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The rapid evolution of quantum computing hardware opens up new avenues in the simulation of energy mate-
rials. Today’s quantum annealers are able to tackle complex combinatorial optimization problems. A formidable
challenge of this type is posed by materials with site-occupational disorder for which atomic arrangements
with a low, or lowest, energy must be found. In this article, a method is presented for the identification of the
correlated ground-state distribution of both lithium ions and redox electrons in lithium iron phosphate (LFP), a
widely employed cathode material in lithium-ion batteries. The point-charge Coulomb energy model employed
correctly reproduces the LFP charging characteristics. As is shown, grand-canonical transformation of the energy
cost function makes the combinatorial distribution problem solvable on quantum annealing (QA) hardware. The
QA output statistics follow a pseudothermal behavior characterized by a problem-dependent effective sampling
temperature, which has bearings on the estimated scaling of the QA performance with system size. This work
demonstrates the potential of quantum computation for the joint simulation of the electronic and ionic structure

in energy materials.

DOI: 10.1103/cpgy-tfpvb

I. INTRODUCTION

With the fast-paced development of quantum computing
hardware, methods and algorithms for leveraging quantum
computation (QC) in materials research are gaining attention.
The exploration of vast configuration spaces in elemental
composition and atomic structure is an overarching challenge
in materials optimization [1,2] that is particularly well suited
for QC approaches. Such problems are commonly addressed
by discretizing the configuration space in terms of atomic
sites, which can be occupied by different atom species. As
an example, Fig. 1(a) shows a simulation cell of lithium iron
phosphate (LFP) comprising a number of lithium ion sites
(indicated by green-white spheres) that can be either occupied
or vacant, depending on the state of charge, i.e., the lithium
stoichiometry, of the material. For each site and species, a
binary variable x; € {0, 1} represents whether the given site
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is occupied (x; = 1) by said species, or not (x; = 0). The
physical quantity of interest, often the total energy, E, is
then expressed as a function of the site occupation variables,
E ({x;}), written in the form of a cluster expansion (CE) [3-6],

E({x;}) =Jo + Z Jix; + Z Jijxixj

i<j

+ Z JijkXixjxe + -, (1)

i<j<k

which is the analog of a Taylor series expansion for functions
of discrete-valued variables. In practice, the expansion coef-
ficients J,, termed effective cluster interactions (ECI) [7], are
fitted to best match the ab initio energies, e.g., from density
functional theory (DFT) calculations, of a certain subset of
configurations. The cluster expansion model, Eq. (1), then
enables the use of classical heuristics, such as Monte Carlo
algorithms, for the search of the lowest-energy configuration
(ground state), or the thermodynamical sampling of the sys-
tem’s free energy [8]. This approach has been widely used for
the description of materials with substitutional disorder, such
as metallic alloys [5,9-11] or cathode materials for Li-ion
batteries [12,13] that comprise a huge number of possible
atomic (or ionic) arrangements across available lattice sites.
It is worth noting, however, that the CE method is of more
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FIG. 1. (a) Simulation cell of Li,FePO, (1 x 2 x 2 supercell) comprising a total of 16 Li sites (either occupied or vacant) and 16 Fe sites
[occupied by either Fe(Il) or Fe(IlI)]. The formal ionic charges used in the Coulomb energy model are indicated. (b) Comparison of Coulomb
(E.ou) vs DFT (Epgr) energies for different configurations of Li ions in the semilithiated 1 x 4 x 1 supercell. For the Coulomb energies, the
minimum energy distributions of the redox electrons across the iron sites for the given (frozen) Li configurations were determined by full

enumeration.

general applicability in materials optimization; CE ap-
proaches have been used, e.g., to effectively search for new
catalyst materials with optimized compositions in a multi-
elements chemical space [14].

Quantum annealing (QA), a form of adiabatic quantum
computation (AQC) [15], is a promising alternative to clas-
sical heuristic methods for solving discrete optimization
problems. In QA, the quantum system of qubits is initially
prepared in the ground state |Gy) of some simple initial Hamil-
tonian Hy, which is then tuned with a certain schedule s(t)
[where s(0) = 0 and s(#ann) = 1] to the target Hamiltonian #
that encodes the problem at hand. According to the adiabatic
theorem of quantum mechanics, the system is expected to re-
main in the instantaneous ground state of the time-dependent
Hamiltonian H(¢) = (1 — s(t)) Ho + s(¢) H, if the tuning is
sufficiently slow. In particular, at the end of the schedule, the
qubit system would be found in the ground state of the target
Hamiltonian, |W(T)) = |G;) [15]. Current QA devices, such
as the quantum annealers by D-Wave Systems Inc., are specif-
ically designed for solving (classical) quadratic unconstrained
binary optimization (QUBO) problems that are represented by
a quadratic cost function of a set of classical binary variables,

E(n) = Eo+ Y Qixi+ Y Qijxix;.

i<j

(@)

It is worth noting that the QUBO form corresponds to a
second-order (approximated) cluster expansion, cf. Eq. (1).
Omitting the unimportant constant, Ey, the QUBO cost func-
tion (2) is mapped to a Hamiltonian

H=Y 060+ 0,606
i

i<j

(€)

comprising only 6, qubit operators, for which reason H com-
mutes with all 69 that define the computational basis. The
respective ground state (as well as all eigenstates) is therefore
a simple product state (e.g., |G;) =|1,0,1,1,...)), which
can be interpreted as a classical bit sequence representing
the minimum of the QUBO cost function (2). In practice,
imperfections and noise produce statistics in the output that
render QA a heuristic method [16-18].

QA and QA-inspired approaches have been demonstrated
to tackle combinatorial problems in materials research, e.g.,
protein folding [19,20] and conformational sampling in mix-
tures of polymer chains [21], as well as the in siliQo design
of materials, including metamaterials with optimized thermal
emission/absorption spectra [22], chemical space search of or-
ganic molecular compounds [23], crystal structure prediction
[2,24], and the compositional optimization of mixed-metal
oxide catalysts [14]. Likewise, QA methods have been devel-
oped for the optimization of vacancy distributions in graphene
[25,26], metal atom arrangements in alloys [27,28], and the
ionic structure in cathode materials for Li-ion batteries [29].
The treatment of constraints represents a major challenge in
QA, which can only be implemented in a “soft” manner by
adding suitable penalty terms to the QUBO cost function.
A target number of particles, or target stoichiometry, is a
frequently encountered constraint in materials research. For
a set of site occupation variables, x; € {0, 1}, the number of
particles is simply given by the total number of occupied sites,
ie.,

“

N:in,

which, more generally, is known as the Hamming weight
of the bit string. To achieve a certain target value, N, a
quadratic penalty term is added to the cost function,

2
§ : target
Epenalty =A ( xi—N g ) s
i

which increases the cost of solutions that violate the con-
straint, whilst leaving the target subspace unchanged. Here,
A is a parameter controlling the strength of the constraint. A
major disadvantage of this approach results from the quadratic
terms ) . _ j 2A x;x;j in Eq. (5), which add a value of 2 to all
off-diagonal elements Q;; (with i < j) of the QUBO matrix.
If the required value of A is much larger than the magnitude of
the Q;;, the penalty term can mask the basic cost term (2) and
render the optimization by QA ineffective. To mitigate this
problem, some of the authors recently introduced a (linear)

