
Mathematical Modelling, Simulation

and Optimisation of Dynamic

Transportation Networks

with Applications in Production and Traffic

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der RWTH Aachen University zur Erlangung

des akademischen Grades einer Doktorin der Naturwissenschaften

genehmigte Dissertation

vorgelegt von

Dipl.-Math. techn. Ute Ziegler

aus Bensheim

Berichter: Prof. Dr. Michael Herty und Prof. Dr. Simone Göttlich

Tag der mündlichen Prüfung: 27.11.2012

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online

verfügbar.

ii

Acknowledgements

I want to express my gratitude to all, who were helping me in many differ-

ent ways to succeed in writing this dissertation. First of all I would like to

thank my supervisors Prof. Michael Herty and Prof. Simone Göttlich, who

supported me immensely with their knowledge, advice and the extremely

pleasant and cordial working atmosphere. I also want to thank Prof. Arie

Koster for his cooperation and sharing his precious knowledge on discrete

optimization. I am also thankful to Bernd Bollwerk, our kind and patient

Admin, who was always there to help out, whenever technical problems or

special software necessities came up. Furthermore, I would like to thank

Agnes Dittel for many interesting discussions and for sharing her valuable

knowledge about Cplex-programming, Nico Behrent who was always dis-

posed to give useful hints to find my programming bugs and Daniel Junglas

who explained me in detail, how to find the right spot to introduce heuristics

into the vast universe of Cplex code. Thanks for many useful discussions and

hints to Sebastian Kühn and to Oliver Kolb, who explained me the ideas of

the staggered Lax-Friedrichs Scheme. I appreciate the hospitality and use-

ful exchanges with Prof. Dieter Armbruster and Prof. Christian Ringhofer,

who warmly welcomed me at Arizona State University. Furthermore, I am

grateful to Prof. Evelyn Buckwar to give me the opportunity continue my

research in Heriot-Watt University in Edinburgh. I am also grateful for

the opportunity to meet Prof. Pierre Degond in Université Paul Sabatier

in Toulouse. Thanks to the financial support of DFG (project no. HE

5386/6-1) and DAAD (research grants no. 50727872, 50021880, 54365630,

D/06/28175 and D/08/11076) and many thanks to RWTH University for

supporting me with a research degree completion grant.

Thanks to Richard Barnard, for tuning the style of my introduction and con-

clusion part and to all colleagues for the friendly and enjoyable atmosphere.

And many thanks to Philipp Monreal, not only for patiently proof-reading

the whole thesis and helping me to improve style and readability, but espe-

cially for his company and friendship that started many years ago. Finally,

I want to express my thankfulness to all my friends and to my family for

all the support and for enriching my live. Thank you, Lama Ole.

Contents

Introduction 1

1 Network Flow Modelling 5

1.1 Preliminaries . 6

1.1.1 Transportation along Network Edges 11

1.1.2 Coupling . 13

1.2 Application I: Production Network Models 16

1.2.1 Transport and Buffers . 16

1.2.2 Model Extension: Abrasion based Capacity Decline 20

1.3 Application II: Traffic Flow Models . 23

1.3.1 Modelling Traffic on Roads . 24

1.3.2 Coupling Conditions for Road Networks 26

1.3.3 Consideration of specific Junction Types 31

1.3.4 Transformation into Hamilton-Jacobi Formulation 40

1.4 Discretisation . 41

1.4.1 Schemes for Conservation Laws 42

1.4.2 Hamilton-Jacobi Scheme . 49

2 Optimisation containing discrete Decisions 57

2.1 Linear Mixed Integer Optimisation Methods 60

2.1.1 Basic Definitions . 60

2.1.2 Branch & Bound Algorithm . 61

2.1.3 Cutting Planes . 63

2.1.4 Branch & Cut . 66

2.1.5 Optimisation Software . 67

iii

CONTENTS

2.2 Mixed-Integer-Techniques meet DTN-Models 68

2.2.1 Transformation and Solution Strategy 68

2.2.2 Linearisation Techniques . 70

2.2.3 Avoiding Oscillations . 74

2.2.4 Tuning the Branch & Bound Optimisation 77

2.3 Application I: Optimal Worker Scheduling for Production Networks . . 82

2.3.1 Deriving a linear DTN-MIP . 82

2.3.2 Steady State Analysis . 87

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting 93

2.4.1 Control Variables and Constraints (I) 93

2.4.2 Objective Function and Continuous Formulation of Optimisation

Problem (II) . 99

2.4.3 Discretisation (III) . 101

2.4.4 Linearizing Constraints (IV) . 102

2.4.5 Additional Requirements on Switching Times (V) 112

2.4.6 Speeding up the Optimisation Algorithm (VI) 114

3 Results 117

3.1 Application I: Optimal Worker Scheduling for Production Networks . . 118

3.1.1 Model Behaviour on Processor Chain 118

3.1.2 Production Networks . 125

3.1.3 Real World Example: Toothbrushfactory 137

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting 141

3.2.1 Simulation of a Roundabout, applying the Hamilton-Jacobi Scheme141

3.2.2 Traffic Light Optimization . 148

Introduction 167

References 169

iv

Introduction

Dynamic transportation networks have a broad range of applications. No matter if we

talk about evacuation systems, traffic flow on roads, or production networks, the under-

lying structure can in many cases be modelled by dynamic flow equations on networks,

which we call dynamic transportation networks (short DTNs). This work contains a

description of DTNs in general and presents two specific models: firstly, production net-

works including dynamic machine capacities and repair workers; and secondly, traffic

networks including several junction types as well as traffic lights. Optimisation ques-

tions such as optimal worker scheduling or optimal traffic light settings arise. For these

complex model structures, classical continuous optimization techniques cannot guar-

antee to find globally optimal solutions. Hence, it is of interest to develop strategies

for transforming DTNs into linear mixed integer optimisation problems (short MIPs),

which allow for automated Branch & Bound optimisation techniques. Furthermore, it

is rewarding to investigate how knowledge about the problem structure can be used to

speed up the optimisation process.

Here, we give a brief but incomplete survey on the existing literature in this field.

Plenty of models are dedicated to network flow problems and transportation on net-

works. The classical description is the maximum flow problem derived in graph theory,

where the maximal flow through a network is computed with respect to given upper

bounds, also referred to as capacities, see [41]. In recent decades, various models that

incorporate dynamic phenomena into the network description have been developed.

They are dedicated to various applications, such as queuing theory [9, 16] and supply

chain models [2, 3, 24, 32, 35, 42, 46, 47, 54], networks for gas and water pipelines [20],

traffic flow models [11, 17, 18, 19, 43, 72], evacuation scenarios [22, 52] , telecommuni-

cation networks [34], and many more. In this context, mainly two modelling streams

emerged: on the one hand microscopic models – which describe the trajectory of every

1

GLOSSARY

single particle in the system, such as discrete event simulators [3, 7]; and, on the other

hand, macroscopic models, which use fluid-like descriptions of the transportation pro-

cess by considering the evolution of density in the system and often entail the use of

differential equations [4, 31, 32, 42, 47]. The latter have the advantage that simulation

time does not depend on the number of particles in the system and that dynamic phe-

nomena such as forwards and backwards travelling density waves – which occur e.g. in

traffic flows – can be reproduced.

Having found a satisfactory description for the dynamics, it is of interest to tackle

various optimisation questions, see [22, 37, 42, 46, 48, 52, 57, 98] for an overview. Un-

fortunately, standard optimisation techniques for continuous PDE/ODE- constrained

problems, such as Lagrangian based adjoints and gradient based methods [63, 93] are

not reliable for network structured flow models, since they often get stuck in local op-

tima and cannot deliver any information about how close the best found solution is to

the global optimum.

Consequently, it is reasonable to follow an alternative optimisation approach. In

[8, 37, 42, 48, 49, 53, 57, 75, 76, 77] linearisable dynamic transportation network models

are reformulated into linear MIPs using linearisation techniques as described in [62].

Linear mixed integer optimisation is a common problem class in discrete mathematics

and entails well-investigated optimisation methods that are able to find global optimal

solutions in a reliable way [30, 70, 82, 90, 94]. Elaborated Branch & Bound operations

split the original problem into subproblems and compute upper and lower bounds for

the globally optimal objective function value. Nowadays numerous software packages

exist that can be used as blackbox solvers [23, 60, 85, 91]. Another remarkable ad-

vantage is, that discrete decisions – such as binary controls for traffic light settings –

and restrictions to integer values – e.g. restrictions to integer numbers of repair work-

ers for production networks – can easily be incorporated. However, this method has

the disadvantage that the optimisation time depends exponentially on the number of

discretisation steps. Hence, a trade-off between acceptable computation times and ac-

curacy of the description of the underlying dynamics has to be made. Furthermore, the

automated solvers encounter problems in finding feasible solutions since every variable

originating from the discretised and linearised model description is treated as unknown.

Especially, when the grid sizes are small, rounding errors often accumulate, resulting

in artificial infeasibilities, such that the optimisation algorithm fails, see [49, 98].

2

GLOSSARY

Nevertheless, the knowledge about the problem structure provides many opportu-

nities to stabilise and speed up the automated optimisation algorithms. One approach

is a bound-sharpening presolve algorithm, developed by [36]. Another method is the

use of starting heuristics, giving the solver a jump start with a promising feasible so-

lution [49, 98]. However, the provision of a feasible start solution does not guarantee a

reduction of optimisation time.

As already mentioned, feasible solutions for the linear MIP can be computed easily

as soon as the actual control variables are given. Apart from providing starting solutions

– to the best of the author’s knowledge – this valuable fact has not been applied to its

full potential in the course of the optimisation procedure. Providing feasible solutions

not only as start up but also during the Branch & Bound Algorithm, paired with

prescribed branching priorities is a promising approach to speed up the optimisation

procedure.

The content of this work is structured as follows: In Chapter 1 we consider macro-

scopic dynamic network flow models, i.e. DTNs. We present a general definition for

DTNs, review the most common modelling approaches for density evolution and cou-

pling conditions and consider in particular two applications: Firstly, we derive an

extension to the common production flow network by including capacity declines and

the effect of repair workers. Secondly, we review Lighthill-Witham-Richards traffic flow

models [74, 88] and analyse coupling conditions for specific junctions types. In the end

we review the most common discretisation techniques and propose a novel algorithm to

simulate density evolution on road networks using coupled Hamilton-Jacobi equations

[1, 97].

In Chapter 2 we consider optimisation questions on DTNs and outline optimisation

techniques used in the solvers for linear MIPs. Then, we point out a general strat-

egy for the transformation of DTNs into linear MIPs and discuss how constraints on

the actual control variables can be constructed to avoid undesired oscillation effects.

Furthermore, we point out where exactly the knowledge of the problem structure can

be used during the Branch & Bound process to speed up the optimisation time. We

resume the particular models from Chapter 1 and transform them into linear MIPs. In

the context of production networks we are looking for the optimal worker scheduling

in order to maximise the production flow. Regarding traffic networks, we derive the

modelling of traffic lights, derive requirements on the traffic light settings and propose

3

GLOSSARY

a heuristic to find feasible traffic light settings in order to speed up the optimisation

algorithm.

In Chapter 3 we show numerical results for the two applications, involving verifica-

tions of model behaviour and the effects of several parameters, comparison of discreti-

sation schemes, illustrations of the effect of optional requirements to avoid undesired

fluctuations, and the development of the optimisation process comparing the use of

several tuning techniques.

Besides general classifications and transformation strategies for DTN models into

linear MIPs, the new scientific contribution of this work is the novel production model

containing dynamic process capacities and the reformulation into an optimal worker

scheduling problem applying linearisation techniques to obtain a linear MIP. In the

context of LWR-based traffic flow network models, we show how coupling conditions

can be transformed into easily linearisable min-terms for several junction types. Fur-

thermore, we develop a numerical algorithm based on coupled Hamilton-Jacobi equa-

tions. Moreover, we derive a traffic light model with dynamic switching periods and

constraints for secure traffic light settings. We provide a transformation into a linear

MIP and proposed various bounding heuristics to speed up the optimisation algorithm.

Parts of this work will be or have been published in the following journals:

• Göttlich, S. and Herty, M. and Ringhofer, C. and Ziegler, U. Production systems

with limited repair capacity. Optimization, Vol. 61(8), pp. 915-948, 2012.

• Göttlich, S. and Herty, M. and Ziegler, U. Numerical discretization of Hamilton-

Jacobi equations on networks. Networks and Heterogeneous Media, in review-

process.

• Göttlich, S. and Herty, M. and Ziegler, U. Modeling and optimizing traffic light

settings on road networks. IEEE Transactions on Automatic Control, in review-

process.

4

1

Network Flow Modelling

This chapter is dedicated to dynamic network flow models, focusing on continuous

ODE/PDE-based fluid flow descriptions.

Network flow models have a broad range of applications. On the one hand a lot of

research has been done on static models, for which numerous algorithms to solve opti-

misation issues in polynomial time are available, see [40]. On the other hand, another

important field has become a point of interest in the last decades: Time dependent

models for transportation systems, which often consider PDE-dynamics to describe the

density evolution in the system; starting from internet and telecommunication networks

[34], over networks for gas and water pipelines [20], and evacuation scenarios [52], to

production flows in economics, see [2, 3, 24, 32, 35, 42, 47, 54] amongst others. A

further application are traffic flows on complex road networks [11, 17, 19, 43, 72].

The original network flow problem is dedicated to finding an optimal static through-

flow a network where every part is limited by a certain capacity, see [41]. However,

in many applications it is of interest to capture dynamical development and to model

the transportation process more detailed. To those models we refer to as dynamic

transportation networks (short DTNs). Models describing the transportation and tra-

jectories of every single part in the system have been developed, such as models on

discrete event simulation [3, 7]. They are called microscopic models. A disadvantage is

that, as soon as the number of involved parts grows, the model becomes highly complex

and cannot be solved efficiently. For that reason it has become popular to treat the

parts as fluid flow and model the density evolution using differential equations when-

ever the number of parts tends to be large, see [2, 5, 26, 32] for an overview. These

5

1. NETWORK FLOW MODELLING

models are often referred to as macroscopic models.

This chapter is structured as follows: In Section 1.1 we provide basic definitions

and notation and review some general ideas on the modelling of DTNs, including de-

scriptions of transportation along network edges, buffers and coupling conditions on

vertices.

The following two sections focus on DTN models in the context of production and

traffic flows on networks:

Section 1.2 describes the main ideas of macroscopic fluid-like production models,

such as [32], which consist of capacitated production flows and an ODE-based descrip-

tion for buffers to store waiting parts. The new contribution is an extension of the

already known model: We include the deviation of production capacities, that occur

due to abrasion effects and breakdown of machines as well as the impact or repair work-

ers. We model these additional dynamics in a smooth way using additional ordinary

differential equations. This model extension has recently been published, see [49].

We combine these ideas, including clear priority rules, in a similar way as they

are used for cell transmission models [25] and create 4-legged junctions which form

part of roundabouts. Furthermore, we reformulate the coupling conditions, which are

originally stated as maximisation problems, into min-terms, which can be computed in

a straight-forward way. Then, inspired by [83], we reformulate the traffic network flow

problem using Hamilton-Jacobi equations, that enable us to compute car trajectories

of given scenarios very easily. This advantage has also been used in [18].

In Section 1.4, we summarise the most common discretisation approaches used in

the context of DTNs (for a complete overview, see [73]) and derive a novel numerical

algorithm to simulate traffic flow models using a reformulation with Hamilton-Jacobi

equations. This yields the benefit that we can directly track trajectories of single cars.

1.1 Preliminaries

. The idea of this section is to give a general classification and point out, what we

actually mean by the term DTN (dynamic transportation network), namely models

on networks where transportation is described by dynamic functions interdepending

on each other. Subsequently, we provide the most common modelling techniques to

describe transportation and coupling conditions for these model types which can be

6

1.1 Preliminaries

adapted according to the specific application. Later-on, in Sections 1.2 and 1.3, we fill

these rather abstract definitions and derivations with life by presenting certain models

in the context of production and traffic flow networks.

First of all, we introduce some basic notation that is needed to describe the network

structure and give a general definition of dynamic transportation networks. We consider

models where the flow is only moving along a given direction. For this reason, the

structure is based on a directed Graph G = (V,E), where V describes the set of

vertices and E the set of directed edges.

In the context of directed graphs, we use the following notations.

Definition 1.1.1. Given a directed graph G = (V,E).

• V denotes the set of vertices, and E the set of edges.

• Function α : E → V maps each edge to its starting point and function ω : E →

V maps each edge to its endpoint, cf. Figure 1.1(a).

• The set of incoming edges of v is denoted by δinv := {e ∈ E : ω(e) = v} and

δoutv := {e ∈ E : α(e) = v} is referred to as the set of outgoing edges of v for

all vertices in V , cf. Figure 1.1(b).

• A vertex v� ∈ V : (∃e ∈ E : α(e) = v� ∧ ω(e) = v) is called predecessor of v.

• A vertex v� ∈ V : (∃e ∈ E : α(e) = v ∧ ω(e) = v�) is called successor of v.

• Vertices without predecessors are called inflow vertices and are collected in the

set V in = {v ∈ V : {e : ω(e) = v} = ∅}. An edge with an inflow vertex as starting

point is called inflow edge. The set of inflow edges is referred to as Ein ⊂ E.

• Vertices without successors are called outflow vertices and are collected in the

set V out = {v ∈ V : {e : α(e) = v} = ∅}. An edge with an outflow vertex

as endpoint is called outflow edge. The set of outflow edges is referred to as

Eout ⊂ E.

Before introducing dynamic networks, we state the classical network flow problem

as basis and motivation for all succeeding considerations.

7

1. NETWORK FLOW MODELLING

(a) Starting and end vertices. v1 =

ω(e1) = α(e2) = α(e3), v2 = ω(e2),

v3 = ω(e3)

(b) Set of incoming and outgoing edges.

Here, δinv = {e1, e2, e3} and δoutv =

{e4, e5}

Figure 1.1: Notations on directed graphs.

Static Network Flow Problem. The classical maximum flow problem (short MFP)

is found in graph theory. Consider a specific network G = (V,E). Every edge has a

maximal capacity, representing the upper bound of through-flow the edge. The question

is how to find the maximal amount of flow that can be assigned to the edges respecting

cost and benefit parameters.

Given edge capacities ci for all i ∈ E, a general (MFP) is given by

max
�

i∈E

fi (1.1a)

such that
�

i∈δinv

fi =
�

j∈δoutv

fj , ∀v ∈ V \{V in ∪ V out} (1.1b)

0 ≤ fi ≤ ci, ∀i ∈ E. (1.1c)

see [40, 41, 66], amongst others.

Figure 1.2 shows an example.

A feasible solution of (1.1) describes a static (i.e. time independent) flow scenario

of the given network.

This model consists of time independent variables and is useful as long as only static

network properties are considered. However, it is of interest in many applications to

analyse time dynamic behaviour. As soon as inflow, distribution of flow at branching

points or other network properties are changing in time, the network has to be described

with other tools including differential equations that describe the development of flows

8

1.1 Preliminaries

vin v1

v2

v3

v4 vout
c = 6

f = 4

c = 4

f = 3

c = 1

f = 1

c = 1

f = 1

c = 2

f = 2

c = 3

f = 2

c = 5

f = 4

Figure 1.2: Example for a maximum flow problem. The values for f are the optimal

solution with respect to the given capacities c.

and queues inside the network. In this way we end up with an extension describing

dynamic network flow models including non-linearities.

Subsequently, we state a basic definition of dynamic transportation networks (DTNs).

The crucial point of DTNs is that there are several time dependent properties and func-

tions defined on edges of a directed graph. The interdependence of these functions can

be described by edge and coupling operators. Furthermore, typically initial and bound-

ary conditions are given. For more details, see Definition 1.1.2.

The network structure is essential to define a dynamic transportation network.

(Note, that in this context the number of elements of a vector v is denoted by |v|.)

Definition 1.1.2. A dynamic transportation network (DTN) is given by

• a directed graph G = (V,E),

• a time dimension expressed by variable t and a time horizon T , such that t ∈

[0, T] ⊂ R+
0 ,

• a (possibly time dependent) flow distribution matrix d ∈ R|E|×|E| (details, see

Definition 1.1.7) (optional),

• a set of network parameters N ∈ R|N|,

• a set of edge properties Pi ∈ R|Pi| ∀i ∈ E,

• a spatial dimension expressed by variable x for each edge, details see Remark 1.1.4

(optional),

9

1. NETWORK FLOW MODELLING

• a set of dynamic functions t �→ Di(t) ∈ [Li, Ui] ⊂ R|Di|, where Li and Ui denote

the upper and lower bounds of the functions and are usually elements of the net-

work properties Pi. (In case of spatial dynamics, D might also depend on x) with

initial conditions D0i = Di(0) ∀i ∈ E,

• boundary conditions for dynamic functions (if they inherit a spatial dimension),

or inflow into the network, described by boundary functions Bini : t �→ Bini (t) ∈

R|Bin
i | ∀i ∈ Ein. Optionally right-hand boundary conditions at the outflow edges

can be described: Bouti t �→ Bouti (t) ∈ R|Bout
i | ∀i ∈ Eout

• interdependencies (possibly in form of differential equations) of the before men-

tioned objects described by a set of edge operators Ii(t,N,Pi,Di, ∂tDi,Bi) ∈ R|Ii| ∀i ∈

E (In case of spatial dynamics, I might also depend on x derivatives of Di in x),

• interdependencies of objects from neighbouring edges described by coupling oper-

ators Cv(t, d,N,P,D) ∈ R|Cv| ∀v ∈ V ,

• edge conditions of the form Ii(t, . . .) ≡ 0, ∀i ∈ E and

• coupling conditions of the form Cv(t, . . .) ≡ 0, ∀v ∈ V .

Remark 1.1.3. • Depending on the type of coupling, the coupling operators and

conditions might also by indexed by the edges i ∈ E instead of the vertices v ∈ V .

• Usually, the dynamic functions Di are modelled such that the upper and lower

bounds, Li and Ui, are automatically fulfilled. However, we mention them here,

since they play an important role for optimisation procedures, as we will see in

Chapter 2.

To fill the previous definition with life, we present some specific DTNs in the next

sections. Section 1.2 is dedicated to the derivation of DTNs in the context of production

and Section 1.3 considers DTNs for traffic flows on road networks.

The next subsection gives an overview over the most common modelling approaches

for DTNs. Subsection 1.1.1 is dedicated to the modelling of movements along network

edges and in Subsection 1.1.2 some basic ideas on coupling conditions at the network

vertices are pointed out.

10

1.1 Preliminaries

1.1.1 Transportation along Network Edges

We consider an amount of particles which are moving along a prescribed direction x.

The movement can either be tracked microscopically by describing the trajectories of

each single particle, or it can be considered in a macroscopic way, by describing the

density evolution. The latter approach is preferable for settings where we assume the

particles to have identical properties and where the amount of particles is very large,

such that considering each single trajectory would be too costy. There are numerous

ways to describe macroscopic particle flow. The most simple approach is to assume

that the particles move with constant velocity, without disturbances. In that way, we

would only need to compute the time delay, which the flow of a certain point x1 needs

to reach another point x2.

However, for many applications, especially for traffic flow models, it is important to

be able to capture nonlinear dynamic behaviour describing phenomena such as traffic

jams and backwards and forward travelling density waves, as observed on highways.

In such cases, the density evolution is described using a conservation law, which is a

hyperbolic partial differential equation.

Every edge allows for one spatial flow direction. The particles are treated as small

mass points. The density on an edge is given by ρ : (x, t) �→ ρ(x, t) ∈ [0, ρmax] ⊂ R,

where x is the spatial variable indicating the location on the edge and t refers to the

time. Furthermore ρmax is the maximal possible density of particles which is a known

property and depends on the size of every particle. The amount of particles inside an

interval [x1, x2] at time t is given by

� x2

x1

ρ(x, t)dx.

The particle flow f : (x, t) �→ f(x, t) ∈ R+
0 describes the amount of particles crossing

each point of the edge in one time unit. The amount of particles passing through

location x during the time interval [t1, t2] is given by

� t2

t1

f(x, t)dt.

Usually we assume that the particles cannot get lost along an edge and no new particles

can appear (except for the start and endpoint of the edge). This means that the amount

of particles in an arbitrary interval inside the edge [x1, x2] at a certain time t2 minus

11

1. NETWORK FLOW MODELLING

the amount of particles in the same interval at an earlier time t1 must be equal to the

difference of inflowing particles at location x1 minus outgoing particles at location x2

during the time interval [t1, t2]. In other words, the following equations holds:

� x2

x1

ρ(x, t2)dx−

� x2

x1

ρ(x, t1)dx =

� t2

t1

f(x1, t)dt −

� t2

t1

f(x2, t)dt. (1.2)

If ρ and f are sufficiently smooth, (1.2) yields

� t2

t1

� x2

x1

∂xf(x, t) + ∂tρ(x, t)dxdt = 0. (1.3)

Since (1.3) holds for all t1, t2 > 0 and all intervals [x1, x2] inside the edge α(e), ω(e),

we obtain the continuity equation, a hyperbolic partial differential equation, describing

the conservation of mass:

∂xf(x, t) + ∂tρ(x, t) = 0. (1.4)

If the flow depends solely on the density, i.e. f = f(ρ) , we have

∂xf(ρ(x, t)) + ∂tρ(x, t) = 0. (1.5)

For more details, we refer to [10, 73, 95].

We can model this dynamic behaviour on every edge of a given network graph

G = (V,E).

Remark 1.1.4. To include these spatial dynamics into the description of a DTN model,

we include the spatial dimension of each network edge i ∈ E with a variable x living

in the interval [0, Li] ⊂ R+
0 . According to the notation of Definition 1.1.2, the edge

length Li is considered to be one of the edge properties Pi. Furthermore, fi and ρi are

considered as dynamic functions and, hence, are elements of Di. Moreover, the edge

operator

Ii(ρ, f, ∂xf, ∂tρ) = ∂xf(ρ) + ∂tρ

and the edge condition

Ii ≡ 0

are required in order to satisfy (1.5).

To derive a useful DTN model, convenient coupling conditions are required at the

vertices v ∈ V . General ideas on coupling are found in the next subsection.

12

1.1 Preliminaries

1.1.2 Coupling

We give a definition of the in- and outflow of an edge.

Definition 1.1.5. Given a transportation network on a directed graph G = (V,E).

We refer to the flow that is leaving an edge i by f̂i, and the flow entering edge i is

referred to as f̄i, cf. Figure 1.3. In case that length Li ∈ R+ is a given edge property,

as described in Remark 1.1.4, we have f̄i(t) := fi(x = 0, t) and f̂i(t) := f̂i(x = Li, t).

f̄i f̂i

edge i

Figure 1.3: In- and outflow of an edge.

Remark 1.1.6. In some application the model includes buffers in the beginning of

each edge, where particles can be stored. In this case, the incoming flow f̄i can either be

diverted to or increased by the parts in the buffer. Let ui(t) represent the function for

the buffer size in front of edge i and fi the flow entering the edge after having traversed

the buffer, see Figure 1.4. Then we have

fi = f̄i − ∂tui. (1.6)

f̂i

edge i

f̄i fiui

Figure 1.4: Flow functions f̄i, fi and f̂i for an edge with buffer ui.

A typical application for this scenario are production networks as, for example,

described in [2, 4, 31, 37, 42]. Another example is derived in more detail in Section

1.2.

In the case that no dynamics along the edges and no buffers are considered, as for

example in the MFP (1.1), we have f̄i = f̂i, ∀i ∈ E.

13

1. NETWORK FLOW MODELLING

Consider a vertex v ∈ V . In general we require conservation of mass trough nodes,

i.e. we do not want to loose or gain any particles at the vertices, hence Kirchhoff’s law

has to be fulfilled:

�

i∈δinv

f̂i(t) =
�

j∈δoutv

f̄j(t), ∀v ∈ V (1.7)

Sometimes, we also have given requirements on the flow distribution at vertices.

Then, we use parameters 0 ≤ dij ≤ 1 which prescribe the percentage of flow going from

edge i to edge j. This yields

f̄j(t) =
�

i∈δinv

dij · f̂i(t), ∀j ∈ δoutv . (1.8)

The distribution parameters have to be chosen such that

�

i∈δoutv

dij = 1 (1.9)

holds. Then (1.8) guarantees that (1.7) holds.

This gives rise to the following definition:

Definition 1.1.7. Given a directed graph G = (V,E). A matrix d ∈ R|E|×|E| is called

a flow distribution matrix, when the following properties are fulfilled:

• 0 ≤ dij ≤ 1, ∀(i, j) ∈ E × E,

•
�
�v ∈ V : {i ∈ δinv ∧ j ∈ δoutv }

�
⇒ dij = 0, i.e. entries only differ from zero, when

edge j is a direct successor of edge j.

•
�

i∈δoutv
dij = 1 ∀j ∈ E\Ein, i.e. all incoming flow is distributed, see (1.9).

Note, that the notation “d” without indices refers to the matrix, whereas “dij”

refers to one element of the matrix.

Definition 1.1.7 implies that the rows sums are 1, i.e.
�

j∈E dij = 1, except of all

outgoing edges j ∈ Eout. An example is shown in Figure 1.5.

14

1.1 Preliminaries

−→ d =




0 0.5 0.5 0 0 0

0 0 0 0.3 0.7 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0




.

Figure 1.5: Example network with corresponding matrix d. The entry dij represents the

percentrage of flow going from edge i to edge j.

Remark 1.1.8. According to the notation of Definition 1.1.2, the coupling conditions

(1.7) and (1.8) can be included in a DTN model via the coupling operator

Cv(f̄ , f̂) =
�

i∈δinv

f̂i −
�

j∈δoutv

f̄j , ∀v ∈ V, (1.10)

for settings, in which the flow distribution is variables, and by

Cj((d, f̄ , f̂) = f̄j −
�

i∈δin
α(j)

dij f̂i, ∀j ∈ E\Ein, (1.11)

for cases with prescribed flow distribution matrix d.

The coupling condition is then given by

Cj ≡ 0.

Remark 1.1.8 shows that the coupling operator is defined for each edge as soon as

the flow distribution is given by d, cf. (1.11). In cases with the flow distribution is

variable, it is sufficient to guarantee Kirchoff’s law and define the coupling operator for

each vertex, cf. (1.10).

In cases where more involved dynamical phenomena such as forward and back-

wards travelling density waves, e.g. for traffic flow models, we obtain more complex

requirements for the coupling densities. This is due to the fact that we have to ex-

clude inadmissible wave directions at the junction. For more details see Section 1.3 and

[11, 19, 64], for an overview.

The next sections apply these modelling ideas in the context of production networks

and traffic flow networks.

15

1. NETWORK FLOW MODELLING

1.2 Application I: Production Network Models

Complex production processes often consist of numerous production steps. In the

beginning, raw material is introduced into the system and passed on from one machine

to the next, which successively execute various production steps, until the finished

product is obtained as output at the end of the chain, cf. Figure 1.6.

Figure 1.6: Chain of processors.

In general, a production system consists of several branching points and provides

various paths where parts are manufactured. Hence, the underlying framework is in

many cases a large system of production units, such as suppliers and machines, which

are interpreted as a production network.

1.2.1 Transport and Buffers

In the production context, the edges of a network represent different production units,

such as assembly lines or machines, where certain production steps are executed. They

usually include buffers, where those parts are stored that cannot be processed immedi-

ately. The need for buffers is a result of the assumption that there is an upper bound

for the particle flow in each unit which represents the production capacity of the cor-

responding machine. In this context, stationary models on queuing theory have been

derived, see [9, 16], where the main focus lies on the mean waiting and arrival time of

parts.

An alternative approach is the modelling of dynamics in processors and buffers. The

resulting instationary models either consider discrete events [3, 7] or consider continuous

flows and compute the density evolution in the system, see [4, 31, 32, 42, 47] for an

overview.

In this subsection we will have a closer look at the latter mentioned fluid-like models

as a basis and present an extension in the next subsection.

16

1.2 Application I: Production Network Models

Let ui : t �→ ui(t) represent the queue size, i.e. the number of waiting parts, in

the buffer of edge i, f̄i : t �→ f̄(t) describes the flow from preceding edges entering the

buffer of edge i ∈ E and f̂i : t �→ f̂(t) describes the flow leaving the buffer ui, cf. Figure

1.7.

edge i

f̄i

fext,i

fiui

Figure 1.7: Flow and buffer on network edge. For all incoming edges i ∈ Ein f̄i ≡ 0,

such that only external inflow fext,i enters the buffer. For all other edges i ∈ E\Ein the

external inflow fext,i is optional.

The processing capacity is the upper bound for the flow and is given by ci, i ∈ E.

External inflow into processor i is prescribed by fext,i(t) for i ∈ Ein. For all other

processors fext,i ≡ 0 holds.

Let d be the flow distribution matrix as stated in Definition 1.1.7. As described in

Subsection 1.1.2, the flow coming from preceding edges is given by

f̄i(t) =
�

k∈δin
(α(i))

dkif̂k(t), (1.12)

where f̂i describes the flow leaving edge i, cf. equation (1.8).

Remark 1.2.1. The indexing of (1.12) differs from (1.8) for the following reason: In

(1.8), we consider various edges indexed by i and their common succeeding edge j,

whereas here, we consider a fixed edge i and its preceding edges indexed with k.

We derive equations describing the dynamics of the buffer level ui at time t. Imagine

that the flow which is led from preceding edges to a certain edge i first of all enters the

buffer and is then passed on to the actual machine. As already mentioned in Remark

1.1.6, the evolution of the buffer level is given by the difference between the amount of

flow entering and leaving the buffer. We get:

dui(t)

dt
= f̄i + fext,i(t)− fi(t). (1.13)

17

1. NETWORK FLOW MODELLING

It is of general interest to efficiently use the available capacity and run a production

system at high working load, i.e. when a lot of parts are running through the system.

For this reason, we assume that the maximal production capacity of each machine is

used whenever possible. That means, the machine runs with its full capacity, as long

as there are parts waiting in the buffer, otherwise as much as possible of the incoming

parts are used. This yields the following equation:

fi(t) =

�
min{f̄i(t), ci(t)}, ui(t) = 0

ci(t), ui(t) > 0
(1.14)

In order to avoid the discontinuous dependence of f on the buffer level u, [46]

suggests to use a small regularisation parameter 0 < τ � 1, and replace (1.14) by the

relaxed formulation

fi(t) = min(ci,
ui(t)

τ
). (1.15)

In Section 1.3.1 of [46] is shown that (1.15) is equivalent to (1.14) for the limit τ → 0.

There are different ways to model the transport of particles from the buffer to

the actual machine. If the dynamic of the transportation as such is of interest, it is

modelled using the continuity equation (1.5), as described in Subsection 1.1.1. If we

imagine the particles to move on conveyor belts, they are transported with constant

velocity v. Then, the flow function is given by f(ρ) = v · ρ. In this case, the continuity

equation (1.5) simplifies to the advection equation

∂tρ(x, t) + v∂xρ(x, t) = 0 (1.16)

This approach is for example used in [36, 37, 48, 49, 57, 98].

