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Abstract

The production of aluminium strip involves a long sequence of thermomechanical processing steps that significantly influ-
ence the material’s mechanical properties and may induce anisotropy. This anisotropy can manifest as earing during deep
drawing operations - such as those used in beverage can manufacturing - resulting in increased trimming scrap, process
downtimes, and reduced economic viability. To assess formability and quantify earing, the cup drawing test is employed
as a standard evaluation method. Understanding and minimizing earing formation requires comprehensive modelling of
the entire process chain, which is traditionally performed manually by domain experts - a time-consuming, error-prone,
and costly effort. This study presents a novel, scalable, and flexible approach to model a process chain by integrating
production data with process models on the Microsoft Azure Databricks platform. The proposed method is validated on
an industrial aluminium strip production line, demonstrating its capability to automate data processing, extract actionable
insights, and support process optimisation. The approach successfully identifies an optimum processing route that mini-
mises the earing integral, as determined by a dedicated evaluation function.

Keywords Industry 4.0 - Digital twin - Machine learning - Hot rolling - Deep drawing - Earing formation - Forming
technology

Introduction

Aluminium is used in a wide range of applications, rang-
ing from transportation to packaging industries, due to
its properties like lightweight, high corrosion and fatigue
resistance, high electrical and thermal conductivity, as
well as recyclability [1-5]. According to the International
Aluminium Institute (IAI), around 72,758 thousand metric
tonnes of primary aluminium was produced in 2024, which
is around 33% more compared to 2014, thereby showing
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the increasing demand and usage of aluminium around the
world. In parallel, there is a growing emphasis on increasing
the use of secondary aluminium through scrap recycling,
driven by both economic and environmental considerations
[6, 7]. However, aluminium recycling is also leading to the
accumulation of impurities, like Si, Mg, Mn, Cu, and Fe,
thereby undesirably influencing the mechanical properties
of the aluminium products [8—12]. The typical aluminium
strip process chain for beverage can production consists of
several processing steps, namely melting and casting, pre-
heating, hot rolling, and cold rolling. Parameters of each
processing step, like hot rolling temperature, cold reduction,
recrystallisation, work hardening and softening, microstruc-
ture, texture, etc., influence the properties of the aluminium
strip which may ultimately cause anisotropy in the strip
[13—-15]. When deep drawing the beverage can from alu-
minium strips having higher anisotropy, significant earing
formation can occur on the formed can body, resulting in
uneven edges [14, 16, 17]. Since these uneven edges must
be trimmed away, they generate scrap at the site of a can
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manufacturer. Furthermore, earing formation, if not consid-
ered during the deep drawing process layout, can lead to the
stoppage of the ultra-fast beverage can production facilities,
resulting in increased downtime and reduced productiv-
ity [18]. Hence, aluminium strip producers are obliged to
deliver high-quality material fulfilling the customer require-
ments in terms of strip geometry, isotropy, and strength. To
test the formability of the aluminium mill products, strip
producers conduct cup drawing tests and measure the cup
heights to obtain the earing profile and earing characteris-
tics, which serve as a quality indicator of the produced coil.

With the advances in digitalization and simulation meth-
ods, it is now possible to acquire large amounts of produc-
tion data and use numerical as well as fast analytical process
models that can simulate individual processing steps to cal-
culate non-measurable or hard to measure product properties
like temperature, strain, grain size distributions within the
workpiece, recrystallized fraction, strip strength [19-23].
Thus, production and simulation data together help process
experts to gain a better understanding to optimise their pro-
cesses. However, looking at each processing step separately
does not capture the different interdependencies between
each processing step and the final strip properties, thus hin-
dering a robust process optimisation. Moreover, optimising
a process chain is a repetitive, expensive, and error-prone
task involving data acquisition, pre-processing, setting up
process models, running simulations, extracting results, and
finally analysing all data. This is usually conducted manu-
ally by process experts. Hence, modelling the complete
process chain by coupling production data and simulation
models in an automated sequence is imperative. Since data
is stored in different formats, units, and structures, it must
be pre-processed before it can be used as an input to the next
process model. Nevertheless, the lack of a suitable tool that
can allow efficient handling and management of all process
models and the data that is generated or captured along the
entire process chain poses a technological challenge.

To overcome these limitations, a novel approach to mod-
elling a coupled process chain is demonstrated in this work.
For coupling the production data and simulation models
along the process chain, the Microsoft Azure Databricks
platform is used which is flexible to implement custom
scripts to check and correct erroneous data, convert units,
initiate process models, run process simulations, extract
simulation results and store them together to provide the
aggregate data containing production as well as simulation
data to the user and finally analyse it to obtain better process
insights and determine optimal processing route. Moreover,
the proposed approach is also suitable for processing new
production data from daily production, where the newly
ingested data can be processed batchwise and included
in the analysis to derive process insights. The benefits of
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implementing the proposed approach are demonstrated by
the automated processing of industrial production and simu-
lation data to generate aggregate data that is visualised and
analysed to obtain process insights. Finally, an optimum
processing route fulfilling an artificially generated pseudo-
requirements, including a processing window leading to
minimum earing formation, is identified by using an evalu-
ation function.

