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the increasing demand and usage of aluminium around the 
world. In parallel, there is a growing emphasis on increasing 
the use of secondary aluminium through scrap recycling, 
driven by both economic and environmental considerations 
[6, 7]. However, aluminium recycling is also leading to the 
accumulation of impurities, like Si, Mg, Mn, Cu, and Fe, 
thereby undesirably influencing the mechanical properties 
of the aluminium products [8–12]. The typical aluminium 
strip process chain for beverage can production consists of 
several processing steps, namely melting and casting, pre-
heating, hot rolling, and cold rolling. Parameters of each 
processing step, like hot rolling temperature, cold reduction, 
recrystallisation, work hardening and softening, microstruc-
ture, texture, etc., influence the properties of the aluminium 
strip which may ultimately cause anisotropy in the strip 
[13–15]. When deep drawing the beverage can from alu-
minium strips having higher anisotropy, significant earing 
formation can occur on the formed can body, resulting in 
uneven edges [14, 16, 17]. Since these uneven edges must 
be trimmed away, they generate scrap at the site of a can 

Introduction

Aluminium is used in a wide range of applications, rang-
ing from transportation to packaging industries, due to 
its properties like lightweight, high corrosion and fatigue 
resistance, high electrical and thermal conductivity, as 
well as recyclability [1–5]. According to the International 
Aluminium Institute (IAI), around 72,758 thousand metric 
tonnes of primary aluminium was produced in 2024, which 
is around 33% more compared to 2014, thereby showing 
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The production of aluminium strip involves a long sequence of thermomechanical processing steps that significantly influ-
ence the material’s mechanical properties and may induce anisotropy. This anisotropy can manifest as earing during deep 
drawing operations - such as those used in beverage can manufacturing - resulting in increased trimming scrap, process 
downtimes, and reduced economic viability. To assess formability and quantify earing, the cup drawing test is employed 
as a standard evaluation method. Understanding and minimizing earing formation requires comprehensive modelling of 
the entire process chain, which is traditionally performed manually by domain experts - a time-consuming, error-prone, 
and costly effort. This study presents a novel, scalable, and flexible approach to model a process chain by integrating 
production data with process models on the Microsoft Azure Databricks platform. The proposed method is validated on 
an industrial aluminium strip production line, demonstrating its capability to automate data processing, extract actionable 
insights, and support process optimisation. The approach successfully identifies an optimum processing route that mini-
mises the earing integral, as determined by a dedicated evaluation function.
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manufacturer. Furthermore, earing formation, if not consid-
ered during the deep drawing process layout, can lead to the 
stoppage of the ultra-fast beverage can production facilities, 
resulting in increased downtime and reduced productiv-
ity [18]. Hence, aluminium strip producers are obliged to 
deliver high-quality material fulfilling the customer require-
ments in terms of strip geometry, isotropy, and strength. To 
test the formability of the aluminium mill products, strip 
producers conduct cup drawing tests and measure the cup 
heights to obtain the earing profile and earing characteris-
tics, which serve as a quality indicator of the produced coil.

With the advances in digitalization and simulation meth-
ods, it is now possible to acquire large amounts of produc-
tion data and use numerical as well as fast analytical process 
models that can simulate individual processing steps to cal-
culate non-measurable or hard to measure product properties 
like temperature, strain, grain size distributions within the 
workpiece, recrystallized fraction, strip strength [19–23]. 
Thus, production and simulation data together help process 
experts to gain a better understanding to optimise their pro-
cesses. However, looking at each processing step separately 
does not capture the different interdependencies between 
each processing step and the final strip properties, thus hin-
dering a robust process optimisation. Moreover, optimising 
a process chain is a repetitive, expensive, and error-prone 
task involving data acquisition, pre-processing, setting up 
process models, running simulations, extracting results, and 
finally analysing all data. This is usually conducted manu-
ally by process experts. Hence, modelling the complete 
process chain by coupling production data and simulation 
models in an automated sequence is imperative. Since data 
is stored in different formats, units, and structures, it must 
be pre-processed before it can be used as an input to the next 
process model. Nevertheless, the lack of a suitable tool that 
can allow efficient handling and management of all process 
models and the data that is generated or captured along the 
entire process chain poses a technological challenge.

To overcome these limitations, a novel approach to mod-
elling a coupled process chain is demonstrated in this work. 
For coupling the production data and simulation models 
along the process chain, the Microsoft Azure Databricks 
platform is used which is flexible to implement custom 
scripts to check and correct erroneous data, convert units, 
initiate process models, run process simulations, extract 
simulation results and store them together to provide the 
aggregate data containing production as well as simulation 
data to the user and finally analyse it to obtain better process 
insights and determine optimal processing route. Moreover, 
the proposed approach is also suitable for processing new 
production data from daily production, where the newly 
ingested data can be processed batchwise and included 
in the analysis to derive process insights. The benefits of 

implementing the proposed approach are demonstrated by 
the automated processing of industrial production and simu-
lation data to generate aggregate data that is visualised and 
analysed to obtain process insights. Finally, an optimum 
processing route fulfilling an artificially generated pseudo- 
requirements, including a processing window leading to 
minimum earing formation, is identified by using an evalu-
ation function.

