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SUMMARY

Battery state-of-health (SOH) estimation is vital for the safety of energy storage systems, yet full-life-cycle
data curation remains resource intensive. Here, we present an empirical examination of data sufficiency
(DS) to identify the data amount needed for SOH estimation algorithms with anticipated predictability and
transferability. DS is defined as a linear function of normalized predictability and transferability of physical
features. The effectiveness of DS is validated on 7 datasets (involving 310 batteries over 300,000 cycles), en-
compassing 6 materials (i.e., LFP, NCM811, NCM333, NCM523, NCA, and LCO) and 7 transfer scenarios (i.e.,
temperature, charging rate, discharging rate, and cutoff voltage). Results show that, on average, no more
than 8% of lifetime data can achieve a median mean absolute percentage error (MAPE) of 1% under the inves-
tigated transfer scenarios, with the calculated DS aligning with post hoc DS. This work suggests the careful
evaluation of DS for building data-driven battery algorithms before massive, expensive, and time-consuming

data curation.

INTRODUCTION

Lithium-ion batteries (LIBs) have been widely adopted in
extended industries, including electric vehicles, renewable en-
ergy storage, and portable electronics.’ A common challenge
across these applications is to estimate the remaining capacity
of batteries under given and stochastic operation conditions,
which ensures efficient and safety-informed use.®” Data-driven
state-of-health (SOH) estimation offers significant advantages
by enabling timely health monitoring and maintenance decisions.
These methods can also provide insights for periodic battery
checks, help optimize battery operation, and enhance safety,
thereby contributing to a safer, more durable and sustainable
battery energy ecosystem.

Data-driven battery SOH estimation has garnered widespread
attention in both academia and industry.®° The fundamental
concept is to estimate the battery’s remaining capacity by
computing the SOH as the ratio of remaining to initial capacity.'°
However, in real-world applications, batteries operate under
diverse and complex conditions.'""'? Models developed from
past data are often not directly applicable to new batteries under
different operating scenarios. With advances in data science and
artificial intelligence, data-driven methods have been applied for
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battery SOH estimation. The main idea is to obtain a statistical
relationship between the already measured data and the aging
state of batteries through machine learning algorithms.'*>"
However, these methods typically require large volumes of his-
torical data, which creates challenges for data storage and
computation, especially in edge devices with considerable
resource constraints. To reduce data curation demands, some
studies have introduced data generation or transfer learning
strategies.?” Yet, the fidelity of generated data remains chal-
lenged by a lack of understanding of underlying degrada-
tions.?*>"2” In parallel, numerous studies have attempted to trans-
fer pre-trained models to new operating conditions by retraining
them using limited data from those conditions. Unfortunately, ex-
isting studies rely on subjective choices regarding the amount of
training data, for example, using the first 100 cycles, 30%, or
66% of the battery life to retrain or fine-tune models.?®*' These
approaches lack justification and are inconsistent across data-
sets and operating conditions. As a result, a key limitation re-
mains unresolved: there is no unified framework to determine
how much early-cycle data from the target domain is sufficient
to enable reliable model adaptation for accurate SOH estimation.

This gap presents a fundamental dilemma in practical applica-
tions: without a clear benchmark for early data sufficiency (DS), it
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is difficult to decide when a pre-trained model can be confidently
deployed to a new battery system under different operating con-
ditions. The lack of such a criterion limits the efficiency of transfer
learning and results in unnecessary data curation, repeated re-
training, and high storage costs. This issue is particularly critical
in resource-constrained environments, such as on-board sys-
tems or distributed controllers, where minimizing data curation,
storage, and processing is key to efficient edge deployment.
Therefore, it becomes essential to record and utilize only the
early but informative portion of data under new operation condi-
tions rather than collecting and storing them throughout the
entire lifespan. However, the predictive capability (PC) of early
battery data to map to SOH has not yet been clearly defined
and quantified.®>>® Given the sensitivities of battery degradation
over varied operating conditions, the cross-domain stability of
early data for SOH estimation, i.e., the transferable capability
(TC), also remains unresolved.*** Therefore, investigating the
PC and TC of using limited early data of new operation condi-
tions to adapt the trained model to those conditions is crucial,
as it answers a fundamental question of when sufficient data
can be collected. This is of great significance to the battery com-
munity, as it enables economic and reliable SOH estimation for
novel battery materials research and management algorithm
integration under varying conditions, particularly in determining
the sufficient time point at which a reliable and adaptable SOH
estimation model can be possible, given limited resource
constraints.

Here, we propose an empirical study for DS to evaluate the ad-
equacy of data from the accessible domain in predicting battery
SOH, addressing both the predictability of capacity outcomes
and their transferability across operating conditions, as demon-
strated in Figure 1. Figure 1A illustrates the challenge of exten-
sive data collection requirements to obtain a predictive model
in battery management, compounded by the robustness chal-
lenges posed by diverse operating conditions. Determining the
optimal point to adapt to target domain degradation is critical
for achieving accurate SOH estimation while reducing resource
and storage requirements for model deployment. Figure 1B pre-
sents the methodological workflow used in our study to address
the DS. DS is defined as the minimum amount of data required to
achieve anticipated estimation accuracy, beyond which addi-
tional data do not significantly improve the predictive perfor-
mance, referred to as observed DS (ODS). We introduce theoret-
ical DS (TDS), formulated as a time-evolving linear function of DS
components, quantifying the PC and transferability of features.
DS components, including PC and TC, assess battery degrada-
tion behavior and its adaptability across operating conditions,
represented as a linear function of normalized predictability
and normalized transferability. The proposed empirical study
for DS has been validated in 7 widely studied battery datasets
covering 6 materials, 7 operational conditions, and 7 transfer
scenarios, showing that our model achieves less than 1% me-
dian mean absolute percentage error (MAPE) in predicting the
capacity of target batteries using approximately 8% of the life-
time data, as a conservative guideline derived from the observed
data space. Such success can be attributed to the strong align-
ment between the ODS and TDS, with an average error of less
than 0.4%. The result also incorporates sensitivity analysis
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across different SOH levels, yielding an average error of 30 cy-
cles across the datasets. These findings underscore the critical
role of DS in battery SOH estimation and present a generalizable
framework that enhances the reliability and adaptability of robust
estimation tasks. This study provides insights for other data-
driven diagnostic fields by emphasizing the importance of estab-
lishing DS assessment criteria to ensure predictive accuracy and
generalizability while reducing unnecessary data storage, thus
avoiding redundant data with limited informational value, espe-
cially in resource-constrained scenarios.

