Abdelfattah, M. FORUM @

Ontology-Augmented Multi-Agent Reinforcement
Learning for Enhancing EV Charging Network
Recovery

Mohamed Abdelfattah’
Technische Universitat Berlin, Berlin, Germany
E-mail(s): m.abdelfattah.ibrahim.mohamed@tu-berlin.de

Abstract: Electric Vehicle Charging Networks (EVCNSs) face critical vulnerabilities during power
outages, causing transportation disruption and grid instability. Our previous work introduced EVCAR, a
Multi-Agent Reinforcement Learning (MARL) framework for post-outage recovery, but it operates with
limited contextual awareness. This paper presents EVCAR-KG, extending our EVCAR system with a
domain-specific knowledge graph that functions as a semantic digital twin. The framework enhances
our original agents with ontology-augmented perception, knowledge-guided action formulation, and
semantically augmented rewards. Experimental results show EVCAR-KG achieves 20 percent faster
convergence (3,013 vs 3,764 episodes) and reduces recovery time from 43.0 to 40.0 hours compared
to our baseline TD3-MADDPG implementation, with only 14 percent computational overhead. The
complete implementation, including the ontology definition, agent integration code, and serialized OWL
file, is publicly available at: https://doi.org/10.5281/zenodo.15824931
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1 Introduction and Related Work

The rapid adoption of electric vehicles (EVs) presents significant challenges to the resilience of urban
charging infrastructure. During power outages in densely populated districts, EV drivers often migrate
en masse to neighboring areas, leading to congestion and voltage instability[1]. Events such as Berlin’s
2019 blackout highlight the severity of such disruptions [2], increasing waiting times and overloading
grid components.

The Electric Vehicle Charging Quality of Service Adaptive Recovery (EVCAR) system introduced a
multi-agent deep reinforcement learning (MARL) approach to mitigate post-outage impacts [2]. EVCAR
employs district-level agents adjusting charging rates and a central agent redistributing displaced EVs,
achieving improved waiting times and grid stability compared to heuristic methods.

Building upon EVCAR, we investigate whether semantic knowledge integration can further enhance
agent adaptability. Specifically, we explore ontology-driven knowledge graphs (KGs) to enrich agents’
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spatial, infrastructural, and operational awareness. Recent research highlights ontology-enhanced
reinforcement learning (RL) for better generalization, accelerated convergence, and reliable decision-
making. One direction uses ontologies to directly guide agent behavior via embedded expert knowl-
edge. For instance, the CORL framework integrated domain ontologies into classification tasks, turning
RL into structured reasoning [3]. Similar frameworks appeared in cybersecurity with ontology-defined
penetration strategies combined with RL and reasoning architectures [4], [5], allowing efficient action
pruning and safety constraints.

Another approach preserves RL agent autonomy while enriching observations through ontology-
derived contextual knowledge. Examples include the Automatic Goal Generation Model (AGGM),
dynamically generating agent goals using ontology rules during state shifts [6], and the OnCertain
model enhancing RL responses during uncertainty via ontology reasoning [7]. Furthermore, ontol-
ogy reasoning effectively handled sensor data gaps in smart traffic systems by inferring missing
states through upstream-downstream congestion relationships [8]. Such ontologies inject semantic
awareness into agents, maintaining RL exploration while improving decision-making under partial
observability.

Finally, ontology-driven knowledge graphs have enhanced multi-agent coordination. Manufacturing
studies used shared ontologies for real-time adaptive scheduling, dynamically aligning task and
resource understanding among agents [9], [10]. This concept of shared semantic understanding is
particularly relevant for decentralized multi-agent systems like EVCAR, supporting agents’ coordinated
efforts toward maintaining grid stability and service equity.

This paper introduces EVCAR-KG, augmenting MARL with ontology-based knowledge to assess if
structured knowledge enhances training and deployment adaptability. By aligning our ontology with
schemas like EVKG [11], we ensure interoperability with real-world systems.

The primary research question is: Can integrating a domain ontology as a knowledge graph improve
MARL agents’ learning efficiency and decision quality in EV charging network QoS recovery through
embedded contextual knowledge?

Our contributions include:

- Designing a domain-specific ontology capturing essential EV network relationships and opera-
tional states.

- Integrating the ontology with EVCAR MARL, enabling semantic agent observations.

- Evaluating improvements in learning efficiency and QoS recovery within a controlled EVCAR
environment.

