limited early data of new operation condi

tions to adapt the trained model to those conditions is crucial, 

as it answers a fundamental question of when sufficient data 

can be collected. This is of great significance to the battery com

munity, as it enables economic and reliable SOH estimation for 

novel battery materials research and management algorithm 

integration under varying conditions, particularly in determining 

the sufficient time point at which a reliable and adaptable SOH 

estimation model can be possible, given limited resource 

constraints.

Here, we propose an empirical study for DS to evaluate the ad

equacy of data from the accessible domain in predicting battery 

SOH, addressing both the predictability of capacity outcomes 

and their transferability across operating conditions, as demon

strated in Figure 1. Figure 1A illustrates the challenge of exten

sive data collection requirements to obtain a predictive model 

in battery management, compounded by the robustness chal

lenges posed by diverse operating conditions. Determining the 

optimal point to adapt to target domain degradation is critical 

for achieving accurate SOH estimation while reducing resource 

and storage requirements for model deployment. Figure 1B pre

sents the methodological workflow used in our study to address 

the DS. DS is defined as the minimum amount of data required to 

achieve anticipated estimation accuracy, beyond which addi

tional data do not significantly improve the predictive perfor

mance, referred to as observed DS (ODS). We introduce theoret

ical DS (TDS), formulated as a time-evolving linear function of DS 

components, quantifying the PC and transferability of features. 

DS components, including PC and TC, assess battery degrada

tion behavior and its adaptability across operating conditions, 

represented as a linear function of normalized predictability 

and normalized transferability. The proposed empirical study 

for DS has been validated in 7 widely studied battery datasets 

covering 6 materials, 7 operational conditions, and 7 transfer 

scenarios, showing that our model achieves less than 1% me

dian mean absolute percentage error (MAPE) in predicting the 

capacity of target batteries using approximately 8% of the life

time data, as a conservative guideline derived from the observed 

data space. Such success can be attributed to the strong align

ment between the ODS and TDS, with an average error of less 

than 0.4%. The result also incorporates sensitivity analysis 

across different SOH levels, yielding an average error of 30 cy

cles across the datasets. These findings underscore the critical 

role of DS in battery SOH estimation and present a generalizable 

framework that enhances the reliability and adaptability of robust 

estimation tasks. This study provides insights for other data- 

driven diagnostic fields by emphasizing the importance of estab

lishing DS assessment criteria to ensure predictive accuracy and 

generalizability while reducing unnecessary data storage, thus 

avoiding redundant data with limited informational value, espe

cially in resource-constrained scenarios.

RESULTS

Datasets and feature engineering

To validate the feasibility and generalizability of the proposed 

empirical study for DS, we compile 7 datasets covering 6 battery 

materials, 7 operational conditions, and 7 transfer scenarios. An 

overview of the seven datasets is provided in Table S1. It in

cludes a nine-stage fast-charging dataset39 generated under 

four distinct temperatures, 25◦C, 35◦C, 45◦C, and 55◦C, along 

with six publicly available datasets.40–45 In Figure 2A, the 

charging voltage curves across all seven datasets exhibit an 

increasing trend with the state of charge (SOC). However, the 

rate of change, curve shapes, and voltage ranges vary signifi

cantly due to differences in battery materials, operational condi

tions, and testing environments. Details of the charging and dis

charging conditions for the public datasets are provided in Note 

S1. Additionally, voltage curves across cycles reveal a clear 

degradation trend, with different cycles represented by color 

gradients to emphasize progression (Figure 2A). The color of 

the curve transitions from light to dark, representing the progres

sion of battery life from early to late stages. Batteries with higher 

cycle counts can charge less, meaning that curves with darker 

colors correspond to a lower SOC. The batteries in each dataset 

operate under diverse conditions, such as temperature, cutoff 

voltage, charge rate, and discharge rate. Assuming that the 

red curves represent known batteries and the blue curves repre

sent unknown batteries, the capacity of both groups decreases 

progressively with cycles, exhibiting distinct degradation pat

terns (Figure 2B). This assumption is reasonable given that bat

tery cycling is time consuming; thus, manufacturers often 

perform accelerated tests and then transfer insights derived 

from them to the conditions of interest.

To establish this transfer relationship, we classify the batteries 

into two domains, the source domain and the target domain, 

based on operating conditions, with specific criteria provided 

in Table S2. From each dataset, we select the batteries with 

the shortest and longest lifespans to represent aggressive and 

moderate degradation trends, respectively (Figure 2C). This 

classification highlights the considerable range of battery life

spans observed, with the longest lifespan reaching 2,000 cycles, 

while the shortest lifespan is merely around 170 cycles. To reflect 

internal degradation mechanisms, interpretable features are ex

tracted from charging voltage curves with prominent degrada

tion trends. Although these features differ in their mathematical 

formulations, they retain consistent physical meanings across 

datasets and capture key electrochemical processes, including 

charging acceptance, polarization rate, resistance, and various 
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types of polarization (electrochemical, ohmic, and concentra

