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Abstract: The IceCube Neutrino Observatory, instrumenting about 1 km3 of deep, glacial ice at the
geographic South Pole, is due to be enhanced with the IceCube Upgrade. The IceCube Upgrade, to be
deployed during the 2025/26 Antarctic summer season, will consist of seven new strings of photosensors,
densely embedded near the bottom center of the existing array. Aside from a world-leading sensitivity
to neutrino oscillations, a primary goal is the improvement of the calibration of the optical properties of
the instrumented ice. This calibration will be applied to the entire archive of IceCube data, improving
the angular and energy resolution of the detected neutrino events. For this purpose, the Upgrade
strings include a host of new calibration devices. Aside from dedicated calibration modules, several
thousand LED flashers have been incorporated into the photosensor modules. We describe the design,
production, and testing of these LED flashers before their integration into the sensor modules as well
as the use of the LED flashers during lab testing of assembled sensor modules.
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1 Introduction

The IceCube Neutrino Observatory [1] is a Cherenkov telescope that instruments a cubic kilometer of
deep, glacial ice at the geographic South Pole. The original IceCube detector, referred to as Gen1
throughout this paper, consists of 86 cables called “strings”, each instrumented with 60 optical sensors
called Digital Optical Modules (DOMs). Each DOM consists of a 10-inch photomultiplier tube
(PMT) and all the required readout electronics contained in a spherical glass pressure housing [2, 3].
Detector construction was completed in 2011.

As a highlight among its diverse scientific topics, IceCube has since discovered a flux of
astrophysical neutrinos [4–7] and started to associate sources with this flux [8–10]. Through the study
of atmospheric neutrinos with the more densely instrumented DeepCore subarray, IceCube further
achieves competitive measurements of neutrino oscillation parameters [11, 12]. As the experiment
continues to accumulate lifetime, systematic uncertainties in the properties of the detector, both ice
and instrumentation, begin to dominate over the statistical uncertainty for many analyses.

Understanding the optical properties of the instrumented glacier is particularly challenging as it
can only be studied in situ. For this purpose, the Gen1 DOMs are each equipped with 12 calibration
LEDs. These can inject light with known intensity, wavelength, and timing profiles into the ice, to be
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(a) The red dots indicate the positions of the seven IceCube
Upgrade strings within the IceCube high-energy array and
its sub-array DeepCore.

(b) The subdivision of the vertical geometry into
a shallow calibration region, the depth dedicated
to neutrino (oscillation) physics as well as an ex-
ploratory deep-ice region below the depth instru-
mented by Gen1.

Figure 1. The array geometry of the IceCube Upgrade.

detected by the surrounding array of PMTs. Using these data, the modeling of ice optical properties has
recently been updated to include the effect of light deflection due to the birefringent microstructure of
the ice [13] as well as detailed maps of isochron undulations [14]. There remain uncertainties about the
optics of the ice, such as the properties of refrozen water in the drill holes [15, 16] and the distribution
of scattering angles. These are the limiting factor in cascade angular resolution at high energies [17]
and the leading detector systematics for the uncertainty on oscillation parameters at low energies [18].

To further improve the sensitivity to neutrino oscillation physics and address remaining calibration
uncertainties, the detector will be supplemented by seven additional instrumentation strings in the
austral summer of 2025/26. The layout of this so-called IceCube Upgrade [19] can be seen in figure 1.
The new strings will be deployed within the DeepCore footprint, thus lowering the energy threshold
through an increase in photocathode density. Along each string, the vertical distance between modules
is further reduced from 17 m in IceCube and 7 m in DeepCore to 3 m in the Upgrade for most depths.
In contrast to IceCube, the Upgrade does not feature a single sensor design but has two primary module
types interleaved on each string. The D-Egg [20] (see figure 4(b)) features two 8′′ PMTs in an elongated
pressure vessel. The mDOM [21] (see figure 3(b)) features 24 3′′ PMTs distributed nearly isotropically.