2 Methodology

2.1 System Architecture Overview

EVCAR-KG extends the baseline EVCAR system through three enhancements: (1) ontology-driven
knowledge graph representing EV charging network structure/state, (2) semantic query interfaces for
high-level contextual information, and (3) knowledge-informed decision mechanisms including action
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masking and reward shaping. These extensions improve agent adaptability in variable scenarios,
motivated by prior ontology-enhanced RL works [8], [5], [10]. Figure 1 shows the architecture.
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Figure 1: EVCAR-KG methodology flowchart showing the integration of ontology-driven knowledge
graph with multi-agent reinforcement learning for EV charging network recovery

2.2 Ontology Architecture
The EVCAR-KG ontology provides a comprehensive semantic model of EV charging network recovery,

structured in Web Ontology Language (OWL). It extends the EVKG schema [11] with domain-specific
post-outage recovery concepts.

The ontology defines hierarchical classes capturing static infrastructure and dynamic operational
states, distinguishing between infrastructure entities, operational events, and agent concepts (Figure

2).
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Figure 2: Ontology structure of EVCAR-KG in Protégé, showing key classes and semantic relationships
relevant to EV charging network recovery.

Object properties establish network topology through spatial relationships (locatedIn, hasNeighbor),

power relationships (powers, suppliedBy), and operational associations (involvesVehicle, affectsDistrict).
Data properties capture both static characteristics (district types, battery capacity, station capacity)

and dynamic state variables (queue lengths, voltage deviations, SoC levels, congestion states).

The ontology incorporates inference rules that derive high-level knowledge from raw data, implemented
as Python functions. All rules are realised as lightweight Python callbacks; their outputs feed directly

into masking and reward shaping (Table 1).
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Table 1: Ontology-derived flags and their trigger conditions

Rule Trigger condition (checked each step) Flag/action

Grid stress AV > 0.04p.u. & queue > 10 EV isUnderStress=true
Surge Neighbour outage & queue T 50% in <1 h surgeStatus=true
Priority vehicle SoC < 5% highPriority=true (EV)
Invalid action Route EV to stressed district Mask / heavy penalty

The complete implementation, including the ontology definition, agent integration code, and serialized
OWL file, is publicly available at: https://doi.org/10.5281/zenodo.15824931

2.3 Integration Methodology

2.3.1 State and action Augmentation

The knowledge graph fundamentally transforms how agents perceive their environment. Rather than
processing raw numerical observations, agents receive semantically enriched state representations
that incorporate both sensory data and inferred knowledge.

For district agents, the original observation vector from EVCAR, denoted as o¢(t) € R'S, undergoes
augmentation with knowledge graph features to create an enhanced observation 6¢(¢) € R?2. The
augmentation process extracts seven additional features from the ontology:

~d d ind t high
0; (t) = [Oi (t)a trye;ea ftc;;;}a f;;pe, fstressa fsurgea fggighborsa faff{g] (1)

where fres, feom and fird are binary indicators for district type (Residential, Commercial, Industrial),

[stress indicates whether the district is under stress according to inference rules, f..4. flags surge con-

ditions, f7u ., counts neighboring districts with active outages, and f9% indicates high congestion
level.

For the redistribution agent, global state augmentation incorporates stress indicators and district types
for all operational districts. The enhanced observation grows from 31 to 49 dimensions, adding three
binary features per district (stress status, outage status, surge status). This comprehensive view
enables system-wide coordination based on semantic understanding rather than purely numerical
optimization.

The ontology also enables dynamic action space refinement through constraint propagation and safety
rules. Unlike the original EVCAR where agents could select any action within their continuous or
discrete space, EVCAR-KG implements ontology-based action masking.

For district agents, the action space modification occurs through a masking function M : Sx A — {0,1}
that filters available actions based on ontological constraints:

0 if isUnderStress(s) A increases_load(a)
M(s,a) = ()
1 otherwise
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This masking prevents agents from accepting additional EV load when their district is already stressed,
except for critical SoC vehicles which maintain priority access. The implementation modifies the actor
network output by applying the mask before action selection:

m(als) - M(s,a)
o T(a|s) - M(s,a’)

7"'masked(a|5) = (3)
>

For the redistribution agent, action masking operates at the district level. Districts flagged as stressed

receive reduced allocation probabilities rather than complete exclusion, maintaining system flexibility

while discouraging problematic routing:

masked —

szf (4)

0.1-psx ifisUnderStress(k)
D k otherwise

This soft masking approach, where stressed districts receive 10% of their original allocation probability,
prevents complete isolation while strongly discouraging additional load.

2.3.2 Reward Function Enhancement

The integration of ontological knowledge enables sophisticated reward shaping that incorporates
domain expertise and operational priorities. The enhanced reward function builds upon EVCAR’s
multi-objective structure while adding priority-based components.