tion). Details of feature names and physical interpretations are 

provided in Tables S3 and S4, with extraction processes illus

trated in Figure S1. Derived from the ninth charging stage in 

our dataset as an example, we observe substantial variations 

in feature distributions across different temperature conditions 

(Figure 2D). Distributions of other features are shown in 

Figures S2–S4. Estimating SOH using limited data remains chal

lenging because the capacity fade during initial cycles is minimal 

(Figure 2E), even at elevated temperatures. For instance, high 

temperatures accelerate capacity fade but result in only a 

3.7% reduction during early cycles. Despite limited early 

changes, extracted features effectively capture degradation 

trends. Modeling capacity as the dependent variable and the 

extracted features as independent variables reveals an almost 

linear decrease in capacity as a function of features extracted 

from stage 1, with a Pearson correlation coefficient of − 0.96 

(Figure 2F). Similarly, other features have a strong correlation 

with early capacity, as shown in Figure S5. These results under

score the utility of early-stage features in capturing degradation 

trends, even if capacity changes are negligible at the early 

stage.43

Predictive capability and transferable capability

When new operating conditions are different from the existing 

conditions, it is crucial to focus on the PC and TC at the same 

Figure 1. The empirical study of data sufficiency 

(A) Illustration of the challenges associated with data testing volume, coupled with robustness challenges arising from diverse operating conditions, such as 

temperature, voltage, current, and depth of discharge (DOD). The process determines when cycling data become sufficient to start predicting, using already 

available early data to predict the subsequent battery SOH. 

(B) The approach defines predictive capability (PC) and transferable capability (TC) as data sufficiency (DS) components derived from physically interpretable 

features. The evolution of PC and TC over cycles establishes the theoretical DS, while the relationship between estimation accuracy and the number of cycles 

defines the observed DS. Formulas are explained in the methods section. Features located in the top right quadrant of the PC-TC plot are selected to simplify the 

model and validate the identified DS through feature selection.
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Figure 2. Visualization of datasets and features 

(A) Charging voltage and state of charge profiles across seven datasets. 

(B) State-of-health (SOH) degradation trends under different operating conditions in the seven datasets. Since SOH is a relative measure, representing the ratio of 

remaining capacity to initial capacity, it has no specific physical units. Therefore, arbitrary units (a.u.) are used to denote SOH, emphasizing that the value is a 

unitless relative quantity. 

(C) Classification of source and target domains based on aggressive and moderate degradation, with battery lifespans for selected batteries in each domain. The 

THU dataset includes two domain adaptation scenarios: THU 1 (source domain at 55◦C, target domain at 25◦C) and THU 2 (source domain at 55◦C, target domain 

at 35◦C). 

(D) Taxonomy of extracted features, categorized into four groups based on physical meaning, and their divergence across different temperature domains in 

our data. 

(E) Capacity reduction from the 1st to the 100th cycle for 32 batteries at various temperatures in our data. 

(F) Relationship between stage 1 features and capacity in our data during the first 100 cycles (taking the first battery at 25◦C in the target domain as an example).
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time. This helps determine whether the features can adapt to 

varying conditions, enabling robust performance across environ

ments, such as temperatures, charging rates, discharging rates, 

etc. We select the THU dataset to showcase our approach (the 

results in the other 6 datasets are presented in later sections), 

including nine charging stages featuring high and low current 

conditions and their switching. The dataset’s information rich

ness allows for a proper identification of TC and PC based on 

the physical features that can be generalized to the other 6 

widely studied datasets.

Figure 3A illustrates that for different feature groups, both the 

TC and PC values remain consistently high and stable during the 

first 80 cycles, indicating strong PCs and TCs in the early stages 

of degradation. This trend is consistent across target domains at 

three different temperatures, with detailed variation trends 

shown in Figure S6. However, as battery degradation pro

gresses, the differences between the source and target domains 

become more pronounced, leading to a gradual decline in TC 

values in later cycles. After the 80th cycle, PC decreases sharply 

before increasing again, possibly reflecting a transition from 

early degradation mechanisms to an activation phase, followed 

by a stabilized degradation until failure.39 Figure 3B uses varia

tions in the amount of available data from the target domain to 

fine-tune the source model, and all features are used to predict 

the capacity in the target domain. It shows that as the amount 

of available data increases, there is a critical point at which the 

estimation error in the 25◦C and 35◦C target domains drops 

significantly. Beyond this point, adding more data does not 

significantly improve estimation accuracy, suggesting that an 

optimal data volume for early-stage estimations exists. Remark

ably, the 80-cycle threshold used to achieve optimal estimation 

performance corresponds to the period where both the PC and 

TC values remain high, as shown in Figure 3A, indicating that 

data collected beyond this threshold become redundant.

This finding further suggests that PC and TC can guide the 

identification of a DS point. To explore the potential physical 

meanings of PC and TC, we present the distribution of these 

metrics across all cycles for each feature in Figure 3C (with 

55◦C as the source domain and 25◦C as the target domain, while 

the distributions for 35◦C and 45◦C target domains are provided 

in Figures S7 and S8). A clear pattern emerges: features from 

stages 1 and 9, which involve low current, show higher PC and 

lower TC, while features from stages 2–8, associated with higher 

current, exhibit the opposite trend. This suggests a relationship 

between TC, PC, and features in small or large current stages. 