&)
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Legendre transformation,
E(x) —pn Y x, (6)

yielding a grand-canonical cost function, £ — uN, with a
chemical potential u [29]. Choosing the latter equal to the
local slope of the E vs N curve, u = dE /0N, the grand-
canonical cost function (6) becomes flat around N, The
penalty term (5) with a minor value of A is then sufficient to
produce a minimum at the target particle number in the overall
cost function,

2
Eo({xi}) =E({xi}) — 1 Z Xi+ A (Z X — Ntarget) .
7

Since the Legendre transformation (6) only depends on the
total particle number, it corresponds to a constant shift within
the target subspace of D, x; = N and thus does not in-
terfere with the basic QUBO. In said previous work [29],
the arrangement of Li ions in lithium cobalt oxide (LCO)
was sampled using a D-Wave quantum annealer. A simple
Coulomb interaction model with formal ionic charges was
used to describe the energy of different configurations. The
Legendre transformation of the cost function, Eq. (6), enabled
the successful identification of the ionic ground-state con-
figuration for the target stoichiometry of Li;;;CoO, among
a total number of 2% &~ 7 x 10'° configurations in a sim-
ulation cell with 36 Li sites. Despite the simplicity of the
Coulomb model, the respective ionic ground state was found
to agree with the alternating row-like Li ordering known from
experiment.

For the previously studied case of LCO, only ionic degrees
of freedom were optimized, while the electronic charge was
equally distributed among the redox-active cobalt ions with
an effective average charge of +3.5 e for the semilithiated
state of LCO (Li;2C00>) [29]. This treatment was justified
by the metallic character of Li,CoO, for x < 0.75 [30] and the
corresponding delocalization of the electronic charge at the
Fermi level. In the present work, the grand-canonical QA ap-
proach is extended to the simulation of lithium iron phosphate
(LFP), another standard cathode material for Li-ion batteries.
In contrast to LCO, the charging/discharging of LFP occurs
via a direct phase transition between LiFePO, (triphylite,
with formal Fe>* valency) and FePOy, (heterosite, with formal
Fe** valency) [31], due to a wide miscibility gap at room
temperature [32,33]. At higher temperatures, the existence
of Li, FePO, solid solutions was demonstrated [33,34]. Elec-
tronic disproportionation results in the simultaneous presence
of Fe’* and Fe*" species in mixed-valence Li,FePOy4. Zhou
et al. [8] included the localized electronic degrees of freedom,
i.e., the distribution of redox electrons (Fe’>") and holes (Fe**)
in a cluster expansion energy model parametrized by DFT +
U calculations. They showed that the LiFePO,4/FePO, phase
separation at low temperature results from the attractive
interaction between Li* and e~, making it energetically
favourable for lithium ions to accumulate together with the re-
dox electrons (Fe?") in a LiFePO, phase, which is consistent
with phase separation. At higher temperature, however, the

combined electronic and ionic configurational entropy stabi-
lizes the solid-solution phase of Li,FePOy.

Herein, quantum annealing is used to simulate the charging
characteristics of LFP in a joint electro-ionic combinato-
rial optimization, employing a point-charge Coulomb energy
model. Performing two Legendre transformations in charged
and charge-neutral variations of Li* and e~ particle numbers,
the problem is made feasible for the identification of the
configurational ground state on a D-Wave quantum annealer.
This work takes a step towards leveraging quantum computing
methods for the joint treatment of electronic and ionic degrees
of freedom in redox-active battery materials.

II. METHODS

A. Structural model

LFP simulation cells were constructed from the orthorhom-
bic unit cell of triphylite LiFePO, with lattice constants a =
10.332 A, b =6.010 A, and ¢ = 4.692 A (comprising 4 for-
mula units of LiFePOy), as provided in the crystallographic
information file (CIF) No. 2100916 of the Crystallography
Open Database (COD) according to Streltsov et al. [35]. Two
different supercells, 1 x 2 x 2 and 1 x 4 x 1, were consid-
ered for the configurational optimization, comprising a total
of 16 formula units of LiFePO, with 16 sites of both Li and
Fe, cf. Fig. 1(a). The cell geometry was frozen for all degrees
of lithiation, i.e., the contraction of the unit cell volume by
about 7% for the isostructural FePO, heterosite end-member
[36] was neglected. Structural drawings were generated using
the VESTA software [37]. The positions of Li sites in the LFP
structure were fixed for all Li concentrations, and local relax-
ations around the occupied or vacant sites were neglected. In
the future, the quantum optimization method will be advanced
to explicitly account for site relaxation, which is known to
strongly affect the charging behavior of some cathode materi-
als [38]. This task however goes beyond the goal of the present
study.

B. Energy model

As in the previous work [29], a point-charge Coulomb
interaction model was employed to describe the energy of
different Li* and e~ [Fe(Il)/Fe(Ill)] configurations in the
LFP simulation cell,

2
e ZyZ
S ®)
a<ﬁ|rot_rﬂ|

where the indices o and B run over all ions of a given
configuration. Formal valencies of Z;; = +1, Zp = 45, Zp =
—2 were used, and either Zgeqr) = +2 or Zpeqny = +3 for
iron cations with a mixed valency. Site occupation vari-
ables x; € {0, 1} are defined to indicate whether a given Li
site is occupied (x; = 1) or vacant (x; = 0). Likewise, bi-
nary variables y; € {0, 1} are introduced to describe whether
a given Fe site corresponds to an Fe(II) (yy =1) or
Fe(IIT) (yx = 0) species. With this, the Coulomb energy of
any configuration can be expressed as a function of the
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variables x; and yy,

2
e Z Z p
Ecoul({xi}a {yk}) = 4 Z |I’ + Z Z |rl _7 |
p<gefix ' P €Sy p € fix p
Z,, 3Zp
+Zyk Z|7 7l +Z(1_yk) Z| — 7 + Zx’x’ *._-'.|
ke Sre pefix kT ke Sre pe fix i<jesy Fi = Tj
+ ) X o+ > oxwd- W + A ey
i€ Sy i€ Sy k<l € Spe
k € Ske k € Ske

+ D =y

k, ZESFe
kAl

+ Y U=y —y)

k<l ESFe

©))

\l

7% — 71l 7% — 7l

where the first term at the right-hand side captures all interactions among the fixed species, i.e., phosphor and oxygen, and the
second, third, and fourth terms represent interactions between fixed species and lithium, ferrous [Fe(Il)], and ferric [Fe(III)]
ions, respectively. The fifth, sixth, and seventh terms describe the interactions between LiT—Li", Lit—Fe(Il), and Lit—Fe(III)
pairs, and the eighth, ninth, and tenth terms represent the interactions between Fe(II)-Fe(Il), Fe(II)-Fe(III), and Fe(IIT)-Fe(III)

pairs, respectively. Regrouping and combining terms of the same order in the variables x; and y; yields