RESULTS

Datasets and feature engineering

To validate the feasibility and generalizability of the proposed
empirical study for DS, we compile 7 datasets covering 6 battery
materials, 7 operational conditions, and 7 transfer scenarios. An
overview of the seven datasets is provided in Table S1. It in-
cludes a nine-stage fast-charging dataset®® generated under
four distinct temperatures, 25°C, 35°C, 45°C, and 55°C, along
with six publicly available datasets.””*° In Figure 2A, the
charging voltage curves across all seven datasets exhibit an
increasing trend with the state of charge (SOC). However, the
rate of change, curve shapes, and voltage ranges vary signifi-
cantly due to differences in battery materials, operational condi-
tions, and testing environments. Details of the charging and dis-
charging conditions for the public datasets are provided in Note
S1. Additionally, voltage curves across cycles reveal a clear
degradation trend, with different cycles represented by color
gradients to emphasize progression (Figure 2A). The color of
the curve transitions from light to dark, representing the progres-
sion of battery life from early to late stages. Batteries with higher
cycle counts can charge less, meaning that curves with darker
colors correspond to a lower SOC. The batteries in each dataset
operate under diverse conditions, such as temperature, cutoff
voltage, charge rate, and discharge rate. Assuming that the
red curves represent known batteries and the blue curves repre-
sent unknown batteries, the capacity of both groups decreases
progressively with cycles, exhibiting distinct degradation pat-
terns (Figure 2B). This assumption is reasonable given that bat-
tery cycling is time consuming; thus, manufacturers often
perform accelerated tests and then transfer insights derived
from them to the conditions of interest.

To establish this transfer relationship, we classify the batteries
into two domains, the source domain and the target domain,
based on operating conditions, with specific criteria provided
in Table S2. From each dataset, we select the batteries with
the shortest and longest lifespans to represent aggressive and
moderate degradation trends, respectively (Figure 2C). This
classification highlights the considerable range of battery life-
spans observed, with the longest lifespan reaching 2,000 cycles,
while the shortest lifespan is merely around 170 cycles. To reflect
internal degradation mechanisms, interpretable features are ex-
tracted from charging voltage curves with prominent degrada-
tion trends. Although these features differ in their mathematical
formulations, they retain consistent physical meanings across
datasets and capture key electrochemical processes, including
charging acceptance, polarization rate, resistance, and various



Cell Rerrts .
Physical Science

A

New Batteries Divergent Operations

[C )]
() (=) f
[C [ -- N
—__,,_— " Charge
TJ,& Temperature Voltage \-
<& Current @} DOD Discharge
J\,— Charging/Discharging Rate Cycle

B

Sufficiency Components

Testing Data

Data Sufficiency

¢? CellPress

OPEN ACCESS

Robust Early Prediction

Capacity
== Available Early Data
“** Predicted Capacity

Cycle 1 (-\.