Within the Microsoft Azure platform of Speira GmbH 
the measured process- and quality data of Alunorf GmbH 
are continuously updated and linked to the Databricks 
platform, developed in this paper. In addition, two simula-
tion models are coupled, which belong to the proprietary 
“rolling simulation environment (RoSE)” of Speira GmbH 
[24]. The first model provides the numerical re-simulation 
of the hot rolling schedule with an integrated prediction of 
the microstructure development, and thus it provides non-
measured material property data. The second model takes 
the measured earing profile of the final cold rolled strip as 
an input and back-calculates the earing profile of the strip 
after hot rolling, while taking the cold rolling deformation 
into account. The model results and the process data are 
then aggregated and made available in the Azure platform 
by newly developed data management and filtering algo-
rithms. This includes the concepts for linking data from sev-
eral sources which belong to one coil and connectors for the 
communication between the data platform and the models. 
Filters are implemented to analyse and detect the peak ear-
ing locations in the measured cup profiles. And finally, a 
dashboard allowing for user interactions is constructed to 
facilitate advanced data analytics procedures and automated 
data visualizations.

Approach

The approach consists of a data management platform that 
ingests the measured production data, applies necessary fil-
ters, and generates input decks for the simulation algorithms. 
The platform triggers the simulations and takes in the com-
puted results. Production and simulation data are aggregated 
and are made accessible to suitable advanced analysis and 
visualisation tools using interactive dashboards. All data 
operations work in an automated manner on the data of a 
long production period, i.e., several hundred coils over the 
span of several months.

Analysis of an industry process chain

The principal steps for the can body strip production are 
shown in Fig. 1. A production schedule for alloy AA3104 is 
selected for this work. It consists of pre-heating of the cast 
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aluminium ingot, followed by hot and cold rolling. Finally, 
a cup drawing test is conducted on a Zwick/Roell P600 
equipment at Speira R&D to measure the earing formation 
in the aluminium strip.

To test the formability of the aluminium mill product, 
strip producers conduct cup drawing tests and measure the 
cup heights along the cup circumference from 0° to 360° 
angle to obtain the earing profile, as shown in Fig. 2.

The earing profile is then used to calculate characteris-
tic earing values, namely mean ear height ( Z) and delta 
ear ( ∆ Z) according to the Eqs. 1–1 and 1–2. These scalar 

characteristic earing values serve as strip’s quality indica-
tors that can be used for optimizing the process chain to 
minimize the earing formation [25, 26].

mean ear height, Z [%] = hpeak − hvalley

hvalley

× 100� (1-1)

delta ear, ∆ Z [%] =
2 ∗ h45◦ −

(
h0◦ + h90◦

)

h0◦ + h90◦
× 100� (1-2)

where,

Fig. 2  (a) Deep drawn cup with significant earing formation, (b) Cup 
height measured along its circumference showing 6 ears at around 0°, 
45°,135°, 180°, 225°, and 315° with 6 peaks and 6 valleys, (c) But-

terfly-like structure when the measured earing profile is plotted in the 
polar coordinate system

 

Fig. 1  Aluminium strip production process chain showing the flow and processing of material, flow of data and available process models
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state for each strip element along the roll gap. The core of 
this system is a dislocation-based material model, which 
calculates the evolution of distinct dislocation populations. 
From these, the flow stress can be derived, which is incre-
mentally used by the deformation model. Furthermore, the 
dislocation densities directly after a rolling pass are the 
driving forces for recrystallization, which is then calculated 
using a modified JMAK model. Finally, the microstructure 
module calculates grain size and yield strength based on the 
dislocation densities.

In this work, the cold rolling process is not modeled to 
keep the process chain simple by assuming it to be static, 
where only strip strength increases due to strain hardening 
while thermally activated mechanisms like recovery and 
recrystallization are not present since the temperature levels 
are too low. The results of model validations are presented 
in Figure A-1 and Figure A-2 available in Appendix A.

Microsoft Azure databricks platform for storage and 
processing of the data

Microsoft Azure Databricks is a cloud-based big data and 
machine learning platform that provides all necessary fea-
tures and capabilities for engineers to work and collaborate 
on data science projects [28]. It combines the advantages of 
Apache Spark, which can process a huge amount of data, 
provides data streaming capability and an interactive query 
engine, Microsoft Azure, which is a cloud computing plat-
form and Databricks, which can ingest large amounts of 
data, clean up the data and apply machine learning algo-
rithms [28]. Being a cloud computing-based platform, it 
provides its users with the necessary flexibility to work with 
different users at multiple locations without the need for 
powerful hardware on a local device. Moreover, the plat-
form provides a graphical user interface that makes it easy 
to operate for users with all levels of programming skills. 
The platform has two main components - Workspaces and 
Clusters. In the Workspace, ingested data, notebooks, etc., 

hpeak = Average peak height [mm] = hp1 + hp2 + hp3 + . . .