For district agents, the original reward function from EVCAR undergoes modification to incorporate
SoC cluster-specific weighting:

#(t) = 0.8 (Z ws - (SC;4(t) — QL s(t) — WT; 4(t)) — Li(t)> +0.2 - 7g10bai () (5)

where s € {critical, low, medium, high} represents SoC clusters, and weights follow w;.iticar = 2.0,
Wiow = 1.5, Wmeaium = 1.0, wpign, = 0.8. This prioritization ensures that agents learn to favor critical
and low SoC vehicles, improving service quality for EVs most at risk of stranding.

The global reward component incorporates penalties for violating ontology-inferred constraints:

roiobat(t) = st (t) — Y W[isUnderStress (k)] — 8) _ J¥[surgeStatus(k)] (6)
! k

where o and g are penalty coefficients for stressed and surge conditions respectively. This formulation
encourages system-wide stress reduction beyond local optimization.

2.3.3 Learning Process Modifications

The knowledge graph integration fundamentally alters the learning dynamics of the TD3-MADDPG
algorithm. Three key modifications enhance sample efficiency and convergence properties.

Prioritized Experience Replay incorporates ontological knowledge into transition prioritization. The
priority calculation extends beyond TD-error to include semantic importance:

Di = ’51’ * Wsemantic (7)
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where §; is the TD-error and wsemantic IS @ weighting factor based on ontological properties:

2.0 if district stressed or during outage
Wsemantic = § 1.5 if critical SoC ratio > 0.1 (8)

1.0 otherwise

This prioritization ensures that agents learn more frequently from critical situations, accelerating policy
improvement in high-stakes scenarios.

Results

Training comparisons show that EVCAR-KG converged at episode 3,013, approximately 20% faster
than the baseline TD3-MADDPG, which required 3,764 episodes (Figure 3). This improvement
is attributed to the structured domain knowledge embedded in the ontology, which supports more
efficient exploration through enriched state representations. However, this gain comes with an average
computational overhead of around 14%, due to increased state dimensionality and ontology-related
processing. The net result is a modest reduction in total training time.

Learning Convergence Comparison: Redistribution Agent Reward
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Figure 3: Comparison of agent convergence and policy evolution across episodes for base TD3-
MADDPG and the integration of the ontology (EVCAR-KG).

Similarly, the district agents exhibited slightly faster convergence under EVCAR-KG, though the
differences across most districts were not substantial. Districts 2 and 6, which were spatially removed
from the outage, stabilized earlier, while the outage node (District 3) required more extended training,
reflecting the higher complexity of local recovery under disrupted conditions.

Operationally, EVCAR-KG reduced post-outage queue lengths to acceptable levels within 40.0 hours,
compared to 43.0 hours under TD3-MADDPG and significantly faster than traditional methods (60—102
hours). For vehicles in critical SoC states (<5%), both MARL approaches performed similarly, achieving
safe levels within 11.9 and 12.0 hours respectively. System utilization recovered slightly faster under

36. Forum Bauinformatik, Aachen, 2025 411



Abdelfattah, M. FORUM @

EVCAR-KG, though again the margin was minimal. These results suggest that knowledge integration
offers coordination advantages, particularly under spatially complex redistribution scenarios, while
maintaining baseline performance across all recovery metrics.
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Figure 4: Comparison of user experience metrics (queue recovery and the percentage of critical SoC)
across methods.

Conclusion

This paper presented EVCAR-KG, an ontology-enhanced extension of the EVCAR MARL framework
for resilient recovery of electric vehicle charging networks. By integrating structured domain knowledge
into the agent observation and action spaces, the system achieved slightly faster convergence and
minor improvements in recovery metrics, particularly in queue length and system utilization. The
performance for critical SoC management remained comparable to the baseline MARL implementation,
indicating that the knowledge graph preserves coordination quality without introducing instability.

The observed gains came at the cost of approximately 14% increased computational effort. While
this overhead is modest, it must be considered when deploying the system in resource-constrained
environments. Nonetheless, the faster and more stable learning—particularly in complex or high-traffic
districts—demonstrates the potential value of semantic knowledge integration in multi-agent recovery
settings.

Future work will focus on optimizing the ontology to reduce runtime overhead, exploring the use
of compressed or modular knowledge representations, and extending the system to larger urban
environments with greater spatial and behavioral diversity. Additionally, real-world testing and hybrid
architectures combining learning-based agents with rule-based decision modules may help strike a
better balance between performance, interpretability, and scalability.
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