Stop Testing N

Cycle
New Batteries R&D

When the cycling ) I
data is sufficient |®

@

Speed Up R&D

F1 g TDS=0DS in two cases A Prediction
F2 8 ¢ -r——————— Accuracy
(a 2 Fn I ! eoPC - ST
EL::‘E:‘ E € lcycle Evoluti : "'""'\.TC > 7 e® TDS(ODS) /—»Rd dant
~~~~~ - ycle Evolution I edundan
B AN
A s . TC Data Volume
1 F1 = | MAPE Cycle ' Sufficient
F'2 1 '
F13, F3, b I i
il n | ——— === BRg------- 5 %
. 3 (") 0} Gl Reconfirm é‘_ C\@
Ne__) [t el © m
1-WD Cappre Save time

Theoretical Data Sufficiency: TDS
TDS = argmax[f (PC,TC)]
t

f[(PC' TO)] = TCrorm (t) + PCrorm (£) + AT Crorm (£) + APCryopm (£)

TC: Transferable Capability
norm: normalization

PC: Predictive Capability
Cap: Capacity

Figure 1. The empirical study of data sufficiency

WD: Wasserstein Distance Corr: Correlation
Acc: Accuracy

®/® Without/With Feature Selection

Observable Data Sufficiency: 0DS
0DS = argmax[AAcc(t) > 0,AAcc(t +1) < 0]
t

Acc =1 — MAPE
AAcc(t) = Acc(t) — Acc(t — 1)

F/F': Source/Target Domain Feature

(A) llustration of the challenges associated with data testing volume, coupled with robustness challenges arising from diverse operating conditions, such as
temperature, voltage, current, and depth of discharge (DOD). The process determines when cycling data become sufficient to start predicting, using already

available early data to predict the subsequent battery SOH.

(B) The approach defines predictive capability (PC) and transferable capability (TC) as data sufficiency (DS) components derived from physically interpretable
features. The evolution of PC and TC over cycles establishes the theoretical DS, while the relationship between estimation accuracy and the number of cycles
defines the observed DS. Formulas are explained in the methods section. Features located in the top right quadrant of the PC-TC plot are selected to simplify the

model and validate the identified DS through feature selection.

types of polarization (electrochemical, ohmic, and concentra-
tion). Details of feature names and physical interpretations are
provided in Tables S3 and S4, with extraction processes illus-
trated in Figure S1. Derived from the ninth charging stage in
our dataset as an example, we observe substantial variations
in feature distributions across different temperature conditions
(Figure 2D). Distributions of other features are shown in
Figures S2-S4. Estimating SOH using limited data remains chal-
lenging because the capacity fade during initial cycles is minimal
(Figure 2E), even at elevated temperatures. For instance, high
temperatures accelerate capacity fade but result in only a
3.7% reduction during early cycles. Despite limited early
changes, extracted features effectively capture degradation

trends. Modeling capacity as the dependent variable and the
extracted features as independent variables reveals an almost
linear decrease in capacity as a function of features extracted
from stage 1, with a Pearson correlation coefficient of —0.96
(Figure 2F). Similarly, other features have a strong correlation
with early capacity, as shown in Figure S5. These results under-
score the utility of early-stage features in capturing degradation
trends, even if capacity changes are negligible at the early
stage.*®

Predictive capability and transferable capability

When new operating conditions are different from the existing
conditions, it is crucial to focus on the PC and TC at the same
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Figure 2. Visualization of datasets and features

(A) Charging voltage and state of charge profiles across seven datasets.

(B) State-of-health (SOH) degradation trends under different operating conditions in the seven datasets. Since SOH is a relative measure, representing the ratio of
remaining capacity to initial capacity, it has no specific physical units. Therefore, arbitrary units (a.u.) are used to denote SOH, emphasizing that the value is a
unitless relative quantity.

(C) Classification of source and target domains based on aggressive and moderate degradation, with battery lifespans for selected batteries in each domain. The
THU dataset includes two domain adaptation scenarios: THU 1 (source domain at 55°C, target domain at 25°C) and THU 2 (source domain at 55°C, target domain
at 35°C).

(D) Taxonomy of extracted features, categorized into four groups based on physical meaning, and their divergence across different temperature domains in
our data.

(E) Capacity reduction from the 1st to the 100th cycle for 32 batteries at various temperatures in our data.

(F) Relationship between stage 1 features and capacity in our data during the first 100 cycles (taking the first battery at 25°C in the target domain as an example).
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time. This helps determine whether the features can adapt to
varying conditions, enabling robust performance across environ-
ments, such as temperatures, charging rates, discharging rates,
etc. We select the THU dataset to showcase our approach (the
results in the other 6 datasets are presented in later sections),
including nine charging stages featuring high and low current
conditions and their switching. The dataset’s information rich-
ness allows for a proper identification of TC and PC based on
the physical features that can be generalized to the other 6
widely studied datasets.

Figure 3A illustrates that for different feature groups, both the
TC and PC values remain consistently high and stable during the
first 80 cycles, indicating strong PCs and TCs in the early stages
of degradation. This trend is consistent across target domains at
three different temperatures, with detailed variation trends
shown in Figure S6. However, as battery degradation pro-
gresses, the differences between the source and target domains
become more pronounced, leading to a gradual decline in TC
values in later cycles. After the 80th cycle, PC decreases sharply
before increasing again, possibly reflecting a transition from
early degradation mechanisms to an activation phase, followed
by a stabilized degradation until failure.*® Figure 3B uses varia-
tions in the amount of available data from the target domain to
fine-tune the source model, and all features are used to predict
the capacity in the target domain. It shows that as the amount
of available data increases, there is a critical point at which the
estimation error in the 25°C and 35°C target domains drops
significantly. Beyond this point, adding more data does not
significantly improve estimation accuracy, suggesting that an
optimal data volume for early-stage estimations exists. Remark-
ably, the 80-cycle threshold used to achieve optimal estimation
performance corresponds to the period where both the PC and
TC values remain high, as shown in Figure 3A, indicating that
data collected beyond this threshold become redundant.

This finding further suggests that PC and TC can guide the
identification of a DS point. To explore the potential physical