Number of peaks

hvalley = Average valley height [mm] = hv1 + hv2 + hv3 + . . .

Number of valleys

h0◦ ,45◦ ,90◦ = Average ear height at an angle w.r.t. rolling direction

During continuous production only the earing profile of the 
finished cold rolled material is measured since this is the 
decisive quality for a customer. However, the most impor-
tant lever to influence and optimize this profile is during 
hot rolling. At this stage a continuous measurement is not 
possible and only limited validation data are available from 
internal R&D investigations. Hence, an earing model was 
developed by Speira GmbH which uses the Fourier method 
to inversely calculate hot strip earing profiles from the mea-
sured cold strip earing profile [26]. Using the simulated 
hot- or measured cold rolled earing profiles, correspond-
ing earing characteristics are calculated according to Eqs. 
1–1 and 1–2 that are part of the earing model. In order to 
exclude effects from the cold rolling process steps the cal-
culated hot rolled cup can be directly correlated to the hot 
rolling conditions.

For hot rolling, a single-stand roughing mill followed by 
a 4-stand tandem line setup is used with intermediate cool-
ing to control the hot strip temperature, while cold rolling is 
done using a single-stand rolling mill. A dislocation density-
based fast analytical hot rolling model [27] is used to simu-
late the hot rolling processes, which takes as input the hot 
rolling production data (pass schedule), material parameters 
and chemical composition to calculate amongst other values 
the fraction recrystallized, average grain size, temperature 
and yield strength of the workpiece, rolling force and torque 
as shown in Fig. 3.

The fast analytical rolling model is developed in a modu-
lar way and consists of a temperature module that calculates 
temperature evolution using the finite difference method. 
The deformation module calculates the stress and strain 

Fig. 3  Illustration of the fast analytical hot rolling model which is developed in modular fashion to calculate global as well as local variables
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workflow is shown in Fig. 5b), where all the logic and func-
tions are coded using Python. The Algorithm runs iteratively 
over each production run by first loading the earing profile 
as a measurement of the cup heights from 0–360° along its 
circumference, checks it for missing data and corrects it, if 
needed, using a cubic spline interpolation method. The cor-
rected earing profile is then analysed by a peak detection 
algorithm shown in Fig. 6, which identifies the number of 
peaks representing ears and the number of valleys repre-
senting troughs in the earing profile as shown in Fig. 7a).

The peak detection algorithm presented in Fig. 6 starts 
by adding extra signals towards the start and end of the cor-
rected earing profile (Ec) to avoid abrupt changes in the 
smoothened profile. Next, the extended earing profile is 
smoothed to remove the noisy data with the help of a Sav-
itzky-Golay filter. Using the findpeaks library [29] avail-
able in Python, all the peaks and valleys in the smoothened 
extended earing profile (Es) are detected and duplicate 
peak or valley present at 0° and 360° is removed. These 
steps of smoothing, peak/valley identification and dupli-
cate removal are repeated for different smoothing parameter 
combinations namely the order of the polynomial used in 
filtering and the length of the filtering window until the ter-
mination criteria of an even number of peaks and valleys as 
well as a minimum distance of 10° between 2 consecutive 
peaks or valleys is fulfilled. Finally, the location of peaks 
and valleys identified in the smoothed earing profile is then 
used to identify peaks and valleys in the corrected earing 

are located, while Clusters provide the computing power 
to fetch the data from the Workspace and run Jupyter-style 
notebooks written in Python, Scala, R, or SQL to process 
and analyse data. The results can be visualised within the 
notebook as well as in an interactive dashboard.

The concept for using the Azure Databricks platform for 
this work is shown in Fig. 4. The raw data from the pro-
duction and quality testing, either from daily, weekly, or 
monthly production that is stored locally in.csv format, con-
sisting of hot rolling data, earing measurements and tensile 
testing data, is uploaded to the platform as a bronze layer. 
The data from the bronze layer is then fetched by the Man-
agement and Filtering algorithm running on the Speira local 
computer, and the processed aggregate data is uploaded 
back as a silver layer in the platform using the Databricks 
SQL Connector for Python. Finally, a Python data analysis 
notebook running in Azure Databricks analyses the aggre-
gate data for user user-defined period and its results are 
visualised in the interactive dashboard.