y Lfy

Fp— T

| P q| k€ Spe
p e fix

Ecou({xi}, i} = 4_

1
+ E Xi Xj 7 7 + E XzYk
Fi— T
i<jeSu ! J ieSu
kESFe

Equations (9) and (10) are precisely equivalent, but the two
expressions represent alternative interpretations of the com-
binatorial Coulomb energy. In Eq. (9), the terms of the iron
sublattice involve distinct Fe(Il) or Fe(III) ions. The respec-
tive contributions in Eq. (10) are written in terms of negative
electronic charges distributed across a fixed Fe(II) sublattice
[i.e., Fe(Il) = Fe(IIl) + e~], where the binary variables y;
describe whether a given Fe(Ill) sites is carrying an extra
redox electron (y; = 1) or not (y; = 0). The second and third
terms at the right-hand side of Eq. (10) represent the inter-
actions between the Fe(III) sublattice and other fixed species
(oxygen and phosphor) as well as Fe(III)-Fe(III) interactions.
The linear term in x; captures the interactions between Li"
and fixed species [including the Fe(Ill) sites]. The linear
term in y; describes the interactions between the redox e~
and fixed species, with the notable exception that for each
redox electron, the respective host Fe(IIl) ion is excluded
from the summation, as required to avoid divergence of the
on-site point-charge interaction. Such divergence is avoided
in quantum-mechanical treatments, where the redox electrons
are localized in atomic orbitals of the Fe(IIl) site, yielding a
finite on-site interaction energy with the Fe(IIl) core. Since

|7k_7p|

9
Z T

k<l € Sre [P — 71

-3
D

Ik e |7 — 71l

+ Y w ZijL

k € Ske pehx' k_rp|

(10)

Z )’k)’I

k<l € Ske

\l

the latter is identical for all iron sites, adding such an on-site
interaction to the energy model of Eq. (10) would merely pro-
duce a shift in the electronic chemical potential [39], but not
affect the relative energies of different electronic distributions
across the Fe(Ill) sublattice. In particular, any such on-site
contribution to the chemical potential is canceled by the Leg-
endre transformation within the grand-canonical optimization
method employed in this study.

The Coulomb energy model of Eq. (10) has the form of
a cluster expansion, Eq. (1), which is exact to second order,
i.e., all higher-order ECI coefficients are precisely zero. It
thus represents a QUBO problem that is suitable for quantum
annealing,

Ecou({xi}, {yi}) = Eo + Z x; Qi + Z Vi Ok

i€ Sy k € Spe
+ Z xix; Qij + Z Xi i Qix
i<j€$u iESLi
kESFC
+ D wew Qu (11)
k<Z€SFe
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As seen in Eq. (10), the respective QUBO coefficients (Q;;,
etc.) are given in analytical form as sums over pairwise
Coulomb interactions. It should be noted that, as an alternative
to the Coulomb model used here, suitable QUBO models
can also be obtained from a second-order truncated cluster
expansion with ECI coefficients fitted based on DFT energies.
For the purpose of the QA method developed in this work, the
details of the underlying QUBO model are less important. As
shown by the results, however, the Coulomb model is indeed
very interesting from a materials science perspective, since it
correctly describes the two-phase charging characteristics of
LFP and thus captures the essential physics of the process.

Ewald summation

The QUBO coefficients of the Lit—e~ model [Eqgs. (10)
and (11)] are obtainable by summation of the Coulomb in-
teractions among certain subsets of species/sites. To this end,
LFP cells comprising selected subsets of species/sites were
constructed and their Coulomb energy evaluated. However,
owing to the periodicity of the LFP Ilattice, each site of
the simulation cell, i.e., each of the binary variables, actu-
ally represents an entire array of periodic image sites that
are simultaneously occupied or vacant. To account for the
periodic boundary conditions, the energies of the various
substructures were calculated using Ewald summation rou-
tines of the Python Materials Genomics (pymatgen) library
[40]. The QUBO coefficients Q;;, etc., were then obtained
after correcting the Ewald energies for certain overcounted
interactions. Specifically, the constant energy term, Ej, was
calculated as the Ewald energy of an LFP cell comprising
only fixed species, i.e., P, O, and with the iron sublattice fully
occupied by Fe(IIl). The linear (diagonal) coefficients Q;;
were determined from LFP cells comprising all fixed species
[including Fe(III)] plus one occupied Li™ site (i). Because
such cells also contained interactions among the fixed species
(already captured by Ej), the constant term E; had to be
subtracted from the respective Ewald energies to obtain the Q;;
coefficients. Similarly, the linear (diagonal) coefficients QO
were determined from LFP cells comprising all fixed species
[including Fe(III)] with one iron site (k) occupied by Fe(Il)
instead of Fe(Ill). Again, the respective Ewald energies had
to be corrected for the constant term E, to obtain the Q.
Finally, the quadratic (off-diagonal) coefficients Q;;, O, and
Oy were determined from LFP cells comprising pairs of two
Li* occupying sites i and j, one Li* and one e~ occupying
sites i and k, or two e~ occupying sites k and I, respectively.
Here, the respective Ewald energies had to be corrected for
the self-interaction of each occupied site with its own periodic
images by subtracting the Ewald energies of LFP cells with
each single site of a given pair being occupied.

C. Configurational sampling
1. Quantum annealing

QA was performed on the D-Wave Advantage™ 5.4 Sys-
tem “JUPSI” via the D-Wave Ocean interface for Python.
The fully connected Coulomb QUBO was mapped to
the working graph of the quantum annealer using the

DWaveCliqueSampler () routine. An annealing time of
100 us was used for the individual runs.

2. Benchmark sampling/heuristics

The QA sampling statistics were analysed by normaliza-
tion with respect to the joint electro-ionic density of states
of the Coulomb model, which was determined by exhaustive
sampling (full enumeration) forthe 1 x 2 x 2 and 1 x 4 x 1
supercells. For the analysis of the scaling of computation
time with system size, the density of states of the 2 x 4 x 4
and 3 x 6 x 6 cells were determined by random sampling of
ca. 50 million configurations, as implemented in the GOAC
package (Global Optimization of Atomistic Configurations by
Coulomb) [41]. The MATHEMATICA software [42] was em-
ployed for fits of the sampled DOS with the log-normal model
[Eqg. (19)], shown in Fig. 6(a), as well as the numerical calcu-
lation of the effective partition function [Eq. (17)], shown in
Figs. 6(b) and 6(c).

The electro-ionic Coulomb model was validated in pre-
dicting the known phase-separated ground state of partially
lithiated LFP. To this end, the coefficients of the optimization
model were calculated with the GOAC package [41] and the
model was solved with the Gurobi optimizer [43] to explore
the ground state configuration in semi-lithiated LFP super-
cells of increasing size, demonstrating the transition to a
LiFePO,/FePO, phase separation within supercells above a
critical size in b direction.

D. Density functional theory

The classical point-charge Coulomb model was compared
to DFT simulations accounting for the quantum-mechanical
nature of the electronic degrees of freedom. For this purpose,
100 different configurations of Li ions in the semilithiated
1 x 4 x 1 supercell (N% =8 out of 16 total Li sites) were
selected by Monte Carlo sampling with the Coulomb model,
including the configurations with the absolute highest and
lowest Coulomb energies. DFT energies of the selected con-
figurations were calculated at the level of DFT + U using
the QUANTUM ESPRESSO software package [44] with ultrasoft
pseudopotentials [45] and the GGA-PBE [46] exchange-
correlation functional in spin-polarised mode. For direct
comparability with the respective Coulomb energies, the ge-
ometries of the structures were not relaxed. The electronic
wavefunctions were expanded in a plane-wave basis set up
to a cutoff energy of 50 Ry, and the dispersion of the band
structure within the Brillouin zone was sampled with a 3 x
I x 5 k-point mesh. A Hubbard parameter U = 4.3 eV was
employed for iron d orbitals [47]. For 32 out of the 100
configurations, the DFT calculations did not converge, for
which reason the Coulomb versus DFT energies of only 68
configurations are compared in Fig. 1(b). It should be noted
that in previous studies by some of the authors, slightly differ-
ent values of the Hubbard U parameter were used for Fe(Il)
and Fe(III) species [33], which, however, is a minor aspect in
the present context.
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II1. RESULTS

In this study, a classical point-charge Coulomb model is
used to describe the energy of different distributions of Li
ions and redox electrons across available Li and Fe sites,
respectively, in the LFP simulation cell, as described in detail
in the Methods section. Albeit in a highly simplified fashion,
the point-charge Coulomb model is sufficient for describing
the joint electronic and ionic structure of LFP at different state
of charge (SOC) with the QA method.