Additional engineering modules are strategically distributed throughout the array. These
include new sensor designs, such as the Long Optical Module (LOM) for a potential future high-
energy array [22] and the Wavelength-shifting Optical Module (WOM), a cylindrical module testing
wavelength-shifting technology to enhance the UV-sensitivity [23]. In addition, several devices are
dedicated to specific calibration aspects, such as the Precision Optical Calibration Module (POCAM),
a self-calibrating, isotropic light source [24], the acoustic (positioning) system [25], and the Pencil
Beam, a fully steerable highly collimated light source [26].
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Like the IceCube Gen1 DOM, the Upgrade mDOMs and D-Eggs feature calibration LEDs that
will provide data for future improvements to the ice optical modeling. To ensure a homogeneous
dataset, the LED systems for both module types have been developed in tandem and have been tested
to the same specifications with equivalent setups. Here, we describe the design, production, and
testing of this LED calibration system.

2 Design of the LED calibration system

2.1 Design requirements

The IceCube Gen1 DOMs use 405 nm LEDs in order to approximate the typical wavelength of
detected Cherenkov photons from particle interactions in ice [27]. The LEDs in the Gen1 DOMs are
driven by high-speed MOSFET drivers with variable width and amplitude settings. This allows for
intensities between 106 and 1.4 · 1011 photons per pulse. In the Gen1 design, the highest intensity
is only obtainable at the longest pulse width, which equates to a rectangular pulse of 70 ns FWHM.
The lower intensities allow for shorter pulses, with the fastest configuration resulting in a nearly
Gaussian pulse of 6 ns FWHM.

For the LED flashers in the mDOM and D-Egg modules of the IceCube Upgrade, the same
wavelength has been chosen, with light sources in special devices, such as the POCAM, providing
data at additional wavelengths. Due to the reduced distance between emitters and receivers in the
Upgrade compared to the Gen1 array, the requirement for maximum intensity has been relaxed for the
Upgrade. To resolve small changes in the received arrival time distributions resulting from effects
such as changes to the assumed scattering function, the Upgrade requires shorter LED pulse durations.
Following simulation studies, the desired intensity range has been set from 5 · 106 to 109 photons per
pulse, while the pulse width should not exceed 10 ns FWHM, even at maximum brightness.

In 2013 it was discovered that light propagation in the glacial ice features strong anisotropies [28].
Satisfactory calibration of this effect [13] requires flashing each LED in the detector individually while
knowing the emission axis of each LED. In the IceCube Gen1 DOMs the LED orientations were
provided by simply bending the LED leads through the use of a jig, resulting in an unknown orientation
precision. For the LEDs in the Upgrade modules, we require well-defined mechanical solutions that
guarantee that each LED axis points to within a 5-degree solid angle of its nominal design direction.

The IceCube DOM offers LEDs pointing out horizontally and at an inclination angle of 48◦. The
D-Eggs also feature horizontal LEDs. While primarily driven by mechanical design constraints, the
mDOM adds LEDs at 29◦ elevation angle, which will add information in particular for anisotropy
studies. Both mDOMs and D-Eggs also feature vertical LEDs, which will be of particular importance
for hole ice investigations.

Due to fluctuations in LED and pulse driver performance, as well as temperature dependencies,
the light output for a given intensity configuration will differ between LEDs. The temperature of
the instrumented ice in particular features a depth gradient, where the temperature increases from
−40◦C at 1600 m depth to −20◦C at 2400 m depth [29]. To enable predictable in situ operation
for all devices, resulting in sufficient photon statistics while avoiding saturation of the receivers,
we require that the intensity of each LED can be configured to within ±50% of any target value
across the full dynamic range based only on prior lab calibration. Aside from guaranteeing a usable
illumination scenario, the absolute LED intensities are almost inconsequential as the established ice
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Table 1. Selected design requirements for the LED calibration system.

Requirement Description

Operational temperature Meet specifications between -30◦C
(accounting for module self-heating) and +27◦C.

Brightness range 5 · 106 to 109 photons per pulse.
Emission spectrum Central value of 405 ± 10 nm with a FWHM below 30 nm.
Angular distribution Approximately Gaussian in each degree of freedom with standard

deviations not exceeding 15 degrees.
Time profile FWHM ≤ 7 ns for dim settings and ≤10 ns at maximum brightness.
Accuracy of emission axis Each LED axis shall be aligned within ±5 degrees of its nominal

design direction.
Controllability of brightness The LED intensity shall be configurable to within ±50% of any target

value in its dynamic range.
Consistency of brightness The per pulse output of each LED shall be consistent to within

10% standard deviation for a typical data collection duration of 30
minutes.

analyses rely on the relative detected intensities at the different receiver DOMs and their photon
arrival time distributions. The absolute LED intensities do not directly enter the analysis and are
instead treated as nuisance parameters [27].