Concept for coupling of process model and 
production data

In Fig. 5a), a concept for coupling the production data and 
process models is presented. The input data, consisting of 
hot rolling data and quality data, is fetched from the Micro-
soft Azure Databricks platform. At the core of the presented 
approach is the management and filtering algorithm, whose 

Fig. 4  Concept for storing, processing, and analysing the data along 
the process chain using Azure Databricks. Databricks ingests produc-
tion and quality data and stores them in its data lake as a delta table 
from where the data can be used for further processing to prepare the 

aggregate data. Finally, the data analysis notebook running on Data-
bricks performs feature importance analysis, identifies optimal pro-
cessing route and visualizes the results
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Atotal = Area under the earing profile calculated using the Simpson′ s rule

Aeariing free = Area below the lowest valley in the earing profile

The corrected earing profile is then sent to the earing model 
to calculate earing characteristic values, namely Z, ∆ Z, 
Z0◦ , Z45◦  and Z90◦ . Using a unique identifier, the associ-
ated hot rolling production data is fetched and sent to the 
hot rolling model to simulate the hot rolling process and cal-
culate difficult to measure variables like recrystallised vol-
ume fraction, grain size, yield strength of strip, etc. Next, all 
the quality data, hot rolling production data, results of hot 

profile to get the exact values of peak or valley heights and 
angles as shown in Fig. 7a).

If the peaks determined by the peak detection algorithm 
are located at the physically admissible peak positions, the 
corrected earing profile is used to calculate the earing inte-
gral as depicted in Fig. 7b) by using Eqs. 2 − 1.

Earing integral [%] =
(

Atotal − Aeariing free

Atotal

)
× 100 � (2-1)

where,

Fig. 6  Peak detection algorithm to detect peaks and valleys in the corrected earing profile

 

Fig. 5  (a) Concept for the coupling of the production data and process models in the aluminium strip process chain, (b) workflow of the manage-
ment and filtering algorithm showing the logic of different steps and processing
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nonlinear regression technique from supervised learning 
called extreme gradient boosting (XGBoost) [30] is used. 
It is used to map the linear as well as nonlinear interactions 
between process variables and earing integral. One of the 
inherent features of XGBoost is that it can provide variance 
in the model output for each of the input features, thus serv-
ing as an indicator of the importance of each input feature 
(process parameters) in predicting the model output (earing 
integral).

Figure 8 shows the flowchart of the training process 
for the XGBoost model using the automatic hyperparam-
eter optimization software framework named Optuna [31], 
which is available in Python. The objective function con-
taining upper and lower limits for the hyperparameters is 
defined. For robust determination of the hyperparameters 
while reducing the influence of random splitting of the data 
into training and testing datasets, the mean cross validation 

rolling and earing model are saved under a unique identifier 
as aggregate data. Finally, upon completion of the process-
ing of the complete historical production data, the aggregate 
data is analysed in an automated way to determine parame-
ter importance as well as the best processing route for mini-
mizing earing formation.

Modelling of the coupled process chain

Study of the parameters influencing the earing formation.

The aggregate data is used to extract process knowledge 
and insights, thereby leading to better process understand-
ing. For this purpose, different methods from explor-
atory data analysis, like histograms and scatter plots, are 
used. Since industrial process chains are extremely com-
plex and have non-linear correlated process variables, a 

Fig. 8  Flowchart for training of the XGBoost model using Optuna hyperparameter optimization framework

 

Fig. 7  Processing of earing profiles (a) peaks and valleys in the earing profile identified by the peak detection algorithm (b) calculation of earing 
integral using Simpson’s rule
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Ethickness =

{ 0.0, (1 − tol) × hcoldstrip,ref ≤
hcoldstrip ≤ (1 + tol) × hcoldstrip,ref
1.0, otherwise

Estrength =

{ 0.0, (1 − tol) × Rp02 coldstrip,ref ≤ Rp02 coldstrip

≤ (1 + tol) × Rp02 coldstrip,ref
1.0, otherwise

Eearing = |Earing integral|

The parameter tol is the allowable tolerance in the cold 
strip thickness and strength within a pseudo customer speci-
fication, and w1−4 are weights to control the penalty asso-
ciated with each individual component of the evaluation 
function. To test the suitability of the proposed approach, 
the tolerance (tol) of 2% and weights w1= 25, w2 = 25, 
w3 = 1, w4 = 1 are used. Defining tolerance helps in avoid-
ing situations where the strip’s strength and thickness do not 
exactly match with the pseudo specifications. If the toler-
ance is relaxed, then the evaluation function will allow cold 
strips with larger deviations in target thickness and strength. 
The weights in the evaluation function penalize the produc-
tion routes if the corresponding property lies outside the 
allowable tolerance. Since the strip thickness and strength 
are the strictest customer specifications since they affect the 
cup making directly, they are given the highest penalty if 
outside the tolerance. Higher w1 and w2 are essential to be 
able to identify drastic changes in the evaluation values to 
identify areas in which the process route does not produce 
acceptable results. Significant variations in properties from 
the strip centre to the edges, as well as a significant ear-
ing formation, can lead to increased scrap generation at the 
beverage can maker and are therefore given equal weight-
age by defining w3 = w4. Thus, all coils within the toler-
ance window for strength and thickness will give 0.0 for 
Ethickness and Estrength, whereas Ehomogenous properties 
and Eearing  components of the evaluation function will 
favour coils with homogenous properties and low earing 
formation.

