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Stabilizer quantum error correction (QEC) codes, in particular topological surface codes, are prime
candidates to enable practical quantum computing. While it is widely believed that strictly fault-tolerant
protocols can only be implemented using single- and two-qubit gates, several quantum computing
platforms, including trapped ions, neutral atoms, and superconducting qubits, support native multi-qubit
operations. In this Letter, we show that stabilizer measurement circuits for unrotated surface codes can be
fault tolerant using single auxiliary qubits and three-qubit gates. These gates enable lower-depth circuits
with fewer fault locations and potentially shorter QEC cycle times. We find that in an optimistic parameter
regime where fidelities of three-qubit gates are the same as those of two-qubit gates, the logical error rate
can be up to one order of magnitude lower and the threshold significantly higher, increasing from ≈0.63%
to ≈0.83%. Our results, applicable to a wide range of platforms, motivate further investigation into multi-
qubit gates for fault-tolerant QEC as they can offer substantial time and physical qubit resource advantages
to reach a given target logical error rate.
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Introduction—Quantum error correction (QEC) is cru-
cial to enable fault-tolerant quantum computation [1,2]. For
the widely used stabilizer codes repeatedly measuring a
generating set of commuting stabilizer operators reveals
information on errors that occurred, forming the error
syndrome. While a stabilizer code with distance d can
in principle correct for arbitrary weight-t ¼ bðd − 1Þ=2c
errors, implementing the stabilizer measurements with a
noisy quantum circuit can reduce the number of correctable
errors. Quantum gates or measurements that underlie the
error syndrome measurement circuits can be faulty, leading
to a wrong diagnosis of the error. Additionally, errors on
auxiliary qubits can propagate into higher-weight data
qubit errors (also called hook errors), effectively reducing
the distance.
Circuits where the distance of the underlying code is

preserved are deemed fault tolerant (FT). Traditionally, see,
e.g., Ref. [3], an error correction subroutine (or gadget) is
called fault tolerant if the weight of the output error is
bounded by the sum of the weight of the incoming error and
the number of faults occurring during the protocol. This

turns (almost) any stabilizer readout with single, physical
auxiliary qubits non fault-tolerant. There are numerous
approaches to tackle these challenges, including Shor,
Steane, and Knill error correction [1,4,5]. These methods
rely on (fault-tolerantly) encoded auxiliary qubits to trans-
versally read out the syndrome information using only
single- and two-qubit gates. These approaches, as well as
more recent flag-qubit-based constructions [6–8] use care-
fully crafted quantum circuits to prevent malicious error
propagation. There exist relaxed definitions of fault toler-
ance that include errors of weight w > t that can still be
corrected [9]. Using these, it is known that any stabilizer
measurement circuit using two-qubit gates in the unrotated
surface code is fault tolerant [10]. The more qubit-efficient
rotated surface codes, however, require a specific ordering
of two-qubit gates to retain fault tolerance [11].
To date, QEC cycles on rotated surface codes have been

realized in trapped ions [12] and superconducting archi-
tectures [13–15]. Recently, distance-5 and 7 codes have
been operated below the threshold, where the error rate of
the logical qubit decreases with increasing code distance
[16]. Logical operations have been realized in error-
detecting surface codes in superconducting architectures
[17,18], with trapped ions [19], and error-corrected entan-
gling gates with neutral atoms [20].
These experimental QEC demonstrations use elementary

gate sets consisting of single- and two-qubit gates. Most
architectures, however, also allow for native implementa-
tion of multi-qubit gates, e.g., using Rydberg blockade in
neutral atoms [21,22], multi-qubit Mølmer-Sørensen gates
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in trapped ions [23], or optimized gate sequences for the
control Hamiltonians of solid-state-based platforms [24,25]
—according to common belief that these would result in
non-FT circuits. Recently, multi-qubit gates have been
proposed for surface code QEC in semiconductor spin
qubits [26], superconducting qubits [27–29], and neutral
atoms [30]. While these references all use different noise
models, they find that higher thresholds can be achieved in
certain parameter regimes, but at the expense of losing strict
fault tolerance.
In this Letter, we report on and explore the unexpected