A summary, including further requirements on the operational temperature range, the angular
emission profile, and the long-term consistency of brightness, can be found in table 1.

2.2 Common schematic and parts selection

The pulse driver for each LED is based on a design by Kapustinsky in 1985 [30]. It has been chosen
for its robustness and ease of miniaturization and is also used by other devices in the field, such as the
POCAM [24] and the KM3NeT nanobeacons [31]. The design is based on the triggered discharge of a
small capacitor through a pair of RF transistors that form a thyristor-like element (see the schematic
in figure 2(a)). An optional inductor parallel to the LED cuts off the trailing edge of the light pulse.
The intensity can be adjusted by varying the bias voltage into the discharge capacitor.

To meet the requirements listed in table 1, several LED types in combination with different
discharge capacitances, inductances, and maximum bias voltages were tested. The chosen design
employs a Roithner XRL-400-5O 5 mm LED,1 a 1 nF discharge capacitor, a 56 nH inductance and
a maximum bias voltage of 15 V. All control and trigger signals are provided by the module’s
mainboard. The bias voltage is regulated via a 16-bit digital-to-analog converter, offering ample
resolution for fine-tuning.

To minimize the number of interfaces to operate multiple LEDs per module, as required given the
space constraints and cable routing limitations in the mDOM, several LED elements are bundled into a

1http://www.roithner-laser.com/datasheets/led_div/xrl-400-5o.pdf.
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(a) Simplified schematic of a single LED element.

(b) Block diagram of multiple LED elements forming a flasher daisy chain.

Figure 2. Schematic and block diagram of the LED flasher systems. The mDOM and D-Egg systems both
conform to this design but differ in their implementation due to different mechanical requirements. Each mDOM
features two daisy chains with 5 LED elements, where each LED element is realized as a separate PCB. In the
D-Eggs the 12 LED elements are arranged in one daisy chain on one large PCB.

daisy chain as seen in figure 2(b). Each LED module comprises the LED, a pulse driver, and a trigger
interface. Individual LEDs along the daisy chain can be enabled or disabled through a trigger word,
which is distributed along the chain via flip-flops. A common bias voltage and differential trigger
signal are distributed to all LED elements. Since the cable delay increases down the daisy chain, this
results in the emission time being offset by roughly one nanosecond between each LED. Also note
that the LED driver triggers on the falling edge of the positive trigger pulse from the LVDS receiver.

2.3 Implementation in the mDOM

Due to the large number of PMTs, space in the mDOMs is limited and highly segmented. Thus the LED
elements have been realized as individual printed circuit boards (PCBs), as shown in figure 3(a). Five of
these are arranged in a daisy chain connected with flexible ribbon cables. One daisy chain is installed in
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(a) Each flasher comprises a 25 mm by 15 mm
PCB and a single outward pointing LED. Five
of these LED elements wired in series via
ribbon cables form a flasher daisy chain.

(b) Photo of an assembled mDOM. One flasher daisy chain is
integrated into the black support structure of each hemisphere.
Eight LEDs point outward at elevation angles of ±29◦, and
two LEDs point vertically upward/downward. The LED is
separated from the optical gel, which glues the support structure
into the glass pressure vessel, via a small glass window.

Figure 3. Implementation of the LED calibration system within the mDOM.

each mDOM hemisphere and connects to the calibration extension board (called mDAB) of the mDOM
mainboard. Four LEDs in each hemisphere point at elevation angles of ±29◦ and one LED points
nearly vertically up or down (81◦ elevation). The LEDs of both hemispheres are aligned, resulting in
four pairs of LEDs spaced 90◦ apart in azimuth. The flasher PCBs are mounted within slots in the
3D-printed black support structure that also fixes the PMTs. Borosilicate glass windows of 1.75 mm
thickness are glued into recesses in the holding structure in front of the LEDs. These are necessary as
the space between the support structure and the pressure vessel is filled with optical gel. Nominally the
distance between the LED and the glass window is 1 mm. To avoid uncontrolled flexure of the LED in
the unlikely case of contact, the LED leads are bent into the spring-like arrangement seen in figure 3(a).
The long lead length also avoids thermal damage to the LEDs during the soldering process.