Results and discussion

Study of the parameters influencing the earing 
formation.

The production data of 1,972 coils, made available by 
Speira and AluNorf GmbH, are processed with the help of 
the implemented concept of coupling production data and 
process models presented in Sect. 2.3 to prepare aggregate 
data containing production, quality and simulation results. 
The coils are not pre-selected but come from a continu-
ous time period and belong to a single alloy specification 

score, calculated from a 5-fold cross validation, is used as a 
metric for the hyperparameter optimization. A random seed 
of 42 is used everywhere to ensure the reproducibility of 
the training process. Next, an Optuna optimization study 
is created for 1,000 iterations with the goal of maximizing 
the defined optimization metric. Using the optimum hyper-
parameters, the complete dataset is split (85/15) into train-
ing and testing datasets using the train_test_split function 
available in Scikit-learn [32], with the shuffle option acti-
vated. The XGBoost model is trained on the training data 
and finally validated using the test data. Finally, the local 
explanations of the gradient boosted tree model based on 
SHapley Additive exPlanation (SHAP) values [33] are used 
to obtain further insights into how the model uses input fea-
tures to make predictions.

Identification of an optimum processing route.

The results of the data analysis in Sect. 2.4.1 helped to iden-
tify the influence of the different process parameters on the 
earing formation. However, they cannot determine which 
process parameters should be selected to produce strips ful-
filling a given set of prescribed requirements. Therefore, a 
model-free and gradient-free approach using an evaluation 
function is necessary in this work to evaluate each individ-
ual production run and calculate a scalar evaluation value 
that specifies how closely all user-specified requirements 
are met. This approach identifies optimal production routes 
by analysing the available historical production data. For 
demonstration purposes, a set of pseudo-requirements is 
specified as follows.

I.	 Cold strip thickness ( hcoldstrip, ref ) = 0.243 mm.
II.	 Cold strip strength ( Rp02 coldstrip, ref ) = 283 MPa.
III.	 Homogeneous earing properties at the centre and edge 

of the cold strip.
IV.	 Minimum earing formation ( Earing integral).

An evaluation function is used to evaluate each production 
run for the above defined pseudo-requirements to identify 
an optimum processing route. The best process route is the 
one having the lowest value of the evaluation function, or 
in other words, it is the processing route that closest fulfils 
the defined pseudo-requirements. The evaluation function 
presented in Eqs. 2–2 has four components, each belonging 
to one of the pseudo-requirements.

Evaluation function = Ethickness·
w1 + Estrength · w2

+ Ehomogenous properties · w3
+Eearing · w4

� (2-2)

where,

1 3

    7   Page 8 of 18



International Journal of Material Forming            (2026) 19:7 

and maximum value for each parameter across all the four 
passes. The spread in the histograms of the process parame-
ters can largely be attributed to the deviations in their chem-
ical composition, ingot geometry and temperature resulting 
in the different rolling and earing characteristics.

It can be observed that the hot rolling process oper-
ates stably and employs large thickness reductions during 
the first pass, where the strip temperature is highest due 
to lower material resistance to deformation. As expected 
from rolling process theory, the shape factor varies across 
the passes, exhibiting lower values during pass 1 when the 
strip is thicker compared to pass 4, where the strip is thinner 
and has a higher shape factor. This variation is attributed 

used for beverage can production. They are rolled to a simi-
lar final thickness in the range of the customary industry 
standards for beverage cans. The most significant process 
variations occur since different customers require different 
widths and strengths and the alloy composition may vary 
within the allowed alloy specification due to usage of differ-
ent scrap sources. In hot rolling, the thermal conditions of 
the equipment are important, which may change over time 
periods with higher or lower production loads.

The aggregate data is visualised using normalised histo-
grams for the important process variables along with their 
distribution, as shown in Fig. 9. All the hot rolling parame-
ters are normalised between 0.0 and 1.0 using the minimum 

Fig. 9  Visualisation of the key process variables (normalised) providing a complete overview of the hot rolling process
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Qf = Geometry factor = 1 +
(

0.5 · µ · lc
hm

)

hm = mean strip height = 0.5 · (hinitial + hfinal)

µ = friction coefficient

lc
hm

= shape factor

σ sm = mean strip tension

This can help to interpret the more complex interactions of 
the full rolling model in the system and to check the plausi-
bility. Some principal dependencies can be observed in the 
analysed production data, as shown in Fig. 10.