meanings of PC and TC, we present the distribution of these
metrics across all cycles for each feature in Figure 3C (with
55°C as the source domain and 25°C as the target domain, while
the distributions for 35°C and 45°C target domains are provided
in Figures S7 and S8). A clear pattern emerges: features from
stages 1 and 9, which involve low current, show higher PC and
lower TC, while features from stages 2-8, associated with higher
current, exhibit the opposite trend. This suggests a relationship
between TC, PC, and features in small or large current stages.
To make it clearer, we further explore the distribution of PC
and TC across different feature groups in Figures 3D-3G. Stages
1 and 9 are defined as thermodynamic processes and stages 2—
8 as kinetic processes based on the differing current inten-
sities.®>*® Thermodynamics represents the degradation of bat-
tery materials, which leads to irreversible capacity loss, and is
associated with PC. Kinetics, on the other hand, represents the
battery operation and is closely related to TC. The average
values of PC and TC are calculated for these two degradation
patterns. Thermodynamic features consistently demonstrate
higher PC values but lower TC values, indicating they are more
effective for direct SOH estimation. In contrast, kinetic features
show higher TC values but lower PC values, suggesting they
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are suited for transferring models across varying operation con-
ditions. This finding highlights that thermodynamic features may
be more reliable for accurate capacity estimation given fixed
operation conditions, while kinetic features play a key role in
ensuring model robustness and adaptability across different
operating scenarios.

Battery SOH estimation

Our dataset includes nine charging stages, resulting in a large
feature set of 42 variables. To optimize the model, we employ
PC and TC for feature selection, aiming to minimize the feature
set while preserving predictive accuracy. First, we calculate
the estimation accuracy for each feature by individually inputting
it into the transfer model and predicting the target domain. Fea-
tures with an estimation accuracy ranked in the top 50% during
the initial one-third of their lifespan are selected (see Figure S8).
These high-accuracy features demonstrate exceptional perfor-
mance under varying operational conditions and should be
prioritized. Assuming that we have not initially recognized these
superior features, we plot the distribution of all features in terms
of PC and TC, marking the selected features on the graph.
Figure 4A shows that, under the 25°C target domain, these
selected features are concentrated in the top right corner, indi-
cating high estimation and transferability performance.*”

Interestingly, features that perform well when trained and pre-
dicted individually are primarily located in the top right corner of
the PC-TC plot, which corresponds to higher PC and TC values.
Next, we train and fine-tune the model using only the selected
features. Figure 4B compares the performance of various
methods, including standard machine learning models (support
vector regression [SVR] and Gaussian process regression
[GPRY]), non-transfer long short-term memory (LSTM) models,
and our model. The results demonstrate that fine-tuning pro-
vides superior performance for predicting the capacity of new
batteries compared to non-fine-tuned models, as well as outper-
forming traditional machine learning methods. Additionally, fine-
tuning is particularly well suited for models with neural network
architectures, whereas conventional machine learning methods
are unable to perform fine-tuning. Consequently, other machine
learning models are trained on source domain data and used to
predict battery capacity beyond the available data in the target
domain. SVR and GPR produce fixed initial estimations that
remain stable over time. In contrast, our approach consistently
achieves the lowest estimation error across varying data vol-
umes. Notably, the estimation errors significantly decrease by
the 80th cycle and remain nearly constant with further cycling.
This finding not only validates the effectiveness of our method
but also underscores the 80th cycle as the DS point. Further-
more, the model with selected features still exhibits a DS point,
consistent with the findings shown in Figure 3B regarding the
DS point without feature selection, though the degree of estima-
tion accuracy varies.

Similarly, Figures 4C and 4D depict the results for the 35°C
target domain, where features with high predictive accuracy
are also clustered in the top right corner of the PC-TC plot.
Once again, the estimation error does not significantly decrease
after the 80th cycle, reinforcing the conclusion that 80 cycles
represent the threshold for sufficient data volume. Given the
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Figure 3. Predictive capability and transferable capability analysis across cycles and features
(A) Predictive capacity (PC) and transferable capability (TC) trends over degradation cycles for different feature categories, with color intensity representing TC
values and the size of the bubbles representing PC values.
(B) MAPE of capacity estimations as a function of available cycles, where MAPE is computed based on the predicted capacity beyond the available cycles.
Results show that 80 cycles are sufficient in the target domains (25°C and 35°C).
(C) Distribution of PC and TC across 42 features.

(D-G) Distribution of PC and TC for low-current charging features (stages 1 and 9) and high-current charging features (stages 2-8) across feature groups. For TC,
Vg features averaged 0.85 + 0.06 (P1) and 0.95 + 0.02 (P2); Q features averaged 0.89 + 0.06 (P1) and 0.90 + 0.04 (P2); RL features averaged 0.80 + 0.13 (P1)
and 0.93 + 0.02 (P2); RO features averaged 0.85 + 0.06 (P1) and 0.93 + 0.02 (P2); and polarization features averaged 0.72 + 0.09 (P1) and 0.84 + 0.03 (P2). For

PC, Vg features averaged 0.92 + 0.04 (P1) and 0.63 + 0.15 (P2); Q features averaged 0.98 + 0.008 (P1) and 0.95 + 0.05 (P2); RL features averaged 0.91 +

0.13

(P1)and 0.86 + 0.12 (P2); RO features averaged 0.89 + 0.04 (P1) and 0.70 + 0.10 (P2); and polarization features averaged 0.83 + 0.16 (P1) and 0.59 + 0.23 (P2).
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Figure 4. Model performance with feature

selection in the THU dataset

(A) Feature distribution in the 25°C target domain,
with transferable capability on the x axis and
predictive capability on the y axis, showing high-
accuracy features concentrated in the top right
corner.

(B) Comparison of different methods: MAPE of

estimations in the 25°C target domain (55°C is the
source domain) using features selected from
(A) across different available data amounts.

(C) Feature distribution in the 35°C target domain,
with high-accuracy features concentrated in the
top right corner.