finding that stabilizer measurement circuits for unrotated
surface codes using three-qubit gates can be fault tolerant,
even when considering three-qubit depolarizing noise
channels on these gates. We use single physical auxiliary
qubits, repeatedly measuring stabilizers to gain confidence
in measurement outcomes, and carefully design readout
circuits to prevent malicious error propagation. We first
recover standard results for surface-code syndrome readout
circuits and then show how circuits using three-qubit CZZ
gates are fault tolerant, based on distinguishability of all
circuit faults up to order t in the unrotated surface code. We
finally show comparative numerical studies that support the
theoretical findings—the logical error rates of memory
experiments scale ∝ ptþ1 in the regime of low physical
error rates. We also find that, with optimistic assumptions
on the noise strength, the parallel three-qubit CZZ-gate-
based scheme outperforms sequential application of two-
qubit CZ gates in terms of logical error rate. In particular,
the threshold increases from ≈0.63% to ≈0.83%. These
results can have practical significant impact for surface-
code-based QEC with ions, neutral atoms, and solid-state
platforms, lowering time and space resource requirements.
Quantum error correction and surface codes—In stabi-

lizer error correction, the þ1 eigenstates of n − k commut-
ing Pauli operators span the 2k-dimensional logical sub-
space of an n-(physical) qubit Hilbert space [31]. These
operators generate the stabilizer group S ¼ fhSiin−ki¼1 ;
½Si; Sj� ¼ 0 ∀ i ≠ j; 1 ∉ Sg. Nontrivial Pauli operators
on the codespace are all Pauli operators that commute
with the stabilizers, but are not stabilizers themselves, i.e.,
elements of the normalizer NPðSÞ. The minimum weight
of any such element is the code distance d and measures the
performance of the code: a distance-d QEC code can
correct for arbitrary weight-t with t ¼ bðd − 1Þ=2c errors.
The parameters of a QEC codes are then the triple
½½n; k; d��.
If a Pauli error E∈P⊗n occurs on the qubits, the

outcomes of a projective measurement of a generating
set of the stabilizer using auxiliary qubits yields its
syndrome sðEÞ ¼ ðhSi; EiÞn−ki¼1 , which is decoded to correct
for the error. Here, we denote by hP; P0i whether Pauli
operators P and P0 commute (0) or anticommute (1).
One prominent family of stabilizer codes are topological

surface codes [32]. For a distance-d surface code, data

qubits are placed on the edges of a d × d square lattice.
Stabilizer generators are defined on plaquettes fixing
the Z parity of qubits on adjacent edges and on vertices
fixing the X parity of qubits on emanating edges. The resul-
ting surface code has parameters ½½d2 þ ðd − 1Þ2; 1; d��.
Additionally, one can cut the ðd − 1Þ2 corner qubits to get
the rotated surface code with parameters ½½d2; 1; d�� [33,34],
without reduction of the code distance.
Fault tolerance of surface code syndrome measurement

circuits—Loosely speaking, a circuit implementing an error
correction gadget using a QEC code with distance d is fault
tolerant if it takes at least d distinct elementary [i.e., OðpÞ]
faults to cause an undetected logical error. If the smallest
fault leading to an undetectable logical error has order
2wþ 1, then every order 2w fault is detectable and every
order w fault has a distinct syndrome and is therefore
correctable. The latter property is called distinguishability
in Ref. [9] and is a key property to extending the fault
tolerance definition of Ref. [35] to incorporate surface code
syndrome readout circuits. In Fig. 1, we summarize the
objects that we use to determine distinguishability of fault
sets: if any pair of fault paths Fi, Fj in a fault set F ðwÞ either
results in errors with different syndromes, stabilizer equiv-
alent errors, or different detector flips during the protocol,
then the fault set F ðwÞ is distinguishable. A more technical
exposition of this approach is outlined in the End Matter.
First, we recall stabilizer measurement circuit construc-

tions for rotated and unrotated surface codes using single-
and two-qubit gates and explain how they fit the fault
tolerance definitions. In the rotated surface codes, the order
of CZs determines whether the fault set F ðtÞ is distinguish-
able or not. If X faults, e.g., on the auxiliary qubit (hook
error) of a Z-stabilizer measurement propagate to weight 2
Z errors parallel to the Z-logical operator, the circuit is not
fault tolerant because it only requires ⌈d=2⌉ of such faults