If the main focus does not lie on the density evolution along the edges, it is also

convenient to interpret τi as a previously fixed throughput time for each edge and

integrate the transportation time indirectly in the description of the buffer ui. In that

way τi causes a smoothed out delay of parts entering the buffer until they are produced.

In that case the assembly line and the buffer are treated as one entity and the space

variable x along the edges is neglected, cf. Figure 1.8.

We have fi(t) ≈
ui(t)
τi

and fi(t) is equivalent to f̂i(t), the flow leaving the edge, see

details in [2, 57].

18

1.2 Application I: Production Network Models

Figure 1.8: Sketch of processor layout.

In summary, we consider the following ordinary differential equation for the buffer

levels:

dui(t)

dt
= f̄i + fext,i(t)− fi(t) (1.17a)

fi(t) = min
�
ci(t),

ui(t)

τi

�
. (1.17b)

The interpretation of (1.17) is as follows: Parts are fed into the network, are trans-

ported from one machine to another and can be stored in buffers in case of capacity

shortage. As soon as parts have traversed the outflow edges, they leave the system. It

is clear that the conservation of mass through the whole network should hold, since no

parts are lost or generated inside the network. This gives rise for the following lemma.

Lemma 1.2.2. Let t ∈ [0, T] ⊂ R and fi : [0, T] → R+
0 and fext,i : [0, T] → R+

0 be L1

functions for all i. Then the total conservation of mass for an initially empty network,

i.e. ui(0) = 0, is given by

� t

0

�

i∈E

fext,i(t̃) dt̃ =
�

i∈E

ui(t) +

� t

0

�

i∈Eout

fi(t̃) dt̃ ∀t ∈ [0, T]. (1.18)

In other words, the total number of incoming parts until an arbitrary time t has to be

equal to the number of parts, that remain inside the network, i.e. stored in buffers, at

time t, plus the parts that have already left the network.

19

1. NETWORK FLOW MODELLING

Proof. We argue that the total conservation of mass holds true due to constraint (1.17)

which ensures the conservation of mass through nodes only. From the construction of

the matrix d, we know that each row that represents an edge which is not an outflow

edge, contains positive entries between zero and one, describing how much percent of

the flow is sent to consecutive processors. Since flow is distributed between consecutive

edges, we know
�

j∈E dij = 1 except for all outgoing edges i ∈ Eout. Starting from the

total flow in the network and considering the structure of d, we deduce for all t:

�

i∈E

(d · f(t))i =
�

i∈E

�

j∈E

dijfj(t) =
�

i∈E

� �

j∈E

dij

� �� �

=











1 ∀i ∈ E\Eout

0 else

�
fj(t) =

�

j∈E\Eout

fj(t).

(1.19)

Next, we take equation (1.17a), integrate both sides with respect to time and take

the sum over all processors:

�

i∈E

ui(t)−
�

i∈E

ui(0) =

� t

0

��

i∈E

(d · f(t̃))i

� �� �
see (1.19)

−
�

i∈E

fi(t̃) +
�

i∈E

fext,i(t̃)
�
dt̃

�

i∈E

ui(t)−
�

i∈E

ui(0) =

� t

0

� �

i∈E\Eout

fi(t̃)−
�

i∈E

fi(t̃)

� �� �
=−

�

i∈Eout fi(t̃)

�
dt̃+

� t

0

�

i∈E

fext,i(t̃) dt̃

Sorting all terms and inserting the initial conditions ui(0) = 0∀i yields the desired

result.

1.2.2 Model Extension: Abrasion based Capacity Decline

Machines may break down or abrasion effects can lead to decline of processing capacities

or complete interruption. In order to keep production running, repair crews are assigned

to currently broken-down or ineffecient machines in order to stabilise or increase the

production capacity.

In this subsection we show how deviation in the processing capacity and the effects

of repair workers on the production efficiency can be modelled. To keep the model

simple, breakdown rates are integrated into the model using experimental values on the

reliability of each machine. In this way we avoid the inclusion of stochastic fluctuations.

20

1.2 Application I: Production Network Models

Hence, as opposed to former production network models such as [37, 47, 57] amongst

others, we assume that the capacity is not a fixed parameter, but can fluctuate within

the production process.

There is a fixed upper bound for ci(t), the maximal capacity µi ∈ R+. The evolution

of capacities depends on the constant breakdown rates li and the constant repair rates

ri, which are both deterministic parameters obtained by measurements. Furthermore

the capacity evolution is influenced by the percentage of repair workers allocated to

each machine, denoted by βi(t) ∈ [0, 1] ⊂ R. The total number of repair workers is

given by W ∈ N.

We assume that workers are assigned simultaneously and immediately, i.e. time

delays at the time of worker shifts are neglected. However, we have to be aware that

too frequent worker changes are not convenient in practice. In other words, βi(t) should

not be a highly oscillating function, but instead have a lower bounded TV-norm. Hence,

we choose βi(t) to be piecewise constant with a reduced amount of discontinuity jumps.

We model breakdowns of machines (rather crudely) by a continuous process reduc-

ing the capacity by liΔt in the interval Δt. The parameter ri denotes the efficacy of

a repair-worker when working on machine i. The meaning of ri is that assigning W

workers to repair machine i will result in increasing the capacity of the machine by an

amount Δci = WriΔt in the (infinitesimal) time interval Δt. Therefore the rate of

change in capacity is given by the equation

dci(t)

dt
= riβi(t)W − li. (1.20)

Depending on the application, the decrease of capacity can be the consequence of

abrasion during the production process or because a machine runs out of material. In

this case it makes sense to link the magnitude of the capacity descent to the amount

of processed parts. Then, equation (1.20) changes to

dci(t)

dt
= riβi(t)W − li · fi(t) (1.21)

Equation (1.20) has to be modified as to guarantee that the capacity ci(t) is bounded

from below by zero and from above by some maximal capacity µi. Here, µi denotes the

capacity value when all the parts of the machine are running, and therefore assigning

any repair workers to the machine would be wasteful. We approach this in the same

21

1. NETWORK FLOW MODELLING

way we model the flow function fi(t) in (1.17a), by introducing a small relaxation

parameter �, and model the dynamic evolution of the capacity ci by

dci(t)

dt
= min

�µi − ci(t)

�
,Wriβi(t)

�
−min

�ci(t)

�
, li

�
. (1.22)

Equation (1.22) will asymptotically produce the correct bounded dynamics for 0 < � �

1:

The interpretation is as follows:

• Assuming a total loss of capacity, i.e. ci(t) = 0. This implies

∂tci(t) = min
�µi

�
,Wriβi(t)

�
.

Hence, the broken machine will be repaired and the capacity starts increasing

again.

• The machine works with maximal capacity µi = ci(t) > 0. Equation (1.22)

reduces to

∂tci(t) = −min
�µi

�
, li

�
.

Then, the capacity rate can only decrease.

• The capacity is 0 � ci(t) � µi. This yields ∂tci(t) = Wriβi(t) − li. Hence, the

capacity increases, if Wriβi(t) > li and decreases otherwise.

For cases in which the capacity decline depends proportionally on the through-going

material flow, see (1.21), we use

dci(t)

dt
= min

�µi − ci(t)

�
, Wriβi(t)

�
− li · fi(t) (1.23)

instead of (1.22). Since the flow is bounded by the capacity, see (1.15), it is already

guaranteed that c will not become negative. For that reason, we do not need to con-

struct another min-term expression as in (1.22).

Remark 1.2.3. A complete production network model including dynamic capacities

and repair workers is given by the following DTN model:

• directed graph G = (V,E),

• time horizon t ∈ [0, T],

22

1.3 Application II: Traffic Flow Models

• flow distribution matrix d,

• network parameters N =
�
W, �

�T
,

• edge properties Pi =
�
µi, ri, li, τi

�T
∀i ∈ E,

• dynamic functions Di =
�
fi, f̄i, ci, ui, βi

�T
∀i ∈ E,

• external inflow Bi =
�
fext,i

�
∀i ∈ E,

• edge operators:

I
(1)
i (fi, f̄i, fext,i,

d

dt
ui) =

d

dt
ui − f̄i − fext,i + fi,

I
(2)
i (τi, fi, ci, ui) = fi −min

�
ci,

ui
τi

�
and

I
(3a)
i (W, �, µi, ri, li, ci,

d

dt
ci, βi) =

d

dt
ci −min

�µi − ci
�

,Wriβi
�
+min

�ci
�
, li
�
or

I
(3b)
i (W, �, µi, ri, li, fi, ci,

d

dt
ci, βi) =

d

dt
ci −min

�µi − ci
�

,Wriβi
�
+ lifi, ∀i ∈ E,

• coupling operator

Cj(H, f, f̄) = f̄j −
�

i∈δin
α(j)

dijfi, ∀j ∈ E\Ein,

• edge conditions I
(1)/(2)/(3)
i ≡ 0, ∀i ∈ E and

• coupling conditions Cj ≡ 0, ∀j ∈ E\Ein.

Chapter 2, Section 2.3, is dedicated to find the optimal worker scheduling for pro-

duction network based on the DTN model of Remark 1.2.3.

The next section present the derivation of a DTN model in the context of traffic

flow on road networks.

1.3 Application II: Traffic Flow Models

In this section we describe a traffic flow model on networks based on the ideas of

Lighthill, Whitham and Richards [74, 88]. We discuss coupling conditions for certain

kinds of junctions. Subsequently, we consider a reformulation of the network model

using Hamilton-Jacobi equations.

23

1. NETWORK FLOW MODELLING

Traffic flow models have been intensively studied during the last years; see [11, 12,

17, 19, 28, 33, 43, 55, 56, 58, 74, 78, 79, 83, 88] and the references therein.

In the context of traffic flow models on networks [11, 17, 19, 43, 72], we focus on

macroscopic models which are based on partial differential equations for the traffic

density (parts per unit length). The network under consideration consists of edges

and vertices where edges correspond to unidirectional roads and vertices to road inter-

sections. From a mathematical point of view, we assume the macroscopic equations,

more precisely the Lighthill-Whitham-Richards equations (1.24), to hold on each road.

For the modelling of roads with different speed limits, we allow for different flow func-

tions. The crucial point in network models is the coupling at junctions. We refer to

[11, 17, 21, 25, 39, 56] for an overview. Our approach will pick up these ideas and

additionally establish a new coupling rule in the case of merging junctions. We avoid

the use of right of the way parameters which determine the proportion of flow and

instead introduce priority roads, similar to [25], who followed this approach for cell

transmission models. As we will see the coupling conditions will lead to a uniquely

solvable network problem.

1.3.1 Modelling Traffic on Roads

We consider Lighthill-Whitham-Richards (LWR) traffic flow model for roads [74, 88].

Here, the macroscopic traffic flow is described assuming that it depends solely on the

traffic density;

�
∂tρ+ ∂xf(ρ) = 0,
ρ(x, 0) = ρ0(x),

(1.24)

where ρ : (x, t) �→ ρ(x, t) ∈ [0, ρmax] ⊂ R+ denotes the density of cars, x ∈ [0, L] ⊂ R+

describes the location on the road, L is the length of the road (from one intersection

to the next) and t ∈ R+ denotes the time.

In general, the flow function is concave with a unique maximum at a designated

point ρ∗ ∈ [0, ρmax].

Remark 1.3.1. Typical flow functions are for example

f(ρ) = v(ρ) · ρ (1.25)

24

1.3 Application II: Traffic Flow Models

where

v(ρ) =
vmax

ρmax
(ρmax − ρ)

is the velocity which cars are assumed to have depending on the actual traffic density,

the maximal allowed velocity for the road vmax and the maximal traffic density (bumper-

to-bumper density) ρmax, see for example [11].

Another broadly used function with constant velocity λ for light traffic, i.e. ρ ≤ ρ∗,

is the triangular flow function:

Definition 1.3.2. Given α ∈ R+ and maximal density ρmax ∈ R+, a triangular flow

function is given by

f : [0, ρmax] → R+, with

f(ρ) =

�
λ · ρ if 0 ≤ ρ ≤ ρ∗

λ · (2ρ∗ − ρ) if ρ∗ < ρ ≤ ρmax
. (1.26)

with ρ∗ = 1
2ρ
max.

This function is used by [18, 28, 79] and in the context of data traffic in telecom-

munication networks by [34], amongst others.

density ρ

f(ρ)

ρ∗ ρmax

Figure 1.9: Triangular flow function.

We define the function τ : [0, ρmax] → [0, ρmax] which maps the density to a distinct

density value with equal flow, if existent. In other words we want τ to fulfill the

following property:

f(ρ) = f(τ(ρ)),

with

τ(ρ) �= ρ, if ρ �= ρ∗.

25

1. NETWORK FLOW MODELLING

Since f is a strictly concave function, τ is uniquely defined.

Moreover, f−1
l : f �→ f−1

l (f) ∈ [0, ρ∗] and f−1
r : f �→ f−1

r (f) ∈ [ρ∗, ρmax] denote the

inverse flow function for the left and the right side of the maximum, respectively.

For flow function (1.26) τ is given by

τ(ρ) = 2 · ρ∗ − ρ. (1.27)

1.3.2 Coupling Conditions for Road Networks

We consider a road network given by a directed graph G(V,E), where E denotes the

set of edges that represent the roads and V the set of vertices that represent the

traffic intersections and which will be referred to as junctions. The length of each

road i, leading from one junction to the next, is given by Li ∈ R+. The roads are

unidirectional. Different speed limits and amount of lanes of different roads can be

modelled by choosing different flow functions. Lanes for different directions can be

described by separate edges as depicted for example in Figure 1.15.

The density at the junction for the road of any incoming edge i will be denoted by

ρ̂i(t) and the density at the coupling point for any outgoing road j will be referred to

as ρ̄j(t). At every junction the conservation of cars holds:

�

i∈δinv

f(ρ̂i(t)) =
�

j∈δoutv

f(ρ̄j(t)), ∀t > 0, (1.28)

as seen in (1.7).

Remark 1.3.3. The validity of equation (1.28) is also confirmed by [58]: They define

a weak solution of the traffic network problem based on the Cauchy problem (1.24) for

each road, using smooth test functions φi : (x, t) �→ φ(x, t), i ∈ E with compact support

on [0, Li] × R+
0 . and φi(Li, t) = φj(0, t) and ∂xφi(Li, t) = ∂xφj(0, t) at junctions (i.e.

if i ∈ δinv and j ∈ δoutv), ∀v ∈ V, t ≥ 0. The density functions ρi, i ∈ E, are a weak

solution if

�

i∈E

� � ∞

0

� Li

0

�
ρi∂tφi + f(ρi)∂xφi

�
dxdt+

� Li

0
ρi(x, 0)φi(x, 0)dx

�
= 0

is satisfied. For the weak solution, equation (1.28) holds and is also known as Rankine-

Hugoniot relation.

26

1.3 Application II: Traffic Flow Models

For simplicity we use the following notation for the flow at junctions: f̂i := f(ρ̂i))

for incoming edges and f̄j := f(ρ̄j)) for outgoing edges.

As in [11, 12, 43, 58], we assume to deal with piecewise constant initial data. In

that way, it is possible to use the theory about Riemann problems [59, 92] for the

computation of the coupling conditions. A brief review on Riemann problems is given

in following paragraph.

The Riemann Problem. A Riemann problem is a Cauchy problem where the initial

value is of the form:

ρ0(x) =

�
ρl, x < 0,
ρr, x ≥ 0,

(1.29)

We consider the conservation law (1.5) with initial data of the form (1.29).

It can be shown that the solution is constant on straight lines in the (x, t)-plane,

i.e. ρ(x(t), t) = u(x(0), 0) with

x(t) =

�
d
dρf(ρl) · t+ x(0), if x(0) < 0
d
dρf(ρr) · t+ x(0), if x(0) ≥ 0.

Hence, we obtain the following cases for strictly concave flow function f :

• If ρl < ρr, the solution is given by a shock (in the sense of Lax [71]):

ρ(x, t) =

�
ρl, if x ≤ f(ρr)−f(ρl)

ρr−ρl
· t,

ρr, else.
(1.30)

• If ρl > ρr, we get a rarefaction wave:

ρ(x, t) =





ρl, if x ≤ d
d ρf(ρl) · t,

(dd ρf)
−1(xt),

d
d ρf(ρl) · t ≤ x ≤ d

d ρf(ρr) · t,

ρr if x > d
d ρf(ρr) · t.

(1.31)

• If ρl = ρr, the solution is constant, namely ρ(x, t) = ρl = ρr.

For more details, we refer to [10, 59, 71].

27

1. NETWORK FLOW MODELLING

Deriving admissible coupling densities. We assume that the density terms on

each road are initially constant. In this way we obtain initial conditions of Riemann

type for the network. To get admissible solutions at junctions, we need waves of non-

positive speed for incoming roads and waves of non-negative speed for outgoing roads.

This is done by analysing (1.30) and (1.31) for density values ρ̂i and ρ̄i of neighbouring

roads i and j. The characteristics of the density only leave the junction, when the

coupling densities ρ̂i and ρ̄j lie in certain regions depending on the initial value on the

road close to the junction, i.e. ρi(Li) and ρj(0), respectively.

For incoming roads we get:

ρ̂i ∈

�
{ρi(Li)}∪]τ(ρi(Li)), ρ

max
i], if 0 ≤ ρi(Li) ≤ ρ∗i

[ρ∗i , ρ
max
i], else.

(1.32)

And for outgoing roads:

ρ̄j ∈

�
[0, ρ∗j], if 0 ≤ ρj(0) ≤ ρ∗j ,

{ρj(0)} ∪ [0, τ(ρj(0))[, else.
(1.33)

Figure 1.10 shows the admissible coupling densities for some exemplary values of ρi(Li)

and ρj(0).

ρi(Li)≤ρ
∗

i :

ρi

f(ρi)

ρ∗i ρmax
iρi(L)

ρi(Li)>ρ
∗

i :

ρi

f(ρi)

ρ∗i ρmax
iρi(L)

ρj(0)≤ρ
∗

j :

ρj

f(ρj)

ρ∗j ρmax
jρj(0)

ρj(0)>ρ
∗

j :

ρj

f(ρj)

ρ∗j ρmax
jρj(0)

Figure 1.10: Feasible coupling density for incoming road i and outgoing road j (depicted

by thick black line).

The existence of solution to Riemann problems on road networks is proven in [19].

To obtain uniqueness, we assume prescribed distribution parameters dij at junctions

in the sense of Definition 1.1.7. As explained in e.g. [11, 19, 43, 55], the previous

assumptions still leave us with an additional degree of freedom. Hence, we additionally

assume that the drivers’ behaviour is to obtain maximal possible flow at junctions.

If the density values at the boundaries of a road are known, we can compute the

maximal possible flow at the boundary of the roads using (1.32) and (1.33). This yields:

28

1.3 Application II: Traffic Flow Models

F̂i :=

�
fi(ρi(Li)), if 0 ≤ ρi(Li) ≤ ρ∗i
fi(ρ

∗
i), else

(1.34)

and

F̄j :=

�
fj(ρ

∗
j), if 0 ≤ ρj(0) ≤ ρ∗j

fj(ρ(0)), else
. (1.35)

As explained before, we assume that drivers behave such that the traffic flow at a

junction is maximal respecting the necessary conditions we derived before. Hence, for

a general junction v the coupling flow
�
f̂i, i ∈ δinv ; f̄j , j ∈ δoutv

�
is given by an optimal

solution of the following problem:

max
�

i∈δinv

γi (1.36a)

such that

γj =
�

i∈δinv

dijγi, ∀j ∈ δoutv (1.36b)

0 ≤ γi ≤ F̂i, ∀i ∈ δinv (1.36c)

0 ≤ γj ≤ F̄j , ∀j ∈ δoutv . (1.36d)

We will refer to the optimal solution of (1.36) by f̂i ∀i ∈ δinv and f̄j ∀j ∈ δoutv .

Lemma 1.3.4. If

�

i∈δinv

dijF̂i ≤ F̄j , ∀j ∈ δoutv (1.37)

holds, (1.36) is uniquely solvable, and the optimal solution is given by

f̂i = F̂i, ∀i ∈ δinv (1.38)

f̄j =
�

i∈δinv

dij f̂i, ∀j ∈ δoutv . (1.39)

Proof. From (1.38) and (1.39) follows immediately that conditions (1.36b) and (1.36c)

are fulfilled. Furthermore, (1.36d) holds due to assumption (1.37). Hence, {f̂i, i ∈ δinv }

and {f̄j , j ∈ δoutv } form a feasible solution of (1.36). Let {f̂ oi , i ∈ δinv } and {f̄ oj , j ∈ δoutv }

be a second feasible solution of (1.36). From (1.36c) we get f̂ oi ≤ f̂i ∀i ∈ δinv . And since

29

1. NETWORK FLOW MODELLING

f̄ oj is uniquely defined by (1.36b) for all j ∈ δoutv , the second solution is only different

from the first, when f̂ oi < f̂i for at least one i ∈ δinv . But this means for the objective

function value that
�

i∈δinv
f̂ oi <

�
i∈δinv

f̂i. Hence, {f̂i, i ∈ δinv } and {f̄j j ∈ δoutv } form

the unique optimal solution of (1.36).

Lemma 1.3.4 shows that in cases where all arriving flow can be absorbed by the

outgoing roads, the optimal solution of (1.36) is unique and can be found easily. Other-

wise, there is a bottleneck at the capacity of the outgoing roads. If there is more than

one incoming road, we need additional rules – so-called priority rules – to uniquely

prescribe the proportion of traffic of the incoming roads that is entering the outgoing

edges. One approach is derived on page 32, see (1.46) and (1.47).

As soon as the flow for the coupling is known, a unique coupling density value can

be found. It is denoted by ρ̂i and ρ̄j , respectively. Since we deal with strictly concave

flow functions that are piecewise invertible, there are at most two density values that

can lead to a specific flow value. Knowing the boundary densities ρi(Li) and ρj(0),

equations (1.32) and (1.33) lead to further restrictions on the coupling densities ρ̂i and

ρ̄j . In this way we end up with uniquely defined coupling densities given by

ρ̂i =

�
ρi(Li), if f−1

il (f̂i) = ρi(Li)

f−1
ir (f̂i), else

(1.40)

and

ρ̄j =

�
ρj(0), if f−1

jr (f̄j) = ρj(0)

f−1
jl (f̄j), else.

(1.41)

In the following paragraphs, we explicitly state the coupling conditions for several

specific types of junctions. A similar analysis has been done in [11]. In particular,

we focus on priority rules at junctions with two incoming roads and allow different

flow functions on each road, e.g. in order to consider roads with different speed limits.

Furthermore, we consider the modelling of a realistic roundabout.

Subsequently, we compute the coupling flow at each type of junction. Due to (1.40)

and (1.41) we know that this information is enough to uniquely compute the coupling

density.

30

1.3 Application II: Traffic Flow Models

1.3.3 Consideration of specific Junction Types

Two simply connected roads

In a bottleneck situation, the capacity of traffic load decreases at a certain point, as

schematically depicted in Figure 1.11.

Figure 1.11: Bottleneck road.

For instance, think of road narrows (e.g. when one lane of a multiple lane road ends)

or of lower speed limit.

This can be modelled using different flow functions for each part of the road, see

also [11]. At the intersection point the coupling condition is given by the maximal

feasible flow

max γ1 (1.42a)

such that

γ2 = γ1 (1.42b)

0 ≤ γ1 ≤ F̂1 (1.42c)

0 ≤ γ2 ≤ F̄2 (1.42d)

where F̂1 and F̄2 are given by (1.34) and (1.35), respectively. Obviously, the system

(1.42) has the unique optimal solution:

f̂1 = f̄2 = min{F̂1, F̄2}. (1.43)

Dispersing junction

We consider the traffic at a dispersing junction as depicted in Figure 1.12. Following

the idea of Subsection 1.1.2, we assume the distribution rate at the junction to be

previously known due to statistical data. In this way we can use prescribed distribution

parameters d12 and d13, indicating the percentage of the traffic from road 1 to road 2

and road 3, respectively. This approach is also used by [11, 55]. The parameters may

change over time and have to fulfill d12 + d13 = 1, d12 ≥ 0 and d13 ≥ 0.

31

1. NETWORK FLOW MODELLING

Figure 1.12: Dispersing junction.

As in [25], we assume that the total through-flow at the junction is restricted as

soon as one of the outgoing roads is not able to absorb all the designated incoming flow.

This corresponds to a first-in-first-out-rule (FIFO) of cars and is a realistic assumption,

since a car waiting at the junction blocks all the traffic behind it until it can continue.

Here, we obtain the following optimisation problem:

max γ1 (1.44a)

such that

γ2 = d12γ1 (1.44b)

γ3 = d13γ1 (1.44c)

0 ≤ γ1 ≤ F̂1 (1.44d)

0 ≤ γ2/3 ≤ F̄2/3. (1.44e)

This linear programming problem can be computed manually by using the Simplex

algorithm [30]. Depending on whether F̂1, F̄2 or F̄3 turns out to be the sharpest

bound, the solution of (1.44) is given by

f̄2 = min{d1,2F̂1, F̄2,
d1,2
d13

F̄3}, (1.45a)

f̄3 = min{d13F̂1,
d13
d1,2

F̄2, F̄3}, (1.45b)

f̂1 = f̄2 + f̄3, (1.45c)

where F̂1 is given by (1.34) and F̄2 and F̄3 are given by (1.35). The resulting boundary

densities at the junction are again given by (1.40) and (1.41).

Merging junction

At a merging junction as depicted in Figure 1.13(a), we again want to find the coupling

with the maximal through-flow f̄3(t) = f̂1(t) + f̂2(t). As described in [11, 17], this

32

1.3 Application II: Traffic Flow Models

(a) Merging junction. (b) Priority road.

Figure 1.13: Merging junction.

coupling condition is not uniquely solvable, if (1.37) is not fulfilled. Hence, we need

to assign a further rule. The authors in [11, 17, 56] propose a right of way parameter

q ∈]0, 1[that prescribes the proportion of flow coming from 1 and 2 in the case of a

bottleneck situation. In a similar way, a priority rule for merging junctions has been

developed in [25]. Based on these approaches we formulate a priority traffic rule, where

the traffic of the main road always is prioritised over the traffic of a side road as depicted

in Figure 1.13(b).

As soon as road 3 has such a dense traffic, that it cannot immediately allow all

incoming cars to continue, cars from road 1 are preferred. Again, we want to maximise

the flow at the junction. The priorisation of the flow coming from road 1 is obtained

by using a weighting parameter w > 1 in the objective function:

maxw · γ1 + γ2 (1.46a)

such that

γ3 = γ1 + γ2 (1.46b)

0 ≤ γ1/2 ≤ F̂1/2 (1.46c)

0 ≤ γ3 ≤ F̄3 (1.46d)

Lemma 1.3.5. There exists a unique solution of (1.46) which is given by

f̄3 = min{F̂1 + F̂2, F̄3}, (1.47a)

f̂1 = min{F̂1, F̄3}, (1.47b)

f̂2 = f̄3 − f̂1, (1.47c)

where F̂1 and F̂2 are given by (1.34) and F̄3 is given by (1.35).

33

1. NETWORK FLOW MODELLING

Proof. Problem (1.46) is an easy linear optimisation problem. Techniqually, it can be

solved by Simplex algorithm [30]. Due to the simple structure of the problem, it is also

possible to directly get the optimal solution by the consideration of different cases. We

distinguish between three cases depending on the size of F̄3. The feasible region of each

case is depicted in Figure 1.14 and the optimal solution is indicated by the black dot.

γ1

γ2

F̂2

F̂1

γ
1
+
γ
2
=
F̄
3

w
γ
1
+

γ
2

max

i)

γ1

γ2

F̂2

F̂1

γ
1
+
γ
2
=
F̄
3

w
γ
1
+

γ
2

max

ii)

γ1

γ2

F̂2

F̂1

γ
1
+
γ
2
=
F̄
3

w
γ
1
+

γ
2

m
ax

iii)

Figure 1.14: Feasible region for flows at junction.

i) F̄3 ≤ F̂1 : In this case the optimal solution of (1.46) is given by

f̂1 = F̄3, f̂2 = 0, f̄3 = F̄3.

ii) F̂1 < F̄3 ≤ F̂1 + F̂2 : In this case the optimal solution of (1.46) is given by

f̂1 = F̂1, f̂2 = F̄3 − F̂1, f̄3 = F̄3.

iii) F̄3 > F̂1 + F̂2 : In this case the optimal solution of (1.46) is given by

f̂1 = F̂1, f̂2 = F̂2, f̄3 = F̂1 + F̂2.

This yields directly (1.47a) - (1.47c). Hence, (1.46) is uniquely solvable.

Roundabout

We consider a roundabout as depicted in Figure 1.15(a). It is composed of four junctions

with two incoming and two outgoing roads, see 1.15(b).

This junction type is a combination of a merging junction with priority rules and

dispersion junction. Since the inner ring of the roundabout has priority, road 1 is

34

1.3 Application II: Traffic Flow Models

(a) (b) (c)

Figure 1.15: modelling of a roundabout as a combination of dispersing and merging

junctions.

prioritised over road 2. The dispersing is managed in the following way: We assume

no car is going from road 2 to road 3, but all go to road 4. Hence, the distribution

parameters are d23 = 0 and d24 = 1. Furthermore the traffic distribution from road 1

to road 3 and 4 is also prescribed by d13 and d14, respectively.

We model the coupling condition as the optimal solution of

max w · γ1 + γ2 (1.48a)

such that

γ3 = d13γ1 + d23γ2 (1.48b)

γ4 = d14γ1 + d24γ2 (1.48c)

0 ≤ γ1/2 ≤ F̂1/2 (1.48d)

0 ≤ γ3/4 ≤ F̄3/4, (1.48e)

where w > 1 is a previously fixed weight.

Lemma 1.3.6. The problem (1.48) with d23 = 0 and d24 = 1 is uniquely solvable if

d13 �= 0 and d14 �= 0. The solution is given by:

f̂1 = min{F̂1,
1

d13
F̄3,

1

d14
F̄4}, (1.49a)

f̂2 = min{F̂2, F̄4 − d14f̂1}, (1.49b)

f̄3 = d13f̂1, (1.49c)

f̄4 = d14f̂1 + f̂2. (1.49d)

35

1. NETWORK FLOW MODELLING

Proof. With the given distribution parameters d23 = 0 and d24 = 1, the optimisation

problem reduces to

max w · γ1 + γ2

such that

γ3 = d13γ1

γ4 = d14γ1 + γ2,

0 ≤ f̂1/2 ≤ F̂1/2, 0 ≤ f̂3/4 ≤ F̄3/4,

(1.50)

Since (1.50) is a linear programming problem, it can be solved by the Simplex algorithm

[30]. It is possible to reduce the unknowns, by reformulating the constraints. In this

way we get rid of the variables γ3 and γ4:

maxwγ1 +γ2

such that

γ1 ≤ b

d14γ1 +γ2 ≤ F̄4

γ2 ≤ F̂2

γ1, γ2 ≥ 0

(1.51)

where b is a known parameter given by

b := min{
F̄3
d13

, F̂1}, d13 �= 0. (1.52)

Be aware that γi are variables which are up to optimisation while Fi are fix param-

eters representing the upper bounds. We introduce slack variables si ≥ 0, i = 1, . . . , 3

and rewrite (1.51). This yields

z −wγ1 −γ2 = 0

γ1 +s1 = b

d14γ1 +γ2 +s2 = F̄4

γ2 +s3 = F̂2,

(1.53)

where z represents the objective function value. First, we want γ1 to enter the basis.

According to rules used by the Simplex algorithm, we have to pivot the row where the

ratio between the right hand side and the entering variable coefficient is minimal. In

our case, we have to find the minimum of b and F̄4
d14

. Hence, we distinguish two cases.

36

1.3 Application II: Traffic Flow Models

Case i) F̄4
d14

≤ b

In this case the next transformation yields

z +(wd14 − 1)γ2 + w
d14

s2 = w
d14

F̄4

− 1
d14

γ2 +s1 − 1
d14

s2 = b − F̄4
d14

γ1 + 1
d14

γ2 + 1
d14

s2 = F̄4
d14

γ2 +s3 = F̂2.

(1.54)

Since w > 1 and d14 ≤ 1, we know that w
d14

− 1 > 0. Hence, all coefficients in the first

row are positive. Thus, the basic solution of (1.54) is optimal, with s2 = γ2 = 0 and

γ1 =
1
d14

F̄4, which corresponds to (1.49).

Case ii) b ≤ F̄4
d14

In this case the first Simplex transformation leads to

z −γ2 +ws1 = wb

γ1 +s1 = b

γ2 −d14s1 +s2 = F̄4 − d14b

γ2 +s3 = F̂2

(1.55)

γ2 has a negative coefficient in the first row. Hence, the basic solution is not optimal.

We have to transform the system a second time such that γ2 enters the basis as well.

In order to pivot the row with minimal ratio between right hand side and coefficient of

the entering variable, again two different cases have to be considered.

Case iia) F̄4 − d14b ≤ F̂2

The second Simplex transformation yields

z +(w − d14)s1 +s2 = (w − d14)b+ F̄4

γ1 +s1 = b

γ2 −d14s1 +s2 = F̄4 − d14b

d14s1 −s2 +s3 = F̂2 − F̄4 + d14b.

(1.56)

Because w > 1 and d14 ≤ 1, all coefficients in the first row are positive. Hence, the

basic solution with s1 = s2 = 0, γ1 = b and γ2 = F̄4−d14b is optimal and fulfills (1.49).

37

1. NETWORK FLOW MODELLING

Case iib) F̂2 ≤ F̄4 − d14b

In this case the next transformation of the system (1.55) looks like

z +ws1 +s3 = wb+ F̂2

γ1 +s1 = b

−d14s1 +s2 −s3 = F̄4 − F̂2 − d14b

γ2 +s3 = F̂2

(1.57)

All coefficients of the first row of (1.57) are positive. Hence, the basic solution is given

by s1 = s3 = 0, γ1 = b and γ2 = F̂2.

These cases cover all possibilities and proof the claim.

Remark 1.3.7. Note, that in [11, 12, 19] the considered distribution parameters dij

are strictly larger than zero and strictly smaller than 1. The proof of Lemma 1.3.6

especially considers the case, where d23 = 0 and d24 = 1. However, (1.48) can be solved

analogously for different traffic distribution settings.

In Chapter 2, Section 2.4, optimisation problems are considered. In particular,

we derive a model for traffic light settings. Since the traffic lights lead to further

restrictions on the outgoing traffic flow, they allow for the modelling of even more

complex junctions, see Figure 2.10.