Within the Microsoft Azure platform of Speira GmbH
the measured process- and quality data of Alunorf GmbH
are continuously updated and linked to the Databricks
platform, developed in this paper. In addition, two simula-
tion models are coupled, which belong to the proprietary
“rolling simulation environment (RoSE)” of Speira GmbH
[24]. The first model provides the numerical re-simulation
of the hot rolling schedule with an integrated prediction of
the microstructure development, and thus it provides non-
measured material property data. The second model takes
the measured earing profile of the final cold rolled strip as
an input and back-calculates the earing profile of the strip
after hot rolling, while taking the cold rolling deformation
into account. The model results and the process data are
then aggregated and made available in the Azure platform
by newly developed data management and filtering algo-
rithms. This includes the concepts for linking data from sev-
eral sources which belong to one coil and connectors for the
communication between the data platform and the models.
Filters are implemented to analyse and detect the peak ear-
ing locations in the measured cup profiles. And finally, a
dashboard allowing for user interactions is constructed to
facilitate advanced data analytics procedures and automated
data visualizations.

Approach

The approach consists of a data management platform that
ingests the measured production data, applies necessary fil-
ters, and generates input decks for the simulation algorithms.
The platform triggers the simulations and takes in the com-
puted results. Production and simulation data are aggregated
and are made accessible to suitable advanced analysis and
visualisation tools using interactive dashboards. All data
operations work in an automated manner on the data of a
long production period, i.e., several hundred coils over the
span of several months.

Analysis of an industry process chain
The principal steps for the can body strip production are

shown in Fig. 1. A production schedule for alloy AA3104 is
selected for this work. It consists of pre-heating of the cast
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Fig. 1 Aluminium strip production process chain showing the flow and processing of material, flow of data and available process models

aluminium ingot, followed by hot and cold rolling. Finally,
a cup drawing test is conducted on a Zwick/Roell P600
equipment at Speira R&D to measure the earing formation
in the aluminium strip.

characteristic earing values serve as strip’s quality indica-
tors that can be used for optimizing the process chain to
minimize the earing formation [25, 26].

.To test the formability of the .alumlnlum mill product, mean ear height, Z [%)] = peak ~ Nvalley 400 (1-1)
strip producers conduct cup drawing tests and measure the hualtey
cup heights along the cup circumference from 0° to 360°
angle to ob.tain the ear.ing profile, as shown in Fig. 2. . delta car, A7 (%) = 2% hase — (hoo + hgoo ) <100 (12)
The earing profile is then used to calculate characteris- hgo 4 hggo
tic earing values, namely mean ear height ( Z) and delta
ear ( A Z) according to the Egs. 1-1 and 1-2. These scalar ~ where,
1.0 90°
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Fig. 2 (a) Deep drawn cup with significant earing formation, (b) Cup
height measured along its circumference showing 6 ears at around 0°,
45°,135°, 180°, 225°, and 315° with 6 peaks and 6 valleys, (¢) But-

terfly-like structure when the measured earing profile is plotted in the
polar coordinate system
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— h, h, h ...
hpear: = Average peak height [mm] = pjl\f:mngt)fﬁe:ks

— I hy hys + ...
hyailey = Average valley height [mm] = 1+ oo + s +

Number of valleys
hgo 450 900 = Average ear height at an angle w.r.t. rolling direction

During continuous production only the earing profile of the
finished cold rolled material is measured since this is the
decisive quality for a customer. However, the most impor-
tant lever to influence and optimize this profile is during
hot rolling. At this stage a continuous measurement is not
possible and only limited validation data are available from
internal R&D investigations. Hence, an earing model was
developed by Speira GmbH which uses the Fourier method
to inversely calculate hot strip earing profiles from the mea-
sured cold strip earing profile [26]. Using the simulated
hot- or measured cold rolled earing profiles, correspond-
ing earing characteristics are calculated according to Egs.
1-1 and 1-2 that are part of the earing model. In order to
exclude effects from the cold rolling process steps the cal-
culated hot rolled cup can be directly correlated to the hot
rolling conditions.

For hot rolling, a single-stand roughing mill followed by
a 4-stand tandem line setup is used with intermediate cool-
ing to control the hot strip temperature, while cold rolling is
done using a single-stand rolling mill. A dislocation density-
based fast analytical hot rolling model [27] is used to simu-
late the hot rolling processes, which takes as input the hot
rolling production data (pass schedule), material parameters
and chemical composition to calculate amongst other values
the fraction recrystallized, average grain size, temperature
and yield strength of the workpiece, rolling force and torque
as shown in Fig. 3.

