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Abstract

Purpose Vertebral Body Tethering (VBT) is emerging as a promising approach for treating Adolescents with
Idiopathic Scoliosis. This study aims to address the limited experimental research on vertebral body tethering by
examining its biomechanical effects on the segmental spinal range of motion (ROM).

Methods Six human spine samples (T10-L3) were subjected to pure moment testing under four different conditions:
native, and instrumentation with single-tether (T10-L3), double-tether (T11-L3), and hybrid (T12-L2) techniques in
flexion (FL) and extension (EX), lateral bending (LB), and axial rotation (AR). The intersegmental ROM was measured
from sensors inserted in each vertebra using an electromagnetic tracking system.

Results All instrumented cases preserved at least 80% of the native segmental ROM during FL-EX for all tested
segments. In AR, all segments preserved at least 88% ROM mobility for single-tether and double-tether, or 65% for
the hybrid technique. In LB, the ROM was reduced to 55% for a single-tether, 47% for a double-tether, and 29% for a
hybrid system. The hybrid construct tended to relatively increase the ROM of adjacent levels near the titanium rod
when compared with the single-tether or double-tether.

Conclusion This study provided experimental data on individual segment motion under VBT. The findings indicate
that VBT techniques preserve a significant portion of FL-EX and AR ROM for all segments. However, the tested VBT
constructs provide stability for the spine in LB.
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Introduction

Idiopathic scoliosis (IS) is a three-dimensional (3D)
spinal deformity that affects 0.5—5% of children, with
adolescent IS (AIS) accounting for 90% of the cases in
individuals aged 11-18 years [1]. In cases of severe sco-
liosis, surgery is recommended for spinal curvatures
bigger than 45° [2]. Spinal fusion instrumentation is the
standard surgical treatment to correct and prevent the
progression of scoliosis, although this technique reduces
the mobility of the spine and may accelerate adjacent seg-
ment degeneration over the years [3-6]. For this reason,
if a young patient with remaining growth potential, verte-
bral body tethering (VBT) is an alternative for preserving
both spinal growth and motion [6, 7].

The VBT approach is an innovation in surgical tech-
niques to correct AIS. This technique uses an anterior
approach, spinal instrumentation with vertebral body
screws, and a cable compressing the convexity of the
curve. This technique leverages the ‘Hueter-Volkmann
Law, promoting the gradual improvement of the curve
over time through the growth modulation effect [8-10].
“The ‘Hueter-Volkmann Law’ proposes that growth is
retarded by increased mechanical compression and
accelerated by reduced loading in comparison with nor-
mal values” [11]. Several clinical studies reported positive
outcomes for those who underwent VBT, demonstrating
improved spinal alignment and curve correction [12-15].

However, there remains a need for further improve-
ment of the system and a better understanding of the
biomechanical effects of this system on the spine, since
it may lead to problems such as over- or under-correc-
tion, tether breakage, surgical pulmonary complications,
and higher revision surgery when compared with Pos-
terior Spinal Instrumented Fusion [12, 16—19]. Further-
more, since VBT is a motion preservation technique, one
of its potential advantages is minimizing adjacent-level
degeneration that can occur in spinal segments adjacent
to a fused area after traditional spinal fusion. This phe-
nomenon is partially attributed to the increased stress
and altered biomechanics placed on the adjacent levels
following fusion [4, 5]. Moreover, long-term studies and
experiences are needed to clarify if VBT can protect the
intervertebral disc (IVD) from degeneration [20—-22].

In addition to clinical studies, animal models have pro-
vided valuable insights into the growth-friendly potential
and correction of the VBT [23-26]. They demonstrated
that it is possible to create scoliosis in immature spines,
thus showing the potential for altering the biomechanical
behavior of the spine. Furthermore, the studies showed
evidence of soft tissue preservation in the instrumented
porcine and bovine spine [23-26]. However, there are
limitations of animal models when translating their find-
ings into human models due to their differences, such as
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material properties, duration, non-bipedal motion, and
geometry [27].