(D) Comparison of different methods: MAPE of
estimations in the 35°C target domain (55°C is the
source domain) using features selected from
(C) across different available data amounts.
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(E) Parity plot and error distribution for SOH esti-
mation using selected features versus all features
in the 25°C target domain.
(F) Parity plot and error distribution for SOH esti-
mation using selected features versus all features
in the 35°C target domain.
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large number of features, it is essential to evaluate feature perfor-
mance to reduce redundancy and decrease model complexity.
We compare the predicted capacities and actual capacities, as
well as the error distributions, using the selected features versus
all features from the former 80 available data. As shown in
Figure 4E, estimations for all nine batteries in the 25°C target
domain using selected features are more closely aligned along
the diagonal, indicating an accurate estimation based on actual
capacities, with absolute error distributions centered around
zero, suggesting a minimal error bias. In contrast, estimations
using all features tend to deviate from actual capacities, with
most absolute errors above zero, indicating bias. Figure 4F pre-
sents similar trends for capacity parity and error distribution plots
in the 35°C target domain.

Empirical DS verification across datasets

To assess the generalizability of the proposed method, the per-
formance is validated across six additional datasets besides our
dataset. The seven datasets collectively comprise 310 batteries

Predicted SOH (a.u.) Absolute Error (a.u.)

those extracted from the THU dataset by
aligning physical meanings. Features are
denoised and grouped into four cate-
gories: Vg (polarization speed), Q
(charging capacity), RL (resistance), and
polarization group (electrochemical, ohmic, and concentration
polarization). Detailed features are shown in Table S4.

To identify the optimal DS point, the temporal evolutions of
PC and TC over battery cycles are analyzed. The TDS is
defined as the cycle corresponding to the maximum linear
combination of the mean PC and mean TC values across all
features. This initial estimate is further recalculated through
feature selection based on feature distributions. The three-
step TDS identification process incorporating feature selec-
tion is as follows. First, using all features, the preliminary
TDS is identified based on the cycle exhibiting the highest
combined average PC and TC values. The initial cycle indi-
cates a high overall feature performance but lacks detailed
insight into individual feature contributions. Second, at the
initial TDS, feature distributions are plotted for each dataset,
with TC values on the x axis and PC values on the y axis.
To simplify the model, features in the top right quadrant of
the plot, where PC > 0.5 and TC > 0.5, are selected. Finally,
using the selected features, the average TC and average PC
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----Unbiased Prediction

Cell Reports Physical Science 6, 102901, October 15, 2025 7




Cell Reports

¢ CelPress Physical Science
OPEN ACCESS
A NASA TJU CALCE XJTU
__1.00 : i i i
E i i i i
< L L | |
o 0.50~=====~ ittt B EEETEEE ettt B SLLEEt D et I LELE St bomemme
o 1 1 I 1
I 1 1 1
0.00 : ! ! !
0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00
TC (a.u.) TC (a.u.) TC (a.u.) TC (a.u.)
Feature =~ Vg Q RL T_CCCcVv T_CVCA
B HUST c MIT
__1.00 i Vgt~ RLZ 100 i Vgt~ RL1 VD2
5 | Vg2 RO 3 E Vg2 RL2 ' tvD2
© I ©
5 0.50f-====-- :— ——————— Q2 tvD2 5’ 050 ======~ it Q1 RO ® ReVC
o ! RL1 o | Q2 VC21 A ReVD
0.00 : 0.00 : I tReVD
0.00 0.50 1.00 0.00 0.50 1.00
TC (a.u.) TC (a.u.)
D NASA TJU CALCE
< 1.00 w 1.00 1.00| %20 Cycle 1.00 1.00 1.00 ’;
S 0.90 M 090 0.85 090 0.90 055 S
2 080 ¥ L e 080 070 0.80  0.80| 19 cyce 020 &
>
o 1.00 10 Cycle 1.00] |20 Cycle 30 Cycle
I
< 098 0.99
4 22 42 10 100 200 10 100 200
Available Data (Cycles) Available Data (Cycles) Available Data (Cycles)
MIT XJTU HUST
= 1.00[ 60 cycle 100 1.00 100 1.00 1003
S 0.90 0.80 0.90 070 0.85 055
g 60 Cycle Yo
'9 0.80 0.60 0.80 5 Cycle 040 0.70 W 0.20 &
g 1.00 80 Cycle 1.00{ ! 40 cycle 1.00 60 Cycle
3
£ 0.98 0.98 0.97
20 200 400 5 50 100 20 200 400
Available Data (Cycles) Available Data (Cycles) Available Data (Cycles)
® TC ® PC Accuracy M Observed Data Sufficiency --- Theoretical Data Sufficiency
E NASA TJU CALCE MIT XJTU HUST
S 1.00 =
z ﬁ
T 085 N
O 070 A\
n Y N
0 008 016 O 04 08 O 04 08 O 05 10 0 02 04 0 10 20
Lifetime (x 103 Cycles)
E = Source = Target_True =Target Pre = EOL75 -- EOL80 --EOL85 EOL90 --EOL95
é NASA TJU CALCE MIT XJTU HUST
3 15 *®] 60 ®]6.0 e ®J10.0 45 o 71200 &
< . o - &
% 1.0 o 3.7 ’ 33 e 8.5 3.2 13.9 ’
2 04l 0.4le” 0.6l 7.0Le” 1.9le” 6.0la”
= 04 10 15 04 37 70 06 33 60 70 85 100 19 32 45 60 130 200
5 True_Lifetime (x 10%Cycles)
& eEOL75 eEOL80 ©EOL85 «EOL90 e EOL95

8 Cell Reports Physical Science 6, 102901, October 15, 2025

(legend on next page)



Cell Re[?orts .
Physical Science

values are recalculated to identify the final TDS, following a
similar approach to that in the first step.

Figures 5A-5C correspond to the first and second steps of the
TDS identification process. As shown in Figure 5A, under con-
stant current-constant voltage (CCCV) conditions, five key fea-
tures (including two from the polarization group) are consistently
identified across datasets. These features are clustered in the
top right quadrant of the PC-TC plot, highlighting the effective-
ness of the interpretable feature engineering framework.
Figures 5B and 5C illustrate that for multi-stage charging and
discharging profiles, additional stage-specific features can be
identified when aligned with their physical interpretations. These
features also predominantly cluster in the top right quadrant,
further supporting the trend that features selected at the initial
TDS exhibit high average PC and TC values. Figure 5D corre-
sponds to the third step of the TDS identification process.
From the top right quadrant of the PC-TC plot, critical features
for each dataset are identified, leading to a recalculated TDS.
The recalculated TDS represents a validation and adjustment
of the initial TDS derived from all features, further optimizing
the DS point. Beyond the TDS, the ODS is defined as the cycle
where estimation accuracy ceases to improve, providing an intu-
itive explanation of the trade-off between estimation accuracy
and testing duration. A more intuitive definition of ODS is the
point where the derivative of accuracy is zero (see the methods).

As shown in Figure 5D, the alignment between TDS and ODS
across datasets supports the hypothesis that features with high
PC and TC values enable accurate and robust estimations. Both
the PC-TC-defined TDS and the accuracy-defined ODS effec-
tively identify DS points. The observed trends in PC and TC
values further validate our hypothesis. PC values initially in-
