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Tag der mündlichen Prüfung: 18. Oktober 2013

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.
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Abstract

Biological processes are complex study objects due to their dynamic nature and structural
diversity of living organisms. To study dynamic processes statistically, numerous experiments
with multiple observations have to be performed, and data have to be analyzed and evaluated.
Owing to great technological advances, gigabytes of data are being acquired both in research
and industry. Slow and subjective manual analyses are not sufficient anymore, and automated
evaluation methods are required.

The distribution of biomolecules provides valuable information on a current biological state.
The distribution of biomolecules depends on and is influenced by functions of biomolecules, and
may thus be used to detect abnormalities. The relatively young research field toponomics de-
scribes the laws of spatial arrangement of molecules. Several evaluation methods have previously
been developed, automatized and standardized. However, no standard evaluation methods have
been reported to quantitatively analyze such an important biological process like translocation
of biomolecules.

Translocation processes are vital for living organisms. For instance, substance inclusion
into a cell or exclusion from it represent a translocation. Furthermore, signaling biomolecules
translocate from the cytoplasm across the nuclear membrane into the nucleus to influence gene
and protein expression. Investigating translocation processes may help to understand complex
biological functions. It may also be used to analyze signaling events, or may even be employed
for diagnostics and therapy monitoring.

Manual and case-specific methods for quantitative translocation analysis are known, but fail
to be generally applicable. Therefore, I have developed a novel generic automated approach.
The method is based on microscopy images of biological samples. I have defined a generic
method to quantitatively express distribution of biomolecules in numeric descriptors. Herewith,
changes in distribution may be analyzed using different biological samples. Thus, the samples
analyzed do not necessarily have to belong to a time series.

Furthermore, not only cell cultures, but also tissue samples can be used for the analysis.
Evaluations of cell cultures are simpler due to homogeneity and spatial separation of individual
objects. However, structural polarity of the cells can be seen only in tissues.

I have developed two workflows based on numeric descriptors for the distribution of bio-
molecules. The first workflow uses structure detection in images to localize the objects for
evaluation. The second workflow avoids this complex operation by a structure-independent
information extraction strategy. Both workflows are generic and may be applied to quantify a
wide range of translocation processes.
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Kurzfassung

Biologische Prozesse sind komplex aufgrund ihrer Dynamik und struktureller Vielfalt leben-
der Organismen. Um dynamische Prozesse statistisch zu untersuchen, sollten zahlreiche Exper-
imente mit mehreren Beobachtungen durchgeführt werden. Dank der großen technologischen
Fortschritte werden Gigabyte von Daten erfasst, sowohl in der Forschung als auch in der In-
dustrie. Diese müssen analysiert und ausgewertet werden. Mühsame und subjektive manuelle
Analysen sind nicht mehr ausreichend, und automatisierte Auswerteverfahren sind unerlässlich.

Die Verteilung von Biomolekülen liefert wertvolle Informationen zum aktuellen biologischen
Zustand von Organismen. Der biologische Zustand hängt von der Aktivität von Biomolekülen
ab. Deswegen kann die Verteilung von Biomolekülen analysiert werden um Anomalien zu de-
tektieren. Das relativ junge Forschungsfeld Toponomics beschreibt die Gesetze der räumlichen
Anordnung von Molekülen. Mehrere in der Literatur beschriebene Auswerteverfahren wurden
automatisiert und standardisiert. Es gibt jedoch keine Standardauswerteverfahren für quanti-
tative Analyse eines wichtigen biologischen Prozesses wie die Translokation von Biomolekülen.

Translokationsprozesse sind lebenswichtig. Aufnahme von Substanzen in eine Zelle oder
deren Ausschluss stellen, zum Beispiel, eine Translokation dar. Außerdem translozieren Signal-
moleküle aus dem Zytoplasma durch die Kernmembran in den Zellkern, um Gen-und Protein-
expression zu beeinflussen. Untersuchung der Translokationsprozesse könnte helfen, komplexe
biologische Funktionen zu verstehen. Translokationsprozesse könnten auch analysiert werden,
um Signalwege zu identifizieren, oder sogar um Diagnose- und Therapieverfahren zu entwickeln.

Unterschiedliche Methoden für die quantitative Analyse von Translokation sind bekannt,
aber meist manuell oder fallspezifisch und damit nicht allgemein anwendbar. Deshalb habe
ich einen neuen generischen automatisierten Ansatz entwickelt. Das Verfahren basiert auf
Mikroskopiebildern von biologischen Proben. Ich habe eine generische Methode definiert, um die
Verteilung von Biomolekülen in numerischen Deskriptoren quantitativ auszudrücken. Hiermit
können Veränderungen in der Verteilung in unterschiedlichen biologischen Proben analysiert
werden. Dies ist vorteilhaft, da die Methode unabhängig davon funktioniert, ob Einzelbilder
vorliegen, oder Zeitreihen.

Darüber hinaus können nicht nur Zellkulturen, sondern auch Gewebeproben zur Analyse
verwendet werden. Auswertungen von Zellkulturen sind einfacher aufgrund der Homogenität
und räumlicher Trennung der einzelnen Objekte. Allerdings kann strukturelle Polarität der
Zellen nur in Gewebe sichtbar sein.

Ich habe zwei Workflows basierend auf numerischen Deskriptoren für die Verteilung von
Biomolekülen entwickelt. Der erste Workflow setzt Strukturerkennung in Bildern ein, um Ob-
jekte für Auswertung zu lokalisieren. Der zweite Workflow vermeidet diese komplexe Operation
durch eine strukturunabhängige Informationsextraktionstrategie. Beide Workflows sind gener-
isch und könnten angewendet werden, um eine breite Palette von Translokationsprozessen zu
quantifizieren.
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1. Introduction

Living organisms are among the most complex and at the same time the most interesting
subjects to study. Several common features distinguish them from the nonliving matter. They
are able to grow, to reproduce and to react to external stimuli. Their underlying complexity
is owing to the multi-level organization. All living organisms consist of cells, which are usually
too small to be visible by a human eye. Cells are organized in tissues, which build organs.
Individual organs constitute organ systems, which, in turn, compose whole organisms.

Such a complex organization is also very structured at the sub-cellular level. Sub-cellular
structures, such as cytoplasm, organelles and a nucleus (for eucaryotes) precisely subdivide
the matter which is essential to perform highly complex functions. Due to such a complex
organization, only very small organisms, like Escherichia coli have been completely studied.
Their genomes have been decoded, proteins have been identified and their interactions have
been studied. The great majority of the living organisms, however, is still too complex to be
analyzed in such a detail.

To study a biological process, molecular actors can be observed. Microscopy is one of the
methods widely used for this purpose. Images provide information on the morphology of a
biological sample and distribution of labeled biomolecules (DNA, RNA and proteins). Spatial
distribution of biomolecules is crucially important for the normal functioning of an organism.
They have to appear at the right time and the right place to be involved in the biological
processes they are required for. This balance is dynamic and conditions the state of the cells.
For example, transport proteins integrate into membranes to transport molecules from one
side of the membrane to another. Outside the membrane, they can not perform their function
anymore. Consequently, fewer molecules will be transported across the membrane. The existing
balance will be altered, which may cause various dysfunctions. This mechanism is used, for
instance, to regulate bile transport through the liver cells. Malfunction of this process results
in cholestatic liver diseases.

This simple example illustrates the connection between distribution and function of biomole-
cules. Toponomics is the field of research describing the laws of spatial arrangement. It accounts
for the temporal and spatial organization of biological molecules within the structures of the
organism [113, 145, 180]. Toponomics has been applied in various areas of biological research
for disease diagnosis, therapy monitoring, and evaluation of novel treatment options.

To study dynamic processes statistically, numerous experiments with multiple observations
have to be performed, and data have to be analyzed and evaluated. Many of such analyses are
still carried out manually. “While nothing can fully replace the expertise of a trained biologist,
observing many samples by eye is time-consuming, subjective, and non-quantitative” (Lam-
precht et al. 2007, p. 71). The results of such an evaluation will be error-prone simply due to
human factors. The automated evaluation is a better option, as it does not only save valuable
time, but also significantly speeds up the process and increases the number of measurement
points. Subjective decisions can be substituted by automated classification. These characteris-
tics are essential for any application to have a potential in high-throughput, pharmaceutical or
industrial use. Automated methods have to be developed to avoid manual labor-consuming and
imprecise image evaluation. This is an important prerequisite for accurate toponomics studies.

1.1. Translocation processes

Distribution of biomolecules is closely connected to and dependent on transport processes.
Transport of biomolecules is their movement from one location to another. Transport processes
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are ubiquitous in living organisms, underlying nerve conduction and muscle contraction, diges-
tion, kidney function and the nourishment of every cell in the body [52]. If biomolecules are
moving from one compartment to another, we talk of a translocation. Translocation processes
are also widespread. First, the compartmentalization principle leads to the presence of nu-
merous organelles. These are closed aqueous volumes that perform different functions and are
separated from the cytoplasm by membranes. Concentration of biomolecules in organelles can
differ from their concentration in the cytoplasm. This serves as a basis for translocation along
concentration gradients (across the membranes). Second, “[. . .] membranes are not just con-
tainers: they are coordinators and sites of major activity” (Cardelli 2005, p. 157). Biomolecules
frequently integrate into membranes, which are functional region by themselves. Third, sub-
stance exchange between the cell and the environment represents another translocation case.
Inclusion of a substance into a cell (endocytosis) or exclusion (exocytosis) proceed across outer
cell membranes.

According to this definition, all translocations relate to a membrane which either represents a
barrier or a compartment by itself. Quantitative analysis of translocation is useful for research
and has a potential for clinical applications.

1.1.1. Translocation quantification

To quantify a transport process, biological samples have to be prepared and evaluated. Mi-
croscopy images acquired at certain moments in time represent snapshots of molecule distribu-
tion in a continuous transport process. Although biological processes are three-dimensional in
their nature, they are often analyzed based on two-dimensional images to reduce information
volume and to speed up calculations.

Biomolecules are usually smaller than the resolution of the optical microscopy. Their distri-
bution can be evaluated by densitometry [16, 20]. Densitometry generally refers to the analysis
of optical density. When working with image data, densitometry extracts information on in-
tensity distribution. Biomolecules may be labeled with fluorophores, substances that can be
excited by light of a certain wavelength and that re-remit lower energy light. Densitometric
analysis of such fluorescence microscopy images yields data on the intensity distribution of the
fluorophores used. The concentration of the labeled biomolecules can then be inferred from
the measurement of the fluorescence intensity at the respective positions in the image. The
density distributions can be compared and provide the basis for the quantitative analysis of the
underlying translocation process.

Translocation of biomolecules is a continuous process. Its dynamics will be influenced by cer-
tain environmental changes. For example, liver cells (hepatocytes) respond to hyper-osmolar
medium by internalization of bile transporter proteins from membranes into cytoplasm. Hence,
biological samples can be prepared before and after such a treatment, representing idealized
initial and final states. Comparison of the bile transporter distribution in the samples be-
fore and after the exposure to hyper-osmolar medium should then quantitatively describe the
translocation that took place.

Evaluation of the distribution change is straightforward for the images from one time series.
They can be overlaid to quantify differences in densities. This analysis becomes much more
complex when evaluating a translocation based on two separate biological samples. In this case,
overlay of completely different images would not yield any information on the translocation.
Thus, another quantification method is required. For instance, translocation could be assessed
as the relative change in molecule densities. Therefore, distribution of biomolecules in each
image needs to be normalized with respect to some structure. Reference structure needs to be
stable and visible under various experimental conditions. Membranes may be used as reference
structures for translocation quantification.

Membranes need to be localized in images to quantitatively analyze translocation in relation
to them. This can be achieved by fluorescent labeling of the membranes and consecutive struc-
ture detection in images. Structure detection is often among the first image processing steps and
represents “[. . .] the most challenging part of image analysis” (Ljosa and Carpenter 2009, p. 2).
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Especially for biological images, it is very complex and is frequently very specific. Due to the
natural variety and structural diversity, one and the same structure may look completely dif-
ferent in the images taken from multiple biological samples. Furthermore, biological structures
can be damaged in the course of the sample preparation. Membranes, for instance, may be
distorted during freezing, cutting or fixation. They will therefore exhibit a structure differing
from the intact membranes. Image quality may also differ due to the settings of resolution,
focus or staining quality. Structure detection is already complex for individual cells and is even
more problematic for tissue sections.

Acceptably good structure detection has to account for such a natural diversity and a struc-
tural variety. A wide range of algorithms exist, ranging from a simple thresholding [64, 121]
to machine learning [107, 163]. A suitable algorithm usually requires prior knowledge on the
structure studied and is oftentimes very specific. An image processing workflow including so-
phisticated structure detection will thus be optimized for a certain biological structure and will
most probably not be applicable for another one. Unlike a human eye, automated algorithms
are not easily adaptable to the variation of the input data.

1.2. Aim

Translocations are widespread in living organisms, and their quantitative analysis may help to
understand vital biological processes. My aim is to develop generally applicable methods for
the quantitative analysis of translocation based on microscopy images of tissue samples.

Goal 1: I will synthesize a general approach to translocation quantification via structure
detection in images.

In this approach, I will employ structure detection techniques based on machine learning as
the first step. A suitable classification model is built every time based on the given input data.
Hence, the advantage of this approach is that it is not optimized for any specific biological
structure. Machine learning for structure detection in biological images is quite popular and
is used in powerful tools like Zeta [147] and CellProfiler [23]. This workflow for translocation
quantification will be referred to as the structure-based workflow.

Goal 2: I will develop an alternative method for quantitative translocation analysis that
does not require structure detection in images.

Instead, I will develop a method to identify membranes by analysis of intensity distribution of
their markers. For this purpose, I will extract 1D distribution profiles by line densitometry along
random lines. Peak detection in the distribution profiles extracted will yield the central position
of the membrane. It will be a general approach for densitometry-based translocation analysis
that does not rely on other structural features than membrane extension. This algorithm will
be more general than the first one, and will thus be applicable to numerous biological questions.
Its advantage over the first algorithm is the absence of a complex structure detection, which is
frequently too specific and may be slow. This workflow for translocation quantification will be
referred to as the random lines-based workflow.

These automated workflows are instances of a novel approach to the quantitative analysis of
translocation. In the next Section I will suggest a generic method for comparison of molecule
distributions by calculation of numeric descriptors.
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Figure 1.3.1.: Translocation of biomolecules analyzed on two biological samples (1 and 2).
Distribution profiles are extracted for the biomolecule of interest (labeled red).
These profiles are analyzed in relation to the membrane (labeled green).

1.3. Novel approach to translocation quantification

A translocation of biomolecules is assumed if their distribution differs in two analyzed biological
samples (see Figure 1.3.1). This distribution can be described as a complex function f :

distribution of biomolecules = f (time, initial biological conditions, biological structure,
concentration, external influence,..),

where most of the parameters are unknown, except for the time and external influence (ex-
perimental conditions). Neither all the parameters, nor the function f itself might be precisely
determined. However, the shape of this function may be extracted by densitometric analysis.
Line densitometry extracts 1D intensity vectors of fluorophores that biomolecules are labeled
with. Assuming the stoichiometric binding, concentration of the biomolecules is proportional
to the intensity of the fluorophores. Hence, the vectors extracted, or profiles, represent the
unknown molecule distribution function f . I use these profiles for the quantitative analysis
of translocation. This is the first information reduction step: translocation is analyzed on 1D
vectors which is computationally more efficient than evaluating 2D image data.

If membranes have already been detected in images, distribution profiles may be extracted in
relation to them (e.g. orthogonally). Each image, or a dataset of images, is now represented by
a set of distribution profiles. If translocation of biomolecules occurs in the sample 2 relative to
the sample 1, the shapes of the respective functions of molecule distribution (f2 and f1) will be
different. Therefore, comparison of such distribution profiles should indicate a translocation.

The result of the quantitative translocation analysis depends on the quality of the profiles
compared. If profiles were extracted at damaged biological structures or the noise level is
high, the results will be unreliable. Therefore, those profiles need to be selected that have
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been extracted at intact biological structures and that more clearly depict them. I will suggest
a profile selection strategy for this purpose. To avoid bias, selection will be performed on
the profiles of the membrane marker only, disregarding the corresponding distribution of the
biomolecule of interest.

As distribution functions (f1 and f2) are unknown, a general method has to be developed
for their comparison. This method should be able to quantify translocation of biomolecules
by analysis of distribution profiles extracted from images of different biological samples. For
this purpose, my approach uses numeric parameters of distribution profiles. These descriptors
mathematically express distribution of biomolecules in relation to the membranes. For instance,
the ratio of the marker intensity of biomolecules on the right and on the left side of the membrane
may be such a numeric descriptor for the situation in Figure 1.3.1. There, the ratio will be
larger in the sample 2 than in the sample 1.

Numeric descriptors are also used to quantitatively analyze nucleus-to-cytoplasm transloca-
tion [133, 171]. There, the ratio of the marker intensity in the nucleus relatively to its intensity
in the cytoplasm is computed. This ratio describes distribution of biomolecules and may be
used to indicate a translocation. Generally, construction of descriptors depends on a particu-
lar biological structure and an aspect of distribution that is assessed. I will suggest a general
approach for their development.

Descriptors will be used as parameters of distribution of biomolecules in the given images.
As numeric variables, descriptors can be compared statistically. Herewith, translocation of
biomolecules can be quantitatively analyzed. It will even be possible for the images which are
not a part of a time series, as descriptor calculation is performed for each image separately.
This is the core idea of the novel approach to translocation quantification.

Calculation of descriptors also has another advantage. It represents the second information
reduction step: translocation is now analyzed on single numbers which is computationally even
more efficient than evaluating 1D vectors.

1.4. Contributions

The basic workflow consists of generic procedures that are either applicable to a wide range of
translocations, or can easily be modified.

First, structure detection by machine learning adapts to the input data. Various biological
structures will be detectable by this algorithm.

Second, a novel algorithm avoiding structure detection is even more general by its implemen-
tation.

Third, the approach to describe distribution of biomolecules using numeric descriptors is also
generic. For many translocations, a set of numeric descriptors can be suggested to quantify
distribution of biomolecules.

Fourth, a descriptor represents the full shape of a one-dimensional distribution function by
a single numeric variable that captures any significant change in distribution as a change of
value. Information reduction to single numbers will speed up calculations.

Generally, the approach is expected to be able to quantify a wide range of translocations.
However, it is essential that biomolecules of interest, as well as reference structures (membranes)
can be labeled. The respective markers will be detected in images and used for the evaluation.
Owing to the advances in labeling techniques, these requirements should not exclude too many
translocations.

1.5. Potential scientific and clinical impact

Translocation is a vital biological process. Hence, its quantitative analysis may be useful in
research and in clinical practice. Translocation processes are complex and may be regulated on
various levels. For instance, translocation of bile transporters may be regulated on a short-term
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scale by aniso-osmolarity, while it is genetically regulated on a long-term scale. Many regulation
mechanisms are unknown, although they may provide insight to vital biological processes and
help to develop novel treatment options.

Translocation quantification may be applied to study regulation mechanisms. For example,
Cantore et al. [20] investigated mechanisms of hyperosmolarity-induced retrieval of bile trans-
porters from canalicular membrane in hepatocytes. Genes encoding certain proteins have been
activated or deactivated, and their influence on the retrieval of bile transporters was studied.
Quantitative translocation analysis was used to elucidate the underlying signaling events and to
identify proteins that mediate this translocation. Furthermore, as bile acids influence glucose
homeostasis and lipid metabolism, proteins mediating translocation of bile transporters may
also be important molecular actors in these vital biological processes.

This example illustrates that quantitative analysis of translocation may help investigating
regulatory pathways in systems biology. It may also be applied to evaluate the action of drugs
influencing translocation or be used for screening. Furthermore, I expect the method to find an
application in the diagnosis of diseases that are caused by or result in abnormal distribution of
biomolecules. Treatment progress could also be monitored by the same algorithm. The other
way round, biological and medical findings on the translocation processes may guide a further
development and modification of the automated quantification workflow. This may also help
to broaden the application area of the method.

This is a good example of a translational research which represents a bridge between the basic
and applied science [37, 106]. It is defined as the “[. . .] process of applying ideas, insights, and
discoveries generated through basic scientific inquiry to the treatment or prevention of human
disease” (Fang and Casadevall 2010, p. 563). “Translational research transforms scientific
discoveries arising from laboratory, clinical, or population studies into clinical applications to
reduce morbidity and mortality” (Translational Research Working Group.
http://www.cancer.gov/researchandfunding/trwg/TRWG-definition-and-TR-continuum,
accessed on 20.05.2013).

1.6. Study design

To validate the novel approach to translocation quantification, a set of algorithms has been
developed and tested on several biological translocation processes selected as models. The
automated workflows will be validated against the manual evaluation, which is routinely per-
formed by my collaboration partners. I will also compare the automated workflows to each
other in terms of statistical results and speed. Significance of the translocations detected by
the automated methods should be comparable to the one evaluated manually. Evaluations are
performed to test the general applicability of the novel algorithms. I will also show that the
results of the structure-based and the random lines-based workflows are of comparable quality,
as long as enough observation points are present in the images.

1.7. Model biological processes

The work of this thesis was carried out in the framework of a DFG-funded clinical research group
“Hepatobiliary transport and liver diseases” (KFO-217 [88]). Biological processes in hepatocytes
(liver cells) and their connection to cholestatic liver diseases are the central research topics of
this project. In particular, transport proteins and enzymes are observed that play a key role
in vital biological processes. Translocation of these proteins takes place in response to certain
external or internal factors. Quantitative analysis of these translocations is expected to aid
investigating the underlying biological processes.

6



1.7. Model biological processes

1.7.1. Diseases associated to the translocation processes studied

Liver is a multifunctional organ with a prominent role in metabolism and its dysfunctions can
lead to severe diseases. Cholestatic liver diseases constitute only a subset of possible disorders
but represent a major clinical and socio-economical issue [32, 74]. For instance, Progressive
Familial Intrahepatic Cholestasis (PFIC) is caused by dysfunction of bile transporters. PFIC
is heritable and often leads to death from liver failure [32].

Cholestatic diseases can also be caused as side effects of medication. The liver is constantly
exposed to the ingested products as it performs a vital barrier function [96]. Hence, drugs
directly damage hepatocytes, which may lead to hepatitis, cholestasis, cirrhosis, vascular lesions
and even liver failure [96].

Pregnancy can also be a reason for a cholestatic liver state. The Intrahepatic Cholestasis of
Pregnancy (ICP) is characterized by maternal pruritus and jaundice [56]. Interestingly, ICP is
more probable for women carrying twins, triplets or more [117]. Although maternal effects of
ICP are mild, there is a clear association between ICP and higher frequency of preterm delivery
and sudden fetal death [90].

Another disease associated to the studied translocation processes is diabetes. Diabetes is
a widespread disease that caused 4.6 million deaths only in 2011 [119]. It arises when blood
sugar level is high due to the impairment of its metabolism. The liver plays a key role in the
regulation of glucose output and uptake [79, 104]. Glucokinase is the enzyme responsible for
the initial step in the metabolism of glucose. Alterations of the glucokinase function can lead
to Maturity Onset Diabetes of the Young (MODY) [68]. MODY is usually detected during
routine screening, as the symptoms are not always clearly recognized [68, 170].

1.7.2. Translocation processes studied

Three translocation scenarios are studied in the KFO-217. The first two processes are move-
ments of bile transporter proteins between the plasma membranes and the cytoplasm of hep-
atocytes. Bile is produced in hepatocytes and is exported into a network of small channels -
canaliculi. It is then directed into the intestine to aid the process of digestion. The canalicular
and basolateral membranes of hepatocytes contain bile transporter proteins. For example, the
bile salt export pump (Bsep) and the sodium taurocholate cotransporting polypeptide (Ntcp)
are integrated into these membranes and export bile. Under certain conditions, these pro-
teins are internalized into the cytoplasm and can not perform the transport function anymore.
Up-regulated or down-regulated bile transport can lead to cholestatic or choleretic liver state.

The third translocation process investigated is a case of a nucleus-to-cytoplasm translocation.
The enzyme glucokinase moves from cytoplasm into the nucleus and back depending on the
glucose concentration in the medium. The more glucose is added, the more glucokinase translo-
cates from the nuclei (inactive state) into the cytoplasm (active state). Glucokinase performs
the first step in the glucose metabolism. Impairment of this process can lead to increased blood
glucose and result in diabetes.

These processes represent a translocation, as biomolecules move from one compartment to
another. In the first two processes, a membrane is directly involved. In the third process,
biomolecules are translocated across the nuclear membrane. Hence, these three translocations
are suitable test cases for the development of the automated quantification method that requires
a reference structure. Furthermore, these model processes represent two widespread transloca-
tion types. First, biomolecules frequently integrate into membranes, functioning as coordinators
and sites of major activity [21]. And second, nucleus-to-cytoplasm translocation is important
for regulation of gene activity by integration of special biomolecules into the nucleus from the
cytoplasm. Generally applicable quantification methods developed for these model processes
should suit to a wide range of other translocations.
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1.8. Structure of the work

As the approach is based on image data, Chapter 2 will start with an introduction to impor-
tant imaging techniques. A special focus is made on microscopy as one of the most popular
acquisition methods for biological images. Further, I will present an exemplary workflow for
the processing of biological images. This chapter is concluded by presentation of established
toponomics evaluation methods, including colocalization analysis and densitometry.

Chapter 3 describes the biological processes taken as models for my work and their importance
for the normal functioning of an organism. A typical manual analysis of translocation and
the established automated evaluation of the nucleus-to-cytoplasm translocation are presented.
And finally, I describe biological standard operating procedures developed by my collaboration
partners for the sample preparation.

The next Chapter 4 explains the novel approach to translocation quantification. I derive a
generalized model for frequent translocations proceeding orthogonally to a membrane. I suggest
quantitative analysis of such processes in relation to the membrane using numeric descriptors of
molecule distribution. Therefore, I define a workflow based on membranes detected in biolog-
ical images (structure-based workflow). Further, I suggest another workflow avoiding complex
structure detection in images by a different information extraction strategy (random lines-based
workflow).

To validate this approach, I have developed a set of algorithms. These are described in
Chapter 5. There, I present implementation details together with the optimized algorithm
parameters. First, the structure-based and the random lines-based workflows are implemented
for the translocations of membrane transporters. Further, the random lines-based workflow is
shown to be adaptable to a different type of a translocation process, namely to a nucleus-to-
cytoplasm translocation.

My methods are then evaluated and compared to the established methods in Chapter 6. I
also compare the developed algorithms to each other in terms of statistical results and speed.
Achievements and encountered difficulties are discussed in Chapter 7. Individual processing
steps are evaluated there, and their contribution to the good results is discussed.

Chapter 8 summarizes my findings. I will again discuss limitations regarding the covered
processes. And finally, future work is presented in Chapter 9.
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2. Acquisition, processing and toponomics
analysis of biological images

Millions of biological images are routinely generated and evaluated owing to the great techno-
logical advances. I will therefore start this Chapter with a short overview on the most popular
imaging approaches. A special focus is made on microscopy, as it is a well-established tech-
nique and is often the method of choice for numerous biological investigations. Automated
microscopes are also widely used in high-throughput industrial applications.

Acquired images represent a rich information source on a biological state. To extract this
information, images have to be processed and analyzed. Although a great variety of possible
acquisition techniques and biological analyses exist, a short processing workflow can be general-
ized for them. I will present this workflow and describe important image processing operations
constituting it. Segmentation of biological images, for instance, is discussed as it is among the
first and crucial steps for any further analysis.

Biological images represent an especially valuable information source, because distribution
of biomolecules can be studied on them. Distribution of biomolecules is directly connected to
biological functions and influences them. As presented in Chapter 1, toponomics is the field
of research describing the laws of spatial arrangement. I will thus continue by presentation
of some prominent approaches for a toponomics analysis. Several tools will be described that
have been developed to study distribution of biomolecules. Some of them are used to infer bio-
logical function or potential interactions of biomolecules from the location data. Nevertheless,
an important aspect like translocation of biomolecules has not been sufficiently studied yet.
Generally applicable translocation quantification methods are still lacking.

2.1. Biological imaging

Since ancient times, imaging has been the eyes of science. Modern imaging technologies allow
for examination of complete organisms, organs, tissues, cells and even sub-cellular structures.
Multi-dimensional and multi-parameter data can be acquired, visualized and analyzed. Imaging
is widely used to measure physical parameters such as concentration, tissue properties, and
surface area [44] and to explore a biological function [86]. The acquired data is a valuable input
for building biological and mathematical models. The other way round, existing hypotheses or
computational models can be verified by analyzing biological images.

“Biological material is organized in multiple layers of a structural hierarchy; thus, visualizing
biological structures and processes entails a multilevel approach that combines different kinds
of specimen preparation, visualization tools, and computational analysis” (Frank et al. 2002,
p. 85). In the following, several widely used imaging techniques will be briefly presented with
their application areas and limitations in the order of the spatial resolution increase.

2.1.1. Magnetic resonance imaging

Magnetic Resonance Imaging (MRI) is performed by applying a strong magnetic field (normally
1.5 or 3 Tesla for humans), which aligns the hydrogen nuclei spins in a direction parallel to the
field [86]. A Radio Frequency (RF) pulse is applied to the sample which makes the spins acquire
enough energy to tilt and precess, where an RF receiver can record the resulting signal [75]. The
spins realign parallel to the main magnetic field after the RF pulse was removed. The signal
strength decreases in time at a time constant T2 which is always less than the realignment
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constant T1. Magnetic gradients localize spins in space and, an MR image is formed. Spin
density differs among tissues in a heterogeneous specimen and enables the excellent tissue
contrast [75]. Increasing magnetic field strength improves resolution, but can disturb the visual
system and lead to peripheral nerve stimulation. Still, higher magnetic field strengths are
applied for animal studies (up to 9 Tesla).

Functional Magnetic Resonance Imaging (fMRI) is used to image brain activity in response
to specified stimuli. When a stimulus solicits a response from a certain area of the brain,
metabolism in that region increases, and more oxygenated hemoglobin is found in the region
[84]. The balance between oxygenated and deoxygenated hemoglobin is altered leading to a
change in image contrast [123]. The obtained image is then compared with measurements under
normal conditions, and a change is detected.

MRI is widely applied in both experimental and preclinical studies. Cell proliferation, bone
structure, even individual cells and organelles can be imaged owing to a spatial resolution of <
4 µm [86]. fMRI, in turn, is used to study the functions of the living brain in a non-invasive
manner. For instance, fMRI can determine the areas of brain tissue that are functionally
important. A brain tumor can thus be treated without damaging these areas [86].

MRI provides excellent tissue contrast and lacks ionizing radiation. However, high magnetic
field strength is problematic for humans because of arising physiological effects. fMRI needs
faster temporal resolution to acquire images of dynamic brain activity. Hence, the spatial
resolution is reduced to the order of millimeters.

2.1.2. Computed tomography

Organ components (fat, water, bone and air) exhibit different X-ray absorption, leading to
contrast in Computed Tomography (CT). In CT, a low energy X-ray source and a detector
rotate around the subject, acquiring volumetric data [86]. For animal studies, higher energy
X-rays can be applied than in the human scanners. Increased energy improves resolution, but
exposes the specimen to more ionizing radiation with adverse health effects.

CT tissue-tumor contrast can be improved by introduction of iodinated contrast agents. CT
can be used to image lung tumors and bone metastasis, given its fast imaging time and high
spatial resolution (12-50 µm). Its spatial resolution is sufficient to visualize fine anatomical
details. Still, repeated imaging for humans are not recommended due to a relatively high
radiation dose of CT [105].

2.1.3. Microscopy

Microscopy provides greater spatial resolution (down to nm) allowing for imaging of individual
cells, organelles and even molecules. It is a powerful tool for information extraction and analysis
of the biological data. Stoffler et al. classify primary advantages of microscopes into three
categories: “1) they directly produce images rather than diffraction patterns or spectras; 2)
they enable us to explore biological structure at all levels from the macroscopic to the atomic
scale; and 3) they allow biological matter to be imaged in its functional environment” (Stoffler
et al. 1999, p. S195).

Microscopy has been extremely important for biological experiments and evaluations, and
the microscope technology has evolved mightily since the first single-lens instruments [162].
It was the first imaging technique developed for studying small objects otherwise invisible for
the human eye. There exist three main branches of microscopy, namely, optical, electron and
scanning probe microscopy. Electron microscopy is the one that provides the best resolution
(< 1 nm). However, neither 3D information extraction, nor immunolocalization, nor live-cell
imaging are possible [143]. Here, I will consider only the optical microscopy, as its spatial
resolution is sufficient to localize biomolecules.

The simplest type of the optical microscopy is bright field microscopy. Its principle is illus-
trated in Figure 2.1.1. A whole specimen (object O) is uniformly illuminated by light which
has been focused by condenser. The first inverted image of the object is created after the
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Figure 2.1.1.: Optical trains of a microscope system (from Davidson et al. [31]).

(a) (b)

Figure 2.1.2.: Airy disc (a) and point spread function (b) (from Schmolze et al. [143]).

magnification by an objective lens (Lob). This image (O
′
) is projected into the intermediate

image plane of the microscope [31]. Further magnification of the image O
′

is performed by the
microscope ocular (Ley) yielding a final image of the object (O

′′
). This image O

′′
can be pro-

jected either on the retina of the observer’s eye or recorded by a charge-coupled device camera.
The recorded value at each pixel in the obtained digital image is a digitized measurement of
photon flux at a specific point. It corresponds to the voltage generated by electrons liberated
by photons interacting with the detector surface [159]. The described bright-field microscopy
is typically used on thinly sectioned materials due to low tissue penetration by light.

Optical resolution is known to be limited by the wave nature of light [143]. Diffraction is
caused by the interference of light waves as they go through the optical system. This results in a
point light source being visible as a fuzzy circle (Airy disc) after passing through a microscope
(Figure 2.1.2, (a)). The point spread function (PSF) describes its corresponding intensity
distribution and is shown in Figure 2.1.2, (b).

The resolution is determined by the shape of the PSF. The narrower the PSF, the smaller is
the distance between the closest points that can still be distinguished as two separate objects
(see Figure 2.1.3). This distance was described by Ernst Abbe [112, 124]:

x =
λ

2n · sinα
, (2.1)

where λ is the wavelength of light, n is the refractive index of the medium and α is a half of
the angular aperture of the lens. The numerical aperture (NA) of an optical system is defined
by the denominator of the Equation 2.1. The practical limit of the resolution is approx. 200 nm
in the X-Y plane, and approx. 500 nm in the Z-plane as it is described by a different formula
due to its inherent shape [50]. However, recent advances in super-resolution microscopy have
changed the limits of optical resolution to approx. 10 nm, allowing visualization of individual
molecules as they dynamically interact [54].
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Figure 2.1.3.: Airy discs at the limit of the resolution and those which can not be resolved
and appear as one spot (from Davidson et al. [31]).

Figure 2.1.4.: Simplified Jablonski diagram.

Fluorescence microscopy

There exist numerous specialized types of light microscopy. For example, fluorescence mi-
croscopy provides contrast enhancement by labeling of biomolecules. Special substances are
used which absorb and emit light. Such fluorophores enter an excited state upon photon ab-
sorption and, after a certain lifetime, can return to the ground state by emitting lower-energy
light that is observed as fluorescence [25]. Figure 2.1.4 illustrates a simplified version of the
Jablonski diagram describing the transition of electrons during absorption and emission of light
[60].

Fluorescence microscope has to separate the excitation light irradiating the specimen from
the much weaker re-radiating fluorescent light [31]. This principle is illustrated in Figure 2.1.5.
A dichroic mirror is a key element of this scheme, as it is capable of reflecting light of certain
wavelengths. Due to this feature the emitted light can be separated from the higher energy
(and shorter wavelength) illuminating light.

There exist two general types of fluorescence: primary and secondary. Primary fluorescence,
or autofluorescence, is observed when a biomolecule itself is a fluorophore. Secondary fluores-
cence is achieved by labeling of initially not fluorescing biomolecules. As most of the molecules
are non-fluorophores, development of labeling techniques has been of a great importance. The
use of fluorophores has made it possible “[. . .] to identify cells and sub-microscopic cellular
components with a high degree of specificity amidst non-fluorescing material” (Davidson and
Abramowitz 2002, p. 35). Furthermore, the presence of fluorescing molecules is detectable even
if they are below the limits of the spatial resolution.

Although some fluorophores can attach themselves to organic matter, most of the specific
labeling is done based on antibodies. This technique is called immunofluorescence and uses the
specificity of antigen-antibody reaction to target fluorescent dyes to specific biomolecules [30].
Two general types of immunofluorescence are the direct and the indirect one. Primary, or direct,
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Figure 2.1.5.: Setup of a fluorescence microscope (from BIOImaging [10]).

immunofluorescence is referred to when a fluorophore is attached to one (primary) antibody.
This antibody should be specific against the biomolecule that has to be labeled. Secondary, or
indirect, immunofluorescence is applied when due to some reasons a direct labeling is impossible.
Therefore, the primary antibody against the target biomolecule is recognized by and attached
to the secondary antibody which is already labeled with a fluorophore [108]. The advantage
of this method is that greater variety of fluorophores can be used for the target biomolecule
labeling. However, additional preparation steps make this approach more sensitive and error-
prone. Immunofluorescence is now widely used for labeling of biomolecules. “Fluorescence
microscopy has become one of the most powerful tools for elucidating the cellular functions of
proteins and other molecules” (Dunn et al. 2011, p. C723).

Labeling of biomolecules with different fluorophores enables sophisticated analyses, such as
colocalization, for instance. There, a pixel-precise overlay of different color channels is required
to deliver correct results. Multi-color fluorescence microscopes have thus to compensate shifts
between the image channels that are caused by chromatic aberration.

Chromatic aberrations arise because lenses have different refractive index for different wave-
lengths of light. Consequently, all wavelengths can not be focused to the same convergence
point. Chromatic aberration can lead to the different wavelength focused at different points of
the optical axis (longitudinal) or at different positions in the focal plane (lateral). An apochro-
matic lens can be used for correction. Still, even the best optical microscopes exhibit chromatic
aberrations to some extent [91]. Hence, for a precise analysis, an error of a particular imaging
system has to be measured and mathematically corrected in 3D.

Confocal fluorescence microscopy

In wide-field fluorescence microscopy, regardless of where the microscope is focused vertically
in a specimen, illumination causes the entire specimen thickness to fluoresce. In a given two-
dimensional (2D) image more than 90% of fluorescence is out-of-focus light, reducing optical
resolution and contrast. In comparison, “[. . .] confocal microscopy, a form of optical sectioning
microscopy, acquires images of thin slices of a thick specimen by removing the contribution
of out-of-focus light in each image plane” (Conchello and Lichtman 2005, p. 920). Therefore,
a point illumination and a point detection is used producing an “image” of one point of the
specimen [175]. In order to obtain an image of a finite region of the specimen it has to be
scanned. A laser scanning confocal microscope enables both the point illumination and the
scanning functionality [124].

A laser scanning confocal microscope focuses exciting light directed by the scanning mirror
onto a small area of the specimen. The illuminated area emits light, which is then separated
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(a)

(b)

Figure 2.1.6.: The confocal principle. (a) Setup of a confocal microscope; (b) optical trains
(from Conchello et al. [27]).

from the excitation light by the dichroic mirror and the barrier filter. The emitted light that
passes through the pinhole of the detector is then recorded for the particular illuminated spot
(see Figure 2.1.6, (a)). Figure 2.1.6, (b) illustrates the confocality principle. Solid lines show
the light emitted from the focal plane. This light is then focused on the conjugated image
plane where the confocal pinhole is located. In contrast, the light emitted from the points
deeper or less deep than the focal plane in the specimen (the so called out-of-focus light) is
focused elsewhere (behind or before the confocal pinhole). Consequently, this light does not
pass through the detector pinhole and is filtered out. Scanning the focused spot across the
specimen results in an optical section of the specimen at the focal plane.

Due to the elimination of the out-of-focus light confocal microscopy provides better reso-
lution and contrast than the one achievable by a wide-field method. By changing the focal
plane, optical sections of the specimen can be imaged at different depths, and a 3D represen-
tation can be reconstructed [143, 175]. Such z-stacks (series of images acquired at the same
X, Y coordinates while varied Z position) are then processed, rendered and evaluated as a 3D
dataset. Figure 2.1.7 illustrates an example of confocal optical sections and the resulting 3D
reconstruction.