To complement the investigation, there have been
attempts to gain further insights into the biomechani-
cal behavior of the spine through in vitro studies using
human cadaver spines [28—30]. These studies aimed to
provide a controlled and reliable laboratory setting to
investigate the effects of VBT on the spine, which pro-
vides a closer representation of human anatomy and
biomechanics compared to animal models, despite the
usual in-vitro test limitations like degeneration, absence
of stabilizing soft tissue, and missing homeostasis of tis-
sue in such approaches [31, 32]. However, the literature
on in vitro studies specifically focused on VBT instru-
mentation remains scarce. This knowledge gap highlights
the need for further research in this area to enhance the
understanding of the biomechanical behavior of the spine
under different VBT techniques, especially regarding
the potential to keep the global and segmental range of
motion (ROM) in the sagittal and transverse planes [29,
30].

This study aims to investigate the segmental ROM dis-
tribution for different VBT techniques (single-tether,
double-tether, and hybrid). We hypothesize that the
behavior of ROM in individual segments maintains a
trend like the global instrumented spine when submit-
ted to VBT single-tether, double-tether, and hybrid
techniques.

Materials and methods

Specimens, testing protocol, and surgical groups

Six fresh frozen spinal specimens T10-L3 from donors (5
female and 1 male) with a mean age of 82 years at death
(73—88 years) and without spinal deformities were pre-
pared for biomechanical flexibility tests in the three ana-
tomical directions (flexion (FL) -extension (EX), lateral
bending (LB), axial rotation (AR)) following an estab-
lished testing protocol [29, 33, 34]. The study was con-
ducted with ethical approval from the RWTH Aachen
University committee (No. EK 280/20). Experiments were
performed using a custom-built spine testing rig placed
on a special machine (DYNA-MESS®, Stolberg, Germany)
[29]. Measurements were recorded using torque trans-
ducers and an electromagnetic tracking system (EMT)
(Aurora® NDI Europe GmbH, Radolfzell, Germany). The
specimens were tested under native and different instru-
mented surgical VBT techniques: a single-tether span-
ning all vertebrae from T10 to L3 with pre-tension of
100N [28-30], a double-tether as an additional cord from
T11 to L3 without pre-tension, and hybrid instrumenta-
tion with the single tether and a titanium alloy rod from
T12 to L2 (Fig. 1), all instrumented cases on the left side
of the spine. The tether pre-tensioning allows immediate
correction of the spinal deformity by tending to compress



Ribeiro et al. Journal of Orthopaedic Surgery and Research

Anterior

(2025) 20:1015

Page 3 of 13

Cranial

>

Lateral
right

Posterior

Lateral left Caudal

Fig. 1 Lateral view of T10-L3 spine with () single-tether, (Il) double-tether, and (Ill) hybrid construct including one tether and a titanium rod

the convex side and stretch the concave side. The increase
of pre-tensioning can significantly reduce spinal motion
[35] but is relevant for correcting curve deformity, partic-
ularly in severe or stiff curves. Meanwhile, excessive pre-
tension in the clinical scenario increases the risk of tether
failure and overcorrection, with the maximum tether pre-
tension load ranging from 300 to 400 N [12]. The selected
pre-tension of 100 N reflected a commonly used clinical
value and has been adopted in previous cadaveric studies
[28, 30]. This level was also chosen to avoid excessive sco-
liotic angle and screw pullout, thereby complicating the
testing procedure with the described experimental setup.
The second tether was left unloaded as a reinforcement,
or “safety cable,” to reduce stress on the primary tether
and, therefore, lower the risk of breakage or loss of cor-
rection. It was intentionally left unloaded to avoid con-
tributing to initial curve correction or altering the neutral
spinal position. Additionally, this strategy helps preserve
spinal motion while providing stability in the event of
primary tether failure.