Remark 1.3.8. In summary, following the notation for DTN models of Definition

1.1.2, a traffic flow network model is for example given by

• directed graph G = (V,E), with at most two incoming and two outgoing edges per

vertex (containing only the four junction types derived before),

• time horizon t ∈ [0, T],

• valid flow distribution matrix d,

• edge properties Pi =
�
Li, ρ∗i , λi

�T
∀i ∈ E,

• dynamic functions Di =
�
ρi, ρ̂i, ρ̄i, fi, f̂i, f̄i, F̂i, F̄i

�T
∀i ∈ E,

• boundary conditions Bi =
�
ρi(x = 0, t)

�
∀i ∈ Ein,

• edge operators, including equations for f(ρ), e.g. (1.26), F̂i and F̄i, cf. (1.34) and

(1.35), ρ̂i and ρ̄i, cf. (1.40) and (1.41). Furthermore, we need:

Ii(ρi, ∂tρi, f, ∂tf) = ∂tρi + ∂xf(ρ), ∀i ∈ E.

38

1.3 Application II: Traffic Flow Models

• coupling operators for every junction type:

1) simply connected roads: ∀v ∈ {V : |δinv | = 1 ∧ |δoutv | = 1}.

Let i ∈ δinv be the ingoing edge and j ∈ δoutv the outgoing edge of v.

C
(1j)
j (f̄j , F̄j , F̂i) = f̄j −min{F̄j , F̂i}

C
(1i)
i (f̄j , f̂i) = f̂i − f̄j .

2) dispersing junctions: ∀v ∈ {V : |δinv | = 1 ∧ |δoutv | = 2}.

Let i ∈ δinv be the ingoing edge and j, k ∈ δoutv the outgoing edges of v.

C
(2j)
j (d, f̄j , F̄j , F̄k, F̂i) = f̄j −min{dij F̂i, F̄j ,

dij
dik

F̄k}

C
(2k)
k (d, f̄k, F̄j , F̄k, F̂i) = f̄k −min{dikF̂i, F̄k,

dik
dij

F̄j}

C
(2i)
i (f̄j , f̄k, f̂i) = f̂i − f̄j − f̄k.

3) merging junctions: ∀v ∈ {V : |δinv | = 2 ∧ |δoutv | = 1}.

Let i, k ∈ δinv be the ingoing edges of v, where i is the priority road, and

j ∈ δoutv the outgoing edge of v.

C
(3j)
j (f̄j , F̄j , F̂k, F̂i) = f̄j −min{F̂i + F̂k, F̄j}

C
(3i)
i (f̂i, F̄j , F̂i) = f̂i −min{F̂i, F̄j}

C
(3k)
k (f̄j , f̂i, f̂k) = f̂k + f̂i − f̄j .

4) combined junctions: ∀v ∈ {V : |δinv | = 2 ∧ |δoutv | = 2}.

Let i, k ∈ δinv be the ingoing edges of v, where i is the priority road, and

j, l ∈ δoutv the outgoing edges of v, with dk,j = 0 and dk,l = 1.

C
(4i)
i (d, f̂i, F̂i, F̄j , F̄l) = f̂i −min{F̂i,

1

dij
F̄j ,

1

dil
F̄l}

C
(4k)
k (d, f̂i, f̂k, F̂k, F̄l) = f̂k −min{F̂k, F̄l − dilf̂i}

C
(4j)
j (d, f̄j , f̂i) = f̄j − dij f̂i

C
(4l)
l (d, f̄l, f̂i, f̂k) = f̄l − dilf̂i − f̂k.

• edge conditions Ii ≡ 0, ∀i ∈ E and

• coupling conditions C
(1/2/3/4i)
i ≡ 0, ∀i ∈ E (choosing the matching condition for

start and end point of each road).

39

1. NETWORK FLOW MODELLING

1.3.4 Transformation into Hamilton-Jacobi Formulation

As in [79, 80], the traffic network model in Section 1.3.1 can be interpreted as Hamilton-

Jacobi equations. This formulation has also been studied in the engineering context in

[27, 28]. This approach has the advantage that trajectories of cars can be easily derived

from it. For that reason, Hamilton-Jacobi equations have been used for example for

data-assimilation models [18]. Recent analysis has been done to extend the Hamilton-

Jacobi formulation to the network case, see [1, 97].

In this section, we resume the connection between the LWR-equations (1.24) and

the Hamilton-Jacobi formulation (1.58). Later on, in Subsection 1.4.2, we apply a

numerical Scheme and derive an algorithm to simulate traffic flow via Hamilton-Jacobi

equations on road networks.

A Hamilton-Jacobi equation with Hamiltonian f is given by

Mt(x, t) + f(Mx(x, t)) = 0. (1.58)

Remark 1.3.9. If we consider roads on which vehicles cannot overtake, it is possible

to number them according to the order they pass a certain point of the road. In [12, 78,

80, 83] a continuous function is considered, where the space-time trajectory of each car

is given by its the integer contour curves.

In detail, if we start counting with the foremost car at time t = t0 we get

N(x, t0) =

� L

x
ρ(x�, t0)dx

�

and for a general point in time t, the car number at (x, t) is given by

N(x, t) =

� L

x
ρ(x�, t)dx� +N(L, t) = N(0, t) −

� x

0
ρ(x�, t)dx�. (1.59)

where the value of the left boundary is given by

N(0, t) =

� t

t0

f(ρ(x, t�)dt�.

Consequently, the curve

{(x, t) : N(x, t) = n}

describes the trajectory of the nth car.

Depending on the scaling of ρ, n needs to be multiplied by a constant to yield an

integer number.

40

1.4 Discretisation

According to the notation used here, the function M : (x, t) �→ −N(x, t) is consid-

ered. Assuming sufficient regularity, we obtain from (1.59) thatMx(x, t) = ρ(x, t), ∀(x, t) ∈

[0, L] × [t0,+∞). From (1.58), we can also derive that the continuity equation used in

the LWR-model (1.24) holds. Differentiation of (1.58) with respect to x yields:

0 = Mtx + f(Mx)x = Mxt + f(Mx)x.

Consequently, if we find an M that satisfies (1.58), ρ := Mx also satisfies (1.24). On

traffic problems we have ρ ≥ 0, hence M is monotonically increasing in x.

Extension to the Network Case

For the network model, we provide an additional index indicating the road i ∈ {1, ..., |E|}.

The coupling conditions in terms of Mi are of Neumann type:

∀i ∈ E





∂tMi + f(∂xMi) = 0
∂xMi(x, 0) = ρ0(x) initial condition
∂tMi(0, t) = ∂xM̄i(t) = ρ̄i(t) left boundary condition

∂tMi(Li, t) = ∂xM̂i(t) = ρ̂i(t) right boundary condition,

(1.60)

where the boundaries ρ̄i and ρ̂i are given by the coupling of junctions, see Section

1.3.2, (1.40) and (1.41), computing the flow depending on the type of junction given.

An algorithm to simulate traffic flows on networks using Hamilton-Jacobi equations is

derived in Section 1.4.2.

Remark 1.3.10. A trajectory of a car can be tracked, when its location at a certain

point in time and its path through the network is known. On every road the contour

lines of M describe the car trajectories, which then possibly changes to another value

after having crossed a junction. An example is given in Chapter 3, Figure 3.30.

1.4 Discretisation

In order to be able to simulate scenarios modelled by DTNs, we first have to discre-

tise the differential equations and apply numerical schemes. There is a wide range of

schemes with different properties and of different rates of convergence. For a detailed

overview of schemes on hyperbolic differential equations, such as conservation laws of

the form (1.5), we refer to [73]. For our purposes it is sufficient to work with first order

41

1. NETWORK FLOW MODELLING

schemes. They have advantageous properties such as being TVD and are often easy

to linearise. The latter is of importance for optimisation purposes, since it allows the

schemes to be integrated into DTN-MIPs, as explained in Chapter 2.

This section gives a brief overview over several discretisation schemes which are

used within this work. The first part discusses several techniques to discretise the con-

tinuity equation (1.5). The second part contains the derivation of a complete algorithm

particularly created to solve the Hamilton-Jacobi traffic network model (1.60).

In the following we only consider a single edge i of a DTN.

Let Li ∈ R+ be the length of the edge i and T ∈ R+ the considered time horizon.

We introduce a discrete time grid T = {t : t = 0, . . . , nt} with time step size Δt and

number of time steps nt := � t
Δt�. Furthermore, we work with a discrete spatial grid

given by K = {k : k = 0, . . . , ni}, where the spatial size is referred to as Δx and the

number of space steps is given ni := � Li

Δt�. We will work with equal step sizes Δt on

the whole network. The space steps ni per edge can differ from each other depending

on the edge length Li. Since we first consider the discretisation for one edge, we omit

the index i in the sequel for the sake of readability.

We use a discrete set of variables containing a subscript indicating the space step

and a superscript referring to the time step. For example, the discrete density variable

ρtk represents the density value at location k ·Δx at time t ·Δt.

1.4.1 Schemes for Conservation Laws

In this subsection, we give a rough outline of some first order numerical schemes based

on the idea of finite differences to approximate the derivative. This means that we

approximate ∂tρ(x, t) by its difference quotient, i.e.

∂tρ(x, t) ≈
ρ(x, t+Δt)− ρ(x, t)

Δt
,

and so on.

In the sequel we mention those schemes that we use in the course of this work

to discretise the continuity equation (1.5) of DTNs, which is only a small part of all

existing schemes. For a thorough overview and more details on numerical schemes for

conservation laws, see [73].

42

1.4 Discretisation

Upwind. In most models of dynamic transportation networks, the flow moves only

in one direction at each edge. In many production network models the particles are

assumed to move with constant velocity v, i.e ρ(x, t) = ρ(x − vt, 0). In these cases

we model the density evolution along the edges with the advection equation (1.16),

as described in Subsection 1.2.1. Here, it is reasonable to use the first order Upwind

Scheme for discretisation. It is a scheme that only uses information of one side of the

spatial grid. In our case, the velocity v > 0 is given. Hence, we know the direction of

information. For that reason we only take the values on the left of the considered grid

point into account, as shown by the discretisation stencil depicted in Figure 1.16.

k − 1 k

t

t+ 1

Figure 1.16: Stencil of Upwind Scheme.

The next time iteration for the density value for all inner grid points is given by

ρt+1k = ρtk − v ·
Δt

Δx
· (ρtk − ρtk−1). (1.61)

In [73] it is proven that (1.61) converges to the exact solution in first order, when

Δt and Δx tend to zero and when the grid sizes are chosen such that the CFL condition

max
ρ∈[0,ρmax]

|f �(ρ)| ·
Δt

Δx
≤ 1, (1.62)

holds.

The CFL-conditions is an abbreviation for Courant-Friedrichs-Lewy condition. It

ensures that the time step size is fine enough to capture all information that is trans-

ported. The so called grid-velocity is given by Δx
Δt and has to be greater or equal than

the velocity of information of the analytical solution f �(ρ). In case of the advection

equation (1.16) we have f(ρ) = v · ρ; hence the speed of information is constant and

given by v.

Supply chain models using advection equation and applying the Upwind discretisa-

tion are examined in [36, 37, 48, 49, 57, 98], amongst others.

43

1. NETWORK FLOW MODELLING

Lax-Friedrichs Scheme. Another easy, straight-forward first order scheme is the

Lax-Friedrichs Scheme. It is a central scheme and hence, takes information coming

from the left and from the right side of the considered grid point into account. This is

depicted in Figure 1.17.

k − 1 k k + 1

t

t+ 1

Figure 1.17: Stencil of the Lax-Friedrichs Scheme.

This is important for models, which allow for forwards and backwards travelling

density waves, such as the LWR-traffic model (1.24). To guarantee stable numerical

simulations, the discretisation grids have to respect the CFL condition (1.62).

The evolution of the density for all inner grid points is computed in the following

way:

ρt+1k =
1

2
(ρtk+1 + ρtk−1)−

Δt

2Δx
(f(ρtk+1)− f(ρtk−1)). (1.63)

The commonly known disadvantage of the scheme is its diffusivity. This leads to disper-

sion effects appearing during the simulation of shock waves, see for example [10, 47].

However, for certain relations of grid sizes and parameter settings, these effects are

minimal, see Lemma 1.4.2. For these settings the scheme becomes attractive due to its

simplicity and linear appearance.

Staggered Lax-Friedrichs Scheme. As we will see later in Subsection 2.4.4, for

the coupling of two roads it is advantageous to use a numerical scheme that does not

incorporate the boundary values in terms of density, but only in terms of the flow.

The staggered Lax-Friedrichs Scheme, introduced in [61] and further developed and

applied by [65], fulfills exactly these requirements. In addition to that, it is less diffusive

than the standard Lax-Friedrichs Scheme.

The main idea is to use a staggered grid, see Figure 1.19, as intermediate step. The

staggered density values are obtained by averaging over the neighbouring densities.

Then centred differences are used with respect to the original grid points, that are

44

1.4 Discretisation

k − 1 k k + 1

t

t+ 1

Figure 1.18: Stencil of staggered Lax-Friedrichs Scheme.

located in half a step size, i.e. 1
2Δx, distance to the considered point. Finally, the

values are projected back to the original grid. Due to the fact that half step sizes are

used, the grid sizes have to fulfill CFL/2, i.e.

Δt ≤
Δx

2 ·maxρ∈[0,ρmax] |f �(ρ)|
., (1.64)

to guarantee convergence.

original grid

staggered grid

f̄ t f̂ t

ρ̃t0 ρ̃t1 ρ̃t2 ρ̃tn ρ̃tn+1

ρt0 ρt1 ρtn−1 ρtn

Δx

Figure 1.19: Staggered grid.

The detailed derivation of the scheme is as follows:

Step 1. Compute the values of the staggered grid as averaged values of the neighbouring

original density values:

left side: ρ̃t0 = ρt0 (1.65a)

central points: ρ̃tk =
1

2
(ρtk−1 + ρtk), ∀k = 1, . . . , n (1.65b)

right side: ρ̃tn+1 = ρtn (1.65c)

Step 2. t → t+ 1 (Time evolution of the staggered values using centered differences with

45

1. NETWORK FLOW MODELLING

respect to the original grid points):

left side: ρ̃t+10 = ρ̃t0 −
Δt
1
2Δx

(f(ρt0)− f̄ t) (1.66a)

central points: ρ̃t+1k = ρ̃tk −
Δt

Δx
(f(ρk)

t − f(ρtk−1)), ∀k = 1, . . . , n (1.66b)

right side: ρ̃t+1n+1 = ρtn+1 −
Δt
1
2Δx

(f̂ t − f(ρtn)) (1.66c)

Step 3. Project the solution back to the original grid:

left side: ρt+10 =
1

2
(ρ̃t+10 + ρ̃t+11)

(1.66a)
=

1

2
ρ̃t0 −

Δt

Δx
(f(ρt0)− f̄)

+
1

2
ρ̃t1 −

Δt

2Δx
(f(ρt1)− f(ρt0)) (1.67a)

central points: ρt+1k =
1

2
(ρ̃t+1k + ρ̃t+1k+1)

(1.66b)
=

1

2
ρ̃tk −

Δt

2Δx
(f(ρtk)− f(ρtk−1))

+
1

2
ρ̃tk+1 −

Δt

2Δx
(f(ρtk+1)− f(ρtk)) (1.67b)

right side: ρt+1n =
1

2
(ρ̃t+1n + ρ̃t+1n+1)

(1.66c)
=

1

2
ρ̃tn −

Δt

2Δx
(f(ρtn)− f(ρtn−1))

+
1

2
ρ̃tn+1 −

Δt

Δx
(f̂ t − f(ρtn)) (1.67c)

Finally, applying again (1.65a) to (1.65c) we end up with the following scheme:

left side: ρt+10 =
1

4
(3ρt0 + ρt1)−

Δt

2Δx
(f(ρt1) + f(ρt0)− 2f̄ t) (1.68a)

central points: ρt+1k =
1

4
(ρtk−1 + 2ρtk + ρtk+1)−

Δt

2Δx
(f(ρtk+1)− f(ρtk−1)),

∀k = 1, . . . , n (1.68b)

right side: ρt+1n =
1

4
(ρtn−1 + 3ρtn)−

Δt

2Δx
(2f̂ t − f(ρn)

t − f(ρtn−1))

(1.68c)

The computation of the outer cells (1.68a) and (1.68c) only involve flow values at

the boundaries f̄ ti and f̂ ti and not the boundary density. As we will see later in Sub-

section 2.4.4, this is advantageous for the linearisation process to transform the model

into a linear mixed integer optimisation problem, because it saves us a complicated

46

1.4 Discretisation

linearisation process of the coupling density values ρ̄ti and ρ̂ti at the junctions. Due to

other available values, such as the maximal possible coupling flow F̄ t
i and F̂ t

i , intro-

duced in the next chapter, we are equipped with sufficient information to capture the

entire situation at the junction.

However, on the outer edges of the network, Ein and Eout, it is necessary to in-

tegrate the boundary density values, since the computation from the flow down to

the corresponding density is not unique. In order to avoid numerical instabilities at

the outer boundaries, we reformulate the discretisation scheme of the outermost cells

including the outer boundary densities ρi,lb, ∀i ∈ Ein and ρi,rb, ∀j ∈ Eout.

Discretisation for edges without predecessors – i ∈ Ein (inflow edges into the net-

work) – is given by

• leftmost cell:

ρt+10,i =
1

4
(ρti,lb + 2ρt0,i + ρt1,i)−

Δt

2Δx
(f(ρt1,i)− f(ρti,lb)), ∀i ∈ Ein (1.69)

• inner cells and rightmost cell as above.

Discretisation for edges without successors – i ∈ Eout (outflow edges of the network)

– is given by

• rightmost cell:

ρt+1n,i =
1

4
(ρtn−1,i + 2ρtn,i + ρti,rb)−

Δt

2Δx
(f(ρti,rb)− f(ρtn−1,i)), ∀i ∈ Eout (1.70)

• inner cells and leftmost cell as above

Godunov Scheme. The Godunov Scheme first appeared in [45] and became one

of the most popular schemes for solving hyperbolic partial differential equations. It

is a first order scheme that bases on the idea to solve Riemann problems (1.29) of

neighbouring cells for each time iteration. The used grid-points for one iteration step

is the same as for the staggered Lax-Friedrichs Scheme, cf. Figure 1.20.

To obtain reliable results, the choice of the grids must again fulfill the CFL-condition

(1.62).

• The initial values ρ0k are given by the mean value of the grid cell.

47

1. NETWORK FLOW MODELLING

k − 1 k k + 1

t

t+ 1

Figure 1.20: Stencil of Godunov Scheme.

• In each time iterate t ∈ T, we imagine the values ρtk as a piecewise constant

functions on the space-grid and solve the corresponding Riemann problem for

one time step. Using a concave flow function f yield the following cases for the

midpoints of the cells:

– If (f �(ρtk) ≥ 0 ∧ f �(ρtk+1) ≥ 0)

→ ρt
k+ 1

2
= ρtk

– If (f �(ρtk) ≥ 0 ∧ f �(ρtk+1) < 0)

→ s =
f(ρtk+1 − f(ρtk)

ρtk+1 − ρtk
, ρt

k+ 1
2
=

�
ρik, if s ≥ 0
ρik+1, else

– If (f �(ρtk) < 0 ∧ f �(ρtk+1) < 0)

→ ρt
k+ 1

2
= ρtk+1

– If (f �(ρtk)) < 0 ∧ f �(ρtk+1) ≥ 0)

→ ρt
k+ 1

2

= ρ∗

• The density for the next time step is then given by

ρt+1k = ρtk −
Δt

Δx
(f(ρt

k+ 1
2
)− f(ρt

k− 1
2
))

for all k.

• Repeat these steps for all time steps t ∈ T.

48

1.4 Discretisation

1.4.2 Hamilton-Jacobi Scheme

We discuss how to couple the Hamilton-Jacobi formulation for road networks as de-

scribed in Subsection 1.3.4 at road intersections and derive a reliable algorithm combin-

ing the coupling conditions with a numerical scheme for the Hamilton-Jacobi equations

[67].

We assume f to be a concave flow function with unique maximum. We introduce

a space and time grid, as described in the beginning of this section. The time grid size

Δt is set according to the CFL-condition (1.62).

Before we consider the network case, we stick to a single road. Whenever the context

is clear, we drop the first sub-index indicating the road on the network for the sake of

readability. Hence, the remaining subindex denotes the space step on the road.

Note, that the grid points of M are shifted by Δx
2 compared to the grid of ρ. Here,

M t
j = M(xj , t ·Δt), where xj = (j − 1

2)Δx and j = {0, nx + 1}. For the discretisation

of the Hamilton-Jacobi equations we use the central one-dimensional first order scheme

derived in [67]. The time evolution of M at the inner grid points is computed as follow:

M t+1
j =M t

j −
Δt

2

�
f
�M t

j+1 −M t
j

Δx

�
+ f
�M t

j −M t
j−1

Δx

��

+
Δt

2Δx
atj(M

t
j+1 − 2M t

j +M t
j−1) (1.71)

with

anj ≥ max
x∈[(j−1)Δx,(j+1)Δx]

|f �(Mx)|.

The coupling is done in terms of densities. Therefore we need to approximate the

derivative of M close to the junction. This is done via finite differences:

∂xM
t
j+ 1

2
=: ρti =

M t
j+1 −M t

j

Δx
. (1.72)

This scheme is strongly related to the Lax-Friedrichs Scheme (1.63), see Lemma

1.4.1.

Discretisation of the boundary condition

Due to dispersion effects of the discretisation scheme, cf. [73], the coupling is not always

captured in the correct way. Therefore we need to introduce suitable ghost-cells added

on both ends of each road. The wave fronts travel along the roads until they reach the

49

1. NETWORK FLOW MODELLING

next junction, providing the coupling routine with information about the new density

values on the road. The waves run through these artificial cells, but use the value at the

road boundary to compute the coupling condition, as depicted in Figure 1.22 on page

56. This leads to the correct density information at the boundary. A more detailed

explanation of the algorithm can be found later on starting from page 53.

This method only works, when the number of ghost-cells is large enough to absorb

the whole amplitude of the front dissipation. Consequently, it is necessary to know the

number of required ghost-cells related to the possible dispersion amplitude of the wave

front.

In the sequel we will show that two ghost-cells on each side of the roads are sufficient

for settings with a specific flow function, a certain correlation between space and time

grid size and a certain choice of parameter anj for the Hamilton-Jacobi scheme, see

(1.71). Note that for higher-order schemes more ghost cells might be required.

Lemma 1.4.1. If the parameter anj of the Hamilton-Jacobi Scheme (1.71) is set to

anj := max
ρ

|f �(ρ)|, ∀j, n (1.73)

and the time grid Δt is set to the maximal possible value satisfying the CFL-condition

(1.62), then the Hamilton-Jacobi Scheme (1.71) is equivalent to the Lax-Friedrichs

Scheme (1.63).

Proof. Scheme (1.71) and equation (1.72) allow for the following calculation:

ρt+1i − ρti
Δt

(1.72)
=
�M t+1

j+1 −M t
j+1

Δt ·Δx

�
−
�M t+1

j −M t
j

Δt ·Δx

�

(1.71)
= −

1

2Δx

�
f
�M t

j+2 −M t
j+1

Δx

�
− f
�M t

j −M t
j−1

Δx

��

+
a

2Δx

�M t
j+2 −M t

j+1

Δx
− 2 ·

M t
j+1 −M t

j

Δx
+

M t
j −M t

j−1

Δx

�

(1.72)
= −

1

2Δx

�
f(ρti+1)− f(ρti−1)

�
+

a

2Δx

�
ρti+1 − 2ρti + ρti−1

�

(1.73)&(1.74)
⇐⇒ ρt+1i =

1

2

�
ρti+1 + ρti−1

�
−

Δt

2Δx
·
�
f(ρti+1)− f(ρti−1)

�
,

which is exactly the Lax-Friedrichs Scheme (1.63).

50

1.4 Discretisation

The next lemma shows that two ghost-cells are sufficient to capture the dispersion

amplitude of wave fronts in the scheme for a certain parameter setting.

Lemma 1.4.2. Let a road describing the traffic flow with a triangular flow function

as in (1.26) be given. Assume that the traffic density evolution is described by: ∂tρ +

∂xf(ρ) = 0,∀t ∈ [0, T], x ∈ [0, L]. The density at time t is piecewise constant. i.e.

∃x̂ ∈ [0, L] with

ρ(x, t) =

�
l, x ≤ x̂

r, x > x̂.

Then, using Lax-Friedrich-discretisation, with

Δt :=
Δx

maxρ∈[0,ρmax] |f �(ρ)|
=

Δx

λ
, (1.74)

the dispersion over time of the wave front will not exceed two grid points.

Proof. The space-grid is given such that the discontinuity of the initial condition is

located between grid point i and grid point i+1. Hence, the density values around the

discontinuity at time-step t are given by:

ρt = (l, . . . , l
i−1

, l
i
, r
i+1

, r
i+2

, . . . , r).

The Lax-Friedrichs Scheme preserves the density values inside the constant regions,

because (1.63) yields

if ρtj−1 = ρtj+1 ⇒ ρt+1j = ρtj−1

for an arbitrary space-grid point j. Hence, it is sufficient to consider the density evo-

lution next to the discontinuity. For this purpose we distinguish several cases:

Case 1: l ∈ [0, ρ∗] ∧ r ∈ [0, ρ∗] :

Applying (1.63) to ρt, we get

ρt+1 = (l, . . . , l
i−1

, l
i
, l
i+1

, r
i+2

, . . . , r),

Hence, we get a sharp forward travelling front without any dispersion.

Case 2: l ∈ [ρ∗, ρmax] ∧ r ∈ [ρ∗, ρmax] :

Applying (1.63) to ρt, we get

ρt+1 = (l, . . . , l
i−1

, r
i
, r
i+1

, r
i+2

, . . . , r),

Hence, we get a sharp backwards travelling front without any dispersion.

51

1. NETWORK FLOW MODELLING

Case 3: l ∈ [0, ρ∗] ∧ r ∈ [ρ∗, ρmax] : This case is slightly more involved. We show the

claim in two steps:

i) Computing the next time step via Lax-Friedrich leads to

ρt+1 = (l, . . . , l
i−1

,m
i
, m
i+1

, r
i+2

, . . . , r),

with m = l + r − ρ∗ ∈ [l, r].

ii) Given the densities

ρt̄ = (l, . . . , l
i−1

,m
i
, m
i+1

, r
i+2

, . . . , r),

with an arbitrary m ∈ [l, r].

a) If m ∈ [0, ρ∗], the density for the next time step evolves to

ρt̄+1 = (l, . . . , l
i
, m̂
i+1

, m̂
i+2

, r
i+3

, . . . , r),

with m̂ = m+ r− ρ∗. Due to the assumption made for Case 3, we have

m̂ = m+ r − ρ∗ ≥ m ≥ l

Furthermore, we have

m̂ = m����
a) ≤ρ∗

−ρ∗ + r ≤ r.

Consequently, we get m̂ ∈ [l, r].

b) If m ∈ [ρ∗, ρmax], the density values for the following time step are

ρt̄+1 = (l, . . . , l
i−2

, m̊
i−1

, m̊
i
, r
i+1

, . . . , r),

with m̊ = l +m− ρ∗. We have

m̊ = l + m����
b)≥ρ∗

−ρ∗ ≥ l

and

m̊ = l����
(Case 3)≤ρ∗

+m− ρ∗ ≤ m ≤ r

⇒ m̊ ∈ [l, r].

52

1.4 Discretisation

Hence, ρt̄+1 again fulfills the assumptions imposed to ρt̄, with the shape

shifted by one space step either to the left or to the right. Therefore, by

applying the Lax-Friedrichs Scheme iteratively over time, the dispersion will

never become greater than two space steps.

Case 4: l ∈ [ρ∗, ρmax] ∧ r ∈ [0, ρ∗] :

i) Computing time-step t+ 1 via Lax-Friedrich yields:

ρt+1 = (l, . . . , l
i−1

, ρ∗

i
, ρ∗

i+1
, r
i+2

, . . . , r).

ii) Applying again (1.63) the densities for time-step t+ 2 are given by:

ρt+2 = (l, . . . , ρ∗

i−1
, ρ∗

i
, r
i+1

, r
i+2

, . . . , r).

Hence, the resulting wave front is moving backwards carrying along two middle

density values ρ∗.

Algorithm for Hamilon-Jacobi Scheme on Networks

The complete numerical scheme for solving Hamilton-Jacobi equations on road networks

is described in Algorithm 1. Some steps are illustrated in Figure 1.22.

A crucial point is the computation of the coupling condition, depicted in Figure

1.22(c). As denoted in line 16 of Algorithm 1, equations (1.34) to (1.49) are used. The

detailed procedure is the following: Consider a junction v with at most two incoming

roads (∈ δinv) and at most two outgoing roads (∈ δoutv). The leftmost grid-points of

the incoming roads and the rightmost grid-points of the outgoing roads in terms of the

density ρ have already been computed for time-step t + 1, see Figure 1.22(b). Hence,

the values for ρt+1e,nx
∀e ∈ δinv and ρt+1e,0 ∀e ∈ δoutv are given corresponding to ρe(L) and

ρe(0) in the continuous notation. Now, we use equations (1.34) and (1.35) to obtain the

maximal possible flow γmaxe for all roads e at the junction. Depending on the junction

type we compute the coupling flows f̂e ∀e ∈ δinv and f̄e ∀e ∈ δoutv using equations (1.43),

(1.45), (1.47) or (1.49). The density boundary values ρ̂e ∀e ∈ δinv and ρ̄e ∀e ∈ δoutv are

uniquely given by (1.40) and (1.41). An illustration of this procedure is given in Figure

1.21.

53

1. NETWORK FLOW MODELLING

Algorithm 1: Hamilton-Jacobi Scheme for networks.

/* Input: Road network with length and flow function for each

road, initial and boundary conditions in terms of ρ, time

horizon T, grid size Δx, number of ghost-cells ng */

/* Output: Simulation of the traffic in terms of density */

1 begin

/* Compute number of grid-points */

2 number of space-steps: nxe = � Le

Δx�+ 1− ng, ∀e ∈ E;

3 time grid size: Δt = Δx
maxe∈E{maxρ |f �e(ρ)|}

;

4 number of time steps: nt = � TΔt�+ 1;

/* Transfer initial values from ρ to M. */

5 forall the e ∈ E do

6 M̂0
e = 0; /* right boundary value */

7 M0
e,rng

= M̂0
e −Δxρ̂0e; /* rightmost ghost-cell */

8 M0
e,j = Me,j+1 −Δxρ0e,i ∀ grid-points j (including ghost-cells);

9 M̄0
e = M0

e,0 −Δxρ̄0e; /* left boundary value */

10 for t = 0, . . . , nt − 1 do

/* Compute next time iteration for each road e */

11 forall the e ∈ E do

12 Compute M t+1
e,j by (1.71) ∀ grid-points j (including ghost-cells)

/* see Figure 1.22(a) */

/* Transfer M to ρ */

13 forall the e ∈ E do

14 ρt+1e,i =
M t+1

e,j+1−M
t+1
e,j

Δx , ∀ grid-points j /* see Figure 1.22(b) */

/* Compute coupling at junctions */

15 forall the v ∈ V do

16 Compute coupling for time-step t according to junction type using

density values next to ghost-cells. /* see Figure 1.22(c) and

1.21 */

/* Get boundary value in terms of M */

17 forall the e ∈ E do

18 left: M̄ t+1
e = M̃lng − ρ̄t+1e Δx;

19 right: M̂ t+1
e = M̃rng + ρ̂t+1e Δx /* see Figure 1.22(d) */

54

1.4 Discretisation

∀ incoming roads e ∈ δinv :

ρt+1e,nx

(1.34)
Fe
(1.43), (1.45), (1.47) or (1.49)

f̂ t+1e

(1.40)
ρ̂t+1e

∀ outgoing roads e ∈ δoutv :

ρt+1e,0

(1.35)
Fe f̄ t+1e

(1.41)
ρ̄t+1e

Figure 1.21: Computation of the coupling.

Remark 1.4.3. We give some further explanations on Algorithm 1:

line 2: Note that the Godunov Scheme [45] does not need any ghost-cells to compute the

coupling condition. The presented scheme introduces numerical diffusion such

that the ghost cells need to be sufficiently large. Its size has been discussed in the

previous lemma. The length of the ghost cells is chosen equal to the size of the

interior cells. In order to have the same speed of propagation those cells do not

enter the computation of the length of the road.

line 3: Choose the size of the time grid such that the CFL-condition holds.

line 8: M is initialised from right to left on each road.

Algorithm 1 is not only useful to simulate the traffic density evolution on road

networks with prescribed initial and boundary data, it also permits to compute the

trajectories of single roads, by plotting the contour lines of M . Numerical results are

shown in Chapter 4, see Figure 3.30.

55

1. NETWORK FLOW MODELLING

t

t+ 1

Mnx+1 M̃r1 M̃rng
M̂ M̄ M̃lng

M̃l1 M1

incoming road right ghost-cells left ghost-cells outgoing roadjunction

(a) Computation of the next time step for the inner cells in terms of M , see Algorithm 1, line 12.

t

t+ 1

Mnx+1 M̃r1 M̃rng
M̂ M̄ M̃lng

M̃l1 M1

ρnx
ρ1

incoming road right ghost-cells left ghost-cells outgoing roadjunction

(b) Computation of density value at last grid point before the ghost-cells, see Algorithm 1, line 14.

t

t+ 1

Mnx+1 M̃r1 M̃rng
M̂ M̄ M̃lng

M̃l1 M1

ρnx

ρ̂ ρ̄

ρ1

incoming road right ghost-cells left ghost-cells outgoing roadjunction

(c) Computation of the coupling density values ρ̂i and ρ̄j , see Algorithm 1, line 16.

t

t+ 1

Mnx+1 M̃r1 M̃rng
M̂ M̄ M̃lng

M̃l1 M1

ρnx

ρ̂ ρ̄

ρ1

incoming road right ghost-cells left ghost-cells outgoing roadjunction

(d) Computation of the coupling values in terms of M , namely M̂i and M̄j , see Algorithm 1, line 19.

Figure 1.22: Schematic procedure of the algorithm, exemplarily for one incoming and

one outgoing road. For the sake of readability, we skip the road index in this illustration.

56

2

Optimisation containing discrete

Decisions

In the previous chapter we derived dynamic transportation networks (DTNs) for several

applications. They enable us to simulate various scenarios with respect to dynamic

flows on networks such as production flows or traffic density evolution with prescribed

parameters, as well as initial and boundary conditions. The next step is to use these

models in order to answer questions concerning the optimal parameter setting in terms

of the best possible performance of the given scenario. Comparable to the classical static

Maximum Flow Problem (1.1), there also exists a broad range of optimisation tasks for

DTNs depending on the considered model and application. In the context of production

networks various questions of interest have been considered. For example, [42, 46] focus

on finding the best distribution inside a production network in order to achieve minimal

queuing sizes and maximal production flow. This leads to storage cost reduction and

increasing output of products. In addition to that, [37, 98] present an extended model

that allows for choosing properties of machines such that maximal product output

is obtained. [48, 57] describe a model with different types of goods having different

priorities and derive optimal control policies for each processor. In the context of

evacuation models [22, 52] are dedicated to find optimal routing of cars on road networks

and people in buildings in emergency situations. Furthermore, there exists a broad

variety of literature devoted to optimal signal timing of traffic lights on road networks

in order to minimise travel times and maximise traffic flow, see [8, 13, 15, 44, 68, 76, 86]

for an overview. These and many other questions outline the necessity to derive efficient

57

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

and reliable methods capable to solve DTN-based optimisation problems.

