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Introduction

Dynamic transportation networks have a broad range of applications. No matter if we
talk about evacuation systems, traffic flow on roads, or production networks, the under-
lying structure can in many cases be modelled by dynamic flow equations on networks,
which we call dynamic transportation networks (short DTNs). This work contains a
description of DTNs in general and presents two specific models: firstly, production net-
works including dynamic machine capacities and repair workers; and secondly, traffic
networks including several junction types as well as traffic lights. Optimisation ques-
tions such as optimal worker scheduling or optimal traffic light settings arise. For these
complex model structures, classical continuous optimization techniques cannot guar-
antee to find globally optimal solutions. Hence, it is of interest to develop strategies
for transforming DTNs into linear mixed integer optimisation problems (short MIPs),
which allow for automated Branch & Bound optimisation techniques. Furthermore, it
is rewarding to investigate how knowledge about the problem structure can be used to
speed up the optimisation process.

Here, we give a brief but incomplete survey on the existing literature in this field.
Plenty of models are dedicated to network flow problems and transportation on net-
works. The classical description is the maximum flow problem derived in graph theory,
where the maximal flow through a network is computed with respect to given upper
bounds, also referred to as capacities, see [41]. In recent decades, various models that
incorporate dynamic phenomena into the network description have been developed.
They are dedicated to various applications, such as queuing theory [9, 16] and supply
chain models [2, 3, 24, 32, 35, 42, 46, 47, 54], networks for gas and water pipelines [20],
traffic flow models [11, 17, 18, 19, 43, 72], evacuation scenarios [22, 52] , telecommuni-
cation networks [34], and many more. In this context, mainly two modelling streams

emerged: on the one hand microscopic models — which describe the trajectory of every
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single particle in the system, such as discrete event simulators [3, 7]; and, on the other
hand, macroscopic models, which use fluid-like descriptions of the transportation pro-
cess by considering the evolution of density in the system and often entail the use of
differential equations [4, 31, 32, 42, 47]. The latter have the advantage that simulation
time does not depend on the number of particles in the system and that dynamic phe-
nomena such as forwards and backwards travelling density waves — which occur e.g. in
traffic flows — can be reproduced.

Having found a satisfactory description for the dynamics, it is of interest to tackle
various optimisation questions, see [22, 37, 42, 46, 48, 52, 57, 98] for an overview. Un-
fortunately, standard optimisation techniques for continuous PDE/ODE- constrained
problems, such as Lagrangian based adjoints and gradient based methods [63, 93] are
not reliable for network structured flow models, since they often get stuck in local op-
tima and cannot deliver any information about how close the best found solution is to
the global optimum.

Consequently, it is reasonable to follow an alternative optimisation approach. In
[8, 37,42, 48, 49, 53, 57, 75, 76, 77] linearisable dynamic transportation network models
are reformulated into linear MIPs using linearisation techniques as described in [62].
Linear mixed integer optimisation is a common problem class in discrete mathematics
and entails well-investigated optimisation methods that are able to find global optimal
solutions in a reliable way [30, 70, 82, 90, 94]. Elaborated Branch & Bound operations
split the original problem into subproblems and compute upper and lower bounds for
the globally optimal objective function value. Nowadays numerous software packages
exist that can be used as blackbox solvers [23, 60, 85, 91]. Another remarkable ad-
vantage is, that discrete decisions — such as binary controls for traffic light settings —
and restrictions to integer values — e.g. restrictions to integer numbers of repair work-
ers for production networks — can easily be incorporated. However, this method has
the disadvantage that the optimisation time depends exponentially on the number of
discretisation steps. Hence, a trade-off between acceptable computation times and ac-
curacy of the description of the underlying dynamics has to be made. Furthermore, the
automated solvers encounter problems in finding feasible solutions since every variable
originating from the discretised and linearised model description is treated as unknown.
Especially, when the grid sizes are small, rounding errors often accumulate, resulting

in artificial infeasibilities, such that the optimisation algorithm fails, see [49, 98].
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Nevertheless, the knowledge about the problem structure provides many opportu-
nities to stabilise and speed up the automated optimisation algorithms. One approach
is a bound-sharpening presolve algorithm, developed by [36]. Another method is the
use of starting heuristics, giving the solver a jump start with a promising feasible so-
lution [49, 98]. However, the provision of a feasible start solution does not guarantee a
reduction of optimisation time.

As already mentioned, feasible solutions for the linear MIP can be computed easily
as soon as the actual control variables are given. Apart from providing starting solutions
— to the best of the author’s knowledge — this valuable fact has not been applied to its
full potential in the course of the optimisation procedure. Providing feasible solutions
not only as start up but also during the Branch & Bound Algorithm, paired with
prescribed branching priorities is a promising approach to speed up the optimisation
procedure.

The content of this work is structured as follows: In Chapter 1 we consider macro-
scopic dynamic network flow models, i.e. DTNs. We present a general definition for
DTNs, review the most common modelling approaches for density evolution and cou-
pling conditions and consider in particular two applications: Firstly, we derive an
extension to the common production flow network by including capacity declines and
the effect of repair workers. Secondly, we review Lighthill-Witham-Richards traffic flow
models [74, 88] and analyse coupling conditions for specific junctions types. In the end
we review the most common discretisation techniques and propose a novel algorithm to
simulate density evolution on road networks using coupled Hamilton-Jacobi equations
[1, 97].

In Chapter 2 we consider optimisation questions on DTNs and outline optimisation
techniques used in the solvers for linear MIPs. Then, we point out a general strat-
egy for the transformation of DTNs into linear MIPs and discuss how constraints on
the actual control variables can be constructed to avoid undesired oscillation effects.
Furthermore, we point out where exactly the knowledge of the problem structure can
be used during the Branch & Bound process to speed up the optimisation time. We
resume the particular models from Chapter 1 and transform them into linear MIPs. In
the context of production networks we are looking for the optimal worker scheduling
in order to maximise the production flow. Regarding traffic networks, we derive the

modelling of traffic lights, derive requirements on the traffic light settings and propose
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a heuristic to find feasible traffic light settings in order to speed up the optimisation
algorithm.

In Chapter 3 we show numerical results for the two applications, involving verifica-
tions of model behaviour and the effects of several parameters, comparison of discreti-
sation schemes, illustrations of the effect of optional requirements to avoid undesired
fluctuations, and the development of the optimisation process comparing the use of
several tuning techniques.

Besides general classifications and transformation strategies for DTN models into
linear MIPs, the new scientific contribution of this work is the novel production model
containing dynamic process capacities and the reformulation into an optimal worker
scheduling problem applying linearisation techniques to obtain a linear MIP. In the
context, of LWR-based traffic flow network models, we show how coupling conditions
can be transformed into easily linearisable min-terms for several junction types. Fur-
thermore, we develop a numerical algorithm based on coupled Hamilton-Jacobi equa-
tions. Moreover, we derive a traffic light model with dynamic switching periods and
constraints for secure traffic light settings. We provide a transformation into a linear
MIP and proposed various bounding heuristics to speed up the optimisation algorithm.

Parts of this work will be or have been published in the following journals:

e Gottlich, S. and Herty, M. and Ringhofer, C. and Ziegler, U. Production systems
with limited repair capacity. Optimization, Vol. 61(8), pp. 915-948, 2012.

e Gottlich, S. and Herty, M. and Ziegler, U. Numerical discretization of Hamilton-
Jacobi equations on networks. Networks and Heterogeneous Media, in review-

process.

e Gottlich, S. and Herty, M. and Ziegler, U. Modeling and optimizing traffic light
settings on road networks. IEEE Transactions on Automatic Control, in review-

process.



Network Flow Modelling

This chapter is dedicated to dynamic network flow models, focusing on continuous
ODE/PDE-based fluid flow descriptions.

Network flow models have a broad range of applications. On the one hand a lot of
research has been done on static models, for which numerous algorithms to solve opti-
misation issues in polynomial time are available, see [40]. On the other hand, another
important field has become a point of interest in the last decades: Time dependent
models for transportation systems, which often consider PDE-dynamics to describe the
density evolution in the system; starting from internet and telecommunication networks
[34], over networks for gas and water pipelines [20], and evacuation scenarios [52], to
production flows in economics, see [2, 3, 24, 32, 35, 42, 47, 54] amongst others. A
further application are traffic flows on complex road networks [11, 17, 19, 43, 72].

The original network flow problem is dedicated to finding an optimal static through-
flow a network where every part is limited by a certain capacity, see [41]. However,
in many applications it is of interest to capture dynamical development and to model
the transportation process more detailed. To those models we refer to as dynamic
transportation networks (short DTNs). Models describing the transportation and tra-
jectories of every single part in the system have been developed, such as models on
discrete event simulation [3, 7]. They are called microscopic models. A disadvantage is
that, as soon as the number of involved parts grows, the model becomes highly complex
and cannot be solved efficiently. For that reason it has become popular to treat the
parts as fluid flow and model the density evolution using differential equations when-

ever the number of parts tends to be large, see [2, 5, 26, 32] for an overview. These
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models are often referred to as macroscopic models.

This chapter is structured as follows: In Section 1.1 we provide basic definitions
and notation and review some general ideas on the modelling of DTNs, including de-
scriptions of transportation along network edges, buffers and coupling conditions on
vertices.

The following two sections focus on DTN models in the context of production and
traffic flows on networks:

Section 1.2 describes the main ideas of macroscopic fluid-like production models,
such as [32], which consist of capacitated production flows and an ODE-based descrip-
tion for buffers to store waiting parts. The new contribution is an extension of the
already known model: We include the deviation of production capacities, that occur
due to abrasion effects and breakdown of machines as well as the impact or repair work-
ers. We model these additional dynamics in a smooth way using additional ordinary
differential equations. This model extension has recently been published, see [49].

We combine these ideas, including clear priority rules, in a similar way as they
are used for cell transmission models [25] and create 4-legged junctions which form
part of roundabouts. Furthermore, we reformulate the coupling conditions, which are
originally stated as maximisation problems, into min-terms, which can be computed in
a straight-forward way. Then, inspired by [83], we reformulate the traffic network flow
problem using Hamilton-Jacobi equations, that enable us to compute car trajectories
of given scenarios very easily. This advantage has also been used in [18].

In Section 1.4, we summarise the most common discretisation approaches used in
the context of DTNs (for a complete overview, see [73]) and derive a novel numerical
algorithm to simulate traffic low models using a reformulation with Hamilton-Jacobi

equations. This yields the benefit that we can directly track trajectories of single cars.

1.1 Preliminaries

The idea of this section is to give a general classification and point out, what we
actually mean by the term DTN (dynamic transportation network), namely models
on networks where transportation is described by dynamic functions interdepending
on each other. Subsequently, we provide the most common modelling techniques to

describe transportation and coupling conditions for these model types which can be
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adapted according to the specific application. Later-on, in Sections 1.2 and 1.3, we fill
these rather abstract definitions and derivations with life by presenting certain models
in the context of production and traffic flow networks.

First of all, we introduce some basic notation that is needed to describe the network
structure and give a general definition of dynamic transportation networks. We consider
models where the flow is only moving along a given direction. For this reason, the
structure is based on a directed Graph G = (V,FE), where V describes the set of
vertices and F the set of directed edges.

In the context of directed graphs, we use the following notations.
Definition 1.1.1. Given a directed graph G = (V, E).
e V denotes the set of vertices, and E the set of edges.

e Function o : E — V maps each edge to its starting point and functionw : £ —
V maps each edge to its endpoint, cf. Figure 1.1(a).

e The set of incoming edges of v is denoted by 6" := {e € E : w(e) = v} and
§out .= {e € E : a(e) = v} is referred to as the set of outgoing edges of v for
all vertices in V', cf. Figure 1.1(b).

o Averterv' €V :(Je€ E : ale) =v" A w(e) =v) is called predecessor of v.
o Avertexv' €V :(3e€E : ale) =v A w(e) =) is called successor of v.

o Vertices without predecessors are called inflow vertices and are collected in the
set Vin = {v e V: {e:w(e) =v} =0}. An edge with an inflow vertex as starting
point is called inflow edge. The set of inflow edges is referred to as E™ C E.

o Vertices without successors are called outflow vertices and are collected in the
set Voul = {v € V : {e : ale) = v} = 0}. An edge with an outflow vertex
as endpoint is called outflow edge. The set of outflow edges is referred to as
E°ut C E.

Before introducing dynamic networks, we state the classical network flow problem

as basis and motivation for all succeeding considerations.
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(a) Starting and end vertices. vy = (b) Set of incoming and outgoing edges.
wler) = ale2) = ales), v2 = w(e2), Here, 6" = {e1,e2,e3} and 65
vz = w(es) {es, es}

Figure 1.1: Notations on directed graphs.

Static Network Flow Problem. The classical maximum flow problem (short MFP)
is found in graph theory. Consider a specific network G = (V, E). Every edge has a
maximal capacity, representing the upper bound of through-flow the edge. The question
is how to find the maximal amount of flow that can be assigned to the edges respecting
cost and benefit parameters.

Given edge capacities ¢; for all i € E, a general (MFP) is given by

maxz fi (1.1a)

i€E
such that
SNfi=> 1 Vo e V\{V™ U veuty (1.1b)
ZE(S;L}”L J‘eégut
0< fi <g¢ Vie F. (1.1c)

see [40, 41, 66], amongst others.

Figure 1.2 shows an example.

A feasible solution of (1.1) describes a static (i.e. time independent) flow scenario
of the given network.

This model consists of time independent variables and is useful as long as only static
network properties are considered. However, it is of interest in many applications to
analyse time dynamic behaviour. As soon as inflow, distribution of flow at branching
points or other network properties are changing in time, the network has to be described

with other tools including differential equations that describe the development of flows
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Figure 1.2: Example for a maximum flow problem. The values for f are the optimal

solution with respect to the given capacities c.

and queues inside the network. In this way we end up with an extension describing
dynamic network flow models including non-linearities.

Subsequently, we state a basic definition of dynamic transportation networks (DTNs).
The crucial point of DTNs is that there are several time dependent properties and func-
tions defined on edges of a directed graph. The interdependence of these functions can
be described by edge and coupling operators. Furthermore, typically initial and bound-
ary conditions are given. For more details, see Definition 1.1.2.

The network structure is essential to define a dynamic transportation network.

(Note, that in this context the number of elements of a vector v is denoted by |v|.)
Definition 1.1.2. A dynamic transportation network (DTN) is given by
e a directed graph G = (V, E),

a time dimension expressed by variable t and a time horizon T, such that t €
[0,T] C ]Rar ,

a (possibly time dependent) flow distribution matriz d € RIFIXIEl (details, see
Definition 1.1.7) (optional),

e q set of network parameters N € RN

a set of edge properties P; € Rl vi e E,

a spatial dimension expressed by variable x for each edge, details see Remark 1.1.4

(optional),
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a set of dynamic functions t — D;(t) € [Ly, W] C RIPil, where £; and U; denote
the upper and lower bounds of the functions and are usually elements of the net-
work properties P;. (In case of spatial dynamics, D might also depend on x) with
initial conditions Do; = D;(0) Vi € E,

e boundary conditions for dynamic functions (if they inherit a spatial dimension),
or inflow into the network, described by boundary functions B : t — Bin(t) €
RIB" v € B Optionally right-hand boundary conditions at the outflow edges
can be described: Bt — B (t) € RIB vi e pout

e interdependencies (possibly in form of differential equations) of the before men-
tioned objects described by a set of edge operators J;(t, N, P;, D;, 0, D;, B;) € RPil v e

E (In case of spatial dynamics, I might also depend on x derivatives of D; in x),

e interdependencies of objects from meighbouring edges described by coupling oper-
ators Cy(t,d,N,P,D) € RI¢I vy e V,

e edge conditions of the form J;(t,...) =0, Vi € E and
e coupling conditions of the form Cy(t,...) =0, Vv € V.

Remark 1.1.3. e Depending on the type of coupling, the coupling operators and
conditions might also by indexed by the edges i € E instead of the verticesv € V.

e Usually, the dynamic functions D; are modelled such that the upper and lower
bounds, L; and U;, are automatically fulfilled. However, we mention them here,
since they play an important role for optimisation procedures, as we will see in
Chapter 2.

To fill the previous definition with life, we present some specific DTNs in the next
sections. Section 1.2 is dedicated to the derivation of DTNs in the context of production
and Section 1.3 considers DTNs for traffic flows on road networks.

The next subsection gives an overview over the most common modelling approaches
for DTNs. Subsection 1.1.1 is dedicated to the modelling of movements along network
edges and in Subsection 1.1.2 some basic ideas on coupling conditions at the network

vertices are pointed out.

10



1.1 Preliminaries

1.1.1 Transportation along Network Edges

We consider an amount of particles which are moving along a prescribed direction x.
The movement can either be tracked microscopically by describing the trajectories of
each single particle, or it can be considered in a macroscopic way, by describing the
density evolution. The latter approach is preferable for settings where we assume the
particles to have identical properties and where the amount of particles is very large,
such that considering each single trajectory would be too costy. There are numerous
ways to describe macroscopic particle flow. The most simple approach is to assume
that the particles move with constant velocity, without disturbances. In that way, we
would only need to compute the time delay, which the flow of a certain point x1 needs
to reach another point zs.

However, for many applications, especially for traffic flow models, it is important to
be able to capture nonlinear dynamic behaviour describing phenomena such as traffic
jams and backwards and forward travelling density waves, as observed on highways.
In such cases, the density evolution is described using a conservation law, which is a
hyperbolic partial differential equation.

Every edge allows for one spatial flow direction. The particles are treated as small
mass points. The density on an edge is given by p : (z,t) — p(z,t) € [0, p"**] C R,
where z is the spatial variable indicating the location on the edge and t refers to the
time. Furthermore p™* is the maximal possible density of particles which is a known
property and depends on the size of every particle. The amount of particles inside an

interval [x1, 9] at time t is given by

€2
/ p(x, t)dx.
x1

The particle flow f : (z,t) — f(x,t) € Rg describes the amount of particles crossing
each point of the edge in one time unit. The amount of particles passing through

location z during the time interval [t1, 2] is given by
t2
f(z, t)dt.
t1

Usually we assume that the particles cannot get lost along an edge and no new particles
can appear (except for the start and endpoint of the edge). This means that the amount

of particles in an arbitrary interval inside the edge [z1,x2] at a certain time 5 minus

11
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the amount of particles in the same interval at an earlier time ¢; must be equal to the
difference of inflowing particles at location z; minus outgoing particles at location zo

during the time interval [t1,s]. In other words, the following equations holds:

T2 T2 t2 t2
/ p(m,tg)da:—/ p(x,t1)dx = flay, t)dt — fxg,t)dt. (1.2)

1 1 t1 t1

If p and f are sufficiently smooth, (1.2) yields

1o x2
/ / Opf(x,t) 4+ Orp(x, t)dxdt = 0. (1.3)
11 x1

Since (1.3) holds for all ¢, to > 0 and all intervals [z, 23] inside the edge a(e),w(e),
we obtain the continuity equation, a hyperbolic partial differential equation, describing

the conservation of mass:
Oz f(z,t) + Orp(x,t) = 0. (1.4)
If the flow depends solely on the density, i.e. f = f(p) , we have

a:cf(p(w?t)) + atp(xvt) =0. (15)

For more details, we refer to [10, 73, 95].

We can model this dynamic behaviour on every edge of a given network graph

G =(V,E).

Remark 1.1.4. To include these spatial dynamics into the description of a DTN model,
we include the spatial dimension of each network edge i € E with a variable x living
in the interval [0, L;] C R(J)r. According to the notation of Definition 1.1.2, the edge
length L; is considered to be one of the edge properties P;. Furthermore, f; and p; are
considered as dynamic functions and, hence, are elements of D;. Moreover, the edge

operator

Ji(p, £, 0 f, Op) = Oz f(p) + Orp

and the edge condition

(=

Iy
Il
S

are required in order to satisfy (1.5).

To derive a useful DTN model, convenient coupling conditions are required at the

vertices v € V. General ideas on coupling are found in the next subsection.

12
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1.1.2 Coupling
We give a definition of the in- and outflow of an edge.

Definition 1.1.5. Given a transportation network on a directed graph G = (V, E).
We refer to the flow that is leaving an edge i by fi, and the flow entering edge i is
referred to as f;, cf. Figure 1.3. In case that length L; € RT is a given edge property,
as described in Remark 1.1.4, we have fi(t) := fi(z = 0,t) and fi(t) := fi(x = L;,t).

fi fi

— —

edge i

Figure 1.3: In- and outflow of an edge.

Remark 1.1.6. In some application the model includes buffers in the beginning of
each edge, where particles can be stored. In this case, the incoming flow f; can either be
diverted to or increased by the parts in the buffer. Let u;(t) represent the function for
the buffer size in front of edge i and f; the flow entering the edge after having traversed
the buffer, see Figure 1.4. Then we have

fi = fi — Ouu;. (1.6)

fi | Wi |fi i

edge ¢

Figure 1.4: Flow functions f;, f; and fl for an edge with buffer u;.

A typical application for this scemario are production networks as, for example,
described in [2, 4, 31, 37, 42]. Another example is derived in more detail in Section
1.2.

In the case that no dynamics along the edges and no buffers are considered, as for

example in the MFP (1.1), we have f; = f;, Vi € E.

13
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Consider a vertex v € V. In general we require conservation of mass trough nodes,
i.e. we do not want to loose or gain any particles at the vertices, hence Kirchhoff’s law

has to be fulfilled:

S )= > fit), WweV (1.7)

i€din Jjeagut

Sometimes, we also have given requirements on the flow distribution at vertices.
Then, we use parameters 0 < d;; < 1 which prescribe the percentage of flow going from

edge i to edge j. This yields

fit) =" dij- filt), Vj € 53", (1.8)

IS

The distribution parameters have to be chosen such that

> dy=1 (1.9)

iedgut

holds. Then (1.8) guarantees that (1.7) holds.

This gives rise to the following definition:

Definition 1.1.7. Given a directed graph G = (V,E). A matriz d € RIFIXIEl js called

a flow distribution matriz, when the following properties are fulfilled:
o Ogdzjg]-v V(i,j)EEXE,

. (ﬂv ceV:{iesnnje (537“}) = d;j =0, i.e. entries only differ from zero, when

edge j is a direct successor of edge j.
® > icsoudij =1Vj € E\E™, i.e. all incoming flow is distributed, see (1.9).

Note, that the notation “d” without indices refers to the matrix, whereas “d;;”
refers to one element of the matrix.
Definition 1.1.7 implies that the rows sums are 1, i.e. ZJGE dij = 1, except of all

outgoing edges j € E°“*. An example is shown in Figure 1.5.
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1.1 Preliminaries

0 05 05 0 0 O

0 0 0 03 07 0

0O 0 0 0 o0 1
— d=

0O 0 0 0 o0 1

0O 0 0 O 0 O

0O 0 0 O 0 O

Figure 1.5: Example network with corresponding matrix d. The entry d;; represents the

percentrage of flow going from edge i to edge j.

Remark 1.1.8. According to the notation of Definition 1.1.2, the coupling conditions
(1.7) and (1.8) can be included in a DTN model via the coupling operator

C(fsf)=> fi—= > f, eV, (1.10)
ie&f}n je&gut
for settings, in which the flow distribution is variables, and by
Ci((d. f, f)=Ffi— > dijfi, Vj € E\E™, (1.11)
1€0a(s)
for cases with prescribed flow distribution matriz d.

The coupling condition is then given by

e, =0.

Remark 1.1.8 shows that the coupling operator is defined for each edge as soon as
the flow distribution is given by d, cf. (1.11). In cases with the flow distribution is
variable, it is sufficient to guarantee Kirchoff’s law and define the coupling operator for
each vertex, cf. (1.10).

In cases where more involved dynamical phenomena such as forward and back-
wards travelling density waves, e.g. for traffic flow models, we obtain more complex
requirements for the coupling densities. This is due to the fact that we have to ex-
clude inadmissible wave directions at the junction. For more details see Section 1.3 and
[11, 19, 64], for an overview.

The next sections apply these modelling ideas in the context of production networks

and traffic flow networks.
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1. NETWORK FLOW MODELLING

1.2 Application I: Production Network Models

Complex production processes often consist of numerous production steps. In the
beginning, raw material is introduced into the system and passed on from one machine
to the next, which successively execute various production steps, until the finished

product is obtained as output at the end of the chain, cf. Figure 1.6.

.—* processor 1 ——#- processor 2 —— - processor n &

raw material production steps finished product

Figure 1.6: Chain of processors.

In general, a production system consists of several branching points and provides
various paths where parts are manufactured. Hence, the underlying framework is in
many cases a large system of production units, such as suppliers and machines, which

are interpreted as a production network.

1.2.1 Transport and Buffers

In the production context, the edges of a network represent different production units,
such as assembly lines or machines, where certain production steps are executed. They
usually include buffers, where those parts are stored that cannot be processed immedi-
ately. The need for buffers is a result of the assumption that there is an upper bound
for the particle flow in each unit which represents the production capacity of the cor-
responding machine. In this context, stationary models on queuing theory have been
derived, see [9, 16], where the main focus lies on the mean waiting and arrival time of
parts.

An alternative approach is the modelling of dynamics in processors and buffers. The
resulting instationary models either consider discrete events [3, 7] or consider continuous
flows and compute the density evolution in the system, see [4, 31, 32, 42, 47] for an
overview.

In this subsection we will have a closer look at the latter mentioned fluid-like models

as a basis and present an extension in the next subsection.
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1.2 Application I: Production Network Models

Let w; : t — u;(t) represent the queue size, i.e. the number of waiting parts, in
the buffer of edge 4, f; : t — f(t) describes the flow from preceding edges entering the
buffer of edge i € F and f; : t — f (t) describes the flow leaving the buffer u;, cf. Figure
1.7.

ff';(,‘/,.,i,
fi Ui fi
edge 1

Figure 1.7: Flow and buffer on network edge. For all incoming edges i € E™ f; = 0,
such that only external inflow fc.;; enters the buffer. For all other edges i € E\Em the
external inflow f..:; is optional.

The processing capacity is the upper bound for the flow and is given by ¢;, i € E.
External inflow into processor i is prescribed by fei(t) for i € E™. For all other
processors feys; = 0 holds.

Let d be the flow distribution matrix as stated in Definition 1.1.7. As described in

Subsection 1.1.2, the flow coming from preceding edges is given by

fitty= > duifr(t), (1.12)

k€3 iy

where f; describes the flow leaving edge i, cf. equation (1.8).

Remark 1.2.1. The indexing of (1.12) differs from (1.8) for the following reason: In
(1.8), we consider various edges indexed by i and their common succeeding edge j,

whereas here, we consider a fixed edge i and its preceding edges indexed with k.

We derive equations describing the dynamics of the buffer level u; at time ¢. Imagine
that the flow which is led from preceding edges to a certain edge i first of all enters the
buffer and is then passed on to the actual machine. As already mentioned in Remark
1.1.6, the evolution of the buffer level is given by the difference between the amount of

flow entering and leaving the buffer. We get:

du;(t)
dt

= fi+ feri(t) = filt). (1.13)
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1. NETWORK FLOW MODELLING

It is of general interest to efficiently use the available capacity and run a production
system at high working load, i.e. when a lot of parts are running through the system.
For this reason, we assume that the maximal production capacity of each machine is
used whenever possible. That means, the machine runs with its full capacity, as long
as there are parts waiting in the buffer, otherwise as much as possible of the incoming

parts are used. This yields the following equation:

) = {min{fi(t),ci(t)L wi(t) =0 114)

ci(t), ui(t) >0
In order to avoid the discontinuous dependence of f on the buffer level wu, [46]
suggests to use a small regularisation parameter 0 < 7 < 1, and replace (1.14) by the

relaxed formulation

fi(t) = min(¢;, ulT(t)) (1.15)

In Section 1.3.1 of [46] is shown that (1.15) is equivalent to (1.14) for the limit 7 — 0.
There are different ways to model the transport of particles from the buffer to
the actual machine. If the dynamic of the transportation as such is of interest, it is
modelled using the continuity equation (1.5), as described in Subsection 1.1.1. If we
imagine the particles to move on conveyor belts, they are transported with constant
velocity v. Then, the flow function is given by f(p) = v - p. In this case, the continuity

equation (1.5) simplifies to the advection equation
Op(x,t) + vOpp(x,t) =0 (1.16)

This approach is for example used in [36, 37, 48, 49, 57, 98].