The instrumentation was provided by Globus Medi-
cal Inc. (Audubon, PA, USA). The tests were performed
under a pure moment load of up to+6 Nm for three
cycles at a speed rate of 1°/s [28]. The last cycle was con-
sidered for evaluation. The testing sequence was random-
ized for both the VBT technique and load direction.

This study presents a comprehensive ROM analysis for
individual segments from T10 to L3, extending upon our
previously reported experimental findings in Nicolini
et al. [29]. In our prior work, we focused on the global

ROM and analyzed the specific L1-L2 segment. The cur-
rent study broadens the scope by performing an in-depth
ROM analysis for each segment within T10-L3, including
L1-L2 data [29]. Furthermore, we introduce assessments
of the T11-L3 and T12-L2 regions, which are influenced
by double tether and hybrid instrumentation, respec-
tively, but were not previously investigated.

Data analysis

The position and orientation of each segment were
tracked by an EMT system for each segment. The sensors
were implanted in the center of the segment’s body. A
surgical expert realized this, and an engineer supported
the intervention. The six degrees of freedom (6 DOF)
data were recorded as Cartesian Coordinates for transla-
tional motion and Euler angles for the rotational move-
ment, respectively. The angular displacement between
two vertebral segment bodies (segmental ROM) was cal-
culated using the method described in Beckmann et al.
[33, 34] where the relative angle between two vertebrae
was projected as a 2D-angle in the plane perpendicular
to the pure moment applied [29, 36]. The middle curve of
the hysteresis in the third cycle was used to evaluate the
2D-ROM. Data were excluded from the analysis when
defect sensors or gimbal locking in the Euler angles were
present.

The statistical analysis was performed with a script in
Python 3.9.12 with the SciPy library [37]. Sphericity and
non-normal distribution were tested with Mauchly’s
sphericity test and the Shapiro—Wilk test, respectively.
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Next, a one-tailed Wilcoxon signed-rank test for repeated
measures was applied to determine the significance
between the groups in case of a non-normal distribu-
tion. A significant level of 0.05 was considered for sta-
tistical analysis (p<0.05). Medians with interquartile
range were evaluated. The reductions were observed in
the following order: instrumented with one tether, two
tethers, and hybrid construction. Utilizing median ROM
values, we provide a reliable measure of central tendency
for our observations, capturing the typical ROM within
each condition. Unlike the mean, which is influenced by
extreme values, the median provides a robust measure
of central tendency, particularly in datasets with outliers
or skewed distributions, providing a clearer understand-
ing of spine behavior under various instrumentation
combinations.

Results

Range of motion of the thoracolumbar segments

The medians of the ROM of individual segments are pre-
sented in Table 1. The statistical analysis for significant
changes is shown in Figs. 2, 3, and 4, and complemented
by Fig. 5.

During FL-EX, the T10-T11 and T11-T12 segments
retained at least 85% of the native ROM for all instru-
mented conditions (single-tether, double-tether, and
hybrid). Similarly, the T12-L1 segment, in the same cases,
preserved at least 77% of the ROM of the native spine.
For the lumbar segments, L1-L2 and L2-L3, the FL-EX
were at least 83% of the native ROM for the single-tether
and double-tether, while for the hybrid instrumentation
case, the values were 73% and 89% for L1-L2 and L2-L3
segments (Table 1).

For AR, the segments T10-T11 and T11-T12 kept at
least 92% of the native absolute ROM for all the instru-
mented cases. The T12-L1 segment preserved 88% of the
native spine ROM for the single-tether and double-tether
instrumentation cases, and 76% for the hybrid case. For
the lumbar segments, L1-L2 and L2-L3, at least 90% of
the ROM in AR was kept for single-tether and double-
tether instrumentation. In the hybrid instrumentation,
65% and 95% of the native ROM in AR were preserved
for L1-L2 and L2-L3 (Table 1).