A. Validation of the LFP Coulomb model

Before shifting the focus to the QA results, the Coulomb
energy model is validated by comparison against DFT cal-
culations. The model is then shown to correctly describe the
known two-phase charging characteristics of LFP, and, thus,
to capture the essential physics of LFP charging/discharging
processes.

1. Comparison between Coulomb and DFT energies

Figure 1(b) presents a plot of point-charge Coulomb en-
ergies versus DFT energies for 68 different arrangements
of Li ions in the semi-lithiated 1 x 4 x 1 supercell. For the
Coulomb energies, the respective minimum energy distribu-
tions of the compensating redox electrons across the iron
sites were determined by full enumeration of all possible
electronic configurations. As observed, the energies from the
electro-ionic Coulomb model are strongly correlated to the
DFT energies, as indicated by a Pearson correlation coeffi-
cient of R = 0.95. This means that configurations with low
Coulomb energy are also likely to have low DFT energy.
In particular, among the set of Li-ion configurations consid-
ered in this comparison, the configuration with the minimum
Coulomb energy, corresponding to the global ground state of
the Coulomb model, also had the lowest DFT energy. The
electro-ionic Coulomb ground state is, thus, a likely candidate
for the Li-ion arrangement with minimum, or at least close to
minimum, DFT energy. In absolute terms, however, the varia-
tions in Coulomb energies among different configurations are
much larger than the respective variations in DFT energies,
which is expected due to the lack of dielectric screening in the
Coulomb model. The slope in Fig. 1(b) can thus be interpreted
as an effective dielectric constant of about €, = 3.56 caused
by electronic orbital relaxation, which is implicitly included
in DFT energies. It should be noted, however, that materials
such as LFP that contain multivalent ions of the same element
(the iron redox centers in LFP) are notoriously challenging
for DFT simulations, not only because of the strong electronic
correlation effects [33], but also the electronic disproportion-
ation that results in a combinatorial optimization problem for
the distribution of the redox electrons in a similar way as
for the point-charge Coulomb model. While the present work
investigates QA approaches for Coulomb optimization, simi-
lar QA methods should be developed for DFT minimization
problems in the future.

2. Two-phase charging characteristics

Figure 2(a) shows the Coulomb energies, normalized per
LFP formula unit (FU), of minimum energy configurations

for semi-lithiated LFP as a function of the length of the
simulation cell along different lattice directions. Ground state
configurations were determined by classical optimization with
the GUROBI software [43]. For smaller cell sizes, solutions
obtained were proven to represent the exact optimum [star
data points in Fig. 2(a)]. It is observed that minimum energy
configurations are strongly dependent on size and shape of
the simulation cell. For n x 1 x 1 cells elongated in a di-
rection (red data points), the ground state configuration of
the 1 x 1 x 1 unit cell [shown as an inset in Fig. 2(a)] was
preserved and simply repeated n times, resulting in a constant
energy per FU. For cells extended in ¢ direction (1 x 1 x n,
blue data points), a different behavior is observed between
cells with even and odd values of n. For even n, the ground
state is a homogeneously distributed configuration indepen-
dent of n [shown as an inset in Fig. 2(a)], at least up to a
c-length of about 10 nm, with a respective per-FU energy
significantly lower than for the n x 1 x 1 ground state. For
odd n, the ground state configuration is n-dependent with
an energy decreasing from the initial value of the 1 x 1 x 1
unit cell towards the energy of the constant ground state for
even n.

For cells elongated in b direction (1 x n x 1, green data
points), the minimum energy configuration of the 1 x 1 x 1
unit cell is maintained up to a critical multiplicity of n = 12
(length of 7.212 nm). At larger cell dimensions, n > 12, a
phase-separated ground state emerges with one LiFePO,4 and
one FePO, domain separated along the b direction, which
is shown in Fig. 2(c) for the 1 x 16 x 1 cell. The respective
energy decreases with increasing 7, as shown on an extended
range in Fig. 2(b), and eventually converges towards the
average energy of bulk LiFePO, and bulk FePO, [bottom
horizontal reference line in Fig. 2(b)]. This behavior can be
explained by decomposing the energy of the phase-separated
cell as [48]

Nt Nt
Ecen = TELiFePo4 + EEFePO4 +2Avy, (12)

where Ejirepo, and Erepo, are the bulk energies per formula
unit of LiFePO, and FePOy, respectively, Ny is the overall
number of LigsFePO, formula units in the simulation cell,
and y is the interfacial energy per area (A) between the
LiFePO, and FePO, domains, where the factor of 2 accounts
for the two interfaces per cell. With increasing Ny, i.e., cell
length, the interface contribution to E. decreases, and the
energy normalized by N converges towards the average of the
bulk energies, (ELirepo, + Erepo,)/2 = —301.987 eV, with
ELiFePO4 = —294.067 eV and EFePO4 = —309.907 eV. Using
Ecen/Ny = —301.963 eV for the phase-separated configura-
tion in a 1 x 16 x 1 cell (Nf = 64) with an ac interfacial
area of A = 0.485 nm?, the interfacial energy is estimated
as Y,e = 1.584 eV/nm? = 254 mJ/m?. Beyond a cell length
of about 40 nm in b direction, the per-atom energy of the
phase-separated configuration drops below the energy of the
homogeneously distributed 1 x 1 x n(even) ground state, in-
dicated as a horizontal line in Fig. 2(b). The Coulomb model
thus predicts a critical particle size of about 40 nm above
which LFP at a half-lithiated SOC decomposes into do-
mains of LiFePO, and FePOy. For smaller LFP particles, the
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FIG. 2. (a) Coulomb energies of minimum energy configurations for semilithiated LFP (Liy sFePO,) as a function of the size (Iength) of the
simulation cell along different lattice directions. The energies are given per Liy sFePO, formula unit (FU) on a relative scale using the ground
state configuration for the 1 x 1 x 1 unit cell as a reference. The simulation cells had elongated shapes of dimensionsn x 1 x 1,1 x n x 1, and
1 x 1 x n with increasing multiplicities (n) along the a (red data points), b (green data points) and ¢ (blue data points) directions, respectively.
The respective minimum energy configurations are shown. (b) Extended plot of the minimum energy as a function of cell size in b direction.
The energy of the homogeneously distributed ground-state configuration for the 1 x 1 x n cells (with even n) and the average energy of bulk
LiFePO, and bulk FePO, are given as reference lines. (¢) Minimum energy configuration for a 1 x 16 x 1 cell with a phase separation into
LiFePO, and FePO, domains. Color labeling for different ion species as in Fig. 1(a).

semi-lithiated solid solution is predicted to be stable even at
low temperatures.