If the main focus does not lie on the density evolution along the edges, it is also
convenient to interpret 7; as a previously fixed throughput time for each edge and
integrate the transportation time indirectly in the description of the buffer u;. In that
way T; causes a smoothed out delay of parts entering the buffer until they are produced.
In that case the assembly line and the buffer are treated as one entity and the space
variable x along the edges is neglected, cf. Figure 1.8.

We have f;(t) ~ ulT—(f) and f;(t) is equivalent to fi(t), the flow leaving the edge, see
details in [2, 57].
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1.2 Application I: Production Network Models

machine
(described by capacity
and particle flow)

assembly line + buffer |

AL
r Y
o-—pg-— &
C
- )

h'd

depicted by an edge of the network

>

Figure 1.8: Sketch of processor layout.

In summary, we consider the following ordinary differential equation for the buffer

levels:
WAL — Fort fema®) — 1) (117
£;(t) = min {ci(t), “T(t)} (1.17b)

The interpretation of (1.17) is as follows: Parts are fed into the network, are trans-
ported from one machine to another and can be stored in buffers in case of capacity
shortage. As soon as parts have traversed the outflow edges, they leave the system. It
is clear that the conservation of mass through the whole network should hold, since no

parts are lost or generated inside the network. This gives rise for the following lemma.

Lemma 1.2.2. Lett € [0,7] C R and f; : [0,T) = R} and fezri : [0,T] — Ry be L
functions for all i. Then the total conservation of mass for an initially empty network,
i.e. u;(0) =0, is given by

/thext,i(E)di=Zui(t)+/t > fid)ydi vtelo,T). (1.18)
0 icE i€E 0 jepout

In other words, the total number of incoming parts until an arbitrary time t has to be
equal to the number of parts, that remain inside the network, i.e. stored in buffers, at

time t, plus the parts that have already left the network.

19



1. NETWORK FLOW MODELLING

Proof. We argue that the total conservation of mass holds true due to constraint (1.17)
which ensures the conservation of mass through nodes only. From the construction of
the matrix d, we know that each row that represents an edge which is not an outflow
edge, contains positive entries between zero and one, describing how much percent of
the flow is sent to consecutive processors. Since flow is distributed between consecutive
edges, we know > jep dij =1 except for all outgoing edges i € E°“. Starting from the

total flow in the network and considering the structure of d, we deduce for all ¢:

S f)i =" difit) = ( > dy V=Y fi).

i€E icE jeE icE jE€E JEE\Eout
——

1 Vie E\E*“
0 else

(1.19)

Next, we take equation (1.17a), integrate both sides with respect to time and take

the sum over all processors:

Sl = Y w0 = [ (S 1@~ 3 50+ Y fera®) d

ick ek 0 “icE i€k i€k
see (1.19)
t t
S-S w0 = [ X 50-S 50 )di+ [ X i
i€E i€E 0 "iep\Eout i€E O icE

. ZiEEOUt fz ('l:)

Sorting all terms and inserting the initial conditions u;(0) = 0Vi yields the desired

result.

O

1.2.2 Model Extension: Abrasion based Capacity Decline

Machines may break down or abrasion effects can lead to decline of processing capacities
or complete interruption. In order to keep production running, repair crews are assigned
to currently broken-down or ineffecient machines in order to stabilise or increase the
production capacity.

In this subsection we show how deviation in the processing capacity and the effects
of repair workers on the production efficiency can be modelled. To keep the model
simple, breakdown rates are integrated into the model using experimental values on the

reliability of each machine. In this way we avoid the inclusion of stochastic fluctuations.
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1.2 Application I: Production Network Models

Hence, as opposed to former production network models such as [37, 47, 57] amongst
others, we assume that the capacity is not a fixed parameter, but can fluctuate within
the production process.

There is a fixed upper bound for ¢;(t), the maximal capacity p; € RT. The evolution
of capacities depends on the constant breakdown rates I; and the constant repair rates
r;, which are both deterministic parameters obtained by measurements. Furthermore
the capacity evolution is influenced by the percentage of repair workers allocated to
each machine, denoted by 5;(¢) € [0,1] € R. The total number of repair workers is
given by W € N.

We assume that workers are assigned simultaneously and immediately, i.e. time
delays at the time of worker shifts are neglected. However, we have to be aware that
too frequent worker changes are not convenient in practice. In other words, §;(t) should
not be a highly oscillating function, but instead have a lower bounded TV-norm. Hence,
we choose f3;(t) to be piecewise constant with a reduced amount of discontinuity jumps.

We model breakdowns of machines (rather crudely) by a continuous process reduc-
ing the capacity by [;At in the interval At. The parameter r; denotes the efficacy of
a repair-worker when working on machine i. The meaning of r; is that assigning W
workers to repair machine ¢ will result in increasing the capacity of the machine by an
amount Ac; = Wr;At in the (infinitesimal) time interval At. Therefore the rate of
change in capacity is given by the equation

dc; (t)
dt

ZTi/Bi(t)W—li. (1.20)

Depending on the application, the decrease of capacity can be the consequence of
abrasion during the production process or because a machine runs out of material. In
this case it makes sense to link the magnitude of the capacity descent to the amount
of processed parts. Then, equation (1.20) changes to

dCZ' (t)
dt

= i)W — i - fi(t) (1.21)

Equation (1.20) has to be modified as to guarantee that the capacity ¢;(t) is bounded
from below by zero and from above by some maximal capacity u;. Here, y; denotes the
capacity value when all the parts of the machine are running, and therefore assigning

any repair workers to the machine would be wasteful. We approach this in the same
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1. NETWORK FLOW MODELLING

way we model the flow function f;(t) in (1.17a), by introducing a small relaxation

parameter €, and model the dynamic evolution of the capacity ¢; by

dc;it) — min {’”‘Z%Cl(t) Wrifi(t) } — min { ciit) s (1.22)

Equation (1.22) will asymptotically produce the correct bounded dynamics for 0 < € <
1:

The interpretation is as follows:

e Assuming a total loss of capacity, i.e. ¢;(t) = 0. This implies
.M
Oic;(t) = min {—, Wrzﬁl(t)}
€

Hence, the broken machine will be repaired and the capacity starts increasing

again.

e The machine works with maximal capacity u; = ¢;(¢) > 0. Equation (1.22)

reduces to
O¢ci(t) = —min {&, li}.
€
Then, the capacity rate can only decrease.

e The capacity is 0 < ¢;(t) < p;. This yields dyc;(t) = Wr;5;(t) — ;. Hence, the

capacity increases, if Wr;3;(¢) > I; and decreases otherwise.
For cases in which the capacity decline depends proportionally on the through-going
material flow, see (1.21), we use

20— min {150 w0} 1 A1) (1.23)

instead of (1.22). Since the flow is bounded by the capacity, see (1.15), it is already
guaranteed that ¢ will not become negative. For that reason, we do not need to con-

struct another min-term expression as in (1.22).

Remark 1.2.3. A complete production network model including dynamic capacities

and repair workers is given by the following DTN model:
e directed graph G = (V, E),

e time horizon t € [0,T],
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1.3 Application II: Traffic Flow Models

flow distribution matriz d,

o network parameters N = (VV, e)T,

e cdge properties P; = (ui, 75y li, TZ')T VieFE,

e dynamic functions D; = (fi, fis iy u, Bi)T VieFE,
e cxternal inflow B; = (fexm-) VieFE,

e edge operators:

Wep 7 p G y_d oz L
ji (fza fla feztm dtuz) dtuz fz .fez:t,z+fza
3?)(%’, fis ¢i, wi) = fi —min {¢;, &} and
T

18D (W, €, g, 14, 1, ¢ 4. B;) = ic‘,min{w WriB:} +min {5} or
7 AR 2y "1y Y1y lvdtwl dt’L € I (2a] 677,

d d
jggb)(Wv €, Wi, Tis lis fis Ci, %Civﬁi) = c

7 — min {'ui — Ci,WT‘,‘ﬁZ'} +1;fi, Vi € E,
€

e coupling operator

Ci(H, f. f)=fi— Z dijfi, Vj € E\E™,

€53

e edge conditions 31(1)/(2)/(3) =0,Vie FE and
e coupling conditions C; = 0, Vj € E\E™.

Chapter 2, Section 2.3, is dedicated to find the optimal worker scheduling for pro-
duction network based on the DTN model of Remark 1.2.3.
The next section present the derivation of a DTN model in the context of traffic

flow on road networks.

1.3 Application II: Traffic Flow Models

In this section we describe a traffic low model on networks based on the ideas of
Lighthill, Whitham and Richards [74, 88]. We discuss coupling conditions for certain
kinds of junctions. Subsequently, we consider a reformulation of the network model

using Hamilton-Jacobi equations.
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1. NETWORK FLOW MODELLING

Traffic flow models have been intensively studied during the last years; see [11, 12,
17,19, 28, 33, 43, 55, 56, 58, 74, 78, 79, 83, 88] and the references therein.

In the context of traffic flow models on networks [11, 17, 19, 43, 72], we focus on
macroscopic models which are based on partial differential equations for the traffic
density (parts per unit length). The network under consideration consists of edges
and vertices where edges correspond to unidirectional roads and vertices to road inter-
sections. From a mathematical point of view, we assume the macroscopic equations,
more precisely the Lighthill-Whitham-Richards equations (1.24), to hold on each road.
For the modelling of roads with different speed limits, we allow for different flow func-
tions. The crucial point in network models is the coupling at junctions. We refer to
[11, 17, 21, 25, 39, 56] for an overview. Our approach will pick up these ideas and
additionally establish a new coupling rule in the case of merging junctions. We avoid
the use of right of the way parameters which determine the proportion of flow and
instead introduce priority roads, similar to [25], who followed this approach for cell
transmission models. As we will see the coupling conditions will lead to a uniquely

solvable network problem.

1.3.1 Modelling Traffic on Roads

We consider Lighthill-Whitham-Richards (LWR) traffic flow model for roads [74, 88].
Here, the macroscopic traffic flow is described assuming that it depends solely on the

traffic density;

(ot @20
where p : (z,t) — p(z,t) € [0, p™*®] C RT denotes the density of cars, z € [0,L] C Rt
describes the location on the road, L is the length of the road (from one intersection
to the next) and t € RT denotes the time.

In general, the flow function is concave with a unique maximum at a designated

maxr ]

point p* € [0, p

Remark 1.3.1. Typical flow functions are for example

f(p)=wvlp)-p (1.25)
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where
,Umax

v(p) = o (™ = p)

is the wvelocity which cars are assumed to have depending on the actual traffic density,

max

the mazimal allowed velocity for the road v and the mazimal traffic density (bumper-

maxr

to-bumper density) p™*, see for example [11].
Another broadly used function with constant velocity \ for light traffic, i.e. p < p*,

is the triangular flow function:

Definition 1.3.2. Given a € RT and mazimal density p"** € RY, a triangular flow
Sfunction is given by
f:]0,pm] = RY,  with

Flo) = (1.26)

A-p if0<p<p
A-(2p" —p) ifpt<p<ph®

with p* = %pm‘”ﬁ.

This function is used by [18, 28, 79] and in the context of data traffic in telecom-

munication networks by [34], amongst others.

|
T 1

* maxr

dengity p

Figure 1.9: Triangular flow function.

We define the function 7 : [0, p™%*] — [0, p™*] which maps the density to a distinct
density value with equal flow, if existent. In other words we want 7 to fulfill the

following property:

with
7(p) # p, if p# p*.
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1. NETWORK FLOW MODELLING

Since f is a strictly concave function, 7 is uniquely defined.
Moreover, f; ' : f = f7H(f) €10,p*] and f71: f e f71(f) € [0, p*] denote the
inverse flow function for the left and the right side of the maximum, respectively.

For flow function (1.26) 7 is given by
T(p) =2-p" —p. (1.27)

1.3.2 Coupling Conditions for Road Networks

We consider a road network given by a directed graph G(V, E), where E denotes the
set of edges that represent the roads and V the set of vertices that represent the
traffic intersections and which will be referred to as junctions. The length of each
road i, leading from one junction to the next, is given by L; € R*. The roads are
unidirectional. Different speed limits and amount of lanes of different roads can be
modelled by choosing different flow functions. Lanes for different directions can be
described by separate edges as depicted for example in Figure 1.15.

The density at the junction for the road of any incoming edge ¢ will be denoted by
pi(t) and the density at the coupling point for any outgoing road j will be referred to

as pj(t). At every junction the conservation of cars holds:

S Fei®) =Y fpi(1), Vt>0, (1.28)

iesin jesgut
as seen in (1.7).

Remark 1.3.3. The validity of equation (1.28) is also confirmed by [58]: They define
a weak solution of the traffic network problem based on the Cauchy problem (1.24) for
each road, using smooth test functions ¢; : (x,t) — ¢(z,t),i € E with compact support
on [0,L;] x RY. and ¢;(Li,t) = ¢;(0,t) and 0p¢;(Li,t) = 0,0;(0,t) at junctions (i.e.
ifi € 6 and j € 69%), Vv € V, t > 0. The density functions p;, i € E, are a weak

solution if

Z (/OOO /OLi (piOrdi + f(pi)0zb;) dudt + /OLi pi(x,O)(j)i(x,())dx) —0

ek

is satisfied. For the weak solution, equation (1.28) holds and is also known as Rankine-

Hugoniot relation.
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1.3 Application II: Traffic Flow Models

For simplicity we use the following notation for the flow at junctions: f; := f )
for incoming edges and f; := f(p;)) for outgoing edges.

As in [11, 12, 43, 58], we assume to deal with piecewise constant initial data. In
that way, it is possible to use the theory about Riemann problems [59, 92] for the
computation of the coupling conditions. A brief review on Riemann problems is given

in following paragraph.

The Riemann Problem. A Riemann problem is a Cauchy problem where the initial

value is of the form:

_ Pls x <0,
pO(I) B { pry x>0, (129)

We consider the conservation law (1.5) with initial data of the form (1.29).

It can be shown that the solution is constant on straight lines in the (x,t)-plane,

ie. p(z(t),t) = u(x(0),0) with

%f(pl) -t+x(0), ifz(0)<0

z(t) = g .
" { 1) t+20), if2(0) >0
Hence, we obtain the following cases for strictly concave flow function f:

e If p; < p,, the solution is given by a shock (in the sense of Lax [71]):

: fler)=f(p1) |
p(w,w:{”“ s S (1.30)

pr, e€lse.

o If py > p,, we get a rarefaction wave:

Pl if x S d;ipf(pl) : tv
p(l‘,t) = (%f)il(%)a dipf(pl) t<x < dip.f(pr) -t (131)
Pr if x> d;‘lpf(pr) -t

e If p; = p,, the solution is constant, namely p(x,t) = p; = p;.

For more details, we refer to [10, 59, 71].
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1. NETWORK FLOW MODELLING

Deriving admissible coupling densities. We assume that the density terms on
each road are initially constant. In this way we obtain initial conditions of Riemann
type for the network. To get admissible solutions at junctions, we need waves of non-
positive speed for incoming roads and waves of non-negative speed for outgoing roads.
This is done by analysing (1.30) and (1.31) for density values p; and p; of neighbouring
roads 7 and j. The characteristics of the density only leave the junction, when the
coupling densities p; and p; lie in certain regions depending on the initial value on the
road close to the junction, i.e. p;(L;) and p;(0), respectively.

For incoming roads we get:

pe{ e LSS
And for outgoing roads:
P € { {ﬂj(é)} U0,7(p;(0))[, else. ’ (1.33)

Figure 1.10 shows the admissible coupling densities for some exemplary values of p;(L;)

and p;(0).

pi(Li)<p;: pi(Li)>p;: p;i(0)<p3: p;j(0)>p3:
/[ f(pi) V\ V\ »[ f(p]
pi(Lp;  pi*** o; pz(L)om” pi ()5  P5** P p; (O)Pm”

Figure 1.10: Feasible coupling density for incoming road 7 and outgoing road j (depicted
by thick black line).

The existence of solution to Riemann problems on road networks is proven in [19].
To obtain uniqueness, we assume prescribed distribution parameters d;; at junctions
in the sense of Definition 1.1.7. As explained in e.g. [11, 19, 43, 55], the previous
assumptions still leave us with an additional degree of freedom. Hence, we additionally
assume that the drivers’ behaviour is to obtain maximal possible flow at junctions.

If the density values at the boundaries of a road are known, we can compute the

maximal possible flow at the boundary of the roads using (1.32) and (1.33). This yields:
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o fi(pi(Lq)), if 0 < pi(L;) < pf
Fi= { fi(p}), else (1.34)

and
- S0, 0 p,(0) <
F; = Pj 7o 1.35
= fi, e (:3)
As explained before, we assume that drivers behave such that the traffic flow at a
junction is maximal respecting the necessary conditions we derived before. Hence, for
a general junction v the coupling flow {fz,z € o fj,j € 53’“} is given by an optimal

solution of the following problem:

max Z i (1.36a)

IS
such that
Vi = Z dij Vi, Vi € 69 (1.36b)
IS
0<~y <Fj, Vi € 6" (1.36¢)
0<~; <Fj, Vi € 5o, (1.36d)

We will refer to the optimal solution of (1.36) by f; Vi € 6 and f; Vi € 69t

Lemma 1.3.4. If

> diyFy < Fj, Vje s (1.37)

266171.

holds, (1.86) is uniquely solvable, and the optimal solution is given by

fi=F;, Vi€ 5 (1.38)
fj = Z dijfi> Vi e (ij)ut. (1.39)

€8

Proof. From (1.38) and (1.39) follows immediately that conditions (1.36b) and (1.36c¢)
are fulfilled. Furthermore, (1.36d) holds due to assumption (1.37). Hence, {f;, i € 6"}
and {f;, j € 85!} form a feasible solution of (1.36). Let {fe,ie ™} and {fj‘?, j € dout}
be a second feasible solution of (1.36). From (1.36¢) we get f? < f; Vi € 6. And since
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fjo is uniquely defined by (1.36b) for all j € §9“¢, the second solution is only different
from the first, when f? < f; for at least one 7 € §;*. But this means for the objective
function value that 3;csm fo < > icsin fi. Hence, {fi, i € 67} and {f; j € 69} form
the unique optimal solution of (1.36). O

Lemma 1.3.4 shows that in cases where all arriving flow can be absorbed by the
outgoing roads, the optimal solution of (1.36) is unique and can be found easily. Other-
wise, there is a bottleneck at the capacity of the outgoing roads. If there is more than
one incoming road, we need additional rules — so-called priority rules — to uniquely
prescribe the proportion of traffic of the incoming roads that is entering the outgoing
edges. One approach is derived on page 32, see (1.46) and (1.47).

As soon as the flow for the coupling is known, a unique coupling density value can
be found. It is denoted by p; and p;, respectively. Since we deal with strictly concave
flow functions that are piecewise invertible, there are at most two density values that
can lead to a specific flow value. Knowing the boundary densities p;(L;) and p;(0),
equations (1.32) and (1.33) lead to further restrictions on the coupling densities p; and

pj- In this way we end up with uniquely defined coupling densities given by

[ @), i) = pil L)
a { £ (f)s clse. (1.40)
and
(0), it £-1(f;) = p;(0
- { IJO”;_(I()E), els];j.r = (1.41)

In the following paragraphs, we explicitly state the coupling conditions for several
specific types of junctions. A similar analysis has been done in [11]. In particular,
we focus on priority rules at junctions with two incoming roads and allow different
flow functions on each road, e.g. in order to consider roads with different speed limits.
Furthermore, we consider the modelling of a realistic roundabout.

Subsequently, we compute the coupling flow at each type of junction. Due to (1.40)
and (1.41) we know that this information is enough to uniquely compute the coupling

density.
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1.3 Application II: Traffic Flow Models

1.3.3 Consideration of specific Junction Types

Two simply connected roads

In a bottleneck situation, the capacity of traffic load decreases at a certain point, as

schematically depicted in Figure 1.11.

1 2
- >

Figure 1.11: Bottleneck road.

For instance, think of road narrows (e.g. when one lane of a multiple lane road ends)
or of lower speed limit.

This can be modelled using different flow functions for each part of the road, see
also [11]. At the intersection point the coupling condition is given by the maximal

feasible flow

max yp (1.42a)
such that

Y2 =" (1.42b)
0<m<H (1.42¢)
0< 7 < F (1.42d)

where F} and Fy are given by (1.34) and (1.35), respectively. Obviously, the system

(1.42) has the unique optimal solution:
fi = fo =min{F, Fy}. (1.43)

Dispersing junction

We consider the traffic at a dispersing junction as depicted in Figure 1.12. Following
the idea of Subsection 1.1.2, we assume the distribution rate at the junction to be
previously known due to statistical data. In this way we can use prescribed distribution
parameters dis and di3, indicating the percentage of the traffic from road 1 to road 2
and road 3, respectively. This approach is also used by [11, 55]. The parameters may

change over time and have to fulfill dys + di3 = 1, d12 > 0 and dy3 > 0.
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Figure 1.12: Dispersing junction.

As in [25], we assume that the total through-flow at the junction is restricted as
soon as one of the outgoing roads is not able to absorb all the designated incoming flow.
This corresponds to a first-in-first-out-rule (FIFO) of cars and is a realistic assumption,
since a car waiting at the junction blocks all the traffic behind it until it can continue.

Here, we obtain the following optimisation problem:

maxyp (1.44a)
such that

Y2 = diam (1.44b)
¥3 = dizm (1.44c)
0<m<F (1.44d)
0 < 973 < Fyys. (1.44e)

This linear programming problem can be computed manually by using the Simplex
algorithm [30]. Depending on whether Fl, F5 or F3 turns out to be the sharpest
bound, the solution of (1.44) is given by

_ N A
fg = min{dLQFl,Fg, %Fg}, (145&)
13
F s d13 5 5
f3 = mm{dlgFl, d—f‘jz,f‘jg}7 (145b)
,2
fi=Ffa+tfs (1.45¢)

where F} is given by (1.34) and F, and Fj are given by (1.35). The resulting boundary
densities at the junction are again given by (1.40) and (1.41).

Merging junction

At a merging junction as depicted in Figure 1.13(a), we again want to find the coupling

with the maximal through-flow f3(t) = fi t) + fQ(t). As described in [11, 17], this
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3 .
rL 'L%
(a) Merging junction. (b) Priority road.

Figure 1.13: Merging junction.

coupling condition is not uniquely solvable, if (1.37) is not fulfilled. Hence, we need
to assign a further rule. The authors in [11, 17, 56] propose a right of way parameter
q €]0,1[ that prescribes the proportion of flow coming from 1 and 2 in the case of a
bottleneck situation. In a similar way, a priority rule for merging junctions has been
developed in [25]. Based on these approaches we formulate a priority traffic rule, where
the traffic of the main road always is prioritised over the traffic of a side road as depicted
in Figure 1.13(b).

As soon as road 3 has such a dense traffic, that it cannot immediately allow all
incoming cars to continue, cars from road 1 are preferred. Again, we want to maximise
the flow at the junction. The priorisation of the flow coming from road 1 is obtained

by using a weighting parameter w > 1 in the objective function:

maxw - y1 + 2 (1.46a)
such that

3=+ 72 (1.46b)
0<7y, < F1/2 (1.46c)
0 <3< Fj (1.46d)

Lemma 1.3.5. There exists a unique solution of (1.46) which is given by

f3 = min{F} + Fy, F3}, (1.47a)
fi = min{Fy, F5}, (1.47b)
fa=fs— fi, (1.47c)

where Fy and Fy are given by (1.34) and F is given by (1.35).
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Proof. Problem (1.46) is an easy linear optimisation problem. Techniqually, it can be
solved by Simplex algorithm [30]. Due to the simple structure of the problem, it is also
possible to directly get the optimal solution by the consideration of different cases. We
distinguish between three cases depending on the size of F3. The feasible region of each

case is depicted in Figure 1.14 and the optimal solution is indicated by the black dot.

Y2 2 2
&
X
2
N\ N\ N
) <
Fa Fa N
% X
oS
& 2 4
< NN >
X X
B & B
2 >
max—y .\
7 hst "
Fy Fy

i) iii)

Figure 1.14: Feasible region for flows at junction.

i) F3 < Fy : In this case the optimal solution of (1.46) is given by
fi=Fs fo=0, fs=Fs.
ii) Fy < F3 < Fy + F, : In this case the optimal solution of (1.46) is given by
=R, fh=F-F, fs=F;
iii) F3 > F] + Fj : In this case the optimal solution of (1.46) is given by
=R, fh=F, fs=F+F.
This yields directly (1.47a) - (1.47c). Hence, (1.46) is uniquely solvable. O

Roundabout

We consider a roundabout as depicted in Figure 1.15(a). It is composed of four junctions
with two incoming and two outgoing roads, see 1.15(b).
This junction type is a combination of a merging junction with priority rules and

dispersion junction. Since the inner ring of the roundabout has priority, road 1 is
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:J<”>: I ;
ﬁu / /\ /\

(a) (b) (©)

Figure 1.15: modelling of a roundabout as a combination of dispersing and merging

junctions.

prioritised over road 2. The dispersing is managed in the following way: We assume
no car is going from road 2 to road 3, but all go to road 4. Hence, the distribution
parameters are dog = 0 and doy = 1. Furthermore the traffic distribution from road 1
to road 3 and 4 is also prescribed by di3 and di4, respectively.

We model the coupling condition as the optimal solution of

max w - Y1 + 72 (1.48a)
such that

¥3 = digm1 + dazy2 (1.48b)
Ya = diam1 + doay2 (1.48¢)
0< 712 < Fip (1.48d)
0 <374 < Fy4, (1.48¢)

where w > 1 is a previously fixed weight.

Lemma 1.3.6. The problem (1.48) with deg = 0 and dog = 1 is uniquely solvable if
di3 # 0 and di14 # 0. The solution is given by:

i = min{, diwﬁg, diMa}, (1.490)
fo = min{Fy, Fy — di4f1}, (1.49b)
fs = disfi, (1.49¢)
fa=dufi + fo. (1.49d)
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Proof. With the given distribution parameters dog = 0 and dsy = 1, the optimisation

problem reduces to

max w -1 + 72

such that

Y3 = dism (1.50)
Y4 = diam + 72,

0< f1/2 < F1/27 0< f3/4 < Fy4,

Since (1.50) is a linear programming problem, it can be solved by the Simplex algorithm
[30]. Tt is possible to reduce the unknowns, by reformulating the constraints. In this

way we get rid of the variables v3 and vy:

max wyi +2

such that
<b
n =7 (1.51)
duyr  +v < I
Y2 < Fy
7,72 =0
where b is a known parameter given by
B
b:= I’I’lln{d—,Fl}, d13 75 0. (152)
13

Be aware that ~y; are variables which are up to optimisation while F; are fix param-
eters representing the upper bounds. We introduce slack variables s; > 0,i=1,...,3
and rewrite (1.51). This yields

A ) =0
+ =b
n °1 i (1.53)
diay1 +2 +59 =F
Y2 +s3 = Iy,

where z represents the objective function value. First, we want ~; to enter the basis.
According to rules used by the Simplex algorithm, we have to pivot the row where the
ratio between the right hand side and the entering variable coefficient is minimal. In

our case, we have to find the minimum of b and C%. Hence, we distinguish two cases.

36



1.3 Application II: Traffic Flow Models

Case i) 0% <b

In this case the next transformation yields

s HE-Dn s =2R
1 1 F,
@2 TSt s L (154)
1 1 _ Fy :
n +d14 V2 +d14 52 T dig
Y2 +s3 = I'2.

Since w > 1 and di4 < 1, we know that ﬁ — 1 > 0. Hence, all coefficients in the first
row are positive. Thus, the basic solution of (1.54) is optimal, with so = 2 = 0 and

v = tﬁh, which corresponds to (1.49).

Case ii) b< 5—4
14

In this case the first Simplex transformation leads to

z —v9  Fwsy = wb
=b
M +s1 : (1.55)
Yo —di4s1 +s2 = Fy — disb
Y2 +s3 = F3

~2 has a negative coefficient in the first row. Hence, the basic solution is not optimal.
We have to transform the system a second time such that 7, enters the basis as well.
In order to pivot the row with minimal ratio between right hand side and coefficient of

the entering variable, again two different cases have to be considered.

Case ila) Fy—dub<F

The second Simplex transformation yields

z +(w —dig)s1 +s2 = (w—dig)b+ Fy
=b
M +s1 : (1.56)
Yo —d1481 +52 = Fy —dusb

dias1 —sy +s3 = Fy — Fy+dysb.