The fast analytical rolling model is developed in a modu-
lar way and consists of a temperature module that calculates
temperature evolution using the finite difference method.
The deformation module calculates the stress and strain

state for each strip element along the roll gap. The core of
this system is a dislocation-based material model, which
calculates the evolution of distinct dislocation populations.
From these, the flow stress can be derived, which is incre-
mentally used by the deformation model. Furthermore, the
dislocation densities directly after a rolling pass are the
driving forces for recrystallization, which is then calculated
using a modified JMAK model. Finally, the microstructure
module calculates grain size and yield strength based on the
dislocation densities.

In this work, the cold rolling process is not modeled to
keep the process chain simple by assuming it to be static,
where only strip strength increases due to strain hardening
while thermally activated mechanisms like recovery and
recrystallization are not present since the temperature levels
are too low. The results of model validations are presented
in Figure A-1 and Figure A-2 available in Appendix A.

Microsoft Azure databricks platform for storage and
processing of the data

Microsoft Azure Databricks is a cloud-based big data and
machine learning platform that provides all necessary fea-
tures and capabilities for engineers to work and collaborate
on data science projects [28]. It combines the advantages of
Apache Spark, which can process a huge amount of data,
provides data streaming capability and an interactive query
engine, Microsoft Azure, which is a cloud computing plat-
form and Databricks, which can ingest large amounts of
data, clean up the data and apply machine learning algo-
rithms [28]. Being a cloud computing-based platform, it
provides its users with the necessary flexibility to work with
different users at multiple locations without the need for
powerful hardware on a local device. Moreover, the plat-
form provides a graphical user interface that makes it easy
to operate for users with all levels of programming skills.
The platform has two main components - Workspaces and
Clusters. In the Workspace, ingested data, notebooks, etc.,
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Fig. 3 Illustration of the fast analytical hot rolling model which is developed in modular fashion to calculate global as well as local variables
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Fig. 4 Concept for storing, processing, and analysing the data along
the process chain using Azure Databricks. Databricks ingests produc-
tion and quality data and stores them in its data lake as a delta table
from where the data can be used for further processing to prepare the

are located, while Clusters provide the computing power
to fetch the data from the Workspace and run Jupyter-style
notebooks written in Python, Scala, R, or SQL to process
and analyse data. The results can be visualised within the
notebook as well as in an interactive dashboard.

The concept for using the Azure Databricks platform for
this work is shown in Fig. 4. The raw data from the pro-
duction and quality testing, either from daily, weekly, or
monthly production that is stored locally in.csv format, con-
sisting of hot rolling data, earing measurements and tensile
testing data, is uploaded to the platform as a bronze layer.
The data from the bronze layer is then fetched by the Man-
agement and Filtering algorithm running on the Speira local
computer, and the processed aggregate data is uploaded
back as a silver layer in the platform using the Databricks
SQL Connector for Python. Finally, a Python data analysis
notebook running in Azure Databricks analyses the aggre-
gate data for user user-defined period and its results are
visualised in the interactive dashboard.

Concept for coupling of process model and
production data

In Fig. 5a), a concept for coupling the production data and
process models is presented. The input data, consisting of
hot rolling data and quality data, is fetched from the Micro-
soft Azure Databricks platform. At the core of the presented
approach is the management and filtering algorithm, whose

aggregate data. Finally, the data analysis notebook running on Data-
bricks performs feature importance analysis, identifies optimal pro-
cessing route and visualizes the results

workflow is shown in Fig. 5b), where all the logic and func-
tions are coded using Python. The Algorithm runs iteratively
over each production run by first loading the earing profile
as a measurement of the cup heights from 0-360° along its
circumference, checks it for missing data and corrects it, if
needed, using a cubic spline interpolation method. The cor-
rected earing profile is then analysed by a peak detection
algorithm shown in Fig. 6, which identifies the number of
peaks representing ears and the number of valleys repre-
senting troughs in the earing profile as shown in Fig. 7a).
The peak detection algorithm presented in Fig. 6 starts
by adding extra signals towards the start and end of the cor-
rected earing profile (E.) to avoid abrupt changes in the
smoothened profile. Next, the extended earing profile is
smoothed to remove the noisy data with the help of a Sav-
itzky-Golay filter. Using the findpeaks library [29] avail-
able in Python, all the peaks and valleys in the smoothened
extended earing profile (F,) are detected and duplicate
peak or valley present at 0° and 360° is removed. These
steps of smoothing, peak/valley identification and dupli-
cate removal are repeated for different smoothing parameter
combinations namely the order of the polynomial used in
filtering and the length of the filtering window until the ter-
mination criteria of an even number of peaks and valleys as
well as a minimum distance of 10° between 2 consecutive
peaks or valleys is fulfilled. Finally, the location of peaks
and valleys identified in the smoothed earing profile is then
used to identify peaks and valleys in the corrected earing
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Fig. 6 Peak detection algorithm to detect peaks and valleys in the corrected earing profile

profile to get the exact values of peak or valley heights and
angles as shown in Fig. 7a).

If the peaks determined by the peak detection algorithm
are located at the physically admissible peak positions, the
corrected earing profile is used to calculate the earing inte-
gral as depicted in Fig. 7b) by using Eqs. 2—1.