2.4 Implementation in the D-Egg

The elongated pressure vessel of the D-Eggs (see figure 4(b)) offers ample space. Thus one annular
PCB as seen in figure 4(a) has been designed to fit 12 LEDs. Eight LEDs point horizontally outward
at 45◦ azimuthal increments. Four LEDs point straight down. While the downward-facing LEDs all
point in the same direction, their positional offsets can be used to study the properties of the refrozen
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(a) The flasher daisy chain for each D-Egg is realized on one
large, 115 mm outer diameter, annular PCB. Eight LEDs point
horizontally outwards. Four LEDs point vertically down. The
orientation of each LED is ensured via a commercial, cup-type
LED housing.

(b) CAD rendering of an assembled D-Egg.
The annular PCB comprising the LED cal-
ibration system can be seen resting in the
optical gel gluing the lower PMT to the
glass pressure vessel.

Figure 4. Implementation of the LED calibration system within the D-Egg.

drill columns [32]. The LEDs are placed using commercial LED mounts.2 The 12 LEDs form a
single daisy chain and are connected to the D-Egg mainboard with a ribbon cable. During module
integration, the annular flasher PCB slides past the bottom PMT and is oriented on top of the optical
gel. Plastic spacers are then glued to the pressure vessel, to fix the PCB in place.

3 Design verification

Before production, all design requirements (see table 1) were verified for a prototype version of the
mDOM flasher elements. Figure 5 provides two examples of measurements that have been performed
in this context. Figure 5(a) shows the time profile of the emitted light pulses at the two ends of the
intended bias voltage range. These have been measured as the distribution of timing delays between
the trigger pulse going to the LED element and the arrival time of single photons at an IDQ ID100
avalanche photodiode,3 as described in [33]. To sample the arrival time distribution in an unbiased
fashion, the beam is attenuated using absorptive neutral density filters to result in a detection at the
avalanche photodiode in roughly 10% of all triggers. The stated spread includes the duration of the light
pulse as well as the trigger jitter and the resolution of the avalanche photodiode setup. The latter two are
subdominant at approximately 100 ps and 70 ps, respectively. Figure 5(b) shows the angular emission
profile, measured by rotating a photodiode around the LED at a distance of one meter. The standard
deviation of a simple Gaussian fitted to the data is 8◦. The small dip in intensity in the very forward
region is likely related to the bonding wire of the LED die and silicone resin lens (see figure 5(b)).

2https://www.led-paradise.com/product/352.
3https://www.idquantique.com/quantum-sensing/products/id100/.
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(a) Temporal light curves measured for one mDOM
LED element at two different bias voltages, measured
as a histogram of individual photon delays to a trigger
signal using an avalanche photodiode.

(b) Angular emission profile measured for the selected
LED operated at continuous, bright emission and mea-
sured with a photodiode at a distance of one meter.

Figure 5. Example plots for selected quantities evaluated during design verification.

Most performance characteristics exhibit a temperature dependence and will thus have a depth
dependence within the deployed array, where the temperature increases from −40◦C at 1600 m depth
to −20◦C at 2400 m depth [29]. These are mostly inconsequential (for example a 3 nm shift in the
median emission wavelength from 5◦C to −40◦C), except for a roughly 40% reduction in intensity
observed at maximum bias voltages when going from room temperature to −40◦C.

Additional tests have been performed for the individual implementations in the D-Egg and mDOM
settings. For the mDOM mounting scheme, the pointing accuracy of the LED axis was ensured by
camera inspection of 21 LED elements inserted into a cut-away version of the holding structure.
Along the axis that the LED leads were bent (refer back to figure 3(a)), an average off-axis angle of 2◦

has been measured. In the orthogonal axis, along the plane of the LED leads, the average off-axis
angle was < 1◦. No outliers beyond 5◦ were observed.

4 Production

4.1 mDOM system

The pre-populated PCBs of the mDOM flashers arrived on panels of 220 PCBs each (see figure 6(a)).
To assemble one LED element, first, the LED leads were bent into the aforementioned shape (see
figure 3(a)). To achieve the required precision a custom jig was used, as seen in figure 6(b). A strain
relief block secures the acrylic lens cap of the LED, while a stamp presses the LED leads into a mold.
With the LED still in the jig, the PCB is placed on top and the LED is manually soldered. To avoid
potential bending of the LED leads during further handling and shipping, the LED element was then
slotted into a 3D-printed protective cover as seen in figure 6(c). Five prepared LED elements were
connectorized to a flasher daisy chain (FDC) using ribbon cables. All connectors are further secured
with custom retention clips. Each FDC features a unique identifier, printed in clear text and as a bar
code on a label on the ribbon cable going to the mDOM mainboard.