These results are in good agreement with the known two-
phase charging characteristics of LFP, exhibiting a direct
transition between the LiFePO4 and FePO, end members
[8,31,32]. Within the Coulomb model, this is reflected by the
fact that the phase-separated configuration becomes lowest in
energy for large simulation cells and approaches the abso-
lute minimum defined by the bulk average of LiFePO, and
FePOj,. As already pointed out in previous studies [8,49], this
is explained by the attractive interaction between Li* and e,
driving the condensation of lithium ions and redox electrons
into LiFePO4 domains within the FePO,4 host structure. The
Coulomb model predicts a preferred b direction of the phase
separation with a domain interface in the ac plane in agree-
ment with previous theoretical studies [48,49], including the
results from DFT simulations by Abdellahi et al. [48]. In
contrast, other studies that focused on the effect of coherency
strain reported a phase-boundary interface either in the bc
plane or perpendicular to the (101) direction [50], a finding
that was supported by electron microscopy results of Mu
et al. [51]. Abdellahi er al. explained such differing results
with the competition between coherency strain energy and
chemical interfacial energy that can favour different interface

orientations depending on the particle size and morphology
[48]. Moreover, it should be noted that for periodic simulation
cells, phase boundaries are restricted to planes perpendicu-
lar to the cell vectors. The modeling of angled interfaces,
such as (101), therefore requires the use of suitably rotated
cells. A more comprehensive study of the preferential orien-
tation of LFP phase boundaries lies beyond the scope of this
work.

Surprisingly, the predicted critical particle size of about
40 nm, below which a solid-solution phase is formed, is in
very good agreement with experimental observations, e.g.,
by Gibot et al. [52] and Ichitsubo et al. [53], who reported
single-phase charging/discharging behavior for LFP nanopar-
ticles of about 40 and 10 nm in size, respectively. On the
other hand, based on DFT calculations, Abdellahi et al. [48]
reported an extremely small value of the interfacial energy
Yae = 7 mJ/m?, which would yield a much lower value of
the critical particle size than experimentally observed. It was
therefore concluded that the experimental results could only
be explained by accounting for the additional effect of co-
herency strain at the two-phase boundary [48,54] resulting
from the difference in volumes of the two phases and the
thermodynamics of solid solution [33]. To compare their DFT-
based value for y,, to the one obtained here from the Coulomb
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model, viz. Y. = 254 mJ/m?, the latter has to be rescaled
with the effective dielectric constant, ¢, = 3.56, as obtained
from Fig. 1(b), yielding a value of y,./€, = 71 mJ/m?. This
value is larger by a factor of 10 than the value reported by
Abdellahi et al. [48]. It is important to note, however, that
the value of 71 mJ/m? estimated from the Coulomb model
is much better aligned with the other reported values for the
bc and ab interfaces (115 and 95 mJ/m?, respectively) from
the same study [48]. Based on the present results, it is thus
suggested to reconsider, whether interfacial electric/chemical
energy or coherency strain effects are the dominating factors
behind the single-phase behavior of nano-sized LFP particles.

To sum up the findings of this section, while the LFP charg-
ing characteristics have been accurately described before in
numerous DFT studies, it is remarkable that the simple point-
charge Coulomb model correctly predicts the features of (i)
bulk LiFePO,4/FePO, phase separation, (ii) a lowest-energy
phase interface in the ac plane (among the ab, ac, and bc
interfaces that can be represented in the given simulation cell),
and (iii) a solid-solution behavior for particles below about
40 nm. It is, however, important to note that the present model
neglects the contributions of strain and relaxation. Future
model extensions are planned to include such elastic effects,
as treated, e.g., in the QA approach by Sandt ef al. [55].

B. Electro-ionic optimization by quantum annealing

As explained in the Methods section, the Coulomb energy
is naturally expressed as a quadratic function of the site occu-
pation variables x; € {0, 1} and y; € {0, 1} for Li sites (Li™)
and Fe redox centers (e™), respectively, cf. Egs. (10) and
(11). The task for identifying the respective minimum energy
configuration thus represents a QUBO problem, which is suit-
able for the use of the D-Wave quantum annealing system.
Since both the Li ions and the compensating redox electrons
are explicitly accounted for, the QUBO model enables the
simulation of LFP at different degrees of lithiation (state of
charge, SOC), i.e., for different numbers of Li ions, Nlﬁ , and
redox electrons, N, . Due to the required charge neutrality, the
number of Li™ and e~ in the simulation cell must be matched,
N[5 = N; . In the following, the configurational ground state
is explored for the 1 x 2 x 2 and 1 x 4 x 1 LFP cells, both
comprising a total of 16 LiFePOy4 units (16 Li sites and 16
Fe redox centers). Three different SOC with stoichiometries
Lig»5FePOy, Lig sFePOy, and Lig 75FePOy are targeted, corre-
sponding to NS = N, =4, 8, and 12, respectively.

1. Particle numbers and chemical potentials

As described in the Introduction section, a given target
number of occupied sites [Hamming weight, Eq. (4)] is
achieved by adding a soft constraint in the form of an energy
penalty [Eq. (5)] to the QUBO cost function. In the prior
work [29], it was shown that this method is rendered inef-
fective if the E versus N curve has a pronounced slope (1 =
0E /ON), which can be mitigated by performing a Legendre
transformation of the energy. The resulting grand-canonical
cost function [Eq. (6)] becomes flat around the target particle
number, which significantly facilitates the implementation of
the constraint. This method is now applied to the correlated
constraints in the numbers of Li™ and e~ for different SOC

of LFP. To reflect the charge-neutrality constraint, a variable
transformation is performed in the space of Lit and e~ parti-
cle numbers,

N N+ NS
—
AN = N} — N;

e

13)
(14)

defining the number of neutral Lit—e~ pairs, N, and the num-
ber of net charges, AN, respectively, as visualized in Fig. 3(a).
Changes in the SOC of LFP correspond to charge-neutral
variations in N, while AN = 0 remains fixed due to charge
neutrality. The minimum Coulomb energy (Ec‘gﬂ}) is plotted
versus N (with fixed AN = 0) in Fig. 3(b) and versus AN
(with fixed N = 8) in Fig. 3(c) for the 1 x 2 x 2 LFP cell,
where EM® was determined by full enumeration of all config-
urations. The chemical potentials are defined as the respective
local slopes, uy = 8E£L‘}/8N and pup = 8Ec‘giu‘}/8AN, at the
target values for N and AN, and determined from linear fits
(orange dashed lines). A perfectly linear E versus N curve
is observed in Fig. 3(b) corresponding to a constant value
of uy =15.84 eV for any N. The curve in Fig. 3(c) has
a local slope of up = —19.62 eV around AN =0 and a
slightly negative curvature. These values correspond to chem-
ical potentials of ;. = un/2 + pua = —11.70 eV and p; =
/,LN/Z — MA = 27.54 eV.

It should be noted that, while charged configurations with
AN # 0 are physically forbidden and would result in a diver-
gence of the energy (per unit cell) of the periodic system, the
Coulomb model allows variations in AN due to an unphysical
compensating background charge that is implicitly included in
the Ewald energies of charged configurations. Therefore, the
corresponding chemical potential i has no direct physical
meaning, in contrast to uy, which effectively represents the
chemical potential of lithium, i.e., neutral LiT—e~ pairs, in the
active material.