Confocal microscopy was first described in the 1950s by Minsky and is now a mature technol-
ogy with many commercial implementations. Unfortunately, a relatively powerful illumination

14



2.1. Biological imaging

Figure 2.1.7.: 2D and 3D confocal imaging. (a) - (d) Individual optical layers with or without
processing; (e) MIP of the z-stack; (f) 3D reconstruction of the z-stack (from
Gerlich et al. [58]).

source is usually needed in all confocal designs, since the pinhole passes only a small amount of
light, and this can be damaging to live cells [143]. Another problem is an irreversible change in
the molecular structure of fluorophores, leading to a loss of fluorescence (photobleaching) [60].
However, confocal microscopy provides unique means for biological analysis and is oftentimes
the only applicable technique.

Choosing among various microscopy techniques

A digital microscopy image can be considered a 2D data array. 2D bright-field images differ
from confocal images in their acquisition speed. To image the whole sample by confocal micro-
scope, it has to be scanned line by line. Resulting problems like photobleaching and time- and
cost- requirements have to be weighted with the obtained benefits, namely better contrast and
resolution. Especially in high-throughput applications the simplest method should be chosen
which provides enough data of acceptable quality.

In most cases confocal microscopy is preferred due to its increased optical resolution. A
possibility to acquire 3D data (z-stacks) is oftentimes another important argument in favor of
the confocal technique. Although all biological processes are three-dimensional by nature, many
of them can be studied based on 2D images. However, for numerous biological questions 3D
confocal microscopy remains the only suitable analysis method. For example, a clear benefit
of confocality was shown when a biological question required 3D imaging and analysis (e.g.
neuronal systems [100, 178], vascularity [80, 89], intestine structures [53], etc.).

3D fluorescence imaging requires expensive equipment and is quite slow. Samples are exces-
sively exposed to light due to the need to collect several Z-planes. This leads to problems with
photobleaching of fluorophores, phototoxicity, and a slow 3D frame-rate [50]. 4D imaging is
even more complicated and problematic, as 3D data has to be collected for each time point.
Consequently, 2D data is preferred over 3D and 4D data if it provides sufficient information.
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Figure 2.2.1.: Typical workflow for processing and analysis of biological images.

2.2. Image processing and analysis

“With increased imaging throughput and large-scale data acquisition, the challenge of image
interpretation and information extraction has also shifted from visual inspection or interac-
tive analysis to more automated methods” (Ruusuvuori et al. 2010, p. 1). Therefore, the
development of such methods has become one of the central research topics.

Biological image processing and analysis differ from other application areas due to the nat-
ural complexity and variation of biological samples. Low signal to noise ratio, complex object
morphology and variety of imaging methods make analysis of biological images especially chal-
lenging [41]. Despite countless possible image acquisition and analysis scenarios, there may
be a generalized workflow. Figure 2.2.1 illustrates a short typical workflow for processing and
analysis of biological image data. In the following, I will present core methods to perform these
steps.

2.2.1. Segmentation, or foreground - background detection

Segmentation of an image can be defined as its partition into different regions, each having
certain properties [130, 153]. It is often among the first image processing steps and represents
the most challenging part of image analysis [101]. Segmentation can help to find those regions
in an image where a certain biological activity of interest is taking place [86]. Segmentation
starts by distinguishing foreground from background. Objects can be detected based on their
intensity boundaries or other, more sophisticated measurements [159].

Thresholding

Foreground pixels are those which belong to the imaged biological objects. They are therefore
expected to exhibit a higher intensity than background pixels. Hence, thresholding of an image
may yield the foreground and background regions (brighter and duller than the threshold,
respectively). Thresholding is one of the most important approaches to image segmentation
[64].

Despite the simplicity of this principle, its implementation is often quite complicated. The
choice of the threshold strongly influences the segmentation results. It may be chosen manually
following visual inspection. In this case, it will be subjective and will rely on the users’ empirical
knowledge about the input images. Otherwise, it may be calculated automatically from the
intensity values. For example, Otsu developed a thresholding algorithm based on the shape of a
histogram [121] (see Figure 2.2.2 (a), (b)). His algorithm chooses the threshold that minimizes
the weighted sum of the intensity variance within each of the pixel classes (foreground and
background) [101].

Because of variations in staining and illumination, choosing a single threshold for all locations
in all images is not always effective [101]. Therefore, separate thresholds may be defined for
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(a) (b) (c)

Figure 2.2.2.: Initial confocal fluorescence microscopy image (a) segmented by Otsu thresh-
olding (b) and machine learning (c). Training examples in the initial image:
red - foreground, blue - background.

each image channel in each image. A global threshold may be set for each image, or local
thresholding may be performed. Local, or adaptive, thresholding algorithms calculate different
thresholds for different regions in each image. Intensity values of neighboring pixels are taken
into account. Such methods are advantageous if background intensity is uneven or biological
samples were prepared differently.

Machine learning

Another type of prominent segmentation algorithms is based on machine learning. Over the
past 10 years, well-established machine learning tools have been successfully applied to analyze
the microscope images [159]. They showed that various biological questions from single cell
analysis to high-throughput screening can be solved [179]. This approach is implemented in the
image processing software Zeta [177] used in my work.

The Zeta software performs foreground detection using supervised machine learning (e.g.
linear discriminant analysis [176]). A user has to manually label several training examples of
the representative foreground and background regions (see Figure 2.2.2 (a)). A set of texture
features is calculated for the pixels belonging to these areas [67, 152]. Therefore, a square
window is centered at each of the pixels from the example regions. The window size depends
on the size of the analyzed structures. Features like mean intensity, its standard deviation and
others are computed. Finally, a classification model discriminating between the fore- and the
background is automatically learned [140, 147]. This model is then applied to all the rest pixels
of the image leading to the foreground detection (see Figure 2.2.2 (c)). High intensity fragments
with high contrast to surrounding pixels are discriminated from low contrast background [64].
If a dataset is homogeneous and all images have a similar intensity range, the foreground
detection can be trained on one image and applied to the whole dataset. For inhomogeneous
data, training examples from several images have to be used.

Segmentation of biological images represents a particularly complex task. First, the natural
variety of biological structures complicates their detection based on some common physical
properties. Even similar structures may be damaged in the course of sample preparation.
For example, membranes may be distorted while freezing, cutting or fixing of a biological
probe. Due to these and other reasons, their appearance in bioimages may significantly differ.
Consequently, segmentation methods based on thresholding or shape detection may easily fail.
Machine learning algorithms, in turn, build a model according to any input data given.

Image features

Machine learning algorithms are based on calculated image features. These are numerical
descriptors computed directly from an image to represent its important aspects [149]. Fea-
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(a) (b) (c)

Figure 2.2.3.: Nuclei and cytoplasm segmentation. From the initial image (a) nuclei are seg-
mented (b). Corresponding cytoplasm masks are computed for each nucleus
(c) (from Morelock et al. [109]).

tures may be calculated from one or more channels, require initial image segmentation or not.
Field-level features can be computed when the patterns in different cells within the field are
fairly homogeneous. Example features include Haralick texture features [67], Zernike moment
features, morphological features, object-based features, wavelet and frequency transform coeffi-
cients, threshold adjacency statistics, features from multiresolution subspaces, and others [149].
Morphological and Haralick texture features often lead to good classification results.

However, not all features are useful for every classification. An excess of included features
may inhibit performance due to their redundancy. Hence, feature subset selection has proven to
be beneficial. It selects the most informative and the most relevant to the current discrimination
features [107]. Alternatively, new sets of features may be created as combinations of the original
ones. The initial features are projected to a lower dimensional space and its bases are computed
by solving an optimization problem [149]. For example, in linear discriminant analysis features
are weighted to yield a lower dimensional feature vector [176].

Seeded approaches

Numerous segmentation approaches proceed in two steps. First, so called seeds are identified.
They will be used as references to create objects. Further, foreground regions (or objects) are
grown around these seeds. Human operators used to define the seeds manually, but this method
is not applicable for numerous images generated in a screening study [149]. Hence, automated
methods for seeds segmentation are preferred.

In biological images, cells may be identified based on previously detected nuclei. For example,
Morelock et al. [109] used Voronoi segmentation [81] for this purpose. First, stained nuclei were
automatically segmented using histogram-based thresholding [76]. Masks of the corresponding
cytoplasms were computed as intersections of circles centered at the detected nuclei and Voronoi
tesselation polygons (see Figure 2.2.3). This method is frequently applied to quantify nucleus-
to-cytoplasm ratio of biomolecules (see Section 3.3).

Seeded watershed segmentation [130] is also widely used for object detection in biological im-
ages, especially for cells in vitro [127]. Seeded watershed segmentation works with the intensity
image as a landscape. The watershed by flooding proceeds by distributing water from regional
minima across the relief. Barriers are calculated from intensity values. Seeds, for instance, may
represent holes. Water will thus create bassins centered at the seeds. When water catchments
from neighboring bassins meet, a watershed is built. A set of such watersheds represents the
segmentation of an image [127].
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(a) (b) (c) (d)

Figure 2.2.4.: Image processing filters. (a) Initial image (from Weltchronik [172]) is processed
using median filter with radius 3.0 (b), median filter with radius 5.0 (c), or
Sobel filter for edge detection (d).

2.2.2. Filtering

Filtering is widely used for image processing. Filters can be generally classified into low-
pass, high-pass, band-pass and band-reject categories. Low-pass filters preserve low-frequency
signals and make an image smoother. Gaussian filter and median filter are among the most
widely applied smoothing techniques. In the Gaussian filter, a matrix of weight coefficients
sampled from the Gaussian function is applied to an image. A median filter is a nonlinear
signal processing technique developed by Tukey [130, 168] for efficient suppression of “salt and
pepper” noise. Median filter on 2D data proceeds as follows. First, an odd length of a square
window L is defined. Second, this window is centered at the current pixel. A median value of
the covered pixels is computed. And finally, the value of the current pixel is substituted by the
computed median. The larger L, the more is the image smoothed (see Figure 2.2.4 (a) - (c)).

Median filtering can also be applied to 1D data. Therefore, a sliding window with an odd L
is centered at every pixel. The current pixel value is then replaced by a median computed from
the pixels covered by the window [153].

High-pass filters sharpen an image by preserving high-frequency signals. For instance, a Sobel
filter detects edges as high-frequency intensity variations. Figure 2.2.4, (d) illustrates a result
of a Sobel operator for the initial image in Figure 2.2.4, (a).

Numerous other filters exist for different needs of image processing. These filters represent
only a part of a great variety: convolution, deconvolution, blurring, deblurring, contrast en-
hancement [64], etc.

2.2.3. Noise removal

“Due to limitations in imaging technology, an accurate representation of the biological sample
can be degraded by several error sources, resulting in a noisy observation of the underlying
object” (Ruusuvuori et al. 2010, p. 3). There exist numerous image correction and noise
removal options to improve the segmentation results.

Morphological operations

Morphological filters are frequently applied to extract some objects in images while removing
the other ones. Image erosion and dilation are the basic operators which can be combined to
perform most of the morphological operations [64].

Both erosion and dilation require a so called structuring element (SE) to process an image.
The SE is a set of a known shape with which the image is probed [153]. SE must have the same
dimensionality as the image under study. For 2D images, SE will also be two-dimensional. The
most frequent shapes of 2D SEs are square, diamond and disk.

19



2. Acquisition, processing and toponomics analysis of biological images

(a) (b) (c)

Figure 2.2.5.: Dilation (b) and erosion (c) results for the initial set of objects (a) using a disc
structuring element (from What-when-how [173]).

(a) (b) (c)

Figure 2.2.6.: Morphological opening (b) and morphological closing (c) results for the initial
set of objects (a). White - foreground, black - background.

Dilation of an image results in a set of locus points where the structuring element hits the
set [153]. Figure 2.2.5 illustrates an initial set of objects (A) that is probed with a disk SE (B).
The dilated set A includes the locus points where B touches A.

The dual operator of dilation is erosion. Erosion of an image results in a set of locus points
where the structuring element fits the set [153]. These are the points which are included in A
when the locus of the SE is placed at one of the points belonging to A. Figure 2.2.5, (c) shows
the eroded set of points which were hit by the SE.

Erosion deletes the smallest connected components which never fit the SE (see Figure 2.2.5,
(c)). Hence, erosion may be applied for the removal of small objects belonging to noise. How-
ever, erosion does not only delete small objects, it also shrinks all the other objects. Once an
image has been eroded, there exists in general no inverse transformation to get the original im-
age back [153]. This effect may be partly compensated by combination of dilation and erosion
operations. In particular, morphological opening recovers most structures lost by the erosion.
The eroded image is dilated using the same SE. This does not recover the smallest removed
objects, but compensates for the shrinkage of the other ones. The SE rounds the set from the
inside: small structures extending into the background are removed [153], and the contour of
an image is smoothed [64]. Figure 2.2.6 illustrates a result of this operation.

Morphological opening has a filtering effect by removing all small structures that can not
contain the SE. Its result depends on the size and the shape of the SE. Morphological closing
is the dual operator of the morphological opening [39]. It aims to recover the initial shape of
the dilated structures. Hence, it is performed by an erosion of a dilated image. Morphological
closing rounds the set from outside [153], closing small holes in foreground objects (see an
example is in Figure 2.2.6, (c)). Narrow breaks are also fused, and gaps in the contour are filled
[64].
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Thresholding

Morphological operators are frequently used for image filtering. Images may also be cleaned
by thresholding. Thresholding of intensity values has already been described for segmentation
(see Section 2.2.1). Object size can also be thresholded to delete those whose area is too small.

2.2.4. Object detection

Although thresholding enables distinguishing between background and objects, one more step
is required to delineate each structure [13]. There exist numerous methods to identify objects
in the foreground regions. Here, I will only shortly present two of them.

Individual objects may be found by a sudden variation of intensity values when linearly scan-
ning an image [13]. The first derivative of such a line scan will be equal to zero inside an object
or a background structure. When passing between objects and background, this derivative will
be different from zero. This approach is implemented in edge-detection algorithms, such as
Sobel and Laplacian filters [64, 134, 156]. If the intensity distribution is non-uniform, these
filters may encounter problems.

Other methods explore the topological relationship of adjacent pixels (e.g. connexity analy-
sis [128]). There, a processing starts with one foreground pixel (reference pixel). A number is
assigned to it and its neighborhood is expected (8 pixels in 2D or 26 voxels in 3D). All adja-
cent foreground pixels are then assigned the same number as the reference pixel. This process
is repeated with other foreground pixels, until all of them get a number assigned. Herewith,
objects or connected islands of pixels are tagged with the same number. This method is appli-
cable to any size and shape of the target structures and requires no a-priori knowledge of those
parameters [13].

2.2.5. Skeletonization

Once the foreground is segmented, the identified objects can be analyzed. The shape of an
object represents one of the important features that can be extracted. The region-based shape
representing the general form of an object can be obtained by skeletonization. This process
yields a skeleton, or a medial axis representing the condensed information on the objects shape
while preserving its homotopy [153]. The purpose of skeletonization for the 2D case is to
reduce 2D discrete objects to 1D linear representations preserving topological and geometrical
information [7].

Skeletonization plays a central role in a broad range of problems in image processing [64]. For
instance, it is applied for processing of scanned documents. There, to identify the characters,
initial images have to be skeletonized to yield 1 pixel thick lines. Further, such lines can be
vectorized and classified. In biological image processing, skeletonized images are used for object
tracing (e.g. vasculature, neurites, etc. [149]). In the context of my work, skeletons will indicate
directions of the membranes labeled.

The generated skeletons are expected to have several desirable properties. First, the skeleton
must preserve the topology of the original image. In other words, the Euler number should be
the same before and after skeletonization. Second, the skeleton should be made of one-pixel-
thick objects, i.e. be as thin as possible. Third, the skeleton should lie in the middle of the
shape. Fourth, skeletonization should be rotation invariant. Fifth, it should be possible to
reconstruct the original image from the skeleton [7].

Various skeletonization techniques exist, differing in their complexity and computational
cost. They can be classified into four types [8]. The first are thinning algorithms (e.g. wave
front/grassfire transform and thinning). They iteratively remove border points, or move to the
inner parts of an object in determining an object’s skeleton. The second type is represented
by algorithms based on the Voronoi diagram. Such methods search the locus of centers of the
maximal disks contained in the polygons with vertices sampled from the boundary. The third
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(a) (b) (c) (d)

Figure 2.2.7.: Euler characteristics for topology preservation. (a) v = 11, e = 15, f = 5, E
= 1; (b) v = 10, e = 13, f = 4, E = 1; (c) v = 11, e = 14, f = 4, E = 1; (d)
v = 10, e = 11, f = 3, E = 2 (from Nischwitz et al. [114]).

type of algorithms is based on a distance map. And finally, the fourth type of methods uses
mathematical morphology.

Different skeletonization techniques lead to different skeletons [128]. Some are more precise,
but computationally expensive, others are less complicated. I will present here one of the
simplest algorithms, namely, skeletonization according to the Euler characteristics [114]. It is
based on the calculation of the Euler number (E) which reveals the connectivity and topology
of the objects:

E = v − e+ f, (2.2)

where v is the number of vertices, e is the number of edges and f is the number of faces. For
2D objects E = 1. Two objects are considered topologically equivalent if their E is the same.
Hence, a foreground pixel can be deleted (turned into background) if this operation does not
change E. To test this, E is calculated for 3 × 3 neighborhood of the current pixel.

Figure 2.2.7 illustrates two examples for this operation. A binary image in Figure 2.2.7, (a)
has E = 1. Deletion of the central pixel leads to the image in Figure 2.2.7, (b) which has E =
1. Here, E has not changed and this central pixel can be removed. Figure 2.2.7, (c) has E =
1. Deletion of the central pixel leads to the image in Figure 2.2.7, (d) which has E = 2. In this
case E has changed and this central pixel can not be removed.

The skeletonization algorithm proceeds by sequentially scanning the image and examination
of each pixel. Those pixels, whose deletion does not change the E, can be removed. Two
remarks have to be made on this algorithm. First, line ends can be treated separately. If a
full line length is to be preserved, then pixels having only one foreground neighbor will not be
removed. Second, the order of pixel processing influences the skeletonization result. Therefore,
the algorithm proceeds in multiple sub-iterations. Only a subset of pixels is considered in each
sub-iteration. For example, pixels having both odd or both even coordinates can be processed
first [114].

2.2.6. Pruning

The generated skeletons frequently contain inaccurate or redundant branches. The skeleton
generating approaches suffer from the fact that a small protrusion on the boundary may result
in a large skeleton branch. “This is an intrinsic problem of the definition of the skeleton, since
the mapping of boundary points to the skeleton points is not continuous” (Bai et al. 2007,
p. 451). Pruning of a skeleton can be performed to delete such branches.

Pruning methods can be classified into two categories. First, object boundaries can be
smoothed before the skeletonization. Second, skeleton points can be selectively removed, for
instance, based on the assigned significance measures. Propagation velocity, maximal thickness,
radius function, and axis arc length can be used as such measures [148].

Alternatively, pruning based on morphological operations can be used, for instance hit-and-
miss transform [64] with two following SEs (see Figure 2.2.8). The obtained skeleton is cleaned
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Figure 2.2.8.: Structuring elements that may be used for pruning. 1 - Foreground; 0 - back-
ground; blank - any pixel.

(a) (b) (c)

Figure 2.2.9.: (a) Initial foreground object; (b) its skeleton; (c) pruned skeleton.

by deleting short branches that are attached to the main skeleton line. Pixels of the shorter
branches are deleted one by one from four directions until no further deletion is possible. Pixels
of the skeleton are iteratively scanned in four directions (top-to-bottom, left-to-right, bottom-
to-top, right-to-left) to detect and delete end points. Finally, only those parts of the skeleton
are left that extend in the direction of the long axis of the segments (see Figure 2.2.9).

2.3. Software tools for image analysis

Bioimaging has become an integral part of any biological research. The more data are acquired
and the more biological questions are investigated, the more different analysis techniques are re-
quired. There exist a great variety of image processing and analysis toolboxes, both open-source
and commercial ones. They differ in available functionalities, usability, the main application
focus, etc. They offer manual, assisted or completely automated methods for image processing
and analysis. Here, I will briefly highlight features of some prominent examples.

Numerous programs are being developed to solve a particular biological problem. Such niche
tools are very specific and frequently not applicable to different biological samples. Other
generalist tools are more flexible, but may still be focused on one or another image analysis
aspect. For instance, Amira [6], Imaris [78] and ImagePro Plus [77] are commercial tools which
are often sold together with microscopy hardware. They offer a wide range of processing and
visualization functions. However, being commercial and proprietary, they are usually black-
box algorithms for the end users. Hence, they can neither be optimized nor extended by the
community.

Open-source tools are often developed in a framework of some research project and so may also
be quite specialized. Nevertheless, they can be extended by the users and thus are constantly
growing. BioImageXD [82, 83], ImageJ [1, 144] and CellProfiler [23, 98] are among the widely
used tools.

ImageJ has been used for the longest time and its functionalities have been greatly extended.
Owing to its rich history and pioneering status, ImageJ can perform a wide variety of com-
mon (and many specialized) image-processing and image-analysis tasks, particularly in the life
sciences [46]. Still, ImageJ is focused on 2D and 3D data which complicates multidimensional
analysis. In turn, BioImageXD is focusing on processing of multidimensional data. It is also
known for its 2D and 3D visualization techniques. Furthermore, ImageJ was developed for
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Figure 2.3.1.: Structure detection using the Zeta software. Initial microscopy image (left)
with training examples for the fore- and background labeled by an expert (red
and blue, respectively); detected fore- and background regions (right).

the analysis of individual images. Processing of high-throughput data is possible only with
additional programming.

CellProfiler is a flexible software designed for high-throughput image analysis [23]. It is
used to address several application areas, including intensity and morphology measurements,
phenotype scoring by machine learning and object tracking [46]. CellProfiler is organized in
a modular basis, so that workflows can be created by a user. Numerous image processing
modules are available and may be combined for a specific research project. CellProfiler enables
illumination correction and segmentation. The identified objects can further be quantified
and classified. A large number of features is calculated for each identified cell or subcellular
compartment, including area, shape, intensity, and texture [23].

2.3.1. Zeta: machine learning for image processing

A powerful software for trainable image analysis (Zeta [177]) was developed at the Fraunhofer
Institute for Applied Information Technology (FIT). This software can analyze biological images
(e.g. microscope images) and extract rich information on the objects depicted. An important
feature of the Zeta software is application of machine learning algorithms in numerous image
processing functions.

Image processing with Zeta starts with the foreground-background detection. This function
is based on supervised machine learning algorithms (e.g. linear discriminant analysis [176]).
A user has to manually label several training examples of the representative foreground and
background regions (see Figure 2.3.1). A set of texture features is calculated for the pixels
belonging to these areas [67, 152]. A classification model is learned and applied to the rest of
the pixels. A model can be learned on several images and applied to a whole dataset for batch
processing.

Further, Zeta can detect and count individual objects based on the foreground detection
results. Moreover, it can classify the detected objects into any number of the given classes
(e.g. live and dead, bright and dull, etc.), depending on the training examples given. A great
flexibility of this software and its applicability to a wide spectrum of biological images is based
on the underlying algorithms. For example, segmentation represents a complicated step for the
image processing due to the natural biological variation. Zeta solves this problem by avoiding
hard coded thresholds. Instead, a discriminating model is always learned from the actual input
data. Herewith, this approach is more flexible. Numerous further Zeta functions can be applied
for biological image analysis. However, in the scope of my work, only its foreground detecting
functionality is used.

Available image processing and analysis toolboxes offer a wide range of functionalities. Nev-
ertheless, quantification of molecule translocation has not yet been extensively addressed. Only
nucleus-to-cytoplasm translocation can be evaluated (e.g. by CellProfiler [22]), while no stan-
dard approaches have been reported to quantify other translocation types. This is why I aim
at the development of a generally applicable translocation quantification method.
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2.4. High-content screening

“Imaging plays a unique role in that it can both provide insight during experiments and also
be used to gather data in a high throughput fashion for later analysis” (Kherlopian et al. 2008,
p. 74). Indeed, imaging techniques having been invented in research purposes have become an
essential part of industrial high content screenings.

Nowadays, research and industrial applications can not be strictly separated from each other.
For example, drug discovery is one of such areas. There, protein networks are often the infor-
mation source to identify a drug target for a disease treatment. To uncover such networks, bio-
logical images can be acquired by automated microscopes. The images can be evaluated using,
for instance, colocalization analysis. Once a network was established, high content screenings
have to be performed to find a suitable drug to the target molecule. This workflow is only one
possibility among numerous alternatives. Still, it reveals a strong connection between industrial
and research applications. It also illustrates the necessity of advanced imaging techniques to
acquire images in a high-throughput manner.

High-content screening and analysis have significantly influenced the area of drug discovery
and systems biology [26]. Acquisition of a great amount of multi-parametric biological data
enables sophisticated analyses that would have been impossible without such advanced tech-
niques. High-content screening represents a type of a phenotypic assay [181]. There, cells are
treated with various reagents (chemicals, RNAi, etc.), often assisted by automated liquid han-
dling and cell culture [71, 149]. The cells are frequently fluorescently labeled or genetically
engineered for further quantitative and qualitative analysis [26]. For instance, the cells can be
analyzed by flow cytometry or imaged using automated microscopes.

Flow cytometers work with cells suspended in a liquid that are passed through a focused
laser beam. Up to 50,000 cells per second can be analyzed and sorted by modern devices [151].
For each cell, fluorescence intensity and a light scatter are measured. Cell populations can be
discriminated based on size, morphology, and other properties [151].

Automated microscopes acquire images of cells or cell cultures. The acquired images may
be confocal or not, depending on a particular assay. Either way, image acquisition is only
the first step. Image evaluation represents a further challenge. Image processing, computer
vision, and machine learning are used to automatically process high-dimensional image data
into meaningful cell biological results [149]. Image processing is useful not only in a high-
throughput context, but also for biological studies, such as “[. . .] quantifying the amount and
localization of a signaling protein, measuring changes in structures over time, tracking invading
cancer cells or looking at nonspatial data such as fluorescence-lifetime data” (Eliceiri et al.
2012, p. 701).

One of the first image processing steps, segmentation, is crucially important for the evalua-
tion of high-content screening data. If individual cells have to be segmented, various cellular
components can be labeled. Labeling of the outer cell membranes enables straight-forward
cell segmentation. Similar results can be achieved by labeling of some cytoplams components.
Alternatively, cell nuclei can be labeled. If cells under study have only one nucleus, then the
segmented nuclei could be sufficient for cell counting. If cells may have more than one nucleus
or any other measurements have to be performed, individual cells have to be segmented ( e.g.
as regions around the segmented nuclei). Voronoi segmentation or other seeded algorithms can
be applied for this task.

High-content screening enables acquisition of huge amounts of biological data. One of the
possible analyses is to study the laws of spatial arrangement of biomolecules. Such toponomics
approaches are presented in the next Section.

2.5. Toponomics

Biologists are increasingly interested in obtaining quantitative data by analysis of biological im-
ages [46, 61, 101]. In particular, microscopy images are most frequently analyzed, as microscopy
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is claimed to be the most popular imaging technique.
Information on location of biomolecules can be extracted by image analysis. Toponomics is

one of the relatively young research fields focusing on location of biomolecules. It describes the
laws of their spatial arrangement. In the following, I will present some established toponomics
analysis methods.

2.5.1. Colocalization analysis

Cellular localization and function of biomolecules are strongly connected and sometimes can
be inferred from each other. It is similar with interaction between biomolecules which are
colocalized. If two biomolecules (e.g. proteins) are frequently found near each other (this
frequency is statistically significant), then their direct or indirect interaction can be supposed.
The contrary, however, is not always true. Even if two proteins are found far away from each
other, their interaction can not be excluded. There are various reasons for that. First, the
interaction can be so fast that the proteins are detected already after it when they have been
transferred away from each other. Or, second, a mediating factor can be present, so that the
close proximity is not required for such an indirect interaction.

“[. . .] Direct molecular interactions crucially depend on spatial proximity [. . .]”, or colocaliza-
tion (Helmuth et al. 2010, p. 1). If structures interact, a correlation of their spatial distributions
can be detected. Hence, previously unknown interactions may be discovered by colocalization
analysis.

Technology

There exist two general ways to tackle the colocalization question. The first one is based on the
intensity correlation. If a correlation between the intensity distributions of two biomolecules
is found, then an interaction between them is inferred. To apply this method, two (or more)
biomolecules of interest have to be fluorescently labeled with different markers. Microscopy
images are then taken from the biological probe and the intensity distributions are analyzed for
all the channels.

If two proteins bind to the same cellular compartments, then they are considered colocalized.
This case has to be distinguished from a random spatial colocalization of two proteins in a
cell. Statistically significant colocalization can then be detected by thorough evaluation of
their localization. There exist numerous methods, such as cross-correlation or cluster analysis
which are either qualitative or subjective [28]. An early attempt to quantitatively estimate the
colocalization was done using the Pearson’s coefficient and extended to colocalization coefficients
[103]. These coefficients describe a colocalized fraction of each biomolecule, but require a
manually set threshold to distinguish a specific staining.

Costes et al. [28] ovecame the problem of a manually set threshold by its statistical calcula-
tion. As their whole method is based on intensities, the image quality plays a crucial role. Not
only noise levels have to be low, but also the registration of the images from different channels
has to be free of errors. The analysis can be performed both on 3D and 2D data, referring then
to individual voxel or pixel intensities, respectively. Intensity of each biomolecule (I) is con-
sidered to be a composition of a random spatial distribution (R) and a colocalized component
(C):

I1 = C +R1 (2.3)

where a protein type 1 is taken as an example. Intensity of a protein type 2 will then also
consist of a colocalized and a random component:

I2 = α× C +R2, (2.4)

where α is a stoichiometry coefficient that takes into account that proteins 1 and 2 do not
necessarily colocalize in a 1:1 ratio. Figure 2.5.1 visualizes a colocalization in a two-color image
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(a) (b)

Figure 2.5.1.: Colocalization analysis by intensity correlation. (a) Colocalization in a two-
color image (e.g., red and green) visualized in a two-dimensional histogram. IG
and IR correspond to the number of pixels with red and green intensities. (b)
3D image visualizing pixels with intensity values in both channels greater than
the threshold T (from Costes et al. [28]).

(e.g., red and green). A two-dimensional plot shows numbers of pixels with respective green
and red intensities (IG, IR). The line IG = α× IR + b represents the colocalized pixels [28] and
can be approximated by least-square fit. The slope of this line is directly proportional to the
Pearson correlation coefficient.

Optimal thresholds TG and TR are statistically identified for both channels to detect the
colocalized areas. These are those pixels whose intensities are greater than the thresholds in
both channels. The higher the thresholds, the less colocalizations are found, but also the smaller
the number of false positives (see Figure 2.5.1, (b)). The colocalization coefficients as well as
the Pearson coefficient are then computed in the colocalized areas.

This method was successfully applied on various biological datasets. Negative controls could
be distinguished from the positive ones by the average colocalization of 5 and 95%, respectively.
A true colocalization of 3% was also detected even in those images which would be discarded
by a simple visual evaluation. The algorithm has even been commercialized by Bitplane [11].
However, intensity-based correlation analysis may be hard to interpret, as interactions have to
be inferred from intensity space sensitive to imaging artefacts [72]. Furthermore, resolution of
a microscope limits a spatial scale on which the interactions can be detected.

The second approach builds upon object detection methods. Initial multi-channel microscopy
images have to be processed to yield discrete objects of every studied biomolecule. To achieve
this, segmentation is applied by thresholding of the image in every channel (see Figure 2.5.2,
(a) and (b)). The threshold can be manually selected or automatically calculated from the
intensity values. Once all the pixels (or voxels for 3D data) have been classified as background
noise or foreground regions, individual objects can be detected.

There exist numerous methods to identify objects in the foreground regions. Two widely used
methods were presented in Section 2.2.4, namely, edge detection and connexity analysis [13, 128].
Once the objects have been identified, their colocalization can be estimated. Therefore, a
concept of a centroid has to be introduced. A centroid of an object is its geometrical center, and
its coordinates are obtained by averaging the coordinates of all objects’ pixels (see Figure 2.5.2
(c)). Alternatively, intensity centers can be calculated taking into account individual intensities.

Centroids of the objects in the different channels are studied to compute their colocalization.
A nearest neighbor for each e.g. green centroid is found among the red centroids. A distance
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Figure 2.5.2.: Object-based colocalization analysis. (a) Raw image; (b) segmented particles;
(c) detected centroids; (d) nearest-neighbor distance approach by merging green
and red channel centroids; (e) merged view of centroids of the green image (c)
and particles of the red image (b) illustrates the overlap (from Bolte et al. [13]).

between them is calculated and compared to the a priori selected threshold that describes the
interaction scale [13]. If these centroids are close enough, the respective objects are considered
to colocalize. Setting of a too high threshold will lead to numerous false positives, while the
contrary will result in missed true interactions. Thus, the choice of the threshold is crucial for
meaningful data interpretation. Instead, it can be evaluated whether centroids of one channel
are overlapping with objects in the other channel (see Figure 2.5.2, (e)). This colocalization
definition is more flexible as it does not punish segmentation errors as much as the first one
does.

In the object-based methods potential interactions are inferred from physical space. It has
various advantages over intensity space, as intuitive colocalization measures like the number of
overlapping objects can be constructed [13]. Moreover, resolution of a microscope does not play
a crucial role here, as the size of the smallest detected object depends on the signal-to-noise
ratio [138].

Helmuth et al. [72] extended conventional object-based methods by introducing statistical
measures. They built upon the non-independence of the relative positions of objects under
study. This allowed a better estimation of the initial objects distribution and thus a better
estimation of colocalization measures.

2.5.2. Multi-epitope-ligand cartography

“The knowledge of the proteome - the snapshot of the total protein output encoded by a genome
- provides important information on: the translated genes, the relative abundance of expressed
proteins and the posttranslational modification of these proteins” (Schubert 2003, p. 190).
Numerous analysis techniques have been developed for it. However, information on protein
localization can not be obtained by standard proteomics methods. To extract such data, intact
cells or tissues have to be analyzed instead of their homogenates. Protein localization represents
a valuable information source on their organizations in a tissue. Protein networks may be
inferred from their locations, giving hints for previously unknown protein-protein interactions
and suggesting potential drug targets.

Proteins, as any biomolecules, have to be at the right time at the right place to fulfill their
function. In other words, they are topologically determined. There exist several methods to
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Figure 2.5.3.: Schematic illustration of the MELC process: n-fold cyclic process provides
fluorescence images for n epitopes. Their point-precise overlay allows the con-
struction of a colocation map (from Bonnekoh et al. [14]).

study protein topology. For example, closely located proteins may be identified by fluorescence
resonance energy transfer (FRET) microscopy [73]. However, available immunohistochemistry
and microscopy methods can image only a very limited number of proteins in a single sample.
In order to reveal protein networks, a much greater number of proteins needs to be mapped
simultaneously with a sufficient resolution. The Multi-Epitope-Ligand-Kartographie (MELK),
further referred to as multi-epitope-ligand cartography (MELC), suggests a solution to this
problem. Up to 100 proteins on the same biological sample can be localized by sequential
rounds of fluorescent detection in situ [145, 146].

Technology

MELC technology includes a cycle of three steps [145] illustrated in Figure 2.5.3. I refer to
proteins (or epitopes) here, although any other molecules whose localization is of interest can
be studied, too.

1. For the i -th protein of interest, the antibody labeled with a fluorescent marker is prepared.
A fixed biological probe (a blood smear, cells or a sectioned tissue) is incubated with this
antibody for 30 minutes. Further, unbound markers are washed out.

2. The biological probe contains now one fluorescently labeled protein. Fluorescence and
contrast phase images are taken and stored.

3. The fluorophore applied in the step (1) is bleached out to study distributions of other
proteins on a cleaned probe. A postbleaching image is stored and later subtracted from
the fluorescence image acquired in the step (2) of the next protein’s cycle.

These operations are performed until localization of all molecules of interest was recorded.
The maximum number of successfully performed additive rounds has already reached 100 [125].

After image acquisition, protein localization patterns are detected and analyzed. All flu-
orescence images are aligned based on the corresponding phase contrast images, so that the
accuracy of ± 1 pixel is reached. Flat-field correction is applied to compensate for the illumi-
nation artifacts. The obtained images are binarized in order to simplify further processing and
enable easier comparison of different experiments. Gray-scale images are thresholded, while
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Figure 2.5.4.: Generation of combinatorial molecular phenotypes (CMP) from the fluores-
cence images (from Pierre et al. [125]).

one and the same threshold is applied for a specific marker in all MELC runs. Herewith, for
every pixel and every fluorescent tag in all the images a value of 0 or 1 is assigned, depending
on whether sufficient protein intensity was detected on this position. Superimposed binarized
images compose a matrix of localization patterns for each pixel which is described as combina-
torial molecular phenotype, or CMP [125]. Each primary data set of the fluorescence intensity
images produces a collection of 0.1-vectors (CMPs) [146].

If n different tags are used in a MELC run, then a theoretical maximum of 2n different CMPs
can be detected. Only a part of them will be biologically meaningful and can really occur in
nature. However, the information extraction and analysis are still challenging due to a huge
amount of the generated data.

CMPs are summarized in expanded CMP-motifs which are defined as pixel-related code for
the presence or absence of a protein at a current position in all images. Zero is assigned when
a protein is absent, one - if it is always present, and a ∗ if it varies among the dataset (see
Figure 2.5.4). Some CMP motifs denote functional regions of the cell or tissue in question [146].
Toponome and molecular colocalization maps of cells and tissues can be produced if CMP motifs
are color-coded (see Figure 2.5.3). Depending on the dataset, a 2D or a 3D toponome map can
be obtained.

Overall frequencies of motifs are studied and can vary significantly between different ex-
periments. Therefore, relative CMP frequencies are preferred for the quantitative comparison
[126, 145].

Applications

The MELC technology was the first to enable systemic investigations regarding the topology
of protein networks. “The ability to detect and quantify cellular protein networks is an impor-
tant step toward the understanding how the proteome determines different cellular functions”
(Pierre and Scholich 2010, p. 646). For example, color-coded toponome maps are a powerful
visualization method which can be applied to distinguish healthy and diseased states. If a
protein organization is affected by a disease, then the changes will be detectable by MELC.
Schubert et al. [146] analyzed skin biopsies from healthy patients and those affected by psori-
asis, confirming MELC potential. Protein distributions were in fact found to be significantly
different (see Figure 2.5.5) and disease-specific CMP motifs were identified.

Toponome maps can also be used to identify subcellular protein networks. Herewith, enough
information can be extracted to model dynamics of molecular networks in silico. Specific
protein-protein interactions can be characterized and even quantified by MELC and selective
analysis of CMPs. This toponomics approach allows studying even those processes which take
place in subpopulations of cells while earlier only massive effects could be detected.

Furthermore, drug effects can now be examined on a great level of detail. Western blots and
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Figure 2.5.5.: Toponome maps of skin biopsies of psoriatic (right) and healthy (left) skin
(from Schubert et al. [146]).

immunohistochemistry are frequently used to study drugs actions, missing however those effects
which do not result in protein expression changes. Topological proteomics, in contrast, is able
to detect these as well as off-target effects resulting in the toponome changes. MELC enabled
analysis of protein organization that may help to find target proteins in disease [146]. Topo-
nomics analyses have already proven their value in basic and biomedical research by predicting
novel protein-protein interactions and by identifying new drug targets [125].

Limitations and potential for further development

The toponome is a dynamic structure in any cell and varies depending on a time point (life cycle
phase), applied treatment or any other factor. Furthermore, toponomes of genetically identical
cells are likely to differ, not to mention different tissue samples. Therefore, only thorough
statistical evaluations can show which CMP-motifs are representative for a current state of a
cell and which CMPs frequencies fluctuate simply due to the biological variability. One study
considered this question by evaluating toponomes of three genetically homogeneous animals.
Surprisingly, only 45% of common CMP-motifs were identified in these animals [12].

As numerous proteins can be detected by MELC, they have to be tagged by respective
antibodies. The order in which these labeled antibodies are applied can have an impact on
their binding efficiency. Until now, only one case of a reduced affinity was documented (30%
[125]), when two epitopes of one and the same protein had to be localized. In other performed
MELC runs the order of applied tags seems not to influence the result significantly [146].

Image processing may also be a source of errors. Thresholds for the image binarization can
be either manually selected or automatically generated. Although they could have a strong
impact on MELC results, the contrary was shown. MELC was found to produce robust results
at various thresholds set either by human experts or generated by a system. Still, binarization
process causes problems in images with low signal-to-noise ratio [125].

“A main problem of the conventional proteome analysis is the missing correlation of cellular
protein expression with protein localization and function” (Pierre and Scholich 2010, p. 645).
Numerous preclinical drug developments fail because of lacking knowledge on protein networks
changes caused by disease. Thus, reliable tools are required that could study topology and its
changes in signaling pathways [125].