Assembly of one daisy chain following the steps outlined above took an experienced worker
roughly 20 minutes. This is in pace with the duration of acceptance testing described in section 5.

– 8 –
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(a) Six panels of 220 flasher PCBs
each awaiting de-panelization.

(b) Flasher in the jig used to bend the LED
and solder it to the PCB.

(c) One of five flash-
ers inside its protective
cover.

Figure 6. Production cycle of an mDOM flasher daisy chain (FDC).

Production and testing of ∼ 900 mDOM FDCs for 430 mDOMs, equating to over 4500 flasher
elements, was completed over a time period of roughly two years.

4.2 D-Egg system

Due to its monolithic design, production of the D-Egg flasher system was simpler compared to the
mDOM system. The annular PCBs were fully produced by an industrial contractor including the
LEDs inside their reflector mounts and were ready to be tested when received.

5 Acceptance testing

For quality assurance, every LED was tested prior to integration into the modules. While the sheer
number of devices to be tested prohibits an evaluation of all requirements, the basic functionality is
ensured. This is particularly important due to the daisy chain design, as a malfunctioning trigger
interface or broken connector on one LED element may incapacitate all LEDs further down the
chain. In addition to functionality testing, acceptance testing offers the possibility to record individual
calibration constants needed for in situ operation. Acceptance testing was performed at room
temperature and recorded the average per-pulse photon count at the maximum bias voltage and the
bias voltage required to obtain 5 · 106 photons per pulse.

5.1 Testing setups

Not only are the D-Egg and mDOM flasher systems based on the same design, but their respective
testing setups have also been built on common instrumentation to facilitate a good comparability of
the measurements. Each testing setup consists of one Hamamatsu S2281 photodiode per LED in
the respective daisy chain. Their signal is read out by a custom picoammeter, following the design
described in [33, 34]. It consists of a preamplifier board directly mounted to each photodiode and
a central digitizer board as seen in figure 7(a). The relative detection efficiency of all photodiode
and preamplifier pairs was evaluated by measuring the same flasher element. All channels were
found to be within 2% of the average efficiency.

– 9 –
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(a) One S2281 photodiode attached
to the custom trans-impedance am-
plifier. Below, a custom board that
digitizes the voltages coming from
the amplifiers is shown.

(b) Dark box containing the final
acceptance testing setup for mDOM
LED daisy chains. Each LED to be
tested is placed in a small photodiode
module.

(c) Close-up of the D-Egg testing
jig. The annular PCB slots into a
3D-printed structure such that each
LED precisely faces its respective
readout photodiode.

Figure 7. The photodiode systems used for final acceptance testing.

For the mDOM testing system, photodiodes are individually mounted inside light-tight plastic
enclosures that also fit an LED element as in the mDOM holding structure. Five of these photodiode
modules are placed next to each other in a dark box as seen in figure 7(b). For the D-Egg testing
system, the photodiodes are mounted on a jig onto which the annular flasher PCB is placed for testing.
A close-up picture of the D-Egg testing jig can be seen in figure 7(c).

Due to the LED’s spot size in the near field and the angular emission profile, the full LED intensity
is not contained in the active area (∼ 100 mm2) of the photodiode in either testing system. Through
long-exposure photography with LEDs illuminating a screen at precisely controlled distances, the
fraction of light incident on the photodiode active area has been established to be roughly 60%. If
not stated otherwise, requirements and results are given with respect to the intensity detected by the
photodiodes. Due to the different distances of the photodiode to the LED, the D-Egg test system
is expected to register 86 ± 4% of the intensity received by the mDOM testing system. This value
was determined from photographic evaluations of the beam profile as a function of distance. The
systematic uncertainty in absolute intensity between mDOM and D-Egg flashers introduced by this
complication is sufficiently small not to impact in-situ operations.

5.2 Testing procedures

With a daisy chain loaded into the testing setup and its dark box closed, testing proceeds through
the following sequence:

1. Setup self-test: the setup is tested for light tightness by measuring the dark currents with no bias
voltage and no triggers going to the flashers.