FIG. 1. Objects used to determine distinguishability of a fault
set. The box represents some (Clifford) circuit with measure-
ments. It is encoded in an error-correcting code with stabilizer
generators fSign−ki¼1 . During the circuit, sets of deterministic
measurements specify the detectors fDg. For an error correction
gadget, these are typically the parities of consecutive stabilizer
measurements. The exemplarily shown fault path F of weight
w ¼ 3 can be efficiently propagated using Clifford simulation.
This results in a vector of flipped detectors D and a final error E.
The ideal syndrome of E is sðEÞ ¼ ðhSi; EiÞn−ki¼1 .
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to completely cover the logical operator. Therefore, fault
paths of weight ⌈d=2⌉ − 1 are detectable, and the largest
distinguishable fault set is F ðbðd−1Þ=4cÞ. If, however, hook
errors propagate to qubits orthogonal to the logical operator
(cf. Ref. [11]), the static distance is preserved in the sense
that fault paths inF ðtÞ are distinguishable—see Fig. 5 in the
End Matter for exemplary faults.
For the unrotated surface code, as noted in Ref. [32]

hook errors are less damaging than naively expected. This
is because unrotated surface codes can be constructed as
hypergraph product codes of two (classical) repetition
codes [36]. For any hypergraph product code, any order
of two-qubit entangling gates gives a distance preserving
stabilizer measurement circuit [10]. This is equivalent to
F ðtÞ being distinguishable. The fundamental reason for that
is that every stabilizer generator (of Pauli P) overlaps with
any minimum-weight logical operator (of Pauli P) on at
most a single qubit, as can be seen in Fig. 2(b).
Since during the measurement of a Pauli P-type stabi-

lizer generator only Pauli-P errors are propagated on the
data qubits and any propagated error has at most one
overlap with a (minimum weight) logical operator, d faults
are required to make a direct logical error. By linearity,
t ¼ bðd − 1Þ=2c faults are distinguishable.

Now, we extend these arguments for circuits using three-
qubit CZZ gates, as shown in Fig. 2(a) for a Z-stabilizer
measurement. To manage hook errors, two data qubits on
the support of the three-qubit gate have to reflect the
ordering in the two-qubit case, i.e., rotated surface codes
require propagation orthogonal to the logical operators and
unrotated surface codes are robust against hook errors.
In addition to hook errors, there are now also weight-3

elementary faults with arbitrary two-qubit Pauli operators
on data qubits involved in the CZZ gate. These potentially
turn F ðtÞ indistinguishable. In rotated surface codes for a
uniform depolarizing noise model, there is no way to re-
tain distinguishability: if the direction of the CZZ gates is
chosen such that, e.g., Pauli-Z hook errors propagate
orthogonally to the Z-logical operator, the elementary
XX-fault on the data qubits of the CZZ gate is parallel to
the X-logical operator, and vice versa. Only if the correlated
faults IXX; IXY; IYX; IYY and XXX;XXY; XYX; XYY
(Ancilla-Data-Data) are suppressed to Oðp2Þ, e.g., by
dedicated gate engineering [29], distinguishability up to
OðptÞ is guaranteed.
In the unrotated surface code, we differentiate between

horizontal-vertical (West-East, WE, or North-South, NS)
and diagonal (North-East, NE, or North-West, NW) qu-
bits of a stabilizer that are supported on the CZZ gate; see
Figs. 2(b) and 2(c). The horizontal and vertical qubits
overlap with Z- and X-logical operators on two positions.
Therefore only ⌈d=2⌉ faults are needed to make a direct
undetected logical error. Equivalently, there exist two
indistinguishable fault paths in order F ðtÞ, also shown in
Fig. 2(b).
For CZZ gates involving the diagonal data qubits, we

observe that these contain one of the “outer” d × d and one
from the “inner” d − 1 × d − 1 square lattice. Realizing
that all minimum-weight logical operators of the unrotated
surface codes have support only on the outer lattice, we can
conclude that faults on these qubits again overlap with
minimum-weight logical generators on only a single
position. Contrary to rotated surface codes, this also holds
for X faults on the support of Z stabilizers, and vice versa
[see an example in Fig. 2(c)]. Once more, d faults are
required for an undetected logical error, and the fault set
F ðtÞ is distinguishable.
We numerically verify the distinguishability of fault sets

for circuits implemented with CZZ gates (cf. Algorithm 1 of
Supplemental Material [37]): we first simulate the effect of
each elementary fault and then construct all up-to-order-t
combinations of faults until we find indistinguishable fault
paths. We summarize the results of our exhaustive checks in
Table S1 of Supplemental Material [37]. These numerical
results complement the above arguments and confirm that,
while rotated surface codes have their distance reduced to
deff ¼ ½ðd − 1Þ=2�, the NE and NW three-qubit gate stabi-
lizer measurement circuits for unrotated surface codes are
fault tolerant with the full effective distance deff ¼ d.