From a fundamental perspective, the positive value of wy
might appear surprising, since the fully lithiated phase is gen-
erally expected to be lower in energy than the delithiated one.
This seeming discrepancy is a result of the missing on-site
contribution to the chemical potential of the redox electrons.
In the point-charge Coulomb model, the interaction energy
between a redox electron and the Fe(III) core of the same site
(i.e., same position) would amount to minus infinity and is
therefore excluded in the summation of Coulomb terms [cf.
Eq. (10) and discussion thereafter]. The next-order leading
term in the electronic chemical potential is positive, producing
an overall positive value of uy. This situation is different,
e.g., in DFT calculations where the electronic charge is dis-
tributed in orbitals with a finite negative on-site energy. For
the purpose of the present study, however, such differences
are irrelevant, because the on-site contribution does not affect
the relative energies of different configurations with the same
N. Any differences due to sign and value of the chemical
potential get canceled after performing the respective Legen-
dre transformation to the grand-canonical cost function, cf.
Eq. (15). In particular, the missing on-site contribution within
the point-charge model, and thus the sign of the chemical
potential, have no influence on the electro-ionic ground-state
configuration at a given SOC.
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of net charges (AN), for the 1 x 2 x 2 LFP cell, with fixed AN = 0 in (b) and fixed N = 8 in (c). The chemical potentials, ;y and p, are
determined as the slopes of the respective linear fits (orange dashed lines) around the target values for N and AN.

It should be noted that, within the given Coulomb model,
wy effectively represents the chemical potential of lithium in
the active material and thus corresponds to the redox potential
of the (dis)charging process. Changes in py as a function
N (Li content, SOC) thus determine the respective voltage
profile. In the present case, a constant slope (i.e., constant
value of py) was observed in the E vs N plot of Fig. 3(b),
corresponding to a constant (dis)charge voltage in agreement
with experiments [32]. For quantitative comparison, the value
of uy must be referenced to the chemical potential of lithium
metal [12]. While the latter is directly accessible in DFT simu-
lations, classical models, such as the present Coulomb model,
cannot accurately describe the lithium metal reference, and an
ad hoc adjustment of the reference chemical potential to the
experimental target value is required [38,56]. In the present
case, due to the constant value of the effective chemical po-
tential along the (dis)charging process, such ad hoc correction
is meaningless and thus omitted.

2. Quantum annealing

The total QUBO cost function used for the quantum an-
nealing procedure reads

Ecost({xi}, (k) = Ecoml — MAAN — uyN + Aa
X (AN _ ANtargEI)Z + AN(N _ Ntarget)z’
(15)

where E oy is the Coulomb energy as a function of x; and
vr [Eq. (11)], and N and AN are given by Egs. (13) and
(14), respectively, with N;: = >, x; and N, = Y, y. The
Legendre-transformed energy, Ecouy — aAN — uyN, has
zero slopes in N and AN, for which reason the quadratic
energy penalty terms with small values of the parameters
Aa and Ay are sufficient to produce a global minimum of
the total cost function (15) at the target values for AN and
N. Due to the charge-neutrality requirement, the former was
fixed at AN"™€t = (0, while N'*€** was varied according to the
targeted SOC. The definition of the chemical potentials, wy
and pua, was described in the previous section. In practice,
however, the use of full enumeration or classical heuristics for
the determination of the required E versus N or AN curves
would not be desirable as part of a quantum optimization

method. A simplified method is thus suggested, which
consists in approximating the chemical potentials in terms of
the finite differences between the end points of the E™" versus
N/AN curves. Since the end-point configurations with N =
0, 16 and AN = —16, 16 in Figs. 3(b) and 3(c), respectively,
are trivial, meaning that they comprise either fully occupied
or entirely vacant sublattices for Li* and e, the respective
energies are readily calculated. This method yields values of
uny = 15.84 eV and up = —19.62 eV, identical to the values
determined by local fits, cf. Figs. 3(b) and 3(c).

The results of the configurational sampling by quantum
annealing on the D-Wave Advantage™ 5.4 System are pre-
sented in Fig. 4 for the case of the 1 x 2 x 2 LFP cell at 25%,
50%, and 75% lithiation degree, corresponding to N'*¥& = 4
[Figs. 4(a) and 4(d)], N“&" = 8 [Figs. 4(b) and 4(e)], and
N@rEet — 12 [Figs. 4(c) and 4(f)]. The respective parameters
and output statistics of the quantum-annealing procedure are
summarized in Table I (first block). A large number of anneal-
ing runs (several 100k) was performed for obtaining reliable
statistics in the low-energy range, where the density of states
is very low. In Figs. 4(a)—4(c), the QA histograms of sam-
pled energies (golden bars) are plotted together with the total
density of states (DOS) of the Coulomb model determined
by full enumeration (blue curve). While the sampled energies
are clustered in the lower-energy range of the spectrum, the
highest sampling frequencies are not observed close to the
optimal solutions, viz. the minimum energy. The respective
fractions of optimal solutions returned by QA (also known as.
QA fidelity) are presented in Table I (%ggob). While for N = 4

and 8, the ground state was returned in about 1% of annealing
runs, the fraction decreased to about 0.03% for N = 8 due to
the much larger combinatorial subspace (165 636 900 possible
configurations for N = 8 compared to 3312400 for N =4
and 8). However, as discussed previously [29], the apparent
sampling frequency (per energy) is given by the intrinsic sam-
pling probability, P(E), weighted with the density of states
[gpos(E)] of the QUBO model [18],

NSamp]es(E) X P(E)gDOS(E)~ (16)

The probability P(E) was thus estimated by normalizing
the QA output histogram with the respective DOS, and
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FIG. 4. [(a)—(c)] Histogram of the energies of QA-sampled configurations (golden bars) and density of states (DOS) of the Coulomb model

(blue curve) as a function of the energy, relative to the minimum energy in the ground state, for the 1 x 2 x 2 LFP cell. [(d)—(f)] Normalized
sampling probability P(E), plotted on a logarithmic scale, and Boltzmann fit with given effective sampling temperatures k7. The respective
ground-state configurations are shown as insets. SOC of N = 4 in (a) and (d), N = 8 in (b) and (e), and N = 12 in (c) and (f) for a total of 16

Li* and e sites.

the result is presented in Figs. 4(d)-4(f) on a logarithmic
scale. As for the previously studied case of LCO [29], an
exponentially decreasing intrinsic sampling probability is
observed, which is characterized by an effective sampling
temperature, P(E) o exp(—E/kT). In all cases, a fitted
value of about kT = 0.4 eV was found. Importantly, the
Boltzmann-type statistics imply a maximum likelihood for
sampling an optimal solution. For the semilithiated stoi-
chiometry (N = 8), however, the lowest-energy range had a
slightly decreased probability in comparison to the Boltz-

mann fit [Fig. 4(e)]. The same behavior is observed when
analyzing any subset of the respective 800 000 annealing runs,
meaning that the undersampling (in comparison to the extrap-
olated Boltzmann behavior) was a systematic effect, and not
a result of statistical variations due to a limited number of
annealing runs. It is an interesting question for subsequent
investigations whether such undersampling of the relevant
low(est) energy states is related to the specific QUBO at
hand or of more general nature for the D-Wave hardware
employed.