To make it clearer, we further explore the distribution of PC 

and TC across different feature groups in Figures 3D–3G. Stages 

1 and 9 are defined as thermodynamic processes and stages 2– 

8 as kinetic processes based on the differing current inten

sities.39,46 Thermodynamics represents the degradation of bat

tery materials, which leads to irreversible capacity loss, and is 

associated with PC. Kinetics, on the other hand, represents the 

battery operation and is closely related to TC. The average 

values of PC and TC are calculated for these two degradation 

patterns. Thermodynamic features consistently demonstrate 

higher PC values but lower TC values, indicating they are more 

effective for direct SOH estimation. In contrast, kinetic features 

show higher TC values but lower PC values, suggesting they 

are suited for transferring models across varying operation con

ditions. This finding highlights that thermodynamic features may 

be more reliable for accurate capacity estimation given fixed 

operation conditions, while kinetic features play a key role in 

ensuring model robustness and adaptability across different 

operating scenarios.

Battery SOH estimation

Our dataset includes nine charging stages, resulting in a large 

feature set of 42 variables. To optimize the model, we employ 

PC and TC for feature selection, aiming to minimize the feature 

set while preserving predictive accuracy. First, we calculate 

the estimation accuracy for each feature by individually inputting 

it into the transfer model and predicting the target domain. Fea

tures with an estimation accuracy ranked in the top 50% during 

the initial one-third of their lifespan are selected (see Figure S8). 

These high-accuracy features demonstrate exceptional perfor

mance under varying operational conditions and should be 

prioritized. Assuming that we have not initially recognized these 

superior features, we plot the distribution of all features in terms 

of PC and TC, marking the selected features on the graph. 

Figure 4A shows that, under the 25◦C target domain, these 

selected features are concentrated in the top right corner, indi

cating high estimation and transferability performance.47

Interestingly, features that perform well when trained and pre

dicted individually are primarily located in the top right corner of 

the PC-TC plot, which corresponds to higher PC and TC values. 

Next, we train and fine-tune the model using only the selected 

features. Figure 4B compares the performance of various 

methods, including standard machine learning models (support 

vector regression [SVR] and Gaussian process regression 

[GPR]), non-transfer long short-term memory (LSTM) models, 

and our model. The results demonstrate that fine-tuning pro

vides superior performance for predicting the capacity of new 

batteries compared to non-fine-tuned models, as well as outper

forming traditional machine learning methods. Additionally, fine- 

tuning is particularly well suited for models with neural network 

architectures, whereas conventional machine learning methods 

are unable to perform fine-tuning. Consequently, other machine 

learning models are trained on source domain data and used to 

predict battery capacity beyond the available data in the target 

domain. SVR and GPR produce fixed initial estimations that 

remain stable over time. In contrast, our approach consistently 

achieves the lowest estimation error across varying data vol

umes. Notably, the estimation errors significantly decrease by 

the 80th cycle and remain nearly constant with further cycling. 

This finding not only validates the effectiveness of our method 

but also underscores the 80th cycle as the DS point. Further

more, the model with selected features still exhibits a DS point, 

consistent with the findings shown in Figure 3B regarding the 

DS point without feature selection, though the degree of estima

tion accuracy varies.

Similarly, Figures 4C and 4D depict the results for the 35◦C 

target domain, where features with high predictive accuracy 

are also clustered in the top right corner of the PC-TC plot. 

Once again, the estimation error does not significantly decrease 

after the 80th cycle, reinforcing the conclusion that 80 cycles 

represent the threshold for sufficient data volume. Given the 
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Figure 3. Predictive capability and transferable capability analysis across cycles and features 

(A) Predictive capacity (PC) and transferable capability (TC) trends over degradation cycles for different feature categories, with color intensity representing TC 

values and the size of the bubbles representing PC values. 

(B) MAPE of capacity estimations as a function of available cycles, where MAPE is computed based on the predicted capacity beyond the available cycles. 

Results show that 80 cycles are sufficient in the target domains (25◦C and 35◦C). 

(C) Distribution of PC and TC across 42 features. 

(D–G) Distribution of PC and TC for low-current charging features (stages 1 and 9) and high-current charging features (stages 2–8) across feature groups. For TC, 

Vg features averaged 0.85 ± 0.06 (P1) and 0.95 ± 0.02 (P2); Q features averaged 0.89 ± 0.06 (P1) and 0.90 ± 0.04 (P2); RL features averaged 0.80 ± 0.13 (P1) 

and 0.93 ± 0.02 (P2); RO features averaged 0.85 ± 0.06 (P1) and 0.93 ± 0.02 (P2); and polarization features averaged 0.72 ± 0.09 (P1) and 0.84 ± 0.03 (P2). For 

PC, Vg features averaged 0.92 ± 0.04 (P1) and 0.63 ± 0.15 (P2); Q features averaged 0.98 ± 0.008 (P1) and 0.95 ± 0.05 (P2); RL features averaged 0.91 ± 0.13 

(P1) and 0.86 ± 0.12 (P2); RO features averaged 0.89 ± 0.04 (P1) and 0.70 ± 0.10 (P2); and polarization features averaged 0.83 ± 0.16 (P1) and 0.59 ± 0.23 (P2).
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large number of features, it is essential to evaluate feature perfor

mance to reduce redundancy and decrease model complexity. 