Because w > 1 and dy4 < 1, all coefficients in the first row are positive. Hence, the

basic solution with s; = s3 = 0, 73 = b and 2 = Fy — dy4b is optimal and fulfills (1.49).
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Case iib)  Fh < Fy — dy4b

In this case the next transformation of the system (1.55) looks like

z +wsy +s3 = wb+ FQ
=b
M +51 : A (1.57)
—duust +s2 —s3 = F; — Iy —digd
Y2 +s3 = I

All coefficients of the first row of (1.57) are positive. Hence, the basic solution is given
byslz,s,'g:O,%:band'yQ:ﬁ’g.

These cases cover all possibilities and proof the claim. O

Remark 1.3.7. Note, that in [11, 12, 19] the considered distribution parameters d;;
are strictly larger than zero and strictly smaller than 1. The proof of Lemma 1.5.6
especially considers the case, where dog = 0 and dog = 1. However, (1.48) can be solved

analogously for different traffic distribution settings.

In Chapter 2, Section 2.4, optimisation problems are considered. In particular,
we derive a model for traffic light settings. Since the traffic lights lead to further
restrictions on the outgoing traffic flow, they allow for the modelling of even more

complex junctions, see Figure 2.10.

Remark 1.3.8. In summary, following the notation for DTN models of Definition

1.1.2, a traffic flow network model is for example given by

e directed graph G = (V, E), with at most two incoming and two outgoing edges per

vertez (containing only the four junction types derived before),
e time horizon t € (0,7,
e wvalid flow distribution matriz d,
e edge properties P; = (Li7 i )\i)T Vie FE,
e dynamic functions D; = (pi, Dis Pis fis fi, fis Fi, F’Z)T VieFE,
e boundary conditions B; = (pz—(ac = O,t)) Vi€ B,

e cdge operators, including equations for f(p), e.g. (1.26), F; and Fy, cf. (1.34) and
(1.35), p; and p;, cf. (1.40) and (1.41). Furthermore, we need:

Ji(pis Opis fr Ocf) = Oppi + 0 f(p), Vi€ E.
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e coupling operators for every junction type:
1) simply connected roads: Yv € {V : |07 =1 A |69 = 1}.
Let i € 0" be the ingoing edge and j € 53 the outgoing edge of v.

e (fj, By, Fy) = f; — win{F, £}
e (fy f) = Fi— i
2) dispersing junctions: Yv € {V : |5 = 1 A |694] = 2}.
Let i € 6" be the ingoing edge and j,k € 69* the outgoing edges of v.
Cq Fo Fr B ) = 5 — mi oo p g

o . o dip -
™ (d, fu By, Fi, Fy) = fi — min{dy Fy, Fr, 7 Fy)
ij

C(F, Fir £1) = fi = F — P

3) merging junctions: Vv € {V : [0 = 2 A |69 = 1}.
Let i,k € &6 be the ingoing edges of v, where i is the priority road, and
j € 8% the outgoing edge of v.
e (Fj By, Fi, i) = fj — min{F; + Fr, Fy}
@(31)( Ai, Fj, Fz) = fz — min{Fi,Fj}
3k) 5 pf ;LA F
e fi fo) = Fo+ fi— i

<

4) combined junctions: Yv € {V : |67 = 2 A |94 = 2}.
Let i,k € 6™ be the ingoing edges of v, where i is the priority road, and
J,1 € 624 the outgoing edges of v, with dg; =0 and dp; = 1.

1 - 1
il R
dij 77 dy
el(g4k)(d7fia fk) Fka E) = fk - mln{Fka-Fl - dzlfz}

45 F F — 2
e, fi. fi) = f; — difi
61(41)(617 fio fis f) = fi — dafi — fr

e, fi, By, By, F) = fi — min{F;, i}

e edge conditions J; =0, Vi € E and

e coupling conditions 851/2/3/4@ =0, Vi € E (choosing the matching condition for

start and end point of each road).
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1.3.4 Transformation into Hamilton-Jacobi Formulation

As in [79, 80], the traffic network model in Section 1.3.1 can be interpreted as Hamilton-
Jacobi equations. This formulation has also been studied in the engineering context in
[27, 28]. This approach has the advantage that trajectories of cars can be easily derived
from it. For that reason, Hamilton-Jacobi equations have been used for example for
data-assimilation models [18]. Recent analysis has been done to extend the Hamilton-
Jacobi formulation to the network case, see [1, 97].

In this section, we resume the connection between the LWR-equations (1.24) and
the Hamilton-Jacobi formulation (1.58). Later on, in Subsection 1.4.2, we apply a
numerical Scheme and derive an algorithm to simulate traffic flow via Hamilton-Jacobi
equations on road networks.

A Hamilton-Jacobi equation with Hamiltonian f is given by
My (z,t) + f(Mg(x,t)) = 0. (1.58)

Remark 1.3.9. If we consider roads on which vehicles cannot overtake, it is possible
to number them according to the order they pass a certain point of the road. In [12, 78,
80, 83] a continuous function is considered, where the space-time trajectory of each car
s given by its the integer contour curves.

In detail, if we start counting with the foremost car at time t = tg we get

L
N(x,tg):/ p(x to)da’

and for a general point in time t, the car number at (x,t) is given by

L T
Nz, ) = / p(a/,1)da’ + N(L,t) = N(0,¢) /O o e (159)

where the value of the left boundary is given by
t
N(Oyt) = f(p(xv t/)dt/'
to
Consequently, the curve

{(z,t) : N(z,t) = n}

describes the trajectory of the n' car.
Depending on the scaling of p, n needs to be multiplied by a constant to yield an

integer number.
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According to the notation used here, the function M : (z,t) — —N(x,t) is consid-
ered. Assuming sufficient regularity, we obtain from (1.59) that M, (x,t) = p(x,t), ¥(x,t) €
[0, L] X [tg, +00). From (1.58), we can also derive that the continuity equation used in

the LWR-model (1.24) holds. Differentiation of (1.58) with respect to x yields:

Consequently, if we find an M that satisfies (1.58), p := M, also satisfies (1.24). On

traffic problems we have p > 0, hence M is monotonically increasing in .

Extension to the Network Case

For the network model, we provide an additional index indicating the road i € {1, ..., |E|}.

The coupling conditions in terms of M; are of Neumann type:

8,5Mi + f(a'z:Mz) =0

‘ O M;(x,0) = po(x) initial condition
viekr 0y M;(0,t) = 0, M;(t) = py(t) left boundary condition (1.60)

Oy M;(Li, t) = 8, M;(t) = pi(t) right boundary condition,
where the boundaries p; and p; are given by the coupling of junctions, see Section
1.3.2, (1.40) and (1.41), computing the flow depending on the type of junction given.
An algorithm to simulate traffic flows on networks using Hamilton-Jacobi equations is

derived in Section 1.4.2.

Remark 1.3.10. A trajectory of a car can be tracked, when its location at a certain
point in time and its path through the network is known. On every road the contour
lines of M describe the car trajectories, which then possibly changes to another value

after having crossed a junction. An example is given in Chapter 3, Figure 3.30.

1.4 Discretisation

In order to be able to simulate scenarios modelled by DTNs, we first have to discre-
tise the differential equations and apply numerical schemes. There is a wide range of
schemes with different properties and of different rates of convergence. For a detailed
overview of schemes on hyperbolic differential equations, such as conservation laws of

the form (1.5), we refer to [73]. For our purposes it is sufficient to work with first order
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schemes. They have advantageous properties such as being TVD and are often easy
to linearise. The latter is of importance for optimisation purposes, since it allows the
schemes to be integrated into DTN-MIPs, as explained in Chapter 2.

This section gives a brief overview over several discretisation schemes which are
used within this work. The first part discusses several techniques to discretise the con-
tinuity equation (1.5). The second part contains the derivation of a complete algorithm
particularly created to solve the Hamilton-Jacobi traffic network model (1.60).

In the following we only consider a single edge ¢ of a DTN.

Let L; € Rt be the length of the edge i and T' € R* the considered time horizon.
We introduce a discrete time grid T = {¢t : t = 0,...,n;} with time step size At and
number of time steps n; := [Ait] Furthermore, we work with a discrete spatial grid
given by X = {k : £ = 0,...,n;}, where the spatial size is referred to as Az and the
number of space steps is given n; := (%1 We will work with equal step sizes A; on
the whole network. The space steps n; per edge can differ from each other depending
on the edge length L;. Since we first consider the discretisation for one edge, we omit
the index i in the sequel for the sake of readability.

We use a discrete set of variables containing a subscript indicating the space step
and a superscript referring to the time step. For example, the discrete density variable

p’}f represents the density value at location k- Az at time ¢ - At.

1.4.1 Schemes for Conservation Laws

In this subsection, we give a rough outline of some first order numerical schemes based
on the idea of finite differences to approximate the derivative. This means that we
approximate 9ip(z,t) by its difference quotient, i.e.

plx,t + At) — p(x, t)
At ’

atp(x7 t) ~

and so on.

In the sequel we mention those schemes that we use in the course of this work
to discretise the continuity equation (1.5) of DTNs, which is only a small part of all
existing schemes. For a thorough overview and more details on numerical schemes for

conservation laws, see [73].
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Upwind. In most models of dynamic transportation networks, the flow moves only
in one direction at each edge. In many production network models the particles are
assumed to move with constant velocity v, i.e p(z,t) = p(x — vt,0). In these cases
we model the density evolution along the edges with the advection equation (1.16),
as described in Subsection 1.2.1. Here, it is reasonable to use the first order Upwind
Scheme for discretisation. It is a scheme that only uses information of one side of the
spatial grid. In our case, the velocity v > 0 is given. Hence, we know the direction of
information. For that reason we only take the values on the left of the considered grid

point into account, as shown by the discretisation stencil depicted in Figure 1.16.

t+1 o
t ° °
k—1 k

Figure 1.16: Stencil of Upwind Scheme.

The next time iteration for the density value for all inner grid points is given by

At
it =P = v (k= Ph)- (1.61)
In [73] it is proven that (1.61) converges to the exact solution in first order, when

At and Az tend to zero and when the grid sizes are chosen such that the CFL condition

At
/ — <1, 1.62
mﬁ%Mf@le_ (1.62)

holds.

The CFL-conditions is an abbreviation for Courant-Friedrichs-Lewy condition. It
ensures that the time step size is fine enough to capture all information that is trans-
ported. The so called grid-velocity is given by % and has to be greater or equal than
the velocity of information of the analytical solution f’(p). In case of the advection
equation (1.16) we have f(p) = v - p; hence the speed of information is constant and
given by v.

Supply chain models using advection equation and applying the Upwind discretisa-

tion are examined in [36, 37, 48, 49, 57, 98], amongst others.
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Lax-Friedrichs Scheme. Another easy, straight-forward first order scheme is the
Lax-Friedrichs Scheme. It is a central scheme and hence, takes information coming
from the left and from the right side of the considered grid point into account. This is

depicted in Figure 1.17.

t+1 '

t ° °

k=1 k k41

Figure 1.17: Stencil of the Lax-Friedrichs Scheme.

This is important for models, which allow for forwards and backwards travelling
density waves, such as the LWR-traffic model (1.24). To guarantee stable numerical
simulations, the discretisation grids have to respect the CFL condition (1.62).

The evolution of the density for all inner grid points is computed in the following
way:

A
pitt = %(p’;ﬁl + ph1) — ﬁ(f(ﬂiﬂ) — f(Ph-1))- (1.63)

The commonly known disadvantage of the scheme is its diffusivity. This leads to disper-
sion effects appearing during the simulation of shock waves, see for example [10, 47].
However, for certain relations of grid sizes and parameter settings, these effects are
minimal, see Lemma 1.4.2. For these settings the scheme becomes attractive due to its

simplicity and linear appearance.

Staggered Lax-Friedrichs Scheme. As we will see later in Subsection 2.4.4, for
the coupling of two roads it is advantageous to use a numerical scheme that does not
incorporate the boundary values in terms of density, but only in terms of the flow.

The staggered Lax-Friedrichs Scheme, introduced in [61] and further developed and
applied by [65], fulfills exactly these requirements. In addition to that, it is less diffusive
than the standard Lax-Friedrichs Scheme.

The main idea is to use a staggered grid, see Figure 1.19, as intermediate step. The
staggered density values are obtained by averaging over the neighbouring densities.

Then centred differences are used with respect to the original grid points, that are
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t+1 '

t ° ° °

k=1 k k+1

Figure 1.18: Stencil of staggered Lax-Friedrichs Scheme.

located in half a step size, i.e. %Ax, distance to the considered point. Finally, the
values are projected back to the original grid. Due to the fact that half step sizes are

used, the grid sizes have to fulfill CFL/2, i.e.

At < Az

< , (1.64)
2 maxycip ] 170

to guarantee convergence.

¢ t
] A

staggered grid | | | -

P A P Pt

original grid } | | | | \

rh P Pa-1 Pn
IS
Ax

Figure 1.19: Staggered grid.

The detailed derivation of the scheme is as follows:

Step 1. Compute the values of the staggered grid as averaged values of the neighbouring

original density values:

left side: o = ph (1.65a)
1

central points: ok = i(p};_l +pb), Ve=1,....n (1.65b)

right side: A1 = o (1.65¢)

Step 2. t — t+ 1 (Time evolution of the staggered values using centered differences with
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respect to the original grid points):

At

left side: Po =0 — 1= (fleo) = F) (1.66a)
5 xT
. . 4 At
central points: ,0};“ =pl - E(f(pk)t —f(pl_1), VE=1,...,n (1.66b)
. : . At .
dghtside: A = ol — o (L) (1.660)
2

Step 3. Project the solution back to the original grid:

1
left side: pf)“ - 5([36“ + p”i“)
(1662) 1 4 At . 40
= 3P0 Am(f(p(]) f)

T AREI) (1.67a)
central points: p’,‘jl = %(ﬁfjl + /32111)
U 25— o ()~ F(ph)
b3 — o2 Uk = 168 (16TD)
right side: nH = %(ﬁ%“ + iﬁll)
0 gt Bk~ T
b 5P — 2ol F(6h) (1.67¢)

Finally, applying again (1.65a) to (1.65¢) we end up with the following scheme:

. 1 At _
left side: po = 300h+ 1) — ox-(F(A) + flph) —2f)  (1.68)
. 1 At
central points: pfjl = Z(pi,l + 20k + P};H) - m(f(ﬂiﬂ) — [(Ph-1))s
Vk=1,...,n (1.68b)
right side: = 2 sty — 2L f - fon) — £
n 4 n—1 n 2Ar n n—1
(1.68c)

The computation of the outer cells (1.68a) and (1.68¢) only involve flow values at
the boundaries ff and ff and not the boundary density. As we will see later in Sub-
section 2.4.4, this is advantageous for the linearisation process to transform the model

into a linear mixed integer optimisation problem, because it saves us a complicated
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1.4 Discretisation

linearisation process of the coupling density values p! and pt at the junctions. Due to
other available values, such as the maximal possible coupling flow F} and F}, intro-
duced in the next chapter, we are equipped with sufficient information to capture the
entire situation at the junction.

However, on the outer edges of the network, E and E°“, it is necessary to in-
tegrate the boundary density values, since the computation from the flow down to
the corresponding density is not unique. In order to avoid numerical instabilities at
the outer boundaries, we reformulate the discretisation scheme of the outermost cells
including the outer boundary densities p; 1, Vi € E™ and Pirh, Vj € Eout,

Discretisation for edges without predecessors — i € E™ (inflow edges into the net-

work) — is given by

o leftmost cell:

At

1 . n
Pgﬁl = —(pi i+ 200, + P14) — E(f(ﬂu) — f(piw), Vie E (1.69)

4

e inner cells and rightmost cell as above.

Discretisation for edges without successors —i € E°“ (outflow edges of the network)

— is given by

e rightmost cell:

At

1 .
Pfj,—il = Z(szl,i + 2,02,1' + pg,rb) - E(f(pﬁ,rb) - f(pzfl,i))v Vie E (1.70)

e inner cells and leftmost cell as above

Godunov Scheme. The Godunov Scheme first appeared in [45] and became one
of the most popular schemes for solving hyperbolic partial differential equations. It
is a first order scheme that bases on the idea to solve Riemann problems (1.29) of
neighbouring cells for each time iteration. The used grid-points for one iteration step
is the same as for the staggered Lax-Friedrichs Scheme, cf. Figure 1.20.

To obtain reliable results, the choice of the grids must again fulfill the CFL-condition
(1.62).

e The initial values pg are given by the mean value of the grid cell.
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1. NETWORK FLOW MODELLING

t+1 .

t ° ° °

k=1 k k41

Figure 1.20: Stencil of Godunov Scheme.

e In each time iterate t € T, we imagine the values ,0';c as a piecewise constant
functions on the space-grid and solve the corresponding Riemann problem for
one time step. Using a concave flow function f yield the following cases for the

midpoints of the cells:
= I (f'(pk) Z 0 A f'(ply1) 2 0)
- PZJF% = P
—If(f'(p}) = 0 A f'(plq) <0)

5= f(p]]tc.t,q_f(plltg)7

_{ p}'c, ifs>0
Pie1 — P

Z+% Pry1, €lse
= I (f'(pf) <O A f'(pjyy) <0)

- P};Jr% = p715c+1
= I (f(ph) <O A f'(ply1) = 0)

t
= Pl =P

e The density for the next time step is then given by

A
porl = pt — A_;(f(pZJr%) - f(P}Z,%))

for all k.

e Repeat these steps for all time steps ¢t € 7.
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1.4 Discretisation

1.4.2 Hamilton-Jacobi Scheme

We discuss how to couple the Hamilton-Jacobi formulation for road networks as de-
scribed in Subsection 1.3.4 at road intersections and derive a reliable algorithm combin-
ing the coupling conditions with a numerical scheme for the Hamilton-Jacobi equations
[67].

We assume f to be a concave flow function with unique maximum. We introduce
a space and time grid, as described in the beginning of this section. The time grid size
At is set according to the CFL-condition (1.62).

Before we consider the network case, we stick to a single road. Whenever the context
is clear, we drop the first sub-index indicating the road on the network for the sake of
readability. Hence, the remaining subindex denotes the space step on the road.

Note, that the grid points of M are shifted by % compared to the grid of p. Here,
M} = M(xj,t - At), where z; = (j — DAz and j = {0,n, + 1}. For the discretisation
of the Hamilton-Jacobi equations we use the central one-dimensional first order scheme

derived in [67]. The time evolution of M at the inner grid points is computed as follow:

At Mt . — Mt Mt — Mt
t+1 _ gt 2 Jj+1 J J Jj—1
M =M; 2 f( Az ) + f< Az )
At t Mt Mt Mt
with
a? > max (M),

T z€[(j-1Az,(j+1)Aq]
The coupling is done in terms of densities. Therefore we need to approximate the

derivative of M close to the junction. This is done via finite differences:
t t

My — M;

Az '

=: p;

(1.72)

17
Ox Mj + -

1
2

This scheme is strongly related to the Lax-Friedrichs Scheme (1.63), see Lemma
1.4.1.

Discretisation of the boundary condition

Due to dispersion effects of the discretisation scheme, cf. [73], the coupling is not always
captured in the correct way. Therefore we need to introduce suitable ghost-cells added

on both ends of each road. The wave fronts travel along the roads until they reach the
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1. NETWORK FLOW MODELLING

next junction, providing the coupling routine with information about the new density
values on the road. The waves run through these artificial cells, but use the value at the
road boundary to compute the coupling condition, as depicted in Figure 1.22 on page
56. This leads to the correct density information at the boundary. A more detailed
explanation of the algorithm can be found later on starting from page 53.

This method only works, when the number of ghost-cells is large enough to absorb
the whole amplitude of the front dissipation. Consequently, it is necessary to know the
number of required ghost-cells related to the possible dispersion amplitude of the wave
front.

In the sequel we will show that two ghost-cells on each side of the roads are sufficient
for settings with a specific flow function, a certain correlation between space and time
grid size and a certain choice of parameter a;? for the Hamilton-Jacobi scheme, see

(1.71). Note that for higher-order schemes more ghost cells might be required.

Lemma 1.4.1. If the parameter aj of the Hamilton-Jacobi Scheme (1.71) is set to

) = max|(p)], Vi, (1.73)
and the time grid At is set to the mazximal possible value satisfying the CFL-condition
(1.62), then the Hamilton-Jacobi Scheme (1.71) is equivalent to the Lax-Friedrichs

Scheme (1.63).

Proof. Scheme (1.71) and equation (1.72) allow for the following calculation:

1 1
P = o} (1i2)(Mfi1 - Mf'+1) _ (M;+ - Mf)
a1 f(Mf+2 - M;H) _ f<w)
2Ax Ax Az
. a (M;+2_M;+1 _9. M;+1_M; +M;_M;1)
2Ax Az Az Az
(1.72) L a
= T oAx _f(PEH) - f(Pﬁ—l)} T 5Ar [pgﬂ — 20+ pﬁ,l}

(1.73)&(1.74) 1 At
é P?l D) (P§+1 + P§71> T oAz [f(ﬂi#l) - f(ﬂ?q)},

which is exactly the Lax-Friedrichs Scheme (1.63).
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1.4 Discretisation

The next lemma shows that two ghost-cells are sufficient to capture the dispersion

amplitude of wave fronts in the scheme for a certain parameter setting.

Lemma 1.4.2. Let a road describing the traffic flow with a triangular flow function
as in (1.26) be given. Assume that the traffic density evolution is described by: Op +
O f(p) = 0,Vt € [0,T], x € [0,L]. The density at time t is piecewise constant. i.e.

3z € [0, L] with
l, z<z
p(x7 t) - { X
r, x> 2.
Then, using Lax-Friedrich-discretisation, with

Az Az
At = _ 2T 1.74

the dispersion over time of the wave front will not exceed two grid points.

Proof. The space-grid is given such that the discontinuity of the initial condition is
located between grid point 7 and grid point ¢+ 1. Hence, the density values around the

discontinuity at time-step t are given by:

pl=(,...,1 ANOR

L, r,r,.
i—1"4 i1 42’
The Lax-Friedrichs Scheme preserves the density values inside the constant regions,

because (1.63) yields

et ot 1 _ ¢
if pi 1 =pj1 = P =pja

for an arbitrary space-grid point j. Hence, it is sufficient to consider the density evo-

lution next to the discontinuity. For this purpose we distinguish several cases:
Case 1: 1 € [0,p*] A 7r€]0,p*]:
Applying (1.63) to pt, we get

= (] 1.1, 1, r
p ( b 7171’7,’Z+17’L+2,

AN OR

Hence, we get a sharp forward travelling front without any dispersion.
Case 2: 1 € [p*, p™™] A r € [p*, p"*] :

Applying (1.63) to p', we get

P =(,..., 1

r,r T ..., T
7i—1’i,i+1)i+27 ) )a

Hence, we get a sharp backwards travelling front without any dispersion.
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1. NETWORK FLOW MODELLING

Case 3: 1 € [0,p*] A r € [p*, p™*] : This case is slightly more involved. We show the

claim in two steps:

i) Computing the next time step via Lax-Friedrich leads to

with m=1+r—p* €[l,r].

ii) Given the densities

with an arbitrary m € [[,r].

a) If m € [0, p*], the density for the next time step evolves to

Pt =(1,...,1

M, M, I, ...,T
i i+l 2 i3] 7):

with m = m 4 r — p*. Due to the assumption made for Case 3, we have
m=m-+r—p*>m>I

Furthermore, we have

Consequently, we get 7 € [I,r].

b) If m € [p*, p™**], the density values for the following time step are

t+1 o
p _(la"'7l7m>7?7 ,...,T‘),

r
i—2 i—1 i+1

with m =1+ m — p*. We have

and
m= l m—p<m<r
NS pr<m<
(Case 3)<p*

= me|l,r].
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1.4 Discretisation

Hence, pf+1 again fulfills the assumptions imposed to pf, with the shape
shifted by one space step either to the left or to the right. Therefore, by
applying the Lax-Friedrichs Scheme iteratively over time, the dispersion will

never become greater than two space steps.
Case 4: [ € [p*, p"**] A r€0,p*]:
i) Computing time-step ¢ + 1 via Lax-Friedrich yields:

=1,

M) l’p‘*7p*’. "7r)'

r.,.
P -1 i i42

ii) Applying again (1.63) the densities for time-step ¢ + 2 are given by:

P =, p",p" ST,

) T 9 T 9
i—1 4 t+1 i+2
Hence, the resulting wave front is moving backwards carrying along two middle

density values p*.

Algorithm for Hamilon-Jacobi Scheme on Networks

The complete numerical scheme for solving Hamilton-Jacobi equations on road networks
is described in Algorithm 1. Some steps are illustrated in Figure 1.22.

A crucial point is the computation of the coupling condition, depicted in Figure
1.22(c). As denoted in line 16 of Algorithm 1, equations (1.34) to (1.49) are used. The
detailed procedure is the following: Consider a junction v with at most two incoming
roads (€ &) and at most two outgoing roads (€ §9%). The leftmost grid-points of
the incoming roads and the rightmost grid-points of the outgoing roads in terms of the
density p have already been computed for time-step ¢ + 1, see Figure 1.22(b). Hence,
the values for pétllz Ve € § and ptejbl Ve € 69 are given corresponding to p.(L) and
pe(0) in the continuous notation. Now, we use equations (1.34) and (1.35) to obtain the
maximal possible flow 7*** for all roads e at the junction. Depending on the junction
type we compute the coupling flows f, Ve € 5 and f. Ve € 69* using equations (1.43),
(1.45), (1.47) or (1.49). The density boundary values p. Ve € 6 and p, Ve € 594 are
uniquely given by (1.40) and (1.41). An illustration of this procedure is given in Figure
1.21.
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1. NETWORK FLOW MODELLING

Algorithm 1: Hamilton-Jacobi Scheme for networks.

10

11

12

13

14

15

16

17
18

19

/* Input: Road network with length and flow function for each

road, initial and boundary conditions in terms of p, time
horizon 7', grid size Az, number of ghost-cells ny,
/* Output: Simulation of the traffic in terms of density
begin

/* Compute number of grid-points

number of space-steps: ;. = [é;] +1—ny4, Vec E;
time grid size: At =

Az .
max.e g{max, [f¢(p)[} ’
number of time steps: n; = [Alt] +1;
/* Transfer initial values from p to M.
forall the e € E do
Meo = 0; /* right boundary value
Mgrng = M — Azp?; /* rightmost ghost-cell
MY = M j1 — Axp? ;¥ grid-points j (including ghost-cells);
MO MSO — Axp?; /* left boundary value

fort=0,...,n; —1do

/* Compute next time iteration for each road e

forall the e € E do

\\ Compute ng‘l by (1.71) V grid-points j (including ghost-cells)
/* see Figure 1.22(a)

/* Transfer M to p
forall the e € E do

MLt
Lpt—s-l e]+1 &1V grid-points j /* see Figure 1.22(b)

/* Compute coupling at junctions
forall the v € V do

1.21

/* Get boundary value in terms of M

forall the e € E do

left: MY = M, — pt™ Aw;

right: Mt = Mrng PLFIAT /* see Figure 1.22(d)

Compute coupling for time-step ¢ according to junction type using

*/
*/

*/

*/

*/
*/

*/

*/

*/

*/

*/
*/

density values next to ghost-cells. /* see Figure 1.22(c) and

*/
*/

*/
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1.4 Discretisation

V incoming roads e € ;"

(1.34) F(1.43), (1.45), (1.47) or (1.49)

t+1 Ft+1
€Ny € f€+

V outgoing roads e € §9%:
by (139)

rt+1
e,0 e e

(1.40)

D

(1.41)

D

Figure 1.21: Computation of the coupling.

Remark 1.4.3. We give some further explanations on Algorithm 1:

At+1
pet

~t+1
pet

line 2: Note that the Godunov Scheme [}5] does not need any ghost-cells to compute the

coupling condition. The presented scheme introduces numerical diffusion such

that the ghost cells need to be sufficiently large. Its size has been discussed in the

previous lemma. The length of the ghost cells is chosen equal to the size of the

interior cells. In order to have the same speed of propagation those cells do not

enter the computation of the length of the road.

line 3: Choose the size of the time grid such that the CFL-condition holds.

line 8: M is initialised from right to left on each road.