(a)
(b)

(c)

FIG. 2. Detail of stabilizer measurement circuits for the dis-
tance-3 unrotated surface code, implemented with three-qubit
CZZ gates as described in the main text. (a) For a uniform
depolarizing noise model, there exist elementary two-qubit X
faults on the support of Z-stabilizer generators—contrary to the
two-qubit gate situation. These faults are captured by a sub-
sequent Z-stabilizer measurement. (b),(c) Show the effect for two
different orderings of the gates. In the unrotated surface codes, we
draw the X-(Z-)logical operators as thick red (blue) lines and
draw flipped detectors with a light green dot. (b) If the last three-
qubit gates act on the horizontal (WE) and vertical (NS) qubits,
the final X error is parallel to the X-logical operator. We draw
another first-order fault (orange, dotted) with the same syndrome,
which is logically inequivalent, implying a nondistinguishable
fault set F ð1Þ. (c) For a diagonal ordering toward the south-east
(SE) and north-west (NW) qubits, however, faults of the same
order with the same flipped detectors are stabilizer equivalent.
The fault set F ð1Þ is distinguishable.

PHYSICAL REVIEW LETTERS 135, 240601 (2025)

240601-3



Memory experiments—To investigate the QEC perfor-
mance of the three-qubit gate protocol, we perform full
circuit level noise memory experiments using stim [46].
We construct circuits for rotated and unrotated surface
codes similar to the circuits in the experimental Ref. [13],
i.e., we implement X- and Z-stabilizer readout circuits one
after another, with measurement of X-(Z-)ancillary qubits
during the Z-(X-)entangling gate cycle. In the CZ protocol,
we order the gates orthogonal to the logical operators, i.e.,
South–East–West–North (SEWN) for X- and South–West–
East–North (SWEN) for Z-type stabilizers. When using the
three-qubit CZZ gate, we order both X and Z stabilizers
NW-SE (see Supplemental Material for details [37]). We
consider a noise model similar to the SI1000 model of
Ref. [47] based on a single noise parameter p, the base
noise strength for CZ gates. Single-qubit gates have noise
strength p=10, initializations 2p, and measurements 5p.
We assume a noise strength of 3

2
p for CZZ gates and an

idling noise strength of p=2. This rests on the assumption
that noise is ultimately decoherence limited and a paral-
lelized CZZ gate takes about the same time as a single CZ

gate. This can be regarded as an optimistic, though not
unrealistic, parameter regime, and the associated QEC
performance represents loosely speaking an upper limit
of the potential offered by the three-qubit-based approach.
For a more in-depth discussion as well as complementary
parameter regimes, refer to Supplemental Material [37]. In
Ref. [29], we show how a three-qubit CZZ gate with equal
gate times as a two-qubit CZ gate can be realized with
transmon-based qubits in superconducting circuits. For
further details on the circuits, multi-qubit gates and error

channels and beliefmatching as the decoder choice, see
Supplemental Material [37,48].
We show results on the scaling of the logical error rate

for different settings in Fig. 3(a). We compare implemen-
tations with CZZ gates for rotated (⋄) and unrotated (□)
surface codes. For small p, we see the above discussed
signatures: the rotated surface codes circuits are not
distance preserving and show a scaling pL ∝ p⌈ðdþ1Þ=4⌉,
consistent with a halved distance. The unrotated surface
codes with CZZ gates show the fault-tolerant scaling, i.e.,
pL ∝ p½ðdþ1Þ=2�. Compared to an implementation with CZ

gates in the unrotated surface codes, the absolute value of
the logical error rate is also lower, consistent with previous
observations [27,30]. We attribute this to the shorter depth
and smaller number of fault locations in the CZZ circuits.
Notably, with the optimistic assumptions on the noise, the
threshold using CZZ gates is much higher compared to
the implementation with CZ gates and is increased from

pðCZÞ
th ≈ 0.63� 0.02% to pðCZZÞ

th ≈ 0.83� 0.02%; see
Fig. 3(b). This is a 32% increase that we again attribute
to the smaller number of fault locations. An overview of
all obtained thresholds is shown in Table S4
(cf. Supplemental Material [37]).
Qubit-resource comparison for FT QEC—Typically, for

practical implementations, the rotated surface code is
preferred over its unrotated counterpart because of the
smaller qubit count. The unrotated surface code uses ñu ¼
4d2 − 4dþ 1 physical qubits (dataþ auxiliary) compared
to the rotated surface code with ñr ¼ 2d2 − 1, essentially
halving the amount of physical qubits required for large
distances. This often results in better performance of

(a) (b)