2. Flasher functionality: all LEDs are enabled at maximum brightness, ensuring that all flashers
are functional. In the case of a broken LED element, the test will terminate and request that the
operator swap the broken element and conduct a retest. Fewer than 2% of the LED elements
were rejected.

– 10 –
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3. Flasher addressability: the LEDs are enabled in sequence, and the test ensures that only the
corresponding photodiode sees a signal. This step tests the trigger interfaces and ensures
addressability.

4. Flasher brightness: a threshold scan is performed, measuring the maximum brightness and
threshold voltage of each LED.

(a) An example measurement of the number of photons per
second, as calculated from the photocurrent, as a function
of pulse frequency at one bias voltage. The slope yields
the number of photons per pulse.

(b) Per-pulse photon yield as a function of bias
voltage. The photon count at the maximum bias
voltage (red point), as well as the threshold voltage
where 5 · 106 photons per pulse are reached, are
recorded.

Figure 8. Example measurement of per-pulse photon yield as a function of bias voltage as performed for each
LED element.

The threshold scan measures the per-pulse photon yield of each LED at several bias voltages.
At each bias voltage, the photocurrents received at all photodiodes are recorded for at least three
repetition frequencies. Each photocurrent is converted into the equivalent number of measured photons
per second taking into account the elementary charge and the datasheet quantum efficiency of the
photodiode at 405 nm. The per-pulse photon count is the slope of a linear fit of the photons per second
versus repetition frequency (see figure 8(a)). The repetition frequency starts at 100 Hz. Should any of
the LEDs already saturate at 100 Hz, the data are discarded and the initial frequency is reduced to
10 Hz. From the initial photocurrent, two additional frequencies are selected to span the full dynamic
range of the photodiode system without risking saturation.

After recording the photon yield at the maximum bias voltage of 15 V, the bias voltage is reduced in
steps of 1.8 V to approach the threshold voltage. When the photon count has reduced below the target of
5 · 106 photons per pulse, the region around the threshold voltage is scanned in steps of ∼ 230 mV, such
that at least three points above the threshold voltage are included and that the lowest recorded per-pulse
photon count is below 106. The actual threshold voltage is then determined from a spline fit to the data.

An example intensity scan can be seen in figure 8(b). This testing procedure on average requires
20 minutes, with the runtime mostly depending on the spread in intensity between the LEDs.

5.3 Testing results

Figure 9(a) shows histograms of the measured maximum photon yields for all D-Egg and mDOM
LEDs. The D-Egg values have been corrected by the average relative difference to the mDOM
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(a) Histograms of measured maximum photon yields for 3168 D-Egg and 4625 mDOM LEDs. The arrows
indicate the mean maximum photon count per individual LED position. The D-Egg LEDs feature a position
dependence due to layout differences. This is not the case for the mDOM flashers, which are all produced
equally, but their distribution is bimodal due to LED characteristics.

(b) Layout examples for two daisy chain po-
sitions on the D-Egg flasher PCB. The top
example features longer traces connecting the
transistors to the LED, resulting in slightly
dimmer emission.

(c) Maximum photon yield as a function of production sequence
for the mDOM flashers. LEDs were delivered in bags of
100 each. LEDs from 10 bags feature an increased average
maximum brightness.

Figure 9. Investigations into the maximum photon yield for both LED calibration systems.
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intensities, which is a factor of 1.22 = 1/0.82. This correction factor is in good agreement with the
expected relative sensitivity of the D-Egg testing system compared to the mDOM testing system as
detailed in section 5.1. The arrows indicate the mean maximum photon counts for the individual
LED positions along the daisy chains. After reworking non-functional LED elements, all tested LEDs
conform to the requirement of at least 109 photons at maximum bias voltage.

The mDOM and D-Egg LEDs show a 10.0% and 11.6% standard deviation spread in intensity,
respectively. For the D-Egg LEDs a significant dependence of the mean photon yield, ranging
from 1.7 · 109 to 2.1 · 109, on the position along the daisy chain is observed. Correlating the mean
intensities to the trace lengths between the driving circuit and the LED shows a clear decrease in
intensity with increased trace lengths. Two examples of different trace lengths are seen in figure 9(b).
For the individual D-Egg LED positions, the average standard deviation in maximum intensity is
9.9%, equivalent to the mDOM LEDs.