Algorithm 1 is not only useful to simulate the traffic density evolution on road

networks with prescribed initial and boundary data, it also permits to compute the

trajectories of single roads, by plotting the contour lines of M. Numerical results are

shown in Chapter 4, see Figure 3.30.
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1. NETWORK FLOW MODELLING

RO AN RSN

Mo, +1v Mry Mr,, M M Ml,, Ml M

incoming road right ghost-cells junction left ghost-cells outgoing road

(a) Computation of the next time step for the inner cells in terms of M, see Algorithm 1, line 12.

t+1 o—0«—e ° ° ° ° o—0«—e
Ny P1

t ° ° ° ° ° ° ° ° ° ° ° °

Mu,+1 Mry Mr,, M M M, Ml M

incoming road right ghost-cells junction left ghost-cells outgoing road

(b) Computation of density value at last grid point before the ghost-cells, see Algorithm 1, line 14.

o ~. - t L2 ~. ~. o
Mn,+1 Mry Mr,, M M Mi,, M, M

incoming road right ghost-cells junction left ghost-cells outgoing road

(¢) Computation of the coupling density values p; and p;, see Algorithm 1, line 16.

t+1 e O o ° og go ° e O o

Py P1

t ° ° ° ° ° ° ° ° ° ° ° °

M, +1 Mry Mr,, M M M, Ml M

incoming road right ghost-cells junction left ghost-cells outgoing road

(d) Computation of the coupling values in terms of M, namely M; and M. i, see Algorithm 1, line 19.

Figure 1.22: Schematic procedure of the algorithm, exemplarily for one incoming and
one outgoing road. For the sake of readability, we skip the road index in this illustration.
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Optimisation containing discrete

Decisions

In the previous chapter we derived dynamic transportation networks (DTNs) for several
applications. They enable us to simulate various scenarios with respect to dynamic
flows on networks such as production flows or traffic density evolution with prescribed
parameters, as well as initial and boundary conditions. The next step is to use these
models in order to answer questions concerning the optimal parameter setting in terms
of the best possible performance of the given scenario. Comparable to the classical static
Maximum Flow Problem (1.1), there also exists a broad range of optimisation tasks for
DTNs depending on the considered model and application. In the context of production
networks various questions of interest have been considered. For example, [42, 46] focus
on finding the best distribution inside a production network in order to achieve minimal
queuing sizes and maximal production flow. This leads to storage cost reduction and
increasing output of products. In addition to that, [37, 98] present an extended model
that allows for choosing properties of machines such that maximal product output
is obtained. [48, 57] describe a model with different types of goods having different
priorities and derive optimal control policies for each processor. In the context of
evacuation models [22, 52] are dedicated to find optimal routing of cars on road networks
and people in buildings in emergency situations. Furthermore, there exists a broad
variety of literature devoted to optimal signal timing of traffic lights on road networks
in order to minimise travel times and maximise traffic flow, see [8, 13, 15, 44, 68, 76, 86]

for an overview. These and many other questions outline the necessity to derive efficient
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2. OPTIMISATION CONTAINING DISCRETE DECISIONS

and reliable methods capable to solve DTN-based optimisation problems.
Following the notation of Definition 1.1.2, these optimisation problems typically

have the following structure:

objective function: max F(D;) (2.1a)
such that
control constraints: K-k <Uyg (2.1b)
edge constraints: Ji=0,VieE (2.1c)
coupling constraints: Cipp=0,VieE/lveV (2.1d)
initial conditions: Di(t=0)=Dy, Vie FE (2.1e)
inflow boundary conditions: Di(x =0) = B", Vie B (2.1f)
outflow boundary conditions: D(xr = L;) = B, Vi e Bo (2.1g)
box constraints: Di(t) € [L;, W], Vie E (2.1h)

where F represent the objective function depending on the optimisation question of
interest, k are the actual control parameters depending on the application and are
either members of the dynamic functions D; or the edge properties P;. X is a matrix,
representing the linear constraints the control parameters have to fulfill. Typically, the
edge constraints (2.1c) consist of coupled ordinary or partial differential equations.

There are mainly two different approaches to solve optimisation problems based
on DTNs. Since (2.1) is typically ODE/PDE-constrained, a common solution method
is the use of adjoint equations deduced from the Lagrange principle, see [93]. They
involve the use of iterative gradient based optimisation methods, cf. [63]. However, the
feasible domain of the variables is often highly complex due to the network structure of
DTNs. For that reason it is rather difficult to obtain reliable solutions using common
iterative descent methods, since the optimisation procedure will easily get stuck in local
extrema.

Hence, a different optimisation approach is considered in this chapter: The appli-
cation of Branch & Bound techniques for linear mixed integer optimisation problems
(short linear MIPs), see [30, 70, 82, 90, 94]. This approach has the big advantage that
the iterative computation of primal and dual bounds during the optimisation process

ensures the global optimality of the returned solution. If the process is interrupted
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before an optimal solution has been found, the interval where the optimal objective
function value is situated — the so-called optimality gap — is returned. Furthermore,
there exist many commercial optimisation software packages, which can be used as
blackbox solvers. Another advantage of this technique is that it is extremely easy to
consider only integer values of certain variables (such as number of workers on each
machine) by using integer constraints and integrate discrete decisions.

These methods are applicable to many DTNs for the following reason: Often, DTNs
are transformable into linear MIPs, which we will refer to as DTN-MIPs, see Definition
2.2.1. This can be obtained employing common numerical discretisations, cf. Section
1.4, combined with rewriting techniques borrowed from discrete optimisation [62]. It
is possible to convert particular nonlinear structures (e.g. the min-function) into a
dynamic mixed-integer framework. These MIPs can be optimised using branching
techniques as well as primal and dual bounds, providing reliable information about
the interval, in which the optimal solution can be found. In the context of production
network models, this approach has been introduced in [42] and has been successfully
applied to a wide variety of production problems, see [37, 48, 49, 57] for an overview.
Furthermore, similar ideas have been developed and applied for a specific type of traffic
models, the cell transmission models, see [8, 53, 75, 76, 77].

Since the resulting MIPs are highly complex, it is important to develop methods
leading to runtime improvements of the optimisation procedure. At that point, we can
exploit the fact that we posses a lot of information due to the problem structure which
can easily be provided to the optimisation algorithm. One efficient approach — presented
in [36] — are adapted presolve techniques to strengthen bounds of constraints, such that
the actual optimisation can be completed much faster. Additionally, it is possible to
tune the optimisation process itself by applying suitable heuristics in order to find good
primal bounds throughout the optimisation procedure. These ideas are considered in
the course of this chapter.

Section 2.1 contains some basic definitions as well as a short review on classical
optimisation techniques for linear MIPs, such as the before mentioned Branch & Bound
Algorithm. The following section, Section 2.2, is the heart of this work. It derives a
general strategy, how DTNs can be transformed into linear MIPs and how the knowledge
of the dynamics can be exploited to speed up the optimisation procedure. In this

context we point out common properties of DTNs and propose linearisation techniques,
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2. OPTIMISATION CONTAINING DISCRETE DECISIONS

that are required to transform the setting into a linear MIP. Furthermore, we show how
common drawbacks, such as high oscillating control variables in optimal solutions, can
be avoided. The aim of this section is to formulate these strategies in a general way.
In that way it provides a framework that helps to solve optimisation issues for a broad
range of DTNs.

The following two sections provide examples how these strategies can be applied to
the particular DTNs derived in Section 1.2 and 1.3. Section 2.3 is dedicated to find
optimal worker scheduling for production networks in order to maximise the production
flow. Basing on the traffic flow network model derived in Section 1.3, Section 2.4
presents the modelling of traffic lights on complex urban junctions, transforms the
setting into a linear MIP and provides promising tuning techniques for the optimisation

procedure.

2.1 Linear Mixed Integer Optimisation Methods

In this section a review of classical techniques for solving linear mixed integer optimi-
sation problems is provided. Widely used techniques are LP-based Branch & Bound
Algorithms optionally combined with cutting plane methods.

We will summarise some of the main ideas of these approaches. For more detailed

information we refer to [29], [69] and [90], amongst others.

2.1.1 Basic Definitions
We start with some basic definitions on linear and mixed integer programming.

Definition 2.1.1. A linear program (short: LP) has the following form: Find a

vector x € R" that solves

max ¢! (2.2a)
such that

Az <b (2.2b)
>0 (2.2¢)
z e R, (2.2d)

with given vectors ¢ € R™, b € R™ and a given matriz A € R™*"™,
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2.1 Linear Mixed Integer Optimisation Methods

A linear mixed integer optimisation problem has a similar form. The only difference

is that some of the variables are integers or binaries.

Definition 2.1.2. A linear mized integer optimisation problem (short: linear
MIP or LMIP) has the following form: Find a vector x € R™ that solves

max ¢! (2.3a)
such that

Az <b (2.3b)
x>0 (2.3¢)
z € {0,1}P x Z x R* P, (2.3d)

with given vectors ¢ € R™, b € R™ and a given matriz A € R™*™. Furthermore, we have

a prescribed number of binary variables p and integer variables | with p+1 <n € N.

LP (2.2) is also called relaxation of (2.3), since the binary and integrality con-

straints are neglected.

Definition 2.1.3. The dual problem of (2.2) is given by

max b’y (2.4a)
such that

Aly > ¢ (2.4b)
y>0 (2.4¢)
y €R™, (2.4d)

with given vectors ¢ € R™, b € R™ and a given matriz A € R™*".

A crucial theorem of optimality theory is the Duality Theorem. It states that,
if the LP (2.2) has an optimal solution, its corresponding dual problem (2.4) has an

optimal solution and the optimal objective function values coincide.

2.1.2 Branch & Bound Algorithm

One basic algorithm that is used in mixed integer optimisation theory, is the Branch
& Bound Algorithm. Later on, we show how it is possible to use the knowledge of the
structure of DTN-MIPs, see Definitions 2.2.1, to speed up the optimisation procedure
based on the Branch & Bound Algorithm. More details are given in Subsection 2.2.4.
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2. OPTIMISATION CONTAINING DISCRETE DECISIONS

First of all, we shortly summarise the main ideas which can be adapted and extended
according to the specific problem under consideration, followed by a small example.
Then we present the structure of the algorithm, cf. Algorithm 2, which consists of an

iterative application of the following operations.

Branching. In the course of the optimisation process the original problem is split into
several disjoint subproblems. This technique is called branching and is used iteratively,
leading to a tree whose nodes present the disjoint subproblems. One example for
branching is the following: Choose a binary variable x; € {0,1} and add the additional
constraint x; = 0 to the first new subproblem and z; = 1 to the second new subproblem,

see Figure 2.1.

Figure 2.1: Branching on binary variables.

Pruning. There are various techniques to find upper and lower bounds of the optimal
objective function value of a subproblem. In this way, we can tell beforehand which
subproblems might contain the optimal solution of the original MIP and which ones
can be neglected. Hence, nodes of the tree can be cut off. This technique is called

pruning and can be divided into three different types:

e Pruning by optimality: When the optimal solution of a subproblem has been

found, no further branching on that node is necessary.

e Pruning by bound: When the lower bound of the optimal objective function
value of a subproblem is greater than a global upper bound being defined as the
minimum of all upper bounds that have been found so far, the optimal solution

is not included in this subproblem. Hence it can be pruned.
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e Pruning by infeasibility: If a subproblem does not contain any feasible solu-
tion, it can also be neglected. One common method to find infeasible subproblems
is to compare the dual bound of the subproblem with the currently best found
feasible solution of the whole tree. If the dual bound is already worse than a

feasible solution of another subproblem, the considered subtree can be pruned.

Bounding. As mentioned earlier, it is of interest to find good bounds for the sub-
problems. In fact, the Branch & Bound Algorithm terminates the faster, the sharper
the bounds are. The reason for this is that more nodes can be pruned and hence the
size of the tree is kept small. Various methods to determine bounds have been de-
veloped within the scope of integer optimisation research. A common procedure is to
find dual bounds by relaxing the problem to a simple linear programming problem that
can be solved by the Simplex Algorithm, which is described in [51, 81, 84] and others.
The relaxation is done by neglecting the integrality constraints of xz. Another method
to find dual bounds is finding a feasible solution of the dual problem. Primal bounds
are provided by any feasible solutions of the subproblems using appropriate heuristic
algorithms. For more detailed information, read for example [82].

Figure 2.2 illustrates the Branch & Bound procedure.

Example 2.1.4. The procedure is illustrated by a small example which is taken from

[38].

min —5.271 — 6132 — 9373
such that bx1 + 9z + 43 < 15

x = (z12923)" € {0,1}3
The corresponding Branch & Bound tree is shown in Figure 2.3.

The structure of a typical Branch & Bound Algorithm is depicted in Algorithm 2.

For details of each step, we refer to [70].

2.1.3 Cutting Planes

Another popular method to find optimal solutions of linear MIPs is the cutting plane
algorithm. The first step is to solve the LP-relaxed problem with the Simplex Algo-
rithm, see e.g. [81]. In the case that the optimal solution does not fulfill all required
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Input:
DTN-MIP as root node
N={s¢}

Choose Is DB
node s from N of father of's
worse than

pP*?

Branch&Bound Algorithm

Compute PB(s)
(e.g. using
cutting planes)

PB(s)
better than

Branching Compute DB(s)
(by solving
Choose branching relaxed LP)
variable and create
subproblems
(remembering
dual and primal solution
bounds of father) exists?

remove
s from V
add subproblems
DB(s) by infeasibility
froms to N worse than
P*?

Pruning

by bound

relaxed
solution by optimality
integer
casible?,
remove
s from N

N=0
(optimal
solution
found)?

Output:
Optimal solution
P*

Figure 2.2: Procedure of the Branch & Bound Algorithm, where PB(s) and DB(s) denote
the primal and dual bound of node s and the best known feasible solution is referred to as
P*.
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Algorithm 2: Branch & Bound Algorithm.

/* Input: A linear mixed integer optimisation problem with
variables x;, 1 € [
/* Output: An optimal solution
1 begin
/* N is the set of active nodes of the Branch & Bound tree,
with root problem sy containing all constraints of the
original linear MIP.
/* X is the currently best found feasible solution.
N:={so}
while no optimal solution is found and N # () do
Choose node s € N.
Compute dual bound of s.
Compute primal bound of s.
Apply pruning techniques and remove unnecessary nodes from N.

Choose index i for branching.

© 00 N O ok~ W N

Create J subnodes

*/
10 Add s, j € JtoN.
11 Set X to the currently best found feasible solution.

12 return X.

*/

*/
*/

<
/*x e.g. s;={sUx;>d;},j=1,...,J if x; is continuous or */

/* 0 sj={sUx;=d;},dj€Z,j=1,...,J if x; is integer.
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% =(1,2/3,1)

R, = (1,0,1) Bo=0

a, =-13 ap =-17

feasible ->

B, =-13
= (2/5,1,1)
=-16

pruned by
optimality £, =(0,1,1/4)
% =011 % =13
oy =-14 I £%
feasible -> \ //,:" RN
B, =-14 pruned by A2 N
optimality 4 b

Figure 2.3: Branch & Bound tree. N; denote the subproblems in the order they are
generated. (; denotes the upper bound of the node and «; the lower bound. Z; is the
optimal solution of the LP-relaxed problem.

integer constraints, we iteratively add additional constraints that reduce the relaxed
feasible region in a way such that the non-integer feasible variable of the relaxed solu-
tion is cut off. In this way we strengthen the feasible region step by step, getting closer
to the convex hull of the original integer problem. We continue until a integer feasible
solution of the MIP is found. This method is depicted in Figure 2.4 for a small example

case.

min —2x9

such that —x1 — 29 <1
3x1 + 229 < 12
221 + 322 < 12

z = (z1, mg)T c7?

2.1.4 Branch & Cut

The Branch & Cut Algorithm combines techniques from the Branch & Bound and
cutting plane algorithm. At every node of the Branch & Bound tree, the primal bound

66



2.1 Linear Mixed Integer Optimisation Methods

X, Xy
\ \
optimal
solution of optimal
51 1."91.6.".(.‘2.‘1:10.1.1..?.. feasible region 3 T solution of feasible region
<% relaxed region relaxation T relaxed region

X
1 2 3 4 1 2 3 4

(a) Depiction of the feasible regions. The black (b) The cutting plane z1 — 2z2 < 6 is added.
dot denotes the optimal solution of the relaxed

problem.

Figure 2.4: Cutting plane algorithm.

is computed using the LP-relaxation. Then, cutting planes are added to achieve a
sharper bound or even an integer feasible solution. Hence, this approach leads to
smaller Branch & Bound trees. This is one of the most popular procedures to compute
optimal solutions for linear MIPs and is applied in many software packages, see the

following subsection.

2.1.5 Optimisation Software

Currently, there are several optimisation software packages on the market, which are
able to solve linear MIPs automatically, for instance [23, 60, 85, 91]. Some of them pro-
vide interfaces for the user to adapt the solution procedure to the specific problem type
in order to obtain increased efficiency. This can either mean to set certain parameters
for the optimisation algorithm, such as error tolerances or priorities for the order of
branching or considered subnodes, or it can even allow the user to integrate own tuning
elements, such as heuristics for finding primal bounds or subroutines for creation of new
subproblems and branching rules. We use Cplex [23] to solve DTN-MIPs. For more

details we refer to Chapter 3, where numerical results are presented.
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2.2 Mixed-Integer-Techniques meet DTN-Models

In this Section we derive a general strategy how MIP optimisation techniques can be
applied to dynamic transportation network models. We need to transform the model
into a linear MIP. A linear MIP can be solved by a blackbox solver, as mentioned in
Subsection 2.1.5. Optionally, it is also possible to reduce optimisation time by providing

information on the network model to the optimisation process.

Definition 2.2.1. A DTN-MIP is a linear MIP (2.3) based on a DTN model. The
variables x comprise all control, linearisation and state variables for all time and space
discretisation points. The coefficience matriz A and coefficient vector ¢ depend on

network parameters N and edge properties P.

For the sake of clarity, we distinguish between three types of variables:

Control variables. Control variables depend on the specific optimisation issue; they
represent the quantities that are used as controls to find the optimal solution and
usually originate from dynamic functions D or edge parameters P of the underlying
DTN. In the applications described below they represent the number of workers that
are at each point in time at each machine (cf. Section 2.3) and the state of the traffic

light at each road (cf. Section 2.4), respectively.

State variables. State variables are discretised quantities originating from all dy-
namic functions D that do not play the role of control variables, such as density p and

flow evolution f or buffer levels u.

Linearisation variables. Linearisation variables are additional continuous or binary
variables that are needed in order to linearise the model constraints. For more details
see Subsection 2.2.2.

2.2.1 Transformation and Solution Strategy

We suggest the following strategy to apply mixed integer optimisation techniques on

optimisation problems originating from DTN models:
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2.2 Mixed-Integer-Techniques meet DTN-Models

I. Introducing control variables and their constraints. We introduce control
variables k with respect to the considered optimisation issue and derive conditions X
that have to be satisfied by the control variables. Constraints which only depend on
control variables will be referred to as control constraints, see (2.1b). According to

the notation of (2.3), the variables k are elements of x and X is incorporated into A.

Remark 2.2.2. The optimisation methods used later apply the Simplex Algorithm for
the relazed formulations in order to find dual bounds for the problem. When the optimal
solution of the relaxed formulation happen to fulfill the integer (and binary) constraints
as well, we immediately get an optimal solution for a subproblem of the MIP. This
leads to the reduction of branches in the Branch & Bound Algorithm. In that way the
optimisation time is reduced. This effect is enhanced, when we formulate the control
constraints in a way that the feasible region of the relaxed problem is close to the convex
hull of the original problem. Then, integer feasible solutions are found at the corners of

the region. For more details on polyhedra theory and integer optimisation, see [89, 90].

II. Deriving a suitable objective function. Next, we introduce an objective func-
tion to obtain a continuous, PDE- or ODE-constraint optimisation problem, see (2.1).
Depending on the considered DTN model, the constraints may contain the evolution
of density on the arcs of the network or the evolution of the buffer sizes, coupling

conditions at the vertices and the control constraints of step I.

III. Discretising constraints of the DTN model. The next step is to introduce
a discrete time and spatial grid and apply discretisation schemes, cf. Section 1.4. We
preferably choose methods that are easy to linearise. In this way we obtain the discrete

state variables possibly for each time and space-step.

IV. Linearizing constraints. All constraints are linearised with respect to the con-
trol as well as to the state variables. This requires the application of linearisation
techniques described in Subsection 2.2.2. For this procedure additional linearisation

variables are introduced. In that way, we obtain a linear DTN-MIP.

V. Preventing high oscillations of control variables in the optimal solution.
It is possible that the control variables of the optimal solution are strongly fluctuating

in time. In most of the applications, this is not of practical use. In our examples this
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would mean that a traffic light switches every second or workers have to chance their
position too frequently. In order to avoid these fluctuation effects, further techniques

can be applied as described in Subsection 2.2.3.

VI. Tuning the optimisation procedure. The obtained MIP is highly complex,
since the number of constraints and variables is not only proportional to the number
of arcs of the network, but also to the number of time- and space-steps. For that
reason the optimisation time is often unacceptably large. However, we possess a lot of
useful information due to the structure of the model. Subsection 2.2.4 is dedicated to
strategies, how this information can be used to significantly speed up the optimisation

procedure.

2.2.2 Linearisation Techniques

In this subsection we consider step IV of the above mentioned strategy. We show how
to linearise several expressions that might be encountered in optimisation problems
originating from DTN models, such as those derived in Section 1.2 (cf. Remark 1.2.3)
and Section 1.3 (cf. Remark 1.3.8). We describe techniques how to reformulate these
terms using linear constraints without loosing information or accuracy. For more details

we refer to [62].

Product of binary and continuous variable. As explained in Section 5.6.5 of
[62], it is possible to linearise the product of a positive continuous variable z and a
binary variable g € B.

Assume that
{ogng; z €R; 5@133} (2.5)

and consider equation

Now, (2.6) can be described by

70



2.2 Mixed-Integer-Techniques meet DTN-Models

Hence, (2.7) is equivalent to

y<M- AN y<z A y>z—-M1-7). (2.8)

Minimum-expressions. DTNs often contain min-terms such as (1.17b), (1.22) and
(1.23) for the production flow model, cf. Section 1.2, and equations (1.43), (1.45), (1.47)
and (1.49) for the traffic model, see Section 1.3. They can be linearised applying the

following Lemmata.

Lemma 2.2.3. An expression of the form ¢ = min{a, b} is linearised by introducing a

binary variable v € {0,1} and using the additional inequality constraints

v-a<c<a
b—M-v<c<b

where M is sufficiently large, such that M > b holds.

One can easily check that v = 1 is equivalent to the case ¢ = a, and v = 0 is valid,
if and only if ¢ = b, cf. references [42, 62].

This approach can iteratively be used for minimum expressions consisting of an
arbitrary number of terms. For example, we get the following transformation for a

minimum expression containing three terms:

Lemma 2.2.4. a = min(b, ¢,d) with b,c,d > 0 is equivalent to the set of constraints

Bb<e<b
c—c""p<e<c
ne<a<e
d—d™"n<a<d
B,meB (2.9)

with ™% and d™* upper bounds for ¢ and d and e € R.

Proof. Setting e := min(b,c) it becomes clear that a = min(e,d). Then applying
Lemma 2.2.3 completes the proof. O
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If-else-construction. The triangular flow function 1.26 used in the traffic flow con-
text, is defined piecewies. In this paragraph we show, how these constructions are
linearised. Let A and B be two sets, let s € [0,s™%*] be a variable. The following

expression needs to be linearised:

re A, if0<s<s® (2.10a)

x € B, ifs" <s< M. (2.10b)
Remark 2.2.5. We assume that for the case s = s* both x € A and x € B are allowed.

(2.10) is equivalent to

r=y, if0<s<s” (2.11a)
x=z Iifs" <s<sm® (2.11b)
z €{y,z}, ifs=s" (2.11c)
yeA (2.11d)
z € B. (2.11e)

Now, we introduce a binary variable ( € B. We want to find linear constraints

which are equivalent to the following relations

(=0 & z=y <« 0<s<s" (2.12a)
(=1 & z=z <« s <s<sM7 (2.12b)
We use:
r=Cz+(1-Qy (2.13a)
1
0<(3-0" —9) (2.13b)

Now, we have to linearise the following terms

g:=C-yand Z:=(- 2.
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Applying steps (2.5) - (2.8), we end up with the following constraints for §:

The linearisation for Z is done analogously.

Altogether, this yields the following set of constraints, which replace (2.10):

r=Z+y—9y (2.14a)
0< (50"~ 9) (2.14)
0<g<ym( (2.14¢)
y—y" (1 - <y<y (2.14d)
0<z< M (2.14e)
z— 21— ()<i<z (2.14f)
(eB (2.14g)
yeA (2.14h)
z€B (2.14i)

with linearisation variables y, z, 7, 2 € Rt and ¢ € B.

Piecewise linear functions. Piecewise linear functions such as (1.26) often appear
in the context of DTNs. As described in detail in Section 5.6.3 of [62], with the help
of additional binary variables it is possible to find linear constraints which express
piecewise linear functions. Here, we want to apply these techniques as well as the
techniques of the previous paragraph to the special case of triangular flow functions,
which are commonly used in traffic flow models, see Subsection 1.3.

Note, that for the case p = p* holds A - p = A(2p* — p).

Analogously to the previous paragraph, we reformulate (1.26) by

f=r-20+(1-r)(A20" - p)) (2.15a)
0<p<p™™ (2.15b)
K € B. (2.15¢)
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Following steps (2.11) to (2.14), we add a new variable p representing the product of x

with p and obtain the following linear constraints:

F =2 p—p 2 k — Ap+ p"2) (2.16a)
0<p*s—p+ %p - %p* (2.16b)
0<p<pia®. g (2.16¢)
p—p"(1—r) < p<p (2.16d)
0<p<pmee (2.16e)

k€ B, (2.16f)

which are equivalent to (1.26).

2.2.3 Avoiding Oscillations

We can apply various strategies in order to avoid high oscillations of the control variables

in the optimal solution. Two of them are described in the sequel.

A: Reducing number of control variables. Instead of using different control
variables at each time-step, we decide a-priori at which points in time switching of a
control variable is allowed. Then, we can simply use the same variable for the whole
period which we do not want to allow for switching. This can also be interpreted in
the way that the control variable lives on a coarser time grid than the other variables.
If we transform this idea back to the original continuous model, we assume the control
parameter to be a piecewise constant function in time, where the time of the jumps
is previously fixed, but not the value of the function after each jump. The main
disadvantage of this procedure is the fact that the points in time of the switching has
to be fixed previously and are not up to optimisation. The main advantage is that no
additional constraints for the MIP are required and even the number of variables is

reduced, which leads to a slight reduction of complexity of the MIP.

B: Deriving additional constraints on switching behaviour. Another tech-
nique is to add constraints to the MIP guaranteeing that the time period between the

switching of a control ranges between a certain prescribed upper and lower bound.
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The following lemmata show, how these constraints can be designed in the case that

the control variables are binary.

Lemma 2.2.6. Lower bound on switching period
Let Ct € B be a set of control variables Vt = 1,...,ny and let Ly and L; € N denote
the lower bounds for the number of consecutive time-steps that C* can be set to 0 or 1,
respectively.
Variables Ct respect the minimal switching period if and only if the following con-
straints hold:
t+L1
> ' Ly(-Ct MY, Vt <ng— Ly (2.17)
I=t+1
t+Lo
Y Ol < (Lo+1)(1—C +CHY, Vt < ng — Lo. (2.18)
I=t+1
Proof. We consider both directions separately.
=
When there is a switch from 0 to 1 after time-step ¢, i.e. if C* =0 A C**! = 1, then
the next L, control variables have to be 1 as well, i.e.

t+1Lq

PR (2.19)

I=t+1
has to be fulfilled. Hence, (2.17) holds. Considering constraint (2.18), we have

t+Lo
S Ol < (Lo+ 1)1 -Ct+ O = (Lo +1) - 2.
I=t+1

This holds as well, since C; cannot be greater than one.