Although MELC provides valuable information on protein toponomics, only qualitative sam-
ples comparison has been possible so far. Distinct protein localizations can be detected in
biological samples, but respective quantification methods are still lacking.

2.5.3. Densitometry

Toponomy of biomolecule distribution can also be assessed by density analysis, or densitometry.
Densitometry is widely applied to measure bone loss [24]. To analyze it, bones are scanned by
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Figure 2.5.6.: (a) - (c) Fluorescence images with a labeled membrane protein (red) under var-
ious experimental conditions; (d) corresponding extracted average 1D density
vectors (from Kubitz et al. [92]).

X-ray and their density is measured to identify potential osteoporosis (a disease characterized
by reduced bone mass, deterioration of bone tissue leading to bone fragility [29]).

Generally, densitometry is based on a measurement of optical density of a sample (e.g. so-
lution of a biomolecule of interest, western blots [16, 19, 55]). The light intensity is measured
before and after going through the sample, and the difference yields the absorbance (or the
optical density) of the sample. Densitometry can also be performed on 2D images, e.g. flu-
orescence images. In this case, pixel intensity will provide information on the “amount” of
the marker at this particular position. As optical density is dependent on a concentration
of biomolecules, the latter one can be determined in a linear measurement range. However,
immunofluorescence methods do not allow absolute quantity measurements between images,
due to biological variation and unstable binding of labels to the target molecules. Therefore,
no absolute measurements should be performed by densitometry on fluorescence images. The
extracted density should thus be normalized and only then used for samples comparison.

A density can be measured at a particular point, along a line (1D), or in some limited region
(2D). For example, the densitometric analysis can be performed along a concentration gradient
to study a directed transport process. This will provide information on the distribution of
biomolecules along the translocation axis, which is required to assess the translocation progress.
Figure 2.5.6 illustrates a case of such 1D densitometric analysis in fluorescence images. Here,
a membrane protein is labeled. Its fluorescence intensity is monitored along a concentration
gradient, yielding a 1D density vector. These vectors represent the current distribution of
the labeled protein orthogonally to the membrane. Figure 2.5.6, (a) - (c) illustrates images
of biological samples prepared with different osmolarity. Distribution of the labeled protein
is dependent on the osmolarity, and differs in the given images (Figure 2.5.6, (d)). Hence,
respective biological samples may be compared based on the extracted distribution vectors.

2.5.4. Probabilistic density maps

Apart from distribution of biomolecules, cellular morphology can be studied to evaluate changes
after a treatment. “Despite the central role of morphology comparisons in cell biological ap-
proaches, few statistical tools are available that allow biological scientists without a high level
of statistical training to quantify the similarity or difference of fluorescent images containing
multifactorial information” (Duong et al. 2012, p. 8382). Schauer et al. developed a method
based on probabilistic density maps to solve this problem [139].

In particular, Schauer et al. studied the steady state organization of endomembranes. This
includes such structures, as the Golgi apparatus, early endosomes, lysosomes, etc. Endomem-
branes are linked to cell cytoskeleton, which, in turn, is essential for membranous transport.
Hence, spatial organization of endomembranes influencing their function is also crucial for the
transport processes. Vice versa, transport events also alter the cytoskeleton structure. Fur-
thermore, dynamic cellular organization changes over time (or its life cycle). All these factors
result in constantly varying spatial organization.
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Figure 2.5.7.: Generation of probability density maps. Cells are grown on micropatterns.
Marker proteins are labeled and fluorescent images are acquired. Deconvolved
images are segmented to yield marker positions. These are aligned and pro-
cessed to result in probability density maps (from Schauer et al. [139]).

Figure 2.5.8.: Samples comparison based on probability density maps. Representative 2D
scatter plots of a control (Ctrl) and treated (NZ) biological sample (from Duong
et al. [43]).

Technology

To study 3D endomembrane structures, their well known marker proteins were fluorescently
labeled. Cells for the analysis were produced using microfabricated patterns (see Figure 2.5.7).
This resulted in a certain shape, normal cell cycle and thus their functional integrity. Quan-
titative maps of the spatial organization of intracellular membranous compartments could be
created owing to the usage of the patterned cells. Moreover, even slightest changes in endomem-
brane organization induced by cytoskeleton disruption could be detected [139].

3D image stacks of the grown cells were acquired and deconvolved. Following segmentation
yielded positions of the fluorescently labeled marker proteins. These positions were aligned
for numerous cells using characteristic landmarks of micropatterns. Further, the probability
density function was calculated using Gaussian kernels. Calculated probability density maps of
intracellular structures can be used to compare different biological samples. Duong et al. devel-
oped a test statistic allowing a density-based comparison of multivariate data [43]. Figure 2.5.8
illustrates microtubules morphology for a control condition (Ctrl) and after the treatment with
a drug (NZ). Representative 2D scatter plots show the difference in the marker protein distri-
butions. The quantitative assessment is performed based on the developed test statistic.

Application

“The structural features of cells and the topological relationships between the numerous intra-
cellular compartments give rise to multivariate data whose unbiased, automatic comparison is
a major challenge” (Duong et al. 2012, p. 8382). Schauer et al. developed a method which can
automatically compare steady state morphological cell organizations. Their method directly
assesses the spatial organization avoiding extraction of numerical features and their classifi-
cation. Intracellular structures are transformed into three-dimensional kernels, enabling their
direct mathematical comparison.
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(a) (b)

Figure 2.5.9.: (a) Fluorescent image of tri-color stained histological section. Blue - cell nuclei,
red - collagen, green - biomarker; (b) phase-contrast image of this section (from
Grabe et al. [66]).

The suggested test compares complex data from fluorescent microscopy without reducing the
provided information into simple summary statistics [43]. It was also shown to be valid for
continuous intracellular structures. And finally, even unconstrained cells morphology could be
compared by this approach.

2.5.5. Quantitative spatial profiles

An interesting approach to discover protein localization and networks was suggested by Grabe
et al. [66]. They were extracting intensity profiles of epithelial biomarkers and creating a
protein network from these data. This was the first quantitative assessment of the epithelial
differentiation process while only purely qualitative descriptions have been published before.

As stratified layers of the epithelium differ from each other, the biomarker protein expres-
sion levels are also different. To detect and analyze this phenomenon, spatiotemporal protein
networks can be constructed and studied. Tissue samples conserving the protein localization
information represent a suitable data source. Widely used microarray data is not appropriate
here, as the localization information is lost during the sample preparation.

A quantitative characterization of the protein distribution is required for the network con-
struction. Therefore, intensity profiles of the biomarkers are extracted and analyzed. Protein
networks can be constructed from these data and give insight into the coregulation of the par-
ticipating proteins. Even completely novel interaction hints can be provided. Having this in
mind, Grabe et al. developed a method for the quantitative spatial analysis of epithelial tissue
sections. Automated image acquisition and processing facilities enable analysis of large datasets
and provide a basis for a potential high-throughput application.

Technology

Histological sections with immunohistochemically labeled proteins were studied. A tri-color
staining was performed labeling cell nuclei of the connecting tissue, collagen and the biomarker
of interest (see Figure 2.5.9, (a)). Slides were scanned using an automated microscope, and
resulting images were cut into smaller subimages.

The image processing started by detection of the epithelium and its segmentation. Nuclei
and collagen staining together with the phase-contrast images (see Figure 2.5.9, (b)) were used
for it. The upper border of the epithelium was identified based on all three stainings, and a
normalized distance image was constructed. A border line at beginning of the epithelium (E)
was described as 0% distance, and the end of the epithelium was set to 100% distance (see
Figure 2.5.10).

Intensity profiles of the biomarker (green channel in Figure 2.5.9, (a)) were extracted for all
sliding distance intervals in the epithelium. Respective marker intensities were averaged and
corrected for the background signal. Obtained profiles were normalized to a maximum of the
fluorescence intensity thus enabling comparison between different experiments. These are the
resulting quantitative spatial profiles (QSPs) which are further analyzed.
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Figure 2.5.10.: An example of normalized distance image (from Grabe et al. [66]).

Figure 2.5.11.: An example of QSPs: X axis - relative distance of a pixel to the beginning of
the epithelium; Y axis - the normalized fluorescence intensity for a respective
marker (from Grabe et al. [66]).

A spatiotemporal protein network was constructed for each histological section. Background
signals were ignored as only abundant proteins are considered for this analysis. First, correlating
QSPs were detected. If QSPs of two biomarkers correlate, then their coregulation during the
differentiation process can be supposed. It is not necessary that some two proteins correlate
during the whole differentiation process. Even a part of this time is sufficient for them to be
coregulated. If such a period with 100% QSPs correlation can be detected, then the proteins are
considered to be connected in a network. A required minimum length of this period constitutes
10% of the total QSP.

Second, a so called protein leadership was identified for each pair of QSPs. A protein is
considered to lead if its concentration grows or falls faster than of the other protein. Based on
all the individual correlation and leadership networks, a consensus network was constructed.
An arrow between any two proteins in the consensus network appeared only if there were at
least 2 arrows in the individual networks with the correlation above 50%.

Applications and potential

Grabe et al. studied spatiotemporal expression patterns of five protein biomarkers of epidermal
differentiation [66]. An example of the average created QSPs is presented in Figure 2.5.11.
Detected intensity of the biomarkers changes with the distance (or the differentiation %). The
obtained results for the individual biomarkers correlated well to the numerous qualitative de-
scriptions from the literature. QSPs appeared to be the first method to describe the protein
expression in the differentiation process quantitatively thus allowing numerical comparison be-
tween experiments.

It was, for example, confirmed that the biomarker integrin α6 (INT) was expressed first
in the epithelium (a narrow grey peak in Figure 2.5.11). QSPs of other studied biomarkers
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also complied with the previous qualitative knowledge on their expression. Furthermore, the
constructed spatiotemporal consensus network (not shown) corresponded well to the known
interactions.

The method suggested by Grabe et al. is the first quantitative space- and time-resolving
measurement of epithelial biomarkers. Purely qualitative descriptions do not provide a sufficient
basis for any network reconstruction or modeling. QSPs contain valuable information on the
protein localization and interaction which should still be analyzed. Authors also presented a
general workflow of the data processing. In particular, combination of the data from tissue
sections of varying width and distinct intensity levels is enabled due to the normalization
procedures.

Generally, a spatiotemporal protein network can be created for other biological processes. It
does not only describe QSPs, but also illustrate regulatory relationships between the proteins.
However, if two proteins are connected in such a network, it does not necessarily mean their
direct interaction. It can be a sign of their coregulation or a concerted action mediated by other
biomolecules. Thus, previously unknown protein interactions or cascades can be discovered by
thorough analysis of the consensus networks. Authors suggest their method to be a valuable
quantitative extension to current qualitative conventional approaches of mapping the proteome
expression data [66, 129]. This method was developed on images of immunofluorescent tissue
sections, but may also be applied to other image types providing sufficient spatial resolution.
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3. Biological and medical background

Biological data is crucially important for the development of new analysis methods. I will
thus describe biological processes used as models for my work. Owing to the collaboration in
the DFG-funded clinical research group “Hepatobiliary transport and liver diseases” (KFO-217
[88]), I had the access to rich data on different biological processes in the liver cells (hepato-
cytes). Such processes connected to cholestatic liver diseases are the central research topics
of this project. In particular, transporter proteins in hepatocyte membranes are observed.
Translocation of these proteins takes place in response to certain external or internal factors.
Quantitative analysis of these translocations is expected to illustrate the underlying biological
processes and their connection to liver diseases. Manual translocation quantification was rou-
tinely performed to assess these translocations. I will present this manual method, as it is used
to validate the novel implemented automated quantification.

3.1. Biological model: liver and its diseases

The liver is a multifunctional organ with a prominent role in metabolism and its dysfunctions
can lead to severe diseases. These are unfortunately widespread and represent a major clinical
and socio-economical issue. Cholestatic liver diseases constitute only a subset of possible disor-
ders. Nevertheless, they are very frequent (more than 3 million patients in Germany) and thus
are actively researched. Cholestasis may result from dysregulation of transporter proteins in the
membranes of hepatocytes, the most abundant liver cell population. For instance, Progressive
Familial Intrahepatic Cholestasis (PFIC) is caused by dysfunction of bile transporters. In PFIC
patients, certain mutations occur in genes encoding transport proteins involved into bile salt
homeostasis [18]. This heritable disease is usually diagnosed in childhood. PFIC often leads
to death from liver failure at ages usually ranging from infancy to adolescence [32]. Its exact
prevalence is still unknown, but the incidence is estimated to approx. 1/50,000 births. PFIC
represents 10 to 15% of causes of cholestasis and 10 to 15% of liver transplantation indications
in children [32, 74].

Cholestatic diseases can also be caused as side effects of medication. The liver plays a
predominant role in drug biotransformation and disposition from the body [96]. Liver is the
first to face and sense intestinally absorbed nutrients. Being constantly exposed to the ingested
products, it performs a vital barrier function. Drug-induced liver injury accounts for up to 7%
of all reports of adverse drug effects voluntarily reported to pharmacovigilance registries. Drugs
directly damage hepatocytes, as they may interact with bile ducts or may change bile flow. The
phenotypes commonly encountered thus include hepatitis, cholestasis, cirrhosis, vascular lesions
and even fulminant hepatic failure [96].

Moreover, pregnancy can also be a reason for a cholestatic liver state. The Intrahepatic
Cholestasis of Pregnancy (ICP) is characterized by maternal pruritus and jaundice in the third
trimester [56]. The incidence of ICP varies widely with geographical location and ethnicity. It
is most common in South America, where early reports described an overall incidence of 10%.
The current incidence of ICP in Europe stays nearly constant around 1%. Interestingly, ICP is
more probable for women carrying twins, triplets or more. Female relatives of affected women
have a higher than average risk of also being affected [117]. Maternal effects of ICP are mild;
however, there is a clear association between ICP and higher frequency of fetal distress, preterm
delivery, and sudden fetal death [90].

Liver is also the major regulator of blood glucose homeostasis and amino acid catabolism.
It is involved in the synthesis and catabolism of physiologic molecules, the degradation of
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3. Biological and medical background

Figure 3.1.1.: Liver and hepatocyte structure (from Akaike Lab [3]).

xenobiotics, the excretion of waste products via the biliary route and the formation of bile. In
the following, structural features of hepatocytes will be described together with the functional
impairments leading to cholestasis.

3.1.1. Hepatocytes

Hepatocytes constitute the most abundant (60-65%) and functionally diverse cell population
of the liver, which exhibit structural and functional polarity [17, 47, 70, 164]. Polarity of
hepatocytes is essential to perform vital biological functions (e.g. bile transport). However,
different membranes of hepatocytes are only shown in tissue, not in cell culture. The basolateral
surface covers nearly 90% of the total surface of the hepatocytes (see Figure 3.1.1). It comprises
the sinusoidal membrane and the lateral membrane. The latter one contains tight-junctions to
form cellular contacts between adjacent hepatocytes (see Figure 3.1.2). The tight-junctions
determine the exchange of fluids and electrolytes between Disse’s space and the canalicular
space. The canaliculi are tiny ducts delimited by the canalicular (apical) membrane of two
adjacent hepatocytes [47].

An important function of hepatocytes is the formation of bile. Hepatocytes generate bile
flow within bile canaliculi by continuous vectorial secretion of bile salts and other solutes across
their canalicular membrane [59]. Bile acids are synthesized in the hepatocytes, secreted into
the bile, released into the proximal intestine to facilitate lipid absorption, and reabsorbed in
the distal intestine [57]. Bile acids in the portal blood are taken up by the hepatocytes, and are
resecreted to continue cycling between the intestine and the liver establishing their enterohepatic
circulation [5, 47, 87]. Maintaining a balance between bile acid synthesis and secretion is vital
[5], as increased bile salt concentrations may alter cholesterol synthesis, immune functions and
even lead to apoptosis [9, 45]. The formation of bile depends on the structural and functional
integrity of the bile-secretory apparatus and its impairment leads to cholestatic liver diseases.

Hepatocytes generate the primary bile in their canaliculi, blind tubular structures with a very
high surface/volume ratio. The primary bile is then modified by secretory and reabsorptive
processes as it passes through the bile ducts. Cholestasis results from dysregulation of bile
transporter proteins in the sinusoidal [161] and the canalicular membranes [85]. Long term
down-regulation of these transport systems involves changes in mRNA and protein levels [167]
or can be explained genetically. The short term regulation, in turn, is determined by covalent
modifications of transport proteins (e.g. phosphorylation) [65, 115], substrate availability or

38



3.1. Biological model: liver and its diseases

Figure 3.1.2.: Transport proteins in hepatocyte membranes (from Solvo Biotechnology [155]).

competition [69]. Subcellular transporter localization can also influence their function by rapid
endo- and exocytosis of transporter-bearing vesicles from and into the respective cell membrane
[95].

3.1.2. Canalicular membrane

The conjugate export pump multidrug resistance protein 2 (Mrp2) as well as the bile salt export
pump (Bsep) are regulated in rat liver on a short term scale by retrieval from and insertion
into the canalicular membrane in response to e.g. anisoosmolarity or oxidative stress [36, 92–
94, 97, 135, 141, 142]. Schmitt et al. [142] were able to show in rat livers perfused under
normoosmotic conditions (305 mosmol/L) that Bsep was mainly localized in the canaliculi.
Canalicular positions were determined by localization of the Zonula occludens 1 protein (Zo-1),
a protein of the tight junction complex. Zo-1 delineates the bile canaliculi (see Figure 3.1.3),
in relation to which Bsep displacement was observed. Figure 3.1.3 illustrates a similar example
where Mrp2 is localized in the bile canaliculi.

Consecutive hyperosmotic exposure (405 mosmol/L) leads to an increase of immunoreactive
Bsep inside the hepatocytes. Intracellular Bsep immunostaining exhibits a punctate pattern
suggestive for the localization of Bsep in putative vesicles. Hyperosmolarity leads to Bsep
retrieval from the canalicular membrane (see Figure 3.1.4), reduces bile acid secretion and results
in cholestasis. In contrast, hypoosmolarity favors the insertion of intracellular Bsep into the
canalicular membrane, the secretion of bile acids and leads to choleresis. These osmodependent
shifts in Bsep location occur within less than 30 minutes and are reversible [142]. I will further
refer to the translocation of Bsep between canalicular membranes and cytoplasm of hepatocytes
as to the 1D-Can process.

3.1.3. Basolateral membrane

The basolateral membrane includes other transport proteins which constitute a part of the whole
complex bile acids exchange system (see Figure 3.1.2). For example, Ntcp (sodium taurocholate
cotransporting polypeptide) is the major transporter for the bile salt uptake at the basolateral
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3. Biological and medical background

Figure 3.1.3.: Transporter Mrp2 (labeled red) is mostly localized in the canalicular membrane
which is detected by Zo-1 (labeled green) (from Kubitz et al. [92]).

Figure 3.1.4.: Densitometric intensity profiles of Bsep across canalicular membranes. Hy-
perosmolarity (405 mosmol/L) leads to decreased Bsep concentration in the
canalicular membranes, while hypoosmolarity(205 mosmol/L) increases its con-
tent (from Schmitt et al. [142]).

40



3.1. Biological model: liver and its diseases

Figure 3.1.5.: Basolateral membrane stained for Na+-K+-ATPase (green) and Ntcp (red).

Figure 3.1.6.: Glucokinase distribution depends on the glucose concentration. At low glucose
concentration most of the glucokinase is localized in the hepatocyte nuclei (left).
Higher glucose concentration leads to the increased glucokinase content in the
cytoplasm (right).

membrane. Hence, its localization is of interest as it directly influences its function. It can also
be regulated both on the long-term and on the short-term basis. Similar to the transporters at
the canalicular membrane, Ntcp is regulated on a short-term basis by insertion into the plasma
membrane and internalization into the cytoplasm of neighboring hepatocytes [40]. I will refer
to the translocation of Ntcp between basolateral membranes and cytoplasm of hepatocytes as
to the 1D-Bas process.

A standard structural marker used for the analysis of basolateral membranes is the Na+-
K+-ATPase. Its localization does not change under experimental conditions, and other protein
distributions are frequently studied in relation to it. An example of a basolateral membrane
stained for the Na+-K+-ATPase and Ntcp is shown in Figure 3.1.5.

3.1.4. Glucokinase translocation

A prime function of the liver is the maintenance of blood-glucose homeostasis by rapid clearance
of the glucose that reaches the liver via the portal vein after a meal [2]. The enzyme glucokinase
(EC 2.7.1.2) [62] catalyzes the initial step in utilization of glucose, the primary cellular substrate
[63]. The liver regulates glucose output and uptake during fasting and feeding [104]. Its
activity is modulated in a coordinated manner via a complex set of mechanisms, including gene
expression, changes in cellular location, and interaction with regulatory proteins [104].

Cellular compartmentalization of glucokinase (GK) is influenced by changing the glucose
concentration (see Figure 3.1.6). GKRP (glucokinase regulatory protein) is mainly located in
the hepatocyte nucleus, while the cellular location of GK depends on the cells metabolic status
[104]. When glucose concentrations in the medium decreases, GKRP bind to GK and transfers
it into hepatocyte nuclei [171]. If increased glucose concentration is detected, GKRP releases
the GK from the nuclei into cytoplasm, so that it is activated to take part in the glucose
metabolism (see Figure 3.1.7). GKRP was shown to be essential to maintain the balance of
cellular GK distribution [33]. I will refer to the translocation of glucokinase between nuclei and
cytoplasm of hepatocytes as to the 2D-Nuc process.

The liver is equipped with an insulin-independent system allowing extremely rapid equili-
bration of glucose concentration [79]. Localization of glucokinase condition the first step of
the glucose metabolism. Alterations of the glucokinase function can lead to Maturity Onset
Diabetes of the Young (MODY) [68]. MODY is defined as a familial form of early-onset type
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3. Biological and medical background

Figure 3.1.7.: Subcellular location of glucokinase (GK). At low glucose concentrations, GK is
sequestered in the nucleus, bound to glucokinase regulatory protein (GKRP)
as an inactive complex. Addition of glucose causes translocation of GK to
the cytoplasm either in a free form (1) or in a GK−GKRP complex (2). The
released GKRP may either remain in the cytoplasm or reshuttle back to the
nucleus (3). When glucose concentration declines to basal levels, GK binds to
cytoplasmic GKRP and is imported into the nucleus (4) (from Agius [2]).

2 diabetes, which usually develops in childhood, adolescence, or young adulthood [170]. Only
in 2011 diabetes caused 4.6 million deaths, while the total number of patients was estimated
to 366 million people [119]. MODY is estimated to be responsible for 2 to 5% of the diabetes
type 2 cases [120]. Patients with MODY are usually detected during routine screening, as the
symptoms are not always clearly recognized [68].

3.2. Manual analysis of membrane protein translocation

Several toponomic localization studies of Bsep and Mrp2 were published so far [92, 93, 97,
110, 141, 142], comparing transporter protein distribution by manual processing of microscopic
images. By means of immunohistochemistry, proteins of interest (Bsep or Mrp2 and Zo-1) were
labeled with fluorescent markers. As described in Section 3.1.2, Zo-1 is used to localize the
canaliculi, because the tight junctions stretch as a line where a canalicular membrane meets
adjacent hepatocytes. Two roughly parallel Zo-1 lines signal the presence of a canaliculus
running parallel to the image plane of the microscope. An example of such a canaliculus is
shown in Figure 3.2.1, (a). Microscopic images of stained canalicular membranes were manually
assessed and processed by human experts.

The manual translocation quantification workflow (manual workflow) described in Schmitt et
al. [142] proceeds as follows. Confocal microscopy images of rat liver tissue sections were studied
to detect Bsep translocation from the canalicular membranes under anisoosmolar conditions.
Therefore, densitometric analysis was performed to observe its distribution. The areas for the
analysis were chosen by assessing the apparent integrity of the canaliculi. Regions of interest
(ROI) were found where the immunostaining of Zo-1 delineating the canaliculi were undisrupted
and parallel lines (see example in Figure 3.2.1, (a)). Canalicular segments were expelled when
they were bent, small or non uniform. The ROI selection was performed only based on Zo-1
distribution ignoring the distribution of Bsep in order to avoid bias.

A confocal z-stack was recorded on each of 10 positions for the cryosection. Following densit-
ometric analysis was performed using the software Image-Pro Plus [77] as described by Kubitz
et al. [92]. The profile of the fluorescence intensity was measured over a thick line (length of
8 µm) orthogonally to the canaliculus. To each of the pixels the mean fluorescence intensity
over the line perpendicular to the length was calculated, yielding a mean fluorescence intensity

42
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(a) (b)

Figure 3.2.1.: An example of a canaliculus suitable for the densitometric analysis (a). Re-
spective extracted fluorescence intensity profiles (b).

profile (separately for the green and red channel). The thickness of the line depended on the
individual canaliculus. Only straight canalicular segments were chosen while the straightness
was normally given over 4 to 6 µm [142].

The statistical variances were calculated from the obtained normalized Bsep fluorescence in-
tensity profiles. Different experiments were compared by statistical tests on these variances in
order to test whether observations reflect a pattern and not a chance [122]. A generally applica-
ble unpaired test was selected that does not make any assumtions on the variable distribution.
One of the tests meeting all these requirements is the Wilcoxon Rank Sum Test (WRST) [174].
It is a widely used nonparametric test [99] which compares observations from independent sets
of arbitrary sample sizes. This test estimates equality or inequality of two distributions [131].
A statistically significant difference was detected at p-value ≤ 0.05.

Manual workflow has been recently automatized in part using the in-house software Profilizer
(developed by Martin Becker) for the intensity profile extraction [35]. Profilizer users can view
images and interactively select positions of intensity profiles. A user has to click two points
symmetrically to a membrane fragment in a microscopic image. Profilizer will then draw a line
between these points indicating an intensity profile direction. It will also cut the line to 4 µm
on both sides of the membrane and output diagrams of pixel intensities for each of the channels
(the intensity profiles). These manually extracted intensity profiles are exported for further
evaluation.

The length of the extracted intensity profiles was 8 µm (Figure 3.2.1, (a)), corresponding
to 81 pixels with a pixel size of 100 nm. Intensity profiles (Figure 3.2.1, (b)) were accepted
according to the appearance of Zo-1 fluorescence. Acceptable intensity profiles had two maxima
of similar size and a minimum between these peaks close to baseline level. An empirical image
analysis showed that canalicular diameter varies in the range of 0.8 – 2.5 µm. Therefore, the
profiles were excluded if the distance between the two maximal intensities was < 1.0 or > 2.5
µm. Ten intensity profiles are usually selected per image and evaluated. The immunostaining
of Bsep was disregarded for profile selection.

Manual profile extraction can be performed on biological images of any structures. For
example, apart from the presented above canalicular membranes, also basolateral structures can
be analyzed. A disadvantage of this method, as of any other manual analysis, is its subjectivity.
An expert makes the decision where to extract the profiles based on experience, making this
method also time consuming and error-prone.

3.3. Automated analysis of nucleus-to-cytoplasm translocation

Cell compartmentalization results in numerous biological processes involving two or more com-
partments. The nucleus does not only include the genetic information, but also participates in
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(a) (b) (c)

Figure 3.3.1.: Nuclei and cytoplasm segmentation using the software Zeta. From the initial
image (a) nuclei are segmented (red objects in (b)). (c) Corresponding cyto-
plasm masks (green) are computed for each nucleus (blue) separated from it
(skipped area marked red).

various regulatory cascades. Therefore, a nucleus-cytoplasm pair is widely studied for translo-
cation of regulatory biomolecules, e.g. in cancer research [133].

Early works were based on a manual analysis of microscopic images to identify cell cyto-
plasms and nuclei [34, 102]. Further analysis consisted of area measurement or intensity-based
evaluations. As more and more scientific image processing software became available, detection
of the nuclei and cytoplasms could be performed automatically. For example, Morelock et al.
[109] automatically segmented stained nuclei [76] and computed masks of the corresponding cy-
toplasms. For this purpose, intersections of circles centered at the detected nuclei and Voronoi
tesselation polygons were found (see Figure 2.2.3). Further, the ratio of the fluorescence inten-
sity in the nucleus to the total intensity was calculated as characteristics for the translocation
state.

Later works included staining of the cytoplasm, which enabled its automated segmentation
[116]. Similar methods were also applied to study the 2D-Nuc process (glucokinase translocation
between nucleus and cytoplasm) [171]. At the Fraunhofer Insitute for Applied Information
Technology (FIT) the in-house image analysis software Zeta was extended to tackle this problem.

As described in Section 2.3.1, Zeta can perform image segmentation. This function was
applied to the images of hepatocytes (Figure 3.3.1, (a)) with the nuclei stained with DAPI
(4’,6-diamidino-2-phenylindole, a fluorescent stain that binds to DNA). Nuclear regions were
identified (Figure 3.3.1, (b)). As no additional marker was used for the cytoplasm, it was
detected as con-centric regions centered at the detected nuclei (green rings in Figure 3.3.1, (c)).
To ensure a separation between the nuclei and the cytoplasm, the cytoplasmatic regions were
segmented in a certain distance (1.0 µm) from the nuclei (red rings in Figure 3.3.1, (c)).

Once the regions corresponding to nuclei and cytoplasm were identified, the average fluores-
cence intensity of the glucokinase marker is calculated. The ratio of these average intensities
is characteristic for the current biological liver state. This ratio can be used to study influence
of the glucose concentration in the medium on the 2D-Nuc process (glucokinase translocation
between the nuclei and the cytoplasm).

3.4. Biological SOPs

Data quality is crucial for any analysis and development. Especially in biological research,
standards in sample preparation are of a great importance. My colleagues at the University
Clinic Düsseldorf have developed and standardized the biological sample preparation workflow.

In the following, I will briefly present some important steps. Detailed protocols can be found
in the referenced publications (Kubitz et al [92, 93], Mühlfeld et al. [111], Cantore et al. [20]
and Donner and Keppler [38]). For all the treatments, animals received care according to the
“Guide for the Care and Use of Laboratory Animals” [118]. The experiments were approved
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by the responsible local authorities.

3.4.1. Rat liver perfusion

Rat liver tissue is used to develop automated translocation quantification on the example of
the cholestatic liver diseases. Cholestasis occurs, when bile salt transport by the hepatocytes
is impaired. One of the possible reasons is the translocation of bile transporter proteins from
the hepatocyte membranes (active state) into cytoplasm (inactive state). Cholestasis can be
induced experimentally to generate suitable data for the research. For this purpose, rat livers
can be perfused in hyper-osmolar buffers or undergo a common bile duct ligature.

Livers of male Wistar rats were perfused in situ as described in Kubitz et al. [92, 93]. The
main component of perfusion medium was the bicarbonate-buffered Krebs-Henseleit to maintain
the liver tissue. In normoosmotic perfusions, the osmolarity was 305 mosmol/L. Hyperosmotic
exposure (405 mosmol/L) was performed by raising the NaCl concentration in the perfusion
medium.

In other experiments, bile salts were added to the perfusion medium to examine their influence
on the translocation of bile transporters. Two studied bile salts are taurocholate (TC) and
taurochenodeoxycholate (TCDC). Distribution of bile transporter proteins was analyzed in the
tissue samples before and after addition of TCDC or TC.

3.4.2. Bile duct ligature in rat liver

Following general anesthesia, male Sprague Dawley rats underwent double ligature of the prox-
imal common bile duct. This treatment leads to the accumulation of bile and increase of the
bile duct diameter. Control animals underwent a sham operation as described in Donner and
Keppler [38]. Livers were removed 7 days after bile duct ligature (BDL) or sham operation.

3.4.3. Cryosectioning and immunostaining

Sample preparation and immunostaining were performed according to a SOP to assure repro-
ducibility [35]. The tissue samples were cut in 5 µm sections and fixed with methanol. Further,
slides were washed and immunohistochemically labeled using indirect fluorescence. The slides
were first incubated with a combination of the primary antibodies (rabbit anti-Bsep and mouse
anti-Zo-1, or rabbit anti-Ntcp and mouse anti-Na+-K+-ATPase, respectively). Subsequently, a
combination of the secondary antibodies (Alexa Fluor 488-conjugated goat anti-mouse, green;
Alexa Fluor 546-conjugated goat anti-rabbit, red) was added [20, 111].

3.4.4. Image acquisition

Immunostained rat liver tissue samples were analyzed using a LSM 510 confocal laser scanning
system with a 63 × Plan-Apochromat objective (NA 1.4), Zeiss, Jena, Germany. The excitation
wavelength was 488 nm for Alexa Fluor 488 and 543 nm for Alexa Fluor 546. Emission was
detected by a 505 – 530 nm (green) and a 560 – 615 nm (red) bandpass filter. Image acquisition
was adjusted to a final pixel size of 100 nm.

For each cryosection, images from 10 different regions were taken in a randomized fashion.
Only samples that were prepared in parallel in all steps were compared, using the same adjust-
ments for all parameters (i.e. laser power, filter settings, pinhole, lens, voltages at the photo
multiplier tubes, format size and zoom, scan speed, and z-step size when whole thickness of the
tissue samples) were analyzed [20].

3.4.5. Flow cytometry

Flow cytometry was performed in order to independently validate results of the densitometric
analysis of microscopy images. The experiments were performed according to the protocol
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described in Mühlfeld et al. [111]. Briefly, a FLAG-Ntcp-EGFP plasmid was used to assess
Ntcp plasma membrane localization by the analysis of intra- and extracellular fluorescence.
This plasmid was transfected into HepG2 cells [158], an immortal hepatocyte cell line. Three
stable independent clones were established.

Further, FLAG-Ntcp-EGFP expressing HepG2 cells were treated with different bile salts [111]
to examine their influence on the distribution of Ntcp. Cells were centrifuged, resuspended and
filtered through a gauze. The cells were immunohistochemically labeled with Alexa Fluor R-
647-PE. Fluorescence intensities of EGFP and Alexa Fluor-647-PE were measured in 20.000
single cells in a flow cytometer, using an excitation wavelength of 488 nm. The cells were gated
for their characteristic forward and sideward scatter. Fluorescent measurements were acquired
at 530 ± 30 nm (EGFP) and > 670 nm (Alexa Fluor 647-PE).

3.4.6. Preparation of datasets for the analysis of glucokinase translocation

Primary hepatocytes were isolated from rat liver and cultivated. The cells were incubated with
various glucose concentrations (0 – 4.5 g/L). In addition, the cells were incubated with other
reagents (e.g. with Insulin, Sorbitol, etc.) to assess their influence on glucokinase translocation.

DNA was labeled with Hoechst 33258 to localize the nuclei. Its excitation wavelength is
approx. 350 nm, while the emission is detected around 461 nm. Glucokinase was immunohisto-
chemically labeled with Cy3. The excitation and emission wavelengths are 550 nm and 570 nm,
respectively. Confocal images were acquired using a LSM 510 confocal laser scanning system
with a 63 × Plan-Apochromat objective (NA 1.4). The final pixel size was adjusted to 110
nm/pixel.
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4.1. Introduction to transport processes

Transport processes play a vital role in living organisms. These continuously operating complex
systems fully depend on biomolecules appearing at the right time and the right place. Only in
this case, the biomolecules can be involved into the processes they are required for.

Cellular organization is complex, but highly structured due to the compartmentalization
principle. It permits a precise subdivision of the cell lumen providing it with functionally
specialized aqueous spaces [4]. For instance, the endoplasmic reticulum produces proteins,
mitochondria generate energy for the cell, lysosomes hydrolyze enzymes, etc. Biomolecules
produced in the respective organelles have then to be delivered to the locations they are required
at.

Cell compartmentalization also leads to the presence of numerous membrane structures. Most
organelles are surrounded by membranes, so that their content is separated from the cytoplasm.
Thus, if a biomolecule has to be delivered into or exported from such an organelle, a membrane
needs to be crossed. The same applies to all inter-cellular processes. Membranes are those
bounding surfaces (natural barriers) which separate volumes (cytoplasm, organelles, vacuoles,
etc.). Hence, numerous closed volumes in the cell lumen enable different concentrations of
biomolecules within them. Otherwise, all biomolecules would be homogeneously distributed in
the cell lumen due to diffusion.

Living organisms depend on distribution of biomolecules and on transport processes that
maintain the balance. There exist several types of transport processes, ranging from passive
diffusion to active transport mediated by a carrier molecule (e.g. transport protein). They can
also be subdivided into directed ones and a simple thermal movement (Brownian motion). The
directed transport processes are in the focus of this thesis, as their quantitative assessment can
be useful in research purposes.

As mentioned before, cell compartmentalization allows for different concentrations of biomole-
cules in different cellular compartments or a cytoplasm. Hence, concentration gradients run
across the membranes. If a trajectory is orthogonal to the membrane, it represents the op-
timal transport trajectory (see Figure 4.1.1). Optimal transport trajectory for the movement
of biomolecules is found in most directed transport processes due to its highest efficiency. For
example, active transport requires energy to move biomolecules from the regions of their lower
into the regions of their higher concentration. The shorter the way, the less energy will be
spent. Passive transport (e.g. diffusion) also proceeds along the concentration gradient [150].

In principle, the exact transport mechanism must be known to model and track biomolecules
(e.g. within biological images). To simplify this analysis, we restrict ourselves to the transport
across a membrane structure that operates along a straight line orthogonal to the membrane
(optimal transport trajectory). Most physical processes will show this behavior if some gradient
is established across the membrane. Therefore, distribution of biomolecules will be further
observed along the optimal transport trajectory.

4.2. Observation of transport processes

To quantify a transport process, biological samples have to be prepared and evaluated. For ex-
ample, distribution of biomolecules can be analyzed biochemically. Alternatively, imaging could
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Figure 4.1.1.: Optimal trajectory for directed transport of biomolecules.

be applied for this purpose. Optical microscopy is often the method of choice for biological anal-
ysis. It is a well-established technique to image samples on different scales, from macroscopic
to atomic. Microscopy images acquired at certain moments in time represent snapshots of
molecule distribution in a continuous transport process. Frequently confocal laser scanning
microscopy is preferred as it acquires images of the highest resolution. Not only 2D images can
be produced, but also 3D analysis is enabled by acquisition of z-stacks. Biological processes
which are three-dimensional by nature, can then be studied as such. Still, high-throughput
applications generally use less computationally expensive 2D data. 3D or 4D (time series of 3D
data) are mostly acquired in research purposes, providing valuable information on the dynamics
of the cellular processes.

Although distribution of biomolecules is frequently studied by imaging, molecules of interest
are usually smaller than the resolution of the imaging device. The problem of insufficient image
resolution is overcome by observation of molecules in a set and not individually. To detect
molecules concentration optically, a densitometric analysis can be applied (see Section 2.5.3).
Densitometry generally refers to the measurement of the optical density in the sample and
inferring the concentration from these data.

Distribution of biomolecules can be measured in fluorescence images. Proteins, for instance,
can be tagged with fluorophores using antibodies. The recorded pixel intensity in the images
is proportional to the fluorophore concentration. Assuming the stoichiometric binding between
the fluorophore and the molecules of interest, the concentration of the latter one can be as-
sessed. I will further refer to densitometry or densitometric analysis performed on fluorescence
microscopy images, as they are the information source used in my work.

As discussed earlier (see Section 2.5.3), densitometry can be performed either at points,
along a line (1D) or in some closed region (2D). Line densitometry results in vectors representing
distribution of biomolecules along some line. For example, Grabe et al. applied 1D densitometry
to study protein distribution across the stratified epithelial layers [66]. When taken along the
concentration gradient, 1D distribution vectors will contain the information essential to monitor
a directed transport process exhibiting the optimal transport trajectory.

4.2.1. 3D vs. 2D data: z-stacks vs. individual images

Cellular processes are three-dimensional and need to be studied in all 3 dimensions in principle.
However, they are frequently analyzed on the basis of 2D images due to several reasons. First,
there are no widespread native and cost efficient 3D optical devices. Acquisition of confocal
z-stacks allows an approximation to the depiction of the 3D nature of the processes. Second,
the smallest sufficient information source should be used in high-throughput applications to
meet the compromise between the valuable data and time costs.

Biological structures normally do not exhibit uniform spatial organization like crystals. Mem-
branes and other biological structural elements (small vessels, etc.) are usually found in all
angular orientations. Hence, costly 3D analysis may be in principle substituted by acquisi-
tion and evaluation of numerous 2D images. For example, a homogeneous tissue sample (e.g.
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Figure 4.2.1.: Example of a canaliculus depicted in 3 consecutive images of a z-stack with
respective densitometric profiles of a structural marker (Zo-1). This membrane
fragment is cut in its principal axis only by one optical plane (middle).