The T10-T11 absolute ROM after instrumentation with
single-tether, double-tether, and hybrid, kept at least 77%
of the native ROM in the right LB and 68% in the left LB
(Table 1). For all the instrumented cases, the absolute
T11-T12 ROM ranged between 35 and 43% during right
LB, and 61% and 73% for left LB direction compared to
the native state. A similar trend was found in the T12-L1
segment in the right LB with a ROM reduced to values
between 36 and 41%. While left LB, the T12-L1 ROM of
the native spine (100%) was reduced to 74%, 57%, and
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40% for single-tether, double-tether, and hybrid instru-
mentation (Table 1).

The highest ROM reduction in left LB happened in the
L1-L2 segment, which presented a ROM of 64%, 55%, and
31% for single-tether, double-tether, and hybrid instru-
mentation, respectively, compared to the native state. For
the same order in the right LB, the ROM was 61%, 44%,
and 27%. The ROM of the L2-L3 segment during right
LB was reduced to 42%, 43%, and 47% for single-tether,
double-tether, and hybrid constructs, respectively. For
the same respective cases in left LB, the ROM reduced to
79%, 71%, and 81% (Table 1).

Thoracolumbar segments spanned by single and double
tether (T11-L3)

During testing, the segments T11-L3 were completely
spanned by the single and double tether construct. Data
of T12-L2 was presented from [36]. For all construct
combinations, the instrumented spine segments kept at
least 90% of the native ROM during FL or EX (Table 2).
Significant reductions were found between native and all
instrumented cases (Fig. 6). Additionally, a significant dif-
ference in ROM between single- and double-tether was
found.

Considering the behavior of T11-L3 (Table 2), the
instrumented spine preserved at least 85% of the native
ROM in AR. Significant ROM reductions were found
between the native spine and instrumented spine with
double-tether in right AR and between the native spine
and hybrid construct for both left and right AR. During
LB, ROM reductions of 34%, 40%, and 42% happened,
respectively, for single-tether, double-tether, and hybrid
instrumentation in comparison to the native state. All
ROM comparisons had statistical significance (Fig. 6),
for both left LB (towards the tether) and right LB (away
from the tether), with the only exception being between
double-tether and hybrid constructs.

Thoracolumbar segments spanned by hybrid construct
(T12-L2)

For testing the hybrid construct, the segments T12-L2
were instrumented with a titanium rod. During FL-EX,
the hybrid construct kept 84% of the native ROM. Dur-
ing AR, the instrumentation with one or two teth-
ers preserved at least 91% of the native AR, while the
hybrid construct kept 70% of its native ROM (Table 2).
During LB, reductions of 40%, 51%, and 65% in ROM
occurred after inserting the single-tether, double-tether,
and hybrid construct, respectively. For the same instru-
mented sequence, ROM reductions of 31%, 44%, and 65%
occurred during left LB, while in right LB the reductions
were 50%, 60%, and 66%. These reductions were signifi-
cant for most of the groups (Fig. 6).
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Fig. 2 Effects of different surgical constructs on the ROM of the spine in flexion and extension. The data were standardized concerning the ROM of the
native spine. The bars and error bars represent the medians of 2D ROM and interquartile ranges, respectively. The symbol * represents p <0.05. The num-
bers at the bottom of the bars indicate the numbers of specimens used for calculating the medians when they differ by 6 specimens

Discussion

VBT is a relatively new scoliosis treatment technique
with promising outcomes. Despite many achievements
obtained with experimental studies with animal models
investigating the effect of VBT [22-24, 33, 34, 36], few
biomechanical studies with the human spine were con-
ducted [28-30]. Moreover, these studies focused on the
investigation of the global ROM of the spine. This study
is the first to investigate the effects of different VBT con-
structs on the segmental ROM of the thoracolumbar
spine (T10-L3).

Across FL-EX and AR, VBT constructs pre-
served >80-92% of the motion of the native spine at the
segmental level. Single-tether and double-tether con-
structs maintained mobility throughout T10-L3, while
the hybrid system maintained mobility in adjacent seg-
ments but, as expected, reduced motion at fused levels

(T12-L2). These results align with prior global ROM
reports [28-30], and highlight the motion-preserving
superiority of VBT compared with fusion.