Following the notation of Definition 1.1.2, these optimisation problems typically

have the following structure:

objective function: maxF(Di) (2.1a)

such that

control constraints: K · k ≤ Uk (2.1b)

edge constraints: Ii ≡ 0, ∀i ∈ E (2.1c)

coupling constraints: Ci/v ≡ 0, ∀i ∈ E/v ∈ V (2.1d)

initial conditions: Di(t = 0) ≡ D0i, ∀i ∈ E (2.1e)

inflow boundary conditions: Di(x = 0) ≡ B
in
i , ∀i ∈ Ein (2.1f)

outflow boundary conditions: D(x = Li) ≡ B
out
i , ∀i ∈ Eout (2.1g)

box constraints: Di(t) ∈ [Li, Ui], ∀i ∈ E (2.1h)

where F represent the objective function depending on the optimisation question of

interest, k are the actual control parameters depending on the application and are

either members of the dynamic functions Di or the edge properties Pi. K is a matrix,

representing the linear constraints the control parameters have to fulfill. Typically, the

edge constraints (2.1c) consist of coupled ordinary or partial differential equations.

There are mainly two different approaches to solve optimisation problems based

on DTNs. Since (2.1) is typically ODE/PDE-constrained, a common solution method

is the use of adjoint equations deduced from the Lagrange principle, see [93]. They

involve the use of iterative gradient based optimisation methods, cf. [63]. However, the

feasible domain of the variables is often highly complex due to the network structure of

DTNs. For that reason it is rather difficult to obtain reliable solutions using common

iterative descent methods, since the optimisation procedure will easily get stuck in local

extrema.

Hence, a different optimisation approach is considered in this chapter: The appli-

cation of Branch & Bound techniques for linear mixed integer optimisation problems

(short linear MIPs), see [30, 70, 82, 90, 94]. This approach has the big advantage that

the iterative computation of primal and dual bounds during the optimisation process

ensures the global optimality of the returned solution. If the process is interrupted

58

before an optimal solution has been found, the interval where the optimal objective

function value is situated – the so-called optimality gap – is returned. Furthermore,

there exist many commercial optimisation software packages, which can be used as

blackbox solvers. Another advantage of this technique is that it is extremely easy to

consider only integer values of certain variables (such as number of workers on each

machine) by using integer constraints and integrate discrete decisions.

These methods are applicable to many DTNs for the following reason: Often, DTNs

are transformable into linear MIPs, which we will refer to as DTN-MIPs, see Definition

2.2.1. This can be obtained employing common numerical discretisations, cf. Section

1.4, combined with rewriting techniques borrowed from discrete optimisation [62]. It

is possible to convert particular nonlinear structures (e.g. the min-function) into a

dynamic mixed-integer framework. These MIPs can be optimised using branching

techniques as well as primal and dual bounds, providing reliable information about

the interval, in which the optimal solution can be found. In the context of production

network models, this approach has been introduced in [42] and has been successfully

applied to a wide variety of production problems, see [37, 48, 49, 57] for an overview.

Furthermore, similar ideas have been developed and applied for a specific type of traffic

models, the cell transmission models, see [8, 53, 75, 76, 77].

Since the resulting MIPs are highly complex, it is important to develop methods

leading to runtime improvements of the optimisation procedure. At that point, we can

exploit the fact that we posses a lot of information due to the problem structure which

can easily be provided to the optimisation algorithm. One efficient approach – presented

in [36] – are adapted presolve techniques to strengthen bounds of constraints, such that

the actual optimisation can be completed much faster. Additionally, it is possible to

tune the optimisation process itself by applying suitable heuristics in order to find good

primal bounds throughout the optimisation procedure. These ideas are considered in

the course of this chapter.

Section 2.1 contains some basic definitions as well as a short review on classical

optimisation techniques for linear MIPs, such as the before mentioned Branch & Bound

Algorithm. The following section, Section 2.2, is the heart of this work. It derives a

general strategy, how DTNs can be transformed into linear MIPs and how the knowledge

of the dynamics can be exploited to speed up the optimisation procedure. In this

context we point out common properties of DTNs and propose linearisation techniques,

59

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

that are required to transform the setting into a linear MIP. Furthermore, we show how

common drawbacks, such as high oscillating control variables in optimal solutions, can

be avoided. The aim of this section is to formulate these strategies in a general way.

In that way it provides a framework that helps to solve optimisation issues for a broad

range of DTNs.

The following two sections provide examples how these strategies can be applied to

the particular DTNs derived in Section 1.2 and 1.3. Section 2.3 is dedicated to find

optimal worker scheduling for production networks in order to maximise the production

flow. Basing on the traffic flow network model derived in Section 1.3, Section 2.4

presents the modelling of traffic lights on complex urban junctions, transforms the

setting into a linear MIP and provides promising tuning techniques for the optimisation

procedure.

2.1 Linear Mixed Integer Optimisation Methods

In this section a review of classical techniques for solving linear mixed integer optimi-

sation problems is provided. Widely used techniques are LP-based Branch & Bound

Algorithms optionally combined with cutting plane methods.

We will summarise some of the main ideas of these approaches. For more detailed

information we refer to [29], [69] and [90], amongst others.

2.1.1 Basic Definitions

We start with some basic definitions on linear and mixed integer programming.

Definition 2.1.1. A linear program (short: LP) has the following form: Find a

vector x ∈ Rn that solves

max cTx (2.2a)

such that

Ax ≤ b (2.2b)

x ≥ 0 (2.2c)

x ∈ Rn, (2.2d)

with given vectors c ∈ Rn, b ∈ Rm and a given matrix A ∈ Rm×n.

60

2.1 Linear Mixed Integer Optimisation Methods

A linear mixed integer optimisation problem has a similar form. The only difference

is that some of the variables are integers or binaries.

Definition 2.1.2. A linear mixed integer optimisation problem (short: linear

MIP or LMIP) has the following form: Find a vector x ∈ Rn that solves

max cTx (2.3a)

such that

Ax ≤ b (2.3b)

x ≥ 0 (2.3c)

x ∈ {0, 1}p × Zl × Rn−p−l, (2.3d)

with given vectors c ∈ Rn, b ∈ Rm and a given matrix A ∈ Rm×n. Furthermore, we have

a prescribed number of binary variables p and integer variables l with p+ l ≤ n ∈ N.

LP (2.2) is also called relaxation of (2.3), since the binary and integrality con-

straints are neglected.

Definition 2.1.3. The dual problem of (2.2) is given by

max bT y (2.4a)

such that

Aty ≥ c (2.4b)

y ≥ 0 (2.4c)

y ∈ Rm, (2.4d)

with given vectors c ∈ Rn, b ∈ Rm and a given matrix A ∈ Rm×n.

A crucial theorem of optimality theory is the Duality Theorem. It states that,

if the LP (2.2) has an optimal solution, its corresponding dual problem (2.4) has an

optimal solution and the optimal objective function values coincide.

2.1.2 Branch & Bound Algorithm

One basic algorithm that is used in mixed integer optimisation theory, is the Branch

& Bound Algorithm. Later on, we show how it is possible to use the knowledge of the

structure of DTN-MIPs, see Definitions 2.2.1, to speed up the optimisation procedure

based on the Branch & Bound Algorithm. More details are given in Subsection 2.2.4.

61

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

First of all, we shortly summarise the main ideas which can be adapted and extended

according to the specific problem under consideration, followed by a small example.

Then we present the structure of the algorithm, cf. Algorithm 2, which consists of an

iterative application of the following operations.

Branching. In the course of the optimisation process the original problem is split into

several disjoint subproblems. This technique is called branching and is used iteratively,

leading to a tree whose nodes present the disjoint subproblems. One example for

branching is the following: Choose a binary variable xi ∈ {0, 1} and add the additional

constraint xi = 0 to the first new subproblem and xi = 1 to the second new subproblem,

see Figure 2.1.

Figure 2.1: Branching on binary variables.

Pruning. There are various techniques to find upper and lower bounds of the optimal

objective function value of a subproblem. In this way, we can tell beforehand which

subproblems might contain the optimal solution of the original MIP and which ones

can be neglected. Hence, nodes of the tree can be cut off. This technique is called

pruning and can be divided into three different types:

• Pruning by optimality: When the optimal solution of a subproblem has been

found, no further branching on that node is necessary.

• Pruning by bound: When the lower bound of the optimal objective function

value of a subproblem is greater than a global upper bound being defined as the

minimum of all upper bounds that have been found so far, the optimal solution

is not included in this subproblem. Hence it can be pruned.

62

2.1 Linear Mixed Integer Optimisation Methods

• Pruning by infeasibility: If a subproblem does not contain any feasible solu-

tion, it can also be neglected. One common method to find infeasible subproblems

is to compare the dual bound of the subproblem with the currently best found

feasible solution of the whole tree. If the dual bound is already worse than a

feasible solution of another subproblem, the considered subtree can be pruned.

Bounding. As mentioned earlier, it is of interest to find good bounds for the sub-

problems. In fact, the Branch & Bound Algorithm terminates the faster, the sharper

the bounds are. The reason for this is that more nodes can be pruned and hence the

size of the tree is kept small. Various methods to determine bounds have been de-

veloped within the scope of integer optimisation research. A common procedure is to

find dual bounds by relaxing the problem to a simple linear programming problem that

can be solved by the Simplex Algorithm, which is described in [51, 81, 84] and others.

The relaxation is done by neglecting the integrality constraints of x. Another method

to find dual bounds is finding a feasible solution of the dual problem. Primal bounds

are provided by any feasible solutions of the subproblems using appropriate heuristic

algorithms. For more detailed information, read for example [82].

Figure 2.2 illustrates the Branch & Bound procedure.

Example 2.1.4. The procedure is illustrated by a small example which is taken from

[38].

min−5x1 − 6x2 − 9x3

such that 5x1 + 9x2 + 4x3 ≤ 15

x = (x1 x2 x3)
T ∈ {0, 1}3

The corresponding Branch & Bound tree is shown in Figure 2.3.

The structure of a typical Branch & Bound Algorithm is depicted in Algorithm 2.

For details of each step, we refer to [70].

2.1.3 Cutting Planes

Another popular method to find optimal solutions of linear MIPs is the cutting plane

algorithm. The first step is to solve the LP-relaxed problem with the Simplex Algo-

rithm, see e.g. [81]. In the case that the optimal solution does not fulfill all required

63

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Figure 2.2: Procedure of the Branch & Bound Algorithm, where PB(s) andDB(s) denote

the primal and dual bound of node s and the best known feasible solution is referred to as

P ∗.

64

2.1 Linear Mixed Integer Optimisation Methods

Algorithm 2: Branch & Bound Algorithm.

/* Input: A linear mixed integer optimisation problem with

variables xi, i ∈ I */

/* Output: An optimal solution */

1 begin

/* N is the set of active nodes of the Branch & Bound tree,

with root problem s0 containing all constraints of the

original linear MIP. */

/* X̃ is the currently best found feasible solution. */

2 N := {s0}

3 while no optimal solution is found and N �= ∅ do

4 Choose node s ∈ N.

5 Compute dual bound of s.

6 Compute primal bound of s.

7 Apply pruning techniques and remove unnecessary nodes from N.

8 Choose index i for branching.

9 Create J subnodes

/* e.g. sj = {s ∪ xi
≤
≥ dj}, j = 1, . . . , J if xi is continuous or */

/* 0 sj = {s ∪ xi = dj}, dj ∈ Z, j = 1, . . . , J if xi is integer.

*/

10 Add sj , j ∈ J to N.

11 Set X̃ to the currently best found feasible solution.

12 return X̃ .

65

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Figure 2.3: Branch & Bound tree. Ni denote the subproblems in the order they are

generated. βi denotes the upper bound of the node and αi the lower bound. x̂i is the

optimal solution of the LP-relaxed problem.

integer constraints, we iteratively add additional constraints that reduce the relaxed

feasible region in a way such that the non-integer feasible variable of the relaxed solu-

tion is cut off. In this way we strengthen the feasible region step by step, getting closer

to the convex hull of the original integer problem. We continue until a integer feasible

solution of the MIP is found. This method is depicted in Figure 2.4 for a small example

case.

min−2x2

such that − x1 − x2 ≤ 1

3x1 + 2x2 ≤ 12

2x1 + 3x2 ≤ 12

x = (x1, x2)
T ∈ Z2

2.1.4 Branch & Cut

The Branch & Cut Algorithm combines techniques from the Branch & Bound and

cutting plane algorithm. At every node of the Branch & Bound tree, the primal bound

66

2.1 Linear Mixed Integer Optimisation Methods

(a) Depiction of the feasible regions. The black

dot denotes the optimal solution of the relaxed

problem.

(b) The cutting plane x1 − 2x2 ≤ 6 is added.

Figure 2.4: Cutting plane algorithm.

is computed using the LP-relaxation. Then, cutting planes are added to achieve a

sharper bound or even an integer feasible solution. Hence, this approach leads to

smaller Branch & Bound trees. This is one of the most popular procedures to compute

optimal solutions for linear MIPs and is applied in many software packages, see the

following subsection.

2.1.5 Optimisation Software

Currently, there are several optimisation software packages on the market, which are

able to solve linear MIPs automatically, for instance [23, 60, 85, 91]. Some of them pro-

vide interfaces for the user to adapt the solution procedure to the specific problem type

in order to obtain increased efficiency. This can either mean to set certain parameters

for the optimisation algorithm, such as error tolerances or priorities for the order of

branching or considered subnodes, or it can even allow the user to integrate own tuning

elements, such as heuristics for finding primal bounds or subroutines for creation of new

subproblems and branching rules. We use Cplex [23] to solve DTN-MIPs. For more

details we refer to Chapter 3, where numerical results are presented.

67

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

2.2 Mixed-Integer-Techniques meet DTN-Models

In this Section we derive a general strategy how MIP optimisation techniques can be

applied to dynamic transportation network models. We need to transform the model

into a linear MIP. A linear MIP can be solved by a blackbox solver, as mentioned in

Subsection 2.1.5. Optionally, it is also possible to reduce optimisation time by providing

information on the network model to the optimisation process.

Definition 2.2.1. A DTN-MIP is a linear MIP (2.3) based on a DTN model. The

variables x comprise all control, linearisation and state variables for all time and space

discretisation points. The coefficience matrix A and coefficient vector c depend on

network parameters N and edge properties P.

For the sake of clarity, we distinguish between three types of variables:

Control variables. Control variables depend on the specific optimisation issue; they

represent the quantities that are used as controls to find the optimal solution and

usually originate from dynamic functions D or edge parameters P of the underlying

DTN. In the applications described below they represent the number of workers that

are at each point in time at each machine (cf. Section 2.3) and the state of the traffic

light at each road (cf. Section 2.4), respectively.

State variables. State variables are discretised quantities originating from all dy-

namic functions D that do not play the role of control variables, such as density ρ and

flow evolution f or buffer levels u.

Linearisation variables. Linearisation variables are additional continuous or binary

variables that are needed in order to linearise the model constraints. For more details

see Subsection 2.2.2.

2.2.1 Transformation and Solution Strategy

We suggest the following strategy to apply mixed integer optimisation techniques on

optimisation problems originating from DTN models:

68

2.2 Mixed-Integer-Techniques meet DTN-Models

I. Introducing control variables and their constraints. We introduce control

variables k with respect to the considered optimisation issue and derive conditions K

that have to be satisfied by the control variables. Constraints which only depend on

control variables will be referred to as control constraints, see (2.1b). According to

the notation of (2.3), the variables k are elements of x and K is incorporated into A.

Remark 2.2.2. The optimisation methods used later apply the Simplex Algorithm for

the relaxed formulations in order to find dual bounds for the problem. When the optimal

solution of the relaxed formulation happen to fulfill the integer (and binary) constraints

as well, we immediately get an optimal solution for a subproblem of the MIP. This

leads to the reduction of branches in the Branch & Bound Algorithm. In that way the

optimisation time is reduced. This effect is enhanced, when we formulate the control

constraints in a way that the feasible region of the relaxed problem is close to the convex

hull of the original problem. Then, integer feasible solutions are found at the corners of

the region. For more details on polyhedra theory and integer optimisation, see [89, 90].

II. Deriving a suitable objective function. Next, we introduce an objective func-

tion to obtain a continuous, PDE- or ODE-constraint optimisation problem, see (2.1).

Depending on the considered DTN model, the constraints may contain the evolution

of density on the arcs of the network or the evolution of the buffer sizes, coupling

conditions at the vertices and the control constraints of step I.

III. Discretising constraints of the DTN model. The next step is to introduce

a discrete time and spatial grid and apply discretisation schemes, cf. Section 1.4. We

preferably choose methods that are easy to linearise. In this way we obtain the discrete

state variables possibly for each time and space-step.

IV. Linearizing constraints. All constraints are linearised with respect to the con-

trol as well as to the state variables. This requires the application of linearisation

techniques described in Subsection 2.2.2. For this procedure additional linearisation

variables are introduced. In that way, we obtain a linear DTN-MIP.

V. Preventing high oscillations of control variables in the optimal solution.

It is possible that the control variables of the optimal solution are strongly fluctuating

in time. In most of the applications, this is not of practical use. In our examples this

69

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

would mean that a traffic light switches every second or workers have to chance their

position too frequently. In order to avoid these fluctuation effects, further techniques

can be applied as described in Subsection 2.2.3.

VI. Tuning the optimisation procedure. The obtained MIP is highly complex,

since the number of constraints and variables is not only proportional to the number

of arcs of the network, but also to the number of time- and space-steps. For that

reason the optimisation time is often unacceptably large. However, we possess a lot of

useful information due to the structure of the model. Subsection 2.2.4 is dedicated to

strategies, how this information can be used to significantly speed up the optimisation

procedure.

2.2.2 Linearisation Techniques

In this subsection we consider step IV of the above mentioned strategy. We show how

to linearise several expressions that might be encountered in optimisation problems

originating from DTN models, such as those derived in Section 1.2 (cf. Remark 1.2.3)

and Section 1.3 (cf. Remark 1.3.8). We describe techniques how to reformulate these

terms using linear constraints without loosing information or accuracy. For more details

we refer to [62].

Product of binary and continuous variable. As explained in Section 5.6.5 of

[62], it is possible to linearise the product of a positive continuous variable x and a

binary variable β ∈ B.

Assume that

�
0 ≤ x ≤ M ; x ∈ R; β ∈ B

�
(2.5)

and consider equation

y = β · x. (2.6)

Now, (2.6) can be described by

β = 0 =⇒ y = 0 (2.7a)

β = 1 ⇐⇒ y = x. (2.7b)

70

2.2 Mixed-Integer-Techniques meet DTN-Models

Hence, (2.7) is equivalent to

y ≤ M · β ∧ y ≤ x ∧ y ≥ x−M(1 − β). (2.8)

Minimum-expressions. DTNs often contain min-terms such as (1.17b), (1.22) and

(1.23) for the production flow model, cf. Section 1.2, and equations (1.43), (1.45), (1.47)

and (1.49) for the traffic model, see Section 1.3. They can be linearised applying the

following Lemmata.

Lemma 2.2.3. An expression of the form c = min{a, b} is linearised by introducing a

binary variable γ ∈ {0, 1} and using the additional inequality constraints

γ · a ≤ c ≤ a

b−M · γ ≤ c ≤ b

where M is sufficiently large, such that M > b holds.

One can easily check that γ = 1 is equivalent to the case c = a, and γ = 0 is valid,

if and only if c = b, cf. references [42, 62].

This approach can iteratively be used for minimum expressions consisting of an

arbitrary number of terms. For example, we get the following transformation for a

minimum expression containing three terms:

Lemma 2.2.4. a = min(b, c, d) with b, c, d ≥ 0 is equivalent to the set of constraints

βb ≤ e ≤ b

c − cmaxβ ≤ e ≤ c

ηe ≤ a ≤ e

d − dmaxη ≤ a ≤ d

β, η ∈ B (2.9)

with cmax and dmax upper bounds for c and d and e ∈ R.

Proof. Setting e := min(b, c) it becomes clear that a = min(e, d). Then applying

Lemma 2.2.3 completes the proof.

71

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

If-else-construction. The triangular flow function 1.26 used in the traffic flow con-

text, is defined piecewies. In this paragraph we show, how these constructions are

linearised. Let A and B be two sets, let s ∈ [0, smax] be a variable. The following

expression needs to be linearised:

x ∈ A, if 0 ≤ s ≤ s∗ (2.10a)

x ∈ B, if s∗ ≤ s ≤ smax. (2.10b)

Remark 2.2.5. We assume that for the case s = s∗ both x ∈ A and x ∈ B are allowed.

(2.10) is equivalent to

x = y, if 0 ≤ s < s∗ (2.11a)

x = z, if s∗ < s ≤ smax (2.11b)

x ∈ {y, z}, if s = s∗ (2.11c)

y ∈ A (2.11d)

z ∈ B. (2.11e)

Now, we introduce a binary variable ζ ∈ B. We want to find linear constraints

which are equivalent to the following relations

ζ = 0 ⇔ x = y ⇐ 0 ≤ s < s∗ (2.12a)

ζ = 1 ⇔ x = z ⇐ s∗ < s ≤ smax. (2.12b)

We use:

x = ζz + (1− ζ)y (2.13a)

0 ≤ (
1

2
− ζ)(s∗ − s) (2.13b)

Now, we have to linearise the following terms

ỹ := ζ · y and z̃ := ζ · z.

72

2.2 Mixed-Integer-Techniques meet DTN-Models

Applying steps (2.5) - (2.8), we end up with the following constraints for ỹ:

0 ≤ ỹ ≤ ymax · ζ

y − ymax(1− ζ) ≤ ỹ ≤ y

The linearisation for z̃ is done analogously.

Altogether, this yields the following set of constraints, which replace (2.10):

x = z̃ + y − ỹ (2.14a)

0 ≤ (
1

2
− ζ)(s∗ − s) (2.14b)

0 ≤ ỹ ≤ ymaxζ (2.14c)

y − ymax(1− ζ) ≤ ỹ ≤ y (2.14d)

0 ≤ z̃ ≤ zmaxζ (2.14e)

z − zmax(1− ζ) ≤ z̃ ≤ z (2.14f)

ζ ∈ B (2.14g)

y ∈ A (2.14h)

z ∈ B (2.14i)

with linearisation variables y, z, ỹ, z̃ ∈ R+ and ζ ∈ B.

Piecewise linear functions. Piecewise linear functions such as (1.26) often appear

in the context of DTNs. As described in detail in Section 5.6.3 of [62], with the help

of additional binary variables it is possible to find linear constraints which express

piecewise linear functions. Here, we want to apply these techniques as well as the

techniques of the previous paragraph to the special case of triangular flow functions,

which are commonly used in traffic flow models, see Subsection 1.3.

Note, that for the case ρ = ρ∗ holds λ · ρ = λ(2ρ∗ − ρ).

Analogously to the previous paragraph, we reformulate (1.26) by

f = κ · λρ+ (1− κ)(λ(2ρ∗ − ρ)) (2.15a)

0 ≤ ρ ≤ ρmax (2.15b)

κ ∈ B. (2.15c)

73

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Following steps (2.11) to (2.14), we add a new variable ρ̃ representing the product of κ

with ρ and obtain the following linear constraints:

f = 2λρ̃ − ρ∗2λκ − λρ+ ρ∗2λ (2.16a)

0 ≤ ρ∗κ − ρ̃+
1

2
ρ−

1

2
ρ∗ (2.16b)

0 ≤ ρ̃ ≤ ρmax · κ (2.16c)

ρ − ρmax(1− κ) ≤ ρ̃ ≤ ρ (2.16d)

0 ≤ ρ ≤ ρmax (2.16e)

κ ∈ B, (2.16f)

which are equivalent to (1.26).

2.2.3 Avoiding Oscillations

We can apply various strategies in order to avoid high oscillations of the control variables

in the optimal solution. Two of them are described in the sequel.

A: Reducing number of control variables. Instead of using different control

variables at each time-step, we decide a-priori at which points in time switching of a

control variable is allowed. Then, we can simply use the same variable for the whole

period which we do not want to allow for switching. This can also be interpreted in

the way that the control variable lives on a coarser time grid than the other variables.

If we transform this idea back to the original continuous model, we assume the control

parameter to be a piecewise constant function in time, where the time of the jumps

is previously fixed, but not the value of the function after each jump. The main

disadvantage of this procedure is the fact that the points in time of the switching has

to be fixed previously and are not up to optimisation. The main advantage is that no

additional constraints for the MIP are required and even the number of variables is

reduced, which leads to a slight reduction of complexity of the MIP.

B: Deriving additional constraints on switching behaviour. Another tech-

nique is to add constraints to the MIP guaranteeing that the time period between the

switching of a control ranges between a certain prescribed upper and lower bound.

74

2.2 Mixed-Integer-Techniques meet DTN-Models

The following lemmata show, how these constraints can be designed in the case that

the control variables are binary.

Lemma 2.2.6. Lower bound on switching period

Let Ct ∈ B be a set of control variables ∀ t = 1, . . . , nt and let L0 and L1 ∈ N denote

the lower bounds for the number of consecutive time-steps that C t can be set to 0 or 1,

respectively.

Variables Ct respect the minimal switching period if and only if the following con-

straints hold:

t+L1�

l=t+1

C l ≥ L1(−Ct + Ct+1), ∀t ≤ nt − L1 (2.17)

t+L0�

l=t+1

C l ≤ (L0 + 1)(1 − Ct + Ct+1), ∀t ≤ nt − L0. (2.18)

Proof. We consider both directions separately.

=⇒:

When there is a switch from 0 to 1 after time-step t, i.e. if C t = 0 ∧ Ct+1 = 1, then

the next L1 control variables have to be 1 as well, i.e.

t+L1�

l=t+1

C l !
= L1 (2.19)

has to be fulfilled. Hence, (2.17) holds. Considering constraint (2.18), we have

t+L0�

l=t+1

C l ≤ (L0 + 1)(1 − Ct + Ct+1) = (L0 + 1) · 2.

This holds as well, since Cl cannot be greater than one.

When there is a switch from 1 to 0 after time-step t, i.e. if C t = 1 ∧ Ct+1 = 0, then

the next L0 control variables have to be zero as well. Hence,

t+L1�

l=t+1

C l !
= 0. (2.20)

In that case
�t+L1

l=t+1 C
l ≥ L1(−Ct + Ct+1) = −L1 is fulfilled, since Cl is always larger

than zero, and constraint (2.18) is also fulfilled, since (L0 + 1)(1 − Ct + Ct+1) = 0.

For the remaining cases, i.e. if Ct = Ct+1 = 0 or Ct = Ct+1 = 1 holds, constraint

(2.17) holds with
�t+L1

l=t+1 C
l ≥ L1(−Ct + Ct+1) = 0, as well as constraint (2.18) with�t+L0

l=t+1 C
l ≤ (L0 + 1)(1 − Ct + Ct+1) = (L0 + 1), since Ct cannot be larger than one.

75

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

⇐=:

Assume, there is a switch from 0 to 1 at time t, i.e. Ct = 0 and Ct+1 = 1, and the

following values for C would not respect the minimal switching period L1. Then

t+L1�

l=t+1

C l ≤ L1,

which contradicts constraint (2.18).

Now, we consider the case of a switch from 1 to 0 at time t, i.e. C t = 1 and

Ct+1 = 0. If the consecutive control variables would not respect the minimal switching

period L0, this would yield
t+L0�

l=t+1

C l ≥ 0,

which clearly contradicts (2.17).

This completes the proof.

In some applications, it might also be desired to guarantee an upper bound for the

switching period. As an example, think of a traffic light which should not be red for

longer than 3 minutes.

Lemma 2.2.7. Upper bound on switching period:

Let Ct ∈ B be a set of control variables ∀ t = 1, . . . , nt, U0 and U1 ∈ N denote the upper
bound for the number of consecutive time-steps that C can be set to 0 or 1, respectively.

Variables Ct respect the maximal switching period if and only if the following con-

straints hold:

t+U1+1�

l=t+1

C l ≤ U1, ∀t ≤ nt − U1 − 1 (2.21)

t+U0+1�

l=t+1

C l ≥ 1, ∀t ≤ nt − U0 − 1. (2.22)

Proof. If C l is never set to one more than U1 times in a row, constraint (2.21) holds

and vice versa. In the same way constraint (2.22) holds if and only if C l is never set to

0 more than U0 times in a row.

The main disadvantage of this approach is that the complexity of the MIP increases,

since another set of constraints is added for every time-step. Furthermore, it becomes

more involved to find feasible control settings which can be used for bounding heuristics

76

2.2 Mixed-Integer-Techniques meet DTN-Models

in order to speed up the optimisation algorithm. This is due to the fact that in many

DTN-MIPs the control constraints usually describe relations between different control

variables for the same time-step, which enables us to find feasible control settings for

each time-step separately; whereas constraints of type (2.18), (2.17), (2.22) or (2.21)

lead to further dependencies of control variables of different time-steps. For more details

see Subsection 2.2.4. The main advantage of this method is that the switching time

itself is also up to optimisation (in contrast to method A), which is especially useful in

applications, where the choice of the switching times has a big influence on the optimal

solution.

2.2.4 Tuning the Branch & Bound Optimisation

As described above, it is possible to reformulate optimisation problems on DTN mod-

els as linear DTN-MIPs. Thus it is possible to give it into one of various available

optimisation solvers, e.g. [23]. Unfortunately, we need constraints and variables for

each time-step leading to a large problem size. Often, this does not allow to obtain an

optimal solution during an acceptable time frame. Especially because of the large num-

ber of binary variables, it is extremely difficult for the blackbox solver to find feasible

solutions at all.

By using the optimisation software as a black box tool, we deprive the solver of a lot

of valuable information; in fact, for us it is easy to construct a feasible solution manually:

We only have to find a feasible setting for the control variables (in our example models

the worker distribution and traffic light setting respectively). Given those variables,

we can simply simulate the solution using a forward solver, see Algorithm 3, to obtain

the state variables and then apply linearisation techniques to compute the linearisation

variables.

After these simple computations, we can provide the solver with a feasible start

solution. This procedure is illustrated in Figure 2.5.

However, this is not always enough to reduce the optimisation time, since it takes

still a long time to find more feasible solution during the Branch & Bound Algorithm.

For a more detailed study on applying starting heuristics for large DTN-MIPs within

the production context we refer to [37] and [98]. Additionally, it is promising to have

the solver branch only at the original control variables and provide another primal

77

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Figure 2.5: Using a starting heuristic to provide feasible start solution for Branch &

Bound Algorithm.

bound for each new subproblem by finding a new feasible setting for these variables

and applying the forward solver.

To clarify this concept, we consider the different steps of the Branch & Bound

Algorithm, that has been presented in the beginning of this chapter, see Algorithm 2.

First of all we prescribe solely the control variables for branching, see line 8 in

Algorithm 2. After that, we create a heuristic for finding a feasible solution of the

considered subproblem, see line 6. Let Ĩ be the index set indicating all variables,

that have been fixed due to former branching. Respecting the fixed values xi, i ∈ Ĩ,

we first compute the dual bound by applying the Simplex Algorithm to the relaxed

MIP (see line 5). If we construct the constraints for the control variables in a certain

way, see Remark 2.2.2, it is possible that the optimal solution of the relaxed problem

already contains control variables which are integer feasible. A bounding heuristic, see

Algorithm 4, will keep the values of the integer feasible variables as well as the fixed

branching variables and sets the others in a feasible way; and if possible, in a way

that a good objective function value is obtained. This is illustrated in Figure 2.6. The

resulting feasible solution is used as a primal bound for the Branch & Bound Algorithm

in line 6. Figure 2.7 illustrates on which point of the Branch & Bound Algorithm the

78

2.2 Mixed-Integer-Techniques meet DTN-Models

Bounding Heuristic takes effect.

A bounding heuristic can only work properly, when the branching only takes place

on the control variables. Otherwise some binary linearisation variables might be fixed

in a branch. These fixed values can not be respected by the bounding heuristic, since

it applies the forward solver to obtain the values of the linearisation variables.

Figure 2.6: Structure of the bounding heuristic. It serves as a building block of the

Branch & Bound Algorithm, see Figure 2.7.

Remark 2.2.8. Typically, the control variables have indices for time-steps t and net-

work arcs i. For the sake of simplicity, we skip the superindices t in the description of

Algorithm 4.

Later in this chapter, a more detailed bounding heuristic is described for the model

of traffic light optimisation, see Algorithm 6 and 7.

In Section 2.4, we apply these ideas to find an optimal traffic light setting for traffic

networks. In Chapter 3, Figure 3.44(a), 3.45(a) and 3.46(a) show the evolution of primal

and dual bounds during the optimisation process applying only a starting heuristic on

the one hand (cf. Figure 2.5) and the incorporated bounding heuristic (cf. Figure 2.7)

on the other hand. The strong improvements of the second technique are convincing

and enable us to find close to optimal solutions in a reasonable time for DTN-MIPs

with around 106 variables and constraints.

79

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Figure 2.7: Using branching priorities and bounding heuristic iteratively during the

Branch & Bound Algorithm.

80

2.2 Mixed-Integer-Techniques meet DTN-Models

Algorithm 3: Forward Solver.

/* Input: DTN-MIP and a feasible setting of control variables.

*/

/* Output: An integer feasible solution */

1 begin

2 for t = 0, . . . , nt− 1 do

3 Compute coupling for all junctions of the network.

4 Apply PDE-solver (i.e. one time iterative of a discretisation scheme

presented in Section 1.4) for each edge to obtain state variables (i.e.

density, flow, buffer level etc.) for time-step t+ 1.

5 Compute the corresponding values for linearisation variables.

6 Return feasible solution.

Algorithm 4: Bounding Heuristic.

/* Input: A relaxed solution (i.e. all variables are considered

to be continuous) of the linear MIP with control variables

Ci, i ∈ I and already fixed branching variables with index

i ∈ Ĩ ⊂ I. */

/* Output: An integer feasible solution */

1 begin

/* Optional: Include integer feasible variables of relaxed

solution in fixed index set: */

2 for i ∈ I\Ĩ do

3 if Ci ∈ Z then

4 Ĩ → Ĩ ∪ {i}

/* Find feasible setting of control variables, i.e. fulfilling

all control conditions. Do it in a way that a good objective

function value of the original DTN-MIP is supported. */

5 Compute controls Ci, i ∈ I\Ĩ . /* see e.g. Algorithm 6 or 7 */

6 Apply Forward Solver(Ci, i ∈ I) /* see Algorithm 3 */

7 Return feasible solution.

81

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

2.3 Application I: Optimal Worker Scheduling for Pro-

duction Networks

Considering DTN-models in the production context, we encounter a wide range of

optimisation questions containing discrete decisions. Typically, the aim is to reduce

storage costs or increase output of products. [42, 46] look for the best flow distribution

inside a production network in order to achieve minimal queuing sizes and maximal

production flow. In addition to that, in [37, 98] choices of certain supplier configurations

are up to optimisation. [48, 57] control policies for processors on network models

where parts have different priorities. In this section, we want to consider the model

introduced in Section 1.2, where the point of interest is the optimal scheduling of

workers throughout the network such that the production is maximised, see also [49],

using the techniques described in the previous section.