FIG. 3. Logical error rates for implementations using CZ (dashed line) and CZZ gates (solid line). We assume a three-qubit gate noise
strength of 3

2
p and an idling noise strength of ðp=2Þ. The color coding represents codes with increasing distance. (a) CZZ circuits for the

rotated surface code (⋄) are not fault tolerant and show a scaling ∝ ⌈ðdþ 1Þ=4⌉, consistent with a halved distance. For the unrotated
surface code (□), CZZ circuit show the same FT scaling of the logical error rate pL ∝ pðdþ1Þ=2 as CZ circuits. Distance-3 and 5 codes
correct for all faults up to order t ¼ bðd − 1Þ=2c, whereas for larger distances, deviations due to the decoder can be seen; see also
Supplemental Material [37]. Because of fewer idling locations using three-qubit gates, the logical error rate is up to 50% lower for
physical error rates in the range of 10−2 to 10−3 when using three-qubit CZZ gates, with more pronounced advantages with increasing

distance. (b) The threshold is increased from pðCZÞ
th ≈ 0.63% to pðCZZÞ

th ≈ 0.83%. Decoded using beliefmatching with d iterations of
belief propagation (BP) before matching. Error bars are standard Monte Carlo errors and can be smaller than the symbol used.
Thresholds are obtained using finite-size scaling (see Supplemental Material [37]).
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rotated surface codes for a fixed number of physical qubits.
In the following, we show that, in a realistic noise regime,
the unrotated surface code with CZZ gates can actually
achieve a target logical error rate with fewer physical qubits
than the traditional rotated surface code circuits using CZ

gates. We plot the logical error rate achieved by surface
codes against the number of physical qubits in Fig. 4 and
compare a CZ-rotated with a CZZ-unrotated implementation
for near-term experimentally relevant subthreshold physi-
cal error rates in the regime of 0.1%–0.6%. Our key
observation is that there is a threshold physical error rate
above which the unrotated surface codes require less
physical qubits to achieve a target logical error rate. We

find this error rate at pð ∘ Þ
th ≈ 0.2%. To extrapolate to small

logical error rates, we fit pLðnÞ ¼ c0ðp=c1Þc2
ffiffi
n

p
. Fit

parameters are outlined in Supplemental Material
Table S2 [37]. At p ¼ 0.2% and to reach a target logical
error rate of 10−6, a value that is considered sufficient for
quantum computers to solve useful tasks like factoring of
numbers [49], a rotated surface code implemented fault-
tolerantly with two-qubit CZ gates has to have distance
dr ¼ 21, corresponding to ñr ¼ 881 physical qubits. This is
already 40% higher than the ñu ¼ 625 (du ¼ 13) qubits for
the unrotated surface codes using CZZ gates.
Conclusion—We have investigated the application of

three-qubit gates for stabilizer measurement circuits in
rotated and unrotated surface codes. We have shown
how CZZ-gate-based circuits in unrotated surface codes
are fault tolerant, even for an adversarial uniform depola-
rizing noise model on the support of the three-qubit gates.
For an optimistic parameter regime for the achievable
fidelity of the multi-qubit gates, logical error rates are
lower and thresholds are higher due to a smaller number of

fault locations. In particular, we have shown that, for near-
term experimentally relevant error rates, unrotated surface
codes with CZZ gates can be the less-qubit intensive version
to reach a target logical error rate.
Our results with uniform depolarizing noise also suggest

that a closer investigation of the noise channels of multi-
qubit gates can lead to further improvements. In a parallel
work, we construct a CZZ gate that effectively realizes two
parallel CZ gates with transmon qubits [29]. We show that
an optimization for minimizing fault-tolerance breaking
faults can reduce the logical error rates also for rotated
surface codes. Several other works have made similar
observations about correlated errors. This includes
Refs. [50,51] that find dominant noise contributions from
weight-2 Z-Pauli terms.
These results put multi-qubit gates back on the map

as potentially highly valuable building blocks for QEC
which are compatible with FT circuit design principles.
Investigating which other quantum low-density parity-
check codes like lifted product or bivariate bicycle codes
[52–54] allow for fault-tolerant parallelized stabilizer read-
out is an interesting open question and might improve
practical feasibility of such larger classes of QEC codes.