Figure 4.2.2.: 3D information extraction from a z-stack.

liver biopsy) can be well analyzed by 2D microscopy images acquired under any angle. As
membranes and other biological structures can be found at all spatial orientations, a 2D image
acquired under a random angle is expected to depict at least some of them in its image plane.
Analysis of a sufficiently large number of 2D images is thus expected to be an approximation
to computationally costly 3D evaluation.

Individual 2D images from a confocal z-stack may contain sufficient information to reliably
evaluate a 3D biological process. Nevertheless, a combination of such 2D images may be ben-
eficial. Figure 4.2.1 illustrates a small canalicular fragment which is not parallel to all of the
depicted focal image planes. Not all of the extracted densitometric profiles are symmetrical.
This canaliculus can only be optimally imaged in one optical layer (e.g. the middle layer in
Figure 4.2.1). However, this optical layer is not necessarily also the optimal one for the rest of
the biological structures.

To overcome this problem, I suggest 3D information extraction by combination of 2D images
from confocal z-stacks (see Figure 4.2.2). Every n neighboring layers (e.g. n = 3) are averaged
in order to better depict those membranes, which are not exactly parallel to the focal plane.
This operation can improve suboptimal intensity profiles if the information from the neighboring
layers is of a better quality. Initial confocal layers 1, 2, and 3 are averaged to produce a new
layer 2a (see Figure 4.2.2):

I(2a, x, y) =
I(1, x, y) + I(2, x, y) + I(3, x, y)

3
, (4.1)

where I(j, x, y) corresponds to the pixel intensity in the confocal layer j at the position
(x, y). The number of the averaged layers n depends on the size and properties of the biological
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Figure 4.3.1.: Translocation of biomolecules detected in two images of one time series by their
overlay.

structure studied. n can vary between 2 and the largest required number of neighboring confocal
layers to cover the whole biological structure.

4.3. Generalization of translocation quantification and optimal
1D transport model

Transport of a biomolecule refers to its movement (either itself or by a carrier molecule) from
one location to another. If biomolecules are moving from one functional region to another, we
talk of a translocation. Translocation processes are widespread in the living organisms. The
compartmentalization principle leads to the presence of numerous organelles representing closed
aqueous volumes. Organelles are separated from the cytoplasm by membranes which allows for
a different concentration of molecules in organelles and in the cytoplasm. This serves as a
basis for translocations proceeding along the concentration gradients (across the membranes).
Further, biomolecules frequently integrate into membranes, functioning as coordinators and
sites of major activity [21]. Hence, according to my definition, all translocations include a
membrane. It either represents a barrier or a functional region by itself.

To assess translocation of a biomolecule of interest (further called a functional marker) from
static images, at least two biological samples have to be analyzed and compared (e.g. the
treated sample (1) and the untreated sample (2)). If functional marker distribution differs from
the sample (1) to the sample (2), then the translocation is assumed.

Evaluation of functional marker translocation is straightforward if samples (1) and (2) consti-
tute a time series. With a suitably low density of the functional marker, individual points can
be tracked. In this case, respective images can be overlaid and functional marker distributions
can be compared (see Figure 4.3.1). Overlapping regions or degree of localization change could
be calculated from these images. Still, neither general direction of the translocation, nor its
reliable quantitative measure can be obtained if only the functional marker was labeled in the
biological samples.

This method can not be applied to assess translocation of biomolecules in images of two dif-
ferent biological experiments which are not a part of one time series. Overlay of completely dif-
ferent images would not yield any information on the translocation. To overcome this problem,
the functional marker translocation can be quantified in relation to some biological structure.
One of the stable components of this biological structure has to be labeled, too. This structural
marker is a biomolecule whose localization is known and is visible under various experimental
conditions. According to my definition, translocation processes involve one or another mem-
brane. Thus, a membrane protein meeting these requirements can be selected as the structural
marker. For instance, housekeeping or structural membrane proteins are frequently used for
this purpose [49, 160].

Figure 4.3.2 illustrates a model of the directed transport adopted in the scope of my work. It
represents the functional marker translocation along the optimal transport trajectory (concen-
tration gradient) across the membrane and orthogonally to it (1D translocation). This model
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Figure 4.3.2.: Optimal 1D transport model for directed translocation of the functional marker
(red) across a membrane (structural marker, green) along the optimal trajec-
tory.

is further referred to as optimal 1D transport model. Figure 4.3.3 illustrates an example of a
translocation corresponding to the optimal 1D transport model. The functional marker (red)
is translocated across the membrane. One of the stable membrane proteins is selected as a
structural marker and is immunohistochemically tagged (green).

Biological images with at least two labeled markers contain sufficient information for the
translocation quantification, and will be referred to as multi-marker images. Such multi-marker
images of biological samples prepared under different experimental conditions can be compared.
Information on the marker distribution can be extracted by densitometry. For instance, line
densitometry results in 1D vectors (or profiles) of numbers describing individual pixel intensities
corresponding to concentrations of biomolecules. Such a profile extraction is performed for
the processes corresponding to the optimal 1D transport model. The profiles are extracted
orthogonally to the structural marker (along the concentration gradients).

When these data have been collected, the profiles can be evaluated and statistically compared
as density vectors. First, they have to be normalized to exclude the variability of any factors
influencing fluorescence intensity of the tags used (e.g. binding affinity). This can be done by
setting either the total profile intensity or the maximum intensity value to 1.

Example profiles for the biological samples 1 and 2 (e.g. initial and final state) corresponding
to the translocation process from Figure 4.3.3 are shown below. Green curves represent fluo-
rescence intensity distribution of the structural marker. It is the same in both samples, as a
stable membrane protein was selected as the structural marker. Red curves show distribution
of a functional marker, and it changes from sample (1) to sample (2). The profile of sample
(2) exhibits an elevated intensity (or concentration) on the right and decreased concentration
of a functional marker on the left side of the membrane relative to sample (1). This suggests
that functional marker translocation took place in sample (2). This translocation will then be
quantitatively assessed based on the extracted profiles.

The upcoming chapters take 2D fluorescence images as an example of the data for transloca-
tion assessment. However, general ideas are also applicable to the data from other sources. 2D
images are analyzed as a simplified representation of complex 3D biological processes. Following
projection of the directed transport processes onto 1 dimension along the concentration gradient
and evaluation of the extracted densitometric profiles leads to further significant information
reduction. Consequently, much faster, simpler and more efficient analysis can be performed
with 1D vectors than with 3D data.

51



4. Novel approach to translocation quantification

Figure 4.3.3.: Optimal 1D transport model for translocation of biomolecules across a mem-
brane. The sample 1 is compared to the sample 2 based on the corresponding
extracted intensity profiles.

Figure 4.4.1.: Structure-based workflow. FM - functional marker, SM - structural marker.

4.4. General steps for translocation quantification

In the following, I will define general processing steps required to quantify translocation of
biomolecules corresponding to the optimal 1D transport model. Figure 4.4.1 summarizes the
workflow presented below. Briefly, structure detection is performed first to localize biological
structures in the images. Further, line densitometry extracts information on the distribution
of the functional marker perpendicular to the membranes (distribution profiling). And finally,
functional marker distribution in relation to the membranes is toponomically characterized.
Numeric descriptors are developed for this purpose. They enable statistical evaluations of
biomolecule distribution. These steps constitute the defined structure-based translocation quan-
tification workflow (structure-based workflow).

4.4.1. Structure detection

First, a functional marker has to be tagged to be detectable in multi-marker images. This can
be achieved, for instance, by immunohistochemical labeling with a fluorescent dye.

Second, a taggable structural marker that delineates borders of biological (cellular or sub-
cellular) structures serving as a reference for the translocation has to be selected. Oftentimes a
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Figure 4.4.2.: Possible positions to extract intensity profiles (yellow lines). The profiles run
along concentration gradients and are centered on the structural marker posi-
tions.

membrane protein is chosen as such, as its localization is stable and independent of experimental
conditions. This is a great advantage, as numerous membranes are present in cellular organisms
due to the compartmentalization principle. A membrane protein suitable as a structural marker
can be found for almost any translocation process. The selected structural marker should be
labeled, too.

Third, the structural marker has to be detected in the multi-marker images. Image process-
ing can be applied for this purpose. Structure detection could be performed by thresholding of
intensity values. A threshold has to be selected to distinguish between background and fore-
ground signal. Alternatively, structure recognition or pattern detection can be performed by
more sophisticated algorithms. For example, the earlier presented trainable Zeta software (see
Section 2.3.1) uses machine learning to detect foreground regions.

Structure detection in biological images is often problematic due to natural variation and
irregularities in biological structures. Hence, it should be avoided if acceptable results can
be achieved without this computationally expensive step. In Section 4.4.3 I will suggest an
alternative approach based on peak detection in the extracted 1D distribution profiles.

4.4.2. Distribution profiling

Once the structural marker was detected in the images, trajectories of the functional marker
translocation can be “found”. They run along the concentration gradients orthogonally to the
detected structural marker objects (see Figure 4.3.3). Intensity profiles for the structural and
the functional marker can then be extracted along these trajectories. Such profiles are further
called structure-based profiles and the respective profile extraction is further referred to as the
structure-based profile extraction.

Profile extraction

One of the possible 1D translocation scenarios is that the functional marker is moving from one
side of a biological structure to the other across the membrane (structural marker). Otherwise,
the functional marker can be included into/excluded from the membrane. Anyhow, the profiles
have to sufficiently cover both sides of a biological structure around the membrane (or any other
boundary surface taken as a reference for the translocation). The profiles could be centered
at the structural marker positions (see Figure 4.4.2) if the membrane separates symmetrical
objects (e.g. two cells of equal size). Optimal profile length is selected for every studied case
individually as it depends on the particular biological process, cells or structure sizes and other
factors. The extracted profiles are further statistically analyzed.
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Figure 4.4.3.: Signal detection in distribution profiles.

Profile selection

Only a subset of the extracted intensity profiles represents the translocation phenomenon. Par-
ticularly in confocal imaging, the image itself and the extracted profiles are not representative
if the focal image plane does not cut the biological structure in the principal axis (see top and
bottom images in Figure 4.2.1). In manual image analysis, humans select membrane fragments
that are depicted symmetrically, contrasty and cleanly. In order to implement such a strategy
in the automated algorithm, intensity profiles suitable for translocation quantification should
be selected. This selection is carried out based only on the structural marker profiles. The
corresponding distribution of the functional marker is ignored to avoid bias.

To analyze the structural marker profiles, positions of the structural marker objects (mem-
branes) have to be identified in each of them. Peak detection is performed on these profiles to
yield central positions of the objects (see Figure 4.4.3). Widths of the structural marker objects
can also be identified, for example, by thresholding of the intensity values. These operations
represent a kind of a structure detection. However, such a structure detection on 1D profiles is
simpler and much less computationally expensive than on 2D images.

Selection of the structural marker profiles is performed based on these data. First, membrane
segments non-parallel to the image plane are filtered out. Profiles extracted there can be
identified if properties of the studied biological structure are known. A suitable example are
the profiles in Figure 4.2.1. There, only one profile (in the middle) is symmetrical, as the
biological structure where it is extracted is parallel to the image focal plane. Two other profiles
will be rejected due to the lack of symmetry. Further selection conditions rely on the statistical
knowledge on the structure parameters. For example, profiles extracted at extremely narrow
or wide membranes can be filtered out. Noisy profiles are also eliminated, as they are likely to
exhibit numerous local maxima and minima corresponding to background signal. Figure 4.4.4
illustrates some examples of accepted and rejected profiles of the structural marker at the
canalicular membranes (Zo-1).

An arbitrary number of such criteria can be applied, depending on the available biological
knowledge and the required strictness of the selection. The selected profiles illustrate my idea on
the perfect structural marker object and the corresponding profile. Positions on the biological
structures where structural marker profiles were accepted are thus considered valid for the
evaluation of the translocation. Respective functional marker profiles are extracted only there
and used for the quantification. The profile selection has a great impact on the quantification.
It should be minimally strict to still account for the natural biological variation, but specific
enough to eliminate damaged regions and noise.

Profile extraction and selection yield a set of profiles that clearly depict the biological struc-
ture studied. Such profiles are representative for the translocation quantification. Profile ex-
traction and selection constitute the distribution profiling.
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Figure 4.4.4.: Examples of selected and rejected structural marker (Zo-1) profiles at canalic-
ular membranes.

Figure 4.4.5.: Random profile extraction along random lines that are drawn in initial images.

4.4.3. Avoiding structure detection

As discussed above, structure detection in biological images is complicated due to the natural
variation. Avoiding this processing step could not only speed up the computation, but also
make the algorithm more generally applicable.

The underlying idea of the suggested translocation quantification is to extract the information
on distribution of biomolecules from multi-marker images and evaluate it statistically. Accord-
ing to the defined structure-based workflow, intensity profiles represent sufficient information
source for such an evaluation. Hence, the aim of the image processing is the extraction of the
distribution profiles. Following this logic, any other operations yielding such profiles may be
applied instead.

Time consuming structure detection in biological images may be avoided by drawing numer-
ous random lines in these images and evaluating profiles extracted along them (see Figure 4.4.5).
I will further refer to such profiles as random profiles. Such a profile extraction is further referred
to as the random profile extraction.

To access the information on the distribution of biomolecules, the extracted 1D random
profiles have to be analyzed exactly like the profiles obtained after structure detection in the
images (see Section 4.4.2). In particular, peak detection on the random profiles will localize
the membrane objects. Objects’ parameters (e.g. width) will be calculated from the random
profiles. Further, profile selection will be performed based on these parameters. The same
selection criteria will be used that were defined for the profiles extracted after structure detection
in the images. Herewith, complex and time consuming structure detection in multi-marker
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Figure 4.4.6.: Random lines-based workflow. FM - functional marker, SM - structural marker.

images is avoided. Instead, structure (membrane) detection is done by peak detection on 1D
profiles. This is the part of the analysis that has to be performed anyway for the profile selection.

The random profile extraction is more efficient than the structure-based profile extraction.
Moreover, it is expected to be applicable to an even broader range of biological structures due to
the absence of the specific and complex structure detection step. If the number of random lines
is sufficient, random profiles will contain enough information on the distribution of biomolecules
to evaluate the translocation.

The workflow including the random profile extraction is further referred to as the random
lines-based translocation quantification workflow (random lines-based workflow). Figures 4.4.1
and 4.4.6 illustrate again the difference between the structure-based and the random lines-based
workflows.

4.4.4. Toponomic characterization

We assume that translocation took place if the distribution of biomolecules differs in two an-
alyzed biological samples. I presented ways of information extraction from 2D multi-marker
images leading to 1D vectors describing the distribution of biomolecules along the concentration
gradients. Further ideas for the translocation quantification and analysis rely on the optimal
1D transport model and are based on evaluation of such extracted profiles. These profiles rep-
resent distribution of biomolecules in the studied biological samples. This distribution can also
be described as a complex function f :

distribution of biomolecules = f (time, initial biological conditions, biological structure,
concentration, external influence,..),

where most of the parameters are unknown, except for the time and external influence (ex-
perimental conditions). Neither all the parameters, nor the function f itself might be precisely
determined. The only available information about this function is its shape in the analyzed
samples (see profiles in Figure 4.3.3). Such distribution functions of different samples should be
compared to assess the translocation of biomolecules. As these functions are unknown, a gen-
eral method has to be developed for their comparison. This method should be able to quantify
the translocation of biomolecules by analysis of distribution profiles extracted from different
biological samples.

Parameter values could be estimated for a known function either directly or by fitting. For
example, Gaussian curves are characterized by µ (mean) and σ (standard deviation). If dis-
tribution of biomolecules could be described by a Gaussian function, then comparison of the
biological samples would be possible by comparison of the µ and σ calculated from the re-
spective intensity profiles. A similar logic applies to any function whose equation is known.
Parameters of the function f are determined for the samples (1) and (2) and serve as a basis
for their comparison. In many cases, however, the function f is and stays unknown. It can not
be assumed, that any distribution could be described by a Gaussian function. Consequently,
there is no mathematical reasoning to use µ and σ as parameters for the comparison; and a
more general analysis method needs to be found.
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Figure 4.4.7.: Extracted intensity profiles for the optimal 1D transport model from Fig-
ure 4.3.3.

Similar to µ and σ for Gaussian functions, parameters for 1D profiles may be calculated for
their mathematical comparison. These descriptors are numeric variables calculated from com-
binations of individual intensity values from the profiles. Specific descriptors can be developed
for any translocation depending on the underlying biological process. Let us illustrate this on
the profiles from Figure 4.3.3, repeated here for the convenience (see Figure 4.4.7).

Numerous different combinations of the intensity values can be created from 1D profiles. For
instance, one could compare the summarized intensities of the functional marker on the left and
on the right sides of the membrane. For sample (1), summarized intensity on the left side will
be much larger than the one on the right side, while for sample (2) the difference will be less
significant. Herewith, the difference between the functional marker distribution in sample (1)
and sample (2) can be shown and quantified. However, biological experiments do not provide
stability in the achieved intensity values of fluorescent markers. The comparison of absolute
intensity values should then be avoided. This can be achieved, for instance, by normalization of
these values to the range 0 - 1. Another option would be to develop dimensionless descriptors
(e.g. ratios of intensity values). They will allow for reliable statistical comparison of different
experiments. In the considered example from Figure 4.4.7, such a dimensionless descriptor could
be the ratio of the summarized intensities on the left and on the right sides of the membrane.
Unlike the absolute intensity values, this descriptor is dimensionless and can be used to compare
samples prepared under different experimental conditions.

This simple example illustrates that for every biological process and distribution function, spe-
cific numerical descriptors for the distribution profiles can be developed. Descriptors represent
a further information reduction step from 1D vector to a single number. Numeric descriptors,
developed individually for each case, characterize the unknown distribution function f . They
can thus be used for dataset comparison, similar to µ and σ for Gaussian functions. Calculation
of the numeric descriptors is thus a toponomic characterization of the molecule distribution.

To develop numeric descriptors best fitting to a particular biological process, distribution
profiles can be subdivided into zones. A zone model is a set of biologically relevant zones
(regions) defined in molecule distribution profiles. I consider every profile as a rich information
source on a current biological state. Figure 4.4.8 (a) illustrates an example of an image with
a structural marker (labeled green) and a suitable zone model created after examination of
numerous extracted profiles. An example position of an intensity profile is marked by a white
line in the initial image, and the respective extracted profile is shown below. The cell regions
close to the structural marker (Zones 2 and 4) may contain different concentrations of the
functional marker (labeled red) and may have different physical and biological properties than
the regions further away from the boundary surface (Zones 3 and 5). All these zones are
also completely different from the membrane itself (Zone 1). Therefore, it seems intuitive to
subdivide a complete intensity profile into such small zones.

To develop a zone model for a particular biological process, extracted profiles have to be
analyzed taking the biological background into account. For example, the smaller the structures
studied, the smaller should be the created zones. Similarly, the stronger the changes in the
functional marker concentration depending on a distance from the membrane, the shorter should
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(a) (b)

Figure 4.4.8.: Multi-marker images and corresponding zone models for structural marker pro-
files. (a) Membrane protein; (b) nucleus marker (labeled green).

be the zones.
The position of the structural marker in a distribution profile indicates the membrane to be

crossed by the functional marker. It has to be identified in every profile. Peak detection on a
profile yields a position of the membrane, or its center. This position is also a starting point to
count the distance from the membrane. After this position is identified (e.g. as the center of
the profile), a specific zone model can be applied.

After having created a specific zone model, suitable descriptors can be developed by com-
bining intensity values from different zones. Let us remember that the zone model as well the
descriptor formulas have been elaborated based on the structural marker profiles. However,
all the following evaluations will be performed on the functional marker profiles, as they are
the information source on the potential translocation of biomolecules. Descriptor values are
calculated from the functional marker profiles and are further evaluated.

Distributions of the descriptor values from different samples can be compared by a statistical
test to detect changes. The selected test has to be unpaired and should make no assumptions
on the a-priori distributions of the descriptor variables. Resulting p-values will show whether
any statistically significant difference is detected or not. As numeric descriptors represent the
extracted profiles of the functional marker, one concludes that the detected changes apply
to the studied distribution of a functional marker. The translocation can thus be assessed
quantitatively.

The calculated significance may also be used to identify which descriptor is more relevant
for the biological process studied. The upcoming chapters will show that the introduction of
structure-specific descriptors can increase significance levels of the detected translocation.

4.5. Quantification of other translocation scenarios

The optimal 1D transport model is used as the basis to define the structure-based and the
random lines-based workflows. Numerous biological transport processes correspond to this
scheme. However, another translocation type is also frequently found in living organisms,
namely, inclusion/exclusion processes. There, small particles are absorbed by a cell or an
organelle, or these particles are exported from it.
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(a) (b)

Figure 4.5.1.: (a) Nucleus (from Bitplane [11]) depicted in 2D to illustrate 2D translocation
(b).

Inclusion/exclusion processes also involve a membrane structure that can serve as a reference
structure for translocation assessment. It can be either a membrane, or a complete biological
structure itself. For example, a nucleus plays this role in the earlier presented glucokinase
translocation (2D-Nuc process, see Section 3.1.4). There, the functional marker (glucokinase)
is translocated into closed regions (nuclei) delineated by the structural marker (DNA). I will
further refer to such processes as to 2D translocation. 2D translocation exhibits 3D properties,
as any biological event. However, when captured in 2D multi-marker images, the translocation
may be depicted as two-dimensional (see Figure 4.5.1).

Quantification of a 2D translocation can be performed according to the defined structure-
based and the random lines-based workflows, similar to the processes corresponding to the 1D
optimal transport model. Only structure detection in profiles will proceed somewhat differently.
In the case of 2D translocation, a structural marker does not delineate a membrane, but a
complete structure within a cell. Hence, peak detection on such a structural marker profile will
not yield one central point, but two borders of the structure. Figure 4.4.8, (b) illustrates a case
where DNA is a structural marker and a functional marker is translocated into/from the nucleus.
One of the possible profile positions is marked by a white line. Peak detection on the respective
structural marker profile will yield a region corresponding to the labeled nucleus. Optimal
transport trajectories will also correspond to the concentration gradients and be orthogonal to
the boundary surfaces (membranes). Therefore, both translocation quantification workflows are
also applicable here. A suitable zone model and numeric descriptors will be developed keeping
in mind a different profile structure.

4.6. Limitations of the approach

The suggested approach to the translocation quantification covers a great number of transport
processes. However, there are some process types which are not likely to be analyzed by this
workflow.

First, we are limited to directed transportation. Stochastic molecule motion is thus not cov-
ered. Second, both a functional and a structural marker need to be taggable and detectable in
biological images. If this is impossible, my workflow can not be applied. Third, if an actual
translocation trajectory is very different from the optimal one (the concentration gradient),
then the extracted intensity profiles might not be representative for the changes in the molecule
distribution. Consequently, calculated descriptors might not be representative for the translo-
cation progress, and no reliable statistical measures can be obtained.

I believe that the novel translocation quantification should be applicable to a wide range of
biological transport processes.
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5. Implementation of automated
translocation quantification workflows

The preceding chapter summarizes ideas on translocation quantification. It includes general
considerations about biological transport processes, in particular those corresponding to the
optimal 1D transport model (directed transport orthogonally to a membrane). I have defined
two workflows for the automated quantification of translocation processes corresponding to this
model.

One quantification workflow is based on structure detection in images (structure-based work-
flow). There, distribution profiles of biomolecules are extracted by line densitometry orthog-
onally to the structures detected. Extracted profiles undergo a selection procedure in order
to filter out noisy profiles and those depicting damaged biological structures. Distribution
of biomolecules is further toponomically characterized in relation to the structures detected.
Process-specific numeric descriptors are developed for this.

Due to the complexity of structure detection in biological images, I propose another auto-
mated workflow that avoids this step. This random lines-based workflow starts with profile
extraction along random lines. Further, structure detection is performed on the extracted ran-
dom profiles and not in the image. The random profiles also undergo a selection procedure.
And finally, distribution of biomolecules is toponomically characterized as in the structure-based
workflow.

The random lines-based workflow can be more easily applied to different biological structures
than the structure-based workflow, owing to the absence of structure detection in images. In
this Section, I will present implementation of the structure-based and the random lines-based
workflows for the model biological processes.

Three translocation processes are used as validation models. Two processes correspond to
the optimal 1D transport model defined in Chapter 4. The first process (1D-Can) is the translo-
cation of bile salt export pump (Bsep) between the canalicular membrane and the cytoplasm of
hepatocytes. The second process (1D-Bas) is the translocation of sodium taurocholate cotrans-
porting polypeptide (Ntcp) between basolateral membrane and the cytoplasm of hepatocytes.
The third process is a 2D translocation of glucokinase between the nuclei and the cytoplasm
of hepatocytes (2D-Nuc process). These biological processes are investigated by my collabo-
ration partners in the DFG-funded clinical research group “Hepatobiliary transport and liver
diseases”. Owing to this cooperation, I had examples of translocations corresponding to the
defined 1D and 2D models and could test my theoretical considerations.

In order to test the validity of my theory, the automated workflows are implemented in a
set of algorithms. Application I describes the implementation of the structure-based work-
flow for the 1D-Can process (see Table 5.0.1). Application II is the implementation of the
structure-based workflow for the 1D-Bas process. Application I and II are validated against
the manual translocation quantification (manual workflow) taken as the standard method (Sec-
tion 3.2). Statistical tests on the automatically and manually extracted data are expected to
indicate a significant functional marker translocation between positive and negative controls
(p-value ≤ 0.05) but not between negative controls. Descriptor values, as parameters of the
molecule distribution function, are expected to exhibit similar distribution in the manually and
automatically extracted data.

Further, the random lines-based workflow is implemented for the 1D-Can and 1D-Bas pro-
cesses (Application III and IV). Application III and IV are validated against the structure-
based workflow. These applications are not validated against the manual workflow, because not
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Model Process
Translocation quantification

Standard method Structure-based Random lines-based
1D-Can Manual Application I Application III
1D-Bas Manual Application II Application VI
2D-Nuc Structure-based Application V

Table 5.0.1.: Experimental design.

all datasets have been manually processed by my colleagues. Significance levels of the detected
translocation and distribution of descriptor values are considered.

And finally, the random lines-based workflow is adapted to quantify a 2D translocation on the
example of the 2D-Nuc process (Application V). There, nucleus-to-cytoplasm intensity ratios
are calculated to describe the functional marker distribution. Application V is validated
against the standard structure-based quantification of the nucleus-to-cytoplasm translocation
(Section 3.3). Distribution of the nucleus-to-cytoplasm intensity ratios calculated by these two
automated workflows are compared.

The upcoming sections include detailed descriptions of the developed algorithms. Statistical
results of the developed automated workflows are presented in Chapter 6 together with their
validation.

5.1. General steps for the structure-based workflow

I will first focus on 1D cases illustrated by protein translocations at the canalicular and the ba-
solateral membranes of hepatocytes (1D-Can and 1D-Bas processes). The common processing
steps will be presented in the upcoming sections, followed by case specific implementations de-
scribed in more detail. Later, quantification of a 2D translocation on the example of glucokinase
nucleus-to-cytoplasm translocation (2D-Nuc process) will be discussed.

5.1.1. Structure detection

Figure 5.1.1 illustrates the first processing steps on the example of a confocal fluorescence
microscopy image of the canalicular membranes. According to the structure-based workflow,
structure detection is performed first. Numerous algorithms exist and can be applied for this
purpose (see Section 2.2.1). Some of them are generally applicable, some are optimized to a
certain type of biological images. I perform the structure detection (Figure 5.1.1, (b)) using the
software Zeta, presented in Section 2.3.1. The foreground-background detection is implemented
there using machine learning trainable by an expert.

The yellow circles in Figure 5.1.1 point out small foreground fragments which are deleted
in a consecutive step. The detected foreground regions (white) correspond to membranes in
the input multi-marker images. They can be refined and cleaned from noise by simple image
processing. Morphological opening [153] deletes tiny objects which might have been created by
the foreground-background detection (Figure 5.1.1, (c)). Small objects are further deleted from
the foreground mask to exclude potentially damaged or incomplete structures (Figure 5.1.1,
(d)). Subsequent morphological closing (Figure 5.1.1, (e)) eliminates gaps which were possibly
introduced by morphological opening. The final cleaning eliminates left over small objects
(Figure 5.1.1, (f)).

The next step of the structure-based workflow is the profile extraction in relation to the
structures detected (structure-based profile extraction). According to the optimal 1D transport
model, molecules are translocated orthogonally to a membrane. To find these directions, the
orientation of the membranes has to be analyzed. This can be done by skeletonization of
foreground regions (Figure 5.1.2, (a)). Among various algorithms, skeletonization according to
the Euler characteristics [114] is one of the least complicated implementations. I have selected
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(a) (b) (c)

(d) (e) (f)

Figure 5.1.1.: Canalicular membranes: structure detection steps I. (a) Initial image; (b) de-
tected foreground regions (white); (c) morphological opening; (d) thresholding;
(e) morphological closing; (f) thresholding.
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(a) (b) (c)

(d) (e) (f)

Figure 5.1.2.: Canalicular membranes: structure detection steps II. (a) Cleaned foreground
regions; (b) skeletonization; (c) pruning; (d) deletion of branching points and
their neighbors; (e) thresholding; (f) resulting skeleton fragments in the initial
image.

this algorithm, as the obtained skeletons (Figure 5.1.2, (b)) can be optimized later. For example,
pruning deletes short branches that are attached to the main skeleton line. Pixels of the shorter
branches are deleted one by one from four directions until no further deletion is possible.
Only those parts of the skeleton are left that extend in the direction of the long axis of the
membrane segments (Figure 5.1.2, (c)). Further cleaning of the skeleton is motivated by the
manual strategy of selecting membrane segments for densitometric analysis. Only long, clean
and unbranched membrane segments are considered suitable. Therefore, small fragments and
branching points with several their neighbors are deleted from the skeleton (Figure 5.1.2, (d)
- (e)). These procedures result in big and straight skeleton fragments, as Figure 5.1.2, (f)
illustrates. These skeleton fragments indicate directions of the membranes, orthogonally to
which distribution profiles will be extracted.

5.1.2. Distribution profiling

Structure-based profiles are extracted both for the functional and structural marker orthogo-
nally to the membranes (see Section 4.3). Therefore, at every pixel of the skeleton (Figure 5.1.3,
(a)) the following operations are performed. First, a tangent is fitted to the skeleton line at this
pixel (Figure 5.1.3, (b)), so that the direction of this particular membrane segment is identi-
fied. Then, an orthogonal line is drawn through this pixel indicating the optimal translocation
trajectory. This line is centered at the membrane, as both the canalicular and the basolateral
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5.1. General steps for the structure-based workflow

(a) (b) (c) (d)

Figure 5.1.3.: Distribution profiling illustrated on canalicular membranes. (a) Resulting skele-
ton fragments; (b) fitted tangent; (c) line orthogonal to the skeleton, along
which intensity profiles are extracted; (d) initial image with the lines allowing
extraction of a wider profile.

membranes separate cells of similar sizes. The extracted profiles should thus be symmetrical
and spread equally to both sides of the membrane (Figure 5.1.3, (c)). Along this optimal
translocation trajectory, pixel intensities are extracted and recorded.

Similar to Schmitt et al. [142], the width of the profile is increased by adding intensity from
neighboring parallel lines (Figure 5.1.3, (d)). The average of several such intensity profiles
represents a wider profile extracted at the given pixel.

Only a subset of structure-based profiles cleanly represents the translocation phenomenon.
Profile selection allows elimination of noisy profiles and those taken at damaged regions of the
biological structures. Selection criteria depend on the knowledge about the biological structure
and will be therefore presented in the upcoming case specific sections.

5.1.3. Toponomic characterization

The usual evaluation scenario includes 2 datasets of n images (e.g. n = 10) acquired from
biological samples. These might be, for example, the rat livers perfused in a normo-osmolar
or hyper-osmolar buffer. Based on the available multi-marker images, functional marker dis-
tribution has to be evaluated, and its translocation has to be quantified. Therefore, selected
distribution profiles are used to calculate process-specific numeric descriptors. The upcoming
sections include details for the model 1D-Can and 1D-Bas processes. Here, only common steps
for the toponomic characterization are presented.

Numeric descriptors represent the extracted distribution profiles, and thus the unknown
molecule distribution function. Descriptor values calculated for different datasets are compared
by Wilcoxon rank sum test (WRST) (using the software R [132]). The resulting p-values indicate
a statistical significance of the detected translocation of the functional marker. The newly
defined numeric descriptors are also compared to the statistical variance which was used for
the translocation quantification in previous publications. Therefore, the datasets of images are
compared by WRSTs on the statistical variance calculated for the selected profiles. Significance
of the translocation detected on the statistical variance is compared to that calculated using
the numeric descriptors. The higher significance levels suggest the better relevance to the
translocation phenomenon.

WRST is chosen because its properties suit well to the data to be evaluated. First, it does
not make any assumption on variables distribution. Second, it can be unpaired. As compared
datasets and the respective extracted profiles are independent, the applied statistical test has
to be unpaired. Furthermore, the number of the profiles extracted and/or selected from the
dataset is unknown beforehand. WRST is advantageous, as it can compare populations of
different sizes. However, it is sensitive to the population size. Namely, the larger the compared
groups, the more significant differences can be detected. I introduce a following scheme to
permit a consistent evaluation:
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1. Extract and select profiles from the datasets to be compared.

2. Randomly choose 100 profiles for each of the datasets.

3. Calculate descriptor values for these 100 profiles.

4. Perform a WRST on 100 vs. 100 descriptor values.

5. Save the resulting p-value.

6. Repeat steps (2)-(5) 100 times.

7. Report the median p-value from the 100 performed evaluations.

This evaluation scheme enables a consistent comparison of the structure-based and the man-
ual workflows. First, the group size of 100 profiles is selected according to the established
manual workflow. Experts manually extract 10 profiles/image. A standard dataset consists of
10 images, resulting in 100 manually extracted profiles. Second, WRST is sensitive to the pop-
ulation sizes. Thus, for the statistically correct comparison of the manual and the automated
workflows, the group sizes of the compared profiles have to be equal (e.g. 100 profiles/dataset).
Third, the automated profile extraction normally yields much more than 10 profiles/image.
Thus, random sampling of 100 profiles from all the profiles extracted from a particular dataset
is always possible.

All the statistical results presented in the upcoming sections are generated according to this
scheme.

5.2. Validation of the novel automated workflows

The novel automated workflows have to be validated against the established approaches. The
structure-based workflow is validated against the manual workflow, while the random lines-
based workflow is validated against the structure-based workflow.

For the validation of the structure-based workflow, datasets of images are automatically
processed, profiles are extracted, selected and ranked. In parallel, the same images undergo the
manual profile extraction, as presented in Section 3.2.

Further, biologically relevant zones are defined for a particular translocation process. Numeric
descriptors are developed based on these zones. Numeric descriptors are calculated both from
the automatically and manually extracted profiles and used for the comparison of the datasets by
WRSTs. Resulting p-values indicate the significance of the detected translocation phenomenon.

The manual workflow is performed as a standard evaluation. It should neither indicate a
false positive effect when comparing negative controls, nor a significant translocation may be
missed between positive and negative controls. The results of the structure-based workflow are
considered valid if a significant translocation is detected between positive and negative controls
and its absence is indicated in the negative controls.

The structure-based workflow is also validated against the manual workflow by descriptor val-
ues. Descriptor values are numeric parameters of the extracted profiles. The extracted profiles,
in turn, represent the unknown molecule distribution function (see Section 4.4.4). If descriptors
calculated from the manually and automatically extracted profiles exhibit comparable distri-
butions, the original molecule distribution functions will also be comparable. Herewith, the
automatically extracted distribution profiles may be considered a valid alternative to the man-
ually extracted profiles to represent the molecule distribution. To test this, means (µ) and
standard deviations (σ) of the descriptor values are compared.

The random lines-based workflow is validated the structure-based workflow similarly.
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5.3. Application I: structure-based workflow for 1D-Can
process

Two biological processes corresponding to the defined 1D optimal transport model are studied in
the scope of this thesis. The first one concerns the bile salt export pump (Bsep) internalization
into hepatocytes from the canalicular membranes (1D-Can process, for biological background
see Section 3.1.2). Bsep is a functional marker whose translocation is to be quantified. Zonula
occludens 1 protein (Zo-1) is the structural marker, as it delineates canalicular tight junctions
and is visible under various experimental conditions. These proteins are stained in the liver
tissue sections. Confocal fluorescence microscopy images are acquired and evaluated according
to the structure-based workflow.

5.3.1. Structure detection

Structure detection is performed according to the presented scheme (see Section 5.1.1). Here,
only specific details are given.

Foreground regions detected by the Zeta software are first cleaned by morphological opening
using a round structuring element with the radius of 3 pixels. Resulting objects are thresholded
to eliminate those whose area is too small (see Table 5.3.1). These regions most probably
correspond to wrongly segmented noise. The respective threshold as well as all other referenced
later, is selected based on detailed examination of numerous confocal images and tests of various
thresholds. The images used for the development and tests of the algorithms have a resolution
of 100 nm/pixel.

Subsequently, morphological closing is performed with the same structuring element. Ar-
eas of the resulting foreground regions are again thresholded. This time, bigger objects are
eliminated which may correspond to very small canaliculi fragments. After skeletonization,
branching points and their 2 neighbors are deleted. The rest of the skeleton fragments is
further thresholded.

Processing of images with different resolution is enabled by scaling of thresholds and other
parameters (e.g. profile length). A scaling factor is calculated and is further used to scale the
parameters:

factor =
100.0

pixelSize
. (5.3.1)

5.3.2. Profile extraction

Profile extraction is performed for both the functional and the structural marker at every
position of the selected skeleton fragments (see Section 5.1.2). The length of the extracted
profiles depends on the size of the biological structures studied. An empirical image analysis
shows that canalicular diameter varies in the range of 0.8 – 2.5 µm. Apart from the canaliculus,
extracted profiles should also cover significant part of the cytoplasm of the adjacent hepatocytes
to illustrate the Bsep translocation between them. Therefore, the selected profile length should
be > 2.5 µm, but small enough so that no further hepatocytes are covered by one profile.

Operation Threshold, pixel
Cleaning after morphological opening 125
Cleaning after morphological closing 250

Delete number of branching points neighbors 2
Cleaning after branching points deletion 7

Table 5.3.1.: Algorithm parameters for the 1D-Can process.
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Figure 5.3.1.: Selection of the optimal profile length for quantification of the 1D-Can process.
Profile length 8.0 µm is found to be sufficient to cover Bsep distribution changes.

(a) (b) (c)

Figure 5.3.2.: Motivation of profile selection. (a) Typical fragment of a canalicular membrane;
(b) plots of the averages over all extracted profiles (red - Bsep, green - Zo-1);
(c) expected plots of the average profiles.

Rat hepatocytes have a diameter of 20 – 30 µm [169], so that a profile of 50 µm covers
approximately the fluorescence intensity distribution of one hepatocyte on each side of the
canaliculus. A range of profile lengths from 6.0 to 50.0 µm was evaluated. It was found that
the intensity of Bsep stays nearly constant for distances of more than 4.0 µm from the central
point of the canalicular membrane. Consequently, the smallest length is selected which is
sufficient to illustrate the Bsep concentration variation in the cytoplasm (see Figure 5.3.1). It
is the length of 8.0 µm, corresponding to 81 pixels (nearest odd value) for the image resolution
100 nm/pixel.

5.3.3. Profile selection

Human experts evaluate only intact and representative membrane fragments in the manual
analysis. Automated profile extraction results in a large number of profiles possibly extracted
on such positions which would be discarded by an expert. Hence, only a subset of the extracted
intensity profiles represents the translocation phenomenon. Therefore, the extracted profiles
have to undergo a selection procedure to be considered for further translocation quantification.
This is explained on the following example. Numerous profiles can be extracted from every
image (Figure 5.3.2, (a)). Their average is calculated to illustrate the molecule distribution in
a particular biological sample. However, the average over all extracted Zo-1 profiles does not
exhibit two clear intensity peaks corresponding to the tight junctions (green line in Figure 5.3.2,
(b)). The expected shape of a profile is illustrated in Figure 5.3.2, (c), exhibiting two symmet-
rical peaks of Zo-1 intensity. This suggests that some profiles included in the initial averaging
might have been extracted at damaged canalicular membranes. Hence, the profile selection is
required to filter them out.