A — Acariing free
Earing integral [%] = ( fotal 1 cariing J ) x 100 (2-1)
total

where,

@ Springer

Atotal = Area under the earing profile calculated using the Simpson/ s rule

Acariing free = Area below the lowest valley in the earing profile

The corrected earing profile is then sent to the earing model
to calculate earing characteristic values, namely Z, A Z,
Zyo , Zyso and Zggo . Using a unique identifier, the associ-
ated hot rolling production data is fetched and sent to the
hot rolling model to simulate the hot rolling process and cal-
culate difficult to measure variables like recrystallised vol-
ume fraction, grain size, yield strength of strip, etc. Next, all
the quality data, hot rolling production data, results of hot
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rolling and earing model are saved under a unique identifier
as aggregate data. Finally, upon completion of the process-
ing of the complete historical production data, the aggregate
data is analysed in an automated way to determine parame-
ter importance as well as the best processing route for mini-
mizing earing formation.

Modelling of the coupled process chain
Study of the parameters influencing the earing formation.

The aggregate data is used to extract process knowledge
and insights, thereby leading to better process understand-
ing. For this purpose, different methods from explor-
atory data analysis, like histograms and scatter plots, are
used. Since industrial process chains are extremely com-
plex and have non-linear correlated process variables, a

Objective Function:
* Hyperparameter search space: lower and upper limits
» Optimization metric: Mean cross validation score from 5 Folds

Optuna study:
* Number of trials = 1000
» Direction=‘maximize’

nonlinear regression technique from supervised learning
called extreme gradient boosting (XGBoost) [30] is used.
It is used to map the linear as well as nonlinear interactions
between process variables and earing integral. One of the
inherent features of XGBoost is that it can provide variance
in the model output for each of the input features, thus serv-
ing as an indicator of the importance of each input feature
(process parameters) in predicting the model output (earing
integral).

Figure 8 shows the flowchart of the training process
for the XGBoost model using the automatic hyperparam-
eter optimization software framework named Optuna [31],
which is available in Python. The objective function con-
taining upper and lower limits for the hyperparameters is
defined. For robust determination of the hyperparameters
while reducing the influence of random splitting of the data
into training and testing datasets, the mean cross validation

Validate XGBoost model
» Test dataset

Train XGBoost
* Optimum Hyperparameters from Optuna
» Training dataset

Dataset split

Test train split with shuffling (85:15)

Fig. 8 Flowchart for training of the XGBoost model using Optuna hyperparameter optimization framework
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score, calculated from a 5-fold cross validation, is used as a
metric for the hyperparameter optimization. A random seed
of 42 is used everywhere to ensure the reproducibility of
the training process. Next, an Optuna optimization study
is created for 1,000 iterations with the goal of maximizing
the defined optimization metric. Using the optimum hyper-
parameters, the complete dataset is split (85/15) into train-
ing and testing datasets using the train_test split function
available in Scikit-learn [32], with the shuffle option acti-
vated. The XGBoost model is trained on the training data
and finally validated using the test data. Finally, the local
explanations of the gradient boosted tree model based on
SHapley Additive exPlanation (SHAP) values [33] are used
to obtain further insights into how the model uses input fea-
tures to make predictions.

Identification of an optimum processing route.

The results of the data analysis in Sect. 2.4.1 helped to iden-
tify the influence of the different process parameters on the
earing formation. However, they cannot determine which
process parameters should be selected to produce strips ful-
filling a given set of prescribed requirements. Therefore, a
model-free and gradient-free approach using an evaluation
function is necessary in this work to evaluate each individ-
ual production run and calculate a scalar evaluation value
that specifies how closely all user-specified requirements
are met. This approach identifies optimal production routes
by analysing the available historical production data. For
demonstration purposes, a set of pseudo-requirements is
specified as follows.

I.  Cold strip thickness ( hcoidstrip, ref)=0.243 mm.

II. Cold strip strength ( 2,02 cotdstrip, ref)=283 MPa.

III. Homogeneous earing properties at the centre and edge
of the cold strip.

IV. Minimum earing formation ( Earing integral).

An evaluation function is used to evaluate each production
run for the above defined pseudo-requirements to identify
an optimum processing route. The best process route is the
one having the lowest value of the evaluation function, or
in other words, it is the processing route that closest fulfils
the defined pseudo-requirements. The evaluation function
presented in Egs. 2-2 has four components, each belonging
to one of the pseudo-requirements.