Note added—We have became aware of related work on
quantum error correction via three-qubit gates in Rydberg
atom arrays in Ref. [55].
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End Matter

Fault tolerance of error correction circuits—Here, we
provide more technical details on the definitions of fault-
tolerant circuits used in the main text. We use the
following definition of circuit fault tolerance [3,9]. We
consider a circuit with (Clifford) gate locations,
initializations, and measurements. Additionally, we
define detectors as sums of measurements that are
deterministic in the absence of noise. Typically, a matrix
H∈ Fndetectors×nmeasurements

2 maps from bare measurement
outcomes to detector flips. For a circuit measuring
stabilizer generators of a QEC code that is in a þ1
eigenstate of all generators, this can be an identity
matrix. Every location l∈L ¼ f0;…; nlocations − 1g of
the circuit can be faulty, which is simulated by an ideal

gate followed by a Pauli noise channel with error set
EðlÞ. For n-qubit gates and idling locations, we assume
n-qubit depolarizing channels:

EnðρÞ ¼ ð1 − pÞρþ p
4n − 1

X4n−1

i¼1

Pi
nρPi

n

with Pi
n ∈ ffI; X; Y; ZgnnI⊗ng: ðA1Þ

Single-qubit Z-basis initialization (measurement) is
followed (preceded) by a bit-flip channel,

EðρÞ ¼ ð1 − pÞρþ pXρX: ðA2Þ
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We label each elementary fault with the location l and the
nonidentity Pauli realization P of the corresponding
channel, such that the set of all elementary faults is
F 1 ¼ fFP

lgl∈L;P∈EðlÞ. If the actual Pauli realization of
the fault is not important, we typically drop the Pauli label.
Each fault is efficiently propagated through the circuit
using Clifford simulation [57], resulting in a (determini-
stic) error EðFÞ, a vector of measurement outcomes
mðFÞ, and flipped detectors DðFÞ ¼ HmðFÞ. An order-w
fault path F is a set of w faults at distinct locations, F ¼
fFlgl∈L⊆L;jLj¼w. The errors and flipped detectors that
result from all faults in a fault path can be calculated as
EðFÞ ¼ Q

F∈F EðFÞ and DðFÞ ¼ ⨁F∈FDðFÞ, respecti-
vely, where ⊕ denotes element-wise summation modulo 2.
If any fault path up to order t in p leads only to

correctable errors (and could hence be corrected by a
subsequent ideal round of stabilizer measurement), then we
say the circuit is distance preserving and fault tolerant. This
is captured by the notion of distinguishable fault sets [9].
Definition 1—We call the collection of all possible

fault paths of order ≤ w the fault set F ðwÞ. A fault set is
distinguishable if for any pair of fault paths Fi;Fj ∈F ðwÞ,
either (1) s½EðFiÞ� ≠ s½EðFjÞ�, (2) EðFiÞ ∼ SEðFjÞ, or
(3) DðFiÞ ≠ DðFjÞ, that is, any two fault paths either result
in errors with different syndromes (1), in stabilizer-
equivalent errors (2), or in different detector flips during
the protocol (3).
The quantities used in this approach are visualized in the

main text in Fig. 1. As an example, we show in Fig. 5(a) a
detail of a Z-stabilizer measurement using two-qubit CZ

gates. Depending on the order of gates, the fault set F ð1Þ is
(b) indistinguishable or (c) distinguishable.
The key technical observation (Proposition 1 of Ref. [9])

is that iff F ðwÞ is distinguishable, then the smallest fault
path leading to a direct, undetected logical error is in
F ð2wþ1Þ. This implies that a circuit employing a code of

distance d with elementary fault set F 1 is fault tolerant iff
the fault set F ðtÞ is distinguishable. This is a similar
situation compared to fault tolerance in detector error
models; see, e.g., Ref. [58].

(a)

(b)

(c)

FIG. 5. Detail of stabilizer measurement circuits for the dis-
tance-3 rotated surface code. (a) A Z fault on the ancilla of a
Z-stabilizer measurement can propagate to two data qubits,
indicated by the blue highlighting. The propagated fault is
detected in the next round of X-stabilizer measurements. (b),
(c) Show the effect for two different orderings of the gates. In the
rotated surface codes, we draw the X-(Z-)logical operators as
thick red (blue) lines and draw flipped detectors with a light green
dot. (b) If the last two gates act on the north (N) and west (W)
qubit, the final Z error is parallel to the Z-logical operator. There
is another first order fault with the same syndrome that is
logically inequivalent implying a nondistinguishable fault set
F ð1Þ. (c) For an ordering toward the north (N) and east (E) qubit,
however, faults with the same flipped detectors are stabilizer
equivalent. The fault set F ð1Þ is thus distinguishable.
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