For the T11-L3, the statistical tests showed significant
ROM reduction between native and all instrumentation
constructs, and significant reduction between single-
tether and double-tether, and the hybrid system. Addi-
tionally, the double-tether and hybrid constructs were
equivalent in our study (p=0.218 for left LB, p=0.781
for right LB). Two factors can contribute to this finding:
one is the extra stiffness provided by the second tether,
and the other is that the hybrid system is not completely
fused, allowing some rotation in the rod fixation screws.
Although this global equivalence, the segmental analysis
of the hybrid instrumentation induced a ROM increase
in LB for the segments adjacent (T11-T12, L2-L3) to
the fused ones with the titanium rod (T12-L2). It can be
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concluded that the adjacent segments to the titanium rod
of the hybrid system are not protected against overload-
ing. Although the ROM increase might be the result of
increasing specimen decomposition, additional tests
covering the biomechanical behavior of the disc and the
segmental ROM of adjacent levels are still needed. These
findings raise concerns of adjacent segment degeneration
in the case of the hybrid system and potential adjacent
preservation with the double-tether technique.

The investigation of the biomechanical outcomes of
VBT, particularly its hybrid system, is still in its begin-
ning, lacking comprehensive long-term follow-up data.
This requires a cautious approach to interpreting current
findings, especially where the trend of increased adjacent
mobility is shown. However, the risk of adjacent segment
degeneration with hybrid VBT is reasonable in light of
the extensive fusion literature. In this context, the work

of Lonner et al. [5] serves as a significant reference point.
Their study encompassed a 10 years follow-up of AIS
patients who underwent spinal fusion, indicating a 7.3%
incidence of disc degeneration. This degeneration was
predominantly observed in the caudal segments adjacent
to the lower instrumented vertebra (LIV), specifically at
LIV +2 and LIV +3 levels. Moreover, their findings sug-
gest a progressive trend in such degeneration. Indeed,
this trend was found in a recent publication by Burrows
et al. [4] who carried out a 21 years follow-up study for
AIS patients who underwent spinal fusion surgery. The
authors found that 64% of the patients had evidence of
adjacent segment degeneration [4]. These observations
underscore the necessity for long-term studies on VBT to
comprehensively evaluate and contrast its biomechanical
impacts, particularly on adjacent segment degeneration,
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against those observed with traditional fusion techniques
in AIS treatment.

Evidence on disc health after VBT is still mixed. The
authors Yucekul et al. and Hoernschemeyer et al. found
no evidence of disc degeneration in patients who under-
went VBT surgery [20, 21]. Conversely, Jackson et al.
found a significant (p =0.0075) increase in Pfirrmann disc
grade in the discs spanned by the tethering, but not in the
adjacent levels [22]. Taken together, these studies suggest
that while VBT may not accelerate adjacent degeneration
within the first three years post-surgery [20—22]. How-
ever, further investigation of the VBT effect on the disc’s
health is necessacry. Although Hoernschemeyer et al.
[20] did not find evidence to support disc degeneration,
they found that 22% (2/9) of the patients developed facet
osteoarthritis in the lower lumbar spine, in addition to
the 44% of patients who already presented this pathology

previously to the VBT surgery. These findings stress the
need for further research on the preservation capacity
of VBT, particularly for hybrid constructs that combine
tethering and fusion.

Motion preservation is especially relevant in the lower
thoracic and lumbar segments, given their higher flexibil-
ity and physiological load compared to the upper thoracic
segments. The thoracolumbar region is reported to have a
higher incidence of tether breakage within VBT [17, 38].
Baroncini et al. [39] showed that the time of the break-
age affects the correction outcome. Aiming to reduce
early tether breakage, double-tether, and hybrid systems
started to be used by surgeons [38]. For this reason, the
present study focused on investigating the biomechanics
of the thoracolumbar spine instrumented with not only
a single-tether, as one would expect, but also a double-
tether and hybrid system. Trobisch et al. [40] found that,
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Table 2 Medians of the ROM (°) of the native and instrumented spine instrumentation with single-tether (T10-L3), double-tether (T11-

