TY - THES AU - Kianinejad, Kaveh TI - Multiscale modelling of creep anisotropy in additively manufactured IN738LC PB - Rheinisch-Westfälische Technische Hochschule Aachen VL - Dissertation CY - Aachen M1 - RWTH-2025-09652 SP - 1 Online-Ressource : Illustrationen PY - 2025 N1 - Veröffentlicht auf dem Publikationsserver der RWTH Aachen University N1 - Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, 2025 AB - Excellent creep resistance at elevated temperatures, i.e. T / Tm> 0.5, due to γ-γ’ microstructure is one of the main properties of nickel-based superalloys. Due to its great importance for industrial applications, much research has been devoted to understanding the underlying deformation mechanism in a broad spectrum of temperature and loading conditions. Additive Manufactured (AMed) nickel-based superalloys, while being governed by similar γ-γ’ microstructure, exhibit AM-process specific microstructural characteristics, such as columnar grains, firm crystallographic texture (typically <001> fibre texture parallel to build direction) and compositional inhomogeneity, which in turn leads to anisotropic creep response in both stationary and tertiary phases. Despite the recent insights on the correlation between process parameters and the resulting microstructure, these materials' anisotropic creep behaviour and corresponding deformation mechanism are insufficiently understood. One reason is the lack of capable material models that link the microstructure to the mechanical behaviour. Within the present work, a multiscale approach has been developed to overcome this challenge by combining microstructure-based mesoscale and phenomenological macroscale models. The mesoscale model utilizes the Crystal Plasticity Finite Element Method (CPFEM) to include the microstructural characteristics and the relevant deformation mechanism on the polycrystalline scale. The mesoscale model was then used to perform virtual creep experiments required to calibrate the macroscale model. The developed approach has been applied to characterise the creep behaviour of AMed IN738LC. The effect of different slip systems, crystallographical texture, grain morphology, and Grain Boundary Sliding (GBS) on creep anisotropy at 850°C has been investigated. The approach's ability to capture the AM-specific characteristics and link them to the observed macroscale anisotropic response has been demonstrated, and the contribution of primary underlying deformation mechanisms to creep anisotropy has been elucidated. LB - PUB:(DE-HGF)11 DO - DOI:10.18154/RWTH-2025-09652 UR - https://publications.rwth-aachen.de/record/1021418 ER -