2.3.1 Deriving a linear DTN-MIP

Following the steps of Subsection 2.2.1, we derive a linear DTN-MIP of the model

derived in Section 1.2.

I. Control variables and constraints. Our goal is to find out which worker sched-

ule is best in order to guarantee a stable production process and maximise the possible

outflow of goods. Hence, our control variables represent the worker distribution βi(t)

as percentage of a total number of workers W .

To get a well-defined allocation of available workers, we state the following control

constraints:
�

i∈E

βi(t) = 1, 0 ≤ βi(t) ≤ 1, ∀i, t. (2.23)

This means, we distribute all workers among the machines and require them to be a

positive number. Furthermore, it is reasonable to only allow integer workers, hence we

request

W · βi(t) ∈ Z, ∀i, t. (2.24)

82

2.3 Application I: Optimal Worker Scheduling for Production Networks

II. Objective function value and continuous optimisation problem. Since

we are interested in increasing the ouflow, we use the total outflow of the network as

objective function, see (2.25a). Respecting the conditions of the DTN model derived

in Section 1.2, we end up with the following ODE-restricted optimisation problem:

max

� T

0

�

i∈Eout

fi(t)dt (2.25a)

s. t. ∀i ∈ E :

dui(t)

dt
= Bf(t) + fext,i(t)− fi(t) (2.25b)

fi(t) = min
�
ci(t),

ui(t)

τi

�
. (2.25c)

dci(t)

dt
= min

�µi − ci(t)

�
,Wdiβi(t)

�
−min

�ci(t)

�
, li

�
(2.25d)

ui(0) = u0i, ci(0) = c0i (2.25e)
�

i∈E

βi(t) = 1, 0 ≤ βi(t) ≤ 1, ∀i, t. (2.25f)

0 ≤ βi(t) ≤ 1 (2.25g)

W · βi(t) ∈ Z+
0 , (2.25h)

0 ≤ ci(t) ≤ µi, ui(t) ≥ 0. (2.25i)

The constraints consist of the coupled ODE-system, given by the buffer level equa-

tion (2.25b) and (2.25c), the capacity drop (2.25d) (or (1.23), depending on the model

version) and the control constraints (2.25f). Furthermore, we need to prescribe initial

conditions (2.25e) and the control conditions (2.25f), (2.25g) and (2.25h). If not said

otherwise, we choose as initial condition empty buffers (i.e. u0i = 0) and full capac-

ities (i.e. c0,i = µi). Constraint (2.25i) represents additional non-negativity and box

constraints of the state variables representing capacity and buffer level.

III. Discretising constraints. We choose a uniform discrete time grid

T = {t : t = 0, . . . , nt}

of the underlying time horizon [0, T] where nt denotes the number of grid points. The

step-size is defined via Δt = T
nt
.

Then, we discretise the system of ordinary differential equations (2.25b) - (2.25d)

using the explicit Euler scheme.

83

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Remark 2.3.1. For the step-size Δt, the condition

Δt := min{2τi, 2�}, ∀i ∈ E

must be satisfied when dealing with stiff problems.

As an intermediate result, we get the following optimisation problem ∀i, t ∈ T:

max
�

i∈Eout

�

t∈T

f ti ·Δt

s. t.

ut+1i = uti +Δt · [[B · f]i + f text,i − f ti] (2.26a)

ct+1i = cti +Δt · [Dt
i −Rt

i] (2.26b)
�

i∈E

βti = 1 (2.26c)

u0i = u0i, c0i = c0i (2.26d)

0 ≤ βti ≤ 1 (2.26e)

W · βi(t) ∈ Z+
0 . (2.26f)

0 ≤ cti ≤ µi, uti ≥ 0, , (2.26g)

with Rt
i := min{

cti
� , li}, Dt

i := min{
µi−c

t
i

� ,Wdiβ
t
i} and f ti := min{cti,

uti
τi
}. Note, that for

the flow dependent capacity decrease as presented in (1.23), equation (2.26b) changes

to

ct+1i = cti +Δt · [Dt
i − li · f

t
i]. (2.27)

IV. Applying linearisation techniques. In order to arrive at a linear MIP we

linearise the min-terms in Rt
i,D

t
i and f ti with respect to cti, u

t
i and βti as shown in

Lemma 2.2.3.

In this way, we get for Rt
i the following constraints:

li · κ
t
i ≤ Rt

i ≤ li (2.28a)

cti
�
−M · κti ≤ Rt

i ≤
cti
�
, (2.28b)

where M := µi
� and κti is binary, i.e. κti ∈ {0, 1}. By applying the same method to f ti ,

we end up with

gti ≤ f ti ≤ cti (2.29a)

uti
τi

−Mξti ≤ f ti ≤
uti
τi

, (2.29b)

84

2.3 Application I: Optimal Worker Scheduling for Production Networks

where M is a sufficiently large constant, ξti are additional binary variables and

gti := cti · ξ
t
i . (2.30)

We linearise cti ·ξ
t
i as shown in equations (2.5) - (2.8). Hence, with the new linearisation

variable gti ∈ R, (2.30) can be described by

0 ≤ gti ≤ µiξ
t
i (2.31a)

cti − µi(1− ξti) ≤ gti ≤ cti. (2.31b)

Following Lemma 2.2.3 and taking computational runtime into account, we need an

estimate for the constant M in (2.29). More precisely, it is important to choose M as

tight as possible. Hence, let M depend on i and t and make sure that

M t
i ≥

uti
τi

, (2.32)

holds ∀i, t ∈ T. Therefore, we consider (2.26a) in order to derive an upper bound for

uti:

uti ≤ ut−1i +Δt · [B · µ]i +Δt · f t−1ext,i,

where µ denotes a vector-valued function with entries µi for each machine. From our

initial conditions we know that u0i = u0,i. By iteration, we get

uti ≤ t ·Δt · [B · µ]i +Δt ·
t−1�

t̄=0

f t̄ext,i + u0,i

and thus

M t
i :=

1

τi
t ·Δt · [B · µ]i +

1

τi
Δt ·

t−1�

t̄=0

f t̄ext,i +
u0,i
τi

. (2.33)

Remark 2.3.2. In this way, we have also gained an upper bound for uti, namely

0 ≤ uti ≤ τi ·M
t
i , ∀i, t ∈ T. (2.34)

Note, that it is advantageous to keep box constraints as tight as possible, since this might

lead to smaller Branch & Bound trees which reduce the runtime.

85

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

The missing linearisation of Dt
i is done analogously. This leads to the following

additional constraints:

Wdi · h
t
i ≤ Dt

i ≤ Wdiβ
t
i (2.35a)

µi − ci
�

−
µi
�
· γti ≤ Dt

i ≤
µi − cti

�
(2.35b)

0 ≤ hti ≤ γti (2.35c)

βti − (1− γti) ≤ hti ≤ βti , (2.35d)

where γti ∈ {0, 1} and hti,∈ R is a new set of linearisation variables describing the

nonlinearity βti · γ
t
i .

Finally, we specify box and binary constraints for all new variables:

0 ≤ hti ≤ 1, 0 ≤ gti ≤ µi, (2.36a)

0 ≤ f ti ≤ µi, 0 ≤ Rt
i ≤ li, 0 ≤ Dt

i ≤ W · di, (2.36b)

κti, γ
t
i , ξ

t
i ∈ {0, 1} ∀i, t ∈ T. (2.36c)

In summary, the complete mixed-integer formulation reads

max
�

i∈Eout

�

t∈T

f ti ·Δt (2.37)

s. t.

(2.26), (2.28), (2.29), (2.31), (2.34), (2.35), (2.36).

The optimisation problem consists of eight sets of different continuous variables

(c, u, β, f, g, h,R,D) and two to three sets of binaries ((κ,) γ, ξ) depending on the

chosen version of capacity modelling. All variables depend on the number of edges and

time-steps. Hence, the problem size is O(nt · |E|).

V. Avoiding fluctuations of the optimal solution. In this application, it is

meaningful to introduce further restrictions on the time evolution of the distribution

functions βi. It does not make sense for the workers to change their position too

frequently. In order to avoid strong fluctuations, we apply method A of Subsection 2.2.3

by previously fixing the possible switching times 0 < t̃1 < . . . < t̃L < nt of the workers.

Thereafter, the same control variable β
t̃j
i is used for time-steps t : {t̃j ≤ t < t̃j+1}.

86

2.3 Application I: Optimal Worker Scheduling for Production Networks

2.3.2 Steady State Analysis

Since for DTN-MIP optimisation times gets unacceptably large as soon as we increase

the time horizon T , it is advisable to use another approach, when questions about the

long term behaviour of the system are of interest. Furthermore, it is usually desired

to obtain a steady state shortly after the start-up of a productions system. In this

subsection we show, how a steady state analysis can be done for given the DTN-MIP.

This analysis provides us with information about the necessary number of workers to

get a stable flow considering the average through-flow the network for a long time

horizon. Additionally, it is easy to find out, how many workers we need in order to

obtain a specific production flow. If the specific application is flexible with respect

to the flow distribution at branching points, we can also optimise the flow distribution

inside the network in order to obtain the most efficient setting. Hence, the computation

methods of the desired workers and the flow distribution can be used as a preliminary

technique to fix the model parameters W and B, before optimizing the corresponding

DTN-MIP. Another advantage of the steady state analysis is that it serves as a tool to

derive a heuristic for incumbent solutions: We can use the optimal worker distribution

of the steady state case as a promising starting distribution. From this it is possible to

compute a feasible starting solution to speed up the start of the optimisation algorithm.

Definition 2.3.3. A solution of (2.25) is called steady state solution, if duidt = 0 and
dci
dt = 0 and βi(t) is independent on t ∀i ∈ E.

Hence, we drop the time index t in the steady state case.

Time independent capacities. We compute the capacities ci for the steady state

solution. The capacities in equilibrium are computed by

min{
µi − ci

�
,Wdiβi} −min{

ci
�
, li} = 0 ∀i. (2.38)

The steady state ci can be determined in the following way:

ci =





µi − �li, if µi ≥ 2�li ∧ βi ≥
li
Wdi

(Case 1.1)

�Wdiβi if –— ” —– ∧ βi <
li
Wdi

(Case 1.2)
1
2µi, if µi < 2�li ∧ βi ≥

µi
2�Wdi

(Case 2.1)

�Wdiβi if –— ” —– ∧ βi <
µi

2�Wdi
(Case 2.2)

(2.39)

87

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

It can be checked that this choice of ci fulfills (2.38) by considering every case separately.

Considering the limit process � → 0, we get: Either ci = µi, if there are enough workers

to balance the breakdown rate (Case 1.1), or ci = 0 (Case 1.2). Case 2.1 and Case 2.2

will never occur, if µi is positive.

Time independent flow. Next, we investigate the buffer levels ui in the ODE-

constraint (2.25b) - (2.25c). In steady state, we have

[B · f]i + fext,i − fi = 0, ∀i. (2.40)

Since ci as well as ui have to be constant in steady state, fi := min{ci,
ui
τi
} is also

constant. This means, if we find variables fi such that

[B · f]i + fext,i − fi = 0 and (2.41)

0 ≤ fi ≤ ci (2.42)

hold, we can set ui := fi · τi. In that way fi =
ui
τi

≤ ci holds, and thus (2.25c) is

automatically fulfilled. Apparently, equation (2.41) is only true, if the external inflow

fext is constant as well.

Remark 2.3.4. Enforcing the conservation of mass, cf. (1.18) in the steady state case,

we get � t

0

�

i∈E

fext,i dt̃ =

� t

0

�

i∈Eout

fi dt̃.

Since fext and f are time independent

t ·
�

i∈E

fext,i = t ·
�

i∈Eout

fi, (2.43)

i.e. the total external inflow matches the total outflow.

Maximizing the outflow. In the original optimisation problem (2.25), we obtain a

worker distribution such that the outflow of the network is maximal. The same can be

done in the stationary case. Unlike in (2.25), for the steady state solution holds (2.43).

Hence, there would be nothing to optimise, if we previously prescribe the external

inflow. For this reason we leave the inflow as control.

External inflow is only possible at certain edges e ∈ Ein ⊂ E.

88

2.3 Application I: Optimal Worker Scheduling for Production Networks

We reformulate (2.41) and end up with the following constraints:

[B · f]i − fi + fext,i = 0 ∀i ∈ Ein (2.44a)

[B · f]i − fi = 0 ∀i /∈ Ein. (2.44b)

Consequently, the steady state optimisation problem reads:

max
�

i∈Eout

fi (2.45)

s. t.

(2.25f), (2.25h), (2.25i), (2.39), (2.42), (2.44)

In order to solve (2.45) with respect to the worker distribution β and external inflow

fext, we linearise (2.39) using the techniques presented in Subsection 2.2.2 and obtain

the following linear MIP:

max
�

i∈Eout

fi (2.46a)

such that ∀i ∈ E

[B · f]j − fj + fext,j = 0 ∀j ∈ Ein (2.46b)

[B · f]j − fj = 0 ∀j /∈ Ein (2.46c)

− diW (1− δi) ≤ li −Wdiβi ≤ liδi (2.46d)

− µiδi ≤ ci − µi + �li ≤ (µi + �li) · δi (2.46e)

− �Wdi(1− δi) ≤ ci − �Wdiβi ≤ µi(1− δi) (2.46f)
�

i∈E

βi = 1 (2.46g)

W · βi ∈ Z+
0 (2.46h)

0 ≤ βi ≤ 1, 0 ≤ fi ≤ ci, 0 ≤ ci ≤ µi (2.46i)

δi ∈ {0, 1}. (2.46j)

Constraints (2.46d) to (2.46f) ensure that c is set according to (2.39). (2.46d) has the

effect that δi is set to 0, when βi ≥
li
Wdi

; otherwise it is set to one. (2.46e) guarantees

that ci is set to µi − �li, when δi = 0. In the same way (2.46f) ensures that ci is set to

�Wdiβi in the case δi = 1.

89

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

The optimisation problem (2.46) enables us to compute the long term behaviour of

the DTN. When we compute the maximal outflow for different number of workers W ,

we find out, how many workers are needed on average to guarantee a desired production

outflow considering a long term production.

Remark 2.3.5. For the modified model (1.23), the dynamics of the capacity is directly

connected to f . For this reason, it is not possible to compute the capacities for a given

worker distribution a-priory, as in (2.39). Nevertheless, we can derive a steady state

model. In this case equations (2.46d) to (2.46f) have to be replaced by

Di − li · fi = 0, (2.47)

where Di = min{µi−ci� , W · di · βi} and linearised as in (2.35). In the case, we want to

set � to zero, Di in (2.47) can simply be replaced by W · di · βi, since the upper bound

of ci is already guaranteed by (2.46i).

Relation to max flow problems. At this point, it is rather simple to include

an additional optimisation task, namely the optimisation of the flow distribution at

branching nodes (nodes with more than one outgoing edge). As we have seen, matrix

B prescribes the behaviour of the flow at vertices. However, we could instead use an

incidence matrix, which only describes the incoming and outgoing edges of a vertex,

without fixing the distribution rates. This makes the model more flexible and leads to

larger flows as shown later in Section 3.1.

The incidence matrix K is constructed as follows. Given a network with n edges

and m vertices, we have K ∈ Zm×n, whose elements are set in the following way:

kv,i =





1, if i is incoming edge of v
−1, if i is outgoing edge of v
0, else.

The corresponding incidence matrix K of the exemplary network shown in Figure

2.8 is given by

K =




−1 0 0 0 0 0
1 −1 −1 0 0 0
0 1 0 −1 −1 0
0 0 1 1 0 −1
0 0 0 0 1 0
0 0 0 0 0 1




.

90

2.3 Application I: Optimal Worker Scheduling for Production Networks

Figure 2.8: Example of a network, Vin = {v1} and Vout = {v5, v6}.

Consequently, it is possible to include the issue of optimizing the flow distribution

by exchanging constraint (2.44) with

[K · f]v = 0 ∀v ∈ V \(Vin ∪ Vout) (2.48a)

[K · f]v + fext,v = 0 ∀i ∈ Vin. (2.48b)

Hence, an improved steady state optimisation problem is

max
�

i∈Eout

fi (2.49)

s. t.

(2.25f), (2.25h), (2.25i), (2.39), (2.42), (2.48)

In summary, we note that model (2.45) yields the optimal steady state solution

for fixed distribution parameters B, whereas model (2.49) additionally computes the

optimal routing of goods. Another difference to the previous model (2.45) is that the

external inflow is specified at vertices, and not at edges. Since we usually want the

inflow to enter the network at edges without predecessors, we can easily assign the

external inflow to the startvertices without changing the setting.

Remark 2.3.6. It is also possible to use the incidence matrix K for the dynamic

model (2.37). But this might lead to highly fluctuating flow distributions in the optimal

solution. Since the rates do not explicitly appear as variables in the MIP, they cannot

be restricted to be constant in time, cf. [37, 42].

91

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Choosing a worker distribution β and computing the capacities c according to (2.39),

we end up with a well known problem of graph theory, the Maximum Flow Problem

(MFP). In the sequel, we will use theoretical results from MFPs to prove the existence

of a solution to (2.49).

Lemma 2.3.7. Given a network G = (V,E) with properties li, di > 0 and µi, � ≥

0, ∀i ∈ E, there exists a feasible solution of (2.49) with
�

i∈Eout fi =
�

v∈Vin
fext,v ≥ 0.

Proof. Let β be an arbitrary worker distribution, satisfying (2.25f) - (2.25c). The upper

bound of the flow is given by (2.39) and satisfies ci ≥ 0, ∀i ∈ E. The network can be

transformed in the following way: We can imagine the external inflow as edges from a

source vertex s to the point where the external inflow is supposed to enter the network.

The upper bound c of these edges is set to infinity. In the same way we can add an

extra sink vertex t where all outflow edges are led to. Furthermore, we add an artificial

edge e0 from the sink to the source node, which represents the total through-flow, cf.

Figure 2.9.

(a) (b)

Figure 2.9: Transformed network.

From (2.42) we know that the lower bound of the flow in each edge is 0. This setting

fulfills the conditions for the existence of a feasible flow circulation stated in Hoffman’s

circulation theorem, see [6], Theorem 3.8.2. Taking the properties of a flow for vertex s

and t into account as defined in graph theory, it directly follows that fe0 =
�

i∈Eout fi =�
v∈Vin

fext,v holds, due to the construction of the transformed network.

92

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

2.4 Application II: Traffic Networks - Optimal Traffic Light

Setting

Several approaches on finding optimal signal timing on road networks can be found in

the literature, see [14, 96], amongst others. Based on cell transmission models, which

are an approximation to the Lighthill, Witham and Richards model, mixed-integer

formulations and heuristic solution approaches have been developed, see [8, 53, 75, 76,

77]. These models can be applied to small junctions and aim for an optimal cycle

length of the signal timing. Different to these approaches, we do not especially aim

for an optimal cycle length, but want to optimise the switching times with respect

to previously known statistical boundary flows which might underly strong changes

during different times of the day. Additionally, we want to optimise road networks

containing complex junctions containing several lanes for different turning directions.

For several traffic models investigation has been done for complex urban intersections,

as for example in [39].

Based on the DTN model presented in Section 1.3, we derive a model for traffic

lights at junctions and derive a linear mixed integer optimisation problem that enables

us to optimise the traffic light setting in order to obtain the maximal through-flow the

network.

Modelling of complex junctions. First of all, we introduce a model for complex

traffic light junctions, where different lanes for different turning direction are used. We

model each of these lanes by a separate edge. We have given a flow distributin matrix

d, see Definition 1.1.7. Hence, di,j represents the percentage of traffic that is going from

road i to road j. di,j is set to zero for all invalid directions. As example, see Figure

2.10, the corresponding distribution is found in Table 2.1.

Now, we derive a DTN-MIP based on the traffic network model of Section 1.3. We

follow the strategy of Subsection 2.2.1. We indicate in parenthesis (I) to (VI) to which

step of the strategy we refer to.

2.4.1 Control Variables and Constraints (I)

In this context, the control variables are given by the traffic light setting.

93

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

(a) (b)

Figure 2.10: Crossover, where each lane for different turning directions is modelled by a

separate edge.

9 10 11 12

1 0 0 0 d1,12

2 0 d2,10 d2,11 0

3 d3,9 0 0 0

4 0 0 d4,11 d4,12

5 0 d5,10 0 0

6 d6,9 0 0 d6,12

7 0 0 d7,11 0

8 d8,9 d8,10 0 0

Table 2.1: Distribution parameters for vertex v1 of 8x4-junction.

94

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

Modelling of traffic lights. We model a traffic light at the end of a road i by

piecewise constant functions Ai : t �→ B. When Ai(t) = 0 for some t, it means that the

traffic light is red at this point in time and otherwise it is green.

The traffic light is included into the model by adding the following constraints for

all incoming roads i:

f̂i(t) ≤ Ai(t) · F̂i(t), ∀i ∈ δinv

When we consider a road network that also contains junctions without traffic light,

we set the corresponding traffic light variable Ai to one.

Secure setting. We assume that the traffic lights are set in a save way. This means

that traffic to an outgoing road cannot come from more than one incoming road simul-

taneously. Thus, a secure traffic light setting should satisfy the following constraint:

�

i∈δinv : dij>0

Ai ≤ 1, ∀j ∈ δoutv . (2.50)

Depending on the specific case an even stronger restriction might be required. Imag-

ine a big junction, where left-turning vehicles should only have green light, when the

straightforward driving opposing traffic has red light, see Figure 2.11.

Figure 2.11: Examining secure traffic light settings.

For that reason we introduce the following notation:

Definition 2.4.1. A secure set S ⊂ E is the index set of traffic lights that must not

be green simultaneously. The superset S contains all secure sets of a given network,

S := {Sk, k = 1, . . . |S|}.

We can guarantee a secure traffic light setting by respecting the following con-

straints:

95

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

�

i∈Sk

Ai ≤ 1, ∀Sk ∈ S. (2.51)

When the secure sets are chosen reasonably, constraint (2.51) includes (2.50).

The description of S is not unique. The easiest way to create S for a given network

is the following:

• Take one traffic light i and check one by one, which other traffic light j must not

be green at the time as i.

• Create a secure set for each pair – and take in mind not to count a pair twice.

If we apply this strategy to the junction shown in Figure 2.10, we end up with 20 secure

sets, each containing two elements:

S = {{1, 3}1, {1, 4}2, {1, 6}3, {1, 7}4, {1, 8}5, {2, 3}6, {2, 4}7,

{2, 5}8, {2, 7}9, {2, 8}10, {3, 5}11, {3, 6}12, {3, 8}13, {4, 5}14,

{4, 6}15, {4, 7}16, {5, 7}17, {5, 8}18, {6, 7}19, {6, 8}20} (2.52)

However, this is not the best formulation, compare Remark 2.2.2. To clarify this

concept, let us take a deeper look at the relaxed formulation: When we neglect the

binary restrictions on the variables Ai, the control constraints yield:

�

i∈Sk

Ai ≤ 1, ∀Sk ∈ S (2.53a)

0 ≤ Ai ≤ 1, ∀i ∈ E. (2.53b)

The feasible region of (2.53) is far from being the convex hull of the integer programming

problem

�

i∈Sk

Ai ≤ 1, ∀Sk ∈ S (2.54a)

Ai ∈ B, ∀i ∈ E. (2.54b)

A better formulation of the secure sets can be derived by combining as many of the

element pairs of the above constructed sets Sk as possible. If we look carefully at the

given example, we observe that there are four groups of four pairwise different roads

96

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

Figure 2.12: Roads whose traffic lights cannot be green at the same time.

which must not be green simultaneously for each combination of the lights contained

in the set. One of them is depicted in Figure 2.12. The others are obtained by rotating

the setting.

In this way, we obtain an alternative formulation S̃, given by:

S̃ = {{2, 4, 5, 7}1 , {1, 4, 6, 7}2 ,

{1, 3, 6, 8}3 , {2, 3, 5, 8}4}. (2.55)

Let P be the polyhedron described by S and P̃ the polyhedron described by S̃, i.e.

P := {x ∈ R8 :
�

i∈Sk

xi ≤ 1,∀Sk ∈ S ∧ 0 ≤ xi ≤ 1,∀i = 1, . . . , 8} (2.56)

and

P̃ := {x ∈ R8 :
�

i∈S̃k

xi ≤ 1,∀S̃k ∈ S̃ ∧ 0 ≤ xi ≤ 1,∀i = 1, . . . , 8}. (2.57)

Claim 2.4.2. P̃ is a better formulation for (2.54) than P , i.e.

i): {x ∈ B8 :
�

i∈Sk

xi ≤ 1, Sk ∈ S} = {x ∈ B8 :
�

i∈S̃k

xi ≤ 1, S̃k ∈ S̃} (2.58a)

and ii): P̃ � P. (2.58b)

97

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Proof. (2.58a) holds due to construction. In both cases, the only integer feasible points

are given by

X =








0

0

0

0

0

0

0

0




,




1

0

0

0

0

0

0

0




,




0

1

0

0

0

0

0

0




, . . . ,




0

0

0

0

0

0

0

1




,




1

1

0

0

0

0

0

0




,




1

0

0

0

1

0

0

0




,




0

1

0

0

0

1

0

0




,




0

0

1

1

0

0

0

0




,




0

0

1

0

0

0

1

0




,




0

0

0

1

0

0

0

1




,




0

0

0

0

1

1

0

0




,




0

0

0

0

0

0

1

1








(2.59)

With respect to (2.58b), we first show that P̃ ⊂ P :

Choose an arbitrary x ∈ P̃ . Thus, 0 ≤ xi ≤ 1 holds for all i = 1, . . . , 8. Taking the

order of the secure sets as stated in (2.52) and (2.55) into account, we have

�

i∈S̃1

xi ≤ 1 ⇒
�

i∈Sj

xi ≤ 1, for secure sets Sj ∈ S, with j = 7, 8, 9, 14, 16, 17,

�

i∈S̃2

xi ≤ 1 ⇒
�

i∈Sj

xi ≤ 1, for secure sets Sj ∈ S, with j = 2, 3, 4, 15, 16, 19,

�

i∈S̃3

xi ≤ 1 ⇒
�

i∈Sj

xi ≤ 1, for secure sets Sj ∈ S, with j = 1, 3, 5, 12, 13, 20,

�

i∈S̃1

xi ≤ 1 ⇒
�

i∈Sj

xi ≤ 1, for secure sets Sj ∈ S, with j = 6, 8, 10, 11, 13, 18.

⇒ P̃ ⊂ P .

Now, we show that P̃ � P , i.e. ∃x ∈ P : x /∈ P̃ :

98

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

Choose x̂ = (0 0.5 0 0.5 0.5 0 0 0)T . x̂ fulfills

�

i∈§k

x̂i ≤ 1 ∀Sk ∈ S ⇒ x̂ ∈ P.

But we have �

i∈S̃1

x̂i = 1.5 > 1 ⇒ x̂ /∈ P̃ .

This proves the claim.

The next subsection represents the second step of the strategy presented in Sub-

section 2.2.1. An objective function is formulated turning the DTN into a continuous

optimisation problem.

2.4.2 Objective Function and Continuous Formulation of Optimisa-

tion Problem (II)

Our goal is to find a traffic light setting that enables the traffic participants to drive

smoothly through the road network while encountering as few congestion as possible.

For this reason we aim to maximise the flow overall the whole network. Considering

the continuous notation, this means, we want to maximise the integral over time and

space of the flow plus the integral over time of the coupling flow at junctions, i.e.

max
�

i∈E

�� T

0

� Li

0
f(ρi(x, t))dxdt +

� T

0
f̂i(t)dt

�
. (2.60)

The constraints of the optimisation problem consist on the one hand of the flow

function, the evolution of density along the roads and coupling conditions at the junc-

tions, compare DTN model in Section 1.3. On the other hand, we need the above

derived control constraints for the traffic light setting.

i) Flow. As stated in the derivation of the DTN model in Subsection 1.3, ρ : (x, t) �→

ρ(x, t) ∈ [0, ρmax] ⊂ R+ denotes the density of cars, x ∈ [0, Li] ⊂ R+ describes the

location on road i with length Li and t ∈ (0, T) ⊂ R denotes the time horizon.

For every road we specify a maximal density ρmaxi and triangular flow functions fi,

given by (1.26). The prescribed flow function holds along the roads as well as for the

99

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

coupling at the junctions, i.e

flow along the roads:

fi(x, t) = fi(ρi(x, t)), ∀i ∈ E, x ∈ [0, Li] (2.61a)

coupling flow:

f̂i(t) = f(ρ̂i(t)), ∀i ∈ E\Eout (2.61b)

f̄i(t) = f(ρ̄i(t)), ∀i ∈ E\Ein. (2.61c)

ii) Density evolution along the roads. Along the roads, the continuity equations

holds:

�
∂tρi + ∂xfi(ρ) = 0,
ρi(x, 0) = ρ0i (x),

(2.62)

iii) Coupling. As in [19] we choose the coupling in a way that maximal possible

flow is achieved at the junction with respect to (1.34), (1.35) and conservation of flow.

For all junctions v with traffic lights, the coupling flow {f̂i, i ∈ δinv ; f̄j , j ∈ δoutv } is the

optimal solution of the following optimisation problem:

max
�

i∈δinv

γi(t) (2.63a)

such that

γj(t) =
�

i∈δinv

dij(t)γi(t) ∀j ∈ δoutv (2.63b)

0 ≤ γi(t) ≤ Ai(t) · F̂i(t) (2.63c)

0 ≤ γj(t) ≤ F̄j(t). (2.63d)

Note, that these coupling optimisation problems are now constraints of our opti-

misation problem. Later (in Subsection 2.4.4) we show how to handle these nested

optimisation problems and manage to rewrite them as linear constraints of the DTN-

MIP without loosing any information or accuracy.

100

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

Additionally to the coupling flow, we need the following side constraints:

maximal possible coupling flow:

F̄i(t) :=

�
fmaxi , if 0 ≤ ρ0,i(t) ≤ ρ∗i
f0,i(t), else

∀i ∈ E\Ein (2.64a)

F̂i(t) :=

�
fn,i(t), if 0 ≤ ρn,i(t) ≤ ρ∗i
fmaxi , else

∀i ∈ E\Eout (2.64b)

coupling density:

ρ̄j(t) ∈

�
[0, ρ∗j], if 0 ≤ ρ0,j(t) ≤ ρ∗j
{ρtj(0)} ∪ [0, τ(ρ0,j(t))[, else

∀i ∈ E\Ein (2.64c)

ρ̂i(t) ∈

�
{ρnii(t)}∪]τ(ρnii(t)), ρ

max
i], if 0 ≤ ρnii(t) ≤ ρ∗i

[ρ∗i , ρ
max
i] else

∀i ∈ E\Eout (2.64d)

iv) Traffic lights. For the traffic light settings we need to prescribe the secure sets

Sk. Then, the following constraints are required:

�

i∈Sk

Ai(t) ≤ 1, ∀Sk ∈ S (2.65)

As explained later in Subsection 2.4.5, we can optionally include constraints (2.19) and

(2.99b) in order to limit high fluctuations of the switching times.

2.4.3 Discretisation (III)

As in Section 1.4, we introduce discretisation grids. The discrete time grid is given by

T = {t : t = 0, . . . , nt} with time-step size Δt and number of time-steps nt := � t
Δt�.

T discrete spatial grid is given by K = {k : k = 0, . . . , ni}, where the spatial size is

referred to as Δx and the number of space-steps is given ni := � Li

Δx�.

Depending on the numerical schemes used, we get requirements on the time-step

size depending on the space-step size, as for example the CFL-condition, see (1.74).

The discrete formulation of the objective function (2.60) is

max
�

t

�

i∈E

ni�

k=0

f(ρtk,i)ΔtΔx+max
�

t

�

i∈E

f̂ tiΔt. (2.66)

We rewrite the constraints of the previous subsection using a discrete formulation

of the variables, which are given by:

101

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

control variables: Ati ∈ B (2.67a)

state variables: 0 ≤ f tk,i, f̂ ti , f̄
t
i , F̂ t

i , F̄
t
i ≤ fmaxi , ∈ R (2.67b)

0 ≤ ρtk,i, ρ̂
t
i, ρ̄ti ≤ ρmaxi , ∈ R (2.67c)

∀i ∈ E, k ∈ Ki, t ∈ T.

For the discretisation of the PDE (2.62) we choose a numerical scheme H, as pre-

sented in Section 1.4. We start with the initial density values ρ0k,i and obtain the density

values for the time-steps iteratively:

∀t = 1, . . . T − 1 :

inner grid points of the road:

ρt+1k,i = H(ρtk+1,i, ρtk,i, ρtk−1,i, f tk+1,i, f
t
k,i, f

t
k−1,i), ∀i ∈ E, k = 1, . . . , ni − 1 (2.68a)

left boundary cell:

ρt+10,i = H(ρt1,i, ρ
t
0,i, ρ̄ti, f

t
1,i, f

t
0,i, f̄

t
i), ∀i ∈ E\Ein (2.68b)

right boundary cell:

ρt+1n,i = H(ρ̂ti, ρtn,i, ρtn−1,i, f̂
t
i , f tn,i, f tn−1,i), ∀i ∈ E\Eout (2.68c)

where H denotes the numerical scheme.

Remark 2.4.3. For the sake of simplicity, we omitted the double index, i.e. we write

ρtni,i instead of ρ
t
n,i and so on.

In the following subsection, we comment more detailed on the choice of the scheme

H, keeping in mind the linearisability of the whole optimisation problem.

2.4.4 Linearizing Constraints (IV)

To obtain a linear MIP we now apply the linearisation techniques as shown in Subsection

2.2.2.