crease, decline, and then rise again, while TC values typically
show a high initial stage followed by a gradual decline. These
trends are consistent across datasets and align with earlier ob-
servations in the THU dataset. For the NASA, TJU, CALCE,
and HUST datasets, the TDS and ODS correspond perfectly,
while for the MIT and XJTU datasets, the discrepancies are min-
imal, only 1.5% and 1.3%, respectively. Importantly, these suffi-
ciency points are observed early in the battery life cycle, typically
within about the first 8% of the lifespan.

We stress that the predictive and transferable performance by
the DS-guided feature selection and model reduction is consis-
tent across different degradation mechanisms, as evidenced by
different datasets. As shown in Figure 5E, the predicted SOH
closely matches the actual SOH even if the source domain and
target domain have distinct patterns. Furthermore, beyond
SOH estimation, performing sensitivity analysis at different
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SOH levels is of particular interest for practical applications
such as rapid residual value evaluation.*® The predicted ends
of life (EOLs) corresponding to capacity thresholds of 75%,
80%, 85%, 90%, and 95% of the initial capacity (denoted as
EOL75, EOL80, EOL85, EOL90, and EOL95) are compared
with the true EOL across six datasets. Monitoring the EOL is
essential to ensure that the predicted SOH does not deviate
from the actual SOH, even when the overall estimation error is
low. The EOL is determined by first obtaining the predicted
SOH and then drawing a horizontal line at the specified capacity
threshold and identifying the cycle at which this line intersects
the curve. This comparison enables a comprehensive assess-
ment of the model’s robustness in predicting not only the overall
SOH but also the exact cycle when critical capacity losses can
occur. The results, summarized in Figure 5F, demonstrate the
model’s high generalizability in estimating EOL across different
degradation thresholds, which is often associated with different
degradation mechanism dominance. The estimation errors are
12, 42, 34, 38, 24, and 32 cycles for the NASA, TJU, CALCE,
MIT, XJTU, and HUST datasets, respectively.

DISCUSSION

This empirical study proposes an examination of battery DS to
determine the minimum data volume required for fine-tuning to
achieve accurate battery SOH estimation, a challenge for which
prior work has not yet provided a generalizable solution. The
ODS calculated from the estimation accuracy aligns closely
with the TDS derived from PC-TC metrics. This consistency is
validated across seven datasets with 6 varying materials, 7 oper-
ating conditions, and 7 transfer scenarios. It demonstrates that
an average of the first 8% of battery life cycle data (THU 6.0%,
NASA 5.9%, TJU 2.5%, CALCE 1.2%, MIT 8.0%, XJTU 2.5%,
and HUST 3.0%), as a conservative guideline derived from our
multi-dataset analysis, is sufficient to achieve anticipated esti-
mation accuracies and cross-operation-condition transferability.
Beyond this critical DS point, additional data do not necessarily
improve estimation performance under transferable settings.
Building on Severson et al., which utilized data from the first
100 cycles for lifetime estimations, this study demonstrates
that early-stage data are sufficient to adapt source domain
models to target domains, thereby enabling accurate SOH esti-
mation.*® This work provides a reliable foundation based on an
empirical study of DS that explains why and to what extent
early-life data can forecast future performance under single
and across multiple operation conditions. It also underscores
the practical benefits of reducing experimental costs

Figure 5. Validation of data sufficiency across datasets

(A) Feature distribution for transferable capability (TC) and predictive capability (PC) under CCCV conditions, where the physical meaning of features extracted

from multiple datasets is aligned with those from our dataset.

(B) Feature distribution for PC and TC under multi-stage discharging conditions, with aligned physical meanings from our dataset.
(C) Feature distribution for PC and TC under multi-stage charging conditions, with aligned physical meaning across datasets.
(D) PC and TC trends over cycles for six datasets, with estimation accuracy at various available data volumes in the target domain, showing close agreement

between theoretical and observed data sufficiency (DS) points.

(E) Battery SOH is predicted across six datasets using sufficient data. The transfer scenarios were set with a discharge cutoff voltage shift from 2.7 to 2.5 V in
NASA, a temperature shift from 45°C to 25°C in TJU, a discharging rate shift from 1 to 0.5 C in CALCE, a charging rate transition from 6 to 4 C in MIT, a charging
rate shift from 3 to 2 C in XJTU, and a discharging rate shift from 4 to 3 C in HUST.

(F) Sensitivity analysis under five different EOL thresholds (75%, 80%, 85%, 90%, and 95%) across the six datasets.
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and time without compromising estimation accuracy and
transferability.

We must acknowledge that the results are based on the empir-
ical evaluation of existing datasets, which could lead to biased
conclusions due to the incomplete inclusion of extreme degra-
dation mechanisms, one of the most determinant factors
influencing the PC and TC of physical features. However, the
proposed empirical study of DS is validated across 7 datasets
with significantly different degradation curves, implying the in-
clusion of a wide range of degradation mechanisms, as depicted
in Figure 2B. Existing studies also indicate that battery degrada-
tion mechanisms can be generally divided into three stages: the
early formation of the solid electrolyte interphase (SEI) layer, a
relatively stable internal state followed by dominant processes
of loss of lithium-ion inventory (LLI) and loss of active materials
(LAM), and the later stage leading to eventual failure.**°° The
degradation stage over the whole battery life aligns with data-
driven findings that changes in PC and TC occur in distinct
phases, reflecting the progression of battery degradation. The
trends in PC and TC closely mirror the battery degradation
process. Initially, PC is high, which may correspond to the early
formation and stabilization of the SEI layer. Then, there is a
noticeable decrease in PC, likely due to the completion of activa-
tion or SEI growth. During this first stage, TC remains relatively
high because there is little differentiation between batteries in
the early stages of their lifespan. In the second stage, PC grad-
ually increases, and TC gradually declines, likely reflecting
the phase dominated by loss of LLI and LAM. In the final
stage, PC experiences a sharp decline, and TC continues to
decrease, which may correspond to the battery failure phase.
Although degradation mechanisms remain unexplored, the