TABLE I. QA parameters and output statistics on D-Wave Advantage™ 5.4 System. In all cases, the values of the chemical potentials

were fixed at uy = 15.84 eV and up = —19.62 eV, and the annealing time was t,,, = 100 ps. c-str.: chain strength; E

Eglob .

min *

energy returned by QA;

‘min

A ..
QA minimum Coulomb

min *

global minimum of the Coulomb energy for the given cell dimensions and stoichiometries determined by full
enumeration. %ggob: QA output fidelity (fraction of optimal solutions).

Cell Composition Ntareet An(eV) Aa(eV) Cc-str. Eﬁﬁ (eV) Ef};b (eV) No. runs %ggnb
1x2x2 Lig,5sFePOy 4 0.4 0.4 2 —4894.394 —4894.394 100 000 0.76%
1x2x%x2 Lip sFePOy 8 0.4 0.4 2 —4831.699 —4831.699 800 000 0.03%
1x2x2 Lig 75FePOy, 12 0.4 0.4 2 —4767.677 —4767.677 100 000 1.09%
1x2x2 Lig,5sFePOy 4 0 0.4 2 —4894.394 —4894.394 500 000 0.09%
1x2x%x2 Lip sFePOy 8 0 0.4 2 —4831.699 —4831.699 500 000 0.002%
1x2x2 Lig 75FePOy 12 0 0.4 2 —4767.677 —4767.677 500 000 0.23%
1x4x1 Lig,5sFePOy 4 1 1 8 —4894.304 —4894.304 100 000 0.02%
1x4x1 Lip sFePOy, 8 1 1 8 —4830.373 —4831.280 100 000 0%
1x4x1 Lig 75FePOy 12 1 1 8 —4767.585 —4767.585 100 000 0.02%
1x4x1 Lig,5sFePOy 4 0 1 8 —4894.304 —4894.304 500 000 0.0004%
1x4x1 Lip sFePOy4 8 0 1 8 —4830.373 —4831.280 500 000 0%
1x4x1 Lig 75FePOy 12 0 1 8 —4767.585 —4767.585 500 000 0.004%
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In the QA results discussed so far, a certain target stoi-
chiometry (N%"€) was enforced by a positive value of the
constraint parameter Ay = 0.4 eV, cf. first block in Table I,
the value of which was manually tuned to maximize the frac-
tion of sampled configurations that fulfilled the constraint,
while maintaining a minimum possible value of the chain
strength parameter (c-str. in Table I) required to prevent break-
ages of the physical qubit chains that represent each logical
variable. On the other hand, due to the nearly perfect linearity
of the energy vs particle number curve shown in Fig. 3(b),
the Legendre-transformed energy (Eqou — nN) becomes flat
across the entire range of N. Setting Ay = 0 in the cost
function (15), thus implies essentially identical values of the
cost minimum at any N. It is therefore expected that QA
sampling with Ay = 0 will sample the ground-state config-
urations for different SOC at similar frequencies. Indeed, as
shown by the results presented in the second block of Ta-
ble I, 500000 QA runs with Ay = O returned the minimum
energy configurations for the different stoichiometries, albeit
with different frequencies. The intrinsic sampling probability
for the N-unconstrained cost function, shown in Fig. 5(a), is
characterized by the same Boltzmann-type statistics as for
the N-constrained method [Figs. 4(d)—4(f)], with a similar
effective sampling temperature of k7T = 0.39 eV. Couzinié
et al. [24] recently presented a similar unconstrained “grand-
canonical” optimization method for the prediction of crystal
structures by quantum annealing, however, without involving
a Legendre transformation in particle numbers. It is expected
that the present method will be readily applicable to such
related problems.

As a second system, the 1 x 4 x 1 LFP supercell was stud-
ied by the same approach to investigate the influence of the
cell geometry on the QA statistics. The 1 x 4 x 1 cell has the
same total number of 16 sites for Li™ and e~ at a larger asym-
metry of the cell parameters (10.332 x 24.040 x 4.692 A%)
as compared to the more regular 1 x 2 x 2 cell (10.332 x
12.020 x 9.384 A3). Interestingly, the 1 x 4 x 1 geometry
yielded identical values for the chemical potentials as for the
1 x2x2cell, uy =15.84eV and up = —19.62 eV. The
respective QA parameters and output statistics are complied in
the third and fourth blocks of Table I. Despite the identical size
of the combinatorial space, the QA method was significantly

less effective for identifying the ground-state configurations
in the asymmetric cell, as quantified by very small fideli-
ties (%ggoh). In particular, the global optimum for the N = 8
problemm‘:vas not returned once by the QA procedure. This
is reflected in the intrinsic sampling probabilities presented
in Figs. 5(b) and 5(c). Both for the N = 8 constrained opti-
mization with Ay = 1 eV [Fig. 5(b)] and the N-unconstrained
sampling with Ay = 0 [Fig. 5(c)], Boltzmann-type statistics
are observed, but with large effective sampling temperatures
of about k7 = 1.3-1.5 eV. The dependence of the QA effec-
tiveness on the supercell geometry (for same combinatorial
problem size) can be related to the variance of the respective
QUBO coefficients. For the 1 x 2 x 2 system, the distribution
of the off-diagonal Coulomb coefficients is characterized by
a standard deviation of 0.69 eV with maximum and mini-
mum values of 1.09 eV and —1.10 eV, respectively, whereas
the coefficients for the 1 x 4 x 1 system have a much wider
distribution with a standard deviation of 2.88 eV and max-
imum/minimum values of 3.78 and —4.65 eV. The larger
variance of the coefficients for the latter system is due to the
asymmetrically elongated shape of the cell which accommo-
dates larger variations in the spatial separation between the
charged species. It is noted that the factor of about 4 between
the spreads of QUBO coefficients is similar to the relative
magnitude of the effective QA sampling temperatures for the
two different cell geometries.

IV. DISCUSSION

The Boltzmann-type statistics is a general feature of QA
on practical D-Wave devices as reported in several studies
[16,18,57]. While generically, QA is devised to search for the
ground-state solution of an optimization problem, the thermal
output statistics make the use of QA also interesting for prob-
lems where the target consists in thermal averages over the
configuration space [17,58]. However, Benedetti e al. [16]
pointed out that the effective sampling temperature is depen-
dent on the problem at hand, also shown in the present results
(Figs. 4 and 5), and not defined by the physical temperature
of the QA hardware, which is in the range of milli-Kelvin.
Decoherence and noise during the QA process is consid-
ered to contribute to the output statistics. Brugger ef al. [18]
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FIG. 6. (a) Joint density of states (gpos, normalized by the total number of states K) of the electro-ionic Coulomb model for the
semilithiated 1 x 2 x 2, 2 x 4 x 4, and 3 x 6 x 6 LFP cells, determined by random sampling (shaded lines), plotted versus the energy per
formula unit (FU) with the ground-state energy as zero. Log-normal fits are shown as solid lines. (Inset) Same plots on an absolute energy
scale (per supercell). (b) Logarithm (natural) of the partition function [Eq. (17)] as a function of the supercell size M (number of LFP formula
units). (Inset) Same plot for larger values of M. (c) Derivative (slope) of the exponent of Z with respect to the system size (M), plotted as

a function of the effective sampling temperature k7. The calculation

failed for numerics reasons in the range below 0.1 eV (shaded area).