Knowledge of the structures studied (e.g. size, symmetry) is required to implement a selection
strategy. As presented before, profile selection is performed on the structural marker profiles.
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5.3. Application I: structure-based workflow for 1D-Can process

Figure 5.3.3.: Optical section of a canaliculus. If a canaliculus is not cut by an optical image
plane in its principal axis, then its tight junctions will not be imaged symmet-
rically, leading to unsymmetrical Zo-1 intensity profiles.

Zo-1 intensity profiles are tested according to the four conditions described below.
First, membrane segments non-parallel to the focal image plane are filtered out. Such profiles

exhibit Zo-1 intensity peaks of unequal height, indicating that the image plane does not match
the orientation of the canaliculus (see Figure 5.3.3). The first condition restricts the height
difference between the two largest local maxima. The relative difference between the peaks
(5.3.2) should not exceed an empirically identified threshold of 15%:

maxV alue1 −maxV alue2
maxV alue2

< 0.15, (5.3.2)

where maxV alue1 is the absolute maximum of the Zo-1 intensity profile, maxV alue2 is a
height of the second local maximum. The second condition (5.3.3) constrains the distance
between the two intensity peaks (tight junctions) corresponding to the canalicular diameter. It
is known to vary in the range 0.8 – 2.5 µm:

0.7 < ‖(positionMax1 − positionMax2)‖ < 2.6, (5.3.3)

where positionMax1 and positionMax2 denote positions of the peaks (their coordinates
µm) on the profile. The third condition eliminates intensity profiles where the local minimum
between the two peaks is not low enough (low contrast). A small intensity difference between
Zo-1 peaks and the valley might be caused by a damaged tissue region. It may also indicate
that the focal plane is above or below the tight junctions, resulting in a low Zo-1 intensity.
Thus, the third criterion (5.3.4) filters out profiles where a valley is not deep enough:

minV alue

maxV alue2
< 0.2, (5.3.4)

where minValue defines the intensity of the local minimum between the considered two local
maxima. And finally, high quality Zo-1 profiles are selected and noisy profiles are eliminated.
The former ones exhibit two prominent intensity peaks separated by a low local minimum and
flat tails on the sides. The latter ones, in contrast, show further local maxima:

P60(localmaxima)

maxV alue2
< 0.4, (5.3.5)

where P60 (local maxima) is the 60th percentile of the local maxima values. Only if all four
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Figure 5.3.4.: Examples of selected and rejected structural marker (Zo-1) profiles at canalic-
ular membranes.

conditions are fulfilled (illustrated again in Figure 5.3.4), a particular Zo-1 intensity profile is
considered valid. The respective Bsep intensity profile is extracted at the same position of the
skeleton and is passed to further analysis.

5.3.4. Profile ranking

Not all the selected profiles are equally relevant to the quantified translocation. Some of them
were extracted at more symmetrical membranes, or those with brighter staining. Furthermore,
the number of selected profiles is usually much larger than the number of the profiles obtained
manually. The quality of the automatically extracted profiles can be ranked, and only the best
profiles can be used for the statistical evaluation. The ranking works on the structural marker
only, so it does not introduce a bias to the functional descriptor.

The parameters of the selection process are also used for the ranking procedure. The first
selection criterion (difference of peak intensities, see Equation 5.3.2) is used for the ranking r1.
The third parameter (peak - valley contrast, see Equation 5.3.4) leads to the ranking r2, defined
as the ratio of the central valley height to the peaks height. The smaller the values of these
criteria, the higher the ranks assigned. An unweighted combination of r1 and r2 is calculated
as the final ranking. According to this final ranking, the top n profiles (n = 10, 20, 30, etc.)
are taken for further analysis.

5.3.5. Profile normalization

Functional marker profiles can be normalized for the quantitative analysis in several ways. First,
protein distribution profiles can be normalized to a standard distance between peaks. However,
in the samples I have analyzed so far, variations of the canalicular width are sufficiently small
to not require such a scaling. Second, absolute intensity values of the profiles can be scaled to a
defined range (e.g. 0 - 1). Relative descriptors, presented in the next section, obviate the need
for such a normalization. And finally, the lateral coordinate systems of profiles can be centered,
compensating for skeleton lines not centered in the canaliculus. This might be caused by the
skeletonization algorithm, as it uses only approximate foreground regions whose borders are
not necessarily symmetric with the Zo-1 maxima. However, zones are defined for the descriptor
calculation individually in each profile. Therefore, centering of the lateral coordinates will not
influence the defined zones. Thus, no profile normalization is required in my workflows.
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Figure 5.3.5.: Typical canalicular fragment and a zone model for the 1D-Can process.

5.3.6. Toponomic characterization

Profile zones

The selected intensity profiles are used to assess the translocation of the functional marker
(Bsep). According to the structure-based workflow (see Section 4.4.4), biologically relevant
zones have to be identified. Figure 5.3.5 illustrates a typical canaliculus fragment and the
suggested zone model. The zone model is developed using structural marker (Zo-1) profiles.

Every canaliculus is delineated by tight junctions, corresponding to the intensity peaks in
the Zo-1 profiles. First, these two peaks are identified, and the center of the profile is found.
The part of the profile between the Zo-1 peaks (tight junctions) is considered to be the interior
of the canaliculus, while the parts outside the tight junctions correspond to cytoplasm of the
adjacent hepatocytes.

Following zones are defined for the accepted Zo-1 profiles. Zone 1 has a length of 0.5 µm, and
is centered between the peaks. The integral Bsep intensity of zone 1 represents the amount of
Bsep in the center of the canaliculus. Zones 2a and 2b (0.5 µm each) are centered on the peaks
corresponding to tight junctions. Their integral intensity indicates protein concentration in the
canalicular membrane. The length of 0.5 µm is chosen according to the empirical determination
of canalicular width (0.8 – 2.5 µm). It allows covering of the whole canaliculus even if it is
very narrow (at the lowest possible width border of 0.8 µm). Even in this case zones 1, 2a and
2b will not overlap. Zone lengths are fixed, so that descriptors calculated from zonal integral
intensities can be compared between different images.

Intracellular zones are defined to analyze the internalization of the functional marker. Zones
3a and 3b (0.5 µm each) describe intracellular fluorescence intensities close to the canalicular
membrane. Zones 3a and 3b are spatially separated from the tight junctions and start 0.5 µm
away from the respective ends of the zones 2a and 2b. Thus, they do not cover regions with a
high potential variation. Zones 4a and 4b are situated closer to the centers of hepatocytes and
measure 1.0 µm each. They are also spatially separated by 0.5 µm from the zones 3a and 3b.
Given the image resolution of 100 nm/pixel, 0.5 µm translates to 5 pixels. This length is scaled
respectively if images with different pixel size are processed.

The last zones (5, 6a and 6b) do not have a fixed length. Instead, their length is defined
for each profile individually. Zone 5 covers the fluorescence intensities in the interior of the
canaliculus between the peaks. Zones 6a and 6b combine the intracellular intensities of the
profile from the maximum values of the peaks to the ends. These zones are introduced to
calculate a relative amount of the functional marker in the canaliculus to its content in the
region covered by the whole profile.
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Descriptors

Numerical descriptors are developed to quantify the 1D-Can process using the zones identified
in Zo-1 profiles. Relative descriptors of the protein distribution are preferred, as they avoid
absolute quantity measurements between immunofluorescence images. The following descriptors
are defined:

X =
sum(Zone1)

sum(Zone2a+ Zone2b)
, (5.3.6)

Y =
sum(Zone1)

sum(Zone3a+ Zone3b)
, (5.3.7)

Z =
sum(Zone1)

sum(Zone4a+ Zone4b)
, (5.3.8)

A =
sum(Zone1)

sum(Zone2a+ Zone2b) + sum(Zone3a+ Zone3b)
, (5.3.9)

B =
sum(Zone1)

sum(Zone3a+ Zone3b) + sum(Zone4a+ Zone4b)
, (5.3.10)

C =
sum(Zone2a+ Zone2b)

sum(Zone3a+ Zone3b)
, (5.3.11)

D =
sum(Zone2a+ Zone2b)

sum(Zone4a+ Zone4b)
, (5.3.12)

E =
sum(Zone2a+ Zone2b)

sum(Zone3a+ Zone3b) + sum(Zone4a+ Zone4b)
, (5.3.13)

F =
sum(Zone5)

sum(Zone5) + sum(Zone6a+ Zone6b)
, (5.3.14)

where sum(Zone 1) corresponds to the integral fluorescence intensity in the zone 1, sum(Zone
2a) - in the zone 2a, etc. For example, descriptor X is calculated as a ratio of Bsep fluorescence
intensity in the center of the canaliculus relative to Bsep intensity at the tight junctions. De-
scriptor Y shows the ratio of the central Bsep intensity relative to its intensity in the cytoplasm
of the adjacent hepatocytes immediately close to the tight junctions. If Bsep translocation from
the canalicular membrane took place, then these descriptor values would decrease.

Descriptors C, D and E relate the Bsep intensity at the tight junctions to various regions
in the cytosol. Their values should also decrease under cholestatic conditions. In particular,
Bsep internalization affects sum(Zone2a + Zone2b) by broadening of the Bsep intensity profile.
It also leads to an elevated Bsep fluorescence intensity in the cytoplasm due to its internal-
ization from the canalicular membrane, increasing sum(Zone3a), sum(Zone3b), sum(Zone4a),
and sum(Zone4b). As zone lengths are kept constant for all profiles, values of the descriptors
can be compared even between the images of different samples.

The last descriptor F (internalization degree) represents a ratio of the Bsep intensity inside
the canaliculus relative to the total Bsep intensity covered by the profile. It is thus the only
descriptor that does not use zones of the fixed length. Descriptor F will be compared to the
other descriptors in order to evaluate the impact of the fixed-length zones on the translocation
quantification.
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(a) (b) (c)

(d) (e) (f)

Figure 5.4.1.: Basolateral membranes: structure detection steps I. (a) Initial image; (b) de-
tected foreground regions (white); (c) morphological opening; (d) thresholding;
(e) morphological closing; (f) thresholding.

5.4. Application II: structure-based workflow for 1D-Bas
process

The second process studied is translocation of Ntcp (sodium taurocholate cotransporting polypep-
tide) into and from the basolateral membranes in hepatocytes (1D-Bas process). The functional
marker (Ntcp) is analyzed in relation to the stable membrane protein Na+-K+-ATPase, selected
as a structural marker (for biological background see Section 3.1.3). These proteins are immuno-
histologically stained in liver tissue sections and imaged by confocal fluorescence microscopy.

The structure of the basolateral membrane differs from the canalicular membrane. There-
fore, processing parameters have to be adapted, although the same structure-based workflow is
applied. In the following, only specific details are given for the 1D-Bas process.

5.4.1. Structure detection

Structure detection is performed according to the scheme presented in Section 5.1.1. It is
illustrated here for the basolateral membranes (see Figure 5.4.1).

Foreground regions detected by the Zeta software are first cleaned by morphological opening
using a round structuring element of 3 pixels radius. Resulting objects are thresholded and
objects having too small area are eliminated (see Table 5.4.1). This threshold, as well as all
other referenced later, is selected based on detailed examination of several multi-marker images.

Afterwards, morphological closing is performed with the same structuring element. Areas of
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(a) (b) (c)

(d) (e) (f)

Figure 5.4.2.: Basolateral membranes: structure detection steps II. (a) Cleaned foreground
regions; (b) skeletonization; (c) pruning; (d) deletion of branching points and
their neighbors; (e) thresholding; (f) resulting skeleton fragments in the initial
image.

the resulting foreground regions are again thresholded. This time, bigger objects are eliminated
which may correspond to very small basolateral membrane segments. Skeletonization is per-
formed on the resulting foreground regions (see Figure 5.4.2). Subsequent pruning is repeated
on the skeleton 4 times to ensure deletion of side branches. Basolateral membranes are long
enough so that repeated pruning brings more benefits for structure cleaning than it leads to
information loss at the terminals of the skeleton fragments. Subsequently, branching points and
their 7 neighbors are deleted. The rest of the skeleton fragments is again thresholded. This
thresholding eliminates membrane fragments which are too short for analysis.

Operation Threshold, pixel
Cleaning after morphological opening 200
Cleaning after morphological closing 400

Delete number of branching points neighbors 7
Cleaning after branching points deletion 15

Table 5.4.1.: Algorithm parameters for the 1D-Bas process.
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Figure 5.4.3.: Zones for the selection of Na+-K+-ATPase profiles.

5.4.2. Profile extraction

Profile extraction is performed according to the same scheme as in case of canalicular membranes
(see Sections 5.3.2 and 5.1.2). This illustrates the advantage and general applicability of the
structure-based workflow. Although biological structures of the basolateral and the canalicular
membranes differ, the same procedures can be applied to extract information on the functional
marker distribution.

5.4.3. Profile selection

Three zones are defined for the selection of Na+-K+-ATPase profiles (see Figure 5.4.3). The
first zone (3.1 - 4.9 µm) should include the intensity peak of the structural marker corresponding
to the basolateral membrane. The other two zones (0 - 3.0 and 5.0 - 8.0 µm) cover cytoplasm
of the adjacent hepatocytes. No structural marker should be present there, and so these profile
parts should be flat.

Based on these zones, following selection criteria are developed. The first criterion rejects
those profiles where the peak in the center of the profile is not significantly higher than the
tails. In particular, the average intensity in the center (zone 3.1 - 4.9) should be at least twice
as large as than the average intensity at the tails:

sum(3.1− 4.9)/19

(sum(0− 3.0) + sum(5.0− 8.0))/62
≥ 2, (5.4.1)

where sum(3.1− 4.9), sum(0− 3.0) and sum(5.0− 8.0) correspond to the integral intensities
in the zones 3.1 - 4.9, 0 - 3.0 and 5.0 - 8.0, respectively. The second condition checks whether
the tails of the profile are symmetrical enough. Their overall intensities should not differ more
than 2.5 times:

0.4 ≤ sum(0− 3.0)

sum(5.0− 8.0)
≤ 2.5. (5.4.2)

The last condition eliminates noisy profiles and those which were extracted at invalid or
damaged membrane positions. First, a structural marker profile is processed by median filtering
to eliminate high frequency noise. Then, all the local maxima are found and evaluated according
to the scheme presented in Figure 5.4.4.

If no maxima are found after median filtering, then it is a straight line. Consequently, it
can not be a valid structural marker profile and is filtered out. If exactly one local maximum
is detected, then the profile is accepted. If there are further maxima, then they have to be
evaluated. In case of a big global maximum and comparatively small second local maximum (<
50%), the profile is accepted. If the second local maximum is > 50% of the global maximum,
then the valley (local minimum) between them is evaluated. If the valley is not very deep, the
profile is valid. In the other case, the profile is rejected. Some further examples of accepted
and rejected profiles are shown in Figure 5.4.5 with the corresponding selection conditions.
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Figure 5.4.4.: Scheme of the selection criterion eliminating noisy and invalid Na+-K+-ATPase
profiles.

Figure 5.4.5.: Examples of selected and rejected structural marker (Na+-K+-ATPase) profiles
at basolateral membranes.
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Figure 5.4.6.: Typical basolateral fragment and a zone model the 1D-Bas process.

5.4.4. Profile ranking

Not all the selected profiles are equally representative of the translocation process. The number
of selected profiles is also much larger than the number of the manually extracted profiles (n
= 10). The quality of the selected profiles can thus be ranked in order to use only the best
profiles for translocation quantification.

The first parameter of the selection process is used for ranking. This selection criterion
calculates a ratio of the fluorescence intensity in the center of the profile to its intensity at the
tails (see Equation 5.4.1). The greater the values of the criterion, the higher the ranks assigned.
According the resulting ranks, top n profiles (n = 20, 50, etc.) are taken for further analysis.

5.4.5. Toponomic characterization

Profile zones

The selected profiles are further used for the translocation quantification. A set of biologically
relevant zones is defined in the structural marker profiles (see Figure 5.4.6). This zone model is
developed specifically for the basolateral membranes (compare to the canalicular zone model in
Figure 5.3.5). Zone 1 covers the membrane itself and measures one third of the profile length
(2.7 µm). It should include the intensity peak of the structural marker. Zones 2a and 2b also
measure 2.7 µm each and cover the cytoplasm of the adjacent hepatocytes. The 1D-Bas process
can be characterized by monitoring integral intensities in the zones 1, 2a and 2b.

Finer subdivision of the profiles is performed into smaller zones, each measuring one fifth
of the profile length (1.6 µm). Zone 3 covers the central part of the membrane and allows a
more precise detection of Ntcp distribution change than zone 1. Zones 4a and 4b cover narrow
cytoplasm regions close to the basolateral membrane, while zones 5a and 5b are located closer to
the hepatocytes interior. Given the image resolution of 100 nm/pixel, 2.7 and 1.6 µm translate
to 27 and 16 pixels, respectively.

Descriptors

Numerical descriptors are developed to quantify the 1D-Bas process. Following relative descrip-
tors of the protein distribution are defined using the zones identified in the Na+-K+-ATPase
profiles:

L =
sum(Zone1)

sum(Zone2a+ Zone2b)
, (5.4.3)
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M =
sum(Zone3)

sum(Zone4a+ Zone4b)
, (5.4.4)

N =
sum(Zone3)

sum(Zone5a+ Zone5b)
, (5.4.5)

O =
sum(Zone3)

sum(Zone4a+ Zone4b) + sum(Zone5a+ Zone5b)
, (5.4.6)

P =
sum(Zone4a+ Zone4b)

sum(Zone5a+ Zone5b)
, (5.4.7)

where sum(Zone 1) corresponds to the integral fluorescence intensity in the zone 1, sum(Zone
2a) - in the zone 2a, etc. For example, descriptor L is calculated as a ratio of Ntcp fluorescence
intensity at the basolateral membrane relative to the Ntcp intensity in the cytoplasm of the
adjacent hepatocytes. Values of this descriptor are expected to decrease under cholestatic
conditions. Ntcp internalization increases sum(Zone2a + Zone2b) and decreases the sum(Zone
1) by protein translocation from the membrane into cytoplasm. As the zone lengths are kept
constant for all profiles, values of the descriptor can be compared even between images of
different experiments.

Other descriptors are based on the shorter zones identified in the profiles, and might lead
to more precise translocation quantification. Descriptors M , N and O show the relative Ntcp
intensity at the peak of the structural marker (i.e. at the basolateral membrane) to its intensity
in the various regions in the cytosol. Descriptor P relates regions of the cytosol to illustrate
intra-cellular distribution changes.

5.5. Applications III and IV: Random lines-based workflow for
1D-Can and 1D-Bas processes

The preceding sections cover translocation quantification for the 1D-Can and 1D-Bas processes.
They share common processing steps and differ only in the definition of structure-related pa-
rameters. Both of them include structure-based profile extraction. Alternatively, distribution
profiles can be extracted avoiding structure detection images. Such random profile extraction
is performed along random lines (see Section 4.4.3). Figure 5.5.1 illustrates this for the 1D-Can
and 1D-Bas processes.

The profile length (8.0 µm) used is the same for the 1D-Can and 1D-Bas processes (see
Section 6.2.5). In turn, original intensity vectors extracted along random lines may be shorter
or longer than 8.0 µm. Hence, the procedures applied to the structure-based profiles (selection,
ranking, descriptor calculation) have to be modified for these initial vectors. To avoid this,
vectors of the length 8.0 µm (random profiles) are extracted from the initial vectors that are
longer than 8.0 µm. Initial vectors that are shorter than 8.0 µm are ignored.

Random profiles should be extracted without losing any valuable information. All membrane
segments that were crossed by the initial random lines have to be depicted in the resulting
random profiles. To implement this strategy, random profiles are extracted with overlap.

If an overlap is too short, too many random profiles will depict one and the same membrane
fragment. Consequently, if several of them are accepted, the information contained is redundant.
Figure 5.5.2 illustrates this case (1). If an overlap is too long, a clearly depicted membrane
fragment may be too close to the profile tails (case 3 in Figure 5.5.2). Such profiles will be
rejected due to the lack of symmetry. Moreover, membrane fragments may be missing in the
extracted random profiles (case 4 in Figure 5.5.2). Therefore, an optimal overlap is required. I
set it to 2.4 µm, corresponding to the maximal possible canalicular width (case 2 in Figure 5.5.2).

The overlap chosen (2.4 µm) is smaller than the profile length. Hence, each membrane
segment that is crossed by initial random lines will still be depicted in several extracted random
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(a)

(b)

Figure 5.5.1.: Random profile extraction illustrated on canalicular (a) and basolateral (b)
membranes. Random lines are drawn in multi-marker images, and individual
random profiles are extracted along them.

Figure 5.5.2.: Random profiles (black) are extracted with overlap from original intensity vec-
tors. Profile center (green) should not be too far from the center of the mem-
brane (red). If an overlap is too short, too many redundant profiles will be
accepted (1). If an overlap is too long, valuable information may be missed in
the extracted random profiles (4) or may be lost in the selection process (3).
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profiles. However, the center of this membrane segment will be at different positions in all the
corresponding random profiles (red line in Figure 5.5.2). Only one of these random profiles
may be symmetrical enough and should be selected. To check this symmetry, center of the
random profiles (green lines in Figure 5.5.2) are analyzed. They should not be too far from
the center of the membrane segment (yellow range in Figure 5.5.2). Therefore, an additional
selection criterion is introduced to filter out profiles whose centers are too far from the center
of the depicted membrane:

‖(CenterOfTheProfile− CenterOfTheMembrane)‖ < 1.2, (5.5.1)

where CenterOfTheProfile corresponds to the coordinate of the profile center in µm and
CenterOfTheMembrane - to coordinate in µm of the membrane center. For canalicular
membranes, CenterOfTheMembrane is the center between the tight junctions (Zo-1 intensity
peaks); for the basolateral membrane this is the coordinate of the absolute intensity maximum
of the membrane marker (Na+-K+-ATPase). This criterion excludes redundant acceptance of
several random profiles depicting one and the same membrane segment.

Individual random profiles are processed like structure-based profiles. Namely, structure
specific profile selection is performed, as described earlier for the 1D-Can (Section 5.3.3) and
1D-Bas (Section 5.4.3) processes. The only difference is the introduction of the additional
selection criterion (see Equation 5.5.1). The selected random profiles are analyzed using the
numeric descriptors defined for the structure specific zone model (see Section 5.1.3).

The random lines-based workflow can be compared to the structure-based workflow, as well
as to the manual workflow, as the same numeric descriptors are calculated for the extracted
profiles and used in statistical tests (see Section 5.2).

5.6. Application V: Random lines-based workflow for 2D-Nuc
process

A standard method for quantification of a 2D translocation is structure-based (see Section
3.3). The random lines-based workflow presented in the previous section allows for information
extraction without structure detection in images. Thus, it could also be applied to quantify
a 2D translocation. I have adapted the random lines-based workflow to quantify glucokinase
nucleus-to-cytoplasm translocation in hepatocytes (2D-Nuc process, for biological background
see Section 3.1.4).

5.6.1. Profile extraction

Random lines are drawn in the multi-marker images and pixel intensities are extracted along
them (see Figure 5.6.1). Each random line may cross several nuclei. Evaluation of such vectors
is complicated. Initial long vectors may thus be cut into shorter profiles. These random profiles
are expected to contain maximally one nucleus. Therefore, an optimal profile length has to be
chosen. The size of hepatocyte nuclei varies in the range of 10 - 15 µm. Extracted intensity
profiles have to cover a nucleus and a cytoplasmatic region in order to quantify the functional
marker translocation. Therefore, the selected profile length should be > 15 µm, but small
enough so that no further hepatocytes are covered by one profile.

Rat hepatocytes have a diameter of 20 – 30 µm [169]. Thus, a range of profile lengths from
20.0 to 30.0 µm was evaluated. The intensity of glucokinase was found to stay nearly constant
for distances of more than 14.0 µm from the central point of the nucleus. The length of random
profiles is thus set to 28.0 µm.

As explained in the previous section, random profiles are extracted with overlap from the
initial long intensity vectors. The optimal overlap was found to be 2.7 µm.
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(a) (b) (c) (d)

Figure 5.6.1.: Random profile extraction for the 2D-Nuc process. (a) Initial image; (b), (c)
random lines; (d) extracting individual random profiles.

Figure 5.6.2.: Typical image of hepatocyte nuclei and a zone model for profile selection.

5.6.2. Profile selection

Profile selection criteria are developed to filter out random profiles irrelevant to the translocation
phenomenon. Here, the profile selection is even more important than in the structure-based
workflow. Random lines drawn across the images show even more irrelevant and noisy data.
Hence, profile selection has to be able to cope with the less defined input.

The selection is performed only on the structural marker profiles. First, individual random
profiles are smoothed by median filtering to eliminate high frequency noise. Then, biologically
relevant zones are identified in the random profiles according to the scheme in Figure 5.6.2.

Smoothed structural marker profiles are checked for two conditions. The first one eliminates
those profiles which do not have a significant intensity peak in the central part:

Avg(Zone1)

Avg(Zone3a, Zone3b)
> 4.0, (5.6.1)

where Avg(Zone1) is the average intensity value in the central part of the profile, and
Avg(Zone3a, Zone3b) is the average intensity at the tails. This condition eliminates noisy
profiles and those whose intensity peak is not situated in the central part. The second criterion
filters out those profiles whose tails are not symmetrical enough:

0.4 ≤ sum(Zone2a)

sum(Zone2b)
≤ 2.5, (5.6.2)

where sum(Zone2a) and sum(Zone2a) correspond to the integral intensities on the left and
the right sides of the nucleus. Some examples of accepted and rejected profiles are shown in
Figure 5.6.3.
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5. Implementation of automated translocation quantification workflows

Figure 5.6.3.: Examples of selected and rejected structural marker profiles for the 2D-Nuc
process.

(a) (b) (c) (d)

Figure 5.6.4.: Con-centric profile extraction for quantification of the 2D-Nuc process. (a)
Initial image; (b) random lines; (c) central point of an accepted profile; (d)
further profiles centered at this point.

Con-centric profile extraction

A standard method to evaluate nucleus-to-cytoplasm translocation is structure-based. There,
nuclei are detected in images and a certain area around them is segmented as the cytoplasm
(see Section 3.3). Nucleus-to-cytoplasm ratio is thus calculated using all pixels belonging to the
nuclei and surrounding cytoplasmatic regions.

In contrast, structure detection is avoided in the random lines-based workflow, so the cyto-
plasm area is also not segmented. Nucleus-to-cytoplasm ratios are calculated based on 1-pixel
thick random profiles. If distribution of the functional marker is not homogeneous or anisotropic,
random profiles may contain unreliable information. I suggest extracting additional profiles for
better coverage of the cytoplasmatic and nuclear regions (see Figure 5.6.4).

If an extracted random profile is accepted, then it exhibits an intensity peak in the central part
(see Equation 5.6.1). It is then expected to cross one of hepatocyte nuclei. Most probably, the
center point of this accepted random profile will be situated in the nuclear region (Figure 5.6.4,
(c)). Hence, there may be further acceptable profiles having the same central point. Thus,
a number of lines of the optimal profile length is drawn through this point centered at it.
Profiles are then extracted along these lines (Figure 5.6.4, (d)). As hepatocyte nuclei exhibit
a roundish form, these con-centric profiles also lead to a better coverage of the cytoplasmatic
and the nuclear regions. Extraction of such profiles is further referred to as a con-centric profile
extraction. The extracted con-centric profiles also undergo the selection procedure.
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5.6. Application V: Random lines-based workflow for 2D-Nuc process

Figure 5.6.5.: Nuclear and cytoplasmatic regions are detected in structural marker profiles
(DNA, green) to evaluate functional marker (glucokinase, red) translocation.

5.6.3. Toponomic characterization

Nucleus-to-cytoplasm translocation is quantified by calculation of the functional marker inten-
sity ratio in the nucleus relative to the cytoplasm (see Section 3.3). To achieve this, nuclear and
cytoplasmatic regions have to be identified. The random lines-based workflow avoids structure
detection in images and performs it only in 1D structural marker profiles (see Figure 5.6.5).
Selected random and con-centric profiles are used for this.

To detect a nucleus in a profile, several parameters have to be selected. First, cytoplasmatic
regions have to be identified. As cell membranes are not labeled, borders of hepatocytes can not
be clearly detected. Therefore, the cytoplasmatic area is identified as a ring around the detected
nucleus. I refer to the width of these rings as to the CytoplasmArea. Second, the cytoplasmatic
area is detected in a certain distance from the nucleus, to ensure their separation. This area to
skip is further referred to as the SkipArea.

The nuclear regions (see Figure 5.6.5) are found in smoothed structural marker profiles ac-
cording to the scheme illustrated in Figure 5.6.6. Individual steps are performed as follows:

1. Find the center of the profile (pixel position Center) and extract the intensity at this
position (ICenter).

2. Look for the beginning of the nuclear region. I define the start of the nuclear region at that
pixel position where the intensity of the neighboring pixel from the left decreases more
than 4 times. Therefore, set initial PositionStart to the Center. Move PositionStart to
the left and extract the current intensity (IPositionStart). Once

ICenter

IPositionStart
≥ 4.0, (5.6.3)

the start of the nuclear region is found at the PositionStart.

3. Look for the end of the nuclear region. Similar to the beginning of the nucleus, I define the
end of the nuclear region at that pixel position where the intensity of the neighboring pixel
from the right decreases more than 4 times. Therefore, set the initial PositionEnd to the
Center. Move PositionEnd to the right and extract the current intensity (IPositionEnd).
Once

ICenter

IPositionEnd
≥ 4.0, (5.6.4)
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5. Implementation of automated translocation quantification workflows

Figure 5.6.6.: Algorithm to find the nuclear region in structural marker profiles.

the end of the nuclear region is found at the PositionEnd.

4. Nucleus is found in the region (PositionStart, PositionEnd), as Figure 5.6.5 illustrates.

5. Check the validity of this nuclear region: it should start at least at at the pixel position
(CytoplasmArea + SkipArea), so that the profile also covers a sufficient cytoplasm region
and the area to be skipped on the left side of the nucleus:

PositionStart ≥ (CytoplasmArea+ SkipArea). (5.6.5)

If this is true, continue. Else, reject this profile.

6. Check the validity of this nuclear region: it should end not further than at the pixel
position (profileLength - CytoplasmArea - SkipArea), so that the profile also covers a
sufficient cytoplasm region and the area to be skipped on the right side of the nucleus:

PositionEnd ≤ (profileLength− CytoplasmArea− SkipArea). (5.6.6)

If it is true, the detected nuclear region (PositionStart, PositionEnd) is valid, and this
profile can be used for the translocation quantification. Else, reject this profile.

The nucleus-to-cytoplasm intensity ratio is calculated on the functional marker profiles cor-
responding to the accepted structural marker profiles:

ratio =
avg(Inucleus)

avg(Icytoplasm)
, (5.6.7)

where avg(Inucleus) is the average intensity in the region identified as nucleus (PositionStart,
PositionEnd), and avg(Icytoplasm) is the average intensity in cytoplasmatic regions on the left
(PositionStart − SkipArea − CytoplasmArea, PositionStart − SkipArea) and on the right
side (PositionEnd + SkipArea, PositionEnd + SkipArea + CytoplasmArea) of the nucleus
(see Figure 5.6.5).

This quantification of the 2D-Nuc process can be validated against the established structure-
based workflow (see Section 3.3). Therefore, ratios of intensity are calculated by both algo-
rithms. Their means (µ) and standard deviations (σ) are compared.
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The concept of automated translocation quantification presented in Chapter 4 and defined in
Chapter 5 was implemented in a set of algorithms and tested for the 1D-Can, 1D-Bas and
2D-Nuc processes.

This Chapter summarizes statistical results, evaluation and validation of the new automated
workflows (see Table 5.0.1). Validation of the Application I describes the evaluation of the
structure-based workflow developed for the 1D-Can process. It is validated against the estab-
lished manual workflow using the newly defined numeric descriptors. Significance levels of the
translocation detected between positive and negative controls are compared. No significant
effect is expected to be indicated in negative controls. Structure-based workflow for the 1D-Bas
process (Application II) is assessed similarly.

Further, the random lines-based workflow is evaluated for the 1D-Can and 1D-Bas processes
(validations of the Application III and IV, respectively). The random lines-based workflow
is validated there against the corresponding structure-based workflows, because not all datasets
have been evaluated manually by my colleagues.

And finally, the random lines-based workflow is adapted to quantify 2D-Nuc process (Appli-
cation V). It is validated against the established structure-based workflow by the calculated
nucleus-to-cytoplasm ratios of the functional marker intensity.

6.1. Validation of the Application I: structure-based workflow
for 1D-Can process

6.1.1. Datasets

21 dataset of confocal images of rat liver tissue sections were prepared by my colleagues at
the University Clinic Düsseldorf to validate the novel workflows for the 1D-Can process. The
images were automatically processed, and the results were compared to those obtained from
the manually processed data.

A dataset contains 10 images of different regions of the respective tissue sample. Two pro-
teins, a structural and a functional marker, are immunohistochemically labeled in tissue sec-
tions. Canalicular membranes are delineated by tight junctions, where Zonula occludens 1
protein (Zo-1, the structural marker) is labeled. 1D-Can process, translocation of a bile salt
export pump (Bsep, the functional marker), is assessed. Control datasets include images ac-
quired from tissue sections of the liver incubated under normo-osmolar conditions or perfused
with taurocholate (TC). These treatments are not expected to influence the functional marker
distribution (see Section 3.4.1). Test datasets include images acquired from tissue sections of
the liver either incubated under aniso-osmolar conditions (see Section 3.4.1), or perfused with a
taurochenodeoxycholate (TCDC ), or after the bile duct ligature (BDL). These treatments may
influence distribution of the functional marker, leading to its internalization from canalicular
membranes into adjacent hepatocytes, or backwards. For each test dataset, a corresponding
control dataset was prepared. For example, control dataset NormoHyper-1-C corresponds to
the test dataset NormoHyper-1-T. As they are compared to each other, notation NormoHyper-
1-C/T refers to them taken together. Further, TC-1-C/C describes two datasets which were
obtained either without or with perfusion with TC (taurocholate). Perfusion with TC is not
expected to influence the functional marker distribution, hence both these datasets are controls
(according to my definition). Table 6.1.1 lists the processed datasets.
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Normo-/hyperosmolar BDL Perfusion with bile salts
Control/Test Control/Control Control/Test Control/Control Control/Test

Osmol-1-C/T Osmol-1-C/C BDL-1-C/T TC-1-C/C TCDC-1-C/T
Osmol-2-C/T Osmol-2-C/C BDL-2-C/T TC-2-C/C TCDC-2-C/T
- Osmol-3-C/C BDL-3-C/T TC-3-C/C TCDC-3-C/T
- - - TC-4-C/C TCDC-4-C/T

Z-stacks
- - BDL-z1-C/T TC-z1-C/C TCDC-z1-

C/T
- - BDL-z2-C/T - -
- - BDL-z3-C/T - -

Table 6.1.1.: Datasets for the 1D-Can process.

Figure 6.1.1.: Averages of all extracted profiles do not correspond to the biological structure
of tight junctions. Averages of selected profiles exhibit two clear Zo-1 intensity
peaks and reduced standard deviation.

The expected result of the automated translocation analysis is to detect a changed amount
of Bsep in the canalicular membranes and in the cytoplasm in test datasets relative to control
datasets. Furthermore, no false positive effects should be detected by the structure-based
workflow. Comparison of control datasets should thus not show any significant translocation.

6.1.2. Profile extraction

The structure-based workflow was applied to the datasets. Image processing followed by the
automated profile extraction resulted in approx. 4000 profiles per image.

Averages of all extracted profiles were calculated for each dataset for illustration. Structural
marker (Zo-1) profiles are expected to exhibit two clear intensity peaks corresponding to tight
junctions. Averages over all extracted Zo-1 profiles did not comply with the expected shape (see
Figure 6.1.1, left). Furthermore, standard deviations were high due to a high level of variation of
individual profiles. A possible reason for this might be profile extraction at damaged canalicular
membranes. To exclude such profiles from the evaluation, profile selection was applied.
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Difference of peak height <
5% 15% 25% 35%

Valley height <

10% 32 107 151 194
20% 45 166 230 294
30% 56 179 264 333
40% 58 187 273 351

Table 6.1.2.: Numbers of accepted profiles (out of 2871) at different thresholds for the selection
criteria (for the 1st image of the dataset BDL-1-C ).

6.1.3. Profile selection

Profile selection filtered out profiles extracted at damaged and asymmetrical canalicular mem-
branes. This resulted in the reduced standard deviation of the average profiles. Furthermore,
averages of selected structural marker profiles exhibited two clear narrow intensity peaks, cor-
responding to tight junctions (see Figure 6.1.1).

Profile selection was tested for robustness and stability. Two of the four criteria were varied,
and numbers of accepted profiles were reported. The first criterion constrains the height differ-
ence allowed for two Zo-1 peaks. The second threshold limits the relative central valley height
between these peaks. Table 6.1.2 shows respective numbers of accepted profiles on the example
of the first image of the dataset BDL-1-C. The rejection percentage was found to continuously
vary in the range tested. Hence, any threshold in this range can be used.

Profile selection reduced the number of profiles from approx. 4000 to approx. 150 per image.
The number of accepted profiles always significantly exceeded 10, which is the number of profiles
extracted manually. Consequently, the automated workflow does not only speed up the process,
but also increases the number of data points available for analysis.

Profile selection was found to increase significance of the detected translocation (see Ta-
ble 6.1.4 and Table 6.1.5 for the datasets Osmol-1-C/T and BDL-1-C/T, respectively). Statis-
tical tests are performed 100 times on 100 vs. 100 randomly sampled profiles. P-values given
in the following are median p-values from such 100 experiments (see Section 5.1.3).

6.1.4. Profile ranking

Selected profiles were ranked using two selection criteria (difference of peak intensities and peak
- valley contrast). From approx. 150 accepted profiles per image, n top-ranked profiles were
evaluated. n was varied between 10 and 50 due to the following reasons. First, the number
of manually extracted profiles is 10. Therefore, this is the smallest number of the top-ranked
profiles that should be tested. Second, the largest n could be set to 150, which was the average
number of the automatically extracted and accepted profiles. Still, some images led to the
selection of only 50 profiles. Hence, n was varied in the range 10 – 50.

Statistical results of WRSTs on control-control datasets varied only slightly for different n
of top-ranked selected profiles. WRSTs did not detect any significant translocation using any
tested n. Table 6.1.3 illustrates an example for the dataset TC-2-C/C.

In all test-control datasets, WRSTs on top-ranked profiles detected translocation of a higher
significance than WRSTs on all selected profiles. Table 6.1.5 and Table 6.1.4 illustrate this for
the datasets BDL-1-C/T and Osmol-1-C/T, respectively.

WRTSs on control-test datasets yielded slightly different results for the tested n of the top-
ranked profiles. n = 20 led to either equal or higher significance levels of the detected translo-
cation than the larger n (30, 40 or 50) (see Table 6.1.4 and Table 6.1.5). Ranking sorts profiles
by their structural quality which is expressed by their similarity to the ideal structure of tight
junctions. Significance of the detected translocation was found to decrease when profiles of
worse structural quality were included into the calculation. Hence, the objective of ranking is
achieved.
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Descriptor
P-value

All Accepted Top 10 Top 20 Top 30 Top 40 Top 50
X 5.5 e-1 4.6 e-1 2.0 e-1 5.7 e-1 5.3 e-1 5.6 e-1 4.7 e-1
Y 5.0 e-1 5.0 e-1 5.7 e-1 4.2 e-1 5.0 e-1 4.1 e-1 3.4 e-1
Z 4.2 e-1 3.9 e-1 4.1 e-1 5.8 e-1 6.0 e-1 4.9 e-1 5.0 e-1
A 5.4 e-1 5.0 e-1 3.3 e-1 6.5 e-1 5.5 e-1 5.9 e-1 5.8 e-1
B 5.0 e-1 4.8 e-1 4.6 e-1 5.7 e-1 4.7 e-1 3.3 e-1 2.9 e-1
C 5.6 e-1 5.2 e-1 2.8 e-1 3.4 e-1 4.8 e-1 2.4 e-1 2.8 e-1
D 5.0 e-1 4.9 e-1 4.0 e-1 6.4 e-1 5.6 e-1 4.4 e-1 4.7 e-1
E 5.3 e-1 4.9 e-1 3.3 e-1 5.2 e-1 5.2 e-1 3.0 e-1 3.7 e-1
F 7.3 e-2 8.8 e-2 3.5 e-3 3.6 e-2 2.3 e-2 6.5 e-4 1.9 e-4

Variance 8.7 e-2 3.4 e-1 6.4 e-2 1.1 e-1 4.3 e-1 4.9 e-1 3.0 e-1

Table 6.1.3.: Ranking of accepted profiles does not influence WRST results on control-control
datasets. Dataset TC-2-C/C.