trends observed in our PC and TC metrics can help explain
currently recognized degradation processes. The correspon-
dence between the PC and TC values in Figures 3D-3G and
the features of the small and large current phases suggests
that PC and TC not only have mathematical significance but
also potential physical relevance. This can aid in reflecting the in-
ternal degradation mechanisms of batteries, particularly those
related to thermodynamic and kinetic degradation processes.

As large models continue to evolve, the sufficiency of training
data becomes increasingly critical. While larger datasets may
require more computational resources, appropriately selected
and sufficient data can reduce dependence on high computa-
tional power. In battery management, large-scale predictive
models rely on high-quality, sufficient data to ensure accurate
estimations and effective learning. The complexity of these
models and their computational demands highlight the impor-
tance of optimizing training data. Ensuring DS, particularly during
the early stages of battery degradation, not only reduces compu-
tational costs but also improves model accuracy. Striking the
right balance between dataset volume and estimation precision
is essential as model complexity and computational demands in-
crease. By focusing on early-life data, it is possible to achieve
estimation accuracy and transferability while minimizing both
data requirements and computational costs, thus making large
model training more feasible and cost effective.

Our empirical study opens several pathways for future battery
research exploration. One key area is expanding the applicability
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of PC and TC metrics to a broader range of battery chemistries,
operational conditions, and degradation mechanisms. We aim
to further uncover deeper insights into the degradation mecha-
nisms of batteries through the analysis of PC and TC when
extensive electrochemistry-level data testing is accessible. By
exploring their contributions to decoupling thermodynamic and ki-
netic losses, we hope to validate our findings from a chemical and
materials science perspective. Interpretable features not only aid
in understanding degradation mechanisms but also provide a
foundation for developing more robust estimation models that
can handle diverse and unforeseen operational conditions. Based
on PC and TC, future work could extend TDS by integrating adap-
tive sampling strategies and dynamic recalibration mechanisms,
enabling robust estimation performance in real-world battery
management systems. Additionally, we attempt to apply our
method across different battery chemistries to investigate
whether similar patterns in PC and TC emerge under more
extreme transfer settings. Given that the method is empirical in na-
ture, a larger and more diverse set of data would be required to
fully support claims of a universal principle of DS. Nevertheless,
our study has been validated on seven datasets with diverse oper-
ating conditions, which represents a relatively rich collection
compared with previous studies (see Table S6). In future work,
we aim to extend validation to even broader operation conditions,
such as varying user preferences and historical usage patterns.

METHODS

PC within one domain

The correlation between features and capacity reflects the de-
gree to which a feature can accurately predict capacity, with
stronger correlations indicating a higher potential for reliable ca-
pacity representation. Thus, we define the PC using the Pearson
correlation coefficient. Given that battery degradation is a
time-dependent process, it is critical to account for temporal dy-
namics when assessing PC rather than relying on static evalua-
tions. Therefore, we extend PC to incorporate its evolution over
cycles, defining the time-dependent PC’,: as

$°(F/ ~ F)(cap ~ Cap)
PCl = = :
=1 j=1

]

(Equation 1)

il
I

(Equation 2)

- , .
Cap = > cCap, (Equation 3)

where PC/ represents the PC of the i-th feature up to cyclej, F/ is
the value of the i-th feature at the j-th cycle, Cap/ is the corre-
sponding capacity at the j-th cycle, m is the number of available
cycles, F; is the average value of the j-th feature over m cycles,
and Cap is the average capacity over m cycles.
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TC across domains

Battery capacity degradation exhibits inconsistent degradation
patterns under varying operational conditions. Similarly, feature
distributions can vary across domains due to differences in these
conditions. To quantify the distributional divergence of features
across domains, we employ the Wasserstein distance (WD),
which measures the discrepancy between feature distribu-
tions.*” A smaller WD indicates better alignment of feature
distributions across domains, suggesting that features are
less influenced by dynamic conditions and thus possess
higher transferability. Accordingly, we define TC using 1 —
WD. As we did with PC, we extend TC to incorporate its evolu-
tion over cycles, defining the time-dependent TC as TC/:

TC, = 1 — WD, (Equation 4)
1/q
WD§ = inf /|XS,ij - XT‘/‘{qd}’(Xs,/,XT./) )
er(rid)
2x0

(Equation 5)

where TC/ represents the TC of the i-th feature up to cycle j, W,
quantifies the feature distribution difference between source and
target domains, and WD{ is the WD of the i-th feature up to cycle
j, quantifying the distributional discrepancy between the source
and target domains for this feature over the firstj cycles. Pj and
Qf are probability distributions of the i-th feature in the source
and target domains, respectively, calculated based on the data
from the firstj cycles. 2 is the domain of feature values. y is a joint
distribution over 2 x € with marginal distributions P, and Q. Xs/
and X7/ are the values of the i-th feature in the source and target
domains, respectively, over the firstj cycles. q is the order of the
WD, commonly g =1 orq = 2. Here, q = 1 is chosen to avoid
the effect of measurement noises.

LSTM with fine-tuning

To model the sequential degradation behavior of battery capac-
ity, we utilize an LSTM network, which captures the temporal de-
pendencies in the battery data. Specifically, the current capacity
of a battery is influenced by its preceding feature states. There-
fore, the features from the preceding three cycles are used as
input to predict the current capacity. The input feature sequence
for the source domain battery is defined as

source __
X,-,,put = [Xt_a,Xe—2,Xt-1],

(Equation 6)

where x; _3,X;_2, and x; _ 1 represent the features of the battery
at three consecutive previous time steps.

The time step is set to be three for the elbow rule (Figure S9).
Using the LSTM model trained on the source domain, the pre-
dicted capacity of the battery is obtained as y;°®.

The LSTM model architecture consists of sequentially stacked
layers, with the first LSTM layer comprising 96 units. This layer ac-
cepts input data with a shape of (T,F), where T denotes the num-