An increase in height reduction leads to an increase in 
contact length, both of which contribute to an increase in 
rolling force, while an increase in the shape factor results 
in a reduction of the required rolling force. Additionally, 
increasing strip tensions also causes a decrease in roll 
forces. As observable from Eqs. 3 − 1, an increase in strip 
temperature leads to a decrease in mean flow stress (kfm) 
due to reduced material resistance to deformation, thereby 
resulting in a reduction of the rolling force. However, an 
opposite correlation can be observed from the subplot for 

to larger thickness reductions during initial passes, which 
result in increased projected contact length as well as higher 
mean strip thickness. In hot rolling, rolling force is one of 
the particularly important quantities used to analyse and 
design the hot rolling process because it is measured accu-
rately and integrally reflects the state of the material under 
given thermomechanical loads. The relationship between 
different rolling process parameters and rolling force can be 
roughly estimated by using the elementary theory by Siebel 
[34] as given by Eqs. 3 − 1.

F = (1.15) · lc · w· kfm · Qf − σsm� (3-1)

where,

lc = contact length =

√
r.∆ h −

(
∆ h

2

)2

≈
√

r . ∆ h

r = roll radius

∆ h = Height reduction = hinitial − hfinal

w = strip width

kfm = mean flow stress of the material

Fig. 10  Visualisation of key technological hot rolling process parameters in regards to their relationship with the rolling force for all 1972 produc-
tion runs each consisting of a complete pass schedule with four finishing passes
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reduction greater than 0.6, which implies lower cold thick-
ness reduction is required to achieve a similar final strip 
thickness.

For conducting the feature importance analysis using 
the XGBoost regression technique, initially, the optimum 
hyperparameters are identified using the Optuna framework 
available in Python. The results of the hyperparameter opti-
misation conducted for 1000 iterations and the scores of the 
model trained with optimum hyperparameters are listed in 
Table 1.

A histogram of the true earing integral (Fig. 12a) indi-
cates that the majority of production runs result in an earing 
integral between 0.0 and 0.75, following a normal distribu-
tion cantered around a mean of 0.35. The trained XGBoost 
model is validated using the test dataset, and the validation 
results are presented in Fig. 12b. The test data is well dis-
tributed across the whole range and the trained XGBoost 
model shows good agreement with the experimental data 
with a validation score of 0.864. The comparatively lower 
validation score can be explained by the limited amount of 
testing data.

The trained XGBoost regression model provides feature 
importance scores for each of the input features, explaining 
the variance in the output parameter, which in this case is 
the earning integral. Figure 13a) shows the most relevant 
input features, sorted in ascending order of their importance 
from bottom to top. The importance of each input feature is 
assessed based on its contribution to predicting the output 
feature. It can be observed that the top ten input features 
collectively contribute to approximately 50% of the mod-
el’s prediction of the earing integral. Thus, 50% of the total 

strip temperature (sim.) against rolling force prepared by 
plotting the aggregate production data. This contradictory 
correlation can be attributed to the use of larger contact 
lengths (lc) together with lower mean strip tensions (σ sm) 
during the first pass resulting in larger rolling force as com-
pared to the fourth pass, where relatively smaller contact 
lengths and higher mean strip tensions are employed. Con-
sidering the volume constancy and neglecting the spreading 
due to significantly less material flow in the width direction, 
increasing height reduction over each pass causes increase 
in the length of the strip. Hence the rolling velocity must 
increase over passes to be able to process a longer strip. 
This is evident from the subplot showing the rolling velocity 
where rolling velocity is lower in first pass when strip length 
is comparatively small and higher rolling velocity during 
fourth pass when strip is comparatively longer.

Next, the aggregate data from all 1,972 production runs 
is visualised using the cobweb plot shown in Fig. 11. This 
plot provides the overview of all the production routes (indi-
cated by blue colour) as well as those with an earing integral 
below 0.1 (indicated by black colour), which indicates good 
processing routes resulting in lower earing formation.

The densely populated regions indicate the frequency 
of using a particular processing route. However, only lin-
ear interdependencies between any two successive plotted 
parameters can be observed through such a representation 
of the data. It can be seen that the majority of the good pro-
cesses show high values of hot strip earing at a 45° angle to 
the rolling direction, Z45◦ (HS) and a low value of cold 
strip earing at a 45° angle, Z45◦ (CS). Furthermore, all 
good processes have earing peaks ≥ 4 and a hot thickness 

Fig. 11  Visualisation all the 1972 production runs (blue colour) and 
processing routes with earing integral less than 0.1 (black colour) 
using parallel coordinates plot. Lines connecting between two param-

eters represent parameters used during same production run. The 
densely populated areas represent the frequency of the production run 
with same or similar process parameters
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input feature. All input features are sorted in order of their 
influence on earing integral, with the most influential fea-
ture at the top. An input feature with a positive SHAP value 
causes an increase in the earing integral, while a negative 
SHAP value results in a decrease in the earing integral and 
the magnitude of the SHAP value indicates the scale of 
influence.