FEvaluation function = Eipickness
w1 + Estrength © W2
+ Ehomogenous properties © W3
+Eeam’ng © Wy

(2-2)

where,
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0.0, (1 - tOZ) X hcoldstrip,ref <
Ethickness = hcoldstrip S (]- + tOl) X hcoldstrip,ref
.0, otherwise

0-01 (1 - t()l) x Rp()2 coldstrip,ref S Rpl)2 coldstrip
Egtrength =\ < (1+t0l) X Rpo2 coldstrip,ref
1.0, otherwise

Eecaring = |Earing integral|

The parameter tol is the allowable tolerance in the cold
strip thickness and strength within a pseudo customer speci-
fication, and w;_4 are weights to control the penalty asso-
ciated with each individual component of the evaluation
function. To test the suitability of the proposed approach,
the tolerance (tol) of 2% and weights wy= 25, wy = 25,
wsz =1, wy =1 are used. Defining tolerance helps in avoid-
ing situations where the strip’s strength and thickness do not
exactly match with the pseudo specifications. If the toler-
ance is relaxed, then the evaluation function will allow cold
strips with larger deviations in target thickness and strength.
The weights in the evaluation function penalize the produc-
tion routes if the corresponding property lies outside the
allowable tolerance. Since the strip thickness and strength
are the strictest customer specifications since they affect the
cup making directly, they are given the highest penalty if
outside the tolerance. Higher w; and w, are essential to be
able to identify drastic changes in the evaluation values to
identify areas in which the process route does not produce
acceptable results. Significant variations in properties from
the strip centre to the edges, as well as a significant ear-
ing formation, can lead to increased scrap generation at the
beverage can maker and are therefore given equal weight-
age by defining ws = wy. Thus, all coils within the toler-
ance window for strength and thickness will give 0.0 for
Ethickness and Estrengtha whereas Ehomogenous properties
and FE.u.ing components of the evaluation function will
favour coils with homogenous properties and low earing
formation.

Results and discussion

Study of the parameters influencing the earing
formation.

The production data of 1,972 coils, made available by
Speira and AluNorf GmbH, are processed with the help of
the implemented concept of coupling production data and
process models presented in Sect. 2.3 to prepare aggregate
data containing production, quality and simulation results.
The coils are not pre-selected but come from a continu-
ous time period and belong to a single alloy specification
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used for beverage can production. They are rolled to a simi-
lar final thickness in the range of the customary industry
standards for beverage cans. The most significant process
variations occur since different customers require different
widths and strengths and the alloy composition may vary
within the allowed alloy specification due to usage of differ-
ent scrap sources. In hot rolling, the thermal conditions of
the equipment are important, which may change over time
periods with higher or lower production loads.

The aggregate data is visualised using normalised histo-
grams for the important process variables along with their
distribution, as shown in Fig. 9. All the hot rolling parame-
ters are normalised between 0.0 and 1.0 using the minimum

and maximum value for each parameter across all the four
passes. The spread in the histograms of the process parame-
ters can largely be attributed to the deviations in their chem-
ical composition, ingot geometry and temperature resulting
in the different rolling and earing characteristics.

It can be observed that the hot rolling process oper-
ates stably and employs large thickness reductions during
the first pass, where the strip temperature is highest due
to lower material resistance to deformation. As expected
from rolling process theory, the shape factor varies across
the passes, exhibiting lower values during pass 1 when the
strip is thicker compared to pass 4, where the strip is thinner
and has a higher shape factor. This variation is attributed
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Fig. 9 Visualisation of the key process variables (normalised) providing a complete overview of the hot rolling process
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to larger thickness reductions during initial passes, which
result in increased projected contact length as well as higher
mean strip thickness. In hot rolling, rolling force is one of
the particularly important quantities used to analyse and
design the hot rolling process because it is measured accu-
rately and integrally reflects the state of the material under
given thermomechanical loads. The relationship between
different rolling process parameters and rolling force can be
roughly estimated by using the elementary theory by Siebel
[34] as given by Egs. 3 — 1.

F=(115) - I.-

W kpm - Qf — Osm (3-1)

where,

Ah

5 vVr.Ah

Q

;

l. = contact length = \[r.Ah — (

r = roll radius
A h = Height reduction = hinitiat — Pfinai
w = strip width

kpm = mean flow stress of the material
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Q¢ = Geometry factor = 1+ (0.5- peg

)

hym = mean strip height = 0.5 (Rinitial + Rfinal)

u = friction coef ficient

le
— = shape factor
him

O sm = mean strip tension

This can help to interpret the more complex interactions of
the full rolling model in the system and to check the plausi-
bility. Some principal dependencies can be observed in the
analysed production data, as shown in Fig. 10.

An increase in height reduction leads to an increase in
contact length, both of which contribute to an increase in
rolling force, while an increase in the shape factor results
in a reduction of the required rolling force. Additionally,
increasing strip tensions also causes a decrease in roll
forces. As observable from Eqgs. 3—1, an increase in strip
temperature leads to a decrease in mean flow stress (kyy,)
due to reduced material resistance to deformation, thereby
resulting in a reduction of the rolling force. However, an
opposite correlation can be observed from the subplot for

pass 1
pass 2
pass 3
pass 4

0.0 0.2 0.4

Shape factor (lf—‘)

0.4 0.6 0.8 0.6

0.4 0.6

0.8

0.6 0.8

04

Strip temperature Sim. (T)