L3), and hybrid (T12-L2) techniques at 6 Nm

Movement ROM (T11-L3) ROM (T12-L2)
Native Single tether Double tether Hybrid Native Single tether Double tether Hybrid
Flexion 13.73 13.12 1235 12.34 525 491 445 4.24
Extension 11.90 11.21 11.16 11.26 6.02 5.05 5.14 527
Right lateral bending 11.31 6.18 5.67 535 573 2.87 226 1.94
Left lateral bending 15.49 11.50 1043 10.28 7.12 4.89 3.98 2.52
Right axial rotation 9.51 891 845 8.09 294 2.52 249 2.03
Left axial rotation 8.31 7.69 7.60 7.24 3.72 3.60 3.55 2.61
Flexion—Extension 25.63 24.33 2351 23.60 11.27 9.96 9.59 9.51
Lateral Bending 26.80 17.68 16.10 15.63 12.85 7.76 6.24 4.46
Axial Rotation 17.82 16.60 16.05 1533 6.66 6.12 6.04 4.64
T11-L3
* *
— — = —
3 * * * * *
* * * * *
* * * *
;\3 100 .
= ES
3 80
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Fig. 6 Effects of different surgical constructs on the ROM of the spine in FL-EX, LB, and AR. The data were standardized concerning the ROM of the native
spine. The bars and error bars represent the medians of 2D ROM and interquartile ranges, respectively. The symbol * represents p < 0.05. The numbers at
the bottom of the bars indicate the numbers of specimens used for calculating the medians when they differ by 6 specimens

after a two-year follow-up, a suspected tether breakage
rate occurred in 90% of the patients. However, despite
this breakage rate, a lumbar curve correction of 50% was
achieved, reinforcing the importance of the timing of the

tether breakage [39]. Additionally, the shown tendency of
keeping the thoracolumbar mobility follows the in-vivo
flexibility studies where after 1-year follow-up the lateral
bending mobility was reduced by 54% in the lumbar [41]
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and 77% in the thoracic spine when compared with pre-
operative flexibility, while the movement was kept steady
for FL-EX [41, 42].

In summary, VBT constructs preserved the majority
of motion across segments, particularly in FL-EX and
AR, whereas hybrid constructs limited motion at fused
levels but showed a tendency to increase it in adjacent
segments. These observed motion preservation findings,
especially in FL-EX and AR, may directly correlate with
the clinical outcomes as better patient life quality and sat-
isfaction, in addition to disc preservation [20-22, 43, 44].

Although this study focused on the thoracolumbar
spine, VBT originally emerged as a growth-friendly sur-
gery for thoracic curves, which represent the majority
of AIS cases. Therefore, it is important to highlight bio-
mechanical differences between the thoracic and thora-
columbar regions. The thoracic spine—characterized by
smaller disc heights in the mid-thoracic segments—typi-
cally exhibits reduced flexibility in FL-EX and LB com-
pared with the lumbar region. In addition, the rib cage
and sternum reinforce the thoracic spine and further
restrict AR [45]. Moreover, the rib cage increases thoracic
spinal stability in all motion planes, but predominantly in
the upper thorax half [46]. By stabilizing the spine, the rib
cage reduces both ROM and probably corrective poten-
tial but simultaneously decreases implant stresses, which
may prolong construct longevity. This might explain
that the risk of tether rupture is significantly larger in
the lumbar spine compared to the thoracic region when
using VBT [17, 40].

Aged spines tend to change the sagittal alignment,
which can exhibit progressive reduction in lumbar lor-
dosis and increased thoracolumbar kyphosis patterns,
well-documented in aging populations [47-49], and are
pertinent to our study, given the elevated donor ages.
Biomechanically, such baseline kyphosis can shift the
neutral posture, thereby altering both the absolute FL-EX
ROM and the new post-instrumentation neutral position.