Given that the mDOMs use identical PCBs for all LED elements, no such position dependence
is seen in the mDOM data. However, the overall distribution still features a non-Gaussian shoulder
at high photon counts. Figure 9(c) shows the maximum intensities of mDOM LED elements as a
function of the production sequence. The higher intensities do not occur randomly but are grouped
in sequences of 100 LEDs. The LEDs have been received from the manufacturer in bags of 100,
indicating that the LEDs are not from a single but two production batches.

(a) Per-pulse photon yield as a function of bias voltage
for a random subset of 200 mDOM LEDs. The spread
between LEDs is reduced after shifting the curves by the
individual threshold voltages.

(b) Relative standard deviation (of the photons per
pulse over all LEDs divided by the mean intensity)
between LEDs as a function of mean intensity given
a range of fixed (threshold-corrected) bias voltages.

Figure 10. Based on the individually measured threshold voltages, the bias voltage can be configured to yield
any desired intensity within 10% standard deviation.

To illustrate the LED-to-LED fluctuations, the intensity scans of 200 randomly sampled mDOM
LEDs are shown in the dotted lines of figure 10(a). As discussed above, the spread of intensity is
within 10% between all LEDs of one module type at the highest bias voltage. However, the relative
standard deviation (of the photons per pulse over all LEDs divided by the mean intensity at a given
bias voltage) quickly grows towards lower intensities. It reaches nearly 150% at a fixed bias voltage,
equating to an average of 107 photons per pulse, as seen in the dotted line in figure 10(b). To facilitate
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the requirement that the intensity must be configurable to within ±50% of any target value for any
LED (see table 1), we must thus operate different LEDs at different bias voltages to obtain the same
intensity. A simple parametrization for the required bias voltages can be obtained by shifting the
individual scans by their respective threshold voltages. The solid lines in figure 10(a) illustrate this
approach. This simple correction already reduces the relative standard deviation to 7% over the full
range of bias voltages, and thus well below the requirement, as seen in figure 10(b).

At room temperature, these per-LED bias voltages can be interpolated directly from the database
of recorded intensity scans. The temperature gradient in the ice will add an additional intensity
dependence. Although this remains to be studied in detail, we have already conducted initial
measurements in climate chambers and investigated a functional correction that adds a temperature
dependence to the parametrization of the difference between the bias voltage and the threshold voltage.

6 Use of LEDs in module calibration

In addition to the 12 LED flashers discussed above, the IceCube Gen1 DOMs feature a dedicated
so-called mainboard flasher [1] that can be dimmed to result in single photon illumination at the PMT
of the same module. This setup is used during in situ calibration of the modules. The mDOM and
D-Egg designs do not feature such a dedicated flasher. During early testing of the Upgrade flashers
in prototype D-Egg and mDOM modules, it was however realized that these can be stably operated
below the intended dynamic range, resulting in single photon illumination.

(a) Trigger occupancy as a function of bias voltage. A
10% occupancy is chosen to select for single photons.

(b) Resulting single photon charge spectrum recorded
using the mDOM flasher as a light source.

Figure 11. Example operation of an mDOM flasher illuminating a nearby PMT at low bias voltage resulting in
a triggered acquisition of low occupancy single photons.

Figure 11(a) shows the trigger probability for a typical mDOM PMT as a function of the bias
voltage of a nearby flasher LED. Figure 11(b) shows the resulting charge spectrum when the trigger
probability is tuned to 10%, resulting in mostly single photon detection. This configuration allows for
easy lab testing (such as final acceptance testing of fully assembled modules) and in situ calibration.

7 Conclusion and outlook

For Cherenkov neutrino telescopes utilizing natural media, in situ calibration of sensor characteristics
and ice/water optical properties often involves the use of pulsed light sources. Given the reduced
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sensor spacing of the Upgrade compared to IceCube, the LED flashers for the IceCube Upgrade
sensor modules are dimmer but feature significantly narrower timing profiles. Both systems have
been developed in tandem and have been tested to the same specifications with equivalent setups.
Production and testing of all flasher LEDs as required for the IceCube Upgrade instrumentation have
been completed. These are now being integrated into the modules to be deployed during the 2025/26
austral summer season. The performance exceeds the design requirements and is comparable for both
module types. Several devices remain in storage and will remain available for long-term testing. This
will in particular entail mapping temperature characteristics and their reproducibility between devices.
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