Fig. 10 Visualisation of key technological hot rolling process parameters in regards to their relationship with the rolling force for all 1972 produc-
tion runs each consisting of a complete pass schedule with four finishing passes
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strip temperature (sim.) against rolling force prepared by
plotting the aggregate production data. This contradictory
correlation can be attributed to the use of larger contact
lengths (I.) together with lower mean strip tensions (o s,,)
during the first pass resulting in larger rolling force as com-
pared to the fourth pass, where relatively smaller contact
lengths and higher mean strip tensions are employed. Con-
sidering the volume constancy and neglecting the spreading
due to significantly less material flow in the width direction,
increasing height reduction over each pass causes increase
in the length of the strip. Hence the rolling velocity must
increase over passes to be able to process a longer strip.
This is evident from the subplot showing the rolling velocity
where rolling velocity is lower in first pass when strip length
is comparatively small and higher rolling velocity during
fourth pass when strip is comparatively longer.

Next, the aggregate data from all 1,972 production runs
is visualised using the cobweb plot shown in Fig. 11. This
plot provides the overview of all the production routes (indi-
cated by blue colour) as well as those with an earing integral
below 0.1 (indicated by black colour), which indicates good
processing routes resulting in lower earing formation.

The densely populated regions indicate the frequency
of using a particular processing route. However, only lin-
ear interdependencies between any two successive plotted
parameters can be observed through such a representation
of the data. It can be seen that the majority of the good pro-
cesses show high values of hot strip earing at a 45° angle to
the rolling direction, Zy50 (H.S) and a low value of cold
strip earing at a 45° angle, Zy50 (CS). Furthermore, all
good processes have earing peaks>4 and a hot thickness

Normalised values

Fig. 11 Visualisation all the 1972 production runs (blue colour) and
processing routes with earing integral less than 0.1 (black colour)
using parallel coordinates plot. Lines connecting between two param-

reduction greater than 0.6, which implies lower cold thick-
ness reduction is required to achieve a similar final strip
thickness.

For conducting the feature importance analysis using
the XGBoost regression technique, initially, the optimum
hyperparameters are identified using the Optuna framework
available in Python. The results of the hyperparameter opti-
misation conducted for 1000 iterations and the scores of the
model trained with optimum hyperparameters are listed in
Table 1.

A histogram of the true earing integral (Fig. 12a) indi-
cates that the majority of production runs result in an earing
integral between 0.0 and 0.75, following a normal distribu-
tion cantered around a mean of 0.35. The trained XGBoost
model is validated using the test dataset, and the validation
results are presented in Fig. 12b. The test data is well dis-
tributed across the whole range and the trained XGBoost
model shows good agreement with the experimental data
with a validation score of 0.864. The comparatively lower
validation score can be explained by the limited amount of
testing data.

The trained XGBoost regression model provides feature
importance scores for each of the input features, explaining
the variance in the output parameter, which in this case is
the earning integral. Figure 13a) shows the most relevant
input features, sorted in ascending order of their importance
from bottom to top. The importance of each input feature is
assessed based on its contribution to predicting the output
feature. It can be observed that the top ten input features
collectively contribute to approximately 50% of the mod-
el’s prediction of the earing integral. Thus, 50% of the total

= All 1972 processing routes

Processing routes with earing integral below 0.1

eters represent parameters used during same production run. The
densely populated areas represent the frequency of the production run
with same or similar process parameters
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Table 1 Hyperparameter optimisation of XGBoost regressor model using optuna framework, along with the training and testing scores of the
model trained with the identified optimum hyperparameter values. The hyperparameter search space is defined based on prior experience and

further modified through trial and error

Hyperparameter Description Lower limit Upper limit Optimum XGBoost XGBoost
value training score  testing
score
n_estimators Number of gradient boosted trees 10 2500 2229 0.982 0.864
max_depth Maximum tree depth for base learners 1 1000 506
learning_rate Boosting learning rate 0.001 1.0 0.812
subsample Subsample ratio of the training instance 0.0 1.0 0.788
colsample bytree Subsample ratio of columns when construct- 0.0 1.0 0.682
ing each tree
reg_alpha L1 regularisation term on weights 0.0 10.0 0.203
reg_lambda L2 regularisation term on weights 1.0 500.0 452.01
120 1 .00 N =
@ Training dataset o
%\ @ Testing dataset ’
100 N .
= »
@© .
e 075
o
80 £
©
= o
c
[¢]
3 60 = 0.50
IS =
o
£
—
40 S
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(]
S
o
*
0 . 0.09%
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True earing integral (normalised) True earing integral (normalised)
a) b)

Fig. 12 (a) Histogram showing the distribution of earing integral calculated using the cold strip earing measurements; (b) Validation of the

XGBoost model using the validation data

variance in the model output is explained by the ten most
significant input features. However, the feature importance
score does not provide additional information regarding the
nature of the effect between input and output features. This
makes it difficult to test the plausibility of the input-output
mapping learned by the model by looking for the know or
expected relationships.