We compare the predicted capacities and actual capacities, as 

well as the error distributions, using the selected features versus 

all features from the former 80 available data. As shown in 

Figure 4E, estimations for all nine batteries in the 25◦C target 

domain using selected features are more closely aligned along 

the diagonal, indicating an accurate estimation based on actual 

capacities, with absolute error distributions centered around 

zero, suggesting a minimal error bias. In contrast, estimations 

using all features tend to deviate from actual capacities, with 

most absolute errors above zero, indicating bias. Figure 4F pre

sents similar trends for capacity parity and error distribution plots 

in the 35◦C target domain.

Empirical DS verification across datasets

To assess the generalizability of the proposed method, the per

formance is validated across six additional datasets besides our 

dataset. The seven datasets collectively comprise 310 batteries 

Figure 4. Model performance with feature 

selection in the THU dataset 

(A) Feature distribution in the 25◦C target domain, 

with transferable capability on the x axis and 

predictive capability on the y axis, showing high- 

accuracy features concentrated in the top right 

corner. 

(B) Comparison of different methods: MAPE of 

estimations in the 25◦C target domain (55◦C is the 

source domain) using features selected from 

(A) across different available data amounts. 

(C) Feature distribution in the 35◦C target domain, 

with high-accuracy features concentrated in the 

top right corner. 

(D) Comparison of different methods: MAPE of 

estimations in the 35◦C target domain (55◦C is the 

source domain) using features selected from 

(C) across different available data amounts. 

(E) Parity plot and error distribution for SOH esti

mation using selected features versus all features 

in the 25◦C target domain. 

(F) Parity plot and error distribution for SOH esti

mation using selected features versus all features 

in the 35◦C target domain.

and over 300,000 cycles, encompassing 

diverse conditions, including 6 distinct 

materials, 7 operational scenarios, and 7 

transfer scenarios, as summarized in 

Table S1. These datasets include well- 

known sources, such as the NASA, 

CALCE, TJU, XJTU, HUST, and MIT data

sets. To ensure consistency in feature 

extraction, the interpretations of features 

from these datasets are harmonized with 

those extracted from the THU dataset by 

aligning physical meanings. Features are 

denoised and grouped into four cate

gories: Vg (polarization speed), Q 

(charging capacity), RL (resistance), and 

polarization group (electrochemical, ohmic, and concentration 

polarization). Detailed features are shown in Table S4.

To identify the optimal DS point, the temporal evolutions of 

PC and TC over battery cycles are analyzed. The TDS is 

defined as the cycle corresponding to the maximum linear 

combination of the mean PC and mean TC values across all 

features. This initial estimate is further recalculated through 

feature selection based on feature distributions. The three- 

step TDS identification process incorporating feature selec

tion is as follows. First, using all features, the preliminary 

TDS is identified based on the cycle exhibiting the highest 

combined average PC and TC values. The initial cycle indi

cates a high overall feature performance but lacks detailed 

insight into individual feature contributions. Second, at the 

initial TDS, feature distributions are plotted for each dataset, 

with TC values on the x axis and PC values on the y axis. 

To simplify the model, features in the top right quadrant of 

the plot, where PC > 0.5 and TC > 0.5, are selected. Finally, 

using the selected features, the average TC and average PC 
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values are recalculated to identify the final TDS, following a 

similar approach to that in the first step.

Figures 5A–5C correspond to the first and second steps of the 

TDS identification process. As shown in Figure 5A, under con

stant current-constant voltage (CCCV) conditions, five key fea

tures (including two from the polarization group) are consistently 

identified across datasets. These features are clustered in the 

top right quadrant of the PC-TC plot, highlighting the effective

ness of the interpretable feature engineering framework. 

Figures 5B and 5C illustrate that for multi-stage charging and 

discharging profiles, additional stage-specific features can be 

identified when aligned with their physical interpretations. These 

features also predominantly cluster in the top right quadrant, 

further supporting the trend that features selected at the initial 

TDS exhibit high average PC and TC values. Figure 5D corre

sponds to the third step of the TDS identification process. 

From the top right quadrant of the PC-TC plot, critical features 

for each dataset are identified, leading to a recalculated TDS. 

The recalculated TDS represents a validation and adjustment 

of the initial TDS derived from all features, further optimizing 

the DS point. Beyond the TDS, the ODS is defined as the cycle 

where estimation accuracy ceases to improve, providing an intu

itive explanation of the trade-off between estimation accuracy 

and testing duration. A more intuitive definition of ODS is the 

point where the derivative of accuracy is zero (see the methods).