102

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

i) Flow. For the linearisation of (2.61) we follow the steps described for linearizing

the triangular flow function, see page 73. Consequently, we obtain the following set of

linear constraints:

f tk,i = 2λρ̃tk,i − ρ∗k,i2λκ
t
k,i − λρtk,i + ρ∗k,i2λ (2.69a)

0 ≤ ρ∗k,iκ
t
k,i − ρ̃tk,i +

1

2
ρtk,i −

1

2
ρ∗k,i (2.69b)

0 ≤ ρ̃tk,i ≤ ρmaxk,i · κtk,i (2.69c)

ρtk,i − ρmaxk,i (1− κtk,i) ≤ ρ̃tk,i ≤ ρtk,i (2.69d)

0 ≤ ρtk,i ≤ ρmaxk,i (2.69e)

κtk,i ∈ B (2.69f)

∀i ∈ E, k ∈ Ki, t ∈ T. (2.69g)

The linearised expressions for (2.61b) and (2.61c) are derived analogously.

ii) Density evolution along the roads. At this point, we use a numerical scheme

which leads to a linear connection of the state variables ρtk,i and f tk,i, as for example

Lax-Friedrich-Scheme. Alternatively, it is also possible to introduce state variables M t
k,i

that express the space derivative of the density and use the Hamilton-Jacobi Scheme

that is derived in Subsection 1.4.2. Here, we will follow another approach: As we will

see in the next paragraph, we can omit a complex linearisation of (2.64d) and (2.64c)

when we use a numerical scheme that computes the boundary flow without involving

the boundary density; i.e. we apply a scheme of the form

ρt+1k,i = H(ρtk,i, f
t
k+1,i, f tk,i, f

t
k−1,i)

for k ∈ {0, ni}. The staggered Lax-Friedrich-Scheme [61, 65], described in Subsection

1.4.1, equations (1.68) - (1.70), fulfills exactly these requirements.

iii) Coupling. The solution of the maximisation problem (2.63) is a constraint of our

optimisation problem. In the discrete formulation, (2.63) has to be solved separately

for every time-step t. In the following explanations, we will skip the time index.

103

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Linearisation of the coupling flow. Consider a traffic light junction with an

arbitrary amount of incoming and outgoing roads:

Let a set of incoming roads δinv and a set of outgoing roads δoutv be given. Further-

more, let parameters 0 ≤ dij ≤ 1 which fulfill
�

j∈δoutv
dij = 1, upper bounds Fi ≥ 0

for all i ∈ δinv and Fj ≥ 0 as well as traffic light parameters Ai ∈ B for all i ∈ δinv and

j ∈ δoutv be given.

In order to obtain the coupling flow f̂i for all i, we have to find the maximal feasible

flow at the junction. Hence, we have to solve the (LP):

max
�

i∈δinv

γi (2.70)

such that
�

i∈δinv

dijγi = γj , ∀j ∈ δoutv

0 ≤ γi ≤ AiF̂i, ∀i ∈ δinv (2.71)

0 ≤ γj ≤ F̄j , ∀j ∈ δoutv

Lemma 2.4.4. If

f̂i = min{AiF̂i,
1

dij
Fj −

�

k∈δinv \i

dkj
dij

f̂k, ...

� �� �
∀j∈{δoutv :dij>0}

} (2.72)

f̄j =
�

i∈δinv

dijγi = γj ; ∀j ∈ δoutv

holds for all i ∈ δinv and

f̄j =
�

i∈δinv

dijγi, ∀j ∈ δoutv (2.73)

then {f̂i, i ∈ δinv }, and {f̄j , j ∈ δoutv }, is an optimal solution of (2.70).

Proof. Since the flow of the outgoing roads γj does not appear in the objective function,

(2.70) can be rewritten in the more condensed form

104

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

max
�

i∈δinv

γi (2.74)

such that
�

i∈δinv

dijγi ≤ F̄j , ∀j ∈ δoutv (2.75)

0 ≤ γi ≤ AiF̂i, ∀i ∈ δinv . (2.76)

We can transform (2.75) in terms of γi, which yields

γi ≤
1

aij
F̄j −

�

k∈δinv \{i}

dik
dij

· γk, ∀i ∈ δinv , j ∈ {δoutv : dij �= 0}. (2.77)

In this way, we get all conditions with respect to the upper bound of γi. Thus, γi is

feasible for (2.74) if and only if it fulfills

0 ≤ γi ≤ min{AiFi,
1

dij
Fj −

�

k∈δinv \i

dkj
dij

γk, ...

� �� �
∀j∈{δoutv :dij>0}

}, ∀i ∈ δinv . (2.78)

The feasible region of the linear program (2.74) is a polytope (i.e a bounded polyhe-

dron) due to construction. It is not empty, since γi = 0 for all i is a feasible solution of

(2.74). According to the fundamental theorem of linear programming, see for example

[89], page 39, an optimal solution of (2.74) is an extreme point of the feasible region. An

extreme point is defined as a point that cannot be expressed as a convex combination

of any other two distinct points of the feasible region, see for example [89, 94]. Due to

construction, f̂ as stated in (2.79) has for all indices i an active constraint. Hence, it is

an extreme point of the feasible region of (2.74). Together with (2.78) this yields that

f̂ is optimal for (2.74).

Lemma 2.4.5. In consideration of the constraint (2.51) and (2.71), equation (2.72)

reduces to

f̂i = min{AiF̂i,
1

dij
F̄j , ...

� �� �
∀j∈{δoutv :dij>0}

}. (2.79)

Proof. Due to (2.51) for each outgoing road j at most one traffic light parameter is

set to 1 for all roads that lead traffic to j. That means if Ai = 1, then Aj = 0 for all

105

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

j : dij > 0. In this case equation (2.72) reduces to (2.79). If A = 0, then the minimum

of (2.79) is zero as well as the minimum of the terms of (2.72). Hence, for both cases,

the claim is fulfilled.

Due to Lemma 2.4.5, we can can replace the maximisation problem (2.63) by the

minimum-expression (2.79) for every time-step t ∈ T. These expressions can be lin-

earised iteratively using the Lemma 2.2.3 and Lemma 2.2.4. For example, for the

junction shown in Figure 2.10, there are not more than three terms per minimum

expressions different from zero:

f̂ ti = min
�
AtiF̂

t
i ,

1

di,j
F̄ t
j

�
(2.80)

for (i, j) ∈
�
(1, 12), (3, 9), (5, 10), (7, 11)

�
,

f̂ ti = min
�
AtiF̂

t
i ,

1

di,j1
F̄ t
j1 ,

1

di,j2
F̄ t
j2

�
(2.81)

for (i, j1, j2) ∈
�
(2, 10, 11), (4, 11, 12), (6, 9, 12), (8, 9, 10)

�
.

Furthermore, dispersing junctions represent the lane split in front of the traffic light

junction (as derived in Subsection 1.3.3). Here we get

f̂i = min
�
F̂ t
i ,

1

di,j1
F̄ t
j1 ,

1

di,j2
F̄ t
j2

�
(2.82)

for (i, j1, j2) ∈
�
(13, 1, 2), (14, 3, 4), (15, 5, 6), (16, 7, 8)

�
.

Then, we linearise (2.80) - (2.82) as shown in Lemma 2.2.3 and Lemma 2.2.4 and

additionally linearise expression Ati ·F
t
i according to equations (2.5) - (2.8). This leads

us to the following set of linear constraints for the network shown in Figure 2.10:

∀t ∈ T and for (i, j) ∈
�
(1, 12), (3, 9), (5, 10) (7, 11)

�
we get:

G̃t
i ≤ f̂ ti ≤ Ĝt

i (2.83a)

1

di,j
F̄ t
j −

1

di,j
fmaxj βti ≤ f̂ ti ≤

1

di,j
F̄ t
j (2.83b)

0 ≤ G̃t
i ≤ fmaxi βti (2.83c)

Ĝt
i − fmaxi (1− βti) ≤ G̃t

i ≤ Ĝt
i (2.83d)

106

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

∀t ∈ T and for (i, j1, j2) ∈
�
(13, 1, 2), (14, 3, 4), (15, 5, 6), (16, 7, 8), (2, 10, 11), (4, 11, 12), (6, 12, 9), (8, 9, 10)

�

we get:

G̃t
i ≤ eti ≤ Ĝt

i (2.84a)

1

di,j1
F̄ t
j1 −

1

di,j1
fmaxj1 βti ≤ eti ≤

1

di,j1
F̄ t
j1 (2.84b)

ẽti ≤ f̂ ti ≤ êti (2.84c)

1

di,j2
F̄ t
j2 −

1

di,j2
fmaxj2 ηti ≤ f̂ ti ≤

1

di,j2
F̄ t
j2 (2.84d)

0 ≤ G̃t
i ≤ fmaxi βti (2.84e)

Ĝt
i − fmaxi (1− βti) ≤ G̃t

i ≤ Ĝt
i (2.84f)

0 ≤ ẽti ≤ fmaxi ηti (2.84g)

êti − fmaxi (1− ηti) ≤ ẽti ≤ êti. (2.84h)

For i ∈
�
1, . . . 8

�
we additionally need:

0 ≤ Gt
i ≤ fmaxi Ati (2.85a)

M̂ t
i − fmaxi (1−Ati) ≤ Gt

i ≤ M̂ t
i (2.85b)

with

f̂ ti , F̂
t
i , F̄ t

j1 , F̄ t
j2 , F̄

t
j ∈ R+

0 (2.86)

and linearisation variables

βti , ηti ∈ B, (2.87a)

Gt
i, G̃

t
i, eti, ẽ

t
i ∈ R+

0 , (2.87b)

where Gt
i represents Ati · f̂

t
i for i = 1, . . . , 8, and Gt

i = M̂ t
i for roads 13-16, which are

without traffic light. Furthermore we have G̃t
i := βti · F̂

t
i , eti = min{F̂ t

i ,
1

di,j1
F̄ t
i } and

ẽti = ηti · e
t
i.

107

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Linearisation of Fi. As before, we use the binaries κtn,i (and κt0,i) which are

set to 1, when the corresponding density value is smaller or equal than ρ∗i and to 0,

otherwise. As proposed by [50], we can reduce the number of constraints, when we

already transform the resulting variables f t0,i and f tn,i according to (2.69). This yields

F̂ t
i = κtn,i · f

t
n,i + (1− κtn,i) · f

max
i

(2.15a)
= κtn,i

�
κtn,iλiρ

t
n,i + (1− κtn,i)(λi(2ρ

∗
i − ρtn,i))

�
+ (1− κtn,i) · f

max
i

= κtn,iλiρ
t
n,i + (1− κtn,i) · f

max
i , (2.88)

because (κtn,i)
2 = κtn,i, since it is binary.

Analogously, we get

F̄ t
i = κt0,if

max
i − (1− κt0,i)f

t
0,i

(2.25c)
= κt0,if

max
i + (1− κt0,i)

�
κt0,iλiρ

t
0,i + (1− κt0,i)(λi(2ρ

∗
i − ρt0,i))

�

= 2fmaxi − κt0,if
max
i − λiρ

t
0,i + λiκ

t
0,iρ

t
i (2.89)

(2.88) and (2.89) together with the constraints (2.29) form the linear equivalence

to (2.29), (2.64b) and (2.64a).

Now, we introduce variables f̃ t0,i and f̃ tn,i representing κt0,i · f
t
0,i and κtn,i · f

t
n,i and

add the corresponding required linear constraints analogously as in (2.5) to (2.8).

Coupling density. The equations leading from the boundary density ρt0,i and

ρtn,i to the coupling density ρ̂ti and ρ̄ti, (2.64d) and (2.64c), are also linearisable:

Consider the upper part of equation (2.64d). We assume that ρ is known. We have

to linearise

y ∈ {ρ}∪]τρ, ρ
max] (2.90)

⇔ y = ρ ∧ τρ < y ≤ 1.

We use g ∈]τρ, ρ
max] and sets

y = ξρ+ (1− ξ)g

with ξ ∈ B. Now we linearise g̃ := ξ · g by

0 ≤ g̃ ≤ ρmax · ξ

g − ρmax(1− ξ) ≤ g̃ ≤ g,

108

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

respectively. Hence, we get the linear constraint

y = ξρ+ g − g̃. (2.91)

In summary, we can replace (2.90) by

y = ξρ+ g − g̃ (2.92a)

0 ≤ g̃ ≤ 1 · ξ (2.92b)

g − ρmax(1− ξ) ≤ g̃ ≤ g (2.92c)

ξ ∈ B (2.92d)

τρ < g ≤ ρmax (2.92e)

Since strict inequalities, such as (2.92e), are difficult to handle for MIP-solvers, we

introduce a very small tolerance value 0 < � � 1, and replace (2.92e) by τρ + � ≤ g ≤

ρmax.

Analogously, we can linearise the set-constraint of (2.64c).

Taking account the techniques to linearise the if-else-construction of (2.64d) and

(2.64c) and applying (2.92).

For all junctions v ∈ V and for all t ∈ T we obtain the following set of constraints.

109

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

For the coupling density of incoming roads i ∈ δinv :

ρ̂ti = z̃ti + yti − ỹti (2.93a)

0 ≤
1

2
ρ∗i −

1

2
ρtn,i − ρ∗i ζ

t
i + ρ̃tn,i (2.93b)

0 ≤ ỹti ≤ ρmaxi · ζti (2.93c)

yti − ρmaxi (1− ζti) ≤ ỹti ≤ yti (2.93d)

0 ≤ z̃ti ≤ ρmaxi · ζti (2.93e)

zti − ρmaxi (1− ζti) ≤ z̃ti ≤ zti (2.93f)

0 ≤ ρ̃tn,i ≤ ρmaxi · ζti (2.93g)

ρtn,i − ρmaxi (1− ζti) ≤ ρ̃tn,i ≤ ρtn,i (2.93h)

yti = ρ̊tni + gti − g̃ti (2.93i)

0 ≤ ρ̊tn,i ≤ ρmaxi · ξti (2.93j)

ρtn,i − ρmaxi (1− ξti) ≤ ρ̊tn,i ≤ ρtn,i (2.93k)

0 ≤ g̃ti ≤ ρmaxi · ξti (2.93l)

gti − ρmax(1 − ξti) ≤ g̃ti ≤ gti (2.93m)

2ρ∗i − ρtnii + � ≤ gti ≤ ρmaxi (2.93n)

ρ∗i ≤ zti ≤ ρmaxi (2.93o)

110

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

For the coupling density of outgoing roads j ∈ δoutv :

ρ̄tj = z̃tj + ytj − ỹtj (2.94a)

0 ≤
1

2
ρ∗j −

1

2
ρt0,j − ρ̃t0,j + ρ∗jζ

t
i (2.94b)

0 ≤ ỹtj ≤ ρmaxj · ζtj (2.94c)

ytj − ρmaxj (1− ζtj) ≤ ỹtj ≤ ytj (2.94d)

0 ≤ z̃tj ≤ ρmaxj · ζtj (2.94e)

ztj − ρmaxj (1− ζtj) ≤ z̃tj ≤ ztj (2.94f)

0 ≤ ρ̃t0,j ≤ ρmaxj · ρt0,j (2.94g)

ρt0,j − ρmaxj (1− ρt0,j) ≤ ρ̃t0,j ≤ ρt0,j (2.94h)

ytj = ρ̊t0,j + gtj − g̃tj (2.94i)

0 ≤ g̃tj ≤ (2ρ∗j − ρtoj) · ξ
t
j − � (2.94j)

gtj − ρmax(1− ξtj) ≤ g̃tj ≤ gtj (2.94k)

0 ≤ ρ̊t0,j ≤ ρmaxj · ρt0,j (2.94l)

ρt0,j − ρmaxj (1− ρt0,j) ≤ ρ̊t0,j ≤ ρt0,j (2.94m)

0 ≤ ztj ≤ ρ∗j (2.94n)

with state variables

ρ̂ti, ρ̄tj , ρtn,i, ρt0,j ∈ R+
0 , (2.95)

linearisation variables

zti , ztj , z̃ti , z̃tj , yti , ytj , ỹti , ỹtj , ρ̃
t
n,i, ρ̃

t
0,j , ρ̊

t
n,i, ρ̊

t
0,j , g

t
i , g

t
j , g̃ti , g̃

t
j ∈ R+

0 (2.96)

and binaries

ζti , ζtj , ξti , ξtj ∈ B (2.97)

for all i ∈ δinv , j ∈ δoutv , v ∈ V .

Resulting DTN-MIP. Altogether, we get a linear mixed integer optimisation Prob-

lem of the form

111

2. OPTIMISATION CONTAINING DISCRETE DECISIONS





max (2.66)
such that
(2.67), (2.69), (1.68) - (1.70), (2.83) - (2.87), (2.88), (2.89),�
(2.93) - (2.97)

�
.

(2.98)

In this formulation, the numerical scheme (1.68) - (1.70) can be replaced by any other

easily linearisable numerical scheme H.

However, the tolerance parameter � that is needed for the linearisaton of the coupling

density can lead to numerical instabilities. In the worst case, it can happen that the

optimisation algorithm does not find a feasible solution at all, because of rounding

errors.

As mentioned earlier, we can apply the strategy proposed by [50]. We completely

omit the computation of the coupling densities (2.93) to (2.94), when we use a numerical

scheme for the evolution of density on roads that does not need the coupling density in

order to compute the boundary density, see Subsection 1.4.1. In this way, it is sufficient

to only consider the boundary flow f̂ ti and f̄ ti to get all necessary information. To get

this clearer, we refer to have a look at the forward solver, that is able to compute all

model and linearisation variables once the traffic light setting is fixed, see Algorithm 5.

2.4.5 Additional Requirements on Switching Times (V)

It is desirable to avoid traffic light settings with highly frequent switching times, since

this would not be applicable in real applications.

We follow approach B described in Subsection 2.2.3. In that way the switching

times itself are subject to the optimisation process. In order to obtain a smooth flow,

we prescribe a lower bound for the green phase, such that several cars have the chance

to cross the junction. Furthermore, we want to spare any traffic member to wait for

extremely long time in front of a red light, even if the road, he is coming from, is not

very busy. As explained in Subsection 2.2.3, part B, we can meet these requirements

by including additional constraints.

Let Lg ∈ N be the minimal number of time-steps, a traffic light is allowed to be

green and Ur the maximal number of consecutive time-steps, a traffic light is allowed

to be red.

112

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

Algorithm 5: Forward solver, to compute a feasbile solution for a prescribed

traffic light setting.

/* Input: Traffic network model with initial conditions

ρ0k,i ∀i ∈ E, k ∈ Ki, outer boundary conditions ρt0,i,∀i ∈ Ein, t ∈ T and

feasible traffic light setting Ati, ∀i ∈ E, t ∈ T. */

/* Output: An integer feasible solution, i.e. corresponding

values for model and linearisation variables */

1 begin

2 forall the t = 0, . . . , nt do

/* Compute state variables */

3 Compute F̄ t
i and F̂ t

i according to (2.64a) and (2.64b), ∀i ∈ E.

4 Compute coupling flow f̂ ti and f̄ ti according to (2.79) and (2.73), ∀i ∈ E.

5 Compute flow f tk,i according to (2.69), ∀i ∈ E, k ∈ Ki.

6 Apply numerical scheme for the roads for the next time-step to compute

ρt+1k,i using (1.68) to (1.70). /* Compute linearisation variables

*/

7 Set linearisation variables (2.87), f̃ tk,i, etc. to the corresponding values,

∀i ∈ E, k ∈ Ki.

113

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

According to equations (2.17) and (2.22), we have to add the following constraints

for all roads i which possess a traffic light to our DTN-MIP:

t+Lg�

l=t+1

Ali ≥ Lg(−Ati +At+1i), ∀t ≤ nt − Lg (2.99a)

t+Ur+1�

l=t+1

Ali ≥ 1, ∀t ≤ nt − Ur − 1. (2.99b)

2.4.6 Speeding up the Optimisation Algorithm (VI)

We use the idea described in Subsection 2.2.4 to speed up the optimisation procedure.

We apply a bounding heuristic to compute integer feasible solution for each subnode

of the tree (already starting with the root node), see Algorithm 4. To compute feasible

control variables as done in line 5, we derive an algorithm which is adapted to the needs

of the DTN-MIP (2.98). If we do not consider additional requirements on switching

times, as described in Subsection 2.4.5, we use a greedy heuristic to find potentially good

settings of control variables: We try to set those traffic light variables to one, which are

close to one in the relaxed solution, as long as we do not violate the control condition

(2.51). For more details see Algorithm 6. Having obtained the control variables, we run

the forward solver, Algorithm 5, in order to get an integer feasible solution of (2.98)

for the considered subnode in the Branch & Bound tree.

If we also want to include requirements on switching times, such as (2.99a) and

(2.99b), it is a bit more involved to find a feasible setting of the traffic lights. This is

due to the fact that we can not consider each time-step separately anymore. Instead

of deriving a heuristic algorithm for this situation, we solve an additional optimisation

problem, containing only the control conditions (2.51), (2.99a) and (2.99b). We want

to use an objective function that supports good solutions for the original DTN-MIP

(2.98). We follow a similar approach than in Algorithm 6: We consider the values of

the traffic light parameters of the optimal relaxed solution, and formulate an objective

function that rewards setting those variables to one, whose relaxed values are closest

to one:

max
�

t∈T,i∈I∗t

Ãti · A
t
i, (2.100)

114

2.4 Application II: Traffic Networks - Optimal Traffic Light Setting

where I∗t is the set of indices whose control variables have not been fixed during the

branching process (and which are not integer feasible in the relaxed solution) and Ãti

are the values of the optimal solution for the relaxed problem. Note, that Ãti are known

values in this context and serve as coefficients. Hence, the objective function is linear.

The whole procedure is described in Algorithm 7.

Algorithm 6: Compute Controls I.

/* Input: A DTN-MIP of the form (2.98), a set of fixed control

variables Ati, t ∈ T, i ∈ Ĩt ⊂ E, relaxed solution with controls

Ãti ∈ R. */

/* Output: A feasible setting of control variables

Ati ∈ B, ∀(i, t) ∈ E × T with respect to (2.51) */

1 begin

2 for t = 1, . . . , nt do

/* Consider the index set whose control variables are not

fixed yet */

3 Set I∗t := E\Ĩt

4 while I∗t �= ∅ do

/* Find the traffic light variable closest to 1 */

5 find j = argmaxi∈I∗t Ã
t
i.

6 if Atj = 1 does not violate constraint (2.51) then

7 Set Atj = 1.

8 else

9 Set Atj = 0.

10 Set Ĩt = Ĩt ∪ j. Set I∗t = I∗t \j.

11 Return control variables Ati, ∀(i, t) ∈ E × T.

In Chapter 3 we apply these Bounding Heuristics in the way they are illustrated

in Figure 2.7. The improvement of the optimisation procedure compared to the use of

a simple starting heuristic (cf. Figure 2.5) is remarkable. For more details, see Figure

3.44(a), 3.45(a) and 3.46(a).

115

2. OPTIMISATION CONTAINING DISCRETE DECISIONS

Algorithm 7: Compute Controls II.

/* Input: A DTN-MIP of the form (2.98), a set of fixed control

variables Ati, t ∈ T, i ∈ Ĩt ⊂ E, relaxed solution with controls

Ãti ∈ R. */

/* Output: A feasible setting of control variables

Ati ∈ B, ∀(i, t) ∈ E × T with respect to (2.51), (2.99a) and (2.99b).

*/

1 begin

2 for t = 1, . . . , nt do

/* Consider the index set whose control variables are not

fixed yet */

3 Set I∗t := E\Ĩt

4 Solve coupling IP:

max
�

t∈T,i∈I∗t

Ãti ·A
t
i

such that (2.51), (2.99a) (2.99b)

Ati ∈ B, ∀t ∈ T, i ∈ I∗t

5 Return control variables Ati, ∀(i, t) ∈ E × T.

116

3

Results

In this chapter we present various results on the models derived in the course of this

work. Section 3.1 is dedicated to considerations on the production network model with

dynamic capacities, see Subsection 1.2.2 for the DTN and Section 2.3 for the corre-

sponding DTN-MIP. We illustrate the behaviour of capacities, buffers and production

flow and the effects of worker changes. Furthermore we analyse grid size dependencies

on solutions and verify the conservation of mass (cf. Lemma 1.2.2). Next, we pro-

vide a detailed study on the steady state model, see Subsection 2.3.2, for a branched

network and point out how we can exploit these results for the corresponding dy-

namic DTN-MIP. Finally, a real world example demonstrates the functionality of the

model and shows, how production flow can be gained by skillfully appointing workers in

under-staffed situations. Section 3.2 considers the traffic flow model, derived in Section

1.3. Firstly, simulation of the novel Hamilton-Jacobi-Algorithm (cf. Algorithm 1) are

shown, compared to other schemes and used to derive car trajectories. Secondly, the

DTN-MIP on traffic light optimisation, see Section 2.4, equation (2.98), is considered

and improvements for optimal traffic light settings are pointed out. We also discuss

the necessity of additional restrictions on switching times, as explained in Subsection

2.4.5 and compare the corresponding solutions. Thirdly, tuning techniques for the op-

timisation algorithm, as shown in Figure 2.5 and 2.7 are applied and compared. All

computations are performed on a PC equipped with 16GB Ram, Intel(R) Xeon(R)

CPU 5160 @ 3.00GHz.

117

3. RESULTS

3.1 Application I: Optimal Worker Scheduling for Pro-

duction Networks

For computational experiments we use two different approaches. For the first small test

case discussed in Subsection 3.1.1, we implemented the optimisation problem (2.25) in

Matlab 7.5 using the function fmincon, which is a solver for nonlinear optimisation

problems, see [87]. This approach works quite well as long as the test cases are small.

The disadvantage of this solver is that it often gets stuck in local optima and it does not

allow to restrict the worker distribution to integer workers. For these reasons we derived

the mixed integer formulation (2.37) which can be used by Cplex 12.1.0, a commercial

solver for linear mixed integer problems developed by IBM, formerly Ilog, see [23]. It

uses a Branch & Cut algorithm providing the user with currently found primal as well

as dual bounds during the optimisation process. In the case that the optimality gap

tends to zero, the user can be sure that the provided solution is indeed globally optimal.

Furthermore, this method has the advantage that we can easily restrict the workers to

integer numbers, which is indeed meaningful for real world applications. In Subsection

3.1.2 this method is applied to a branched network where also steady state studies are

carried out. Subsection 3.1.3 deals with a real-world example as originally introduced

in [42, 47].

3.1.1 Model Behaviour on Processor Chain

Initially, we sketch the impact of numerical parameters on the result as well as introduce

the modelling aspect of worker changes during the time horizon. Therefore, we take a

small test example. We consider two machines in a row with a fixed parameter setting,

see Figure 3.1 and 3.2.

Note that the breakdown parameter l is set to a relatively high value compared

to the maximal processing capacity in order to better work out the effects how the

worker distributions influence the overall outflow. Nevertheless, the length of a time

unit can be interpreted according to the application and typically comprises a much

larger period than one single production step. If we choose smaller breakdown rates,

we have to set the time horizon to a much larger value to see significant effects, which

also enlarges the computation time.

118

3.1 Application I: Optimal Worker Scheduling for Production Networks

Figure 3.1: Two serial processors.

time horizon: T = 4

throughput time: τ = 0.25

workers: W = 40

Total inflow:� T
0 fext(t̃)dt̃ =

�
t∈T f textΔt =75 parts

Figure 3.2: Parameter setting.

Remark 3.1.1. Note, that we do not use the linear MIP formulation in this subsection,

but solve the optimisation problem via the first approach: by nonlinear, gradient-based

optimisation methods, which does not allow for integer restrictions on workers.

The time horizon is T = 4, the throughput times at buffers are τi = 0.25 for every

machine and 40 workers are available. The external inflow enters the network at the first

machine. In the first 1.5 time units, we have an inflow of 50 and thus
� T
0 fext(t̃)dt̃ = 75

parts are introduced into the system. Furthermore, here and in all following examples,

the repair times ri are set to 1 for all edges.

As initial condition, we set c0i to full capacities and assume empty queues in the

beginning (i.e. u0i = 0). Furthermore, we provide a start solution where the workers

are equally distributed among the edges, i.e. we have 20 workers at each machine.

Numerical Investigations

We perform a simulation assuming the worker distribution rate β to be constant for

the whole time horizon. We compute the objective function value (2.66) for different

values of β, using the Matlab routine fmincon with explicit Euler discretization for the

ODE-constraints. We let β1 go from 0 to 1 in steps of length 0.001. In Figure 3.3,

we compare the simulation results for different time grids. We can observe that the

optimal objective function value tends to the same value, even for coarse time grids.

In this setting, the maximal outflow of 44.47 units is achieved, if 13.92 workers are

sent to the first machine and 26.08 to the second one. As we can see in Table 3.1 and

in accordance with Figure 3.3, the conservation of mass, as stated in Lemma 1.2.2, is

kept with an accuracy that depends on the time grid size.

119

3. RESULTS

0 10 13.92 20 30 40

5

10

15

20

25

30

35

40

44.47

50

number of workers at the first machine

ou
tf

lo
w

dt=0.1
dt=0.05
dt=0.02
dt=0.01

Figure 3.3: Comparison of simulation using different time grid sizes.

Δt opt. worker distr. max outflow final queues
�

0.1 [13.716, 26.284] 43.756 31.457 75.213

0.05 [13.803, 26.197] 44.163 30.888 75.050

0.02 [13.871, 26.129] 44.453 30.558 75.011

0.01 [13.921, 26.079] 44.471 30.532 75.003

Table 3.1: Verifying conservation of mass. The total inflow is
�

t∈T
f t
extΔt = 75.

120

3.1 Application I: Optimal Worker Scheduling for Production Networks

Worker Changes

In a next step, we illustrate the modelling aspect of worker changes. We have the

option, to vary the worker schedule at certain points in time. We allow the workers

to change their position once in the middle of the time horizon. We fix the time grid

size to Δt = 0.01 and simulate the objective function value varying βt1 from 0 to 1

with step width 0.001 β2 of the second machine automatically varies since βt2 = 1−βt1.

Since βt1 has two values (one for each time period), we end up with a 3D-plot showing

the objective function value for all combinations of βt1, t ∈ [0; 2] and βt1, t ∈ (2, 4]. The

result is depicted in Figure 3.4.

Figure 3.4: Outflow depending on the number of workers at the first machine, including

one worker change in the middle of the time horizon.

Obviously, at a first result, allowing one worker change within the time horizon leads

to an improvement of the optimal solution (49.14 units compared to 44.47 units). To

understand this behavior, we shall have a closer look at the evolution of flow, capacities

and buffer levels as well, which are plotted in Figure 3.5(a).

In all these plots we observe that the number of workers at a machine influence the

slope of the capacity evolution. Unless the capacity is neither 0 nor has reached its

maximal level µ, it can be described by a (piecewise) straight line with slope Wβiri− li

(cf. equation (2.25d)). Since the breakdown rate of the second machine is 40, we need

121

3. RESULTS

0 1 2 3 4
0

5

10

15

20

25

30

35

40

time
13.9211 workers

machine 1

0 1 2 3 4
0

5

10

15

20

25

30

35

40

time
26.0789 workers

machine 2

capacity
flow
buffer level in front of machine

(a) Constant worker schedule.

0 1 2 3 4
0

5

10

15

20

25

30

35

40

time
16.26 workers 0 workers

machine 1

0 1 2 3 4
0

5

10

15

20

25

30

35

40

time
23.74 workers 40 workers

machine 2

capacity
flow
buffer level in front of machine
worker change

(b) One worker change in the middle of the time horizon.

Figure 3.5: Optimal solution for serial processors.

122

3.1 Application I: Optimal Worker Scheduling for Production Networks

all 40 workers to keep the capacity at the same level. This happens in the time period

after the workers have changed, see Figure 3.5(b). In this way, the flow is sustained

leading to a larger total outflow value compared to a fixed worker schedule.

Remark 3.1.2. It is not always the case that a unique maximum is reached. On the

contrary, in more complicated settings many local maxima may occur. In such cases the

fmincon solver is not reliable anymore since it often gets stuck in local optima. Another

drawback of fmincon is that we cannot stick to schedules with integer workers.

Flow-dependent Capacity Behaviour

Now, we consider the modified model, using equation (1.23). To compare the qualitative

behaviour of both models, we use the same testcase as before. Note, that this time,

the capacity loss is proportional to the through-going flow. For that reason, we choose

the breakdown parameter l in a way that the magnitude of the capacity loss is roughly

comparable to that of the previously discussed setting. Namely, we set l1 = 0.75 and

l2 = 1. The results are shown in Figure 3.6.

0 1 2 3 4
0

5

10

15

20

25

30

35

40

time
21.3 workers 2.7 workers

machine 1
capacity
flow
buffer level in
front of machine
worker change

(a)

0 1 2 3 4
0

5

10

15

20

25

30

35

40

time
18.7 workers 37.3 workers

machine 2

(b)

Figure 3.6: Modified model: optimal solution assuming one worker change in the middle

of the time horizon.

Usually abrasion effects are not as drastic and only perceptible after a longer time

period. For that reason we want to compare the observed behaviour of the model with

a more realistic parameter setting. We set the breakdown parameter l to 0.2 for both

123

3. RESULTS

machines. This means that we have a capacity loss of 20% compared to the through-

flow. Furthermore, we extend the given time horizon to T = 20 and set the external

inflow to 50 parts per unit time for the first 8 time units. The available number of

workers is W = 5. This time, we additionally restrict the number of repair workers to

integer numbers, which is done by using Cplex [23]. The results are shown in Figure

3.7.

0 5 10 15 20
0

20

40

60

80

100

120

140

160

180

time
3 workers

machine 1

capacity
flow
buffer level in front of machine

(a) Constant worker schedule, machine 1.

0 5 10 15 20
0

20

40

60

80

100

120

140

160

180

time
2 workers

machine 2

(b) Constant worker schedule, machine 2, to-

tal outflow = 345,64 parts.

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

160

180

 time
4 workers 0 workers

machine 1

capacity
flow
buffer level in front of machine
worker change

(c) One worker change within the time hori-

zon, machine 1.

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

160

180

time
1 worker 5 workers

machine 2

(d) One worker change within the time hori-

zon, machine 2, total outflow = 381.29 parts.

Figure 3.7: Optimal solution - considering a larger time horizon with more subtle break-

down rates.

Again, the worker change leads to an increase of total outflow, which is in this case

about 10%.

124

3.1 Application I: Optimal Worker Scheduling for Production Networks

Note, that the runtime increases drastically, when longer time periods T are chosen.

In the previous example where T has been set to 4, the optimisation takes less than 2

seconds, whereas it takes more than 9 minutes in the last testcase with T = 20.

3.1.2 Production Networks

So far, the serial processor test case is a nice example to get insight and feeling for

the dynamics involved in the repair worker assignment model. After this numerical

experiments mainly computed in Matlab, we now have a different focus. First of all,

we analyse the steady state problem (2.45) in Subsection 2.3.2 and point out, in which

way the obtained information can be exploited for the dynamic model (2.37). The

models, formulated as linear MIPs (2.46), are solved by Cplex [23]. We extend our

studies to a more general network with 12 edges, as shown in Figure 3.8 and restrict

the worker distributions to integer values only due to the easier applicability to real

world problems. We allow external inflow for the first two edges and are interested in

maximizing the outflow at edges 11 and 12.

Figure 3.8: Branched network with 12 edges where ri = 1 for all machines.

Steady state studies

Before we prescribe the external inflow and compute the optimal solution of the dynamic

model (2.37), we first have a deeper look at the steady state solutions, described in

Subsection 2.3.2. Different from the dynamic model, the external inflow of the steady

125

3. RESULTS

state model (2.45) is not given a priori, but is maximised simultaneously with the

outflow.