Descriptor
P-value

All Accepted Top 10 Top 20 Top 30 Top 40 Top 50
X 1.1 e-2 5.5 e-3 1.6 e-4 6.8 e-5 3.3 e-4 2.4 e-3 1.0 e-3
Y 7.8 e-8 4.7 e-14 1.15 e-18 3.9 e-20 2.4 e-15 1.7 e-14 6.7 e-15
Z 7.9 e-10 2.0 e-18 1.17 e-22 7.3 e-23 2.3 e-20 3.1 e-20 1.0 e-20
A 1.2 e-4 1.4 e-6 8.3 e-10 6.9 e-11 1.4 e-7 1.1 e-6 4.0 e-7
B 4.9 e-9 6.7 e-17 2.7 e-21 2.2 e-22 1.5 e-18 6.4 e-18 2.2 e-18
C 5.4 e-13 6.1 e-20 1.7 e-25 2.5 e-25 3.6 e-22 1.3 e-21 1.2 e-21
D 7.2 e-15 4.4 e-23 5.9 e-26 9.0 e-27 6.8 e-25 1.1 e-25 9.6 e-26
E 4.6 e-15 1.1 e-22 1.4 e-27 1.5 e-27 5.6 e-26 4.3 e-26 5.1 e-26
F 1.2 e-11 1.0 e-13 7.3 e-17 1.7 e-17 6.0 e-15 1.5 e-14 1.2 e-14

Variance 3.0 e-10 4.3 e-13 5.3 e-20 1.3 e-17 2.7 e-14 1.1 e-14 1.2 e-14

Table 6.1.4.: Profile selection and ranking increase significance of the detected translocation
effect. Dataset Osmol-1-C/T.

Descriptor
P-value

All Accepted Top 10 Top 20 Top 30 Top 40 Top 50
X 4.9 e-1 3.9 e-1 1.7 e-1 6.2 e-2 2.7 e-2 1.9 e-2 1.6 e-1
Y 3.6 e-2 1.6 e-4 1.6 e-2 4.7 e-3 1.5 e-2 9.0 e-3 9.5 e-3
Z 9.9 e-4 1.2 e-5 7.4 e-5 3.5 e-4 6.9 e-4 3.5 e-4 2.5 e-4
A 2.5 e-1 6.3 e-2 6.8 e-1 5.4 e-1 5.6 e-1 4.2 e-1 4.2 e-1
B 3.5 e-3 1.9 e-5 4.2 e-4 9.3 e-4 2.0 e-3 8.1 e-4 5.5 e-4
C 1.0 e-4 2.2 e-8 4.6 e-10 5.1 e-10 6.1 e-10 4.8 e-9 1.7 e-8
D 1.8 e-5 4.0 e-9 1.7 e-12 1.2 e-12 1.6 e-12 5.5 e-10 3.1 e-10
E 7.4 e-6 7.9 e-10 1.7 e-13 9.0 e-13 5.1 e-13 1.5 e-11 1.8 e-11
F 5.9 e-2 5.4 e-8 2.0 e-6 4.7 e-4 2.7 e-4 4.6 e-4 7.1 e-4

Variance 5.3 e-4 1.8 e-4 2.2 e-7 3.1 e-9 1.3 e-8 5.9 e-7 1.4 e-6

Table 6.1.5.: Profile selection and ranking increase significance of the detected translocation
effect. Dataset BDL-1-C/T.
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Descriptor
BDL-3-C/T TCDC-2-C/T

Top 10 Top 20 Top 10 Top 20
x 7.1 e-5 5.2 e-6 3.4 e-2 7.6 e-3
Y 6.3 e-14 7.3 e-16 1.4 e-3 2.2 e-5
Z 4.3 e-9 1.1 e-12 2.3 e-2 4.4 e-4
A 7.3 e-10 2.4 e-11 8.9 e-3 1.4 e-3
B 1.4 e-11 6.1 e-15 4.4 e-3 5.0 e-5
C 3.4 e-14 1.3 e-13 2.7 e-3 1.1 e-4
D 5.4 e-5 1.0 e-8 3.3 e-1 3.8 e-2
E 2.7 e-8 1.1 e-11 2.5 e-2 1.7 e-3
F 1.5 e-4 1.6 e-4 1.3 e-3 7.7 e-11

Variance 3.4 e-4 5.0 e-7 6.1 e-2 3.9 e-3

Table 6.1.6.: Significance of the detected translocation effect depends on the number of the
top-ranked profiles used. Dataset BDL-3-C/T and TCDC-2-C/T.

WRSTs on n = 20 top-ranked selected profiles led to the detection of a slightly more signifi-
cant translocation effect than WRSTs on n = 10 in 3 datasets (see Table 6.1.4 and Table 6.1.6).
In the rest control-test datasets, WRSTs on 10 or 20 top-ranked profiles indicated comparable
significance levels of the functional marker translocation (e.g. Table 6.1.5).

Generally, I have not observed the usage of neither n = 10 nor 20 top-ranked selected pro-
files leading to generally higher significance levels. Still, for three datasets n = 20 was found
to be better. Therefore, the 1D-Can process is further evaluated on 20 top-ranked profiles.
Calculations on 20 profiles indicate higher significance levels and are fast.

6.1.5. Optimal profile width selection

Various profile widths in the range of 1 - 7 pixels (0.1 - 0.7 µm with pixel size of 100 nm) were
evaluated to find the optimal one. Generally, narrow profiles (width = 1 pixel) are accepted only
if they exactly correspond to all selection criteria. Thus, such individual profiles have to meet
the selection requirements by themselves. Neighborhoods of these profiles are not taken into
account. A narrow profile can be accepted even if skeleton pixels neighboring to its center yield
profiles that do not meet the selection requirements. Such accepted profiles may be situated at
damaged biological structures.

Wider profiles (width > 1 pixel), in turn, can be accepted even if their individual components
are not perfect, but the average corresponds to the selection criteria. Thus, a neighborhood
of every profile is accounted for. This resembles the logic of manual profile extraction, where
only sufficiently long undamaged structures are analyzed. On the other hand, too wide profiles
that include clean and symmetrical structural marker profiles can be rejected if these profiles
are averaged with those taken at damaged canalicular membranes. A compromise has to be
achieved by selecting the optimal profile width.

Figure 6.1.2 illustrates average accepted profiles of various widths for the third image of the
dataset Osmol-1-C/T. All these averages exhibit two clear Zo-1 intensity peaks corresponding
to tight junctions. These Zo-1 peaks are symmetrical, clear, narrow and separated by a val-
ley. Hence, selected profiles were extracted on undamaged, symmetrical and clearly depicted
canalicular membranes.

A shape of the molecule distribution function does not seem to be strongly influenced by
the different profile widths tested. WRSTs were performed on the profiles of different widths
to evaluate this statistically. Profile width = 3 led to the highest significance levels of the
detected translocation (see Table 6.1.7 for the dataset Osmol-1-C/T ). Profile width = 3 seems
to represent a good compromise between too narrow profiles (width = 1) and too wide profiles
(width ≥ 5). Too narrow profiles do not account for the neighborhood of the pixel, at which
the profile was extracted. Too wide profiles seem to average too large membrane segments.
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Figure 6.1.2.: Plots of average automatically extracted and selected profiles of various width
(0.1 – 0.7 µm) for the 1D-Can process. Red - Bsep, green - Zo-1.

Descriptor
P-value

0.1 µm 0.3 µm 0.5 µm 0.7 µm
X 1.7 e-2 6.8 e-5 2.4 e-4 5.7 e-4
Y 4.2 e-16 3.9 e-20 1.6 e-15 4.4 e-14
Z 4.2 e-21 7.3 e-23 7.0 e-21 2.0 e-21
A 2.8 e-7 6.9 e-11 4.9 e-8 4.2 e-7
B 2.0 e-19 2.2 e-22 3.4 e-19 1.5 e-18
C 3.4 e-23 2.5 e-25 1.1 e-22 9.1 e-22
D 7.9 e-27 9.0 e-27 9.4 e-25 9.8 e-28
E 1.1 e-26 1.5 e-27 3.2 e-26 1.8 e-27
F 1.7 e-14 1.7 e-17 3.2 e-18 1.0 e-15

Variance 7.6 e-13 1.3 e-17 3.7 e-18 1.2 e-18

Table 6.1.7.: Profile width = 0.3 µm leads to the highest significance levels of the detected
translocation. P-values from 20 top-ranked selected automatically extracted
profiles. Dataset Osmol-1-C/T.

Such profiles are more biased towards long clearly depicted membrane regions. Furthermore,
computational cost grows with the increasing profile width. Therefore, a profile width of 3
pixel was chosen for further translocation quantifications. In other words, profiles are every
time extracted along 3 parallel lines and averaged according to the scheme in Figure 5.1.3.

6.1.6. Comparison of the structure-based workflow to the manual workflow

4 datasets (BDL-1-C/T, BDL-2-C/T, BDL-3-C/T and Osmol-1-C/T ) were also evaluated by
the manual workflow (see Section 3.2). 10 profiles per image were extracted manually by an
expert. Descriptors and statistical variances were computed for these profiles. These values
were further compared to the values calculated from the top 20 profiles extracted and selected
by the structure-based workflow.

Means and standard deviations of the descriptor values indicate a strong correspondence be-
tween the results from the structure-based workflow and the manual workflow (see Table 6.1.8).
The structure-based workflow is considered to be valid, as parameters of the automatically ex-
tracted profiles are distributed similarly to those extracted manually. Statistical evaluations on
the automatically and manually extracted profiles are also expected to be comparable. WRSTs
were performed to validate the structure-based workflow statistically.

Statistical tests

The structure-based workflow was further validated against the manual workflow by results
of statistical tests. First, control datasets (BDL-2-C and BDL-3-C ) were compared for the
functional marker distribution. No false positive translocation effects should be detected there
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Descriptor
Structure-based Manual
µ σ µ σ

X 0.552 0.169 0.595 0.150
Y 1.11 0.528 1.13 0.481
Z 0.766 0.338 0.715 0.266
A 0.361 0.124 0.380 0.110
B 0.446 0.194 0.434 0.164
C 1.93 0.624 1.97 0.639
D 1.35 0.449 1.15 0.380
E 0.806 0.247 0.729 0.224
F 0.558 0.185 0.514 0.149

Variance 0.056 0.017 0.056 0.015

Table 6.1.8.: Descriptor values µ and σ calculated from 20 top-ranked automatically extracted
and selected profiles (structure-based workflow) and 10 manually extracted pro-
files (manual workflow). Dataset BDL-1-C.

Descriptor
P-value

Manual Structure-based
X 7.3 e-2 3.1 e-4
Y 8.6 e-4 2.0 e-2
Z 6.1 e-3 2.1 e-1
A 3.6 e-3 4.5 e-3
B 2.0 e-3 9.7 e-1
C 3.2 e-3 6.1 e-1
D 9.6 e-3 2.4 e-1
E 4.3 e-3 4.0 e-1
F 8.4 e-2 4.8 e-3

Variance 7.2 e-2 5.5 e-1

Table 6.1.9.: Significance of translocation detected in control-control dataset by the structure-
based workflow (20 top-ranked profiles) and by the manual workflow (10 profiles).
Datasets BDL-2-C and BDL-3-C.

(p-value > 0.05). Evaluation by the manual workflow did not yield a consistent decision on the
presence or absence of a significant translocation (see Table 6.1.9). There, only 3 descriptors
suggested that no Bsep internalization into hepatocytes took place (X, F , Variance). WRSTs on
top 20 selected automatically extracted and selected profiles also yielded inconsistent results.
Six of ten descriptors (Z, B, C, D, E, Variance) suggested that Bsep distribution has not
changed. As comparison of control datasets should not detect significant Bsep translocation,
the structure-based workflow performed better than the manual workflow: 6 vs. 3 descriptors
yielded expected results.

Further, control and test datasets were compared. Test datasets include images of livers
either perfused in hyper-osmolar buffer (e.g. Osmol-1-T ) or livers with induced cholestasis
(e.g. bile duct ligature in BDL-1-T ), or livers perfused with TCDC (e.g. TCDC-1-T ). These
conditions may lead to Bsep translocation from the canalicular membranes into the cytoplasm,
what is expected to be visible compared to control datasets. Four datasets were evaluated by
the manual workflow (BDL-1-C/T, BDL-2-C/T, BDL-3-C/T and Osmol-1-C/T ).

In all these datasets, both the manual and the structure-based workflow indicated a signifi-
cant translocation of the functional marker (see Table 6.1.10 and Table 6.1.11). For the dataset
Osmol-1-C/T, all descriptors indicated a significant effect on profiles extracted by both work-
flows. For the other 3 datasets, a significant translocation was detected by the majority of the
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Descriptor
BDL-1-C/T BDL-3-C/T BDL-2-C/T

Manual Structure-
based

Manual Structure-
based

Manual Structure-
based

X 1.9 e-1 6.2 e-2 2.0 e-1 5.2 e-6 3.9 e-1 7.6 e-4
Y 4.8 e-4 4.7 e-3 1.9 e-17 7.3 e-16 4.1 e-9 4.6 e-7
Z 8.9 e-5 3.5 e-4 6.3 e-14 1.1 e-12 4.1 e-4 3.9 e-5
A 2.9 e-1 5.4 e-1 8.4 e-9 2.4 e-11 5.7 e-3 1.4 e-5
B 8.5 e-5 9.3 e-4 2.5 e-16 6.1 e-15 1.7 e-6 3.4 e-6
C 1.3 e-6 5.1 e-10 3.9 e-21 1.3 e-13 1.8 e-15 2.6 e-7
D 9.3 e-8 1.2 e-12 8.1 e-15 1.0 e-8 9.9 e-7 2.2 e-3
E 4.0 e-8 9.0 e-13 1.3 e-18 1.1 e-11 1.5 e-10 1.8 e-5
F 6.5 e-1 4.7 e-4 5.5 e-1 1.6 e-4 1.9 e-11 7.9 e-10

Variance 6.8 e-10 3.1 e-9 8.9 e-15 5.0 e-7 3.8 e-9 2.9 e-3

Table 6.1.10.: Significance of translocation detected in control-test datasets by the structure-
based workflow (20 top-ranked profiles) and by the manual workflow (10 pro-
files). Datasets BDL-1-C/T, BDL-3-C/T and BDL-2-C/T.

Descriptor
P-value

Manual Structure-based
X 1.3 e-3 6.8 e-5
Y 1.6 e-21 3.9 e-20
Z 3.3 e-24 7.3 e-23
A 2.0 e-10 6.9 e-11
B 5.7 e-24 2.2 e-22
C 3.7 e-26 2.5 e-25
D 4.3 e-27 9.0 e-27
E 1.1 e-27 1.5 e-27
F 6.2 e-14 1.7 e-17

Variance 3.4 e-17 1.3 e-17

Table 6.1.11.: Significance of translocation detected in control-test dataset by the structure-
based workflow (20 top-ranked profiles) and by the manual workflow (10 pro-
files). Dataset Osmol-1-C/T.

descriptors.

Significance levels of the translocation were comparable for both workflows in one dataset
(Osmol-1-C/T ). For the other 3 datasets, either one or another workflow detected a more
significant effect based on different descriptors. However, manual workflow indicated mostly
higher significance levels than the structure-based workflow. Still, I consider the results of the
structure-based workflow comparable to the manual evaluation.

Almost all descriptors (except X, A and F ) were able to indicate a significant Bsep translo-
cation in the manually extracted profiles from the dataset BDL-1-C/T. Evaluation of the au-
tomatically extracted, selected and ranked profiles improved this result. Only two descriptors
(X and A) were unable to detect the functional marker translocation (see Table 6.1.10). The
best descriptors yielding the smallest p-values were C, D and E both for the manual and for
the structure-based workflow.

6.1.7. Descriptors

The rest datasets were not evaluated manually but were still processed by the structure-based
workflow in order to study the newly defined descriptors.
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Descriptor
P-value

TCDC-3-C/T TCDC-4-C/T TCDC-1-C/T
X 1.9 e-1 5.0 e-1 1.8 e-2
Y 4.4 e-3 1.5 e-7 6.0 e-1
Z 1.6 e-4 7.4 e-12 2.7 e-1
A 4.7 e-1 1.5 e-2 3.3 e-1
B 5.4 e-4 3.5 e-10 3.8 e-1
C 4.9 e-6 3.0 e-11 4.3 e-2
D 1.2 e-7 1.8 e-14 5.8 e-3
E 1.9 e-7 1.1 e-13 6.4 e-3
F 2.2 e-6 1.9 e-8 2.2 e-2

Variance 4.3 e-7 2.3 e-11 5.8 e-1

Table 6.1.12.: Significance of translocation detected in control-test datasets by the structure-
based workflow (20 top-ranked profiles). Datasets TCDC-3-C/T, TCDC-4-C/T
and TCDC-1-C/T.

Table B.0.1 illustrates these results for the control-control datasets. Descriptor F was found
to falsely detect a significant translocation in most datasets (5 of 8) processed by the structure-
based workflow. This descriptor seems to be inappropriate for Bsep translocation quantification.

Descriptor X was the second worst with 4 false positive effects. Other newly defined de-
scriptors performed better. They detected a false positive effect in 2 (descriptors Y , Z, A, B,
D) or 3 (descriptors C, E) datasets. The statistical variance led a false positive translocation
detection in 3 datasets. Herewith, it performed worse than 5 newly defined descriptors.

TC-4-C/C and Osmol-1-C/C do not seem to be good examples of control-control datasets.
There, a significant translocation was detected by 9 of 10 (or 6 of 10, respectively) descriptors.
The significance levels were also high (up to e-11). Excluding these datasets from the consid-
eration, newly defined descriptors indicated absence of a significant Bsep translocation in 5 of
6 control-control datasets.

Table B.0.2 summarizes results of the structure-based workflow for the control-test datasets.
Descriptors X and A led to the highest false negative rate (3 of 9, see Table 6.1.12 and Table
B.0.2). The same descriptors were among the worst for control-control datasets.

Descriptors C, D and E led to the highest significance levels (see Table 6.1.11, Table 6.1.12
and Table B.0.2) and did not lead to any false negative translocation detection. Descriptors C,
D and E are thus considered to be the most representative for Bsep translocation quantification.
They also include the same zones (2, 3 and 4) in their formula (see Equation 5.3.11, 5.3.12 and
5.3.13). Hence, zones 2 (the tight junctions), 3 and 4 (cytoplasmatic regions) seem to contain
the most relevant information for the quantification of the 1D-Can process.

In contrast, zone 1 (interior of a canaliculus) seems to contain inconclusive information. Zone
1 is included in the formula of the descriptors which performed worse, such as X, A and F (see
Equation 5.3.6, 5.3.9 and 5.3.14 ). Zone 1 seems to be a region that is not representative for
the quantification of Bsep translocation. Therefore, descriptors that include this zone were not
considered further. Keeping these findings in mind, only descriptors C, D and E are taken into
account in the upcoming evaluations.

Descriptor F is the only descriptor that is not based on zones of the fixed length. It performed
worst on control-control datasets. It also led to 2 false negative translocation detections on
4 control-test datasets evaluated manually. Therefore, zones with varying lengths are found
unreliable for translocation quantification. As expected, zones of the fixed length provide a
better statistical basis for translocation quantification.

As discussed in the previous sections, statistical variance was used in earlier work (Schmitt et
al. [142]) to characterize intensity distribution profiles (see Section 4.4.4). Significance levels of
the translocation detected using the statistical variance and the newly defined descriptors were
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Descriptor
P-value

TCDC-1-C/T TC-1-C/C
C 4.3 e-2 5.6 e-1
D 5.8 e-3 3.8 e-1
E 6.4 e-3 4.1 e-1

Variance 5.8 e-1 5.4 e-3

Table 6.1.13.: WRSTs on the statistical variance lead to false positive and false negative
translocation detection.

compared. Table 6.1.10, Table 6.1.11 and Table 6.1.12 illustrate some examples of the control-
test datasets, where significance of the translocation detected by WRSTs on the statistical
variance was several orders lower than in WRSTs on descriptor D. As Table B.0.2 illustrates, in
all control-test datasets, significance levels of the translocation detected using descriptors were
either higher or the same than using the statistical variance. These statistical results support the
usage of the newly defined descriptors for the translocation quantification. Extracted profiles do
not necessarily exhibit a Gaussian form. The descriptors, in contrast to the statistical variance,
do not make any assumptions on the shape function of the distribution profiles. Hence, their
usage as parameters to represent such profiles is more appropriate.

Furthermore, WRSTs on the statistical variance did not detect any significant translocation
in one control-test dataset TCDC-1-C/T where the newly defined descriptors indicated a sig-
nificant effect. On one control-control dataset (TC-1-C/C ), the statistical variance indicated a
significant effect while selected descriptors suggested its absence. In total, the statistical vari-
ance performed worse than the most relevant defined descriptors (C, D and E) and was thus
not considered further for quantification of the 1D-Can process.

Significance of translocation indicated by statistical tests and descriptor values

Translocation is quantitatively analyzed by WRSTs on descriptor values. P-values obtained
are used to describe the significance of the effect indicated by statistical tests. To support this
approach, the p-values were observed together with the respective descriptor values. Descriptor
D was selected for this evaluation, as one of the most representative for the 1D-Can process.
Values of the descriptor D were analyzed for the datasets processed. Mean and standard
deviation were calculated (µ and σ), as well the overlap of the intervals [µ - σ, µ + σ] of
descriptor D values from two datasets (control and control, or control and test).

Table 6.1.14 illustrates the results sorted by the p-values. Interestingly, Osmol-1-C/T is the
only dataset, where the intervals [µ - σ, µ + σ] of descriptor D values from the control and the
test dataset do not overlap. The corresponding difference of the mean values is the highest and
the p-value is the lowest (e-27), indicating the most significant translocation effect.

Generally, greater differences between µ(1) and µ(2) and shorter overlaps lead to lower p-
values. Either increasing the overlap, or decreasing the absolute difference between µ(1) and
µ(2) results in worse separation of the datasets (1) and (2), and in lower p-values. For example,
datasets TCDC-4-C/T and BDL-3-C/T were found to have a similar overlap between the
control and test datasets (0.462 vs. 0.486). However, absolute difference between µ(1) and
µ(2) is higher in the dataset TCDC-4-C/T, than in the dataset BDL-3-C/T (0.864 vs. 0.346),
leading to the higher significance of the indicated translocation (e-14 vs. e-8, respectively).

WRSTs perform ranking of individual values to calculate the test statistics. Therefore, con-
sideration of only µ and σ values is insufficient to reproduce the statistical results. Nevertheless,
the correlation between p-values and |µ(1) - µ(2)| was found to be high (correlation coefficient
= 0.932).

For further statistical validation of the approach, differences |µ(1) - µ(2)| were compared
between the control-control and control-test datasets. WRST resulted in a p-value 9.4 e-4
(unpaired test, confidence level = 0.95). Herewith, the difference of descriptor D values between
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Dataset
Descriptor D values

P-value
µ(1) σ(1) µ(2) σ(2) |µ(1) - µ(2)| Overlap

Osmol-1-C/T 2.72 0.89 1.27 0.51 1.451 -0.050 9.0 e-27
TCDC-4-C/T 1.66 0.48 2.52 0.84 0.864 0.462 1.8 e-14
BDL-1-C/T 1.35 0.45 0.94 0.26 0.410 0.308 1.2 e-12
BDL-3-C/T 1.29 0.48 0.95 0.35 0.346 0.486 1.0 e-8

TCDC-3-C/T 1.50 0.69 2.06 0.83 0.560 0.957 1.2 e-7
Osmol-2-C/T 1.47 0.53 2.13 1.15 0.655 1.028 1.5 e-4
BDL-2-C/T 1.41 0.62 1.18 0.57 0.223 0.969 2.2 e-3

TCDC-1-C/T 2.16 0.79 1.88 0.88 0.275 1.399 5.8 e-3
TC-3-C/C 1.83 0.51 1.67 0.52 0.167 0.856 2.5 e-2

TCDC-2-C/T 1.71 0.53 1.96 0.76 0.254 1.040 3.8 e-2
TC-4-C/C 1.57 0.51 1.72 0.56 0.147 0.918 1.1 e-1

BDL-2-C/BDL-3-C 1.35 0.45 1.29 0.48 0.061 0.870 2.4 e-1
TC-1-C/C 1.26 0.32 1.30 0.34 0.039 0.625 4.0 e-1

Osmol-1-C/C 1.32 0.54 1.26 0.52 0.056 0.999 5.0 e-1
Osmol-3-C/C 1.36 0.49 1.32 0.49 0.040 0.941 5.5 e-1

TC-2-C/C 2.45 0.95 2.40 0.86 0.049 1.760 6.4 e-1
Osmol-2-C/C 1.46 0.53 1.35 0.44 0.114 0.858 7.0 e-1

Table 6.1.14.: Significance of statistical tests and descriptor values (sorted by p-values). (1)
- Control datasets, (2) - the second control dataset (in a control-control pair)
or the test dataset (in a control-test pair).

Dataset
Canalicular width

Median Mean 1st quartile 3rd quartile
Osmol-1-C 1.43 1.56 1.29 1.71
Osmol-1-T 1.86 1.83 1.57 2.14

Table 6.1.15.: Distribution of canalicular width (in µm) in the dataset Osmol-1-C/T.

the control and test datasets was indicated statistically, and does not occur by chance. WRST
on |σ(1) - σ(2)| also led to a significant result (p-value = 2.7 e-3).

These findings support the validity of the quantitative translocation analysis using numeric
descriptors. The difference between the control and test datasets was found to be significantly
greater than the difference between the control and control datasets. Furthermore, p-values
were found to correlate to the difference in descriptor values. Therefore, referring to p-values
when discussing the significance of the translocation effect (i.e. difference between distributions
of the calculated descriptor values) is considered valid.

6.1.8. Restriction of canalicular width

If a structural marker (Zo-1) profile exhibits two clear intensity peaks corresponding to tight
junctions, the distance between these peaks indicates the canalicular width at this particular
point. Canalicular width is known to vary from 0.8 to 2.5 µm. I have evaluated impact of
restricting the canalicular width on the translocation quantification.

Canalicular widths were studied in the dataset Osmol-1-C/T. Their distribution was found
to be different under normo- and hyper-osmolar conditions (see Table 6.1.15).

The width restriction was performed so that still the majority of the profiles was included
into evaluation. The 1st and 3rd quartiles of the canalicular width were calculated for the
profiles extracted from the control dataset and for the profiles extracted from the test dataset.
The intervals (1st quartile, 3rd quartile) of the canalicular width were intersected for these
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Dataset Canalicular width
Descriptor

C D E

Osmol-1-C/T
All widths 2.5 e-25 9.0 e-27 1.5 e-27

1.2 – 2.2 µm 1.3 e-20 4.4 e-24 6.5 e-25
1.4 – 2.0 µm 2.4 e-24 1.0 e-23 6.5 e-26

TCDC-3-C/T
All widths 4.9 e-6 1.2 e-7 1.9 e-7

1.2 – 2.2 µm 3.8 e-6 2.8 e-7 1.1 e-7
1.4 – 2.0 µm 1.5 e-7 2.6 e-8 3.7 e-9

TCDC-4-C/T
All widths 3.0 e-11 1.8 e-14 1.1 e-13

1.2 – 2.2 µm 1.3 e-11 2.2 e-14 1.8 e-14
1.4 – 2.0 µm 1.1 e-12 1.4 e-13 5.7 e-14

Osmol-2-C/C
All widths 3.0 e-1 6.6 e-1 5.8 e-1

1.2 – 2.2 µm 3.7 e-1 1.9 e-1 2.5 e-1
1.4 – 2.0 µm 4.6 e-1 1.6 e-1 1.9 e-1

Table 6.1.16.: Influence of canalicular width restriction on significance of the detected translo-
cation (structure-based workflow).

conditions. The resulting width interval 1.29 – 2.14 µm was rounded to 1.2 – 2.2 µm. To
evaluate the impact of further width restriction, an even smaller width range was tested (1.4 –
2.0 µm).

Descriptor values were calculated for 20 top-ranked profiles accepted either with or without
width restriction. For 3 evaluated control-control datasets (TC-1-C/C, TC-2-C/C and Osmol-
2-C/C ), no significant translocation was indicated in profiles with restricted canalicular width
(see an example in Table 6.1.16). Table B.0.3 shows the complete data.

Significance of the translocation detected in 4 control-test datasets (Osmol-1-C/T, BDL-3-
C/T, TCDC-3-C/T and TCDC-4-C/T ) varied slightly more. For the selected descriptors C, D
and E, significance levels increased or decreased by several orders of magnitude. Interestingly,
restriction of the canalicular width to 1.2 – 2.2 µm led to the detection of a mostly less significant
translocation, than restriction to the range 1.4 – 2.0 µm. However, the highest increase of the
significance levels was only by 2 orders of magnitude and was not achieved by all descriptors.
Therefore, canalicular width was not restricted in further evaluations.

6.1.9. Impact of microscopy settings on translocation quantification

Biological processes being three-dimensional by nature are frequently studied on 2D data (see
Section 4.2.1). I suggested a 3D information extraction from confocal z-stacks by combination
of the original 2D optical layers. New average confocal images were obtained as averages of
three neighboring confocal layers in z-stacks (see Table 6.1.1).

Synthetic wide-field images were generated to compare their information content to that from
the confocal data. It was not possible to record the same biological samples also by wide-field
microscopy. I superimpose all images from each of the z-stacks in order to simulate these data
(see Figure 6.1.3). The obtained images can be considered an approximation to those which
could be acquired by wide-field microscopy. The thickness of each confocal layer is 0.40 µm,
while the distance between them is 0.35 µm. Consequently, a significant part of the sample
thickness (approx. 3 of 4 µm) is covered by the recorded z-stack containing 8 optical layers.

And finally, maximum intensity projections (MIP) [15, 137] were obtained for each z-stack.
All data were processed by the structure-based workflow.

The generated and the original confocal images were compared by two criteria. First, the
number of selected profiles is considered. It is an important factor, as more data points provide
a better statistical basis for the analysis. Figure 6.1.4 presents the results for the dataset TC-z1-
C/C. For the new average confocal images (red line), the number of the accepted profiles were
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Figure 6.1.3.: Illustration of 3D information extraction from a confocal z-stack: synthetic
wide-field images and new average confocal layers (2a, 3a, etc.).

Figure 6.1.4.: Number of accepted profiles depending on a microscopy and/or image combi-
nation method. Dataset TC-z1-C/C.

often larger than those for the initial confocal layers (black line). This supports the hypothesis
that more canaliculi are rescued due to 3D information extraction. MIP collected the brightest
points through all confocal layers. Hence, most of the canalicular membranes were used for
the analysis and the largest number of data points was extracted (blue line). In contrast,
synthetic wide-field images contained the information from blurred regions (out-of-focus light).
Consequently, fewer profiles were acceptable there (green line).

Second, the images were compared regarding the quality of the information contained. If
an image is not sharp and contrasty the extracted intensity profiles will not be representative
for the real distribution of the functional marker. The discrimination between the control and
test datasets may be unreliable. Therefore, the quality of the extracted data is assessed by the
significance of the detected translocation. When comparing control and test datasets, lower
p-values indicate a greater difference, and thus better relevance of the image data. Comparison
of control datasets, in turn, should indicate no significant effect (p-value > 0.05).

The best layer was found in each z-stack as the most sharp and yielding the greatest number
of profiles selected. Such best layers were also evaluated separately to compare their information
content to that from the complete z-stack.

Control-control (TC-z1-C/C ) and control-test (BDL-z1-C/T, BDL-z2-C/T, BDL-z3-C/T
and TCDC-z1-C/T ) datasets were evaluated based on the profiles automatically extracted
from the images (see Table 6.1.17). False positive translocation in the dataset TC-z1-C/C was
detected only using synthetic wide-field images. All other approaches based on confocal images
have not detected any significant change in Bsep distribution. For the datasets BDL-z1-C/T,
BDL-z2-C/T and BDL-z3-C/T, synthetic wide-field images did not yield any acceptable in-
tensity profile. All other methods based on confocal images and their combinations detected
significant translocation effect (p-value ≤ 0.05), as expected. WRSTs on synthetic wide-field
images of the dataset TCDC-z1-C/T detected a several orders less significant translocation
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Images
P-value

TC-z1-
C/C

BDL-
z1-C/T

BDL-
z2-C/T

BDL-
z3-C/T

TCDC-
z1-C/T

Synthetic wide-field 6.8 e-5 - - - 2.6 e-6
MIP 5.3 e-1 3.4 e-9 4.0 e-19 7.2 e-16 8.2 e-15

All confocal 5.0 e-1 1.8 e-6 4.7 e-17 1.2 e-15 7.9 e-10
The best confocal 4.0 e-1 1.0 e-11 2.3 e-18 3.0 e-12 1.5 e-8

New avg confocal (all) 4.9 e-1 3.9 e-11 3.3 e-17 1.3 e-18 1.7 e-10
New avg confocal (best) 2.6 e-1 1.2 e-19 2.6 e-18 1.4 e-15 6.3 e-9

Table 6.1.17.: Significance of translocation detected by the structure-based workflow based on
original images of confocal z-stacks and images generated from them. WRSTs
on descriptor D values.

effect than WRSTs on other combinations of original confocal layers.
The most significant translocation effect was detected in two datasets (BDL-z1-C/T, BDL-

z3-C/T ) using the new average confocal images. In two other datasets, MIP represented the
most relevant information source for the translocation quantification.

Interestingly, only for two datasets (BDL-z1-C/T and BDL-z2-C/T ), WRSTs on the best
confocal layer led to the higher significance levels than tests on all confocal layers. For other
test-control datasets, significance levels were slightly lower. This is a surprising finding, as the
best confocal layer always yielded the largest number of selected profiles. In contrast, very few
profiles were selected in the uppermost and the lowest layers, taken on the top and the bottom
of the biological sample, respectively (see Figure 6.1.4).

Generally, 3D information extraction by generation of new average confocal layers was found
to have no impact on the result (e.g. datasets TC-z1-C/C, BDL-z2-C/T, TCDC-z1-C/T ) or led
to higher significance levels of the detected translocation (e.g. datasets BDL-z1-C/T, BDL-z3-
C/T ). If a canaliculus does not run parallel to the focal plane, the extracted intensity profiles
will be discarded due to the lack of symmetry. This can be changed if the information from 3
neighboring layers is combined. A simple averaging allowed rescuing of more data points and
led to higher significance levels of the detected translocation (e.g. e-11 vs. e-19 for the dataset
BDL-z1-C/T, and e-12 vs. e-15 for the dataset BDL-z3-C/T ).

Canalicular structures were segmented (using BioImageXD [82]) and studied in 3D in order
to better understand these findings. Figure 6.1.5, (a) illustrates tight junctions of an individual
canaliculus. The cross section shows that the tight junctions are slightly shifted relative to
each other along the Z-axis (Figure 6.1.5, (b), top left). Therefore, only the middle (the best)
confocal layer can capture both their intensities. It can thus depict most of the canalicular
membranes symmetrically leading to the largest number of profiles selected (see Figure 6.1.4).
This confirms my findings for the z-stacks processed (see Figure 6.1.4).

New average confocal layers capture more intensity from both of such shifted tight junctions
than the original confocal layers. Consequently, they represent an even richer and more complete
information source. Statistical tests confirmed this by higher significance levels of the detected
translocation (see Table 6.1.17).

6.2. Validation of the Application II: structure-based workflow
for 1D-Bas process

6.2.1. Datasets

13 datasets of confocal images of rat liver tissue sections were prepared by my colleagues at the
University Clinic Düsseldorf to validate the structure-based workflow for the 1D-Bas process.
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(a) (b)

Figure 6.1.5.: (a) Representative canaliculus segmented and reconstructed by its tight junc-
tions from a z-stack. (b) Its tight junctions in 3D with lateral projections.

The datasets were evaluated, and the results were compared to those obtained from the manually
processed data. As in case of the 1D-Can process, each dataset contains 10 images of different
regions of the respective tissue samples. Translocation of the functional marker Ntcp (sodium
taurocholate cotransporting polypeptide) is evaluated in relation to the basolateral structural
marker Na+-K+-ATPase (1D-Bas process).

Similar to the datasets for the 1D-Can process, control datasets include images acquired from
tissue sections of the liver incubated under normo-osmolar conditions or perfused with tauro-
cholate (TC). These treatments are not expected to influence the functional marker distribution
(see Section 3.4.1). Test datasets include images acquired from tissue sections of the liver per-
fused with taurochenodeoxycholate (TCDC, see Section 3.4.1). Functional marker is expected
to be internalized from the basolateral membranes into the adjacent hepatocytes. For each test
dataset, a corresponding control dataset was prepared. For example, control dataset TCDC-1-
C corresponds to the test dataset TCDC-1-T. As they are compared to each other, notation
TCDC-1-C/T refers to them taken together. Further, TC-1-C/C describes two datasets which
were obtained either without or with perfusion with TC (taurocholate). Perfusion with TC
is not expected to influence the functional marker distribution, hence both these datasets are
controls (according to my definition). Table 6.2.1 lists the processed datasets.

Automated translocation quantification is expected to detect a decrease of Ntcp in the baso-
lateral membranes and its increase in the cytoplasm in test datasets relative to control datasets.
Furthermore, no false positive effects should be detected by the structure-based workflow when
comparing control datasets.

Perfusion with bile salts
Control / Control Control / Test

TC-1-C/C TCDC-1-C/T
TC-2-C/C TCDC-2-C/T
TC-3-C/C TCDC-3-C/T
TC-4-C/C TCDC-4-C/T
TC-5-C/C TCDC-5-C/T
TC-6-C/C TCDC-6-C/T
TC-7-C/C -

Table 6.2.1.: Datasets for the 1D-Bas process.
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Figure 6.2.1.: Profile selection makes the intensity peak in structural marker profiles narrower
and reduces standard deviation (1D-Bas process).

6.2.2. Profile extraction

The structure-based workflow was applied to the datasets. Approx. 20000 profiles per image
were extracted. Averages of all extracted profiles were calculated for each dataset for illus-
tration. Average structural marker (Na+-K+-ATPase) profiles are expected to exhibit one
narrow intensity peak corresponding to the basolateral membrane. Although averages over all
extracted Na+-K+-ATPase profiles exhibited such a peak (see Figure 6.2.1, left), it was not
narrow. Standard deviations were high due to a high level of variation of individual profiles.
This indicated that profiles taken at damaged basolateral membranes might have been included
into the evaluation. To exclude these profiles, the profile selection was performed.

6.2.3. Profile selection

Profile selection made the average Na+-K+-ATPase profiles significantly narrower (see Fig-
ure 6.2.1, right). The distribution of selected Na+-K+-ATPase profiles exhibited a significant
reduction of the standard deviation. The level of profile variation has decreased, indicating the
profile selection at symmetrical undamaged basolateral membranes only.

Profile selection reduced the number of profiles from approx. 20000 to approx. 2000 per
image. Figure 6.2.1 illustrates improvements of the average plots of all profiles (n = 12572)
after the profile selection (n = 1582) for the first image of the dataset TCDC-3-C/T. The
number of accepted profiles always significantly exceeded 10, which is the number of manually
extracted data points. Consequently, the automated workflow does not only speed up the
process, but also increases the number of data points available for analysis.

Profile selection was also found to reduce the rate of false negative translocation detec-
tion. Evaluation of one control-test dataset (TCDC-2-C/T ) did not indicate functional marker
translocation (p-value > 0.05) by the majority of the descriptors calculated from all extracted
profiles. However, statistically significant translocation was found using selected profiles only
(see Table 6.2.2). Statistical tests are performed 100 times on 100 vs. 100 randomly sampled
profiles. P-values given in the following are median p-values from such 100 experiments (see
Section 5.1.3).

Table 6.2.2 illustrates an extreme case when functional marker translocation can be missed
when evaluating all extracted profiles. This was, however, not the case for all processed test-
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Descriptor
P-value

All Accepted
L 3.4 e-2 9.1 e-3
M 1.7 e-1 5.4 e-3
N 7.1 e-2 1.2 e-3
O 1.0 e-1 1.4 e-3
P 7.0 e-1 4.0 e-3

Variance 1.2 e-4 2.0 e-4

Table 6.2.2.: Profile selection makes translocation effect visible. Dataset TCDC-2-C/T.

Descriptor
P-value

All Accepted Top 20
L 1.1 e-1 8.4 e-2 1.3 e-5
M 1.7 e-2 1.6 e-3 3.6 e-10
N 8.8 e-3 5.3 e-4 4.5 e-12
O 8.4 e-3 3.9 e-4 5.8 e-13
P 3.7 e-2 1.3 e-2 7.0 e-8

Variance 1.6 e-4 5.3 e-6 4.5 e-8

Table 6.2.3.: Profile selection and ranking increase significance of the detected translocation
effect. Dataset TCDC-1-C/T.

control datasets. Still, significance of the translocation was higher for most, when evaluated on
selected profiles only (see an example in Table 6.2.3).

