001022304 001__ 1022304 001022304 005__ 20251129054556.0 001022304 0247_ $$2ISSN$$a0142-1123 001022304 0247_ $$2ISSN$$a1879-3452 001022304 0247_ $$2SCOPUS$$aSCOPUS:2-s2.0-105020962708 001022304 0247_ $$2WOS$$aWOS:001607377600001 001022304 0247_ $$2doi$$a10.1016/j.ijfatigue.2025.109324 001022304 0247_ $$2datacite_doi$$a10.18154/RWTH-2025-09933 001022304 037__ $$aRWTH-2025-09933 001022304 041__ $$aEnglish 001022304 082__ $$a600 001022304 1001_ $$00000-0002-5000-2923$$aKraus, Michael A.$$b0 001022304 245__ $$aDiscovery of fatigue strength models via feature engineering and automated eXplainable machine learning applied to the welded transverse stiffener$$honline, print 001022304 260__ $$aOxford$$bElsevier$$c2026 001022304 260__ $$c2025 001022304 300__ $$a[1]-23 001022304 3367_ $$00$$2EndNote$$aJournal Article 001022304 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal 001022304 3367_ $$2BibTeX$$aARTICLE 001022304 3367_ $$2DRIVER$$aarticle 001022304 3367_ $$2DataCite$$aOutput Types/Journal article 001022304 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001022304 500__ $$aReceived 27 June 2025, Revised 5 October 2025, Accepted 6 October 2025, Available online 16 October 2025 001022304 588__ $$aDataset connected to CrossRef, Journals: publications.rwth-aachen.de 001022304 591__ $$aGermany 001022304 7001_ $$0P:(DE-82)IDM02034$$aBartsch, Helen$$b1$$eCorresponding author$$urwth 001022304 773__ $$0PERI:(DE-600)2013377-7$$a10.1016/j.ijfatigue.2025.109324$$p109324$$tInternational journal of fatigue$$v203$$x1879-3452$$y2026 001022304 8564_ $$uhttps://publications.rwth-aachen.de/record/1022304/files/1022304.pdf$$yOpenAccess 001022304 8767_ $$c2575$$d2025-11-28$$eHybrid-OA$$jDEAL$$v180.25$$x021000-311710 001022304 8767_ $$c100$$d2025-11-28$$eOther$$jDEAL$$v7.00$$x021000-311710$$zServicepauschale 001022304 909CO $$ooai:publications.rwth-aachen.de:1022304$$popenCost$$pdnbdelivery$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire 001022304 9151_ $$0StatID:(DE-HGF)0031$$2StatID$$aPeer reviewed article$$x0 001022304 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18 001022304 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18 001022304 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-18 001022304 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001022304 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18 001022304 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J FATIGUE : 2022$$d2024-12-18 001022304 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18 001022304 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001022304 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18 001022304 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J FATIGUE : 2022$$d2024-12-18 001022304 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18 001022304 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18 001022304 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18 001022304 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001022304 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 001022304 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 001022304 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023 001022304 9141_ $$y2025 001022304 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-82)IDM02034$$aRWTH Aachen$$b1$$kRWTH 001022304 9201_ $$0I:(DE-82)311710_20140620$$k311710$$lLehrstuhl für Stahl- und Leichtmetallbau und Institut für Stahlbau$$x0 001022304 961__ $$c2025-11-24T12:53:20.817735$$x2025-11-24T12:53:20.817735$$z2025-11-24T12:53:20.817735 001022304 9801_ $$aFullTexts 001022304 980__ $$aI:(DE-82)311710_20140620 001022304 980__ $$aUNRESTRICTED 001022304 980__ $$aVDB 001022304 980__ $$ajournal 001022304 980__ $$aAPC