Analysis on the amount of available repair workers

From case 1.1 of equation (2.39) with � = 0 we can deduce that we need at least li
ri

workers in order to keep the capacity of machine i to its maximal level. In our setting

ri is set to one for all i and breakdown rates l sum up to 109. This means that at least

109 workers are necessary avoid capacity drops. Since employing workers is expensive,

it is rewarding to check, how we can cope with less manpower.

The question arises, how many workers we would at least need to get a steady

state through-flow greater than zero. In the case that we do not previously fix the

flow distribution at the nodes as explained in Subsection 2.3.2, we can find the answer

in the following way: Assume that the maximal capacity µi is greater than zero for

all machines. As explained before, the capacity of a machine can only be sustained,

if at least li
ri

workers are allocated to it. We can find the least manpower consuming

path through the network by using a standard shortest path algorithm such as Djikstra

algorithm, for more details see [51] and [66] amongst others. The through-flow of this

path is bounded by its bottleneck, which is the machine with the smallest capacity. For

our testcase, we need at least 17 workers contributed along the shortest path to get a

steady state solution greater than zero. In this case, the through-flow is 5 parts per

time unit, see Figure 3.9.

Figure 3.9: The least manpower consuming steady state solution greater than zero. The

resulting through-flow is 5 parts per unit time requiring a minimum of 17 workers.

When we previously fix the distribution behaviour of the flow as in Subsection

126

3.1 Application I: Optimal Worker Scheduling for Production Networks

2.3.2, for example to equal distribution between the succeeding edges, we need a lot

more workers to get a positive through-flow. This is due to the fact that once an edge

transmits a flow, all its succeeding edges must also have a capacity greater than zero,

such that the flow can be distributed in the prescribed way. Note, that in steady state,

solutions do not allow for increasing buffers. For our testcase, we need at least 73

workers to get a positive steady state flow. The resulting through-flow is 10 parts per

unit time. For details, see Figure 3.10.

Figure 3.10: The least manpower consuming steady state solution greater than zero, for

equally distributed flow at branching nodes. The resulting through-flow is 10 parts per

unit time and the necessary number of workers is W = 73.

Moreover, it is interesting to compute the maximal steady state solution, when we

have no capacity drop. If the flow distribution at branching nodes is not previously

fixed, we can find the solution via the Ford-Fulkerson-Algorithm [6] using the maximal

capacities ci = µi as upper bounds. The result is shown in Figure 3.11.

Figure 3.11: The maximal static through-flow when all capacities are at their maximal

level.

127

3. RESULTS

This gives us an upper bound for the maximal through-flow. In our case, it is 35

parts per time unit.

Under-staffed settings

From the above analysis we know that finding the optimal worker distribution is only

interesting in the case that we have less than 109 workers available. Otherwise, we can

always distribute the workers in a way that no capacity loss occurs.

In the following we consider two scenarios where the total number of workers is set

to 30 (→ highly under-staffed) and to 100 (→ slightly under-staffed) respectively.

Moreover, we compare both versions of the steady state optimisation problem (2.45):

First we use the flow distribution matrix d and thus a fixed flow distribution at branch-

ing nodes, and for the second run we exchange d with the incidence matrix K, see (2.48),

leading to variable flow distributions that are subject to the optimisation process.

The resulting maximal through-flow of the different settings is depicted in Figure

3.12 for 30 workers and in Figure 3.13 for 100 workers.

In the highly under-staffed scenario with fixed flow distribution (see Figure 3.12(a)),

it is not possible to allocate the workers in a way to obtain positive solution. All

machines are out of order and no flow is able to go through. However, if we leave the

distribution of flow up to optimisation, we can find a solution where a through-flow

of 10 parts per time unit can be provided, on the only functioning path through the

network (see Figure 3.12(b)).

As expected, we get a much better solution, when we increase the number of workers

to 100 (see Figure 3.13). Now, the setting with fixed flow distribution allows a maximal

through-flow of 20 (see Figure 3.13(a)), whereas the additional optimisation of the flow

distribution increases the through-flow to 35 (see Figure 3.13(b)). As shown above,

this is already the upper bound of steady through-flow with respect to the number of

repair workers.

The steady state solutions can be useful for the dynamic model (2.37). As explained

in the sequel, the steady state analysis provides us with a qualitatively good start

solution for the dynamic MIP (2.37), leading to significant runtime reductions of the

optimisation procedure. Furthermore, we can observe that optimisation of the flow

distribution at branching nodes leads to a considerable gain of outflow. This does not

128

3.1 Application I: Optimal Worker Scheduling for Production Networks

(a) Fixed flow distribution.

(b) Optimised flow distribution.

Figure 3.12: Maximal through-flow, scenario with 30 workers.

129

3. RESULTS

(a) Fixed flow distribution.

(b) Optimised flow distribution.

Figure 3.13: Maximal through-flow, scenario with 100 workers.

130

3.1 Application I: Optimal Worker Scheduling for Production Networks

only hold for the steady state case but also for the dynamic setting, as described in the

sequel.

Dynamic repair model

Now, we move on to the dynamic repair model (2.37). As before, we use the flow

distribution matrix d that divides the flow in equal shares among the succeeding edges

at branching nodes.

Different to the steady state model, we have to fix the external inflow function in

the dynamic setting. We choose fext ≡ 20 for edge 1 as well as for edge 2. The time

horizon T is set to 5 and the time grid size to Δt = 0.1. As initial conditions, the

network is empty, i.e. buffers and flows are equal to zero for t = 0 and the capacities

are set to its maximal values c0i = µi. As in the previous subsection, we again consider

the highly under-staffed setting with 30 workers as well as the slightly under-staffed

one where 100 repair workers are available.

Due to the high complexity of the dynamic problem (2.37) it is advisable to provide

a start solution in order to speed up computation time. A feasible start solution can

easily be computed by fixing the worker assignment for all machines and computing

the forward solutions for the capacity and buffer conditions according to (2.26b) and

(2.26a). This procedure is explained in Subsection 2.2.4, Figure 2.5. The overall outflow

after the time horizon is 10.27 parts, when 30 workers are equally distributed among

the machines. Using this setting as start solution, optimisation takes 504.55 seconds.

However, if we use the optimal solution for the steady state case, depicted in Figure

3.14(a), the resulting outflow is 16.52 parts. When we use this solution as a start

for optimisation, the computation time reduces to 316.08 seconds, see Table 3.2. The

optimal worker distribution is shown in Figure 3.14(b) and leads to an outflow of 41.88

parts. If we allow position changes of the repair workers after each time unit, the

optimisation time strongly increases to more than 3 days. The optimal solution is to

assign many workers towards the end of the network in the last time period (see Figure

3.14(c), machine 9). This leads to an augmentation of outflow in the final time period

and to an overall outflow of 42.73 parts.

The outflow behaviour throughout the time horizon is depicted in Figure 3.16(a)

for different worker distributions.

131

3. RESULTS

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

machine

nu
m

be
r o

f w
or

ke
rs

(a) Optimal worker distribution

of the steady state case.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

machine

nu
m

be
r o

f w
or

ke
rs

(b) Optimal solution for the dy-

namic model.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

machine

nu
m

be
r o

f w
or

ke
rs

(c) Optimal solution for the dy-

namic model allowing the work-

ers to change position after each

time unit.

Figure 3.14: Optimal worker distribution for the highly under-staffed setting, i.e.W = 30.

The same investigation has been done for the case that 100 repair workers are

available, see Figure 3.15 and 3.16(b). Again, optimisation time can highly be reduced

by using the steady state optimal solution, leading to a run time of 569.53 seconds,

which is a third of the runtime, when the start solution is given by equally distributed

workers (namely 1794.47 seconds). However, the computation time is unexpectedly

short, when we allow position changes of the workers, only 154.74 seconds, see Table 3.2.

An explanation for this phenomenon gives the comparison of the worker distribution

shown in Figure 3.15. It is conspicuous that the optimal worker distribution of the

steady state model, shown in Figure 3.15(a) is already quite similar to the optimal

solution with and without worker changes, see Figures 3.15(b) and 3.15(c).

For the modified model where the breakdown rate is proportional to the through-

flow the machines, the behaviour is similar. We use the same branched network as

before with breakdown parameters given by l = [0.1 0.1 0.5 1 1 1 1 0.2 0.75 0.5 0.1 0.1].

The optimal worker distribution with and without worker changes is shown in Figure

3.17. Here, the following output can be achieved for the different scenarios (a)-(c):

(a) outflow of steady state optimal startsolution: 83.211 parts.

(b) outflow of optimal solution without worker change: 112.233 parts.

(c) outflow of optimal solution with worker change: 115.208 parts.

132

3.1 Application I: Optimal Worker Scheduling for Production Networks

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

machine

nu
m

be
r o

f w
or

ke
rs

(a) Optimal worker distribution

of the steady state case.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

machine

nu
m

be
r o

f w
or

ke
rs

(b) Optimal solution for the dy-

namic model

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

machine

nu
m

be
r o

f w
or

ke
rs

(c) Optimal solution for the dy-

namic model allowing the work-

ers to change position after each

time unit.

Figure 3.15: Optimal worker distribution for the slightly under-staffed setting, i.e. W =

100.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

time

ou
tfl

ow

equal worker distribution
overall outflow: 10.27

steady state optimal worker distr.
overall outflow: 16.52

optimal constant worker distr.
overall outflow: 41.88

optimal worker distr. (with changes)
overall outflow: 42.73

(a)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

time

ou
tf

lo
w

equal worker distribution
overall outflow: 28.14

steady state optimal worker distr.
overall outflow: 90.91

optimal constant worker distr.
overall outflow: 120.49

optimal worker distr. (with changes)
overall outflow: 121.12

(b)

Figure 3.16: Outthrough-flowout the time horizon for the slightly under-staffed setting

comparing different worker assignments.

133

3. RESULTS

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

machines

nu
m

be
r o

f w
or

ke
rs

(a) Optimal worker distribution

for the steady state case.

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

machines

nu
m

be
r o

f w
or

ke
rs

(b) Optimal solution for the dy-

namic model.

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

machines

nu
m

be
r o

f w
or

ke
rs

(c) Optimal solution for the dy-

namic model allowing the work-

ers to change position after each

time unit.

Figure 3.17: Modified model using 30 repair workers.

In Table 3.2 the computation times of the different optimisation runs are listed.

Due to the smaller number of binary variables in the modified model, the complexity

of the corresponding MIP is smaller. For that reason much less computation time is

needed.

workers worker changes start solution original model: modified model:

30 no equal distr. 504.55 s 65.69 s

30 no steady state opt. 316.08 s 18.57 s

30 yes equal distr. > 3 days 231.71 s

30 yes steady state opt. > 3 days 411.27 s

100 no equal distr. 1794.47 s 8.14 s

100 no steady state opt. 569.53 s 18.62 s

100 yes equal distr. 65.57 h 23 h

100 yes steady state opt. 154.74 s 46.71 s

Table 3.2: Optimization time comparison.

134

3.1 Application I: Optimal Worker Scheduling for Production Networks

Changing the flow distribution at branching nodes

In the sequel, we will use an important observation concerning the previously described

steady state analysis. Remember that the steady through-flow can be significantly im-

proved, when the flow distribution at branching nodes is not a-priori fixed. A straight-

forward idea would be to include this flexibility as well into the dynamic model (2.37)

by exchanging the flow distribution matrix d by the incidence matrix K analogously as

done for the steady case in Subsection 2.3.2. However, this ansatz encloses a significant

drawback. The distribution rates of the flow do not appear explicitly as parameters in

the formulation of the problem. For that reason it is not possible to restrict to constant

distribution rates, when the incidence matrix is used. Consequently, we can not avoid

the undesired effect that solutions contain highly fluctuating flow distributions. We

prefer to track another idea. We use the optimised flow distribution of the steady state

case for the dynamic model (2.37) by adapting matrix d accordingly.

Step 1: Compute the steady state solution with variable flow distribution (2.48).

Step 2: Construct the flow distribution matrix d according to the distribution of the

steady state obtained in step 1.

Step 3: Solve the dynamic repair model (2.37) using d and taking the optimal worker

distribution of step 1 as start solution.

In Table 3.3 the corresponding optimisation results are listed.

changes optimisation opt. outflow of. optimal improvement to

workers allowed? time gap start sol. outflow previous flow distr.

30 no 3207.46 s 0 % 42.56 45.05 7.56 %

yes > 3 days 2.33 % 42.56 ∈ [49.56, 50.71] > 15.98 %

100 no 0.84 s 0 % 126.28 126.28 4.80 %

yes 0.84 s 0 % 126.28 126.28 4.26 %

Table 3.3: Optimization results for the dynamic repair problem using optimal flow dis-

tribution rates of the steady state analysis.

The last column of Table 3.3 shows the considerable gain of outflow by using the

optimised matrix d instead of equal flow distribution. Furthermore, it is interesting to

135

3. RESULTS

have a look at the computation time. For the highly under-staffed setting optimisa-

tion takes notedly longer. When allowing worker changes, the optimality gap of the

algorithm could not even be completely closed after three days. On the other hand,

the gain of outflow is noteworthy, especially when workers are allowed to change their

position after each time unit. When 100 workers are available, the optimal steady state

solution turns out to be already optimal for the dynamic model, even for the case in

which we allow worker changes. Hence, the optimisation time is with 0.84 seconds

extremely short.

A comparison between the obtained outflow using different settings is illustrated in

Figure 3.18.

fixed ss−optimal fixed ss−optimal
0

20

40

60

80

100

120

140
constant inflow

30 workers flow distribution 100 workers

ou
tf

lo
w optimal steady−state solution (as start solution)

optimal solution without worker change
optimal solution with a worker change per time unit

Figure 3.18: Comparison of outflow of different settings.

The two bars on the left show the total outflow, when 30 repair workers are available.

The black part indicates how much outflow is obtained by using the worker distribution

which is optimal for the steady state model, the light gray part shows the gain of outflow

when we us the optimal worker distribution and the dark gray part shows the increment

of outflow, when workers are allowed to change their position after each time unit. The

bars on the right show the same results for 100 repair workers.

It is remarkable that the optimal steady state worker distribution is already really

close to the optimal solution of the dynamic model in the case that we use the flow

136

3.1 Application I: Optimal Worker Scheduling for Production Networks

distribution that is optimal for the steady state case (in the figure denoted by ”ss-

optimal”).

Summarizing the numerical observations, we can underline the benefit of the steady

state analysis. Note that the steady state problem (2.45) is much faster solvable than

the far more complex dynamic MIP (2.37) where we need the whole set of variables

for each single time step. First of all, the steady state analysis provides us with a

qualitatively good starting solution that leads to significant runtime reductions for

the optimisation of the dynamic model. Secondly, the additional optimisation of the

flow distribution in the steady state case, endows us with valuable information how

to increase the outflow of the dynamic model, given that the flow distribution of the

corresponding application is adaptable accordingly.

3.1.3 Real World Example: Toothbrushfactory

In this section, we model a stylised real world example for a toothbrush factory con-

sidered in [42, 47]. It consists of 12 production units, sketched in Figure 3.19. The

production steps are represented by edges of a graph depicted in Figure 3.20. All

computations are applied to the modified capacity model, i.e. problem (2.26) where

equation (2.26b) is replaced by (2.27).

Figure 3.19: Layout of the toothbrushfactory.

137

3. RESULTS

� ���

�

�������������������

�

����
����
����
����
���

� ���

�

�������������������

�

����
����
����
����
���

�

��������������

��������������

�������������

�������������

�������������

������������
������������ ������������

����������
��

�������
������

�����
�����

���

����
����
����
�

����
����
����
��

���
���
���
���
��

�

����������������

���������������

���������������

��������������

��������������
�������������� ��������������

������������
��

��������
������

������
������

���

�����
�����

�����

����
����
����
����

�

�����������������

�����������������

�����������������
����������������

���������������� ���������������� ����������������

�����������
������

��������
��������

�

������
�������

����

�

�������
������

����

��������
��������

�

������������
�����

���������������� ���������������� ����������������
����������������

�����������������

�����������������

�����������������
�

����
����
����
����

�����
�����

�����

������
������

���

��������
������

�������������
�

�������������� ��������������
��������������

��������������

���������������

���������������

�����������������

���
���
���
���
��

����
����
����
��

����
����
����
�

�����
�����

���

�������
������

����������
��

������������ ������������
������������

�������������

�������������

�������������

��������������

��������������

�

���
���

���
��

���
�

���

�

������

�����

����

���

�

��
��
��
��
��
��
�

��
��
��
��
��
��
� � ��

�

�������������������

�

����
����
����
����
���

�

��������������

��������������

�������������

�������������

������������

������������
������������ ������������

������������

�������
�����

������
������

�

�����
�����

���

����
����
����
��

����
����
����
��

�

���
��
���

���
���
��

� �������� ��������

�

����
����
����
��

����
����
����
��

�����
�����

���

������
������

�

�������
�����

������������ ������������ ������������
������������

������������

�������������

�������������

��������������

��������������

�

��������

��������

� �������� ��������

�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
��
���
��

���
���
���
�

���
���
���
��

���
���
���
���

����
����
����
�

����
����
����
��

�����
�����
�����

�����
������
�����

������
������
�����

�������
�������
����

��������
��������

���

����������
����������

�

�����������
�����������

�������������
����������

����������������
��������

�������������������
������

�������������������������
�

��
�������������������������

������������������������
�����������������������

����������������������

���������������������

��������������������

�������������������

������������������

������������������

�����������������

����������������

���������������

��������������

�������������

������������

�����������

����������

���������

��������

��������

��������

��������

�������

�������

�������

�

��������

��������

�

��������

��������

� �

� — �

�

��

��

��

Figure 3.20: Schematic draft of the production steps.

In edge 1 empty pallets are introduced into the system. At edge 2 containers for

the toothbrushes are mounted upon the pallets. The actual production of toothbrushes

are processed in edges 3 to 9. Up to edge 9, workers are primarily needed to restock

production material and to replace worn-out tools. At edge 10 and 11 production

workers check the quality of the finished products and sort deficient toothbrushes out.

Here, the through-flow depends proportionally on the number of workers, in contrast

to the other production steps where primarily machines in operation. To include 10-11,

we replace equation (10) by

ci(t) = min{µi, riWβi(t)}, for i ∈ {10, 11}

and linearise it as explained in Subsection 2.2.2. For the other production steps we

use the flow dependent capacity model (1.23).

In 12 the finished products leave the factory (not shown) and the empty pallets

enter the system again at 2. The parameters are listed in Table 3.4.

Edge Production step µ [parts
minute] τ [minute] l r # workers

1 intake 100 1 0 1 0

2 assembly of pallets 42.6 1 0.05 5.325 1

3-8 thermoforming and transport 4 1.25 0.0083 0.1333 2

(parallel) (altogether)

9 assembly line 42.6 1.05 0.1 4.26 1

10 -11 sorting of deficient items 14.4 1 0 6 6

(parallel) (altogether)

12 emptying pallets 42.6 1 0.01667 1.42 1

Table 3.4: Parameter setting of the toothbrush-factory, scaled to minutes as time unit.

138

3.1 Application I: Optimal Worker Scheduling for Production Networks

We consider the following setting: In the beginning, the network is empty. In the

first 10 minutes 81.1 pallets per minute are introduced into the system at unit 1.

Under standard conditions 11 workers are needed for a stable production, seen in

the last column of Table 3.4. In Figure 3.21 the flow behaviour in the first hour of the

daily production process is shown. This time is needed to raise the production flow

inside the initially empty network until constant cycle of pallets is obtained. On the

left we see the inflow of pallets into the system at unit 1. At processor 2 the pallets

enter the production cycle. The processor works at full capacity for the first 40 minutes

until all incoming pallets from edge 1 are processed. Afterwards the flow reduces to a

constant rate. The figure on the right shows processor 12 where finished toothbrushes

are taken out. After the first hour a total of 1212 pallets reach processor 12.

0 20 40 60
0

50

100

t

processor 1

0 20 40 60
0

50

100

t

processor 2

capacity
flow

0 20 40 60
0

50

100

t

processor 12

Figure 3.21: Production process for the first hour using standard worker allocation.

Obtained output after the first hour: 1211 pallet-loads.

Now, we imagine the following scenario: 4 workers are not available within the first

hour. These workers are usually assigned to production units 3, 9, 10 and 11. Without

optimisation, the production capacity of the abandoned units would soon decrease.

In this example the drastic decrease of capacity at production unit 9 leads to a total

decrease of production flow as depicted in Figure 3.22. The output after one hour

reduces to 424 pallet-loads.

If we assume that the remaining workers are able to fulfill the tasks of the missing

workers as well, they can support the production at the abandoned machines. It is

reasonable to assume that they can easily change their position every 20 minutes in

order fix capacity losses. We optimise using the previously derived DTN-MIP, (2.37).

As result we get an optimal solution for the worker assignment as in Figure 3.23. Due

to the lack of workers the production capacity at some machines, as for example at

139

3. RESULTS

0 20 40 60
0

50

100

t
no workers

processor 9

0 20 40 60
0

50

100

t
1 worker

processor 12

capacity
flow

Figure 3.22: Production process with 4 missing workers. The total ouflow reduces to 424

pallet-loads.

processor 12, is reduced. However, the output until then is 1210 pallet loads and thus

almost as good as if all processors would have been fully manned.

1 2 3 4 5 6 7 8 9 101112
0

1

2

3

production steps

w

or
ke

rs

minute 1 to 20

1 2 3 4 5 6 7 8 9 101112
0

1

2

3

production steps

w

or
ke

rs

minute 21 to 40

1 2 3 4 5 6 7 8 9 101112
0

1

2

3

production steps

w

or
ke

rs

minute 41 to 60

Figure 3.23: Optimal worker assignment using 7 workers.

0 20 40 60
0

50

100

t
no workers 1 worker

processor 9

0 20 40 60
0

50

100

t
no workers

processor 12

capacity
flow

Figure 3.24: Flow of the optimal solution at production unit 9 and 12.

140

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

3.2 Application II: Traffic Networks - Optimal Traffic Light

Setting

In this section, we consider traffic flow networks. First of all, we model different kind of

roundabouts and simulate various scenarios using the Hamilton-Jacobi-Scheme derived

in Subsection 1.4.2, see Algorithm 1. Secondly, we consider crossovers with traffic

lights and optimise traffic light settings using corresponding DTN-MIPs, see Chapter 2

(2.98). In the end, we will investigate the efficiency of the optimisation procedure and

the impact of tuning techniques as described in Subsection 2.2.4.

3.2.1 Simulation of a Roundabout, applying the Hamilton-Jacobi Scheme

Now, we apply Algorithm 1 to several traffic flow situations. We test the introduced

simulation method against the Godunov Scheme (cf. Subsection 1.4.1) and describe

certain effects.

First of all, we apply the merging and dispersing junction model to a small network

consisting of eight roads, see Figure 3.25. The network describes a small traffic circle

that has already been examined in [11]. We use the same instance as in [11] where the

flow is given by f(ρ) = ρ(1− ρ) and initial as well as boundary data a given as follows:

boundary density of incoming roads: ρ1(x, 0) = 0.25, ρ3(x, 0) = 0.4

initial density of incoming roads: ρ1(0, t) = 0.25, ρ3(0, t) = 0.4

initial density of outgoing roads: ρ2(0, t) = ρ4(0, t) = 0.5

initial density of inner circle: ρi(0, t) = 0.5, ∀i = 5, 6, 7, 8

In [11] this test case is compared for different right-of-way parameters q ∈]0, 1[,

determining the proportion of cars coming from each road at merging junctions. The

priority rule used in this paper corresponds to q = 0.

The graphic of Figure 3.25 shows the traffic density exemplarily for four roads at 4

different points in time. Since the boundary condition is constant, the density evolution

reaches an equilibrium and does not change for t > 5. The traffic at the inner circle

has priority, therefore the roundabout does not get blocked. This is qualitatively the

same behaviour as in [11], when a small parameter q is used. Since our model uses

strict priorities, the equilibrium state is reached faster, than in [11].

141

3. RESULTS

Figure 3.25: Small roundabout. Results for the LWR flow function f(ρ) = ρ(1 − ρ) on

each road with priority rules at merging junctions.

142

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

We use the Hamilton-Jacobi Scheme for simulations and reconstruct the density

values as in (1.72). The thin lines show the result obtained by using the Godunov

Scheme, which we use as a benchmark. For road 4 at time t = 2 it can clearly be

seen that a much sharper shock wave is obtained by Godunov. However, the actual

density levels are equivalent for both schemes. Since this model is especially derived

for instances with piecewise constant initial conditions, the Hamilton-Jacobi Scheme

leads to sufficiently precise results.

A more realistic Roundabout

We consider a roundabout composed of four junctions with two incoming and two

outgoing roads as derived earlier, which is depicted in Figure 3.26(a).

(a) Roundabout.

ρ

f(ρ)

0.5 1

1

λ=2

Road 1-4 and 9-12

ρ

f(ρ)

0.5 1

0.5

λ=1

road 5-8

(b) Flow functions for outer

and inner roads of the round-

about.

Figure 3.26: Model of a roundabout with different flow functions on different roads.

According to the enumeration in Figure 3.26(a), roads 1 to 4 are leading towards the

143

3. RESULTS

inner circle which is composed of roads 5 to 8. Roads 9-12 point out of the roundabout.

Usually, drivers cannot drive as fast inside the inner circle as at the mostly broader

roads leading in and out of the circle. For this reason, we describe these roads by

different triangular flow functions, as depicted in Figure 3.26(b). As before, the traffic

density lives in an interval between 0 (no traffic) and 1 (maximal dense traffic). Since

we assume that the usual speed of the cars is faster at the outer roads than inside the

circle, the corresponding flow function has a steeper slope outside the inner circle.

We prescribe the left boundary data for the incoming roads 1-4. We assume that

road 1 and 3 are slightly more busy than roads 2 and 4. For simplicity we use the

same boundary data for each road pair. Figure 3.27 gives a detailed overview of the

boundary data at an average working day from 5am to 1pm. This is a fictive test

setting attempting to tackle the qualitative traffic behaviour taking the morning rush

hour into account.

5am 7am 9am 11am 1pm

0.2

0.4

0.6

0.8

1
left boundary of road 1 and 3

time

tr
af

fi
c

de
ns

ity

(a) Boundary density of road 1 and 3.

5am 7am 9am 11am 1pm
0

0.2

0.4

0.6

0.8

1
left boundary of road 2 and 4

time

tr
af

fi
c

de
ns

ity

(b) Boundary density of road 2 and 4.

Figure 3.27: Incoming traffic data over time.

Figure 3.28 shows the traffic density along the inner circle for exemplary points

in time. Since the traffic at the inner roads always has the priority at junctions and

outgoing roads are not blocked in our setting, no jams appear inside the roundabout.

But you can observe that at the peak time of the rush hour, the traffic density all

along the inner circle is at value ρ∗ = 0.5, which means that the traffic moves with the

maximal possible flow.

144

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

 road 5 −> road 6 −> road 7 −> road 8 −>

0.25

0.5

0.75

1
Density evolution in inner traffic circle

x

de
ns

ity

6:00:50 AM (begin early traffic)
7:00:50 AM (begin rush hour)
7:01 AM − 10:10 AM (peak time)
10:10:03 AM (begin of traffic reduction)
11:40 AM − T (midday traffic)

Figure 3.28: Evolution of the traffic density in the inner circle.

145

3. RESULTS

However, if we have a closer look at the traffic evolution at a junction, see Figure

3.29, we notice that at the peak time, traffic jams occur at roads leading to the inner

circle. Particularly from 7am to shortly after 11am, the traffic entering the roundabout

is quite dense. However, since the incoming traffic reduces drastically around 11am

(see boundary condition depicted at Figure 3.27(a)) the jam is resolved again a while

after the incoming traffic reduces.

Figure 3.29: Traffic evolution at the junction.

When we compare the Hamilton-Jacobi Scheme with the Godunov Scheme, we

observe that for a triangular flow function the results are really precise compared to the

use of the functions in Subsection 3.2.1. Thanks to the parameter setting as proposed

in Lemma 1.4.2, the shock fronts computed by the Hamilton-Jacobi Scheme are sharp.

Furthermore, the trajectories of the fronts are very close to the Godunov solution, due

to the artificial shortening of the road which balances out the time delay caused by the

use of ghost-cells (compare Remark 1.4.3).

146

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

Figure 3.30: Single car tracking for three cars on the above route starting at different

times.

147

3. RESULTS

5 AM 7 AM 9 AM 11 AM 1 PM

1

2

3

4

departure time

du
ra

tio
n

of
 c

ro
ss

in
g

(m
in

ut
es

)

Figure 3.31: Travel time (in minutes) for the route depicted in Figure 3.30, depending

on the time when starting the journey.

As we stated in Remark 1.3.10 it is easy to derive the trajectories of cars from the

Hamilton-Jacobi formulation, since we only have to track the contour lines of function

M . In Figure 3.30, the trajectories of 3 cars moving along the roads 1-5-6-11 are

depicted exemplarily. In this example you can see that somebody entering the system

before 6:59 am moves freely and leaves the system already about 1 minute later. In

contrast to that, another driver, who enters the system only 4 minutes later, already

encounters dense traffic on the road and needs more than 4 minutes to move to the

end of road 11. The graphic on Figure 3.31 shows the duration of the route 1-5-6-

11 depending on the starting time of the journey. While it takes only 1 minute to

traverse the route during light traffic times, cars need up to 4.7 minutes between 7 and

9 am. Hence, it takes more than 4 times longer to traverse the given route during the

rush-hour.

3.2.2 Traffic Light Optimization

In this section we consider several scenarios including traffic light junctions and use

the techniques derived in Chapter 2 to create corresponding DTN-MIPs (2.98). These

148

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

problems will be optimised by Cplex [23] in order to obtain optimal traffic light set-

tings. We compare default traffic light settings with optimal solutions and discuss the

necessity of additional requirements on switching times, as introduced in Section 2.4.5.

Furthermore, we have a deeper look into the optimisation process itself and consider

the effects of starting and bounding heuristics for the optimisation time.

Optimal Traffic Light Setting of Crossover

We analyse a crossover as depicted in Figure 3.32. First, we simulate the traffic evo-

lutions for a default traffic light setting. Then we compute the optimal traffic light

setting and compare the resulting solutions with and without additional restrictions on

the switching time.

(a) (b)

Figure 3.32: Traffic Crossover Each lane for different turning directions is modelled by a

separate edge.

Parameter setting and boundary conditions are set according to Figure 3.33 and

3.34.

The default traffic light setting has always green light for all pairs of opposite

149

3. RESULTS

t (min)

ρ(0, t)

1 2 3 4 5 6

0.1

0.3

0.5

(a) Left boundary density of road 13 and

road 15.

t (min)

ρ(0, t)

1 2 3 4 5 6

0.1

0.3

0.5

(b) Left boundary density of road 14 and

road 16.

Figure 3.33: Boundary density of incoming roads i ∈ Ein.

straight-and-right-turning lanes, as well as for all pairs of opposite left-turning lanes,

see Figure 3.35(a). The resulting objective function with the given boundary data is

66.84. To get a feeling on the traffic behaviour in scenarios where traffic lights are used,

we refer to Figure 3.36. The density evolution for one part of the setting, namely road

14 plus all succeeding roads is plotted. Blue colour refers to light traffic, whereas yellow

colour denotes heavy traffic. Dark red colour indicates a total traffic jam, where cars

are standing still.

Now, we optimise the traffic light setting using Cplex [23] on the corresponding

DTN-MIP (2.98) and obtain an optimal traffic light setting as shown in Figure 3.35(b).

The optimal objective function value results in a objective function value of 96.63,

which is a considerable increase of 44.57%. But as we can observe in Figure 3.35(b),

the resulting traffic light setting is highly fluctuating and has too long red phases for

the left-turning lanes (which are at road 1, 3, 5 and 7). The corresponding density

evolution on the roads is shown in Figure 3.37. Compared to the default setting, the

traffic jams are significantly reduced. Especially road 14 is free of total jams. However,

a new jam appears at road 3, since the left-turning lanes have unacceptable long red

phases.

For this reason, we add restrictions on switching times to the model as described in

Subsection 2.4.5 . We set the lower bound for each green phase to 12 seconds and the

upper bound for each red phase to 80 seconds. After applying the optimisation software,

we obtain an optimal solution. The corresponding traffic light setting depicted in Figure

3.35(c). The resulting objective function value is 88.61 which is still an increase of

150

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

time horizon: T = 10 �=400 s

lower bound on green phase: L0 = 0.3 �=12 s (optional)

upper bound on red phase: U1 = 2.0 �=80 s (optional)

time step size : Δt = 0.1

space step size: Δx = 0.2
(a)

left turns straight/right turns outgoing roads incoming roads

roads i 1/3/5/7 2/4/6/8 9-12 13-16

parameters for f

λ 1 1 1 1

ρ∗ 0.5 0.5 0.5 0.5

road length Li 0.5 �=0.25 km 0.5 �=0.25 km 1 �=0.5 km 2 �=1.0 km

initial traffic 0.1 0.2 0.1 0.4

density ρi(x, 0)
(b)

(c) Traffic distribution for each direction

during the first half of the time horizon.

(d) Traffic distribution for each direction

during the second half of the time hori-

zon.

Figure 3.34: Parameter setting for crossover.

151

3. RESULTS

32.58% compared to the default traffic light setting. The density evolution is shown in

Figure 3.35(b).

1 2 3 4 5 6 7

road 1
road 2
road 3
road 4
road 5
road 6
road 7
road 8

time (min)

(a) Default traffic light setting, leads to an objective function value of 66.84.

1 2 3 4 5 6 7

road 1
road 2
road 3
road 4
road 5
road 6
road 7
road 8

time (min)

(b) Optimised traffic light setting, leads to an objective function value of 96.63.

1 2 3 4 5 6 7

road 1
road 2
road 3
road 4
road 5
road 6
road 7
road 8

time (min)

(c) Optimised traffic light setting including restrictions on switching time, leads to an objective function

value of 88.61.

Figure 3.35: Traffic light settings. The beams indicate the time intervals, when the

corresponding traffic lights are green, and the thin lines represent the time intervals, when

the traffic light is red.

152

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

Figure 3.36: Traffic density using default traffic light setting.

153

3. RESULTS

Figure 3.37: Traffic density using optimised traffic light setting.

154

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

Figure 3.38: Traffic density using optimised traffic light setting including restrictions on

switching times.

155

3. RESULTS

Road Network

We can apply the model techniques to larger road networks. In some cities the main

roads are often arranged in chess pattern and the big crossovers have a distance of

one mile from each other. As example see a part of a roadmap of Phoenix, cf. Figure

3.39(a). Motivated by these arrangement, we construct similar simplified road networks

as a composition of several junctions as described in Figure 3.32, neglecting the small

side roads.