When there is a switch from 1 to 0 after time-step ¢, i.e. if C* = 1 A C*T!' = 0, then

the next Ly control variables have to be zero as well. Hence,

t+1L1 \
d ch=o. (2.20)
I=t+1

In that case Z}i{il C! > Ly (—C!' + C*1) = —L; is fulfilled, since O} is always larger

than zero, and constraint (2.18) is also fulfilled, since (Lo + 1)(1 — C* + C**1) = 0.
For the remaining cases, i.e. if C* = C**1 = 0 or C* = C**! = 1 holds, constraint

(2.17) holds with Zf;&l C!' > L1 (—~C* + C'*1) = 0, as well as constraint (2.18) with

St O < (Lo + 1)(1 — Ct + C*1) = (Lo + 1), since C* cannot be larger than one.
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<
Assume, there is a switch from 0 to 1 at time ¢, i.e. C* = 0 and C**! = 1, and the

following values for C' would not respect the minimal switching period L;. Then

t+L1

> <y,

[=t+1

which contradicts constraint (2.18).
Now, we consider the case of a switch from 1 to 0 at time ¢, i.e. C' = 1 and
C'! = 0. If the consecutive control variables would not respect the minimal switching

period Ly, this would yield

t+Lo
S etz
I=t+1
which clearly contradicts (2.17).
This completes the proof. O

In some applications, it might also be desired to guarantee an upper bound for the
switching period. As an example, think of a traffic light which should not be red for

longer than 3 minutes.

Lemma 2.2.7. Upper bound on switching period:

Let C* € B be a set of control variablesVt =1,...,ns, Uy and Uy € N denote the upper

bound for the number of consecutive time-steps that C' can be set to 0 or 1, respectively.
Variables C* respect the mazximal switching period if and only if the following con-

straints hold:

t+U1+1

Y <, Vt<ng—Up —1 (2.21)
l=t+1
t+Uop+1

Y =, Vi < ng—Up— 1. (2.22)
I=t+1

Proof. If C! is never set to one more than U; times in a row, constraint (2.21) holds
and vice versa. In the same way constraint (2.22) holds if and only if C! is never set to

0 more than Uy times in a row. O

The main disadvantage of this approach is that the complexity of the MIP increases,
since another set of constraints is added for every time-step. Furthermore, it becomes

more involved to find feasible control settings which can be used for bounding heuristics
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in order to speed up the optimisation algorithm. This is due to the fact that in many
DTN-MIPs the control constraints usually describe relations between different control
variables for the same time-step, which enables us to find feasible control settings for
each time-step separately; whereas constraints of type (2.18), (2.17), (2.22) or (2.21)
lead to further dependencies of control variables of different time-steps. For more details
see Subsection 2.2.4. The main advantage of this method is that the switching time
itself is also up to optimisation (in contrast to method A), which is especially useful in
applications, where the choice of the switching times has a big influence on the optimal

solution.

2.2.4 Tuning the Branch & Bound Optimisation

As described above, it is possible to reformulate optimisation problems on DTN mod-
els as linear DTN-MIPs. Thus it is possible to give it into one of various available
optimisation solvers, e.g. [23]. Unfortunately, we need constraints and variables for
each time-step leading to a large problem size. Often, this does not allow to obtain an
optimal solution during an acceptable time frame. Especially because of the large num-
ber of binary variables, it is extremely difficult for the blackbox solver to find feasible
solutions at all.

By using the optimisation software as a black box tool, we deprive the solver of a lot
of valuable information; in fact, for us it is easy to construct a feasible solution manually:
We only have to find a feasible setting for the control variables (in our example models
the worker distribution and traffic light setting respectively). Given those variables,
we can simply simulate the solution using a forward solver, see Algorithm 3, to obtain
the state variables and then apply linearisation techniques to compute the linearisation
variables.

After these simple computations, we can provide the solver with a feasible start
solution. This procedure is illustrated in Figure 2.5.

However, this is not always enough to reduce the optimisation time, since it takes
still a long time to find more feasible solution during the Branch & Bound Algorithm.
For a more detailed study on applying starting heuristics for large DTN-MIPs within
the production context we refer to [37] and [98]. Additionally, it is promising to have

the solver branch only at the original control variables and provide another primal
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feasible setting
of control variables

Compute feasible
solution

v

Output:
Optimal solution
P

Figure 2.5: Using a starting heuristic to provide feasible start solution for Branch &
Bound Algorithm.

bound for each new subproblem by finding a new feasible setting for these variables
and applying the forward solver.

To clarify this concept, we consider the different steps of the Branch & Bound
Algorithm, that has been presented in the beginning of this chapter, see Algorithm 2.

First of all we prescribe solely the control variables for branching, see line 8 in
Algorithm 2. After that, we create a heuristic for finding a feasible solution of the
considered subproblem, see line 6. Let I be the index set indicating all variables,
that have been fixed due to former branching. Respecting the fixed values x;, ¢ € I ,
we first compute the dual bound by applying the Simplex Algorithm to the relaxed
MIP (see line 5). If we construct the constraints for the control variables in a certain
way, see Remark 2.2.2, it is possible that the optimal solution of the relaxed problem
already contains control variables which are integer feasible. A bounding heuristic, see
Algorithm 4, will keep the values of the integer feasible variables as well as the fixed
branching variables and sets the others in a feasible way; and if possible, in a way
that a good objective function value is obtained. This is illustrated in Figure 2.6. The
resulting feasible solution is used as a primal bound for the Branch & Bound Algorithm

in line 6. Figure 2.7 illustrates on which point of the Branch & Bound Algorithm the
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Bounding Heuristic takes effect.

A bounding heuristic can only work properly, when the branching only takes place
on the control variables. Otherwise some binary linearisation variables might be fixed
in a branch. These fixed values can not be respected by the bounding heuristic, since

it applies the forward solver to obtain the values of the linearisation variables.

Compute PB(s)
with

Find promising feasible setting
of control variables
respecting all variables that have been fixed
by previous branching

Compute feasible
solution

Figure 2.6: Structure of the bounding heuristic. It serves as a building block of the
Branch & Bound Algorithm, see Figure 2.7.

Remark 2.2.8. Typically, the control variables have indices for time-steps t and net-
work arcs i. For the sake of simplicity, we skip the superindices t in the description of
Algorithm /.

Later in this chapter, a more detailed bounding heuristic is described for the model
of traffic light optimisation, see Algorithm 6 and 7.

In Section 2.4, we apply these ideas to find an optimal traffic light setting for traffic
networks. In Chapter 3, Figure 3.44(a), 3.45(a) and 3.46(a) show the evolution of primal
and dual bounds during the optimisation process applying only a starting heuristic on
the one hand (cf. Figure 2.5) and the incorporated bounding heuristic (cf. Figure 2.7)
on the other hand. The strong improvements of the second technique are convincing
and enable us to find close to optimal solutions in a reasonable time for DTN-MIPs

with around 10% variables and constraints.
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Input:
DTN-MIP as root node

\lvﬁ}/

i

Choose
node s from N R

Is DB
of father of s
worse than
P*?

Compute PB(s)
with

PB(s)
better than
P*?

Branching

Choose Compute DB(s) &
| (by solving Update }/
always relaxed LP) p

a control
variable as
branching

variable
and create
subproblems

Pruning
remove
s from N by infeasibility
add subproblems

from s to V

worse than
P*?

[~ by bound

relaxed
solution

, »(_ by optimality
integer

..\

remove
s from N

(optimal
solution
found)?

Output:

Optimal solution
P*

Figure 2.7: Using branching priorities and bounding heuristic iteratively during the
Branch & Bound Algorithm.
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Algorithm 3: Forward Solver.

/* Input: DTN-MIP and a feasible setting of control variables.
*/

/* Output: An integer feasible solution */

[y

begin
fort=0,...,nt—1do

Compute coupling for all junctions of the network.

W N

Apply PDE-solver (i.e. one time iterative of a discretisation scheme
presented in Section 1.4) for each edge to obtain state variables (i.e.
density, flow, buffer level etc.) for time-step ¢ + 1.

5 Compute the corresponding values for linearisation variables.

6 Return feasible solution.

Algorithm 4: Bounding Heuristic.

/* Input: A relaxed solution (i.e. all variables are considered
to be continuous) of the linear MIP with control variables

Ci,© € I and already fixed branching variables with index

iclcl. */
/* Output: An integer feasible solution */
1 begin
/* Optional: Include integer feasible variables of relaxed
solution in fixed index set: */
2 for i € I\I do
3 if C; € Z then
4 | I—Tu{s}

/* Find feasible setting of control variables, i.e. fulfilling

all control conditions. Do it in a way that a good objective

function value of the original DTN-MIP is supported. x/
5 Compute controls Cj, i € I\I. /* see e.g. Algorithm 6 or 7 */
6 Apply Forward Solver(C;, i € I) /* see Algorithm 3 */
7 Return feasible solution.
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2.3 Application I: Optimal Worker Scheduling for Pro-

duction Networks

Considering DTN-models in the production context, we encounter a wide range of
optimisation questions containing discrete decisions. Typically, the aim is to reduce
storage costs or increase output of products. [42, 46] look for the best flow distribution
inside a production network in order to achieve minimal queuing sizes and maximal
production flow. In addition to that, in [37, 98] choices of certain supplier configurations
are up to optimisation. [48, 57] control policies for processors on network models
where parts have different priorities. In this section, we want to consider the model
introduced in Section 1.2, where the point of interest is the optimal scheduling of
workers throughout the network such that the production is maximised, see also [49],

using the techniques described in the previous section.

2.3.1 Deriving a linear DTN-MIP

Following the steps of Subsection 2.2.1, we derive a linear DTN-MIP of the model

derived in Section 1.2.

I. Control variables and constraints. Our goal is to find out which worker sched-
ule is best in order to guarantee a stable production process and maximise the possible
outflow of goods. Hence, our control variables represent the worker distribution S;(t)
as percentage of a total number of workers W.
To get a well-defined allocation of available workers, we state the following control
constraints:
d Bit)=1, 0<B(t)<1, Vit (2.23)
icE
This means, we distribute all workers among the machines and require them to be a
positive number. Furthermore, it is reasonable to only allow integer workers, hence we

request

W-Bi(t) €Z, Vit (2.24)
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II. Objective function value and continuous optimisation problem. Since
we are interested in increasing the ouflow, we use the total outflow of the network as
objective function, see (2.25a). Respecting the conditions of the DTN model derived

in Section 1.2, we end up with the following ODE-restricted optimisation problem:

T
max/o Z fi(t)dt (2.25a)

i€ Fout

s.t.Vie E:

P50~ BI) + feaealt) — (D) (2.250)
filt) = min { (), “iT(f) 3 (2.25¢)
dc;it) — min {“%“) Wdiﬁi(t)} — min { Ciit) : li} (2.25d)
’LLZ(O) = U0;, CZ‘(O) = Cp; (2.258)
d Bit)y=1, 0<Bi(t)<1, Vit (2.25¢)
i€E

0<Bi(t) <1 (2.25g)
W Bi(t) € Zg, (2.25h)
0< Ci(t) < Wi, uz(t) > 0. (2.25i)

The constraints consist of the coupled ODE-system, given by the buffer level equa-
tion (2.25b) and (2.25c¢), the capacity drop (2.25d) (or (1.23), depending on the model
version) and the control constraints (2.25f). Furthermore, we need to prescribe initial
conditions (2.25¢) and the control conditions (2.25f), (2.25¢) and (2.25h). If not said
otherwise, we choose as initial condition empty buffers (i.e. ug; = 0) and full capac-
ities (i.e. co; = p;). Constraint (2.251) represents additional non-negativity and box

constraints of the state variables representing capacity and buffer level.

III. Discretising constraints. We choose a uniform discrete time grid
(I:{tlt:O,...,nt}

of the underlying time horizon [0, T] where n; denotes the number of grid points. The

step-size is defined via At = nlt

Then, we discretise the system of ordinary differential equations (2.25b) - (2.25d)

using the explicit Euler scheme.

83
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Remark 2.3.1. For the step-size At, the condition
At := min{27;,2¢}, Vi€ E
must be satisfied when dealing with stiff problems.

As an intermediate result, we get the following optimisation problem Vi, t € T:

max fioAt
> DS

ic Bout teT

s. t.

wi™ = up+ A B fli o+ feps — S (2:26a)
dtt =+ At- [D! - Rl (2.26b)
> =1 (2.26¢)
i€l

up =i, & = co (2.26d)
0<pl<1 (2.26e)
W - Bi(t) € Z§. (2.26f)
0<¢ <pyy uj>0, , (2.26g)

t Lt t
with R := min{%,1;}, D} := min{*==,Wd,;8}} and f{ := min{c}, Z*}. Note, that for
the flow dependent capacity decrease as presented in (1.23), equation (2.26b) changes

to
At =c+ At (DI —1; - f]]. (2:27)

IV. Applying linearisation techniques. In order to arrive at a linear MIP we

tul and B! as shown in

linearise the min-terms in R!, D! and f! with respect to c!,u}

Lemma 2.2.3.

In this way, we get for R! the following constraints:

li -kt < RE < (2.28a)
A4 e
<4 - M- -kl<RI< (2.28b)
€ €

where M := E and k! is binary, i.e. ! € {0,1}. By applying the same method to f/,

we end up with

g < fi<d (2:292)

ut

¢
Y ppet<pt< M (2.29D)
A -

Ti
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where M is a sufficiently large constant, & are additional binary variables and
gi = ci & (2.30)

We linearise ¢} - &} as shown in equations (2.5) - (2.8). Hence, with the new linearisation

variable g! € R, (2.30) can be described by

0<g; < (2.31a)
= m(l—¢) <gf <d. (2-31Db)

Following Lemma 2.2.3 and taking computational runtime into account, we need an
estimate for the constant M in (2.29). More precisely, it is important to choose M as

tight as possible. Hence, let M depend on ¢ and ¢t and make sure that

S

M > (2.32)

U
Ti
holds Vi, t € T. Therefore, we consider (2.26a) in order to derive an upper bound for

.
u;:

ub <l b AL (B -+ At £

ext,i’

where 1 denotes a vector-valued function with entries u; for each machine. From our

initial conditions we know that u? = ug,;. By iteration, we get

t—1
ug <t-At- [B'M]i‘FAt'Zfetm,ri'Uo,i
t=0
and thus
1 1 =L uo ;
M= —t At-[B-pli+ At fl, +—* (2.33)
Ti Ti =0 T

Remark 2.3.2. In this way, we have also gained an upper bound for uﬁ, namely
0<wul<r- M, ViteT. (2.34)

Note, that it 1s advantageous to keep box constraints as tight as possible, since this might

lead to smaller Branch & Bound trees which reduce the runtime.
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The missing linearisation of D! is done analogously. This leads to the following

additional constraints:

Wd; - ht < D! <Wd;! (2.35a)
. — e ) it
€ € €
0<hi <~ (2.35¢)
BE—(1—nf) < hj <8, (2.35d)

where 7! € {0,1} and hl,€ R is a new set of linearisation variables describing the
nonlinearity 3¢ - ~L.

Finally, we specify box and binary constraints for all new variables:

0<hi<1,0<g <, (2.36a)
0<ff <pi, 0< R <l;, 0< D} <W -d, (2.36b)
Kb yE b e {0,1} Vit € T, (2.36¢)

In summary, the complete mixed-integer formulation reads

max Z fo <At (2.37)

i€ Eout teT
S. t.

(2.26), (2.28), (2.29), (2.31), (2.34), (2.35), (2.36).

The optimisation problem consists of eight sets of different continuous variables
(c,u,B, f,g,h, R, D) and two to three sets of binaries ((k,)~, £) depending on the
chosen version of capacity modelling. All variables depend on the number of edges and

time-steps. Hence, the problem size is O(ny - |E|).

V. Avoiding fluctuations of the optimal solution. In this application, it is
meaningful to introduce further restrictions on the time evolution of the distribution
functions B;. It does not make sense for the workers to change their position too
frequently. In order to avoid strong fluctuations, we apply method A of Subsection 2.2.3
by previously fixing the possible switching times 0 < #; < ... < t;, < n; of the workers.

Thereafter, the same control variable ij is used for time-steps t : {fj <t< t~j+1}.

86



2.3 Application I: Optimal Worker Scheduling for Production Networks

2.3.2 Steady State Analysis

Since for DTN-MIP optimisation times gets unacceptably large as soon as we increase
the time horizon T, it is advisable to use another approach, when questions about the
long term behaviour of the system are of interest. Furthermore, it is usually desired
to obtain a steady state shortly after the start-up of a productions system. In this
subsection we show, how a steady state analysis can be done for given the DTN-MIP.
This analysis provides us with information about the necessary number of workers to
get a stable flow considering the average through-flow the network for a long time
horizon. Additionally, it is easy to find out, how many workers we need in order to
obtain a specific production flow. If the specific application is flexible with respect
to the flow distribution at branching points, we can also optimise the flow distribution
inside the network in order to obtain the most efficient setting. Hence, the computation
methods of the desired workers and the flow distribution can be used as a preliminary
technique to fix the model parameters W and B, before optimizing the corresponding
DTN-MIP. Another advantage of the steady state analysis is that it serves as a tool to
derive a heuristic for incumbent solutions: We can use the optimal worker distribution
of the steady state case as a promising starting distribution. From this it is possible to

compute a feasible starting solution to speed up the start of the optimisation algorithm.

Definition 2.3.3. A solution of (2.25) is called steady state solution, if défj =0 and
% =0 and Bi(t) is independent on t Vi € E.

Hence, we drop the time index t in the steady state case.

Time independent capacities. We compute the capacities ¢; for the steady state

solution. The capacities in equilibrium are computed by
min{" "% wa,,) —min{Z, 1} =0 Vi (2.38)
€ €

The steady state ¢; can be determined in the following way:

i — €ly, if p; > 2el; AN By > I/If'idl- (Case 1 1)
R. ey . l;
¢ = eleZﬁZ ?f AN B < Wﬁl? (Case 1.2) (2.39)
3 M, if oy <2el; N B; > 5, (Case 2.1)
ewd;p; if—" — A ;< ﬁidi (Case 2.2)
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It can be checked that this choice of ¢; fulfills (2.38) by considering every case separately.
Considering the limit process € — 0, we get: Either ¢; = p;, if there are enough workers
to balance the breakdown rate (Case 1.1), or ¢; = 0 (Case 1.2). Case 2.1 and Case 2.2

will never occur, if p; is positive.

Time independent flow. Next, we investigate the buffer levels u; in the ODE-

constraint (2.25b) - (2.25c). In steady state, we have
[B ' f}z + fezt,i - fz = 07 Vi. (240)

Since ¢; as well as u; have to be constant in steady state, f; := min{c;, %} is also

constant. This means, if we find variables f; such that
(B fli + fexti — fi =0 and (2.41)
0<fi<g (2.42)

hold, we can set u; := f; - 7;. In that way f; = 1;—; < ¢; holds, and thus (2.25¢) is
automatically fulfilled. Apparently, equation (2.41) is only true, if the external inflow

fext 1S constant as well.

Remark 2.3.4. Enforcing the conservation of mass, cf. (1.18) in the steady state case,

/Othext,idf—/ot Z fidt.

i€eE i€ Bout

we get

Since ferr and fare time independent
t'z.fext,i =t Z fia (243)
i€l e pout

i.e. the total external inflow matches the total outflow.

Maximizing the outflow. In the original optimisation problem (2.25), we obtain a
worker distribution such that the outflow of the network is maximal. The same can be
done in the stationary case. Unlike in (2.25), for the steady state solution holds (2.43).
Hence, there would be nothing to optimise, if we previously prescribe the external
inflow. For this reason we leave the inflow as control.

External inflow is only possible at certain edges e € E™* C E.
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We reformulate (2.41) and end up with the following constraints:

[B'f]i_fi+fezt,i:0
[B-fli—fi=0

Vi e B
Vi ¢ E™.

Consequently, the steady state optimisation problem reads:

(2.25f), (2.25h), (2.251), (2.39), (2.42), (2.44)

(2.44a)
(2.44b)

(2.45)

In order to solve (2.45) with respect to the worker distribution § and external inflow

fext, we linearise (2.39) using the techniques presented in Subsection 2.2.2 and obtain

the following linear MIP:

such that Vi € E

(B~ flj = fi+ fextj =0
[B-fli—f;i=0

—d;W (1 —06;) <l —Wd;B; <1;d;
— widi < ¢ — pi + el < (g +ely) - 6

— GWdi(l — (51) S C; — EWdiﬁi S ,ui(l

Zﬂizl

i€l
Wﬁz S ZBL

0<3 <1, 0<fi<c, 0<c¢<pu

0; € {0, 1}.

Vj e B

— 51)

Constraints (2.46d) to (2.46f) ensure that ¢ is set according to (2.39). (2.46d) has the

effect that §; is set to 0, when 3; > —i-; otherwise it is set to one. (2.46e) guarantees

Wd;’

that ¢; is set to p; — el;, when ¢; = 0. In the same way (2.46f) ensures that ¢; is set to

eWd;3; in the case §; = 1.
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The optimisation problem (2.46) enables us to compute the long term behaviour of
the DTN. When we compute the maximal outflow for different number of workers W,
we find out, how many workers are needed on average to guarantee a desired production

outflow considering a long term production.

Remark 2.3.5. For the modified model (1.23), the dynamics of the capacity is directly
connected to f. For this reason, it is not possible to compute the capacities for a given
worker distribution a-priory, as in (2.39). Nevertheless, we can derive a steady state
model. In this case equations (2.46d) to (2.46f) have to be replaced by

D;i—1;-fi=0, (2.47)

where D; = min{#—=, W - d; - B;} and linearised as in (2.35). In the case, we want to
set € to zero, D; in (2.47) can simply be replaced by W - d; - 5;, since the upper bound
of ¢; is already guaranteed by (2.46i).

Relation to max flow problems. At this point, it is rather simple to include
an additional optimisation task, namely the optimisation of the flow distribution at
branching nodes (nodes with more than one outgoing edge). As we have seen, matrix
B prescribes the behaviour of the flow at vertices. However, we could instead use an
incidence matrix, which only describes the incoming and outgoing edges of a vertex,
without fixing the distribution rates. This makes the model more flexible and leads to
larger flows as shown later in Section 3.1.
The incidence matrix K is constructed as follows. Given a network with n edges
and m vertices, we have K € Z™*"™ whose elements are set in the following way:
1, if ¢ is incoming edge of v
kyi =< —1, if¢is outgoing edge of v
0, else.
The corresponding incidence matrix K of the exemplary network shown in Figure

2.8 is given by

1

o 1 0 -1 -1
K= o o 1 1 0 -1

o o o0 o0 1 0

o 0 o0 o0 0 1
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\Y
<
‘\\\'ﬁ
o
—

Figure 2.8: Example of a network, V;,, = {v1} and V,u: = {vs, v6}.

Consequently, it is possible to include the issue of optimizing the flow distribution

by exchanging constraint (2.44) with

(K- flo=0 Vv € V\(Vin U Vour) (2.48a)
(K - flo + fextw =0 Vi € Vi, (2.48b)

Hence, an improved steady state optimisation problem is

max Z fi (2.49)

(2.25f), (2.25h), (2.251), (2.39), (2.42), (2.48)

In summary, we note that model (2.45) yields the optimal steady state solution
for fixed distribution parameters B, whereas model (2.49) additionally computes the
optimal routing of goods. Another difference to the previous model (2.45) is that the
external inflow is specified at vertices, and not at edges. Since we usually want the
inflow to enter the network at edges without predecessors, we can easily assign the

external inflow to the startvertices without changing the setting.

Remark 2.3.6. It is also possible to use the incidence matriz K for the dynamic
model (2.37). But this might lead to highly fluctuating flow distributions in the optimal
solution. Since the rates do not explicitly appear as variables in the MIP, they cannot

be restricted to be constant in time, cf. [37, 42].
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2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Choosing a worker distribution 5 and computing the capacities ¢ according to (2.39),
we end up with a well known problem of graph theory, the Maximum Flow Problem
(MFP). In the sequel, we will use theoretical results from MFPs to prove the existence

of a solution to (2.49).

Lemma 2.3.7. Given a network G = (V, E) with properties l;,d; > 0 and p;,e >
0, Vi € E, there exists a feasible solution of (2.49) with Y ;. pouw fi = ZveVm fewtw > 0.

Proof. Let 8 be an arbitrary worker distribution, satisfying (2.25f) - (2.25¢). The upper
bound of the flow is given by (2.39) and satisfies ¢; > 0, Vi € E. The network can be
transformed in the following way: We can imagine the external inflow as edges from a
source vertex s to the point where the external inflow is supposed to enter the network.
The upper bound ¢ of these edges is set to infinity. In the same way we can add an
extra sink vertex t where all outflow edges are led to. Furthermore, we add an artificial
edge ey from the sink to the source node, which represents the total through-flow, cf.

Figure 2.9.

%

o .0

% ><

—.g—o—

(a) (b)

Figure 2.9: Transformed network.

From (2.42) we know that the lower bound of the flow in each edge is 0. This setting
fulfills the conditions for the existence of a feasible flow circulation stated in Hoffman’s
circulation theorem, see [6], Theorem 3.8.2. Taking the properties of a flow for vertex s
and t into account as defined in graph theory, it directly follows that fe, = >, pout fi =

Zvevm feat,n holds, due to the construction of the transformed network. O
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2.4 Application II: Traffic Networks - Optimal Traffic Light
Setting

Several approaches on finding optimal signal timing on road networks can be found in
the literature, see [14, 96], amongst others. Based on cell transmission models, which
are an approximation to the Lighthill, Witham and Richards model, mixed-integer
formulations and heuristic solution approaches have been developed, see [8, 53, 75, 76,
77]. These models can be applied to small junctions and aim for an optimal cycle
length of the signal timing. Different to these approaches, we do not especially aim
for an optimal cycle length, but want to optimise the switching times with respect
to previously known statistical boundary flows which might underly strong changes
during different times of the day. Additionally, we want to optimise road networks
containing complex junctions containing several lanes for different turning directions.
For several traffic models investigation has been done for complex urban intersections,
as for example in [39].

Based on the DTN model presented in Section 1.3, we derive a model for traffic
lights at junctions and derive a linear mixed integer optimisation problem that enables
us to optimise the traffic light setting in order to obtain the maximal through-flow the

network.

Modelling of complex junctions. First of all, we introduce a model for complex
traffic light junctions, where different lanes for different turning direction are used. We
model each of these lanes by a separate edge. We have given a flow distributin matrix
d, see Definition 1.1.7. Hence, d; ; represents the percentage of traffic that is going from
road ¢ to road j. d;; is set to zero for all invalid directions. As example, see Figure
2.10, the corresponding distribution is found in Table 2.1.

Now, we derive a DTN-MIP based on the traffic network model of Section 1.3. We
follow the strategy of Subsection 2.2.1. We indicate in parenthesis (I) to (VI) to which

step of the strategy we refer to.

2.4.1 Control Variables and Constraints (I)

In this context, the control variables are given by the traffic light setting.
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12

¥ ez -
¥ oo —

Figure 2.10: Crossover, where each lane for different turning directions is modelled by a

separate edge.

Table 2.1: Distribution parameters for vertex vy of 8x4-junction.

Y.

(a)

9 10 11 12
110 0 0 do
2|1 0 doio d21n O
3ldse 0 0 0
410 0 dg1r dai2
510 dsio 0 0
6|dso O 0 dg,12
7 0 0 d7711 0
8| dso dgio O 0
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Modelling of traffic lights. We model a traffic light at the end of a road ¢ by
piecewise constant functions A; : t — B. When A;(t) = 0 for some ¢, it means that the
traffic light is red at this point in time and otherwise it is green.

The traffic light is included into the model by adding the following constraints for

all incoming roads i:
filt) < Ai(t) - Bi(t), Vieds,
When we consider a road network that also contains junctions without traffic light,

we set the corresponding traffic light variable A; to one.

Secure setting. We assume that the traffic lights are set in a save way. This means
that traffic to an outgoing road cannot come from more than one incoming road simul-

taneously. Thus, a secure traffic light setting should satisfy the following constraint:

> A<, Ve (2.50)
1€6in: d;; >0

Depending on the specific case an even stronger restriction might be required. Imag-
ine a big junction, where left-turning vehicles should only have green light, when the

straightforward driving opposing traffic has red light, see Figure 2.11.

- = = = =

Figure 2.11: Examining secure traffic light settings.

For that reason we introduce the following notation:

Definition 2.4.1. A secure set S C E is the index set of traffic lights that must not
be green simultaneously. The superset § contains all secure sets of a given network,

8:={Spk=1,...I8|}.