In addition, SHapley Additive exPlanation (SHAP) val-
ues are utilized for further analysis, as they provide better
insights into the learned input-output mappings. The SHAP
values quantify and visualize how individual features
impact model predictions, thereby enhancing transparency
and trust in the model. The trained XGBoost regression
model is employed to calculate the SHAP values for each

@ Springer

input feature. All input features are sorted in order of their
influence on earing integral, with the most influential fea-
ture at the top. An input feature with a positive SHAP value
causes an increase in the earing integral, while a negative
SHAP value results in a decrease in the earing integral and
the magnitude of the SHAP value indicates the scale of
influence.

From the SHAP summary plot shown in Fig. 13b), it is
observed that roll diameter in pass 2 is the most influential
factor, followed by silicon content, cold thickness reduc-
tion, and recrystallized fraction after pass 1. The use of rolls
with a smaller diameter in pass 2 (indicated by the blue
colour) can result in reduced earing formation, as the cor-
responding SHAP value is less than zero. In contrast, larger
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Fig. 13 Feature importance analysis with all input features sorted in
ascending order using; (a) the feature importance score provided by
the trained XGBoost regression model to identify most influential

roll diameters in pass 2 (indicated by the red colour) do not
exhibit a clear distinction, as they are distributed across
both positive and negative SHAP values. This suggests that
a large roll diameter in pass 2, in combination with other
process parameters, can lead to both reduced and increased
earing formation. A physical explanation for this is, that
the roll diameter changes the shear that the roll exerts on
the strip, which influences the texture and thereby changes
the earing. However, the magnitude of this effect coming

High
Roll diameter 2 - 'W’“‘"'
Si . ~*W-~_ .-
Cold thickness reduction - o RO — -
Roll diameter 3 i
RX surface 1 - ot~ -
Roll diameter 1 *-.——- =
Grain size 1 —-—--.*.—-... s
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Roll diameter 4 -
Earing peaks 0——
RX surface 4 +
Low

-02 -0.1 00 0.1 0.2

SHAP value (Impact on the earing
formation)

b)

input features, (b) SHAP values showing the local impact of each input
feature on the earing formation

from the data analysis is surprising. A lower cold thickness
reduction (indicated by the blue colour) generally promotes
reduced earing formation. However, the presence of a few
blue dots with positive SHAP values suggests that, together
with other process parameters, a lower cold thickness reduc-
tion can also lead to increased earing formation. Thus, a
lower roll diameter in second pass, reduced lower silicon
content and reduced cold thickness reduction are favourable
for minimizing the earing formation, while high iron and
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titanium contents are unfavourable. Additionally, a high hot
thickness reduction is beneficial, and a large grain size in
pass 4 which indicates complete recrystallisation, is advan-
tageous for minimizing the earing formation.

Identification of an optimum processing route

Using the defined pseudo-requirements and the evaluation
function, all the 1,972 production runs are analysed and
sorted according to their evaluation values, as shown in Fig.
14. The steep jumps observed in the evaluation values are
attributed to the high penalty factor applied to processes
that do not meet the tolerances for cold strip thickness and
yield strength. Violations are penalized by assigning a high
weight to the respective component in the evaluation func-
tion (Egs. 2-2). Thus, all processes with evaluation values
between zero and the first jump satisfy the desired toler-
ances strip strength and thickness while exhibiting varying
levels of earing characteristics.

The production run with a normalised evaluation value of
zero represents the best processing route, as it closely fulfils
all the pseudo-requirements according to the criteria set in
the evaluation function. Similarly, the production run with
a normalised evaluation value just at the beginning of the
jump represents the worst processing route, while it meets
the tolerances for cold strip thickness and strength but exhib-
its higher earing formation and greater inhomogeneity in the

earing properties across the strip width. The characteristics of
both the best and worst processing routes are summarized in
Table 2. Both routes meet the final strip thickness and strength
requirements, however, the best processing route results in
strips with an earing integral of 1.151%, which is approxi-
mately 2.7 times lower than that of the worst processing route.

The earing profiles of both best and worst processing routes
is shown in Fig. 15. It can be observed that the earing profile
belonging to the best processing route (indicated by the blue
colour) exhibits a relatively flat profile with smaller peaks and
valleys, indicating lower earing formation. In contrast, the
profile associated with the worst processing route (indicated
by the red colour) shows significant fluctuations with larger
peaks and valleys, indicating higher earing formation.