From the SHAP summary plot shown in Fig. 13b), it is 
observed that roll diameter in pass 2 is the most influential 
factor, followed by silicon content, cold thickness reduc-
tion, and recrystallized fraction after pass 1. The use of rolls 
with a smaller diameter in pass 2 (indicated by the blue 
colour) can result in reduced earing formation, as the cor-
responding SHAP value is less than zero. In contrast, larger 

variance in the model output is explained by the ten most 
significant input features. However, the feature importance 
score does not provide additional information regarding the 
nature of the effect between input and output features. This 
makes it difficult to test the plausibility of the input-output 
mapping learned by the model by looking for the know or 
expected relationships.

In addition, SHapley Additive exPlanation (SHAP) val-
ues are utilized for further analysis, as they provide better 
insights into the learned input-output mappings. The SHAP 
values quantify and visualize how individual features 
impact model predictions, thereby enhancing transparency 
and trust in the model. The trained XGBoost regression 
model is employed to calculate the SHAP values for each 

Fig. 12  (a) Histogram showing the distribution of earing integral calculated using the cold strip earing measurements; (b) Validation of the 
XGBoost model using the validation data

 

Table 1  Hyperparameter optimisation of XGBoost regressor model using optuna framework, along with the training and testing scores of the 
model trained with the identified optimum hyperparameter values. The hyperparameter search space is defined based on prior experience and 
further modified through trial and error
Hyperparameter Description Lower limit Upper limit Optimum 

value
XGBoost
training score

XGBoost
testing 
score

n_estimators Number of gradient boosted trees 10 2500 2229 0.982 0.864
max_depth Maximum tree depth for base learners 1 1000 506
learning_rate Boosting learning rate 0.001 1.0 0.812
subsample Subsample ratio of the training instance 0.0 1.0 0.788
colsample_bytree Subsample ratio of columns when construct-

ing each tree
0.0 1.0 0.682

reg_alpha L1 regularisation term on weights 0.0 10.0 0.203
reg_lambda L2 regularisation term on weights 1.0 500.0 452.01
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from the data analysis is surprising. A lower cold thickness 
reduction (indicated by the blue colour) generally promotes 
reduced earing formation. However, the presence of a few 
blue dots with positive SHAP values suggests that, together 
with other process parameters, a lower cold thickness reduc-
tion can also lead to increased earing formation. Thus, a 
lower roll diameter in second pass, reduced lower silicon 
content and reduced cold thickness reduction are favourable 
for minimizing the earing formation, while high iron and 

roll diameters in pass 2 (indicated by the red colour) do not 
exhibit a clear distinction, as they are distributed across 
both positive and negative SHAP values. This suggests that 
a large roll diameter in pass 2, in combination with other 
process parameters, can lead to both reduced and increased 
earing formation. A physical explanation for this is, that 
the roll diameter changes the shear that the roll exerts on 
the strip, which influences the texture and thereby changes 
the earing. However, the magnitude of this effect coming 

Fig. 13  Feature importance analysis with all input features sorted in 
ascending order using; (a) the feature importance score provided by 
the trained XGBoost regression model to identify most influential 

input features, (b) SHAP values showing the local impact of each input 
feature on the earing formation
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earing properties across the strip width. The characteristics of 
both the best and worst processing routes are summarized in 
Table 2. Both routes meet the final strip thickness and strength 
requirements, however, the best processing route results in 
strips with an earing integral of 1.151%, which is approxi-
mately 2.7 times lower than that of the worst processing route.

The earing profiles of both best and worst processing routes 
is shown in Fig. 15. It can be observed that the earing profile 
belonging to the best processing route (indicated by the blue 
colour) exhibits a relatively flat profile with smaller peaks and 
valleys, indicating lower earing formation. In contrast, the 
profile associated with the worst processing route (indicated 
by the red colour) shows significant fluctuations with larger 
peaks and valleys, indicating higher earing formation.

Figure 16 shows the best (indicated by green line) and 
worst (indicated by dotted red line) processing routes, along 
with limits of the top five best processing routes represent-
ing the best processing window (black lines). The magne-
sium, titanium, and silicon contents of the worst processing 
route are higher than those of the best route, and they also 
lie outside the best processing window. In accordance 
with the observations from the feature importance analy-
sis as discussed in Sect. 3.1, the worst processing route 
uses larger work rolls during pass 2 compared to the best 
processing route. Additionally, the ingot temperatures and 
rolling velocities for the worst processing route are lower 
than those of the best route and they lie outside the best 

titanium contents are unfavourable. Additionally, a high hot 
thickness reduction is beneficial, and a large grain size in 
pass 4 which indicates complete recrystallisation, is advan-
tageous for minimizing the earing formation.