6.2.4. Profile ranking

Selected profiles were ranked by the relative intensity of the central peak. This ranking criterion
describes the profile similarity to the ideal basolateral membrane.

The ranking influenced significance of the detected translocation. In most test-control pairs,
evaluation of the top-ranked profiles only led to the detection of more significant functional
marker translocation than based on all selected profiles (see Table 6.2.3).

From approx. 2000 accepted profiles per image, n top-ranked profiles were evaluated. n
was varied between 10 and 500 due to the following reasons. First, the number of manually
extracted profiles is usually 10. Therefore, this is the smallest number of the top-ranked profiles
that should be tested. Second, the largest n could be set to 2000, but some images led to the
selection of 500 profiles. Hence, n was varied in the range 10 – 500.

Statistical results of WRSTs on control-control datasets did not vary much for the tested n
of top-ranked selected profiles. Only WRSTs on 10 top-ranked profiles detected a significant
translocation in the control-control dataset TC-3-C/C (see Table 6.2.4).

For all test-control datasets, translocation of a higher significance was detected in WRSTs
on top-ranked profiles than in WRSTs on all selected profiles. Table 6.2.3 illustrates this for
the dataset TCDC-1-C/T.

Statistical significance of the translocation in control-test datasets varied depending on n.
Generally, the stronger the restriction (or the smaller n), the more significant effect was detected.
WRSTs on top 10 and 20 profiles always led to the detection of a more significant effect than
WRSTs on 50 - 500 profiles (see Tables 6.2.5 and 6.2.6). Hence, statistical tests on profiles of
a better structural quality lead to more significant translocation detection.

For one control-test dataset, WRSTs on top 10 profiles detected translocation of the highest
significance (see Table 6.2.5). For the rest control-test datasets, significance levels were either
equal, or slightly higher for WRSTs on top 20 profiles (see Table 6.2.6). Therefore, n = 20 is
considered the best number of top-ranked selected profiles to quantify Ntcp translocation.
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Descriptor
P-value

Accepted Top 10 Top 20 Top 50 Top 100 Top 200 Top 500
L 5.0 e-1 3.1 e-1 4.5 e-1 2.5 e-1 3.8 e-1 4.7 e-1 4.6 e-1
M 5.0 e-1 1.9 e-2 1.8 e-1 2.0 e-1 1.9 e-1 4.2 e-1 5.0 e-1
N 5.2 e-1 6.0 e-3 3.0 e-1 3.0 e-2 6.5 e-2 3.4 e-1 4.6 e-1
O 5.0 e-1 5.0 e-3 5.7 e-1 4.0 e-2 7.2 e-2 3.3 e-1 4.7 e-1
P 5.0 e-1 3.2 e-2 7.1 e-1 4.0 e-2 1.1 e-1 3.7 e-1 4.8 e-1

Variance 4.9 e-1 1.7 e-1 4.9 e-1 9.1 e-2 1.3 e-1 3.2 e-1 5.0 e-1

Table 6.2.4.: Influence of profile ranking on significance of the detected translocation. Dataset
TC-3-C/C.

Descriptor
P-value

Top 10 Top 20 Top 50 Top 100 Top 200 Top 500
L 8.8 e-5 1.3 e-5 1.2 e-5 6.8 e-4 3.7 e-3 2.0 e-2
M 1.2 e-11 3.6 e-10 4.0 e-8 2.6 e-6 2.3 e-5 9.9 e-5
N 1.1 e-14 4.5 e-12 2.2 e-10 1.1 e-7 1.6 e-6 8.1 e-6
O 5.5 e-15 5.8 e-13 6.7 e-11 4.4 e-8 2.2 e-7 6.4 e-6
P 1.5 e-10 7.0 e-8 5.1 e-7 2.6 e-5 1.6 e-4 6.0 e-4

Variance 7.9 e-7 4.5 e-8 2.9 e-8 8.5 e-9 2.3 e-7 6.6 e-7

Table 6.2.5.: Influence of profile ranking on significance of the detected translocation. Dataset
TCDC-1-C/T.

Descriptor
P-value

Top 10 Top 20 Top 50 Top 100 Top 200 Top 500
L 2.9 e-5 2.4 e-4 3.1 e-2 5.6 e-3 1.9 e-4 2.1 e-4
M 2.3 e-6 2.0 e-7 4.2 e-9 6.0 e-9 6.8 e-9 2.4 e-7
N 1.8 e-11 9.9 e-12 3.8 e-10 7.3 e-10 3.9 e-10 9.8 e-9
O 5.3 e-10 5.3 e-11 3.5 e-11 6.1 e-11 4.1 e-11 2.2 e-9
P 4.1 e-10 6.8 e-10 3.1 e-7 4.6 e-7 1.8 e-7 1.6 e-6

Variance 9.2 e-3 4.4 e-4 2.6 e-4 1.8 e-5 2.9 e-6 3.8 e-6

Table 6.2.6.: Influence of profile ranking on significance of the detected translocation. Dataset
TCDC-2-C/T.
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Figure 6.2.2.: Plots of average automatically extracted and selected profiles of various width
(0.1 – 0.7 µm) for the 1D-Bas process. Red - NTCP, green - Na+-K+-ATPase.

Descriptor
P-value

0.1 µm 0.3 µm 0.5 µm 0.7 µm
L 1.3 e-5 2.8 e-5 3.2 e-6 2.1 e-5
M 3.6 e-10 1.3 e-11 1.0 e-11 1.7 e-11
N 4.5 e-12 9.3 e-11 3.4 e-11 8.2 e-12
O 5.8 e-13 1.8 e-12 1.3 e-12 1.4 e-12
P 7.0 e-8 7.7 e-7 5.1 e-7 1.0 e-8

Variance 2.6 e-7 1.5 e-6 3.0 e-6 1.1 e-10

Table 6.2.7.: Influence of the profile width on the significance levels of the detected transloca-
tion. P-values from 20 top-ranked selected automatically extracted profiles for
the dataset TCDC-1-C/T.

6.2.5. Optimal profile width and length

Various profile widths in the range of 1 – 7 pixels (0.1 – 0.7 µm with pixel size of 100 nm) were
evaluated to find the optimal one. Generally, narrow profiles (width = 1 pixel) are accepted
only if they exactly correspond to all selection criteria. Neighborhoods of these profiles are not
taken into account. A narrow profile can thus be accepted even if skeleton pixels neighboring
to its center yield profiles that do not meet the selection requirements. Such accepted profiles
may be situated at damaged biological structures.

Wider profiles (width > 1 pixel), in turn, can be accepted even if their individual components
are not perfect, but their average corresponds to the selection criteria. A neighborhood of
every profile is accounted for. This resembles the logic of manual profile extraction, where
only sufficiently long undamaged structures are analyzed. On the other hand, wide profiles are
biased towards undamaged symmetrical membranes. A compromise has thus to be achieved by
selecting the optimal profile width.

Average structural marker profiles of all tested widths exhibited a narrow peak corresponding
to the structural marker of the basolateral membrane (see Figure 6.2.2).

All tested widths also led to comparable significance levels of the detected translocation (see
an example in Table 6.2.7). However, computational cost grows with the increasing profile
width. Approx. 20000 individual profiles are extracted from a typical confocal image of stained
basolateral membranes. Increasing the profile width would lead to a growth of the computation
time. Hence, the width of 1 pixel (0.1 µm) was chosen as a compromise between the benefit
and computational cost.

Optimal profile length was found to be 8 µm, as for the 1D-Can process (see Section 5.3.2).
8 µm were found sufficient to cover the basolateral membrane and significant parts of the
hepatocytes cytoplasm to illustrate variations in the functional marker distribution. At the
pixel size = 100 nm, this length corresponds to 81 pixels (nearest odd value).

103



6. Evaluation and Results

Descriptor
Structure-based Manual
µ σ µ σ

L 0.665 0.205 0.653 0.156
M 0.788 0.178 0.791 0.146
N 1.686 0.952 1.535 0.826
O 0.508 0.163 0.506 0.128
P 2.038 0.713 1.890 0.829

Variance 2.4 e-4 7.3 e-5 1.89 e-4 7.03 e-5

Table 6.2.8.: Descriptor values µ and σ calculated from 20 top-ranked automatically extracted
and selected profiles (structure-based workflow) and 10 manually extracted pro-
files (manual workflow). Dataset TCDC-2-C/T.

Descriptor
TC-3-C/C TC-6-C/C

Manual Structure-based Manual Structure-based
L 5.9 e-1 4.5 e-1 9.9 e-1 2.6 e-1
M 8.7 e-1 1.8 e-1 7.8 e-1 1.5 e-1
N 6.3 e-1 3.0 e-1 3.8 e-1 3.6 e-1
O 7.0 e-1 5.7 e-1 8.0 e-1 5.4 e-2
P 6.3 e-1 7.1 e-1 1.1 e-1 6.3 e-2

Variance 4.3 e-4 4.9 e-1 2.9 e-1 3.5 e-1

Table 6.2.9.: Significance of translocation detected in control-control datasets by the
structure-based workflow (20 top-ranked profiles) and by the manual workflow
(10 profiles). Datasets TC-3-C/C and TC-6-C/C.

6.2.6. Comparison of the structure-based workflow to the manual workflow

11 of 13 datasets (see Table 6.2.1 except for TC-7-C/C and TCDC-6-C/T ) were also evaluated
by the manual workflow (see Section 3.2). 10 profiles per image were extracted manually by
an expert. Descriptors and statistical variances were computed for these profiles. These values
were further compared to the values calculated from the top 20 profiles extracted and selected
by the structure-based workflow.

Means and standard deviations of the descriptor values were studied to validate the auto-
mated profile extraction. A strong correspondence between the automated and manual results
was found (see Table 6.2.8). The structure-based workflow is considered to be valid, as pa-
rameters of the automatically extracted profiles are distributed similarly to those extracted
manually. Statistical evaluations on the automatically and manually extracted profiles are thus
expected to be comparable. To validate the structure-based workflow statistically, WRSTs are
performed on these data.

Statistical tests

The structure-based workflow was validated against the manual workflow by the results of statis-
tical tests. First, control datasets were compared for the functional marker (Ntcp) distribution.
No false positive translocation effects should be detected there (p-value > 0.05).

For 2 of 6 control-control datasets, the results of the manual and the structure-based workflow
demonstrated a good correlation (see Table 6.2.9). No significant translocation of the functional
marker was indicated by any of these methods. One exception is the evaluation of the statistical
variance in the dataset TC-3-C/C. However, none of the newly defined descriptors indicated a
false positive effect.

In four other control-control datasets, the results of the structure-based workflow differed
from the manually obtained results. In the dataset TC-2-C/C, the manual workflow indicated
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Descriptor
TC-2-C/C

Manual Structure-based
L 9.6 e-2 5.8 e-2
M 9.7 e-1 2.3 e-2
N 1.5 e-1 1.7 e-3
O 4.4 e-1 1.7 e-3
P 4.9 e-2 1.3 e-2

Variance 7.3 e-2 2.0 e-2

Table 6.2.10.: Significance of translocation detected in control-control dataset by the
structure-based workflow (20 top-ranked profiles) and by the manual workflow
(10 profiles). Dataset TC-2-C/C.

Descriptor
TC-1-C/C TC-4-C/C TC-5-C/C

Manual Structure-
based

Manual Structure-
based

Manual Structure-
based

L 2.3 e-2 5.5 e-1 3.0 e-2 5.2 e-1 1.1 e-2 6.9 e-1
M 3.5 e-2 5.8 e-1 3.0 e-3 3.7 e-1 7.9 e-1 4.3 e-1
N 1.8 e-4 5.3 e-1 5.5 e-3 6.3 e-1 7.2 e-3 3.3 e-1
O 5.5 e-4 5.2 e-1 1.6 e-3 6.7 e-1 1.0 e-1 3.3 e-1
P 5.4 e-4 5.9 e-1 9.7 e-2 4.8 e-1 1.5 e-3 2.0 e-1

Variance 1.0 e-3 1.6 e-1 1.9 e-1 1.5 e-1 3.9 e-2 4.7 e-1

Table 6.2.11.: Significance of translocation detected in control-control datasets by the
structure-based workflow (20 top-ranked profiles) and by the manual workflow
(10 profiles). Datasets TC-1-C/C, TC-4-C/C and TC-5-C/C.

no Ntcp translocation while the structure-based workflow detected a significant effect (see Ta-
ble 6.2.10). In three other datasets, manual workflow detected a significant functional marker
translocation, while the structure-based workflow indicated its absence (see Table 6.2.11). Pro-
vided that the control-control datasets have been correctly prepared, the structure-based work-
flow performed better than the manual workflow with 1 vs. 3 false positive translocation
detections.

Further, control and test datasets were compared. Functional marker translocation is ex-
pected to be visible from the control to test datasets (p-value ≤ 0.05). Both, the manual and
the structure-based workflow, indicated a significant translocation in 3 of 5 control-test datasets
(see Table 6.2.12). For 2 of these datasets (TCDC-1-C/T and TCDC-2-C/T ), significance levels
of the translocation detected by the structure-based workflow were even higher than indicated
by the manual workflow.

In two other control-test datasets (TCDC-4-C/T and TCDC-5-C/T ), the manual workflow
did not yield conclusive results. Three of six descriptors indicated a significant translocation
(see Table 6.2.13). The structure-based workflow, in turn, indicated a significant translocation
in one of these datasets (TCDC-4-C/T ) by the majority of the descriptors. The other dataset
TCDC-5-C/T does not seem to be a good control-test example. Excluding this dataset from
the consideration, the structure-based workflow indicated a significant translocation in 4 of 4
control-test datasets.

6.2.7. Descriptors

The rate of false positive translocation detection in control-control datasets was found to be
comparable for all newly defined descriptors (see Table B.0.4).

In 6 control-test datasets, descriptors L and P performed worst (3 false negatives). Descrip-
tors M , N , O and the statistical variance led to the false negative translocation detection in 1
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Descriptor
TCDC-1-C/T TCDC-2-C/T TCDC-3-C/T

Manual Structure-
based

Manual Structure-
based

Manual Structure-
based

L 1.3 e-2 1.3 e-5 1.1 e-2 2.4 e-4 3.8 e-2 6.7 e-1
M 2.0 e-6 3.6 e-10 1.2 e-6 2.0 e-7 8.0 e-12 4.6 e-2
N 6.0 e-6 4.5 e-12 6.5 e-8 9.9 e-12 1.5 e-10 3.2 e-2
O 4.2 e-7 5.8 e-13 5.0 e-8 5.3 e-11 6.0 e-12 1.8 e-2
P 3.9 e-3 7.0 e-8 9.0 e-6 6.8 e-10 1.2 e-5 1.3 e-1

Variance 7.5 e-10 2.9 e-8 5.7 e-7 4.4 e-6 1.6 e-4 9.6 e-3

Table 6.2.12.: Significance of translocation detected in control-test datasets by the structure-
based workflow (20 top-ranked profiles) and by the manual workflow (10 pro-
files). Datasets TCDC-1-C/T, TCDC-2-C/T and TCDC-3-C/T.

Descriptor
TCDC-4-C/T TCDC-5-C/T

Manual Structure-based Manual Structure-based
L 1.2 e-3 5.2 e-1 9.0 e-1 7.2 e-1
M 3.8 e-1 2.7 e-2 5.0 e-2 6.3 e-1
N 7.8 e-2 3.1 e-2 9.0 e-2 3.4 e-1
O 5.7 e-2 1.2 e-2 5.0 e-2 4.2 e-1
P 7.5 e-4 1.2 e-1 1.4 e-1 3.0 e-1

Variance 1.1 e-3 1.6 e-5 3.0 e-3 5.2 e-1

Table 6.2.13.: Significance of translocation detected in control-test datasets by the structure-
based workflow (20 top-ranked profiles) and by the manual workflow (10 pro-
files). Datasets TCDC-4-C/T and TCDC-5-C/T.

dataset (see Table B.0.5).

Among descriptors, the highest significance levels of the detected translocation were achieved
by M , N and O both for the manual and for the structure-based workflows. These descriptors
also include the same profile zones (3, 4 and 5) in their formula (see Equation 5.4.4, 5.4.5 and
5.4.6). Hence, zones 3, 4 and 5 seem to be the most representative for the Ntcp translocation
detection. In contrast, zones 1 and 2 seem to contain less conclusive information. Zones 1 and
2 might also be too large for the reliable translocation evaluation. These zones are included in
the formula of the descriptor L (see Equation 5.4.3) which performed worse (see Table 6.2.12)
and even missed translocation effects.

It was discussed in the previous sections that the statistical variance was used to characterize
molecule distribution profiles (see Section 4.4.4). I compared the significance levels of the
translocation detected using the statistical variance to the significance of the effect detected
using the newly defined descriptors.

First, false positive translocation was detected in one control-control dataset when tested on
the statistical variance but not on the descriptors (TC-3-C/C ). Generally, the false positive rate
was comparable for the descriptors and the statistical variance. Second, significance levels of the
detected translocation were mostly higher, when evaluated using descriptors (see Table B.0.5).
These results support quantification of the 1D-Bas Process using the newly defined descriptors.
Distribution profiles do not necessarily exhibit a Gaussian form. Descriptors, in contrast to the
statistical variance, do not make any assumptions on the shape function of the profiles. Hence,
their usage as parameters is more appropriate. Therefore, only descriptors M , N and O are
taken into account in further evaluations.

106



6.3. Validation of the Application III: random lines-based workflow for 1D-Can process

6.3. Validation of the Application III: random lines-based
workflow for 1D-Can process

I defined a novel method for translocation quantification avoiding time consuming and com-
plicated structure detection in images (see Section 5.5). This random lines-based workflow
has been developed and tested for the 1D optimal transport processes (1D-Can and 1D-Bas).
Further, it has been validated against the structure-based workflow.

As described earlier, the random lines-based workflow starts with the information extraction
along random lines drawn in images (see Section 4.4.3). To generate intensity profiles compara-
ble to structure-based profiles, segments of a pre-defined length are extracted from the original
random lines. The length of choice depends on a biological problem studied and is the same as
in the structure-based profile extraction. The optimal profile length both for the 1D-Can and
1D-Bas processes is found to be 8.0 µm. Individual random profiles are extracted with overlap
(2.4 µm) in order to use all valuable non-redundant information.

1D-Can and 1D-Bas processes share common features, but differ in structure specific details.
Therefore, the random lines-based workflow is validated for each of them separately.

6.3.1. Optimal number of random lines

As no structure detection is performed in the random lines-based workflow, the extracted infor-
mation fully depends on the initial random lines drawn in the multi-marker images. Therefore,
the first parameter to choose is the number of these lines.

Random lines should cross a sufficient number of membranes present in an image to deliver
a result comparable to the structure-based profile extraction. The number of the random lines
should thus be sufficiently large. On the other hand, different random lines can cross one and
the same membrane fragment several times leading to the extraction of redundant information.
Hence, too many lines may be excessive. Furthermore, the random profile extraction should
take not much more time than the structure-based profile extraction.

Various numbers of random lines (#RandLines) are evaluated for the images from the earlier
mentioned datasets. The number of the accepted random profiles and as well as the time
required for the profile extraction and selection are compared to the structure-based workflow.
Table 6.3.1 illustrates this on the example of the 5th image from the dataset Osmol-1-C (1512
× 1512 pixel). Experiments with the same #RandLines are repeated 3 times, and mean values
of the calculated parameters are reported.

First, very few initial random lines (20 and 50) do not permit selecting a sufficient number
of random profiles. The selection of at least the same number of profiles as in the established
manual workflow (n = 10) needs #RandLines ≥ 100. The respective computation times are
still significantly smaller than in the structure-based workflow. For example, total computation
time for #RandLines = 100 is approx. 7 times shorter than for the structure-based workflow
(Ttotal: 41.4 vs. 284.7 seconds, respectively). Random profile extraction is faster than the
structure-based, as slow structure detection in images with manual training of the algorithm is
avoided.

Second, average descriptor values change only slightly when #RandLines is varied in the
range 100 – 1500. The random profile extraction appears to be a robust approach. I refer
here and in the following only to the descriptors C and D, as they were found to be the most
relevant for the quantification of the 1D-Can process.

Third, the smallest #RandLines that permits selecting a comparable number of profiles to
the structure-based workflow is 1500. The computation times are in this case also comparable
(e.g. Ttotal: 280.3 vs. 284.7 seconds). According to these findings, #RandLines = 1000
appears to be a good compromise. The random lines-based workflow is still faster than the
structure-based workflow, while the number of profiles selected and distributions of descriptor
values are comparable.

Figure 6.3.1 illustrates a small fragment of the 5th image from the dataset Osmol-1-C. Centers

107



6. Evaluation and Results

Figure 6.3.1.: Centers of accepted profiles extracted by the structure-based workflow (left)
and by the random lines-based workflow (right) for the 1D-Can process.

Figure 6.3.2.: Averages over accepted profiles extracted by the structure-based workflow (left)
and by the random lines-based workflow (right) for the 1D-Can process.

of the accepted profiles generated by these two methods are marked. These positions show a
good correlation. Furthermore, averages over the accepted profiles are also comparable, as
Figure 6.3.2 illustrates. Herewith, the random profile extraction is considered to be a valid
alternative to the structure-based profile extraction.

6.3.2. Comparison of the random lines-based workflow to the
structure-based workflow

I showed that the random lines-based workflow extracts profiles at positions correlating well
to the centers of profiles extracted by the structure-based workflow. Average profiles were also
found to be similar. Further validation of the random lines-based workflow was performed using
numeric descriptors. The newly defined descriptors and the statistical variance were computed
and compared for the profiles extracted using both automated workflows.

Means and standard deviations of the descriptor values indicate a strong correspondence
between the results from the structure-based workflow and the random lines-based workflow
(see Table 6.3.2). The random lines-based workflow is considered to be valid, as parameters
of the extracted profiles are distributed similarly to those extracted by the already validated
structure-based workflow.

WRSTs have been performed on the descriptors calculated from the random profiles to vali-
date the random lines-based workflow statistically. Functional marker translocation is assessed
using 20 top-ranked accepted profiles. The random lines-based workflow is expected to detect a
significant translocation when comparing control and test datasets, and to indicate its absence
in control-control pairs. 17 datasets of images for the 1D-Can process (except z-stacks) were
evaluated.

The random lines-based workflow indicated absence of a significant translocation in 5 of
8 evaluated control-control datasets (see Table B.0.1). In the dataset TC-4-C/C, both the
structure-based and the random lines-based workflow detected a significant translocation effect.
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#RandLines # Acc Prof TprofExtract, c TprofSelect, sek Ttotal, sek µ(C) µ(D)
Structure-based workflow

- 204 260.3 271.8 284.7 3.01 2.84

Random lines-based workflow
20 1.33 21.2 21.3 27.2 2.55 1.72
50 7.33 25.6 25.9 32.3 2.59 2.29
100 14.0 33.3 33.5 41.4 2.13 2.08
150 25.3 40.2 40.4 50.0 2.05 1.87
200 29.3 46.1 46.4 56.2 2.29 2.00
300 51.3 59.8 60.1 74.0 2.16 1.97
500 74.7 86.6 86.9 103.0 2.22 2.11
1000 137.7 163.1 163.8 199.2 2.26 2.13
1500 235.3 229.6 230.3 280.3 2.17 2.01

Table 6.3.1.: Comparison of the structure-based and the random lines-based workflows.
Dataset Osmol-1-C.

Descriptor
Structure-based Random lines-based
µ σ µ σ

X 0.564 0.132 0.578 0.201
Y 1.13 0.382 1.03 0.512
Z 0.731 0.241 0.710 0.341
A 0.372 0.092 0.363 0.144
B 0.441 0.142 0.414 0.199
C 1.99 0.495 1.72 0.520
D 1.30 0.341 1.21 0.442
E 0.781 0.186 0.701 0.226
F 0.564 0.162 0.511 0.149

Variance 0.058 0.013 0.058 0.016

Table 6.3.2.: Descriptor values µ and σ calculated from 20 top-ranked selected profiles auto-
matically extracted by the structure-based and the random lines-based workflow.
Dataset TC-1-T.
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Descriptor
TC-4-C/C TC-2-C/C BDL-2-C/BDL-3-C

Structure-
based

Random
lines-based

Structure-
based

Random
lines-based

Structure-
based

Random
lines-based

C 6.1 e-4 4.0 e-2 3.4 e-1 1.2 e-1 6.1 e-1 3.0 e-2
D 1.1 e-1 2.7 e-1 6.4 e-1 3.2 e-3 2.4 e-1 6.1 e-1
E 1.0 e-2 8.5 e-2 5.2 e-1 8.2 e-3 4.0 e-1 3.1 e-1

Table 6.3.3.: Significance of translocation detected in control-control datasets by the
structure-based and the random lines-based workflows (on 20 top-ranked pro-
files). Datasets TC-4-C/C, TC-2-C/C and BDL-2-C/BDL-3-C.

Descriptor
BDL-2-C/T TCDC-1-C/T

Structure-
based

Random lines-
based

Structure-
based

Random lines-
based

C 2.6 e-7 1.0 e-6 4.3 e-2 4.4 e-2
D 2.2 e-3 3.1 e-6 5.8 e-3 2.5 e-3
E 1.8 e-5 2.7 e-7 6.4 e-3 4.5 e-3

Table 6.3.4.: Significance of translocation detected in control-test datasets by the structure-
based and the random lines-based workflows (on 20 top-ranked profiles).
Datasets BDL-2-C/T and TCDC-1-C/T.

This dataset, however, does not seem to be a good example.

For two other control-control datasets (TC-2-C/C and BDL-2-C/BDL-3-C ), the random
lines-based workflow performed slightly worse. At least one of the selected descriptors (C,
D, E) indicated there a significant translocation (see Table 6.3.3), while the structure-based
workflow indicated its absence.

Evaluation of control-test pairs was successful for all 9 datasets. For 6 datasets, all 3 descrip-
tors C, D and E detected a significant translocation (see Table B.0.2). Table 6.3.4 illustrates
this on the example of the datasets BDL-2-C/T and TCDC-1-C/T. Here, the random lines-
based workflow indicated comparable or even higher significance levels than the structure-based
workflow. However, for most compared control-test datasets, resulting p-values were 3 - 4 orders
of magnitude higher and thus less significant.

For 3 datasets (TCDC-2-C/T, TCDC-4-C/T and BDL-1-C/T ), a significant translocation
effect was indicated by 2 of 3 selected descriptors (see Table 6.3.5). Still, for all control-
test datasets, at least one newly defined descriptor indicated a significant translocation effect.
Hence, the random lines-based workflow for the 1D-Can process has not missed any significant
translocation, while being faster than the structure-based workflow and absolutely objective.

Descriptor
TCDC-2-C/T TCDC-4-C/T BDL-1-C/T

Structure-
based

Random
lines-based

Structure-
based

Random
lines-based

Structure-
based

Random
lines-based

C 1.1 e-4 1.8 e-2 3.0 e-11 1.2 e-1 5.1 e-10 6.0 e-5
D 3.8 e-2 5.7 e-2 1.8 e-14 3.2 e-3 1.2 e-12 4.0 e-6
E 1.7 e-3 1.9 e-2 1.1 e-13 8.2 e-3 9.0 e-3 6.6 e-1

Table 6.3.5.: Significance of translocation detected in control-test datasets by the structure-
based and the random lines-based workflows (on 20 top-ranked profiles).
Datasets TCDC-2-C/T, TCDC-4-C/T and BDL-1-C/T.
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6.4. Validation of the Application IV: random lines-based workflow for 1D-Bas process

Figure 6.4.1.: Centers of accepted profiles extracted by the structure-based workflow (left)
and by the random lines-based workflow (right) for the 1D-Bas process.

Figure 6.4.2.: Averages over accepted profiles extracted by the structure-based workflow (left)
and by the random lines-based workflow (right) for the 1D-Bas process.

6.4. Validation of the Application IV: random lines-based
workflow for 1D-Bas process

The random lines-based workflow has been applied for the quantification of Ntcp internaliza-
tion at the basolateral membranes (1D-Bas process) and validated against the structure-based
workflow.

Profile extraction parameters (#RandLines = 1000 and overlap for profile extraction = 2.4
µm) chosen for the 1D-Can process are also found to be well tuned for the 1D-Bas process.
Figure 6.4.1 illustrates a small fragment of the 1st image from the dataset TC-3-C. Centers of
the accepted profiles generated by the structure-based and the random lines-based workflows
are marked. These positions show a good correlation. Averages over the accepted profiles are
also found to be comparable, as Figure 6.4.2 illustrates. Herewith, the random profile extraction
for basolateral membranes is considered to be a valid alternative to the structure-based profile
extraction.

6.4.1. Comparison of the random lines-based workflow to the
structure-based workflow

I showed that distribution profiles are extracted by the random lines-based workflow at positions
that correlate well to the central profile positions found in the structure-based workflow. Further
statistical validation of the random lines-based workflow was performed based on descriptor
values. Therefore, the datasets of images for the 1D-Bas process (see Table 6.2.1) were processed
according to the random lines-based workflow. Mean (µ) and standard deviation (σ) of the
descriptors were compared to these values calculated from the structure-based profiles.

A good correspondence of µ and σ values was found for two automated workflows. Table 6.4.1
illustrates this for the dataset TC-3-CC. C1 and C2 in this table correspond to two control
datasets that constitute the dataset TC-3-CC. Interestingly, µ descriptor values were consis-
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Descriptor
Structure-based Random lines-based

µ(C1) σ(C1) µ(C2) σ(C2) µ(C1) σ(C1) µ(C2) σ(C2)
L 0.633 0.185 0.630 0.168 0.728 0.179 0.736 0.165
M 0.779 0.176 0.779 0.158 0.829 0.144 0.834 0.137
N 1.46 0.855 1.40 0.706 1.95 0.920 1.94 0.843
O 0.488 0.150 0.484 0.133 0.565 0.131 0.569 0.121
P 1.81 0.822 1.75 0.683 2.31 0.914 2.30 0.842

Variance 0.052 0.024 0.052 0.017 0.061 0.016 0.059 0.013

Table 6.4.1.: Descriptor values µ and σ calculated from 20 top-ranked selected profiles auto-
matically extracted by the structure-based and the random lines-based workflow.
Dataset TC-3-CC.

Descriptor
TC-3-C/C TC-7-C/C

Structure-
based

Random
lines-based

Structure-
based

Random
lines-based

M 1.8 e-1 7.9 e-2 1.5 e-1 5.3 e-1
N 3.0 e-1 2.7 e-1 8.6 e-2 5.7 e-1
O 5.7 e-1 1.8 e-1 5.4 e-1 6.4 e-1

Table 6.4.2.: Significance of translocation detected in control-control datasets by the
structure-based and the random lines-based workflows (on 20 top-ranked pro-
files). Datasets TC-3-C/C and TC-7-C/C.

tently higher for the random lines-based workflow. However, for both automated workflows, µ
values did not differ much between C1 and C2. This suggests that the random lines-based work-
flow extracts reliable information on molecule distribution. Standard deviations of descriptor
values were comparable for both automated workflows.

Further validation of the random lines-based workflow was performed by statistical tests.
WRSTs were performed on 20 top-ranked selected random profiles. The results were compared
to the results obtained on top 20 selected structure-based profiles. The random lines-based
workflow is expected to detect a significant translocation when comparing control and test
datasets, and to indicate its absence in control-control pairs. Only descriptors M , N and O
are considered, as they were found to be the most relevant for the evaluation of the 1D-Bas
process.

For 6 control-control datasets, the results of the random lines-based workflow correlated well
to the results of the structure-based workflow (see Table B.0.4). In 5 datasets (except TC-2-
C/C ), both automated workflows indicated no significant translocation of the functional marker
(see examples in Table 6.4.2).

In the dataset TC-2-C/C, both automated workflows detected a significant translocation
effect (see Table B.0.4). Only in the dataset TC-5-C/C, the random lines-based workflow
indicated a significant translocation that was not detected by the structure-based workflow (see
Table 6.4.3). Interestingly, manual workflow also indicated a significant effect in this dataset.

In 4 control-test datasets (TCDC-1-C/T, TCDC-2-C/T, TCDC-3-C/T and TCDC-6-C/T ),
both the random-lines based and the structure-based workflow indicated a significant translo-
cation of the functional marker (see examples in Table 6.4.4). Significance of the translocation
detected by the random-lines based workflow was generally several orders lower than for the
structure-based workflow. Table B.0.5 shows the full data.

In the dataset TCDC-5-C/T, none of the workflows (random lines-based, structure-based,
manual) indicated a significant Ntcp translocation (see Table B.0.5). Probably, preparation of
the test dataset was not successful in this case.

And finally, the random lines-based workflow did not indicate a significant translocation in
the dataset TCDC-4-C/T (see Table 6.4.3). In contrast, it was detected by the structure-based
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Descriptor
TC-5-C/C TCDC-4-C/T

Structure-
based

Random
lines-based

Structure-
based

Random
lines-based

M 4.3 e-1 1.5 e-2 2.7 e-2 1.0 e-1
N 3.3 e-1 1.5 e-5 3.1 e-2 1.8 e-1
O 3.3 e-1 1.2 e-4 1.2 e-2 1.3 e-1

Table 6.4.3.: The structure-based and the random lines-based workflows yield different results
for the datasets TC-5-C/C and TCDC-4-C/T.

Descriptor
TCDC-1-C/T TCDC-2-C/T TCDC-3-C/T

Structure-
based

Random
lines-based

Structure-
based

Random
lines-based

Structure-
based

Random
lines-based

M 3.6 e-10 5.9 e-4 2.0 e-7 7.7 e-7 4.6 e-2 3.8 e-3
N 4.5 e-12 1.4 e-7 9.9 e-12 7.4 e-5 3.2 e-2 1.6 e-2
O 5.8 e-13 1.8 e-6 5.3 e-11 2.0 e-6 1.8 e-2 2.1 e-3

Table 6.4.4.: Significance of translocation detected in control-test datasets by the structure-
based and the random lines-based workflows (on 20 top-ranked profiles).
Datasets TCDC-1-C/T, TCDC-2-C/T and TCDC-3-C/T.

workflow. In total, the random lines-based workflow yielded results well correlating to the
results of the structure-based workflow in 11 of 13 evaluated datasets.

The random lines-based workflow was found approx. 8 times faster than the structure-based
workflow (see examples in Table 6.4.5). Many more profiles are originally extracted in the
random lines-based workflow (e.g. approx. 55000 vs. 12000). However, extraction of numerous
random profiles is still much faster than structure-based profile extraction.

6.5. Validation of the Application V: random lines-based
workflow for 2D-Nuc process

The random lines-based workflow is based on profile extraction avoiding structure detection in
images. Hence, this method is expected to be more generally applicable than structure specific
approaches. I have tested it for the quantification of the 2D glucokinase translocation (2D-Nuc
process, see Section 3.1.4) and validated it against the established structure-based workflow
(see Section 3.3).

6.5.1. Datasets

Samples of rat hepatocytes were prepared by my colleagues at the University Clinic Düsseldorf.
Hepatocytes were incubated with various glucose concentrations (dataset Gluc-1 ). In other
experiments, hepatocytes were incubated with glucose and some added reagents (e.g. In-

Image
Structure-based Random lines-based

# Profiles
extracted

# Profiles
accepted

Ttotal, min # Profiles
extracted

# Profiles
accepted

Ttotal, min

1 12297 1810 16.02 55882 917 1.84
2 10778 3449 13.59 55722 1560 1.81

Table 6.4.5.: Structure-based workflow compared to random lines-based workflow for two im-
ages from the dataset TC-3-C.

113



6. Evaluation and Results

Incubated
with glucose

Incubated with glucose and other reagents
DMSO Insulin Reagents

Gluc-1 GlucDMSO-1 GlucIns-1 GlucR-1
- - GlucIns-2 GlucR-2
- - - GlucR-3
- - - GlucR-4
- - - GlucR-5
- - - GlucR-6

Table 6.5.1.: Datasets for the 2D-Nuc process.

sulin, DMSO (Dimethyl sulfoxide), etc.). The respective datasets are referred to as GlucIns-1,
GlucIns-2 and GlucDMSO-1 (see Table 6.5.1). Datasets GlucR-1, GlucR-2, etc. refer to hep-
atocytes incubated with glucose and some reagents. Reagents encode other combinations of
chemicals tested by my colleagues. This code is used as the results have not been published
yet. In the dataset GlucR-6, hepatocytes were incubated with a constant glucose concentration
but varying concentrations of the reagent 6.

10 datasets of confocal images (2048 × 2048 pixel) were acquired with the final pixel size
of 110 nm. A dataset contains 12 images of different regions of the respective cultural plate.
Distribution of the functional marker (glucokinase) is automatically quantified by the nucleus-
to-cytoplasm ratio. This ratio is dependent on the glucose concentration in the medium (see
Section 3.1.4) and on the action of reagents added. The ratio is expected to change under
different experimental conditions. Datasets were processed according to the random lines-based
workflow. The results were compared to those obtained by the established structure-based
approach.

6.5.2. Optimal number of random lines

The optimal profile length (28.0 µm) and the required overlap for extracting individual random
profiles (2.7 µm) were chosen earlier (see Section 5.6.1). In the following, other parameters for
the optimal profile extraction will be selected.

The extracted information fully depends on the initial random lines, because no structure
detection in images is performed in the random lines-based workflow. Therefore, the first
parameter to choose is the number of these lines. Similar to the Application III and Ap-
plication IV, random lines should cross enough biological structures studied, but should not
extract redundant information. Random profile extraction should also not last much longer
than the structure-based profile extraction.

Various numbers of random lines were evaluated. The resulting nucleus-to-cytoplasm inten-
sity ratio and total calculation time are compared to the established structure-based workflow.
Table 6.5.2 illustrates this on a sample image from the dataset GlucIns-1. Experiments with
the same number of random lines were repeated 3 times, and mean values of the calculated
parameters are reported. For this evaluation, the number of con-centric profiles, the width of
the ring that is skipped around the nucleus and the width of the cytoplasm are kept constant
(#ConcentricProfiles = 10, SkipArea = 1.0 µm and CytoplasmArea = 4.0 µm, respectively).

First, few initial random lines (10 - 50) do not cross a visually acceptable number of nuclei
in the images. Hence, resulting random profiles will not cover a representative set of nuclei.
Second, average nucleus-to-cytoplasm intensity ratios change only slightly when #RandLines
is varied from 50 to 150, suggesting that the random profile extraction is a robust approach.
Third, when #RandLines ≥ 100 the computation time becomes comparable to that in the
established structure-based workflow (e.g. Ttotal: 249.4 vs. 242.0 seconds). Such a number
of the initial random lines needs to be chosen, that the random lines-based workflow yields a
ratio comparable to the structure-based workflow, while not being much slower. Therefore, the
#RandLines = 100 appears to be a good compromise.
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6.5. Validation of the Application V: random lines-based workflow for 2D-Nuc process

Figure 6.5.1.: Left: Structure detection in images. Blue - nucleus, green - cytoplasm, red -
area to skip. Right: Centers of accepted random profiles found by the random
profile extraction for the 2D-Nuc process.

Results of the random profile extraction were validated visually against the results of structure
detection in the established workflow. Figure 6.5.1 illustrates a small fragment of a sample
image from the dataset GlucIns-1 processed by the structure-based workflow and the random
lines-based workflow. Centers of the selected random profiles correspond well to the nuclear
and cytoplasmatic regions segmented in the structure-based workflow.

6.5.3. Optimal number of con-centric profiles

Once the number of random lines is chosen, further profile extraction parameters can be op-
timized. The first parameter is the number of con-centric profiles (#ConcentricProfiles).
Various #ConcentricProfiles were tested. Table 6.5.3 reports mean parameters from 3 exper-
iments on the earlier mentioned image from the dataset GlucIns-1.

First, nucleus-to-cytoplasm intensity ratio appeared to be not very sensitive to
#ConcentricProfiles. It varied slightly in the range 1.75 – 1.89. However,
#ConcentricProfiles = 3 or 10 led to the ratio closest to the ratio obtained by the established
structure-based workflow (1.79 and 1.81 vs. 1.80). Second, the computation time increases
with the #ConcentricProfiles. #ConcentricProfiles = 10 requires almost the same time as
the established structure-based workflow. Third, con-centric profiles are introduced for better
coverage of the nuclear and cytoplasmatic regions. Hence, too few con-centric profiles are
insufficient to achieve this aim.