In the sequel we will consider a fictive scenario, based on a network, which consists

of nine crossovers, altogether assembled of 45 vertices and 120 roads, as shown in Figure

3.39(b).

(a) Examplary road network

(part of Phoenix, Arizona),

taken from c�OpenStreetMap,

http://www.openstreetmap.org

(b) Road network with 120 edges and 45 vertices.

Figure 3.39: Road network.

We assume that for a certain time of the day the main traffic volume is moving from

left to right. This is realised by prescribing higher boundary density on the ingoing

roads from the left side compared to the other ingoing roads and by choosing the

distribution matrix d in a way that cars preferably turn towards roads leading from left

to right. Details can be seen in Table 3.5 and Figure 3.40.

156

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

First of all, we assume to have the default traffic light setting for each crossover as

shown in Figure 3.35(a).

general parameters time horizon time step size space step size

T Δt Δx

10 �=400 s 0.25 0.5

roads length initial density left bound. density

L ρ(x, 0) ρ(0, x)

incoming roads from top 2 (�=1 km) 0.3 0.3

incoming roads from left 2 (�=1 km) 0.5 0.5

incoming roads from right 2 (�=1 km) 0.1 0.1

incoming roads from bottom 2 (�=1 km) 0.3 0.3

left turning lanes 0.5 (�=0.25 km) 0.1 –

straight/right turning lanes 0.5 (�=0.25 km) 0.2 –

inner roads 4 (�=2 km) 0.4 –

outgoing roads 2 (�=1 km) 0.1 –

for all roads: λ = 1 ρ∗ = 0.5

Table 3.5: Parameter setting of road network.

Figure 3.40: Traffic distribution for all crossovers.

We simulate the density evolution on the road with the prescribed parameter setting

using the default traffic-light setting as shown in Figure 3.35(a) and use it as a start

157

3. RESULTS

solution for the corresponding DTN-MIP (2.98), as illustrated in Figure 2.5. The

objective function value of the start solution is 695,2285. After optimisation, we get a

solution with objective function value of 804,9520, which is an increase of 15,78%.

In order to get an idea of the improvements of the traffic situation using the opti-

mised traffic light setting, we pick two paths through the network, as depicted in Figure

3.41. Path 1 is crossing the road network from left to right, as shown in Figure 3.41(a)

and Path 2 is crossing the network diagonally from the upper left to the lower right

corner, as shown in Figure 3.41(b).

(a) Path 1 (b) Path 2

Figure 3.41: Paths through road network.

We compare the traffic density along the paths under default and optimised traffic

light setting. The black line in Figure 3.42(a) describes the averaged traffic density

under optimised conditions and the dashed black line describes the averaged traffic

density under default traffic light setting. The gray lines indicate the corresponding

maximal values during the whole time horizon. In Figure 3.42(b) the same comparison

is done for average and minimal travel velocity v which is computed by

v =
f

ρ
.

Remark 3.2.1. If we consider the underlying flow function 1.26, we see that the travel

velocity is maximal, as long as the density is smaller or equal than ρ∗. For dense traffic,

i.e. for ρ ≥ ρ∗, it decreases monotonically until it reaches zero for f (ρmax).

Note, the considerable improvement of density, especially in front of the crossovers,

which are found at km 1, 3 and 5 on the x-axis. The travel velocity along the roads

158

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

is mostly at its maximal value. Cars only have to slow down in front of a crossover

(see again km 1, 3 and 5 on the x-axis on Figure 3.42(b)). Again, the travel velocity is

considerably higher when the optimised traffic light setting is used.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

path 1 (km)

tr
af

fi
c

de
ns

ity

start of heavy traffic
maximal traffic density (defaul tl−setting)
 −−−−−"−−−−− (optimal tl−setting)
average traffic density (default tl−setting)
 −−−−−"−−−−− (optimal tl−setting)

(a) Traffic density.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

path 1 (km)

tr
av

el
 v

el
oc

ity
 ra

tio
 to

 v
m

ax

minimal travel velocity (defaul tl−setting)
 −−−−−"−−−−− (optimal tl−setting)
average travel velocity (default tl−setting)
 −−−−−"−−−−− (optimal tl−setting)

(b) Travel velocity.

Figure 3.42: Traffic evolution along Path 1.

159

3. RESULTS

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

path 2 (km)

tr
af

fi
c

de
ns

ity

start of heavy traffic
maximal traffic density (defaul tl−setting)
 −−−−−"−−−−− (optimal tl−setting)
average traffic density (default tl−setting)
 −−−−−"−−−−− (optimal tl−setting)

(a) Traffic density.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

path 2 (km)

tr
av

el
 v

el
oc

ity
 ra

tio
 to

 v
m

ax

minimal travel velocity (defaul tl−setting)
 −−−−−"−−−−− (optimal tl−setting)
average travel velocity (default tl−setting)
 −−−−−"−−−−− (optimal tl−setting)

(b) Travel velocity.

Figure 3.43: Traffic evolution along Path 2.

160

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

The same comparisons are done for path 2. The average and maximal traffic den-

sity along the path is depicted in Figure 3.43(a) and the average and minimal travel

velocities can be seen in Figure 3.43(b). Since the aim of optimisation is to increase the

traffic flow globally for the whole network, it can happen that optimised traffic light

settings locally lead to slight setbacks, especially for roads which are not corresponding

to the direction of the main traffic load. For this reason we can observe slight worsening

of traffic densities in front of crossovers coming from a road leading from up to down.

In this graph you find them on the x-axis around km 3 and 7. This is also observable

for the travel velocity at the same points on the x-axis on Figure 3.43(b). However,

these setbacks are more than compensated on the rest of the path.

Optimization Procedure

The main difficulties for the optimisation procedure is the huge problem size of the

DTN-MIPs. In comparison to the DTN-MIP resulting from the production network

model (2.37), where no detailed modelling along the edges is done, the traffic network

also works with space grids along the roads. This additional dimension that has to be

discretised results is an even more complex DTN-MIP, where the number of constraints

and variables is in O(|E| · |nt| · |nk|).

For this reason, we stick to a rather coarse grid size as Δx = 0.2 and Δt = 0.1 for

the modelling of the single crossover and Δx = 0.5 and Δt = 0.25 for the modelling of

the road network.

The resulting MIP for the crossover consist of around 6 · 104 variables, the MIP for

the roadnet consists of around 1.3 · 105 variables, which makes it almost impossible to

find an optimal solution within acceptable computation time if no tuning techniques

such as Algorithm 6 and 6 are applied (see illustration in Figure 2.7. We have a deeper

look into the optimisation process, firstly, of the crossover model without additional re-

strictions on switching time (cf. Figure 3.44); secondly, of the crossover model including

switching time restrictions (cf. Figure 3.45) and, thirdly, on the optimisation process of

the roadnet (cf. Figure 3.46). All computations are performed on a PC equipped with

16GB Ram, Intel(R) Xeon(R) CPU 5160 @ 3.00GHz.

On Figures 3.44(a), 3.45(a) and 3.46(a) the evolution of the primal and dual bounds

during the optimisation process is plotted. The number of iterations given on the x-

axis refer to small computation units as for example iterations of the simplex method,

161

3. RESULTS

when computing the relaxed solution. For this reason the iteration number is roughly

proportional to the number of rows in the linear MIP. The dashed black line denotes

the dual bound and the black line the primal bound, when a bounding heuristic is

used. The gray line represents the primal bound of the optimisation in the case that

only a starting heuristic is used and no further bounding heuristics during the Branch

& Cut algorithm. As starting solution we choose the default traffic light setting for

each crossover as shown in Figure 3.35(a) and compute the remaining variables with

the forward solver (cf. Algorithm 3), see illustration in Figure 2.5.

When we apply the bounding heuristics (cf. Algorithm 6 for the models without

restrictions on switching times and Algorithm 7 for the crossover model with switching

time restrictions), the primal bound improves soon after the start of the optimisation

procedure. In Figures 3.44(a), 3.45(a) and 3.46(a) you see the points in time, when the

optimality gap falls below 20%, 10% and 5%. As indicated in the corresponding tables,

a strong improvement of the optimality gap is already achieved during the examination

of the root node, where cutting planes techniques and the bounding heuristics are

applied several times before the actual branching starts.

Tables 3.44(b), 3.45(b) and 3.46(b) show that the optimality gap that is obtained

after 5 hours runtime cannot be exceedingly improved even after 3 days. This is due to

the facts that firstly, many new found feasible solution are not better than the current

incumbent. Secondly, the memory consumption slows down iteration time as soon as

soon as the Branch & Bound tree gets large. For instance for the crossover model

with switching time restrictions, cf. Figure 3.45, we have a gap of 42.75% after 5 hours

runtime and still 37.09% after 3 days runtime, when no bounding heuristic is used. The

use of the bounding heuristic extremely helps to close the optimality gap fast. As can

be seen on Table 3.45(b) it is smaller than 10% after half an hour runtime. On the

other scenarios we encounter a similar behaviour.

These results clearly show the importance of bounding heuristics for such large

problem sizes in order to obtain reasonable solutions within an acceptable computation

time.

162

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
x 105

65

70

75

80

85

90

95

100

105

number of iterations

bo
un

ds
 fo

r o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

dual bound
primal bound using Starting Heuristic
primal bound applying Bounding Heuristic 1
optimality gap ≤ 10 % after 14 minutes
optimality gap ≤ 5 % after 18 minutes

(a) Comparison of the evolution of primal and dual bounds during the optimisation procedure using

only Starting Heuristic and using Bounding Heuristic 1.

Starting Heuristic Bounding Heuristic 1

after primal bound 73.7952 96.6212

18000 s dual bound 97.1187 98.1543

(5 hours) optimality gap 31.62% 1.59%

after primal bound 75.0262 96.6331

259200 s dual bound 97.0759 98.1538

(3 days) optimality gap 29.39% 1.57%

optimality # nodes – 0 (root node)

gap # iterations (not obtained) 131290

≤ 20% elapsed time – 813 s (≈ 14 m)

optimality # nodes – 0 (root node)

gap # iterations (not obtained) 131290

≤ 10% elapsed time – 813 s (≈ 14 m)

optimality # nodes – 0 (root node)

gap # iterations (not obtained) 200173

≤ 5% elapsed time – 1108 s (≈ 18 m)

improvement of optimised traffic light setting 44.57%
(b)

Figure 3.44: Comparison of optimisation procedures using Starting Heuristic and using

Bounding Heuristic 1. Here, we consider the DTN-model for crossover that optimises the

traffic light setting without additional requirements on switching times.

163

3. RESULTS

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
x 105

65

70

75

80

85

90

95

100

105

number of iterations

bo
un

ds
 fo

r o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

dual bound
primal bound using Starting Heuristic
primal bound applying Bounding Heuristic 2
optimality gap ≤ 20 % after 15 minutes
optimality gap ≤ 10 % after 29 minutes

(a) Comparison of the evolution of primal and dual bounds during the optimisation procedure using

only Starting Heuristic and using Bounding Heuristic 2.

Starting Heuristic Bounding Heuristic 2

after primal bound 66.8394 87.7438

18000 s dual bound 95.4144 95.9824

(5 hours) optimality gap 42.75% 9.39%

after primal bound 69.1212 88.6135

259200 s dual bound 94.7592 95.9740

(3 days) optimality gap 37.09% 8.31%

optimality # nodes – 0 (root node)

gap # iterations (not obtained) 121648

≤ 20% elapsed time – 916 s (≈ 15 m)

optimality # nodes – 0 (root node)

gap # iterations (not obtained) 214403

≤ 10% elapsed time – 1751 s (≈ 29 m)

optimality # nodes – –

gap # iterations (not obtained) (not obtained)

≤ 5% elapsed time – –

improvement of optimised traffic light setting 32.58%
(b)

Figure 3.45: Comparison of optimisation procedures using Starting Heuristic and using

Bounding Heuristic 2. Here, we consider the DTN-model for crossover that optimises the

traffic light setting including additional requirements on switching times.

164

3.2 Application II: Traffic Networks - Optimal Traffic Light Setting

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
x 105

650

700

750

800

850

900

950

1000

number of iterations

bo
un

ds
 fo

r o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

dual bound
primal bound using Starting Heuristic
primal bound applying Bounding Heuristic 1
optimality gap ≤ 20 % after 1 h 15 minutes
optimality gap ≤ 10 % after 1 h 47 minutes
optimality gap ≤ 5 % after 28 h 37 minutes

(a) Comparison of the evolution of primal and dual bounds during the optimisation procedure using

only Starting Heuristic and using Bounding Heuristic 1.

Starting Heuristic Bounding Heuristic 1

after primal bound 695.2285 763.2116

18000 s dual bound 822.4174 835.1736

(5 hours) optimality gap 18.29% 9.43%

after primal bound 708.3082 804.9520

259200 s dual bound 822.1958 835.1453

(3 days) optimality gap 16.08% 3.75%

optimality # nodes 600 0 (root node)

gap # iterations 678788 342171

≤ 20% elapsed time 85658 s (≈ 2h 23 m) 4524 s (≈ 1 h 15 m)

optimality # nodes – 0 (root node)

gap # iterations (not obtained) 450166

≤ 10% elapsed time – 6419 s (≈ 1 h 47 m)

optimality # nodes – 558

gap # iterations (not obtained) 497555

≤ 5% elapsed time – 102941 s (≈ 28h 37 m)

improvement of optimised traffic light setting 15.78%
(b)

Figure 3.46: Comparison of optimisation procedures using Starting Heuristic and using

Bounding Heuristic 1. Here, we consider the DTN-model for road network.

165

3. RESULTS

166

Conclusion

In this work we provided a general classification of dynamic transportation networks

(DTNs), which represent macroscopic PDE/ODE-based descriptions of network flow

problems. There is a broad variety of versions depending on the application; for exam-

ple it is possible to model buffers, to describe the evolution of density by conservation

laws and to model different kinds of coupling conditions. Afterwards we considered op-

timisation techniques. We discussed the advantages of mixed integer optimisation and

presented a general strategy how DTNs can be transformed into linear MIPs. Further-

more, we showed how the knowledge of the problem structure can be used to introduce

bounding heuristics which are extremely efficient to speed up the optimisation proce-

dure. Within this frame, we presented specific models with application in production

and traffic.

The first is a novel production model for the time-changing repair worker assign-

ment. The main idea is to keep the system performance optimal whenever machines

have failed and must be repaired. In general, available workers are limited and there-

fore a decision has to be made on which machines are repaired first. The resulting

optimisation question is how the optimal worker scheduling looks like to maximise the

production flow. This issue has been intensively analysed and numerical case stud-

ies comparing fixed and time-changing schedules have been performed. As we have

seen, the numerical results demonstrate the different opportunities of our modelling

approach.

With respect to the second application, we considered the LWR-based traffic flow

network model [19]. We showed how coupling conditions of several junction types

can be transformed into easily linearisable min-terms. We introduced a numerical

framework for the Hamilton-Jacobi formulation of traffic flow and showed how this

167

3. RESULTS

correctly resolves the dynamics at the junction. We presented simulations for a round-

about and compared them with existing results and computed travel times for certain

routes through the network depending on the starting time of the travel. Moreover, we

modelled traffic light settings for LWR-based traffic flow networks that can easily be

adapted to arbitrary junction types and network topologies and discussed requirements

for secure traffic light settings. We showed the necessity of additional requirements on

the switching time rate to avoid inapplicably frequent fluctuations which appear when

mixed integer optimisation techniques are used, and solved this problem with previously

derived techniques. Furthermore, we developed a bounding heuristic to speed up the

optimisation process. The resulting improvements for the optimisation procedure are

remarkable and indicate the potential of combining simulation techniques with Branch

& Bound procedures.

Altogether, this work illustrates, how the combination of various different mathe-

matical fields – in our case coupled PDE/ODE-systems, numerical computation and

discrete optimisation techniques – allow for detailed dynamic network descriptions and

reliable optimisation. The remarkable improvements of the optimisation procedure lead

to the assumption that there is still a lot of potential hidden in the connection of these

fields. One important aspect would be the application of Branch & Bound techniques

on DTNs that are not linearisable. A second point is to find ways to allow for finer

discretisation grids without the inflation of problem size and optimisation time. A

promising approach to obtain both aims is the development of an adapted Branch &

Bound procedure including an integrated forward solver to obtain primal bounds and

a novel strategy to obtain dual bounds without the necessity of laborious linearisation

techniques.

Generally speaking, further research on the intersection of numerical computation

and discrete optimisation is a worthwhile task full of of potential.

168

References

[1] Y. Achdou, F. Camilli, A. Cutri, N. Tchou, et al.

Hamilton-jacobi equations on networks. 2010. 3, 40

[2] D. Armbruster, C. de Beer, M. Freitag, T. Jagalski, and

C. Ringhofer. Autonomous control of production net-

works using a pheromone approach. Physica A: Statisti-

cal Mechanics and its applications, 363(1):104–114, 2006.

1, 5, 13, 18

[3] D. Armbruster, P. Degond, and C. Ringhofer. A model

for the dynamics of large queuing networks and supply

chains. SIAM Journal on Applied Mathematics, pages

896–920, 2006. 1, 2, 5, 16

[4] D. Armbruster, S. Göttlich, and M. Herty. A continuous

model for supply chains with finite buffers. 2010. 2, 13,

16

[5] D. Armbruster, D. Marthaler, and C. Ringhofer. Kinetic

and fluid model hierarchies for supply chains. Multiscale

Modeling and Simulation, 2:43–61, 2004. 5

[6] J. Bang-Jensen and G. Gutin. Digraphs: theory, algo-

rithms and applications. Springer Verlag, 2009. 92, 127

[7] J. Banks and J.S. Carson. Discrete event system simu-

lation. 1984. 2, 5, 16

[8] C. Beard and A. Ziliaskopoulos. System optimal sig-

nal optimization formulation. Transportation Research

Record: Journal of the Transportation Research Board,

1978(-1):102–112, 2006. 2, 57, 59, 93

[9] G. Bolch. Queueing networks and Markov chains: mod-

eling and performance evaluation with computer science

applications. Wiley-Blackwell, 2006. 1, 16

[10] A. Bressan. Hyperbolic systems of conservation laws: the

one-dimensional Cauchy problem, volume 20. Oxford Uni-

versity Press, USA, 2000. 12, 27, 44

[11] G. Bretti, R. Natalini, and B. Piccoli. Numerical approx-

imations of a traffic flow model on networks. Networks

and Heterogeneous Media, 1(1):57, 2006. 1, 5, 15, 24, 25,

27, 28, 30, 31, 32, 33, 38, 141

[12] G. Bretti and B. Piccoli. A tracking algorithm for car

paths on road networks. SIAM Journal on Applied Dy-

namical Systems, 7(2):510–531, 2008. 24, 27, 38, 40

[13] E. Brockfeld, R. Barlovic, A. Schadschneider, and

M. Schreckenberg. Optimizing traffic lights in a cellu-

lar automaton model for city traffic. Physical Review E,

64(5):056132, 2001. 57

[14] T.H. Chang and J.T. Lin. Optimal signal timing for an

oversaturated intersection. Transportation Research Part

B: Methodological, 34(6):471–491, 2000. 93

[15] T.H. Chang and G.Y. Sun. Modeling and optimization

of an oversaturated signalized network. Transportation

Research Part B: Methodological, 38(8):687–707, 2004. 57

[16] H. Chen and D.D. Yao. Fundamentals of queueing net-

works: Performance, asymptotics, and optimization, vol-

ume 46. Springer Verlag, 2001. 1, 16

[17] Y. Chitour and B. Piccoli. Traffic circles and timing of

traffic lights for cars flow. Discrete and Continuous Dy-

namical Systems Series B, 5(3):599, 2005. 1, 5, 24, 32,

33

[18] C.G. Claudel and A.M. Bayen. Convex formulations of

data assimilation problems for a class of hamilton-jacobi

equations. SIAM Journal on Control and Optimization,

49(2):383, 2011. 1, 6, 25, 40

[19] G.M. Coclite, M. Garavello, and B. Piccoli. Traffic flow

on a road network. SIAM journal on mathematical anal-

ysis, 36(6):1862–1886, 2005. 1, 5, 15, 24, 28, 38, 100,

167

[20] RM Colombo, G. Guerra, M. Herty, and V. Schleper.

Optimal control in networks of pipes and canals. SIAM

Journal on Control and Optimization, 48(3):2032–2050,

2009. 1, 5

[21] R. Corthout, G. Flötteröd, F. Viti, and C.M.J. Tampère.

Non-unique flows in macroscopic first-order intersection

models. Transportation Research Part B: Methodological,

46(3):343–359, 2012. 24

[22] T.J. Cova and J.P. Johnson. A network flow model for

lane-based evacuation routing. Transportation Research

Part A: Policy and Practice, 37(7):579–604, 2003. 1, 2,

57

[23] IBM ILOG CPLEX. Ibm deutschland gmbh,

71137 ehningen. Information available at

http://www-01.ibm.com/software/integration/optimization;

visited on June 2012. 2, 67, 77, 118, 124, 125, 149, 150

[24] C. Daganzo. A theory of supply chains. Number 526.

Springer Verlag, 2003. 1, 5

[25] C.F. Daganzo. The cell transmission model, part ii: net-

work traffic. Transportation Research Part B: Methodolog-

ical, 29(2):79–93, 1995. 6, 24, 32, 33

[26] C.F. Daganzo. A continuum theory of traffic dynamics

for freeways with special lanes. Transportation Research

Part B: Methodological, 31(2):83–102, 1997. 5

[27] C.F. Daganzo. A variational formulation of kinematic

waves: basic theory and complex boundary condi-

tions. Transportation Research Part B: Methodological,

39(2):187–196, 2005. 40

[28] C.F. Daganzo. On the variational theory of traffic flow:

well-posedness, duality and applications. 2006. 24, 25,

40

[29] R.J. Dakin. A tree-search algorithm for mixed in-

teger programming problems. The Computer Journal,

8(3):250–255, 1965. 60

169

REFERENCES

[30] G.B. Dantzig. Linear programming and extensions.

Princeton Univ Pr, 1998. 2, 32, 34, 36, 58

[31] C. d’Apice, S. Göttlich, M. Herty, and B. Piccoli. Mod-

eling, Simulation, and Optimization of Supply Chains: A

Continuous Approach. Society for Industrial Mathemat-

ics, 2010. 2, 13, 16

[32] C. D’Apice and R. Manzo. A fluid dynamic model

for supply chains. Networks and Heterogeneous Media,

1(3):379–398, 2006. 1, 2, 5, 6, 16

[33] C. D’Apice, R. Manzo, et al. Splitting of traffic flows

to control congestion in special events. International

Journal of Mathematics and Mathematical Sciences, 2011,

2011. 24

[34] C. D’Apice, R. Manzo, and B. Piccoli. A fluid dynamic

model for telecommunication networks with sources and

destinations. SIAM Journal on Applied Mathematics,

68(4):981–1003, 2008. 1, 5, 25

[35] C. D’Apice, R. Manzo, and B. Piccoli. Modelling sup-

ply networks with partial differential equations. Quart.

Appl. Math, 67:419–440, 2009. 1, 5

[36] A. Dittel, A. Fügenschuh, S. Göttlich, and M. Herty.

Mip presolve techniques for a pde-based supply chain

model. Optimization Methods & Software, 24(3):427–445,

2009. 3, 18, 43, 59

[37] A. Dittel, S. Göttlich, and U. Ziegler. Optimal design of

capacitated production networks. Optimization and En-

gineering, 12(4):583–602, 2011. 2, 13, 18, 21, 43, 57, 59,

77, 82, 91

[38] W. Domschke, L. Häselbarth, and A. Scholl. Wisu-

lexikon operations research. Publications of Darm-

stadt Technical University, Institute for Business Studies

(BWL), 2003. 63

[39] G. Flötteröd and J. Rohde. Operational macroscopic

modeling of complex urban road intersections. Trans-

portation Research Part B: Methodological, 2011. 24, 93

[40] DR Ford and D.R. Fulkerson. Flows in networks. Prince-

ton university press, 2010. 5, 8

[41] L.R. Ford and D.R. Fulkerson. Maximal flow through

a network. Canadian Journal of Mathematics, 8(3):399–

404, 1956. 1, 5, 8

[42] A. Fügenschuh, S. Göttlich, M. Herty, A. Klar, and

A. Martin. A discrete optimization approach to large

scale supply networks based on partial differential equa-

tions. SIAM journal on scientific computing, 30:1490,

2008. 1, 2, 5, 13, 16, 57, 59, 71, 82, 91, 118, 137

[43] M. Garavello and B. Piccoli. Traffic flow on networks.

American institute of mathematical sciences Spring-

field,, USA, 2006. 1, 5, 24, 27, 28

[44] D.C. Gazis. Optimum control of a system of oversatu-

rated intersections. Operations Research, pages 815–831,

1964. 57

[45] S.K. Godunov. A difference method for numerical cal-

culation of discontinuous solutions of the equations of

hydrodynamics. Matematicheskii Sbornik, 89(3):271–306,

1959. 47, 55

[46] S. Göttlich. Continuous Models for Production Networks

Including Optimization Issues. Verl. Dr. Hut, 2007. 1, 2,

18, 57, 82

[47] S. Göttlich, M. Herty, and A. Klar. Network models

for supply chains. Communications in Mathematical Sci-

ences, 3(4):545–559, 2005. 1, 2, 5, 16, 21, 44, 118, 137

[48] S. Göttlich, M. Herty, and C. Ringhofer. Optimization

of order policies in supply networks. European Journal

of Operational Research, 202(2):456–465, 2010. 2

[49] S. Göttlich, M. Herty, C. Ringhofer, and U. Ziegler. Pro-

duction systems with limited repair capacity. 2011. 2,

3, 6, 18, 43, 59, 82

[50] S. Göttlich, O. Kolb, and S. Kühn. Interpretation of the

dual of a mip with discrete adjoints. preprint, 2012. 108,

112

[51] H. Hamacher and K. Klamroth. Lineare und Netzwerk-

Optimierung: Ein bilinguales Lehrbuch. Friedrick Vieweg

& Son, 2000. 63, 126

[52] H.W. Hamacher and S.A. Tjandra. Mathematical mod-

elling of evacuation problems–a state of the art. Pedes-

trian and Evacuation Dynamics, 2002:227–266, 2002. 1,

2, 5, 57

[53] Q. He, W.H. Lin, H. Liu, and KL Head. Heuristic algo-

rithms to solve 0-1 mixed integer lp formulations for traf-

fic signal control problems. In Service Operations and Lo-

gistics and Informatics (SOLI), 2010 IEEE International

Conference on, pages 118–124. IEEE, 2010. 2, 59, 93

[54] D. Helbing. Production, supply, and traffic systems: A

unified description. Traffic and Granular Flow 03, pages

173–188, 2005. 1, 5

[55] M. Herty and A. Klar. Modeling, simulation, and op-

timization of traffic flow networks. SIAM Journal on

Scientific Computing, 25:1066, 2003. 24, 28, 31

[56] M. Herty and M. Rascle. Coupling conditions for a class

of second-order models for traffic flow. SIAM journal on

mathematical analysis, 38(2):595–616, 2007. 24, 33

[57] M. Herty and C. Ringhofer. Optimization for supply

chain models with policies. Physica A: Statistical Me-

chanics and its Applications, 380:651–664, 2007. 2

[58] H. Holden and N.H. Risebro. A mathematical model of

traffic flow on a network of unidirectional roads. SIAM

Journal on Mathematical Analysis, 26:999, 1995. 24, 26,

27

[59] H. Holden and N.H. Risebro. Front tracking for hyperbolic

conservation laws, volume 152. Springer Verlag, 2011. 27

[60] LINDO SYSTEMS INC. 1415 north dayton street,

chicago, il 60642, usa. Information available at

http://www.lindo.com; visited on June 2012. 2, 67

[61] G.S. Jiang, D. Levy, C.T. Lin, S. Osher, and E. Tadmor.

High-resolution nonoscillatory central schemes with non-

staggered grids for hyperbolic conservation laws. SIAM

Journal on Numerical Analysis, pages 2147–2168, 1998.

44, 103

170

REFERENCES

[62] J. Kallrath. Gemischt-ganzzahlige Optimierung: Model-

lierung in der Praxis: mit Fallstudien aus Chemie, En-

ergiewirtschaft, Metallgewerbe, Produktion und Logistik.

Vieweg+ Teubner, 2002. 2, 59, 70, 71, 73

[63] C.T. Kelley. Iterative methods for optimization, vol-

ume 18. Society for Industrial Mathematics, 1999. 2,

58

[64] A. Klar, R.D. Kühne, and R. Wegener. Mathematical

models for vehicular traffic. Arbeitsgruppe Technomath-

ematik, Univ., 1995. 15

[65] O. Kolb. Simulation and Optimization of Gas and Water

Supply Networks, PhD TU Darmstadt. Dr. Hut Verlag,

2011. 44, 103

[66] S.O. Krumke and H. Noltemeier. Graphentheoretische

Konzepte und Algorithmen. Vieweg+ Teubner, 2009. 8,

126

[67] A. Kurganov and E. Tadmor. New high-resolution semi-

discrete central schemes for hamilton–jacobi equations.

Journal of Computational Physics, 160(2):720–742, 2000.

49

[68] S. Lämmer and D. Helbing. Self-control of traffic lights

and vehicle flows in urban road networks. Journal of Sta-

tistical Mechanics: Theory and Experiment, 2008:P04019,

2008. 57

[69] A.H. Land and A.G. Doig. An automatic method of

solving discrete programming problems. Econometrica:

Journal of the Econometric Society, pages 497–520, 1960.

60

[70] E.L. Lawler and D.E. Wood. Branch-and-bound meth-

ods: A survey. Operations research, pages 699–719, 1966.

2, 58, 63

[71] P.D. Lax. Hyperbolic Systems of Conservation Laws and

the Mathematical Theory of Shock Wawes, volume 17.

SIAM, 1973. 27

[72] JP Lebacque and MM Khoshyaran. First order macro-

scopic traffic flow models for networks in the context

of dynamic assignment. Transportation Planning, pages

119–140, 2004. 1, 5, 24

[73] R.J. LeVeque. Numerical methods for conservation laws.

Birkhäuser, 1992. 6, 12, 41, 42, 43, 49

[74] M.J. Lighthill and G.B. Whitham. On kinematic waves.

ii. a theory of traffic flow on long crowded roads. Pro-

ceedings of the Royal Society of London. Series A. Mathe-

matical and Physical Sciences, 229(1178):317–345, 1955.

3, 23, 24

[75] W.H. Lin and C. Wang. An enhanced 0-1 mixed-integer

lp formulation for traffic signal control. Intelligent

Transportation Systems, IEEE Transactions, 5(4):238–

245, 2004. 2, 59, 93

[76] H.K. Lo. A novel traffic signal control formulation.

Transportation Research Part A: Policy and Practice,

33(6):433–448, 1999. 2, 57, 59, 93

[77] H.K. Lo. A cell-based traffic control formulation: strate-

gies and benefits of dynamic timing plans. Transporta-

tion Science, 35(2):148–164, 2001. 2, 59, 93

[78] Y. Makigami, GF Newell, and R. Rothery. Three-

dimensional representation of traffic flow. Transportation

Science, 5(3):302–313, 1971. 24, 40

[79] P.E. Mazaré, A.H. Dehwah, C.G. Claudel, and A.M.

Bayen. Analytical and grid-free solutions to the

lighthill–whitham–richards traffic flow model. Trans-

portation Research Part B: Methodological, 2011. 24, 25,

40

[80] K. Moskowitz and L. Newan. Notes on freeway capacity.

Highway Research Record, 1963. 40

[81] K.G. Murty. Linear programming. 1983. 63

[82] G.L. Nemhauser and L.A. Wolsey. Integer and combina-

torial optimization, volume 18. Wiley New York, 1988.

2, 58, 63

[83] G.F. Newell. A simplified theory of kinematic waves in

highway traffic, part i: General theory, part ii: Queu-

ing at freeway bottlenecks, part iii: Multi-destination

flows. Transportation Research Part B: Methodological,

27(4):281–313, 1993. 6, 24, 40

[84] J. Nocedal and S.J. Wright. Numerical optimization.

Number 2. Springer Series in Operations Research,

Berlin, 2006. 63

[85] GUROBI Optimization. Box 1001, 3733-1 westheimer

rd., houston tx, 77027, usa. Information available at

http://www.gurobi.com/; visited on June 2012. 2, 67

[86] H. Prothmann, J. Branke, H. Schmeck, S. Tomforde,

F. Rochner, J. Hahner, and C. Muller-Schloer. Organic

traffic light control for urban road networks. Interna-

tional Journal of Autonomous and Adaptive Communica-

tions Systems, 2(3):203–225, 2009. 57

[87] Matlab Version R2010a. Mathworks, inc., 3 ap-

ple hill drive, natick, ma. Information available at

http://www.mathworks.com; visited on June 2012. 118

[88] P.I. Richards. Shock waves on the highway. Operations

research, pages 42–51, 1956. 3, 23, 24

[89] V. Riley and S.I. Gass. Linear programming and asso-

ciated techniques. Number 5. Published for Operations

Research Office, the Johns Hopkins University, by the

Johns Hopkins Press, 1958. 69, 105

[90] A. Schrijver. Theory of linear and integer programming.

John Wiley & Sons Inc, 1998. 2, 58, 60, 69

[91] SCIP. Tu darmstadt, discrete optimization university of

erlangen-nürnberg, chair of edom siemens ag, corporate

technology. Information available at http://scip.zib.de/;

visited on June 2012. 2, 67

[92] E.F. Toro. Riemann solvers and numerical methods for

fluid dynamics: a practical introduction. Springer Verlag,

2009. 27

[93] F. Tröltzsch. Optimal control of partial differential equa-

tions: theory, methods, and applications, volume 112.

Amer Mathematical Society, 2010. 2, 58

[94] L.A. Wolsey. Integer programming. IIE Transactions,

32:273–285, 2000. 2, 58, 105

171

REFERENCES

[95] E. Zauderer. Partial differential equations of applied

mathematics, volume 71. Wiley-Interscience, 2011. 12

[96] L. Zhao, X. Peng, L. Li, and Z. Li. A fast signal timing

algorithm for individual oversaturated intersections. In-

telligent Transportation Systems, IEEE Transactions on,

(99):1–4, 2011. 93

[97] H. Zidani, R. Monneau, and C. Imbert. A hamilton-

jacobi approach to junction problems and application to

traffic flows. 2011. 3, 40

[98] U. Ziegler and S. Göttlich. Design network problem and

heuristics. Progress in Industrial Mathematics at ECMI

2008, pages 515–520, 2010. 2, 3, 18, 43, 57, 77, 82

172

LEBENSLAUF

Persönliche Daten

Name: Ziegler

Vorname: Ute

Geburtstag: 03.02.1983

Geburtsort: Bensheim

Staatsangehörigkeit: deutsch

Qualifikationen

2002 Abitur

2003 – 2008 Studium der Technomathematik

Anwendungsfach Physik

Abschluss: Diplom

ab 2008 – 2012 Promotion in Mathematik