We can guarantee a secure traffic light setting by respecting the following con-

straints:

95



2. OPTIMISATION CONTAINING DISCRETE DECISIONS

> Ai<1,VS,€8. (2.51)

€Sk

When the secure sets are chosen reasonably, constraint (2.51) includes (2.50).
The description of 8 is not unique. The easiest way to create 8 for a given network

is the following:

e Take one traffic light i and check one by one, which other traffic light j must not

be green at the time as .

e Create a secure set for each pair — and take in mind not to count a pair twice.

If we apply this strategy to the junction shown in Figure 2.10, we end up with 20 secure

sets, each containing two elements:

S = {{173}17 {174}29 {176}37 {177}47 {138}57 {233}67 {274}73
{2, 5}8a {27 7}97 {27 8}10a {37 5}11a {3a 6}127 {3a 8}137 {47 5}147
{4,6}15, {4, 7}16, {5, T}H7, {5,8}18, {6, 7}19, {6,8}20} (2.52)
However, this is not the best formulation, compare Remark 2.2.2. To clarify this

concept, let us take a deeper look at the relaxed formulation: When we neglect the

binary restrictions on the variables A;, the control constraints yield:

d A <1, VS, €8 (2.53a)
€Sk
0<A;<1,VieE. (2.53b)

The feasible region of (2.53) is far from being the convex hull of the integer programming

problem

> A <1, VS €8 (2.54a)
€Sk
A;eB,Vie E. (2.54b)

A better formulation of the secure sets can be derived by combining as many of the
element pairs of the above constructed sets Sy as possible. If we look carefully at the

given example, we observe that there are four groups of four pairwise different roads
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Figure 2.12: Roads whose traffic lights cannot be green at the same time.

which must not be green simultaneously for each combination of the lights contained
in the set. One of them is depicted in Figure 2.12. The others are obtained by rotating
the setting.

In this way, we obtain an alternative formulation S, given by:

8 ={{2,4,5,7}1, {1,4,6,7}2,
{17 33 63 8}3’ {27 33 53 8}4} (255)

Let P be the polyhedron described by 8 and P the polyhedron described by 8, i.e.

P={zeR®: ) &, <1VS,eSA0<az <1Vi=1,...,8} (2.56)
€Sk
and
Pi={zeR®: ) &, <1,V5,eSN0<a;<1,Vi=1,...,8} (2.57)
iES’k

Claim 2.4.2. P is a better formulation for (2.54) than P, i.e.

){reB®: Y 2, <1, e8={reB%: Y x,<1,5¢cSs} (2.58a)
€S €Sy

and ii): P G P. (2.58b)
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Proof. (2.58a) holds due to construction. In both cases, the only integer feasible points

are given by

0 1 0 0

0 0 1 0

0 0 0 0

2w — 0 7 0 ’ 0 L 0 7

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 ’ 0 7 0 , 1 ’ 0 ’ 1 ’ 0 , 0 (2.59)
0 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1

With respect to (2.58b), we first show that P C P :
Choose an arbitrary « € P. Thus, 0 < z; < 1 holds for all i = 1, ..., 8. Taking the

order of the secure sets as stated in (2.52) and (2.55) into account, we have

Y xi<1 = Y a; <1, for secure sets S; € 8, with j =7,8,9,14,16,17,
i€51 ieS;
Z ;<1 = Z x; <1, for secure sets S; € 8, with j = 2, 3,4, 15,16, 19,
i€Ss €S
Z <1 = Z x; <1, for secure sets S; € 8§, with j =1,3,5,12,13, 20,
i€S3 1E€S;
Z ;<1 = Z x; < 1, for secure sets S; € 8§, with j = 6,8,10,11,13,18.
€S €S
= PcCP.
Now, we show that P G P,i.e. 3z € P: x ¢ P
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Choose # = (00.500.50.50 0 0)T. 7 fulfills

Zg:«igwskes = feP
i€8y

But we have
Y #i=15>1=>2¢P.
i€§1

This proves the claim. O

The next subsection represents the second step of the strategy presented in Sub-
section 2.2.1. An objective function is formulated turning the DTN into a continuous

optimisation problem.

2.4.2 Objective Function and Continuous Formulation of Optimisa-
tion Problem (II)

Our goal is to find a traffic light setting that enables the traffic participants to drive
smoothly through the road network while encountering as few congestion as possible.
For this reason we aim to maximise the flow overall the whole network. Considering
the continuous notation, this means, we want to maximise the integral over time and

space of the flow plus the integral over time of the coupling flow at junctions, i.e.

maxieZE(/oT/oLi f(pi(x,t))dxdwr/OTf;(t)dt). (2.60)

The constraints of the optimisation problem consist on the one hand of the flow
function, the evolution of density along the roads and coupling conditions at the junc-
tions, compare DTN model in Section 1.3. On the other hand, we need the above

derived control constraints for the traffic light setting.

i) Flow. As stated in the derivation of the DTN model in Subsection 1.3, p : (x,t) —
p(z,t) € [0,p™**] C RT denotes the density of cars, z € [0,L;] C RT describes the
location on road ¢ with length L; and ¢ € (0,7) C R denotes the time horizon.

maxr

For every road we specify a maximal density p;*** and triangular flow functions f;,

given by (1.26). The prescribed flow function holds along the roads as well as for the
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coupling at the junctions, i.e

flow along the roads:

filz,t) = fi(pi(z,t)), Vie E, x €0, L] (2.61a)
coupling flow:
filt) = f(pi(1)), Vi€ B\E™ (2.61b)

7)) = FEi(1)), Vi€ B\E™, (2.61¢)

ii) Density evolution along the roads. Along the roads, the continuity equations
holds:

0,

{ Op;i + arfi(p) (2.62)

pi(a,0) = (),

iii) Coupling. As in [19] we choose the coupling in a way that maximal possible
flow is achieved at the junction with respect to (1.34), (1.35) and conservation of flow.
For all junctions v with traffic lights, the coupling flow {f;,i € §"; finj € 09t} is the

optimal solution of the following optimisation problem:

max Z Yi(t) (2.63a)
suh

7(t) = Z dij(t)vi(t) Vi € 65" (2.63b)

0< ;it) < Ai(t) - Fy(t) (2.63¢)

0 < ;(t) < Fj(t). (2.63d)

Note, that these coupling optimisation problems are now constraints of our opti-
misation problem. Later (in Subsection 2.4.4) we show how to handle these nested
optimisation problems and manage to rewrite them as linear constraints of the DTN-

MIP without loosing any information or accuracy.
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Additionally to the coupling flow, we need the following side constraints:

maximal possible coupling flow:

= . fimal” ifo< pO,i(t) < P;( . )
Fi(t) == { foi(t), else Vic E\E (264)
2 = fn,z(t ’ if0< pn,l(t) < p;k . out

Fz(t) = { fz-mal” else Vi € E\E (2.64b)

coupling density:

_ [0, 3], if 0 < po;(t) < pj ; in .
pilt) € { {040} U0, (0, ()], clse vie E\ET - (2.64)

ﬁi(t) c { {pnii(t)}U]T(pmi(t))apgnax]v if 0 < pnii(t) < p; Vi € E\Eout (2.64(31)

oz 2] else

iv) Traffic lights. For the traffic light settings we need to prescribe the secure sets

Sy. Then, the following constraints are required:

> At <1, VS, €8 (2.65)
€Sk
As explained later in Subsection 2.4.5, we can optionally include constraints (2.19) and

(2.99b) in order to limit high fluctuations of the switching times.

2.4.3 Discretisation (III)

As in Section 1.4, we introduce discretisation grids. The discrete time grid is given by
T={t:t=0,...,n} with time-step size At and number of time-steps n; := [+ ].
T discrete spatial grid is given by X = {k : k = 0,...,n;}, where the spatial size is
referred to as Az and the number of space-steps is given n; := f%}

Depending on the numerical schemes used, we get requirements on the time-step
size depending on the space-step size, as for example the CFL-condition, see (1.74).

The discrete formulation of the objective function (2.60) is

max Z Z 2 f(pfm)AtAx + max Z Z fiAt. (2.66)

t i€eE k=0 t el

We rewrite the constraints of the previous subsection using a discrete formulation

of the variables, which are given by:
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control variables: Al eB (2.67a)
state variables: 0< f,iyi, it B FY < pras eR (2.67b)
0< phgs By p7 < pi"™, eR  (2.67c)

Vie E,keX;,, teT.

For the discretisation of the PDE (2.62) we choose a numerical scheme H, as pre-
sented in Section 1.4. We start with the initial density values pg ; and obtain the density

values for the time-steps iteratively:

vt=1,...T—1:
inner grid points of the road:

pllf:’rzl = g_(’-(pllfc—}—l,i’ p};,ﬂ PZ—M’ fli-i—l,ia flz)w fli—l,i% Vi € E7 k= 17 sy Ny — 1 (2683)
left boundary cell:

Poi = H(PLis Pois Pis f1or four 1), Vi€ B\E™ (2.68b)
right boundary cell:

p::,ril = j{(ﬁﬁv p;,iv pfz—l,zﬁ zt? 7tL,i’ rtz—l,i)’ Vie E\Eom (2'680)

where H denotes the numerical scheme.

Remark 2.4.3. For the sake of simplicity, we omitted the double indez, i.e. we write

Pl ; instead of pl, ; and so on.
K 9

In the following subsection, we comment more detailed on the choice of the scheme

JH, keeping in mind the linearisability of the whole optimisation problem.

2.4.4 Linearizing Constraints (IV)

To obtain a linear MIP we now apply the linearisation techniques as shown in Subsection

2.2.2.
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i) Flow. For the linearisation of (2.61) we follow the steps described for linearizing
the triangular flow function, see page 73. Consequently, we obtain the following set of

linear constraints:

Fhi = 2XPLi — Ph.i2XKh; — Apli + P i2) (2.692)
. Lo, 1,
0 < P il = P + 5/)2,1‘ ~ 3Pk (2.69b)
0 < fri < PR Ky (2.69¢)
Phi = PR (L= Klg) < Py < Pl (2.69d)
0 < pli < pi” (2.69¢)
ki €B (2.69f)
VieE keX;,teT. (2.69g)

The linearised expressions for (2.61b) and (2.61c) are derived analogously.

ii) Density evolution along the roads. At this point, we use a numerical scheme
which leads to a linear connection of the state variables p?i and f,’;i, as for example
Lax-Friedrich-Scheme. Alternatively, it is also possible to introduce state variables M. }él
that express the space derivative of the density and use the Hamilton-Jacobi Scheme
that is derived in Subsection 1.4.2. Here, we will follow another approach: As we will
see in the next paragraph, we can omit a complex linearisation of (2.64d) and (2.64c)
when we use a numerical scheme that computes the boundary flow without involving

the boundary density; i.e. we apply a scheme of the form
t+1 _ ¢ ¢ t gt
Pri — j{(Pk,m fk—i—l,ia fk,ia fk—Li)

for k € {0,n;}. The staggered Lax-Friedrich-Scheme [61, 65], described in Subsection
1.4.1, equations (1.68) - (1.70), fulfills exactly these requirements.

iii) Coupling. The solution of the maximisation problem (2.63) is a constraint of our
optimisation problem. In the discrete formulation, (2.63) has to be solved separately

for every time-step t. In the following explanations, we will skip the time index.
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Linearisation of the coupling flow. Consider a traffic light junction with an
arbitrary amount of incoming and outgoing roads:

Let a set of incoming roads 6" and a set of outgoing roads §9*¢ be given. Further-
more, let parameters 0 < d;; < 1 which fulfill Zjeégut d;; = 1, upper bounds F; > 0
for all i € % and F; > 0 as well as traffic light parameters A; € B for all i € 6" and
j € 654t be given.

In order to obtain the coupling flow fi for all 7, we have to find the maximal feasible

flow at the junction. Hence, we have to solve the (LP):

max Z Vi (2.70)

IS
such that
> digvi =, vj e ot
IS
0< v < AR, Vi€ (2.71)
0<v; < Fj, Vj € ot
Lemma 2.4.4. If
A~ . A 1 dkj A~
fi = mm{AiFi, d—l]Fj - Z d—fk, } (272)

kesin\i

Vje{&g“f:dij>0}
Fi=>Y" dijvi=n;; Vi€

€0l
holds for all i € 5 and
f_'j = Z dij’Yia Vj e 53Ut (273)

€8
then {f;, i € 67"}, and {f, j € 654}, is an optimal solution of (2.70).

Proof. Since the flow of the outgoing roads ; does not appear in the objective function,

(2.70) can be rewritten in the more condensed form
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max Z Vi (2.74)
IS
such that
> dyvi < Fj, Vjes (2.75)
IS
0 <~ < AF;, VYied™ (2.76)

We can transform (2.75) in terms of ~;, which yields

1 - d; )
W< —F— Y SRy, Wiedn je {6 dy # 0} (2.77)

Y pespngiy M
In this way, we get all conditions with respect to the upper bound of 7;. Thus, ~; is
feasible for (2.74) if and only if it fulfills

1 d; A
0<% < min{AF;, —F— Y %yk, L), Vie s, (2.78)

d. .
£ kesin\i 7

Vjie{dgut:d;; >0}

The feasible region of the linear program (2.74) is a polytope (i.e a bounded polyhe-
dron) due to construction. It is not empty, since 4; = 0 for all 7 is a feasible solution of
(2.74). According to the fundamental theorem of linear programming, see for example
[89], page 39, an optimal solution of (2.74) is an extreme point of the feasible region. An
extreme point is defined as a point that cannot be expressed as a convex combination
of any other two distinct points of the feasible region, see for example [89, 94]. Due to
construction, f as stated in (2.79) has for all indices ¢ an active constraint. Hence, it is
an extreme point of the feasible region of (2.74). Together with (2.78) this yields that
f is optimal for (2.74). O
Lemma 2.4.5. In consideration of the constraint (2.51) and (2.71), equation (2.72)

reduces to

N ~ 1 -
]

N—_——
Vie{69ut:d;; >0}

Proof. Due to (2.51) for each outgoing road j at most one traffic light parameter is
set to 1 for all roads that lead traffic to j. That means if A; = 1, then A; = 0 for all
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J :dij > 0. In this case equation (2.72) reduces to (2.79). If A =0, then the minimum
of (2.79) is zero as well as the minimum of the terms of (2.72). Hence, for both cases,
the claim is fulfilled. O

Due to Lemma 2.4.5, we can can replace the maximisation problem (2.63) by the
minimum-expression (2.79) for every time-step ¢ € T. These expressions can be lin-
earised iteratively using the Lemma 2.2.3 and Lemma 2.2.4. For example, for the
junction shown in Figure 2.10, there are not more than three terms per minimum

expressions different from zero:

N N 1 -
ft = min { ALF, diij} (2.80)

5

for (i,5) € {(1,12), (3,9), (5,10), (7,11)},

N 1 1 -
t_ s tpot t t
fi = min {Ale T F}, i Fj2} (2.81)

for (i,41,72) € {(2,10,11), (4,11,12), (6,9,12), (8,9,10)}.

Furthermore, dispersing junctions represent the lane split in front of the traffic light
junction (as derived in Subsection 1.3.3). Here we get
o= min {1, Rt L pt 2.82
fi = min ¢ F}, di 717 di i Jo (2.82)
for (i,41,72) € {(13,1,2), (14,3,4), (15,5,6), (16,7,8)}.

Then, we linearise (2.80) - (2.82) as shown in Lemma 2.2.3 and Lemma 2.2.4 and
additionally linearise expression A! - F! according to equations (2.5) - (2.8). This leads
us to the following set of linear constraints for the network shown in Figure 2.10:

vt € T and for (i,5) € {(1,12), (3,9), (5,10) (7,11)} we get:

Gi<fi <G (2.83a)
1 - 1 . 1 -
Ft— — gmazpt o gt o~ it 2.83b
diJ’ ] le f_] ﬁz —_— fz —_ le ] ( )
0<Gl< fr gt (2.83¢)
t

Gi— free(1— B} < Gt < G (2.83d)

IN
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Vt € T and for (4, j1,j2) €
{(13,1,2), (14,3,4), (15,5,6), (16,7,8), (2,10,11), (4,11,12), (6,12,9), (8,9,10)}

we get:

Gl <el <Gt (2.84a)
s 1 A
di,jl F]1 d—f]nllaxﬂz S €; S di’jl F]l (284b)
< ft<et (2.84c¢)
1 ot mazx, t £t 1 t
— i< [ < F 2.84d
di,jg d J2 = J1 — di,jz J2 ( )
0< Gt < frasgt (2.84¢)
Gl — fmes(1—B}) < GE < G (2.84f)
0<é < fn; (2.84g)
& — (- <& <é (2.84h)
For i e {1, e 8} we additionally need:
0< Gl < fw Al (2.85a)
M} — frem(1— Al < GE< M (2.85b)
with
fi, Fl, Fl,, Fl,, Fl €R{ (2.86)
and linearisation variables
{m €B, (2.87a)
Gi, Gi, ¢, ¢l e R, (2.87b)

where Gt represents A% - f¢ for i = 1,...,8, and G* = M} for roads 13-16, which are

P =

without traffic light. Furthermore we have Gt := B - FY, ¢! = min{FY, %Ff} and
0,51

St ot ot
€ =mn; e
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Linearisation of F;. As before, we use the binaries /{fm» (and n&i) which are
set to 1, when the corresponding density value is smaller or equal than p] and to 0,
otherwise. As proposed by [50], we can reduce the number of constraints, when we

already transform the resulting variables f§; and f; ; according to (2.69). This yields

Fl = H;,i : frti,i + (1 - ’iﬁl,i) i

(2.15a) *
2Vt (W disha + (U= k6 )Ou(205 = ph)) ) + (1= s ) - S
= H’It’L,’i)\ip’lt’L,’i + (1 - ’ffm) i, (2.88)

because (kf, ;)% = Kl ;, since it is binary.
k) k)

Analogously, we get

ot ¢ t gt
F = “o,ifimaw -(1- KO,i)fO,i

7
(2.25¢) %
2V b+ (1= ) (Wb diph + (1= kb ) Ni(20 = £,)))

= 217" — K I = Nipbi + Nikh i} (2.89)

(2.88) and (2.89) together with the constraints (2.29) form the linear equivalence

to (2.29), (2.64b) and (2.64a).

t

i and

: : Ft Ft : ¢ ¢ ¢
Now, we introduce variables fj,; and f; ; representing s ; - fo,; and &, ; -

add the corresponding required linear constraints analogously as in (2.5) to (2.8).

Coupling density. The equations leading from the boundary density :06,1' and
Pt ; to the coupling density pf and pf, (2.64d) and (2.64c), are also linearisable:
Consider the upper part of equation (2.64d). We assume that p is known. We have

to linearise
y € {p}Ulrp, o7 ] (2:90)
& y=pAT,<y<Ll

ma:r]

We use g €]7,,p and sets

y=Ep+ (1&g

with € € B. Now we linearise g := &£ - g by
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respectively. Hence, we get the linear constraint

y=&+9—3. (2.91)

In summary, we can replace (2.90) by

y=~4p+9-3 (2.92a)
0<g<1-¢ (2.92b)
g—p"(1-¢<g<yg (2.92¢)
¢eB (2.92d)
T, < g < ph** (2.92¢)

Since strict inequalities, such as (2.92e), are difficult to handle for MIP-solvers, we

introduce a very small tolerance value 0 < e < 1, and replace (2.92e) by 7, + € < g <

maxr

p

Analogously, we can linearise the set-constraint of (2.64c).

Taking account the techniques to linearise the if-else-construction of (2.64d) and

(2.64c) and applying (2.92).

For all junctions v € V' and for all ¢ € T we obtain the following set of constraints.
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For the coupling density of incoming roads i € §":

Py =7 +yi— 0 (2.93a)
1, 1 . :

0 < 2pf = 5Pni = PIGi + P, (2.93D)
0 < g < pf"*- ¢ (2.93c)
PPl =) < g <yt 2.93d
yi — P ( G)<u <w (2. )
0<zl<pre. (2.93¢)
2 — p (1= () < 2 < 2 (2.93f)
0<ph, <prer- ¢t (2.93g)
1 __ ,max 1 _ < ~t < 1 2 93h
Pni — Pi ( Ci) S Pni S Pnyi ( . )
Yi = P, +9i — G (2.93i)
0< pr; < pi® - & (2.93j)
i — PP (L= &) < phs < ph 2.93k
Pni — Pi ( &) < Prni > Pnyi (2. )
0<gl<ppor.¢ (2.931)
gi — " (1= &) < g < g} (2.93m)
20} — pri e < gi < (2.93n)
pi <z < pj"** (2.930)
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For the coupling density of outgoing roads j € §5u¢:

Py =2+ b — 0 (2.94a)
1, 1 B .
0< 505 — §P6,j — o+ PG (2.94b)
0 <gh < pfee- ¢ (2.94c)
y§ — T (] — C}) < g§ <t (2.94d)
0< 2t <pprer. (2.94e)
25— pit(l = () < 2 < 2] (2.94f)
0< po; <P po (2.94g)
Pg,j - P;nm(l - Pg,j) < ﬁ(t),j < P(t),j (2.94h)
Y; = Poj+ 95— 3 (2.94i)
0 < g5 < (20] = poy) - & — € (2.94j)
g =P (=€) < gy < ] (2:94k)
0< po; <P po, (2.941)
o — P71 = po ;) < Poy < po (2.94m)
0< 2z <p; (2.94n)
with state variables
pAgﬂ 1557 pfq,ia PB,J € R+7 (295)
linearisation variables
Zfa Z;W Zf7 Z;a y’f? y;? g’f7 g;? ﬁz,zﬂ ﬁf),]? ﬁz,zﬂ /367]? gzt? g;v gztv g; € IR(J)r (296)
and binaries
LG €€ eB (2.97)

for all s € §in, j € 594 v € V.

Resulting DTN-MIP. Altogether, we get a linear mixed integer optimisation Prob-

lem of the form
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max (2.66)

such that

(2.67), (2.69), (1.68) - (1.70), (2.83) - (2.87), (2.88), (2.89),
((2.93) - (2.97)).

(2.98)

In this formulation, the numerical scheme (1.68) - (1.70) can be replaced by any other
easily linearisable numerical scheme H.

However, the tolerance parameter € that is needed for the linearisaton of the coupling
density can lead to numerical instabilities. In the worst case, it can happen that the
optimisation algorithm does not find a feasible solution at all, because of rounding
€rrors.

As mentioned earlier, we can apply the strategy proposed by [50]. We completely
omit the computation of the coupling densities (2.93) to (2.94), when we use a numerical
scheme for the evolution of density on roads that does not need the coupling density in
order to compute the boundary density, see Subsection 1.4.1. In this way, it is sufficient
to only consider the boundary flow ff and flt to get all necessary information. To get
this clearer, we refer to have a look at the forward solver, that is able to compute all

model and linearisation variables once the traffic light setting is fixed, see Algorithm 5.

2.4.5 Additional Requirements on Switching Times (V)

It is desirable to avoid traffic light settings with highly frequent switching times, since
this would not be applicable in real applications.

We follow approach B described in Subsection 2.2.3. In that way the switching
times itself are subject to the optimisation process. In order to obtain a smooth flow,
we prescribe a lower bound for the green phase, such that several cars have the chance
to cross the junction. Furthermore, we want to spare any traffic member to wait for
extremely long time in front of a red light, even if the road, he is coming from, is not
very busy. As explained in Subsection 2.2.3, part B, we can meet these requirements
by including additional constraints.

Let Ly € N be the minimal number of time-steps, a traffic light is allowed to be
green and U, the maximal number of consecutive time-steps, a traffic light is allowed

to be red.
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Algorithm 5: Forward solver, to compute a feasbile solution for a prescribed

traffic light setting.

[>T 1 S N

/* Input: Traffic network model with initial conditions
pg ; Vi€ B,k € X;, outer boundary conditions pai,Vi €&m tcT and
feasible traffic light setting AL, Vie E,t€ 7. */

/* Output: An integer feasible solution, i.e. corresponding

values for model and linearisation variables */
begin
forall the t =0,...,nt do
/* Compute state variables */

Compute F! and E! according to (2.64a) and (2.64b), Vi € E.

Compute coupling flow f! and f! according to (2.79) and (2.73), Vi € E.
Compute flow f,ii according to (2.69), Vi € E, k € K.

Apply numerical scheme for the roads for the next time-step to compute

pfjil using (1.68) to (1.70). /* Compute linearisation variables

*/
Set linearisation variables (2.87), f,ﬁ ;» etc. to the corresponding values,
Vie E, keX,.
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According to equations (2.17) and (2.22), we have to add the following constraints
for all roads ¢ which possess a traffic light to our DTN-MIP:
t+Lg
> AL Ly(—Al+ AT, Vi <ny— L, (2.99a)
I=t+1
t+Ur+1
dooAl>1, Yt <ng—U, — 1. (2.99b)
I=t+1

2.4.6 Speeding up the Optimisation Algorithm (VI)

We use the idea described in Subsection 2.2.4 to speed up the optimisation procedure.
We apply a bounding heuristic to compute integer feasible solution for each subnode
of the tree (already starting with the root node), see Algorithm 4. To compute feasible
control variables as done in line 5, we derive an algorithm which is adapted to the needs
of the DTN-MIP (2.98). If we do not consider additional requirements on switching
times, as described in Subsection 2.4.5, we use a greedy heuristic to find potentially good
settings of control variables: We try to set those traffic light variables to one, which are
close to one in the relaxed solution, as long as we do not violate the control condition
(2.51). For more details see Algorithm 6. Having obtained the control variables, we run
the forward solver, Algorithm 5, in order to get an integer feasible solution of (2.98)
for the considered subnode in the Branch & Bound tree.

If we also want to include requirements on switching times, such as (2.99a) and
(2.99b), it is a bit more involved to find a feasible setting of the traffic lights. This is
due to the fact that we can not consider each time-step separately anymore. Instead
of deriving a heuristic algorithm for this situation, we solve an additional optimisation
problem, containing only the control conditions (2.51), (2.99a) and (2.99b). We want
to use an objective function that supports good solutions for the original DTN-MIP
(2.98). We follow a similar approach than in Algorithm 6: We consider the values of
the traffic light parameters of the optimal relaxed solution, and formulate an objective
function that rewards setting those variables to one, whose relaxed values are closest

to one:

max » Al Al (2.100)

%)
teTiel;
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where I is the set of indices whose control variables have not been fixed during the
branching process (and which are not integer feasible in the relaxed solution) and flﬁ
are the values of the optimal solution for the relaxed problem. Note, that A;? are known
values in this context and serve as coefficients. Hence, the objective function is linear.

The whole procedure is described in Algorithm 7.

Algorithm 6: Compute Controls I.

/* Input: A DIN-MIP of the form (2.98), a set of fixed control

variables Aﬁ, teJ, i€ ft C E, relaxed solution with controls

At eR. */
/* Output: A feasible setting of control variables
Al € B, V(i,t) € E x T with respect to (2.51) */
1 begin
2 fort=1,...,nt do
/* Consider the index set whose control variables are not
fixed yet */
3 Set I := E\I
4 while I} # () do
/* Find the traffic light variable closest to 1 x/
5 find j = argmazier; flf
6 if A;- =1 does not violate constraint (2.51) then
7 | Set AL =1.
8 else
9 L Set A% = 0.
10 Set I; = I; Uj. Set If = I}\j.
11 Return control variables A%, V(i t) € E x 7.

In Chapter 3 we apply these Bounding Heuristics in the way they are illustrated
in Figure 2.7. The improvement of the optimisation procedure compared to the use of
a simple starting heuristic (cf. Figure 2.5) is remarkable. For more details, see Figure

3.44(a), 3.45(a) and 3.46(a).
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Algorithm 7: Compute Controls II.