The reference value for the brute-force method (horizontal dashed line), d In(K)/dM = In(4) ~ 1.39, follows from the exponential behavior
K o 4M obtained by using Stirling’s approximation. Inset: Enlarged view of the plot.

demonstrated that the Boltzmann-like output could be ex-
plained by a finite precision in the tuning of the target
Hamiltonian parameters. While the effective sampling tem-
perature of the QA process cannot be directly controlled,
the Boltzmann statistics provide access to thermodynamically
relevant low-energy configurations, which was used by Sandt
and Spatschek [58] for postestimation of thermodynamic
quantities at selected target temperatures. Camino et al. [59]
recently presented an approach to vary the effective sampling
temperature by manually rescaling the QUBO coefficients,
which enabled studying the configurational thermodynamics
in different temperature regimes.

The target in the present work was the identification of an
optimum solution, i.e., a lowest-energy configuration of the
electro-ionic Hamiltonian. An ideal QA process would return
an optimum with deterministic certainty for any single run,
and thus provide an exponential speed-up compared to classi-
cal deterministic methods, which effectively require extensive
exploration (full enumeration) of the complete configuration
space. The thermal output distributions observed in practice,
however, make QA a quantum heuristic method, raising ques-
tions on practical limitations in optimization performance and
scaling behavior. The quantum computation time needed for
the probabilistic identification of an optimum solution, #q. =
tann/ Po, corresponds to the annealing time of a single QA run
multiplied by the inverse of the success probability (Pp) to
return a ground-state configuration [57], which corresponds to
the number of QA runs required to achieve a unity expectation
value for a successful outcome. In the following, an empirical
estimate is made for the scaling of 7. as a function of the size
of the problem instance, namely, the size of the LFP model
cell. To this end, the intrinsic sampling probability is assumed
to follow a Boltzmann distribution, P(E) = exp(—E /kT)/Z,
with a certain effective sampling temperature k7', as observed
for the actual QA results across a major part of the output
spectrum, cf. Figs. 4 and 5. Since the probability must inte-
grate to unity, the normalization constant Z is given by the

effective partition function,

zZ= / e T gpos(E)dE, (17
0

with the density of states gpos(E), and the ground-state
energy taken as zero. With a ground-state degeneracy (multi-
plicity) of g, the success probability is given by Py = go/Z
and the total computation time is thus proportional to the
partition function,

tqc = fann — (18)
Figure 6(a) shows the DOS for the semi-lithiated 1 x 2 x 2,
2 x4 x 4,and 3 x 6 x 6 LFP cells, as determined by random
sampling (shaded lines). In all cases, the DOS were well fitted
by log-normal distributions (solid lines),

K In*(E /€)
m exp (-—), (19)

202
2
where K = (1\%2) is the total number of configurations for

cells with M formula units of LiFePQOy, i.e., M sites for
both Li™ and e~, each of which being half occupied. The
fitted parameters were found to depend on the cell size, with
o =0.33,0.18,and 0.12, and € = 11.0, 139, and 536 eV for
the 1l x 2 x 2 (withM = 16),2 x 4 x 4 (with M = 128), and
3 x 6 x 6 cells (with M = 432), respectively. In Eq. (19), E
refers to the total energy for each cell, while in Fig. 6(a), E is
given per formula unit.

This empirical DOS model can be used to estimate the
scaling behavior of the quantum computation time (18), viz.
the effective partition function (17), as a function of M. It
is assumed that the respective DOS can be described by the
log-normal model (19) with parameter functions, o (M) =
0.1343.29/M and e(M) = (—9.22 + 1.26 M) eV, whereby
the roughly linear dependency of the peak-maximum energy
on the system size can be explained by the extensive nature

ghos(E) =
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of the total energy. Figure 6(b) shows the respective scaling
of the logarithm of Z [Eq. (17)] with M for different values of
the effective sampling temperature. Besides the fixed values
of kT =0.1, 0.2, and 0.44 eV (the latter value taken as a
representative for the fitted values in Fig. 4), a sampling model
with an effective temperature kT = 0.44 eV x M /M linearly
increasing with system size was considered (with My = 16
corresponding to the 1 x 2 x 2 cell). The latter model [blue
curve in Fig. 6(b)] showed essentially identical scaling be-
havior as brute-force sampling, viz. full enumeration, with
Z = K equal to the total number of configurations [red curve
in Fig. 6(b)]. In contrast, the models with a fixed QA sampling
temperature yielded significantly decreased values of In(Z).
The slope of the scaling plots (d In(Z)/dM), determined in
the range M = 500-1000, is shown in Fig. 6(c) as a function
of the (fixed) effective sampling temperature. Slope values
of about 1.1-1.2 were obtained, which decreased with de-
creasing sampling temperature, and which are lower than the
reference value for the brute-force method, d In(K)/dM =
In(4) ~ 1.39 [horizontal dashed line in Fig. 6(c)]. While
such lower slope values would indicate an exponential speed-
up provided by the sampling method, it should be noted
that the observed slopes become parallel to the brute-force
reference at very large M [inset in Fig. 6(b)], eventually re-
sulting in the same exponential scaling of the computation
time with system size. These estimations indicate that, in a
strict sense, an exponential speed-up might be challenging
to achieve with thermal sampling statistics, as provided by
current QA hardware. It is important to note that such con-
siderations only refer to the scaling of the exponent of Z
as a function of system size. The respective pre-exponential
factors are much smaller than for the brute-force reference,
as shown by the offsets between the curves in Fig. 6(b).
To assess whether this could lead to practical advantages of
the QA method for the solution of coulombic optimization
problems, a detailed comparison to the scaling behavior of
alternative classical optimization heuristics is required in the
future.

From a pragmatic point of view, existing quantum anneal-
ing hardware was shown to be useful for solving challenging
problems in battery materials research, provided an effective
mapping of the problem and constraints is employed. For the
ground-state search in the 1 x 2 x 2 cell of LFP, it took on
average about 103-10* annealing runs to arrive at a success-
ful solution (success rates of about 0.01-0.1%, cf. Table I).
At an annealing time of about 100 us per run, this corre-
sponds to a total time to solution of the order of seconds—a

considerable performance for a combinatorial space of 23
possible configurations (16 Li* and 16 e~ sites).

V. CONCLUSION

The joint optimization of the ground-state distributions
of lithium ions and redox electrons in a model cell of
lithium iron phosphate was studied based on an electro-
ionic point-charge Coulomb model. Using classical heuristic
optimization, the model was shown to correctly pre-
dict the LFP charging characteristics, namely the bulk
LiFePO,/FePO, phase separation, and a solid-solution behav-
ior for particles below about 40 nm. A method was presented
for performing the ground-state search by quantum annealing.
To this end, the cost function was Legendre-transformed using
the chemical potentials of charge-neutral (physically allowed)
and charged (artificial) variations in lithium ion and electron
numbers. This method enabled the successful identification of
the lowest-energy configuration in an LFP model cell at differ-
ent state of charge on D-Wave quantum-annealing hardware.
After normalization with the electro-ionic density of states,
the QA sampling output was found to follow approximately
Boltzmann-type statistics, the consequences of which for the
scaling of the quantum computation time with system size
were estimated. This work takes a step towards the practical
use of quantum computers for joint quantum simulation and
combinatorial optimization of electrons and ions in energy
materials.
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