Figure 6.5.2 illustrates a small fragment of the sample image from the dataset GlucIns-1
and positions of the extracted con-centric profiles depending on their number. The larger the
#ConcentricProfiles, the better coverage of the nuclear and cytoplasmatic regions is ensured.
Therefore, the largest #ConcentricProfiles is chosen which still leads to the computation time
comparable to that of the established structure-based workflow. Thus, #ConcentricProfiles
is thus set to 10.

#RandLines Ttotal, sec µ(Ratio)
Structure-based workflow
- 242.0 1.80

Random lines-based workflow
10 63.2 1.87
20 89.2 1.71
50 153.8 1.83
75 188.1 1.80
100 249.4 1.81
150 335.8 1.85

Table 6.5.2.: Structure-based workflow compared to random lines-based workflow for the 2D-
Nuc process.
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Figure 6.5.2.: Con-centric profile extraction for the 2D-Nuc process. #ConcentricProfiles
is varied from 1 to 10.

6.5.4. Optimal cytoplasm area

Nuclear and cytoplasmatic regions have to be identified to quantify intensity ratio of the func-
tional marker (see Section 5.6.3). The nucleus is detected in structural marker profiles (see
Figure 5.6.6). Nuclear borders are found at those positions where the structural marker inten-
sity decreases more than 4 times. This method yields only approximate nuclear regions. For
that reason, I require some space to be skipped around the nuclear borders before the surround-
ing cytoplasm is detected (SkipArea). Such area is also used in the established structure-based
workflow (see red regions in Figure 6.5.1). There, SkipArea is set to 0.5 µm. The structure-
based workflow identifies nuclei more precisely than the random lines-based workflow. Thus,
to ensure an even larger separation of the nuclear and cytoplasmatic regions, I set SkipArea =
1.0 µm in the random lines-based workflow.

The width of the cytoplasmatic region (CytoplasmArea) is the next parameter to be set. In
the established structure-based workflow, such CytoplasmArea was also used and set to 4.0 µm.
I have evaluated different CytoplasmArea in the range 2.0 - 7.0 µm and the influence of this
parameter on the nucleus-to-cytoplasm ratio.

Table 6.5.4 reports mean parameters from experiments repeated 3 times on the sample im-
age from the dataset GlucIns-1. The intensity ratio varied slightly when CytoplasmArea was
changed. The ratio is thus found to be robust to the changes in the CytoplasmArea. Therefore,
the CytoplasmArea is set to 4.0 µm, as no benefits for other values have been detected. This
CytoplasmArea is also found to be small enough, so that detected cytoplasm areas minimally
overlap with other nuclei.

Evaluation of the other datasets supported #RandLines = 100, #ConcentricProfiles =
10 and CytoplasmArea = 4.0 µm as well tuned parameters for quantification of the 2D-Nuc
process. Table 6.5.5 illustrates this for the datasets GlucR-1 and GlucR-2.

6.5.5. Comparison of the random lines-based workflow to the
structure-based workflow

I showed that the random lines-based workflow extracts distribution profiles at positions well
corresponding to the nuclear and cytoplasmatic regions detected by the structure-based work-
flow. Further, statistical validation of the random lines-based workflow was performed. There-

#ConcentricProfiles Ttotal, sec µ(Ratio)
Structure-based workflow
- 242.0 1.80

Random lines-based workflow
1 131.0 1.89
3 128.1 1.79
5 158.5 1.75
10 249.4 1.81

Table 6.5.3.: Extended profile extraction for quantification of the 2D-Nuc process.
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CytoplasmArea, µm µ(Ratio) σ(Ratio)
2.0 2.19 0.90
3.0 2.24 0.92
4.0 2.21 0.95
5.0 2.27 0.80
6.0 2.19 0.89
7.0 2.06 0.88

Table 6.5.4.: Influence of CytoplasmArea on the nucleus-to-cytoplasm ratio for quantification
of the 2D-Nuc process.

g/L glucose
GlucR-1 GlucR-2

Structure-
based

Random
lines-based

Structure-
based

Random
lines-based

µ σ µ σ µ σ µ σ
0 2.26 0.80 2.44 0.99 4.01 1.15 4.28 1.70
0 2.76 0.76 2.91 1.17 3.47 1.08 3.69 1.52
1 1.73 0.41 1.69 0.56 2.05 0.56 2.04 0.72
1 1.90 0.55 1.81 0.76 2.82 0.83 2.86 1.31
2 1.26 0.16 1.27 0.27 2.61 0.94 2.88 1.38
2 1.22 0.16 1.23 0.25 2.43 0.87 2.75 1.28
3 1.02 0.13 1.05 0.22 2.93 1.13 3.09 1.68
3 0.89 0.09 0.88 0.17 3.16 0.95 3.13 1.31
4 0.99 0.10 0.97 0.21 3.08 0.91 3.07 1.28
4 1.11 0.13 1.14 0.23 3.21 1.15 3.04 1.57

4.5 0.94 0.18 0.95 0.23 3.08 0.99 3.04 1.42
4.5 0.93 0.09 0.93 0.17 1.96 0.74 2.01 0.99

Table 6.5.5.: Nucleus-to-cytoplasm ratios obtained by the random lines-based workflow and
the established structure-based workflow. Datasets GlucR-1 and GlucR-2.
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6. Evaluation and Results

Figure 6.5.3.: Profiles cover various width of the nuclear region.

fore, nucleus-to-cytoplasm intensity ratios calculated from the accepted random profiles were
compared to the ratios calculated by the established structure-based workflow. The ratios calcu-
lated by these workflows were comparable and correlated well for all datasets (see Table B.0.6).
The standard deviation of ratios obtained by the random lines-based workflow was consistently
higher. Table 6.5.5 illustrates this on the example of the datasets GlucR-1 and GlucR-2.

6.5.6. Restriction of nuclear width for profile selection

The selection criteria for structural marker profiles were presented earlier (see Section 5.6.2).
Only profiles with an intensity peak in the central part and relatively symmetrical flat tails are
accepted. The results obtained illustrate that the defined selection procedure allows calculating
reasonable nucleus-to-cytoplasm intensity ratios (e.g. Table 6.5.5). Nevertheless, I investigated
the influence of another selection criterion.

The nuclear region is detected in every profile (see Section 5.6.3). The identified nuclear
region is now additionally compared to a width threshold. Profiles with too narrow nuclear
regions are rejected. Figure 6.5.3 illustrates the motivation for such a selection. Three shown
profiles cross a nucleus at different positions. Varying nuclear and cytoplasmatic regions are
covered by these profiles. As nucleus-to-cytoplasm intensity ratio has to be calculated, intensity
profiles are expected to cover a large part of the nucleus, and not only regions close to their
borders. Therefore, the profile extracted in the middle yielding a nuclear width approx. 10 µm
is more reliable for such an evaluation, than two other profiles (yielding widths approx. 5 and
3 µm).

A threshold is required to filter out profiles crossing nuclei too close to their borders. As size
of hepatocyte nuclei varies in rats in the range of 10 – 15 µm, I evaluate 7 µm as the minimal
nuclear width that has to be covered by an acceptable profile. A width of 7 µm allows coverage
of at least half width of a large nucleus. 9 µm are also evaluated to find potential benefits from
an even more restricted profile selection.

All datasets were processed using the restricted profile selection. Figure 6.5.4 illustrates some
example positions of the extracted profiles. Centers and ends of the profiles are marked by white
dots. Yellow dots indicate nuclear regions detected in these profiles. Figure 6.5.4, (a) shows
profiles generated by the extended profile extraction centered in the nucleus. All their detected
nuclear regions are wider than 9 µm and will thus be accepted. Figure 6.5.4, (b) shows profiles
extracted close to the border of a nucleus. One of them is narrower than 7 µm and is rejected
first. Two further profiles are narrower than 9 µm and are rejected later.

Restriction of the profile width has slightly increased the calculated nucleus-to-cytoplasm
ratios (see an example in Table 6.5.6). Standard deviation of the ratios was not found to
decrease. Difference of ratios calculated for different experimental conditions was comparable
for all profiles and for those with the restricted width (see an example in Figure 6.5.5). The
random lines-based workflow is thus found to be robust for the quantification of the 2D-Nuc
process. Profile width was not restricted in further experiments as its benefits were not detected.
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6.5. Validation of the Application V: random lines-based workflow for 2D-Nuc process

(a)

(b)

Figure 6.5.4.: Restriction of the nuclear region width to ≥ 7 or 9 µm. White points - profile
start and end, yellow points - detected nuclear region.

g/L
glucose

Structure-based Random lines-based

µ σ
All widths Width ≥ 7 µm Width ≥ 9 µm
µ σ µ σ µ σ

0 2.72 0.91 2.71 1.25 2.87 1.25 3.06 1.25
1 1.97 0.65 1.86 0.84 1.90 0.84 1.99 0.85
2 1.37 0.32 1.42 0.44 1.44 0.44 1.48 0.45
3 1.30 0.18 1.30 0.27 1.32 0.27 1.32 0.26
4 1.19 0.15 1.20 0.24 1.21 0.24 1.23 0.24
4.5 1.10 0.13 1.10 0.24 1.10 0.24 1.10 0.24

Table 6.5.6.: Glucokinase nucleus-to-cytoplasm ratios obtained with or without nuclear width
restriction. Dataset GlucDMSO-1.

Figure 6.5.5.: Glucokinase nucleus-to-cytoplasm ratios obtained with or without nuclear
width restriction. Dataset GlucDMSO-1.
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7. Discussion

The lack of generally applicable translocation quantification approaches motivated to develop
an automated workflow for this purpose. In the course of the work, translocation processes
were analyzed. In particular, I defined a model for the widespread directed translocations
proceeding orthogonally to a membrane structure (1D optimal transport model). This enabled
the development of the automated workflow that is expected to be applicable to quantitatively
analyze all such translocations.

Two automated translocation quantification workflows were implemented: one based on
structure detection in images (structure-based workflow) and one avoiding this operation (ran-
dom lines-based workflow). Both methods were validated against the established analyses
(either manual or automated). My automated workflows are not optimized for any particular
type of a biological structure and should thus be applicable to many translocation processes.

Furthermore, the random lines-based workflow has a potential for evaluations beyond the
translocation quantification. Owing to the implemented content-independent information ex-
traction strategy, various biological (and other) images may be evaluated.

7.1. Structure-based workflow for 1D translocation

The first automated workflow was developed for two model biological processes (1D-Can and
1D-Bas) corresponding to the optimal 1D transport model. Structure detection is performed in
images using a machine learning algorithm. Although manual training of the foreground detec-
tion is required, the applied algorithm is not optimized to any particular biological structure.

7.1.1. Image processing and profile extraction

The results of the structure detection were always reliable according to the visual analysis.
Image processing cleaned the detected foreground regions by morphological operations and
thresholding. These procedures eliminated small membrane fragments and noise. Further,
skeletonization was performed to yield medial axis of the membranes. Skeletons were mostly
created at valid positions avoiding damaged biological structures (see Figure 7.1.1, (a)). The
skeletons were not always perfectly centered in membranes because structure detection is not
trained to produce regions perfectly fitting to the membrane borders. Consequently, the ex-
tracted distribution profiles were not always perfectly centered in the membranes. However,
this is not problematic, because zones are defined relative to peaks in the profiles.

7.1.2. Profile selection and ranking

The number of the automatically extracted profiles almost always significantly exceeded the
number of the manually extracted data points (n = 10). Therefore, among numerous extracted
profiles those could be selected which more clearly depict the biological structure.

Profile selection led to meaningful visual and statistical results. Skeleton pixel positions
corresponding to damaged or asymmetrical regions were filtered out (see Figure 7.1.1, (b)).
Translocation evaluation based on selected profiles only was found to be more reliable and yield
higher significance levels compared to the evaluation of all extracted profiles.

Only objective criteria based on general biological and physical knowledge were used for the
profile selection. Still, these were found to be sufficient to clean the extracted data from noise
and to produce reliable statistical results.

121



7. Discussion

(a)

(b)

Figure 7.1.1.: Central positions of extracted (a) and accepted (b) profiles (white). Canalicular
(left) and basolateral (right) membranes.
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7.1. Structure-based workflow for 1D translocation

Construction of the profile selection criteria represented a challenging task. Expert knowledge
and decision whether to evaluate a certain membrane fragment or not had to be expressed in
formulas. This was possible only owing to the close collaboration with biologists and doctors
from the University Clinic Düsseldorf. They routinely evaluate biological images and thus could
provide us with numerous examples of acceptable and unacceptable biological structures. These
data are essential for the translation of human decisions into mathematical expressions. Hence,
the presented selection criteria were developed to follow the human expert logic.

Selected profiles corresponded better to the considered biological structure than all extracted
profiles. This indicates that only profiles extracted at undamaged symmetrical canalicular
membranes were selected. The number of selected profiles was still sufficiently large to perform
further data sorting. Therefore, the selected profiles were ranked by structural quality.

Significance of the detected translocation effect was higher on the top-ranked profiles than
on all selected profiles. 20 top-ranked profiles were found to be optimal for the quantification.
Significance levels were higher when evaluated on top 20 than on the larger numbers of profiles.
Hence, ranking achieved its purpose by increasing the statistical significance with the ranked
structural quality of the profiles. The ranking procedure is thus found to be robust.

Interestingly, top 10 profiles led to either equal or lower significance levels than top 20 profiles.
Even a false positive translocation was detected on top 10 profiles. Selecting only 10 profiles
for the evaluation thus seems to be a too strict limitation.

7.1.3. Structure-specific descriptors vs. statistical variance

Biologically meaningful zones were identified in the profiles and enabled creation of process-
specific descriptors. Depending on a particular translocation process, different descriptors were
found to be more relevant for the quantification. For example, among descriptors developed for
the 1D-Can process, those were found to be less relevant that include intensity in the central
canalicular part. The central part of the canalicular membrane seems to be a region where dis-
tribution of the functional marker varies significantly even among control datasets. Therefore,
descriptors including this zone were not representative for Bsep translocation quantification. In
turn, when assessing Ntcp translocation (1D-Bas process), those descriptors performed better
which included the integral intensity in the central part of the membranes. This illustrates
the advantage of my descriptor-based approach. Numerous descriptors can be developed for
any biological structure in question to optimally quantify the translocation. The number of
potential descriptors is not limited, and maybe even better combinations of zonal intensities
could be created for considered translocation processes.

Almost all newly defined descriptors are based on fixed-length zones. The only descriptor
(F for the 1D-Can process) is based on zones of varying length that are every time computed
for a particular profile. In total, this descriptor performed worst for the quantification of the
1D-Can process. It led to the highest false positive rate in control-control datasets and was
among 3 descriptors leading to the highest false negative rate on control-test datasets. This
suggests that intensity comparison between different images is unreliable using zones of varying
length. Therefore, the usage of the descriptors based on the fixed-length zones is supported.

The developed descriptors were shown to be more relevant for the translocation quantification
than the statistical variance that was used in previous works. Hence, subdivision of profiles
into zones and combination of integral intensity values into descriptors is advantageous. This
also supports the general applicability of the zone model and descriptors: these can be created
without any assumptions on the mathematical model of the molecule distribution function.

7.1.4. Different microscopy types

I compared wide-field and confocal fluorescence microscopy images regarding the information
content for the translocation quantification. Clear advantages of the confocality were found
in my experiments. Interestingly, working with all confocal layers from z-stacks was not an
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7. Discussion

optimal solution. Redundant information and low quality of the data from the uppermost and
the bottom layers are the possible reasons.

The best confocal layer provided sufficient information for the translocation detection. Sig-
nificance levels were further increased by evaluating averages of 3 neighboring original confocal
layers. The thickness of an optical layer of approx. 3 × 0.4 µm = 1.2 µm was found to be
suitable for the translocation quantification. This setting can be used when acquiring data by
a conventional wide-field microscope.

Advances of microscopy allowed investigating sophisticated biological questions which would
be impossible without high resolution and/or 3D analysis. Nevertheless, there are still applica-
tions for which conventional 2D wide-field microscopy is sufficient. In general, the simplest, the
fastest and the cheapest working method has to be found for every purpose in order to avoid
excessive costs, both in time and money.

7.1.5. Structure-based workflow vs. manual workflow

The developed structure-based workflow was validated against the established manual workflow.
First, descriptor values calculated from the automatically and manually extracted profiles were
compared. A good correlation was found. As descriptors are parameters of the distribution
profiles, the respective profiles are also considered to be comparable.

Second, statistical results obtained from the automatically extracted and selected profiles were
validated against the results from the manually obtained data. False negative translocation was
indicated by the manual workflow in 1 of 9 control-test datasets (taken together 1D-Can and
1D-Bas processes). In one dataset, both the manual and the structure-based workflow indicated
no significant effect. This dataset, however, does not seem to be a good example. Herewith,
the structure-based workflow has not missed any significant translocation that was indicated
by the manual workflow. Significance levels were higher either in one or another workflow.

The results of these workflows differed more for control-control datasets. In 2 of 7 datasets,
both the structure-based and the manual workflow indicated no significant translocation. In 4
datasets, the structure-based workflow indicated no effect, while a significant translocation was
detected in the manually extracted data. Only in one control-control dataset, the structure-
based workflow indicated a significant translocation that was not detected manually. Summa-
rizing these findings, I consider that the structure-based workflow performed better than the
manual workflow in my experiments.

Third, the structure-based workflow is much faster than the manual workflow. Fourth, it
yields objective and reproducible results.

7.1.6. Validation by biological methods

The statistical results of the sample preparation, labeling, microscopy and image processing
were compared to those yielded from biological evaluation. In particular, my colleagues from
the University Clinic Düsseldorf performed flow cytometry to evaluate the functional marker
translocation.

As presented in Mühlfeld et al. [111], HepG2 cell clones expressing Ntcp with an intracellular
EGFP- and an extracellular FLAG-tag were prepared. The cells were treated with bile salts
(TC and TCDC) and analyzed by flow cytometry. Ntcp in the basolateral membrane was
quantified by the extracellularly localized FLAG-tag in unpermabilized cells. Total Ntcp was
measured by EGFP-fluorescence. Fluorescence intensity distributions are shown in cumulative
histograms. The total amount of Ntcp was assessed by the fluorescence of the intracellular
EGFP-tag. It has changed neither under TC, nor under TCDC treatment (Figure 7.1.2, (b)).
In turn, the extracellular FLAG-associated fluorescence was reduced by TCDC (Figure 7.1.2,
(a)). This suggests that TCDC reduces Ntcp at the basolateral membrane by retrieval into
intracellular compartments [111]. Herewith, the functional marker translocation under TCDC
but not under TC treatment is independently validated by a biological method.
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7.2. Random lines-based workflow for 1D translocation

Figure 7.1.2.: Flow cytometry results (from Mühlfeld et al. [111]).

7.2. Random lines-based workflow for 1D translocation

The aim of this thesis is to develop a generally applicable translocation quantification workflow
not being optimized to any particular biological structure. To achieve this, the most sensitive
step in the developed structure-based workflow, the structure detection, was omitted.

7.2.1. Advantages

The structure-based workflow includes two structure detection steps. First, structure detection
in images is performed. Further, profiles are extracted in relation to the membranes detected.
Extracted profiles undergo a selection procedure which requires a signal detection in every
profile (of the structural marker). The random lines-based workflow optimizes this approach.
It avoids structure detection in images by a different information extraction strategy. Random
lines are drawn through the images, and distribution profiles are extracted. It makes the whole
workflow more robust and generally applicable. Signal detection is now performed only on
the extracted 1D profiles. This enables processing of images of almost any biological structure
that contain membranes or separated compartments. For instance, neurite outgrowth might be
analyzed using the statistical data extracted along numerous random lines.

Avoiding machine learning, which is used in the structure-based workflow for the foreground
detection, excludes subjective training of the process. And finally, working with numerous
random lines permits parallel calculations on several CPUs saving time.

7.2.2. Random lines-based workflow vs. structure-based workflow

The random lines-based workflow was compared to the structure-based workflow. Depending
on the settings, either one could be faster for the 1D-Can process. When the training time of
the foreground detection is included, the random lines-based workflow was mostly faster. For
the 1D-Bas process, the random lines-based workflow was approx. 8 times faster.

The difference in computation time between the two automated workflows is greater for the
1D-Bas process than for the 1D-Can process due to the membrane structure. The total area
of the basolateral membranes depicted in a standard image is much larger than the area of
the canalicular membranes. Therefore, the structure-based workflow requires more time for
structure detection, image processing, skeletonization and extraction of profiles in relation to
the membranes detected. The random lines-based workflow, in turn, does not become much
slower because of the presence of much more biological structures. This illustrates the advantage
of the random lines-based workflow.
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7. Discussion

Statistical results of the structure-based and the random lines-based workflows were com-
pared. In 9 of 15 control-control datasets, none of these workflows indicated a significant
translocation. In one dataset, both indicated a significant effect. In the rest 5 control-control
datasets, only one of the automated workflows detected a significant effect.

For control-test datasets, the results were better. A significant translocation was indicated
by both the structure-based and the random lines-based workflows in 13 of 15 datasets. For
one dataset, all workflows (including the manual) indicated no effect. Results of the two auto-
mated workflows were contradictory only in one control-test dataset (TCDC-4-C/T for 1D-Bas
process).

Performance of the random lines-based workflow seems to be better on control-test datasets.
Further evaluations have to be performed to better validate my automated approaches. Avail-
ability of reliable biological data is a core requirement for this.

Published application of the structure-based workflow

Mühlfeld et al. [111] applied the structure-based workflow for quantitative analysis of the 1D-
Can and 1D-Bas processes. For their experimental setup, it was required that the membranes
under study remain unchanged in test datasets, relative to control datasets. To achieve this,
the generic structure-based workflow was used to monitor distribution changes of the struc-
tural markers by calculation of structure-specific numeric descriptors. Quantitative analysis of
the descriptor values allowed filtering out those datasets, where the membrane structure has
changed after the treatment. This application illustrates again the powerful approach imple-
mented in the automated workflows. Numeric descriptors can be calculated for any stained
protein of interest to perform data analysis or processing according to the required scheme.

As the focus of my dissertation is the development of the automated workflows and not a
validation of biological effects, I have not performed such filtering of the data.

7.3. Random lines-based workflow for 2D translocation

The advantage of the random lines-based workflow is its wide application area. I conducted
successful tests on a different type of biological structure and process. In particular, 2D nucleus-
to-cytoplasm translocation of glucokinase (2D-Nuc process) was quantified.

Profile extraction and selection were performed according to the same scheme as in the
previously discussed 1D cases. Only structure specific parameters had to be changed, such
as profile length, for instance. Signal detection was carried out on 1D profiles and was easily
adapted based on the knowledge on the biological structure. The workflow itself, however, did
not have to be changed.

7.3.1. Random lines-based workflow vs. structure-based workflow

The random lines-based workflow was compared to the structure-based workflow. In the con-
sidered 2D case, a nucleus-to-cytoplasm ratio of the functional marker intensity is evaluated.
The ratios computed by these two methods correlated very well, so that the random lines-based
workflow was validated. Furthermore, it has the same advantages, as described for the 1D case:
it is objective, reproducible, fast, and can be calculated on parallel CPUs.

126



8. Conclusions

Technological advances led to the development of various techniques producing gigabytes of data
in a high-throughput manner. For instance, in biological research, methods like sequencing,
micro-array analysis, imaging, in particular automated microscopy, and many others generate
data that have to be analyzed to access the valuable information.

While generally applicable methods have been developed for some biological questions, like
colocalization assessment, there are other less investigated areas. Translocation quantification
is one of them. Although translocation processes are found in all living organisms, only few
assessment methods have been reported so far. Many of them are manual analyses or spe-
cial software optimized for a particular biological process and structure. Generally applicable
automated translocation quantification methods are still to be created.

In the course of this work, I have developed two automated workflows for the translocation
quantification. The first one includes structure detection in biological images (structure-based
workflow), while the second one omits it (random lines-based workflow). Both these workflows
were tested on the model 1D and 2D translocation processes. They were found to be valid, as
statistical results comparable to the established quantification methods were produced.

8.1. Application area

To develop the automated workflows, I defined a general model for a range of translocation pro-
cesses. I also limited the input data to images. Images are a widely used biological information
source and image acquisition techniques are greatly developed.

Several requirements are set to the translocations of biomolecules to be quantifiable by my
automated workflows. First, a functional marker has to be detectable in the input images. It
could be, for example, immunohistochemically labeled.

Second, translocation of the functional marker should include a biological barrier, e.g. a
membrane structure. The translocation can either proceed across this membrane, or represent
an integration into it. Availability of such a reference structure is essential for the quantifi-
cation based on the images of different samples. As membrane structures are widespread in
living organisms, this condition should not limit the application area too much. Furthermore,
membranes delineate organelles, where concentrations of biomolecules can differ from those in
the cytoplasm. Consequently, concentration gradients run across the membranes indicating
possible translocation trajectories.

Third, the reference structure should be also detectable in the input images. Therefore,
one of its components (a structural marker) must be taggable. I claim that for almost any
membrane such a structural marker can be found. For instance, it may be a structural protein
with constitutive expression and unchanged localization under various experimental conditions.

Fourth, the developed workflows assume that translocation proceeds along the concentration
gradients according to the presented 1D optimal transport model. Numerous processes meet
this requirement. It also motivates the information extraction along these gradients. Directions
of the gradients are identified orthogonally to the membrane structures.

Despite these limitations, most translocation processes should still be quantifiable by the
developed workflows.
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8.2. Comparison of the established manual workflow and the
developed automated workflows

The existing manual workflow was taken as a reference in this thesis. The developed automated
workflows were compared to it, as well as to each other.

The manual workflow was found to be the slowest, apart from being subjective and error-
prone simply due to a human factor. Still, significance levels indicated by the manually extracted
data were mostly the highest. The automated workflows, in turn, are fast, robust and objective.
The random lines-based workflow was mostly faster than the structure-based workflow. Their
statistical results correlated similarly to those from the manual workflow. However, significance
levels were mostly several orders lower. Assuming that the manual workflow yields correct
results, in most datasets both novel workflows also correctly indicated presence or absence of a
significant effect (10 and 12 of 16 datasets for the structure-based and the random lines-based
workflows, respectively).

The random lines-based workflow has some significant advantages over the structure-based
workflow. First, a complicated image processing operation such as structure detection is
avoided. It significantly reduces the programming effort and omits inclusion of frequently
too specific models. The method is more generally applicable, as it is not optimized to any
type of biological structure. A successful application of the random lines-based workflow to the
2D glucokinase translocation illustrated that. Second, the random lines-based workflow can be
computed on parallel CPUs making the calculations even more effective. Significance levels of
the detected translocation were mostly lower for the random lines-based workflow. Still, the
false negative and false positive rates were lower than in the structure-based workflow.

Table 8.2.1 summarizes these findings. Qualities are ranked by (+), (++) and (+++), the
latter being the best. The random lines-based workflow outperforms the other two methods
when considering all characteristics together.

8.3. Achievements

The developed automated workflows represent an alternative to the previously used manual
workflow. Application of the automated methods saves the valuable experts’ time which can
be invested into other tasks.

1D model translocations of biomolecules meeting the requirements were successfully quanti-
fied by the developed workflows. Classical problems arising during segmentation of biological
structures were avoided in the random lines-based workflow, making it faster and even more
generally applicable. Positive results for the 2D model translocation process represent an evi-
dence for this. All three considered cases illustrated plausibility of the theoretically suggested
generic translocation quantification.

To more extensively test the validity of the developed workflows, numerous further exper-
iments should be conducted and validated against the manually extracted data. However, I
expect that almost any translocation process corresponding to the optimal 1D transport model
and meeting all the requirements (see Section 8.1) will be quantifiable by the developed work-
flows.

Feature Manual workflow
Automated workflow

Structure-based Random lines-based

Time + ++ +++
Significance level +++ ++ +

Programming effort +++ + ++
General applicability + ++ +++

Table 8.2.1.: Comparison of the translocation quantification methods.
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9. Outlook

Translocation processes are found in every living organism and are crucially important for the
physiological balance. Therefore, translocation quantification may shed light on vital biological
processes.

The first step of my future work may be a development a generic application package for
the translocation quantification. The automated workflows implemented in the course of this
work can serve as prototypes. Provided that a translocation process in question meets all the
requirements (see Section 8.1), following steps could be performed in a GUI:

• Set location of the image data, including datasets to be compared.

• Set data extraction parameters depending on the image data and biological structures
studied:

– Image resolution,

– Profile length,

– #RandomLines,

– #CircularProfiles,

– Overlap for extraction of random profiles.

• Set profile selection parameters depending on the biological structures studied:

– Need previous filtering of the data?

– How does a good signal look like (e.g. number of intensity peaks)?

– Allowed width of the signal,

– Allowed noise level,

– Any other parameters derived from biological or physical knowledge.

• Set profile ranking parameters depending on the biological structures studied. These may
be some of the profile selection criteria.

• Define a zone model (biologically meaningful zones):

– How many?

– Of which width?

– Localized where?

• Define structure specific descriptors. These may be, for instance, ratios of zonal integral
intensity values.

• Select a statistical test to be used and a significance level (e.g. Wilcoxon rank sum test,
p-value ≤ 0.05).

• Select sampling options:

– How many descriptor values should be randomly selected from a dataset?

– How many times should this sampling be performed?

– Report all p-values, their median?
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• Select data files to be written out:

– Profile information,

– Graphics, plots, etc.

Second, my workflows could be adapted to quantify processes in human liver tissue. Rat
liver tissue, used for the development, is quite different from human samples. Human liver
is not as homogeneous, as the one from rat due to unhealthy life style or genetic disorders.
Autofluorescence of the human tissue is also much stronger that in rats. Hence, structure specific
parameters may have to be optimized. For instance, canaliculi in human livers were found to
be approx. 0.4 µm thinner than in rat. Therefore, zone model for canalicular membranes may
have to be optimized respectively.

Third, physiologically different regions of liver tissue may be analyzed separately. In other
words, translocation may be evaluated individually in each region. Therefore, regions of interest
(ROI) shall be automatically identified in tissue sections by specific markers. Such ROIs may be
regions close to the portal vein, liver artery or bile ducts. Protein distribution will be analyzed
in each of these regions in order to compare the intra- and interregional variation.

Fourth, the developed workflows could and should be tested for other biomolecule translo-
cations. For example, translocation of other membrane transporter proteins in other tissues
may be quantified. Fifth, the developed random lines-based workflow may be applied for other
biological questions beyond the translocation. Valuable statistical data may be gathered by in-
formation extraction along numerous random lines drawn across images. For example, neurite
outgrowth may be assessed with this method.

And finally, the main objective is to introduce my algorithms into clinical practice. They
may assist experts who routinely evaluate biological images by saving their time and/or pro-
viding an orientation point for analysis. To achieve this, my program shall be integrated in
a hardware-software platform TopoScan [165], developed at the Fraunhofer Institute for Ap-
plied Information Technology (FIT). TopoScan can automatically acquire microscopic images
which then shall be automatically evaluated by my algorithms. The developed workflows pos-
sess the qualities required for high-throughput experiments. Therefore, they may be used for
translocation evaluation on a large scale.
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A. Detailed Calculations

A.1. Bilinear interpolation

Digital images provide pixel-wise intensity information. However, intensity of intermediate pixel
positions may also be required by some algorithms. It can be calculated from the given intensity
raster using the bilinear interpolation [130]. Bilinear interpolation is one of the basic resampling
techniques for computer vision and image processing. It can be applied for texture mapping,
scaling up or transformation of an image [154]. A given pixel raster contains information
on intensity at the positions (x1,y1),(x1,y2),(x2,y1) and (x2,y2) equal to I11,I12,I21 and I22,
respectively. Intensity Ixy at the position (x, y) is unknown, but can be computed according
to the following equations [131]:

IR1
≈ (x2 − x)× I11 + (x− x1)× I21

x2 − x1
, (A.1.1)

IR2
≈ (x2 − x)× I12 + (x− x1)× I22

x2 − x1
, (A.1.2)

Ixy ≈
(y2 − y)× IR1 + (y − y1)× IR2

y2 − y1
, (A.1.3)

where IR1 and IR2 are the intensities computed by a linear interpolation at the positions
R1(x,y1) and R2(x,y2), respectively. They are linearly interpolated again to yield the required
intensity at the position (x, y) Ixy. Hence, the bilinear interpolation consists of two linear
interpolations performed sequentially.

A.2. Statistical tests

Numerous statistical tests have been developed for different question settings, variable features,
etc. For example, some tests require the knowledge on variable distribution. Some even require
this distribution to be normal. However, this information is not always available. Some tests
also require the compared samples to be paired. In other words, every measurement from one
sample has to correspond to a measurement from another sample. In biological experiments, it
is not always the case, unless time series are studied. In our experiments, variables from different
biological samples are compared which do not belong to a time series. The prior knowledge on
variables distribution is also lacking. Consequently, only unpaired generally applicable tests can
be used. One of the tests meeting all these requirements is the Wilcoxon Rank Sum Test [174].
It is a widely used nonparametric test [99] which compares observations from the independent
sets. WRST was also extended to arbitrary sample sizes. This test estimates equality or
inequality of two distributions [131]. The null hypothesis states that the distributions of both
groups are equal. To test this, the mean rank of one distribution in a combined sample of both
distributions is computed [131] as follows:

1. Two samples (S1 and S2 ) with n1 and n2 observations, respectively, are compared. These
observations are combined and ranked in ascending order.

2. The sum of the ranks of the S1 observations is calculated (R1 ). The sum of the ranks
of the S2 observations is now determined (R2 ), as the total size of the combined sample

131



A. Detailed Calculations

(n = n1 + n2) is known:

R2 =
n× (n+ 1)

2
−R1. (A.2.1)

3. Test statistic U is calculated as:

U1 = R1− n1× (n1 + 1)

2
, (A.2.2)

U2 = R2− n2× (n2 + 1)

2
. (A.2.3)

4. Distribution of U under the null hypothesis is known. It is tabulated for small sample
sizes. For n > 20 it is well approximated by the normal distribution. The min(U1, U2)
is used to obtain the p-value.

I performed WRSTs using the statistical software R [132].
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Glossary

1D translocation is a directed translocation of a functional marker to or across the membrane
and orthogonally to it.

1D-Bas process is a translocation of Ntcp between basolateral membranes and cytoplasm of
hepatocytes.

1D-Can process is a translocation of Bsep between canalicular membranes and cytoplasm of
hepatocytes.

2D translocation such translocation processes where biomolecules are included into or excluded
from a closed region.

2D-Nuc process is a translocation of glucokinase between nuclei and cytoplasm of hepatocytes.

con-centric profile is a profile centered at the center of an already accepted random profile.

con-centric profile extraction is an extraction of profiles centered at the central positions of
the already accepted random profiles. It can be applied to account for roundish regions
in e.g. 2D translocation cases.

densitometry is the quantitative analysis of molecule density in images.

descriptor is a numeric parameter calculated from the molecule distribution function. Can be
used to quantify molecule distribution in relation to the reference structures.

distribution profiling yields a set of profiles that clearly depict the biological structure studied.
It consists of profile extraction and selection.

functional marker is a biomolecule whose translocation has to be quantified.

manual workflow is a translocation quantification workflow based on the manual extraction of
molecule distribution profiles.

multi-marker image is a biological image containing at least one labeled functional and one
structural marker (e.g. fluorescence microscopy images).

optimal 1D transport model describes the directed translocation of functional marker along
the optimal trajectory (concentration gradient) across the membrane and orthogonally to
it.

optimal transport trajectory is the most efficient trajectory for translocation of biomolecules
which runs along the concentration gradients. The concentration gradients, in turn, fre-
quently run across a membrane orthogonally to it.

profile or density profile, or intensity profile, or distribution profile, is a 1D numeric vector
representing concentration (or density, or intensity) of biomolecules extracted along a
line.
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Glossary

profile extraction is the extraction of the information on molecule distribution along the lines
resulting in profiles (e.g. by line densitometry in biological images).

random lines-based workflow is an automated translocation quantification workflow avoiding
structure detection in images. It is based on the profile extraction along numerous random
lines (random profile extraction).

random profile is a profile extracted along a random line drawn in multi-marker images.

random profile extraction is a profile extraction along random lines in multi-marker images
avoiding structure detection by image processing operations.

reference structure is a biological structure that is stable and visible under various experimen-
tal conditions. It is helpful to quantify translocation of biomolecules based on images of
different biological samples.

structural marker is a biomolecule whose localization in the biological sample is known and is
visible under experimental conditions.

structure detection is an image processing operation that localizes objects in images.

structure-based profile is a profile extracted in relation to a biological structure detected in
images (e.g. along concentration gradients which run orthogonally to membranes).

structure-based profile extraction is the profile extraction in relation to biological structures
detected in images.

structure-based workflow is an automated workflow to quantify translocation of biomolecules,
including structure detection in images, distribution profiling and toponomic characteri-
zation.

toponomic characterization is a representation of the unknown molecule distribution function
by a set of numeric descriptors.

toponomics is the field of research describing the laws of spatial arrangement of molecules.

translocation is a transport process where biomolecules are moving from one compartment to
another.

transport is movement of biomolecules from one location to another.

zone model is a set of biologically relevant zones (regions) defined in profiles.
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Acronyms and notations

Bsep the bile salt export pump, a bile transporter protein at canalicular membranes of hepa-
tocytes.

control dataset images acquired from tissue sections of the liver incubated under normo-
osmolar conditions or perfused with reagents that should not influence the functional
marker distribution.

GK glucokinase, the enzyme that catalyses the first step in glucose metabolism.

GKRP glucokinase regulatory protein required to transfer glucokinase into hepatocyte nuclei.

MELC Multi-epitope-ligand cartography, is a prominent technology that performs colocaliza-
tion analysis of up to 100 biomolecules in a sample.

Mrp2 the conjugate export pump multidrug resistance protein 2, a bile transporter protein at
canalicular membranes of hepatocytes.

Na+-K+-ATPase a standard structural marker used for the analysis of basolateral membranes
of hepatocytes.

Ntcp the sodium taurocholate cotransporting polypeptide, is the major transporter for the bile
salt uptake at the basolateral membrane of hepatocytes.

SE structuring element, is a set of a known shape with which the image is probed.

TC taurocholate, a bile salt which does not influence translocation of bile transporter proteins.

TCDC taurochenodeoxycholate, a bile salt which influences translocation of bile transporter
proteins.

test dataset images acquired from tissue sections of the liver either incubated under aniso-
osmolar conditions, or after the bile duct ligature, or perfused with reagents that are
expected to influence distribution of the functional marker.

WRST Wilcoxon Rank Sum Test, a widely used nonparametric test which compares observa-
tions from independent sets.

z-stack is a series of images acquired at the same X, Y coordinates while varied Z position.

Zo-1 the Zonula occludens 1 protein, a protein of the tight junction complex at canalicular
membranes of hepatocytes.
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teome analysis by multi-epitope ligand cartography for identification of pathogenetic and
therapeutic targets. Drug Discovery, pages 32–34, 2007.

[15] J Bradley, A Nofal, I El Naqa, W Lu, J Liu, J Hubenschmidt, D Low, R Drzymala, and
D Khullar. Comparison of helical, maximum intensity projection (MIP), and averaged
intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning
in lung cancer. Radiotherapy & Oncology, 81(3):264–268, 2006.

149

http://www.scienceinyoureyes.com/index.php?id=79
http://www.scienceinyoureyes.com/index.php?id=79


Bibliography

[16] E Bromage and S Kaattari. Simultaneous quantitative analysis of multiple protein species
within a single sample using standard scanning densitometry. Journal of Immunological
Methods, 323(2):109–113, 2007.

[17] J Brosnan. Glutamate, at the interface between amino acid and carbohydrate metabolism.
The Journal of Nutrition, 130(4S Suppl):988S–990S, 2000.

[18] L Bull and et al. Genetic and morphological findings in progressive familial intrahepatic
cholestasis (Byler disease [PFIC-1] and Byler syndrome): evidence for heterogeneity.
Hepatology, 26(1):155–164, 1997.

[19] M Calandrella, D Matteucci, P Mazzetti, and A Poli. Densitometric analysis of western
blot assays for feline immunodeficiency virus antibodies. Veterinary Immunology and
Immunopathology, 79(3-4):261–271, 2001.

[20] M Cantore, R Reinehr, A Sommerfeld, M Becker, and D Häussinger. The Src family
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[110] A Mühlfeld, R Kubitz, O Dransfeld, D Häussinger, and M Wettstein. Taurine supple-
mentation induces Mrp2 and Bsep expression in rats and prevents endotoxin-induced
cholestasis. Archives of Biochemistry and Biophysics, 413(1):32–40, 2003.
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