/*

/*

Input: A DTN-MIP of the form (2.98), a set of fixed control
variables A;‘i, teTJ, i€ ft C FE, relaxed solution with controls

At eR. */
Output: A feasible setting of control variables

Al € B, V(i,t) € E x T with respect to (2.51), (2.99a) and (2.99b).
*/

1 begin

2

fort=1,...,nt do
/* Consider the index set whose control variables are not
fixed yet */
Set I := E\I,

Solve coupling IP:

max Z At. At

teT L}
such that (2.51), (2.99a) (2.99b)
Al €B,VteT, il

Return control variables Al, V(i,t) € E x 7.
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Results

In this chapter we present various results on the models derived in the course of this
work. Section 3.1 is dedicated to considerations on the production network model with
dynamic capacities, see Subsection 1.2.2 for the DTN and Section 2.3 for the corre-
sponding DTN-MIP. We illustrate the behaviour of capacities, buffers and production
flow and the effects of worker changes. Furthermore we analyse grid size dependencies
on solutions and verify the conservation of mass (cf. Lemma 1.2.2). Next, we pro-
vide a detailed study on the steady state model, see Subsection 2.3.2, for a branched
network and point out how we can exploit these results for the corresponding dy-
namic DTN-MIP. Finally, a real world example demonstrates the functionality of the
model and shows, how production flow can be gained by skillfully appointing workers in
under-staffed situations. Section 3.2 considers the traffic flow model, derived in Section
1.3. Firstly, simulation of the novel Hamilton-Jacobi-Algorithm (cf. Algorithm 1) are
shown, compared to other schemes and used to derive car trajectories. Secondly, the
DTN-MIP on traffic light optimisation, see Section 2.4, equation (2.98), is considered
and improvements for optimal traffic light settings are pointed out. We also discuss
the necessity of additional restrictions on switching times, as explained in Subsection
2.4.5 and compare the corresponding solutions. Thirdly, tuning techniques for the op-
timisation algorithm, as shown in Figure 2.5 and 2.7 are applied and compared. All
computations are performed on a PC equipped with 16GB Ram, Intel(R) Xeon(R)
CPU 5160 @ 3.00GHz.
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3. RESULTS

3.1 Application I: Optimal Worker Scheduling for Pro-

duction Networks

For computational experiments we use two different approaches. For the first small test
case discussed in Subsection 3.1.1, we implemented the optimisation problem (2.25) in
Matlab 7.5 using the function fmincon, which is a solver for nonlinear optimisation
problems, see [87]. This approach works quite well as long as the test cases are small.
The disadvantage of this solver is that it often gets stuck in local optima and it does not
allow to restrict the worker distribution to integer workers. For these reasons we derived
the mixed integer formulation (2.37) which can be used by Cplex 12.1.0, a commercial
solver for linear mixed integer problems developed by IBM, formerly Ilog, see [23]. It
uses a Branch & Cut algorithm providing the user with currently found primal as well
as dual bounds during the optimisation process. In the case that the optimality gap
tends to zero, the user can be sure that the provided solution is indeed globally optimal.
Furthermore, this method has the advantage that we can easily restrict the workers to
integer numbers, which is indeed meaningful for real world applications. In Subsection
3.1.2 this method is applied to a branched network where also steady state studies are
carried out. Subsection 3.1.3 deals with a real-world example as originally introduced

in [42, 47].

3.1.1 Model Behaviour on Processor Chain

Initially, we sketch the impact of numerical parameters on the result as well as introduce
the modelling aspect of worker changes during the time horizon. Therefore, we take a
small test example. We consider two machines in a row with a fixed parameter setting,
see Figure 3.1 and 3.2.

Note that the breakdown parameter [ is set to a relatively high value compared
to the maximal processing capacity in order to better work out the effects how the
worker distributions influence the overall outflow. Nevertheless, the length of a time
unit can be interpreted according to the application and typically comprises a much
larger period than one single production step. If we choose smaller breakdown rates,
we have to set the time horizon to a much larger value to see significant effects, which

also enlarges the computation time.
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3.1 Application I: Optimal Worker Scheduling for Production Networks

time horizon: T=4
throughput time: 7=10.25
workers: W =40
. machinel machine2 Total inflow:
w40 =40 fOT feat(O)dt = 3o fLoyAt =75 parts
0=30 0=40
Figure 3.1: Two serial processors. Figure 3.2: Parameter setting.

Remark 3.1.1. Note, that we do not use the linear MIP formulation in this subsection,
but solve the optimisation problem wvia the first approach: by monlinear, gradient-based

optimisation methods, which does not allow for integer restrictions on workers.

The time horizon is T' = 4, the throughput times at buffers are 7; = 0.25 for every
machine and 40 workers are available. The external inflow enters the network at the first
machine. In the first 1.5 time units, we have an inflow of 50 and thus fOT fewt(t)dt =75
parts are introduced into the system. Furthermore, here and in all following examples,
the repair times 7; are set to 1 for all edges.

As initial condition, we set cy; to full capacities and assume empty queues in the
beginning (i.e. ug; = 0). Furthermore, we provide a start solution where the workers

are equally distributed among the edges, i.e. we have 20 workers at each machine.

Numerical Investigations

We perform a simulation assuming the worker distribution rate § to be constant for
the whole time horizon. We compute the objective function value (2.66) for different
values of 3, using the Matlab routine fmincon with explicit Euler discretization for the
ODE-constraints. We let 51 go from 0 to 1 in steps of length 0.001. In Figure 3.3,
we compare the simulation results for different time grids. We can observe that the
optimal objective function value tends to the same value, even for coarse time grids.
In this setting, the maximal outflow of 44.47 units is achieved, if 13.92 workers are
sent to the first machine and 26.08 to the second one. As we can see in Table 3.1 and
in accordance with Figure 3.3, the conservation of mass, as stated in Lemma 1.2.2, is

kept with an accuracy that depends on the time grid size.
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50

44.47
40f

35r
301
25¢

outflow

201
15

0 10 13.92 20 30 40
number of workers at the first machine

Figure 3.3: Comparison of simulation using different time grid sizes.

At | opt. worker distr. | max outflow | final queues >

0.1 [13.716, 26.284] 43.756 31.457 75.213
0.05 | [13.803, 26.197) 44.163 30.888 75.050
0.02 | [13.871, 26.129) 44.453 30.558 75.011
0.01 | [13.921, 26.079] 44.471 30.532 75.003

Table 3.1: Verifying conservation of mass. The total inflow is Y, fL,, At = 75.
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3.1 Application I: Optimal Worker Scheduling for Production Networks

Worker Changes

In a next step, we illustrate the modelling aspect of worker changes. We have the
option, to vary the worker schedule at certain points in time. We allow the workers
to change their position once in the middle of the time horizon. We fix the time grid
size to At = 0.01 and simulate the objective function value varying ¢ from 0 to 1
with step width 0.001 33 of the second machine automatically varies since 85 = 1 — j3t.
Since 3! has two values (one for each time period), we end up with a 3D-plot showing
the objective function value for all combinations of 8%t € [0;2] and 8!, t € (2,4]. The
result is depicted in Figure 3.4.

I outflow

O maximal outflow allowing one worker change
outflow for settings without worker change
49136 F-o ® maximal outflow for constant worker schedule

45|
40
35
30
25

20

outflow

15+

10-
40

workers {1ist time period . .
{ p ) workers (2nd time period)

Figure 3.4: Outflow depending on the number of workers at the first machine, including

one worker change in the middle of the time horizon.

Obviously, at a first result, allowing one worker change within the time horizon leads
to an improvement of the optimal solution (49.14 units compared to 44.47 units). To
understand this behavior, we shall have a closer look at the evolution of flow, capacities
and buffer levels as well, which are plotted in Figure 3.5(a).

In all these plots we observe that the number of workers at a machine influence the
slope of the capacity evolution. Unless the capacity is neither 0 nor has reached its
maximal level p, it can be described by a (piecewise) straight line with slope W g;r; —I;

(cf. equation (2.25d)). Since the breakdown rate of the second machine is 40, we need
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machine 1

— capacity
— flow
= = = buffer level in front

of machine

time
13.9211 workers

machine 2
40

35E\
30
25

20

time

26.0789 workers

(a) Constant worker schedule.

machine 1

40
\

35r

.

301

25¢

10
s
o ‘ :
0 1 2 3 4
time
16.26 workers 0 workers

machine 2
— capacity
30 —flow
= = =buffer level in front of machine
25 o worker change
20
15
10 e R
5 -
0 . .
0 1 3
time
23.74 workers 40 workers

(b) One worker change in the middle of the time horizon.

Figure 3.5: Optimal solution for serial processors.
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3.1 Application I: Optimal Worker Scheduling for Production Networks

all 40 workers to keep the capacity at the same level. This happens in the time period
after the workers have changed, see Figure 3.5(b). In this way, the flow is sustained

leading to a larger total outflow value compared to a fixed worker schedule.

Remark 3.1.2. [t is not always the case that a unique maximum is reached. On the
contrary, in more complicated settings many local mazima may occur. In such cases the
fmincon solver is not reliable anymore since it often gets stuck in local optima. Another

drawback of fmincon is that we cannot stick to schedules with integer workers.

Flow-dependent Capacity Behaviour

Now, we consider the modified model, using equation (1.23). To compare the qualitative
behaviour of both models, we use the same testcase as before. Note, that this time,
the capacity loss is proportional to the through-going flow. For that reason, we choose
the breakdown parameter [ in a way that the magnitude of the capacity loss is roughly
comparable to that of the previously discussed setting. Namely, we set [; = 0.75 and

lo = 1. The results are shown in Figure 3.6.

machine 1 machine 2

—— capacity : )

—flow N H /
buffer level in 35¢ g : /
front of machine : /

““““ worker change 307

25f

20p

0 1 2 3 4 0 1 2 3 4
21.3 workers 2.7 workers 18.7 workers 37.3 workers

(a) (b)

Figure 3.6: Modified model: optimal solution assuming one worker change in the middle
of the time horizon.

Usually abrasion effects are not as drastic and only perceptible after a longer time
period. For that reason we want to compare the observed behaviour of the model with

a more realistic parameter setting. We set the breakdown parameter [ to 0.2 for both

123



3. RESULTS

machines. This means that we have a capacity loss of 20% compared to the through-
flow. Furthermore, we extend the given time horizon to 7' = 20 and set the external
inflow to 50 parts per unit time for the first 8 time units. The available number of
workers is W = 5. This time, we additionally restrict the number of repair workers to

integer numbers, which is done by using Cplex [23]. The results are shown in Figure

3.7.

machine 1 machine 2
180 — : 180 ‘ : :
160f AN ] 160
140t 1 140
1201 A ] 120
100 7 [ capacity 100
80 s | flow 80
',' - = =buffer level in front of machine Lo,
60 - ] 60 RN
K "‘ Lt
40[ \ ] 40
20 k) 20 ez
(\ L L L ) 0 S L L L
0 5 10 15 20 0 5 10 15 20
time time
3 workers 2 workers
(a) Constant worker schedule, machine 1. (b) Constant worker schedule, machine 2, to-

tal outflow = 345,64 parts.

machine 1 machine 2

180 T T T 180 T : .
160} A 1 160 :
140} ] 140
120t 1 120
1000 /| capacity 100

S0k ’ —flow 30

'/ = = =buffer level in front of machine

60F s worker change 60

40 3 ] 40 7

20 01 > ;

0 s i ‘ ol s H s K
0 500 1000 1500 2000 0 500 1000 1500 2000
time time
4 workers 0 workers 1 worker 5 workers

(c) One worker change within the time hori- (d) One worker change within the time hori-
zon, machine 1. zon, machine 2, total outflow = 381.29 parts.

Figure 3.7: Optimal solution - considering a larger time horizon with more subtle break-
down rates.
Again, the worker change leads to an increase of total outflow, which is in this case

about 10%.
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3.1 Application I: Optimal Worker Scheduling for Production Networks

Note, that the runtime increases drastically, when longer time periods T are chosen.
In the previous example where 1" has been set to 4, the optimisation takes less than 2

seconds, whereas it takes more than 9 minutes in the last testcase with 7' = 20.

3.1.2 Production Networks

So far, the serial processor test case is a nice example to get insight and feeling for
the dynamics involved in the repair worker assignment model. After this numerical
experiments mainly computed in Matlab, we now have a different focus. First of all,
we analyse the steady state problem (2.45) in Subsection 2.3.2 and point out, in which
way the obtained information can be exploited for the dynamic model (2.37). The
models, formulated as linear MIPs (2.46), are solved by Cplex [23]. We extend our
studies to a more general network with 12 edges, as shown in Figure 3.8 and restrict
the worker distributions to integer values only due to the easier applicability to real
world problems. We allow external inflow for the first two edges and are interested in

maximizing the outflow at edges 11 and 12.

% 11 >
pu=20 n=20
o=1 o=1

"; 4 2 12 >
n=20 n=20 u=20 u=20
o=1 0=20 o=10 o=1

Figure 3.8: Branched network with 12 edges where r; = 1 for all machines.

Steady state studies

Before we prescribe the external inflow and compute the optimal solution of the dynamic
model (2.37), we first have a deeper look at the steady state solutions, described in

Subsection 2.3.2. Different from the dynamic model, the external inflow of the steady
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state model (2.45) is not given a priori, but is maximised simultaneously with the

outflow.

Analysis on the amount of available repair workers

From case 1.1 of equation (2.39) with ¢ = 0 we can deduce that we need at least i—i
workers in order to keep the capacity of machine i to its maximal level. In our setting
r; is set to one for all ¢ and breakdown rates [ sum up to 109. This means that at least
109 workers are necessary avoid capacity drops. Since employing workers is expensive,
it is rewarding to check, how we can cope with less manpower.

The question arises, how many workers we would at least need to get a steady
state through-flow greater than zero. In the case that we do not previously fix the
flow distribution at the nodes as explained in Subsection 2.3.2, we can find the answer
in the following way: Assume that the maximal capacity p; is greater than zero for
all machines. As explained before, the capacity of a machine can only be sustained,
if at least 7% workers are allocated to it. We can find the least manpower consuming
path through the network by using a standard shortest path algorithm such as Djikstra
algorithm, for more details see [51] and [66] amongst others. The through-flow of this
path is bounded by its bottleneck, which is the machine with the smallest capacity. For
our testcase, we need at least 17 workers contributed along the shortest path to get a
steady state solution greater than zero. In this case, the through-flow is 5 parts per

time unit, see Figure 3.9.

R 1 worker 10 workers
%

\

1 worker

c=20
=5

Figure 3.9: The least manpower consuming steady state solution greater than zero. The

resulting through-flow is 5 parts per unit time requiring a minimum of 17 workers.

When we previously fix the distribution behaviour of the flow as in Subsection
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3.1 Application I: Optimal Worker Scheduling for Production Networks

2.3.2, for example to equal distribution between the succeeding edges, we need a lot
more workers to get a positive through-flow. This is due to the fact that once an edge
transmits a flow, all its succeeding edges must also have a capacity greater than zero,
such that the flow can be distributed in the prescribed way. Note, that in steady state,
solutions do not allow for increasing buffers. For our testcase, we need at least 73

workers to get a positive steady state flow. The resulting through-flow is 10 parts per

unit time. For details, see Figure 3.10.

(f Y 1 worker 10 workers 10 workers 1 workers
RN o
7 >
c=20 c=20
=10 =5
4 ‘ 10 workers 1 worker
* \ / -
v >
c=5 c=20

=2.5 =5

Figure 3.10: The least manpower consuming steady state solution greater than zero, for
equally distributed flow at branching nodes. The resulting through-flow is 10 parts per

unit time and the necessary number of workers is W = 73.

Moreover, it is interesting to compute the maximal steady state solution, when we
have no capacity drop. If the flow distribution at branching nodes is not previously
fixed, we can find the solution via the Ford-Fulkerson-Algorithm [6] using the maximal

capacities ¢; = p; as upper bounds. The result is shown in Figure 3.11.

N\
S by 1 worker 10 workers 1 workers
v

A -

i

=20

=15

20 worker 10 workers

N Y 1 worker

c=20 c=20

=10 =20

c=20 c=20

=20 =15

Figure 3.11: The maximal static through-flow when all capacities are at their maximal

level.
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This gives us an upper bound for the maximal through-flow. In our case, it is 35

parts per time unit.

Under-staffed settings

From the above analysis we know that finding the optimal worker distribution is only
interesting in the case that we have less than 109 workers available. Otherwise, we can
always distribute the workers in a way that no capacity loss occurs.

In the following we consider two scenarios where the total number of workers is set
to 30 (— highly under-staffed) and to 100 (— slightly under-staffed) respectively.

Moreover, we compare both versions of the steady state optimisation problem (2.45):
First we use the flow distribution matrix d and thus a fixed flow distribution at branch-
ing nodes, and for the second run we exchange d with the incidence matrix K, see (2.48),
leading to variable flow distributions that are subject to the optimisation process.

The resulting maximal through-flow of the different settings is depicted in Figure
3.12 for 30 workers and in Figure 3.13 for 100 workers.

In the highly under-staffed scenario with fixed flow distribution (see Figure 3.12(a)),
it is not possible to allocate the workers in a way to obtain positive solution. All
machines are out of order and no flow is able to go through. However, if we leave the
distribution of flow up to optimisation, we can find a solution where a through-flow
of 10 parts per time unit can be provided, on the only functioning path through the
network (see Figure 3.12(b)).

As expected, we get a much better solution, when we increase the number of workers
to 100 (see Figure 3.13). Now, the setting with fixed flow distribution allows a maximal
through-flow of 20 (see Figure 3.13(a)), whereas the additional optimisation of the flow
distribution increases the through-flow to 35 (see Figure 3.13(b)). As shown above,
this is already the upper bound of steady through-flow with respect to the number of
repair workers.

The steady state solutions can be useful for the dynamic model (2.37). As explained
in the sequel, the steady state analysis provides us with a qualitatively good start
solution for the dynamic MIP (2.37), leading to significant runtime reductions of the
optimisation procedure. Furthermore, we can observe that optimisation of the flow

distribution at branching nodes leads to a considerable gain of outflow. This does not
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(a) Fixed flow distribution.
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(b) Optimised flow distribution.

Figure 3.12: Maximal through-flow, scenario with 30 workers.
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(b) Optimised flow distribution.

Figure 3.13: Maximal through-flow, scenario with 100 workers.
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only hold for the steady state case but also for the dynamic setting, as described in the

sequel.

Dynamic repair model

Now, we move on to the dynamic repair model (2.37). As before, we use the flow
distribution matrix d that divides the flow in equal shares among the succeeding edges
at branching nodes.

Different to the steady state model, we have to fix the external inflow function in
the dynamic setting. We choose f.,; = 20 for edge 1 as well as for edge 2. The time
horizon T is set to 5 and the time grid size to At = 0.1. As initial conditions, the
network is empty, i.e. buffers and flows are equal to zero for ¢ = 0 and the capacities
are set to its maximal values c? = p;. As in the previous subsection, we again consider
the highly under-staffed setting with 30 workers as well as the slightly under-staffed
one where 100 repair workers are available.

Due to the high complexity of the dynamic problem (2.37) it is advisable to provide
a start solution in order to speed up computation time. A feasible start solution can
easily be computed by fixing the worker assignment for all machines and computing
the forward solutions for the capacity and buffer conditions according to (2.26b) and
(2.26a). This procedure is explained in Subsection 2.2.4, Figure 2.5. The overall outflow
after the time horizon is 10.27 parts, when 30 workers are equally distributed among
the machines. Using this setting as start solution, optimisation takes 504.55 seconds.
However, if we use the optimal solution for the steady state case, depicted in Figure
3.14(a), the resulting outflow is 16.52 parts. When we use this solution as a start
for optimisation, the computation time reduces to 316.08 seconds, see Table 3.2. The
optimal worker distribution is shown in Figure 3.14(b) and leads to an outflow of 41.88
parts. If we allow position changes of the repair workers after each time unit, the
optimisation time strongly increases to more than 3 days. The optimal solution is to
assign many workers towards the end of the network in the last time period (see Figure
3.14(c), machine 9). This leads to an augmentation of outflow in the final time period
and to an overall outflow of 42.73 parts.

The outflow behaviour throughout the time horizon is depicted in Figure 3.16(a)

for different worker distributions.
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(a) Optimal worker distribution (b) Optimal solution for the dy- (c¢) Optimal solution for the dy-
of the steady state case. namic model. namic model allowing the work-
ers to change position after each

time unit.

Figure 3.14: Optimal worker distribution for the highly under-staffed setting, i.e. W = 30.

The same investigation has been done for the case that 100 repair workers are
available, see Figure 3.15 and 3.16(b). Again, optimisation time can highly be reduced
by using the steady state optimal solution, leading to a run time of 569.53 seconds,
which is a third of the runtime, when the start solution is given by equally distributed
workers (namely 1794.47 seconds). However, the computation time is unexpectedly
short, when we allow position changes of the workers, only 154.74 seconds, see Table 3.2.
An explanation for this phenomenon gives the comparison of the worker distribution
shown in Figure 3.15. It is conspicuous that the optimal worker distribution of the
steady state model, shown in Figure 3.15(a) is already quite similar to the optimal
solution with and without worker changes, see Figures 3.15(b) and 3.15(c).

For the modified model where the breakdown rate is proportional to the through-
flow the machines, the behaviour is similar. We use the same branched network as
before with breakdown parameters given by { =[0.10.10.511110.20.750.5 0.1 0.1].
The optimal worker distribution with and without worker changes is shown in Figure
3.17. Here, the following output can be achieved for the different scenarios (a)-(c):

(a) outflow of steady state optimal startsolution: 83.211 parts.
(b) outflow of optimal solution without worker change: 112.233 parts.

(c) outflow of optimal solution with worker change: 115.208 parts.
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Figure 3.15: Optimal worker distribution for the slightly under-staffed setting, i.e. W =
100.
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Figure 3.16: Outthrough-flowout the time horizon for the slightly under-staffed setting

comparing different worker assignments.
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Figure 3.17: Modified model using 30 repair workers.

In Table 3.2 the computation times of the different optimisation runs are listed.
Due to the smaller number of binary variables in the modified model, the complexity

of the corresponding MIP is smaller. For that reason much less computation time is

needed.
# workers | worker changes start solution original model: | modified model:

30 no equal distr. 504.55 s 65.69 s
30 no steady state opt. 316.08 s 18.57 s
30 yes equal distr. > 3 days 231.71 s
30 yes steady state opt. > 3 days 411.27 s
100 no equal distr. 1794.47 s 8.14 s

100 no steady state opt. 569.53 s 18.62 s
100 yes equal distr. 65.57 h 23 h

100 yes steady state opt. 154.74 s 46.71 s

Table 3.2: Optimization time comparison.
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Changing the flow distribution at branching nodes

In the sequel, we will use an important observation concerning the previously described
steady state analysis. Remember that the steady through-flow can be significantly im-
proved, when the flow distribution at branching nodes is not a-priori fixed. A straight-
forward idea would be to include this flexibility as well into the dynamic model (2.37)
by exchanging the flow distribution matrix d by the incidence matrix K analogously as
done for the steady case in Subsection 2.3.2. However, this ansatz encloses a significant
drawback. The distribution rates of the flow do not appear explicitly as parameters in
the formulation of the problem. For that reason it is not possible to restrict to constant
distribution rates, when the incidence matrix is used. Consequently, we can not avoid
the undesired effect that solutions contain highly fluctuating flow distributions. We
prefer to track another idea. We use the optimised flow distribution of the steady state

case for the dynamic model (2.37) by adapting matrix d accordingly.

Step 1: Compute the steady state solution with variable flow distribution (2.48).

Step 2: Construct the flow distribution matrix d according to the distribution of the

steady state obtained in step 1.

Step 3: Solve the dynamic repair model (2.37) using d and taking the optimal worker

distribution of step 1 as start solution.

In Table 3.3 the corresponding optimisation results are listed.

# changes || optimisation | opt. | outflow of. optimal improvement to
workers | allowed? time gap start sol. outflow previous flow distr.
30 no 3207.46 s 0% 42.56 45.05 7.56 %
yes > 3 days 2.33 % 42.56 € [49.56,50.71] > 1598 %
100 no 0.84 s 0% 126.28 126.28 4.80 %
yes 0.84 s 0% 126.28 126.28 4.26 %

Table 3.3: Optimization results for the dynamic repair problem using optimal flow dis-

tribution rates of the steady state analysis.

The last column of Table 3.3 shows the considerable gain of outflow by using the

optimised matrix d instead of equal flow distribution. Furthermore, it is interesting to
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have a look at the computation time. For the highly under-staffed setting optimisa-
tion takes notedly longer. When allowing worker changes, the optimality gap of the
algorithm could not even be completely closed after three days. On the other hand,
the gain of outflow is noteworthy, especially when workers are allowed to change their
position after each time unit. When 100 workers are available, the optimal steady state
solution turns out to be already optimal for the dynamic model, even for the case in
which we allow worker changes. Hence, the optimisation time is with 0.84 seconds
extremely short.

A comparison between the obtained outflow using different settings is illustrated in

Figure 3.18.

constant inflow

140

120F

100F

80

Il optimal steady—state solution (as start solution)
|:| optimal solution without worker change
-oplimal solution with a worker change per time unit

outflow

60r|

401

201

fixed ss—optimal fixed ss—optimal
30 workers flow distribution 100 workers

Figure 3.18: Comparison of outflow of different settings.

The two bars on the left show the total outflow, when 30 repair workers are available.
The black part indicates how much outflow is obtained by using the worker distribution
which is optimal for the steady state model, the light gray part shows the gain of outflow
when we us the optimal worker distribution and the dark gray part shows the increment
of outflow, when workers are allowed to change their position after each time unit. The
bars on the right show the same results for 100 repair workers.

It is remarkable that the optimal steady state worker distribution is already really

close to the optimal solution of the dynamic model in the case that we use the flow
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3.1 Application I: Optimal Worker Scheduling for Production Networks

distribution that is optimal for the steady state case (in the figure denoted by "ss-
optimal”).

Summarizing the numerical observations, we can underline the benefit of the steady
state analysis. Note that the steady state problem (2.45) is much faster solvable than
the far more complex dynamic MIP (2.37) where we need the whole set of variables
for each single time step. First of all, the steady state analysis provides us with a
qualitatively good starting solution that leads to significant runtime reductions for
the optimisation of the dynamic model. Secondly, the additional optimisation of the
flow distribution in the steady state case, endows us with valuable information how
to increase the outflow of the dynamic model, given that the flow distribution of the

corresponding application is adaptable accordingly.

3.1.3 Real World Example: Toothbrushfactory

In this section, we model a stylised real world example for a toothbrush factory con-
sidered in [42, 47]. Tt consists of 12 production units, sketched in Figure 3.19. The
production steps are represented by edges of a graph depicted in Figure 3.20. All
computations are applied to the modified capacity model, i.e. problem (2.26) where
equation (2.26b) is replaced by (2.27).

'

Figure 3.19: Layout of the toothbrushfactory.
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Figure 3.20: Schematic draft of the production steps.

In edge 1 empty pallets are introduced into the system. At edge 2 containers for
the toothbrushes are mounted upon the pallets. The actual production of toothbrushes
are processed in edges 3 to 9. Up to edge 9, workers are primarily needed to restock
production material and to replace worn-out tools. At edge 10 and 11 production
workers check the quality of the finished products and sort deficient toothbrushes out.
Here, the through-flow depends proportionally on the number of workers, in contrast
to the other production steps where primarily machines in operation. To include 10-11,

we replace equation (10) by

ci(t) = min{u;, r,WB;(t)}, for i € {10,11}

and linearise it as explained in Subsection 2.2.2. For the other production steps we
use the flow dependent capacity model (1.23).
In 12 the finished products leave the factory (not shown) and the empty pallets

enter the system again at 2. The parameters are listed in Table 3.4.

Edge | Production step 1 [%ﬁiie] 7 [minute] | r # workers
1 intake 100 1 0 1 0
2 assembly of pallets 42.6 1 0.05 5.325 |1
3-8 thermoforming and transport | 4 1.25 0.0083 | 0.1333 | 2
(parallel) (altogether)
9 assembly line 42.6 1.05 0.1 4.26 1
10 -11 | sorting of deficient items 14.4 1 0 6 6
(parallel) (altogether)
12 emptying pallets 42.6 1 0.01667 | 1.42 1

Table 3.4: Parameter setting of the toothbrush-factory, scaled to minutes as time unit.
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We consider the following setting: In the beginning, the network is empty. In the
first 10 minutes 81.1 pallets per minute are introduced into the system at unit 1.

Under standard conditions 11 workers are needed for a stable production, seen in
the last column of Table 3.4. In Figure 3.21 the flow behaviour in the first hour of the
daily production process is shown. This time is needed to raise the production flow
inside the initially empty network until constant cycle of pallets is obtained. On the
left we see the inflow of pallets into the system at unit 1. At processor 2 the pallets
enter the production cycle. The processor works at full capacity for the first 40 minutes
until all incoming pallets from edge 1 are processed. Afterwards the flow reduces to a
constant rate. The figure on the right shows processor 12 where finished toothbrushes

are taken out. After the first hour a total of 1212 pallets reach processor 12.

processor 1 processor 2 processor 12
100 ‘ 100 100
capacity
50 —fow | 5 50
0 0 0

0 20 40 60 0 20 40 60 0 20 40 60
t t t

Figure 3.21: Production process for the first hour using standard worker allocation.
Obtained output after the first hour: 1211 pallet-loads.