ber of time steps and F represents the number of features. The
second LSTM layer contains 64 units and outputs only the final
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time step of the sequence. The outputs from the LSTM layers
are subsequently processed through two fully connected (Dense)
layers. The first Dense layer consists of 32 units with weights
initialized using the Glorot uniform initializer. The final Dense layer
contains a single unit, providing the regression output of the
model, also initialized with Glorot uniform. Weight initialization is
adopted to improve convergence stability in recurrent networks.
The model is trained using the Adam optimizer, and the mean
squared error is employed as the loss function.

To adapt the pre-trained model to the target domain, fine-tun-
ing is performed using data from the target battery. The input
feature sequence for the target domain battery is defined as

target
Xinput

= [Xt/‘—(i’x;fz?)(;fdv (Equation 7)

where x;_4,X;_,, and x;_ denote the corresponding features in
the target domain.

In the fine-tuning stage, the model weights within the first two
LSTM layers are frozen, ensuring that the learned temporal rep-
resentations remain fixed. Assuming the first d cycles of a new
battery are available for testing, the model weights within the
two Dense layers are fine-tuned using features and actual
discharge capacities from the previous d cycles of new batteries.
The remaining actual capacities are then used to validate the
performance of the fine-tuned model. The adapted model pre-
dicts the capacity for the target domain battery as y:9'. The
optimization is performed using the Adam optimizer with a batch
size of 64, over 20 epochs. This fine-tuning process ensures that
the model leverages the knowledge learned from the source
domain while adapting to the specific characteristics of the
target domain, improving the transferability of estimations under
varying operational scenarios.

Evaluation metric
The MAPE is defined as

C
>y - ¥l

MAPE = =¢ x 100%, (Equation 8)

Mo

Yi
d

i

where y; and )7j are the true capacity and predicted capacity in the
j-th cycle, respectively. C is the length of battery cycles, and d is
the starting estimation point, which means the available cycles.

oDS

DS refers to the minimum amount of data required to achieve a
high estimation accuracy, where further data curation does not
lead to a significant improvement in accuracy or reduction in
estimation error. To quantify this, we propose the concept of

ODS, defined based on the MAPE. The accuracy is defined as
Acc = 1 — MAPE. (Equation 9)

To identify the contribution of each additional data interval, the
change in accuracy, AAcc (j), between successive intervals is
calculated as
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AAcc (j) = Acc (j) — Acc (j — 1). (Equation 10)

The ODS is determined as the cycle index j, where the accuracy
continues to increase but subsequently stops improving,
defined as

ODS = arg max[AAcc (j) > 0, AAcc (j + 1) < 0],
J

(Equation 11)

where ODS is the observed DS, representing the cycle at which
the estimation accuracy reaches its peak without further improve-
ment. It identifies the point at which additional data no longer
significantly enhance the model’'s predictive performance,
ensuring efficient use of available data while minimizing
redundancy.

TDS

PC and TC quantify a feature’s ability to predict capacity
accurately and maintain performance under varying operating
conditions in transfer learning scenarios. The combination of PC
and TC forms the foundation for defining TDS. We first calculate
the average TC, and average PC] across all features:

TC(j) = %ZTC{I (Equation 12)

i=1

1< i
PC(j) = - 2 PC. (Equation 13)
TC] is the TC of the i-th feature before cycle j. PC] is the PC of
the i-th feature before cycle . n is the total number of features.
Both TC(j) and PC(j) are normalized to the range [0,1] to
ensure comparability:

TCnorm(j) = % (Equation 14)
PCnorm(j) = % (Equation 15)

To account for the decline in TCpom (j) and PCrom(j) across
consecutive cycles, the following differences are calculated:

ATCrom (/) = TCrom(j) — TCnom (i + 1) (Equation 16)

APCrom(j) = PCrorm(j) — PCrorm(j + 1).  (Equation 17)

The combined metric integrates normalized TC and PC values
while emphasizing their decline to highlight the current cycle’s
comprehensive value:

f (PC7 TC) = TCnorm (/) + PCnorm (/) + A-I—Cnorm (]) + AF>Cnorm (/)
(Equation 18)

TDS is defined as the cycle j where f (PC,TC) reaches its
maximum:

TDS = arg max|f (PC,TC)]. (Equation 19)
]
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Inthis way, TDS indicates the cycle at which the TC and PC are
both high, marking the theoretical point of sufficient data.

SVR

An SVR model is implemented to predict the SOH of the target
battery using the same source domain features as input. Prior to
model training, all input features and capacity values are normal-
ized to the range [0, 1] using a MinMaxScaler, ensuring consis-
tency between the source and target domains. The SVR model
employs a radial basis function (RBF) kernel with a regularization
parameter of C = 10, an epsilon-tube margin of ¢ = 0.1, and a
kernel coefficient of y = 0.1. These hyperparameters are selected
empirically to balance the model’s bias and variance and to
ensure stable convergence across cross-domain scenarios. The
model is trained on the source battery data and tested on the
target battery. After estimation, the normalized capacity outputs
are inverse transformed back to the original scale to facilitate
direct comparison with the actual capacity values. The model im-
plementation is conducted using the SVR class from the scikit-
learn library with standard settings unless otherwise specified.

GPR

A GPR model is developed to predict the SOH of the target
domain battery based on the training data from the source
domain battery. Prior to model training, all input features and
capacity values are normalized to the range [0,1] using a
MinMaxScaler, ensuring scale consistency between the source
and target domains. The GPR model employs a composite
kernel function, defined as the product of a constant kernel
C(1.0), with bounds setto (1 x 10~3, 1 x 10%), and an RBF kernel
with an initial length scale of 1.0 and bounds of (1 x 1072, 1 x
102). To mitigate the risk of convergence to local minima during
hyperparameter optimization, the model uses ten restarts of the
optimizer. An additional noise term (@« = 1 x 10~4) is incorpo-
rated to account for measurement noise and inherent variability
in the data. After estimation, the normalized capacity outputs are
inverse transformed to their original scale for evaluation. All
model implementation and training procedures are performed
using the GaussianProcessRegressor class from the scikit-learn
library with default settings unless otherwise specified.
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