As shown in Figure 5D, the alignment between TDS and ODS 

across datasets supports the hypothesis that features with high 

PC and TC values enable accurate and robust estimations. Both 

the PC-TC-defined TDS and the accuracy-defined ODS effec

tively identify DS points. The observed trends in PC and TC 

values further validate our hypothesis. PC values initially in

crease, decline, and then rise again, while TC values typically 

show a high initial stage followed by a gradual decline. These 

trends are consistent across datasets and align with earlier ob

servations in the THU dataset. For the NASA, TJU, CALCE, 

and HUST datasets, the TDS and ODS correspond perfectly, 

while for the MIT and XJTU datasets, the discrepancies are min

imal, only 1.5% and 1.3%, respectively. Importantly, these suffi

ciency points are observed early in the battery life cycle, typically 

within about the first 8% of the lifespan.

We stress that the predictive and transferable performance by 

the DS-guided feature selection and model reduction is consis

tent across different degradation mechanisms, as evidenced by 

different datasets. As shown in Figure 5E, the predicted SOH 

closely matches the actual SOH even if the source domain and 

target domain have distinct patterns. Furthermore, beyond 

SOH estimation, performing sensitivity analysis at different 

SOH levels is of particular interest for practical applications 

such as rapid residual value evaluation.43 The predicted ends 

of life (EOLs) corresponding to capacity thresholds of 75%, 

80%, 85%, 90%, and 95% of the initial capacity (denoted as 

EOL75, EOL80, EOL85, EOL90, and EOL95) are compared 

with the true EOL across six datasets. Monitoring the EOL is 

essential to ensure that the predicted SOH does not deviate 

from the actual SOH, even when the overall estimation error is 

low. The EOL is determined by first obtaining the predicted 

SOH and then drawing a horizontal line at the specified capacity 

threshold and identifying the cycle at which this line intersects 

the curve. This comparison enables a comprehensive assess

ment of the model’s robustness in predicting not only the overall 

SOH but also the exact cycle when critical capacity losses can 

occur. The results, summarized in Figure 5F, demonstrate the 

model’s high generalizability in estimating EOL across different 

degradation thresholds, which is often associated with different 

degradation mechanism dominance. The estimation errors are 

12, 42, 34, 38, 24, and 32 cycles for the NASA, TJU, CALCE, 

MIT, XJTU, and HUST datasets, respectively.

DISCUSSION

This empirical study proposes an examination of battery DS to 

determine the minimum data volume required for fine-tuning to 

achieve accurate battery SOH estimation, a challenge for which 

prior work has not yet provided a generalizable solution. The 

ODS calculated from the estimation accuracy aligns closely 

with the TDS derived from PC-TC metrics. This consistency is 

validated across seven datasets with 6 varying materials, 7 oper

ating conditions, and 7 transfer scenarios. It demonstrates that 

an average of the first 8% of battery life cycle data (THU 6.0%, 

NASA 5.9%, TJU 2.5%, CALCE 1.2%, MIT 8.0%, XJTU 2.5%, 

and HUST 3.0%), as a conservative guideline derived from our 

multi-dataset analysis, is sufficient to achieve anticipated esti

mation accuracies and cross-operation-condition transferability. 

Beyond this critical DS point, additional data do not necessarily 

improve estimation performance under transferable settings. 

Building on Severson et al., which utilized data from the first 

100 cycles for lifetime estimations, this study demonstrates 

that early-stage data are sufficient to adapt source domain 

models to target domains, thereby enabling accurate SOH esti

mation.43 This work provides a reliable foundation based on an 

empirical study of DS that explains why and to what extent 

early-life data can forecast future performance under single 

and across multiple operation conditions. It also underscores 

the practical benefits of reducing experimental costs 

Figure 5. Validation of data sufficiency across datasets 

(A) Feature distribution for transferable capability (TC) and predictive capability (PC) under CCCV conditions, where the physical meaning of features extracted 

from multiple datasets is aligned with those from our dataset. 

(B) Feature distribution for PC and TC under multi-stage discharging conditions, with aligned physical meanings from our dataset. 

(C) Feature distribution for PC and TC under multi-stage charging conditions, with aligned physical meaning across datasets. 

(D) PC and TC trends over cycles for six datasets, with estimation accuracy at various available data volumes in the target domain, showing close agreement 

between theoretical and observed data sufficiency (DS) points. 

(E) Battery SOH is predicted across six datasets using sufficient data. The transfer scenarios were set with a discharge cutoff voltage shift from 2.7 to 2.5 V in 

NASA, a temperature shift from 45◦C to 25◦C in TJU, a discharging rate shift from 1 to 0.5 C in CALCE, a charging rate transition from 6 to 4 C in MIT, a charging 

rate shift from 3 to 2 C in XJTU, and a discharging rate shift from 4 to 3 C in HUST. 

(F) Sensitivity analysis under five different EOL thresholds (75%, 80%, 85%, 90%, and 95%) across the six datasets.
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and time without compromising estimation accuracy and 

transferability.