Figure 16 shows the best (indicated by green line) and
worst (indicated by dotted red line) processing routes, along
with limits of the top five best processing routes represent-
ing the best processing window (black lines). The magne-
sium, titanium, and silicon contents of the worst processing
route are higher than those of the best route, and they also
lie outside the best processing window. In accordance
with the observations from the feature importance analy-
sis as discussed in Sect. 3.1, the worst processing route
uses larger work rolls during pass 2 compared to the best
processing route. Additionally, the ingot temperatures and
rolling velocities for the worst processing route are lower
than those of the best route and they lie outside the best
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o @® Worst processing route
= @ Best processing route
S 08
C
ie
T 06
=)
©
>
® 04
©
@
2
© 0.2
£
o
< 00 o—
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1250 1500 1750 2000

Number of evaluated processing routes

Fig. 14 Aggregate data of 1972 production runs evaluated using the evaluation function and sorted in ascending order along with the evaluation

values of best (green circle) and worst (red circle) processing routes
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Table 2 The cold strip properties of the best and the worst processing routes fulfilling the pseudo-requirements identified using the evaluation
function

Processing Alu. strip Alu. strip Z, Zys Zy, Earing Integral
route thickness strength (Centre/Edge) (Centre/Edge) (Centre/Edge) [%]
[mm] [MPa] [%] [%] [%]
Best 0.239 288 0.067/0.187 1.031/0.797 —0.541/-0.539 1.151
Worst 0.240 287 2.49/0.864 3.580/0.778 0.617/-1.610 3.058
1.0 == Best earing profile
<
(@] == 1 H
‘S 0.8 Worst earing profile
e
S
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Fig. 15 Earing profile belonging to the best and worst processing route identified using the evaluation function
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Fig. 16 Parallel coordinates plot showing the best (green colour) and worst (red colour) processing routes as well as the best processing window
(black colour) identified using the evaluation function
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processing window. The recrystallised fraction after pass 1
and pass 4 both indicate that higher or complete recrystalli-
sation is favourable for minimizing earing formation. It can
also be seen that the best processing window requires high
hot strip earing characteristics values namely Zyo (H.S),
Zyse (HS) and Zggo (HS) to meet the pseudo-require-
ments, while the worst processing route shows low values.

Conclusions

A concept for modelling and analysing an industrial alu-
minium strip production process chain has been success-
fully implemented by coupling production data with process
models using the Microsoft Azure Databricks platform. The
effectiveness of the proposed approach is demonstrated
through the automated processing of data from 1,972 pro-
duction coils, resulting in the generation of aggregate datas-
ets containing both production and simulation data.

The aggregate data is initially visualised using histo-
grams and scatter plots to explore correlations between hot
rolling force and key process parameters such as thickness
reduction, contact length, shape factor, rolling velocity, and
strip tension. Subsequently, the dataset is used to train an
XGBoost model, with optimal hyperparameters identified
via the Optuna hyperparameter optimisation framework. The
tuned model is then employed to identify the process param-
eters with the most significant influence on earing formation.

To evaluate process performance, pseudo-requirements
are defined, and all production runs are assessed using a
dedicated evaluation function. This analysis identifies the
best processing route, achieving a minimum earing integral
of 1.151%. Furthermore, a robust processing window is
established by analysing the five best-performing routes. A

comparative analysis between the best and worst process-
ing routes for strips with identical specifications reveals that
lower values of rolling diameter in pass 2, and reduced con-
centrations of silicon, magnesium, and titanium, combined
with higher recrystallised fractions and rolling velocities,
are favourable for minimizing earing formation.

This work demonstrates the feasibility and advantages of
modelling an industrial process chain by integrating produc-
tion data and process models in an automated, scalable, and
efficient manner. The proposed approach not only facilitates
deeper process understanding but also serves as a data-
driven decision support system for process experts during
production planning.

Limitations and future work

The demonstrated approach is implemented to model and
analyse a coupled aluminium process chain for can body
strip production. However, the implemented evaluation
function operates on historical production data to deter-
mine an optimal processing route that fulfils a set of user-
specified requirements. This means that the demonstrated
approach can identify the best processing route from the
available historical production data, but it cannot be used
in scenarios such as adaptive processing where new process
parameters should be generated in response to deviations in
the incoming material properties. Therefore, in future work,
an approach involving a mathematical optimization algo-
rithm combined with a surrogate model will be investigated
to determine an optimal processing route. Additionally, the
availability of more production data will help reduce any
imbalance in the dataset, thereby further improving the
XGBoost model accuracy.

Appendix A
Hot rolling force Hot rolling torque Hot strip exit temperature

8 8 8
~ = £
£ £ [ 2
o L[ 2R | . o L
> S , 0 S | ERS
g ' §_ g K4
el . e} F . P

] [ ) a °

28l o 28 | o §8 |
3 © e = o | T o |
e (-2 S e B
° o .. ° @
3 K4 @ [ o ~ [
2 wr v o 9 ) 2 ©
s NG 5 N r 2 N - e
5l &° ES T o g e
z e S ° 5 °

ot o , z o , °

(D_ 1 1 1 O i S S W S S S WA S SO S T S W S S — O IR T S S WS IR TR TR S T TR TR SR T S 1

©0.00 0.25 0.50 0.75 1.00 © - 0.00 0.25 0.50 0.75 1.00 © 0.00 0.25 0.50 0.75 1.00

Normalised rolling force (Exp.) Normalised rolling torque (Exp.) Normalised coil temperature (Exp.)
a) b) c)

Fig. 17 Validation of the fast physical hot rolling model by comparing the normalised values of rolling force, rolling torque and hot strip tempera-

ture in the fourth pass with the normalised experiment values
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