Now, we imagine the following scenario: 4 workers are not available within the first
hour. These workers are usually assigned to production units 3, 9, 10 and 11. Without
optimisation, the production capacity of the abandoned units would soon decrease.
In this example the drastic decrease of capacity at production unit 9 leads to a total
decrease of production flow as depicted in Figure 3.22. The output after one hour
reduces to 424 pallet-loads.

If we assume that the remaining workers are able to fulfill the tasks of the missing
workers as well, they can support the production at the abandoned machines. It is
reasonable to assume that they can easily change their position every 20 minutes in
order fix capacity losses. We optimise using the previously derived DTN-MIP, (2.37).
As result we get an optimal solution for the worker assignment as in Figure 3.23. Due

to the lack of workers the production capacity at some machines, as for example at
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processor 9

processor 12

100 100
capacity
—flow
50 50
OO 20 40 60 GO 20 40 60
t t
no workers 1 worker

Figure 3.22: Production process with 4 missing workers. The total ouflow reduces to 424

pallet-loads.

processor 12, is reduced. However, the output until then is 1210 pallet loads and thus

almost as good as if all processors would have been fully manned.

# workers
]

minute 1 to 20 minute 21 to 40

3

2
52

<

p

=]

z

H* 1
0 0

123456789101112 1234567809101112

production steps

production steps

minute 41 to 60

# workers
]

0
123456789101112
production steps

Figure 3.23: Optimal worker assignment using 7 workers.

processor 9

processor 12

100 ‘ 100
capacity
—flow
50 50
O0 20 40 60 0O 20 40 60
t t
no workers 1 worker no workers

Figure 3.24: Flow of the optimal solution at production unit 9 and 12.
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3.2 Application II: Traffic Networks - Optimal Traffic Light
Setting

In this section, we consider traffic flow networks. First of all, we model different kind of
roundabouts and simulate various scenarios using the Hamilton-Jacobi-Scheme derived
in Subsection 1.4.2, see Algorithm 1. Secondly, we consider crossovers with traffic
lights and optimise traffic light settings using corresponding DTN-MIPs, see Chapter 2
(2.98). In the end, we will investigate the efficiency of the optimisation procedure and

the impact of tuning techniques as described in Subsection 2.2.4.

3.2.1 Simulation of a Roundabout, applying the Hamilton-Jacobi Scheme

Now, we apply Algorithm 1 to several traffic flow situations. We test the introduced
simulation method against the Godunov Scheme (cf. Subsection 1.4.1) and describe
certain effects.

First of all, we apply the merging and dispersing junction model to a small network
consisting of eight roads, see Figure 3.25. The network describes a small traffic circle
that has already been examined in [11]. We use the same instance as in [11] where the

flow is given by f(p) = p(1 — p) and initial as well as boundary data a given as follows:

boundary density of incoming roads: p1(z,0) = 0.25, p3(z,0) =0.4
initial density of incoming roads: p1(0,t) = 0.25, p3(0,t) = 0.4
initial density of outgoing roads: p2(0,t) = p4g(0,¢) = 0.5

initial density of inner circle: pi(0,t) = 0.5, Vi =5,6,7,8

In [11] this test case is compared for different right-of-way parameters ¢ €]0,1],
determining the proportion of cars coming from each road at merging junctions. The
priority rule used in this paper corresponds to ¢ = 0.

The graphic of Figure 3.25 shows the traffic density exemplarily for four roads at 4
different points in time. Since the boundary condition is constant, the density evolution
reaches an equilibrium and does not change for ¢ > 5. The traffic at the inner circle
has priority, therefore the roundabout does not get blocked. This is qualitatively the
same behaviour as in [11], when a small parameter ¢ is used. Since our model uses

strict priorities, the equilibrium state is reached faster, than in [11].
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Figure 3.25: Small roundabout. Results for the LWR flow function f(p) = p(1 — p) on
each road with priority rules at merging junctions.
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We use the Hamilton-Jacobi Scheme for simulations and reconstruct the density
values as in (1.72). The thin lines show the result obtained by using the Godunov
Scheme, which we use as a benchmark. For road 4 at time t = 2 it can clearly be
seen that a much sharper shock wave is obtained by Godunov. However, the actual
density levels are equivalent for both schemes. Since this model is especially derived
for instances with piecewise constant initial conditions, the Hamilton-Jacobi Scheme

leads to sufficiently precise results.

A more realistic Roundabout

We consider a roundabout composed of four junctions with two incoming and two

outgoing roads as derived earlier, which is depicted in Figure 3.26(a).

A=2
“+-— 9 } T p
11— 0.5 1
Road 1-4 and 9-12
f(p)
0.5
A=1
1 ‘ 14
0.5 1
road 5-8
(a) Roundabout. (b) Flow functions for outer

and inner roads of the round-
about.

Figure 3.26: Model of a roundabout with different flow functions on different roads.

According to the enumeration in Figure 3.26(a), roads 1 to 4 are leading towards the
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inner circle which is composed of roads 5 to 8. Roads 9-12 point out of the roundabout.
Usually, drivers cannot drive as fast inside the inner circle as at the mostly broader
roads leading in and out of the circle. For this reason, we describe these roads by
different triangular flow functions, as depicted in Figure 3.26(b). As before, the traffic
density lives in an interval between 0 (no traffic) and 1 (maximal dense traffic). Since
we assume that the usual speed of the cars is faster at the outer roads than inside the
circle, the corresponding flow function has a steeper slope outside the inner circle.

We prescribe the left boundary data for the incoming roads 1-4. We assume that
road 1 and 3 are slightly more busy than roads 2 and 4. For simplicity we use the
same boundary data for each road pair. Figure 3.27 gives a detailed overview of the
boundary data at an average working day from 5am to 1lpm. This is a fictive test
setting attempting to tackle the qualitative traffic behaviour taking the morning rush

hour into account.

left boundary of road 1 and 3 left boundary of road 2 and 4
1 1
0.8 0.8
z 2
§ 0.6 % 0.6
o o
2 2
= =
F04 F04
0.2 0.2
Sam Tam 9am Ilam Ipm gam 7Tam 9am 1lam Ipm
time time
(a) Boundary density of road 1 and 3. (b) Boundary density of road 2 and 4.

Figure 3.27: Incoming traffic data over time.

Figure 3.28 shows the traffic density along the inner circle for exemplary points
in time. Since the traffic at the inner roads always has the priority at junctions and
outgoing roads are not blocked in our setting, no jams appear inside the roundabout.
But you can observe that at the peak time of the rush hour, the traffic density all
along the inner circle is at value p* = 0.5, which means that the traffic moves with the

maximal possible flow.
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Figure 3.28: Evolution of the traffic density in the inner circle.
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However, if we have a closer look at the traffic evolution at a junction, see Figure
3.29, we notice that at the peak time, traffic jams occur at roads leading to the inner
circle. Particularly from 7am to shortly after 11am, the traffic entering the roundabout
is quite dense. However, since the incoming traffic reduces drastically around 1lam
(see boundary condition depicted at Figure 3.27(a)) the jam is resolved again a while

after the incoming traffic reduces.

road 9 road 8
1 1
—HJ-scheme —HJ-scheme
08 o Godunov-scheme 0.8 o Godunov-scheme
_ 06 g _06
S .
04 ] 0.4

7am 9am Ilam Ipm
time
road 5
—HJ-scheme
o Godunov-scheme

_06 4 _06 ]

;: —HJ-scheme é e o

S04 o Godunov-scheme | { <04 1

0.2 l—e—e— 0.2
Sam 7am 9am Ilam Ipm Sam 7am 9am llam Ipm
time time

Figure 3.29: Traffic evolution at the junction.

When we compare the Hamilton-Jacobi Scheme with the Godunov Scheme, we
observe that for a triangular flow function the results are really precise compared to the
use of the functions in Subsection 3.2.1. Thanks to the parameter setting as proposed
in Lemma 1.4.2, the shock fronts computed by the Hamilton-Jacobi Scheme are sharp.
Furthermore, the trajectories of the fronts are very close to the Godunov solution, due
to the artificial shortening of the road which balances out the time delay caused by the

use of ghost-cells (compare Remark 1.4.3).
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7.07 AM .
7:.06 AM
7.05 AM
7:.04 AM
7:.03 AM
|| -
702 AM
7.01 AM
7:00 AM R
.
6:59 AM R
I 1 1 L
0 50 100 150 01020010200 50 100
road 1 (m) road 5 road 6 road 11

Figure 3.30: Single car tracking for three cars on the above route starting at different

times.
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duration of crossing (minutes)

5 AM 7 AM 9 AM 11 AM 1 PM
departure time

Figure 3.31: Travel time (in minutes) for the route depicted in Figure 3.30, depending

on the time when starting the journey.

As we stated in Remark 1.3.10 it is easy to derive the trajectories of cars from the
Hamilton-Jacobi formulation, since we only have to track the contour lines of function
M. In Figure 3.30, the trajectories of 3 cars moving along the roads 1-5-6-11 are
depicted exemplarily. In this example you can see that somebody entering the system
before 6:59 am moves freely and leaves the system already about 1 minute later. In
contrast to that, another driver, who enters the system only 4 minutes later, already
encounters dense traffic on the road and needs more than 4 minutes to move to the
end of road 11. The graphic on Figure 3.31 shows the duration of the route 1-5-6-
11 depending on the starting time of the journey. While it takes only 1 minute to
traverse the route during light traffic times, cars need up to 4.7 minutes between 7 and
9 am. Hence, it takes more than 4 times longer to traverse the given route during the

rush-hour.

3.2.2 Traffic Light Optimization

In this section we consider several scenarios including traffic light junctions and use

the techniques derived in Chapter 2 to create corresponding DTN-MIPs (2.98). These
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problems will be optimised by Cplex [23] in order to obtain optimal traffic light set-
tings. We compare default traffic light settings with optimal solutions and discuss the
necessity of additional requirements on switching times, as introduced in Section 2.4.5.
Furthermore, we have a deeper look into the optimisation process itself and consider

the effects of starting and bounding heuristics for the optimisation time.

Optimal Traffic Light Setting of Crossover

We analyse a crossover as depicted in Figure 3.32. First, we simulate the traffic evo-
lutions for a default traffic light setting. Then we compute the optimal traffic light
setting and compare the resulting solutions with and without additional restrictions on

the switching time.

91

L e 4 oo

¥ o0

(a) (b)

Figure 3.32: Traffic Crossover Each lane for different turning directions is modelled by a

separate edge.

Parameter setting and boundary conditions are set according to Figure 3.33 and
3.34.
The default traffic light setting has always green light for all pairs of opposite
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p(0,1) p(0,t)
0.5 0.51
0.3 i 1 0.3 i
0.1+t 0.1+
t (min) t (min)

1 2 3 45 6 1 2 3 4 5 6

(a) Left boundary density of road 13 and (b) Left boundary density of road 14 and
road 15. road 16.

Figure 3.33: Boundary density of incoming roads i € E*".

straight-and-right-turning lanes, as well as for all pairs of opposite left-turning lanes,
see Figure 3.35(a). The resulting objective function with the given boundary data is
66.84. To get a feeling on the traffic behaviour in scenarios where traffic lights are used,
we refer to Figure 3.36. The density evolution for one part of the setting, namely road
14 plus all succeeding roads is plotted. Blue colour refers to light traffic, whereas yellow
colour denotes heavy traffic. Dark red colour indicates a total traffic jam, where cars
are standing still.

Now, we optimise the traffic light setting using Cplex [23] on the corresponding
DTN-MIP (2.98) and obtain an optimal traffic light setting as shown in Figure 3.35(b).
The optimal objective function value results in a objective function value of 96.63,
which is a considerable increase of 44.57%. But as we can observe in Figure 3.35(b),
the resulting traffic light setting is highly fluctuating and has too long red phases for
the left-turning lanes (which are at road 1, 3, 5 and 7). The corresponding density
evolution on the roads is shown in Figure 3.37. Compared to the default setting, the
traffic jams are significantly reduced. Especially road 14 is free of total jams. However,
a new jam appears at road 3, since the left-turning lanes have unacceptable long red
phases.

For this reason, we add restrictions on switching times to the model as described in
Subsection 2.4.5 . We set the lower bound for each green phase to 12 seconds and the
upper bound for each red phase to 80 seconds. After applying the optimisation software,
we obtain an optimal solution. The corresponding traffic light setting depicted in Figure

3.35(c). The resulting objective function value is 88.61 which is still an increase of
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time horizon:
lower bound on green phase:
upper bound on red phase:

time step size :

space step size:

T =10=400 s
LY = 0.3=12 s (optional)
Ul =2.0=80 s (optional)

At =0.1
Az =0.2

(a)

left turns straight /right turns | outgoing roads | incoming roads
roads i 1/3/5/7 2/4/6/8 9-12 13-16
parameters for f
A 1 1 1 1
p* 0.5 0.5 0.5 0.5
road length L; | 0.5=0.25 km 0.5=0.25 km 1=0.5 km 2=1.0 km
initial traffic 0.1 0.2 0.1 0.4

density p;(x,0)

=
7Q0%
9000 -%
e}

(c¢) Traffic distribution for each direction
during the first half of the time horizon.

%0

(b)

&
50%
8000 %
N

zon.

%0

Figure 3.34: Parameter setting for crossover.
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32.58% compared to the default traffic light setting. The density evolution is shown in
Figure 3.35(b).

road 8 — — — — —_—

road 7 — — —— —

road 6 — . . — ———

road 5 — — — — —

road 4 — —— — — —

road 3 ——— — — —

road 2 [ — — — —

road 1 —— —— —— — —

time (min)

(a) Default traffic light setting, leads to an objective function value of 66.84.

r()adS L - LE B B o o L e o mm a N L
road 7 -
]’()ad6====== LB e e mom m m o . L L RN L]
road 5= n
road 4—m=-m-u-u-u-m m I EEEE s I I —_—
road 3 -
road2== LE e LB e e mom m m o . L L RN L]
road 1m n
| | | | | |
1 2 3 4 6 7
time (min)

(b) Optimised traffic light setting, leads to an objective function value of 96.63.

road 8 - -— —— — —
road 7 -— -— -—
road 6 fm—m——— — — -
road 5 -— -— -_—
road 4| = m— -— — — -—
road 3 -— -— -—
road 2 fm—m——— — — —
road 1 -— -— -—
1 1 1 1 1 1
1 2 3 4 5 6 7
time (min)

(c) Optimised traffic light setting including restrictions on switching time, leads to an objective function
value of 88.61.

Figure 3.35: Traffic light settings. The beams indicate the time intervals, when the
corresponding traffic lights are green, and the thin lines represent the time intervals, when
the traffic light is red.
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Figure 3.36: Traffic density using default traffic light setting.

153



3. RESULTS

[T NN
time (min) time (min)
time (min)

I N

time (min)
[\

o
Oci
OC)

0.2 0.2 0.4

road 10

0.4 0.6
road 14 (km) road

\

time (min)

density

4
2

OO

0.2 0.4
road 11

Figure 3.37: Traffic density using optimised traffic light setting.
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Figure 3.38: Traffic density using optimised traffic light setting including restrictions on
switching times.
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Road Network

We can apply the model techniques to larger road networks. In some cities the main
roads are often arranged in chess pattern and the big crossovers have a distance of
one mile from each other. As example see a part of a roadmap of Phoenix, cf. Figure
3.39(a). Motivated by these arrangement, we construct similar simplified road networks
as a composition of several junctions as described in Figure 3.32, neglecting the small
side roads.

In the sequel we will consider a fictive scenario, based on a network, which consists
of nine crossovers, altogether assembled of 45 vertices and 120 roads, as shown in Figure

3.39(b).

ey, ey e o ——

):5(@';::: US 60 )t | i
(a)  Examplary road network  (b) Road network with 120 edges and 45 vertices.
(part of Phoenix, Arizona),
taken from ©O0OpenStreetMap,

http://www.openstreetmap.org

Figure 3.39: Road network.

We assume that for a certain time of the day the main traffic volume is moving from
left to right. This is realised by prescribing higher boundary density on the ingoing
roads from the left side compared to the other ingoing roads and by choosing the
distribution matrix d in a way that cars preferably turn towards roads leading from left

to right. Details can be seen in Table 3.5 and Figure 3.40.
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First of all, we assume to have the default traffic light setting for each crossover as

shown in Figure 3.35(a).

general parameters time horizon time step size space step size

T At Az
10=400 s 0.25 0.5

roads length initial density | left bound. density
L p(,0) p(0,2)

incoming roads from top 2 (=1 km) 0.3 0.3

incoming roads from left 2 (=1 km) 0.5 0.5

incoming roads from right 2 (=1 km) 0.1 0.1

incoming roads from bottom 2 (=1 km) 0.3 0.3

left turning lanes 0.5 (£0.25 km) 0.1 -

straight /right turning lanes | 0.5 (=0.25 km) 0.2 -

inner roads 4 (=2 km) 0.4 -

outgoing roads 2 (=1 km) 0.1 -

‘ for all roads: ‘ A=1 ‘ p*=0.5

Table 3.5: Parameter setting of road network.
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Figure 3.40: Traffic distribution for all crossovers.
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We simulate the density evolution on the road with the prescribed parameter setting

using the default traffic-light setting as shown in Figure 3.35(a) and use it as a start
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solution for the corresponding DTN-MIP (2.98), as illustrated in Figure 2.5. The
objective function value of the start solution is 695,2285. After optimisation, we get a
solution with objective function value of 804,9520, which is an increase of 15,78%.

In order to get an idea of the improvements of the traffic situation using the opti-
mised traffic light setting, we pick two paths through the network, as depicted in Figure
3.41. Path 1 is crossing the road network from left to right, as shown in Figure 3.41(a)
and Path 2 is crossing the network diagonally from the upper left to the lower right

corner, as shown in Figure 3.41(b).

oy oy ——yy ——

-

(a) Path 1 (b) Path 2

Figure 3.41: Paths through road network.

We compare the traffic density along the paths under default and optimised traffic
light setting. The black line in Figure 3.42(a) describes the averaged traffic density
under optimised conditions and the dashed black line describes the averaged traffic
density under default traffic light setting. The gray lines indicate the corresponding
maximal values during the whole time horizon. In Figure 3.42(b) the same comparison

is done for average and minimal travel velocity v which is computed by

f

v==.
p

Remark 3.2.1. If we consider the underlying flow function 1.26, we see that the travel
velocity is maximal, as long as the density is smaller or equal than p*. For dense traffic,

i.e. for p > p*, it decreases monotonically until it reaches zero for f(p™*).

Note, the considerable improvement of density, especially in front of the crossovers,

which are found at km 1, 3 and 5 on the x-axis. The travel velocity along the roads
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is mostly at its maximal value. Cars only have to slow down in front of a crossover
(see again km 1, 3 and 5 on the x-axis on Figure 3.42(b)). Again, the travel velocity is

considerably higher when the optimised traffic light setting is used.

“““““ start of heavy traffic
maximal traffic density (defaul tl-setting)
—————————— (optimal tl-setting)
= = = average traffic density (default tl-setting)
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(b) Travel velocity.

Figure 3.42: Traffic evolution along Path 1.
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Figure 3.43: Traffic evolution along Path 2.
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The same comparisons are done for path 2. The average and maximal traffic den-
sity along the path is depicted in Figure 3.43(a) and the average and minimal travel
velocities can be seen in Figure 3.43(b). Since the aim of optimisation is to increase the
traffic flow globally for the whole network, it can happen that optimised traffic light
settings locally lead to slight setbacks, especially for roads which are not corresponding
to the direction of the main traffic load. For this reason we can observe slight worsening
of traffic densities in front of crossovers coming from a road leading from up to down.
In this graph you find them on the x-axis around km 3 and 7. This is also observable
for the travel velocity at the same points on the x-axis on Figure 3.43(b). However,

these setbacks are more than compensated on the rest of the path.

Optimization Procedure

The main difficulties for the optimisation procedure is the huge problem size of the
DTN-MIPs. In comparison to the DTN-MIP resulting from the production network
model (2.37), where no detailed modelling along the edges is done, the traffic network
also works with space grids along the roads. This additional dimension that has to be
discretised results is an even more complex DTN-MIP, where the number of constraints
and variables is in O(|E| - |ng| - |nk])-

For this reason, we stick to a rather coarse grid size as Az = 0.2 and At = 0.1 for
the modelling of the single crossover and Az = 0.5 and At = 0.25 for the modelling of
the road network.

The resulting MIP for the crossover consist of around 6 - 10* variables, the MIP for
the roadnet consists of around 1.3 - 10° variables, which makes it almost impossible to
find an optimal solution within acceptable computation time if no tuning techniques
such as Algorithm 6 and 6 are applied (see illustration in Figure 2.7. We have a deeper
look into the optimisation process, firstly, of the crossover model without additional re-
strictions on switching time (cf. Figure 3.44); secondly, of the crossover model including
switching time restrictions (cf. Figure 3.45) and, thirdly, on the optimisation process of
the roadnet (cf. Figure 3.46). All computations are performed on a PC equipped with
16GB Ram, Intel(R) Xeon(R) CPU 5160 @ 3.00GHz.

On Figures 3.44(a), 3.45(a) and 3.46(a) the evolution of the primal and dual bounds
during the optimisation process is plotted. The number of iterations given on the x-

axis refer to small computation units as for example iterations of the simplex method,
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when computing the relaxed solution. For this reason the iteration number is roughly
proportional to the number of rows in the linear MIP. The dashed black line denotes
the dual bound and the black line the primal bound, when a bounding heuristic is
used. The gray line represents the primal bound of the optimisation in the case that
only a starting heuristic is used and no further bounding heuristics during the Branch
& Cut algorithm. As starting solution we choose the default traffic light setting for
each crossover as shown in Figure 3.35(a) and compute the remaining variables with
the forward solver (cf. Algorithm 3), see illustration in Figure 2.5.

When we apply the bounding heuristics (cf. Algorithm 6 for the models without
restrictions on switching times and Algorithm 7 for the crossover model with switching
time restrictions), the primal bound improves soon after the start of the optimisation
procedure. In Figures 3.44(a), 3.45(a) and 3.46(a) you see the points in time, when the
optimality gap falls below 20%, 10% and 5%. As indicated in the corresponding tables,
a strong improvement of the optimality gap is already achieved during the examination
of the root node, where cutting planes techniques and the bounding heuristics are
applied several times before the actual branching starts.

Tables 3.44(b), 3.45(b) and 3.46(b) show that the optimality gap that is obtained
after 5 hours runtime cannot be exceedingly improved even after 3 days. This is due to
the facts that firstly, many new found feasible solution are not better than the current
incumbent. Secondly, the memory consumption slows down iteration time as soon as
soon as the Branch & Bound tree gets large. For instance for the crossover model
with switching time restrictions, cf. Figure 3.45, we have a gap of 42.75% after 5 hours
runtime and still 37.09% after 3 days runtime, when no bounding heuristic is used. The
use of the bounding heuristic extremely helps to close the optimality gap fast. As can
be seen on Table 3.45(b) it is smaller than 10% after half an hour runtime. On the
other scenarios we encounter a similar behaviour.

These results clearly show the importance of bounding heuristics for such large
problem sizes in order to obtain reasonable solutions within an acceptable computation

time.
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(a) Comparison of the evolution of primal and dual bounds during the optimisation procedure using

only Starting Heuristic and using Bounding Heuristic 1.

‘ Starting Heuristic | Bounding Heuristic 1

after primal bound 73.7952 96.6212
18000 s dual bound 97.1187 98.1543
(5 hours) | optimality gap 31.62% 1.59%
after primal bound 75.0262 96.6331
259200 s | dual bound 97.0759 98.1538
(3 days) | optimality gap 29.39% 1.57%
optimality | # nodes - 0 (root node)
gap # iterations (not obtained) 131290
<20% | elapsed time - 813 s (=~ 14 m)
optimality | # nodes - 0 (root node)
gap # iterations (not obtained) 131290
<10% | elapsed time - 813 s (=~ 14 m)
optimality | # nodes - 0 (root node)
gap # iterations (not obtained) 200173
<5% elapsed time - 1108 s (=~ 18 m)
improvement of optimised traffic light setting 44.57%

Figure 3.44: Comparison of optimisation procedures using Starting Heuristic and using

Bounding Heuristic 1. Here, we consider the DTN-model for crossover that optimises the

(b)

traffic light setting without additional requirements on switching times.
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Figure 3.45: Comparison of optimisation procedures using Starting Heuristic and using
Bounding Heuristic 2. Here, we consider the DTN-model for crossover that optimises the

(b)

traffic light setting including additional requirements on switching times.
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‘ Starting Heuristic Bounding Heuristic 1
after primal bound 695.2285 763.2116
18000 s | dual bound 822.4174 835.1736
(5 hours) | optimality gap 18.29% 9.43%
after primal bound 708.3082 804.9520
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(3 days) | optimality gap 16.08% 3.75%
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gap # iterations (not obtained) 450166
< 10% elapsed time - 6419 s (= 1 h 47 m)
optimality | # nodes — 558
gap # iterations (not obtained) 497555
<5% elapsed time - 102941 s (~ 28h 37 m)
improvement of optimised traffic light setting | 15.78% |
(b)

Figure 3.46: Comparison of optimisation procedures using Starting Heuristic and using
Bounding Heuristic 1. Here, we consider the DTN-model for road network.
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Conclusion

In this work we provided a general classification of dynamic transportation networks
(DTNS), which represent macroscopic PDE/ODE-based descriptions of network flow
problems. There is a broad variety of versions depending on the application; for exam-
ple it is possible to model buffers, to describe the evolution of density by conservation
laws and to model different kinds of coupling conditions. Afterwards we considered op-
timisation techniques. We discussed the advantages of mixed integer optimisation and
presented a general strategy how DTNs can be transformed into linear MIPs. Further-
more, we showed how the knowledge of the problem structure can be used to introduce
bounding heuristics which are extremely efficient to speed up the optimisation proce-
dure. Within this frame, we presented specific models with application in production
and traffic.

The first is a novel production model for the time-changing repair worker assign-
ment. The main idea is to keep the system performance optimal whenever machines
have failed and must be repaired. In general, available workers are limited and there-
fore a decision has to be made on which machines are repaired first. The resulting
optimisation question is how the optimal worker scheduling looks like to maximise the
production flow. This issue has been intensively analysed and numerical case stud-
ies comparing fixed and time-changing schedules have been performed. As we have
seen, the numerical results demonstrate the different opportunities of our modelling
approach.

With respect to the second application, we considered the LWR-based traffic flow
network model [19]. We showed how coupling conditions of several junction types
can be transformed into easily linearisable min-terms. We introduced a numerical

framework for the Hamilton-Jacobi formulation of traffic flow and showed how this
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correctly resolves the dynamics at the junction. We presented simulations for a round-
about and compared them with existing results and computed travel times for certain
routes through the network depending on the starting time of the travel. Moreover, we
modelled traffic light settings for LWR-based traffic flow networks that can easily be
adapted to arbitrary junction types and network topologies and discussed requirements
for secure traffic light settings. We showed the necessity of additional requirements on
the switching time rate to avoid inapplicably frequent fluctuations which appear when
mixed integer optimisation techniques are used, and solved this problem with previously
derived techniques. Furthermore, we developed a bounding heuristic to speed up the
optimisation process. The resulting improvements for the optimisation procedure are
remarkable and indicate the potential of combining simulation techniques with Branch
& Bound procedures.

Altogether, this work illustrates, how the combination of various different mathe-
matical fields — in our case coupled PDE/ODE-systems, numerical computation and
discrete optimisation techniques — allow for detailed dynamic network descriptions and
reliable optimisation. The remarkable improvements of the optimisation procedure lead
to the assumption that there is still a lot of potential hidden in the connection of these
fields. One important aspect would be the application of Branch & Bound techniques
on DTNs that are not linearisable. A second point is to find ways to allow for finer
discretisation grids without the inflation of problem size and optimisation time. A
promising approach to obtain both aims is the development of an adapted Branch &
Bound procedure including an integrated forward solver to obtain primal bounds and
a novel strategy to obtain dual bounds without the necessity of laborious linearisation
techniques.

Generally speaking, further research on the intersection of numerical computation

and discrete optimisation is a worthwhile task full of of potential.
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