We must acknowledge that the results are based on the empir

ical evaluation of existing datasets, which could lead to biased 

conclusions due to the incomplete inclusion of extreme degra

dation mechanisms, one of the most determinant factors 

influencing the PC and TC of physical features. However, the 

proposed empirical study of DS is validated across 7 datasets 

with significantly different degradation curves, implying the in

clusion of a wide range of degradation mechanisms, as depicted 

in Figure 2B. Existing studies also indicate that battery degrada

tion mechanisms can be generally divided into three stages: the 

early formation of the solid electrolyte interphase (SEI) layer, a 

relatively stable internal state followed by dominant processes 

of loss of lithium-ion inventory (LLI) and loss of active materials 

(LAM), and the later stage leading to eventual failure.48–50 The 

degradation stage over the whole battery life aligns with data- 

driven findings that changes in PC and TC occur in distinct 

phases, reflecting the progression of battery degradation. The 

trends in PC and TC closely mirror the battery degradation 

process. Initially, PC is high, which may correspond to the early 

formation and stabilization of the SEI layer. Then, there is a 

noticeable decrease in PC, likely due to the completion of activa

tion or SEI growth. During this first stage, TC remains relatively 

high because there is little differentiation between batteries in 

the early stages of their lifespan. In the second stage, PC grad

ually increases, and TC gradually declines, likely reflecting 

the phase dominated by loss of LLI and LAM. In the final 

stage, PC experiences a sharp decline, and TC continues to 

decrease, which may correspond to the battery failure phase. 

Although degradation mechanisms remain unexplored, the 

trends observed in our PC and TC metrics can help explain 

currently recognized degradation processes. The correspon

dence between the PC and TC values in Figures 3D–3G and 

the features of the small and large current phases suggests 

that PC and TC not only have mathematical significance but 

also potential physical relevance. This can aid in reflecting the in

ternal degradation mechanisms of batteries, particularly those 

related to thermodynamic and kinetic degradation processes.

As large models continue to evolve, the sufficiency of training 

data becomes increasingly critical. While larger datasets may 

require more computational resources, appropriately selected 

and sufficient data can reduce dependence on high computa

tional power. In battery management, large-scale predictive 

models rely on high-quality, sufficient data to ensure accurate 

estimations and effective learning. The complexity of these 

models and their computational demands highlight the impor

tance of optimizing training data. Ensuring DS, particularly during 

the early stages of battery degradation, not only reduces compu

tational costs but also improves model accuracy. Striking the 

right balance between dataset volume and estimation precision 

is essential as model complexity and computational demands in

crease. By focusing on early-life data, it is possible to achieve 

estimation accuracy and transferability while minimizing both 

data requirements and computational costs, thus making large 

model training more feasible and cost effective.

Our empirical study opens several pathways for future battery 

research exploration. One key area is expanding the applicability 

of PC and TC metrics to a broader range of battery chemistries, 

operational conditions, and degradation mechanisms. We aim 

to further uncover deeper insights into the degradation mecha

nisms of batteries through the analysis of PC and TC when 

extensive electrochemistry-level data testing is accessible. By 

exploring their contributions to decoupling thermodynamic and ki

netic losses, we hope to validate our findings from a chemical and 

materials science perspective. Interpretable features not only aid 

in understanding degradation mechanisms but also provide a 

foundation for developing more robust estimation models that 

can handle diverse and unforeseen operational conditions. Based 

on PC and TC, future work could extend TDS by integrating adap

tive sampling strategies and dynamic recalibration mechanisms, 

enabling robust estimation performance in real-world battery 

management systems. Additionally, we attempt to apply our 

method across different battery chemistries to investigate 

whether similar patterns in PC and TC emerge under more 

extreme transfer settings. Given that the method is empirical in na

ture, a larger and more diverse set of data would be required to 

fully support claims of a universal principle of DS. Nevertheless, 

our study has been validated on seven datasets with diverse oper

ating conditions, which represents a relatively rich collection 

compared with previous studies (see Table S6). In future work, 

we aim to extend validation to even broader operation conditions, 

such as varying user preferences and historical usage patterns.

METHODS

PC within one domain

The correlation between features and capacity reflects the de

gree to which a feature can accurately predict capacity, with 

stronger correlations indicating a higher potential for reliable ca

pacity representation. Thus, we define the PC using the Pearson 

correlation coefficient. Given that battery degradation is a 

time-dependent process, it is critical to account for temporal dy

namics when assessing PC rather than relying on static evalua

tions. Therefore, we extend PC to incorporate its evolution over 

cycles, defining the time-dependent PC
j
i as

PC
j

i =

∑m

j = 1

(
Fi

j
− Fi

)(
Capj − Cap

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j = 1

(
Fi

j
− Fi

)2 ∑m

j = 1

(
Capj − Cap

)2

√ ; (Equation 1) 

Fi =
1

m

∑m

j = 1

Fi
j
; (Equation 2) 

Cap =
1

m

∑m

j = 1

Capj; (Equation 3) 

where PCi
j 
represents the PC of the i-th feature up to cycle j, Fi

j is 

the value of the i-th feature at the j-th cycle, Capj is the corre

sponding capacity at the j-th cycle, m is the number of available 

cycles, Fi is the average value of the i-th feature over m cycles, 

and Cap is the average capacity over m cycles.
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TC across domains