Identification of an optimum processing route

Using the defined pseudo-requirements and the evaluation 
function, all the 1,972 production runs are analysed and 
sorted according to their evaluation values, as shown in Fig. 
14. The steep jumps observed in the evaluation values are 
attributed to the high penalty factor applied to processes 
that do not meet the tolerances for cold strip thickness and 
yield strength. Violations are penalized by assigning a high 
weight to the respective component in the evaluation func-
tion (Eqs. 2–2). Thus, all processes with evaluation values 
between zero and the first jump satisfy the desired toler-
ances strip strength and thickness while exhibiting varying 
levels of earing characteristics.

The production run with a normalised evaluation value of 
zero represents the best processing route, as it closely fulfils 
all the pseudo-requirements according to the criteria set in 
the evaluation function. Similarly, the production run with 
a normalised evaluation value just at the beginning of the 
jump represents the worst processing route, while it meets 
the tolerances for cold strip thickness and strength but exhib-
its higher earing formation and greater inhomogeneity in the 

Fig. 14  Aggregate data of 1972 production runs evaluated using the evaluation function and sorted in ascending order along with the evaluation 
values of best (green circle) and worst (red circle) processing routes
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Table 2  The cold strip properties of the best and the worst processing routes fulfilling the pseudo-requirements identified using the evaluation 
function
Processing
route

Alu. strip
thickness
[mm]

Alu. strip
strength
[MPa]

Z0
(Centre/Edge)
[%]

Z45
(Centre/Edge)
[%]

Z90
(Centre/Edge)
[%]

Earing Integral
[%]

Best 0.239 288 0.067/0.187 1.031/0.797 −0.541/−0.539 1.151
Worst 0.240 287 2.49/0.864 3.580/0.778 0.617/−1.610 3.058

Fig. 16  Parallel coordinates plot showing the best (green colour) and worst (red colour) processing routes as well as the best processing window 
(black colour) identified using the evaluation function

 

Fig. 15  Earing profile belonging to the best and worst processing route identified using the evaluation function
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Appendix A

comparative analysis between the best and worst process-
ing routes for strips with identical specifications reveals that 
lower values of rolling diameter in pass 2, and reduced con-
centrations of silicon, magnesium, and titanium, combined 
with higher recrystallised fractions and rolling velocities, 
are favourable for minimizing earing formation.

This work demonstrates the feasibility and advantages of 
modelling an industrial process chain by integrating produc-
tion data and process models in an automated, scalable, and 
efficient manner. The proposed approach not only facilitates 
deeper process understanding but also serves as a data-
driven decision support system for process experts during 
production planning.

Limitations and future work

The demonstrated approach is implemented to model and 
analyse a coupled aluminium process chain for can body 
strip production. However, the implemented evaluation 
function operates on historical production data to deter-
mine an optimal processing route that fulfils a set of user-
specified requirements. This means that the demonstrated 
approach can identify the best processing route from the 
available historical production data, but it cannot be used 
in scenarios such as adaptive processing where new process 
parameters should be generated in response to deviations in 
the incoming material properties. Therefore, in future work, 
an approach involving a mathematical optimization algo-
rithm combined with a surrogate model will be investigated 
to determine an optimal processing route. Additionally, the 
availability of more production data will help reduce any 
imbalance in the dataset, thereby further improving the 
XGBoost model accuracy.

processing window. The recrystallised fraction after pass 1 
and pass 4 both indicate that higher or complete recrystalli-
sation is favourable for minimizing earing formation. It can 
also be seen that the best processing window requires high 
hot strip earing characteristics values namely Z0◦ (HS), 
Z45◦ (HS) and Z90◦ (HS) to meet the pseudo-require-
ments, while the worst processing route shows low values.

Conclusions

A concept for modelling and analysing an industrial alu-
minium strip production process chain has been success-
fully implemented by coupling production data with process 
models using the Microsoft Azure Databricks platform. The 
effectiveness of the proposed approach is demonstrated 
through the automated processing of data from 1,972 pro-
duction coils, resulting in the generation of aggregate datas-
ets containing both production and simulation data.

The aggregate data is initially visualised using histo-
grams and scatter plots to explore correlations between hot 
rolling force and key process parameters such as thickness 
reduction, contact length, shape factor, rolling velocity, and 
strip tension. Subsequently, the dataset is used to train an 
XGBoost model, with optimal hyperparameters identified 
via the Optuna hyperparameter optimisation framework. The 
tuned model is then employed to identify the process param-
eters with the most significant influence on earing formation.

To evaluate process performance, pseudo-requirements 
are defined, and all production runs are assessed using a 
dedicated evaluation function. This analysis identifies the 
best processing route, achieving a minimum earing integral 
of 1.151%. Furthermore, a robust processing window is 
established by analysing the five best-performing routes. A 

Fig. 17  Validation of the fast physical hot rolling model by comparing the normalised values of rolling force, rolling torque and hot strip tempera-
ture in the fourth pass with the normalised experiment values
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