Interestingly, sagittal malalignment is not uncommon
in AIS. Abelin-Genevois et al. and Schldsser et al. [50, 51]
reported pathological sagittal profiles in 41% of mild and
56% of severe AIS cases. Among severe cases, thoracic
hypokyphosis (Type 2a) occurred in 39%, whereas thora-
columbar kyphosis (Type 2b) appeared in 8%. Baroncini
et al. [52] investigated sagittal alignment in AIS patients
undergoing VBT surgery and found that 55% of the cases
show pathological malalignment, with 16% classified as
Type 2b sagittal profile. After 2 years, VBT had a posi-
tive influence on sagittal parameters and did not induce
lumbar kyphosis.

The limitations of this study are the specimens
obtained by body donors which were healthy spines
but in advanced age, which holds obvious differences
to translation to a teenage scoliotic spine, such as bone
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quality, disc properties, tissue elasticity, and age-related
degenerative changes, in addition to the post-mortem tis-
sue degradation inherent to cadaveric studies, which may
alter the biomechanical response under load and influ-
ence implant behavior. The boundary conditions and
simplified loading scenarios applied in laboratory set-
tings do not reflect the dynamic and multifactorial forces
acting on the spine during real-life activities, which also
limits the direct translation to the clinical scenario. The
limited number of specimens (n=6) affects the statisti-
cal power of this study and the more precise population
representation. Moreover, the technical failure of some
performed tests further reduces the power of this study.
Future studies with a larger sample size are needed to
validate the findings. The tests were performed with no
variation of pre-tension in the tether. Additionally, since
the specimens’ instrumentation was completely spanned
with at least a single tether, no segmental ROM analysis
was performed on the adjacent segments to the single-
tether system. These limitations could be overcome by,
if feasible, using young scoliotic specimens represent-
ing potential patients for VBT treatment. A physiologi-
cal scenario could be potentially achieved by applying a
compressive follower load [53], and using a bioreactor
to maintain a moist and body temperature environment
[33]. Moreover, the spine can be tested with different
speed protocols to understand its dynamic behavior
under various VBT configurations.

The study aimed to provide fundamental biomechani-
cal data on the immediate mechanical effects of VBT
constructs on cadaveric healthy, mature spinal segments,
under laboratory-controlled conditions. One limitation
of this study is that the application of a pure moment may
not adequately represent the complex physiological loads
experienced in vivo. The study does not account for the
complex loading patterns that occur during functional
activities. However, the application of pure moment
without axial loads is widely used as a protocol for spinal
tests, while it provides uniform loading across all spinal
levels, is relatively easy to reproduce, and may produce
forces and moments in implants comparable with loads
observed in vivo [54, 55]. Moreover, the use of 2D-angle
projections may oversimplify the complex 3D motion
patterns of the spine, particularly in a condition like sco-
liosis, which is inherently three-dimensional. However,
the 2D-angle projection method is a standard and reliable
approach in in vitro biomechanical testing, effectively
capturing the dominant rotational motion in the plane of
loading. However, given the aforementioned limitations,
this study provides a baseline understanding of motion
preservation characteristics, which is a prerequisite for
understanding their behavior in more complex scoliotic
or growing spines.
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Conclusion

This study enhances understanding of the biomechani-
cal impact of the VBT systems, including single-tether,
double-tether, or hybrid constructs, on the individual
segmental ROM of the thoracolumbar spine. The results
indicate that VBT techniques preserve a significant por-
tion of FL-EX and AR ROM for all segments like the
global trend, except for the hybrid system. The hybrid
system reduces ROM in directly connected segments but
does not reduce adjacent to the fused segments when
compared with the double-tether. The double-tether sys-
tem presents a smoother segmental mobility distribution
along the spine than the hybrid system.

Further studies focusing on VBT instrumentation
would contribute to a more comprehensive understand-
ing of its effects on the spine, allowing for improved sur-
gical techniques, better patient selection, and optimized
treatment outcomes.
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