Battery capacity degradation exhibits inconsistent degradation 

patterns under varying operational conditions. Similarly, feature 

distributions can vary across domains due to differences in these 

conditions. To quantify the distributional divergence of features 

across domains, we employ the Wasserstein distance (WD), 

which measures the discrepancy between feature distribu

tions.47 A smaller WD indicates better alignment of feature 

distributions across domains, suggesting that features are 

less influenced by dynamic conditions and thus possess 

higher transferability. Accordingly, we define TC using 1 −

WD. As we did with PC, we extend TC to incorporate its evolu

tion over cycles, defining the time-dependent TC as TCi
j
:

TC
j

i = 1 − WD
j

i; (Equation 4) 

WD
j

i =

⎛

⎝ inf
γ∈Γ(P

j

i
;Q

j

i)

∫

Ω×Ω

⃒
⃒XS;i

j
− XT ;i

j
⃒
⃒qdγ

(
XS;i

j
;XT ;i

j
)

⎞

⎠

1=q

;

(Equation 5) 

where TCi
j 
represents the TC of the i-th feature up to cycle j, Wi 

quantifies the feature distribution difference between source and 

target domains, and WD
j

i is the WD of the i-th feature up to cycle 

j, quantifying the distributional discrepancy between the source 

and target domains for this feature over the first j cycles. P
j
i and 

Q
j

i are probability distributions of the i-th feature in the source 

and target domains, respectively, calculated based on the data 

from the first j cycles. Ω is the domain of feature values. γ is a joint 

distribution over Ω × Ω with marginal distributions P
j
i and Q

j
i. XS;i

j 

and XT ;i
j are the values of the i-th feature in the source and target 

domains, respectively, over the first j cycles. q is the order of the 

WD, commonly q = 1 or q = 2. Here, q = 1 is chosen to avoid 

the effect of measurement noises.

LSTM with fine-tuning

To model the sequential degradation behavior of battery capac

ity, we utilize an LSTM network, which captures the temporal de

pendencies in the battery data. Specifically, the current capacity 

of a battery is influenced by its preceding feature states. There

fore, the features from the preceding three cycles are used as 

input to predict the current capacity. The input feature sequence 

for the source domain battery is defined as

Xsource
input = [xt − 3; xt − 2; xt − 1]; (Equation 6) 

where xt − 3; xt − 2; and xt − 1 represent the features of the battery 

at three consecutive previous time steps.

The time step is set to be three for the elbow rule (Figure S9). 

Using the LSTM model trained on the source domain, the pre

dicted capacity of the battery is obtained as ŷsource
t .

The LSTM model architecture consists of sequentially stacked 

layers, with the first LSTM layer comprising 96 units. This layer ac

cepts input data with a shape of (T ;F), where T denotes the num

ber of time steps and F represents the number of features. The 

second LSTM layer contains 64 units and outputs only the final 

time step of the sequence. The outputs from the LSTM layers 

are subsequently processed through two fully connected (Dense) 

layers. The first Dense layer consists of 32 units with weights 

initialized using the Glorot uniform initializer. The final Dense layer 

contains a single unit, providing the regression output of the 

model, also initialized with Glorot uniform. Weight initialization is 

adopted to improve convergence stability in recurrent networks. 

The model is trained using the Adam optimizer, and the mean 

squared error is employed as the loss function.

To adapt the pre-trained model to the target domain, fine-tun

ing is performed using data from the target battery. The input 

feature sequence for the target domain battery is defined as

X
target

input =
[
x′

t − 3; x
′
t − 2; x

′
t − 1

]
; (Equation 7) 

where x′t − 3; x
′
t − 2; and x′t − 1 denote the corresponding features in 

the target domain.

In the fine-tuning stage, the model weights within the first two 

LSTM layers are frozen, ensuring that the learned temporal rep

resentations remain fixed. Assuming the first d cycles of a new 

battery are available for testing, the model weights within the 

two Dense layers are fine-tuned using features and actual 

discharge capacities from the previous d cycles of new batteries. 

The remaining actual capacities are then used to validate the 

performance of the fine-tuned model. The adapted model pre

dicts the capacity for the target domain battery as ŷ
target
t . The 

optimization is performed using the Adam optimizer with a batch 

size of 64, over 20 epochs. This fine-tuning process ensures that 

the model leverages the knowledge learned from the source 

domain while adapting to the specific characteristics of the 

target domain, improving the transferability of estimations under 

varying operational scenarios.

Evaluation metric

The MAPE is defined as

MAPE =

∑C

j = d

⃒
⃒yj − ŷ j

⃒
⃒

∑C

j = d

yj

× 100%; (Equation 8) 

where yj and ŷ j are the true capacity and predicted capacity in the 

j-th cycle, respectively. C is the length of battery cycles, and d is 

the starting estimation point, which means the available cycles.

ODS

DS refers to the minimum amount of data required to achieve a 

high estimation accuracy, where further data curation does not 

lead to a significant improvement in accuracy or reduction in 

estimation error. To quantify this, we propose the concept of 

ODS, defined based on the MAPE. The accuracy is defined as

Acc = 1 − MAPE: (Equation 9) 

To identify the contribution of each additional data interval, the 

change in accuracy, ΔAcc (j), between successive intervals is 

calculated as
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ΔAcc (j) = Acc (j) − Acc (j − 1): (Equation 10) 

The ODS is determined as the cycle index j, where the accuracy 

continues to increase but subsequently stops improving, 

defined as

ODS = arg max
j

[ΔAcc (j) > 0;ΔAcc (j + 1) < 0];

(Equation 11) 

where ODS is the observed DS, representing the cycle at which 

the estimation accuracy reaches its peak without further improve

ment. It identifies the point at which additional data no longer 

significantly enhance the model’s predictive performance, 

ensuring efficient use of available data while minimizing 

redundancy.

TDS

PC and TC quantify a feature’s ability to predict capacity 

accurately and maintain performance under varying operating 

conditions in transfer learning scenarios. The combination of PC 

and TC forms the foundation for defining TDS. We first calculate 

the average TC
j
i and average PC

j
i across all features:

TC(j) =
1

n

∑n

i = 1

TC
j

i (Equation 12) 

PC(j) =
1

n

∑n

i = 1

PC
j

i: (Equation 13) 

TC
j
i is the TC of the i-th feature before cycle j. PC

j
i is the PC of 

the i-th feature before cycle j. n is the total number of features.

Both TC(j) and PC(j) are normalized to the range [0; 1] to 

ensure comparability:

TCnorm(j) =
TC(j)

TC(j)max

(Equation 14) 

PCnorm(j) =
PC(j)

PC(j)max

: (Equation 15) 

To account for the decline in TCnorm(j) and PCnorm(j) across 

consecutive cycles, the following differences are calculated:

ΔTCnorm(j) = TCnorm(j) − TCnorm(j + 1) (Equation 16) 

ΔPCnorm(j) = PCnorm(j) − PCnorm(j + 1): (Equation 17) 

The combined metric integrates normalized TC and PC values 

while emphasizing their decline to highlight the current cycle’s 

comprehensive value:

f (PC;TC) = TCnorm(j)+ PCnorm(j)+ ΔTCnorm(j)+ ΔPCnorm(j):

(Equation 18) 

TDS is defined as the cycle j where f (PC;TC) reaches its 

maximum:

TDS = arg max
j

[f (PC;TC)]: (Equation 19) 

In this way, TDS indicates the cycle at which the TC and PC are 

both high, marking the theoretical point of sufficient data.

SVR

An SVR model is implemented to predict the SOH of the target 

battery using the same source domain features as input. Prior to 

model training, all input features and capacity values are normal

ized to the range [0; 1] using a MinMaxScaler, ensuring consis

tency between the source and target domains. The SVR model 

employs a radial basis function (RBF) kernel with a regularization 

parameter of C = 10, an epsilon-tube margin of ε = 0:1, and a 

kernel coefficient of γ = 0:1. These hyperparameters are selected 

empirically to balance the model’s bias and variance and to 

ensure stable convergence across cross-domain scenarios. The 

model is trained on the source battery data and tested on the 

target battery. After estimation, the normalized capacity outputs 

are inverse transformed back to the original scale to facilitate 

direct comparison with the actual capacity values. The model im

plementation is conducted using the SVR class from the scikit- 

learn library with standard settings unless otherwise specified.

GPR

A GPR model is developed to predict the SOH of the target 

domain battery based on the training data from the source 

domain battery. Prior to model training, all input features and 

capacity values are normalized to the range [0; 1] using a 

MinMaxScaler, ensuring scale consistency between the source 

and target domains. The GPR model employs a composite 

kernel function, defined as the product of a constant kernel 

C(1:0), with bounds set to (1× 10− 3, 1× 103), and an RBF kernel 

with an initial length scale of 1.0 and bounds of (1× 10− 2, 1×

102). To mitigate the risk of convergence to local minima during 

hyperparameter optimization, the model uses ten restarts of the 

optimizer. An additional noise term (α = 1× 10− 4) is incorpo

rated to account for measurement noise and inherent variability 

in the data. After estimation, the normalized capacity outputs are 

inverse transformed to their original scale for evaluation. All 

model implementation and training procedures are performed 

using the GaussianProcessRegressor class from the scikit-learn 

library with default settings unless otherwise specified.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will 

be fulfilled by the lead contact, Shengyu Tao (sytao@berkeley.edu).

Materials availability

No materials were used in this work.

Data and code availability

The THU, NASA, TJU, CALCE, MIT, XJTU, and HUST datasets are open 

source and available in Tao et al.,39 Xu et al.,40 Zhu et al.,41 Xing et al.,42 Sev

erson et al.,43 Wang et al.,44 and Ma et al.45 The supporting data are provided in 

the supplemental information. The modeling code and processed data have 

been deposited at GitHub at https://github.com/terencetaothucb/data- 

sufficiency-examination-of-transferable-lithium-ion-battery-state-of-health- 

estimation. The associated DOI is https://doi.org/10.5281/zenodo.17051963

at https://zenodo.org/records/17051963.
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