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Abstract  iii 

Abstract 

The kinetic aspects of batch melting related to grain size, primary melt formation, 

gas liberation, and quartz dissolution can only be characterized by performing 

laboratory experiments, whereas the thermodynamic aspects can be quantified 

theoretically. One approach to close the gap between laboratory and industrial 

practice is scaling up experiments from the milligram to the kilogram range. In the 

micro scale (less than 150 mg sample), physical and chemical reactions of one 

component, as well as binary and ternary systems, can be observed through the 

differential thermal analysis (DTA), coupled with the thermo-gravimetry instrument 

(TG). Experiments at the mesoscale are: thermal-optical observations (30 g 

batch), conductometry (200 g batch), modified batch-free time (50 g batch and 250 

g cullet), and kilogram 10 kg tests in which 4 kg batch and 7 kg cullet are involved. 

The present study aims to investigate whether these methods could be applied to 

free alkali and B2O3 containing glass batches. The investigated system were the 

eutectic CaO-Al2O3-SiO2 (CAS) and CaO-MgO-Al2O3-SiO2 (CMAS) based E-glass 

combined with various B2O3 content. The onset of melting or primary melt 

formation in free alkali glass batches is generated by its eutectic melting, while in 

soda-lime-silica batch, the onset of melting corresponds to physical melting of 

soda ash. The last part of the present paper is feasibility study of alternative B2O3 

carriers applied in boron containing glass batches. Conventional borax 

pentahydrate is one of the substance in the list of SVHC (Substance of Very High 

Concern) under EU REACH (Registration, Evaluation, Authorization of Chemical 

substances) regulation. For borosilicate batches, no significant impact is observed 

between the conventional and alternative B2O3 carrier. Ulexite as alternative B2O3 

carrier shows kinetic advantages in E-glass and insulation wool glass in terms of 

early onset of melting and short foaming decay, respectively. However, these 

advantages could not be seen during industrial trial in insulation wool glass melter 

tank, due to insufficient ulexite data. Both borax pentahydrate and ulexite batches 

demonstrate similar behavior in respects to energy consumptions. Furthermore, 

since ulexite is beneficiated in finely ground powder, it contributes to higher 

emission level after filtration in an electrostatic precipitator equipment.  



iv  Kurzfassung 
 

Kurzfassung 
 

Die Betrachtung der Reaktionskinetik im Gemenge wird durch geeignete 

Charakterisierungsmethoden vom Mikrobereich bis hin zum 10-kg-Maßstab 

durchgeführt. Physikalische und chemische Reaktionen der einzelnen Rohstoffen 

sowie binärer und ternärer Mischungen der Rohstoffe werden mit der Hilfe der 

konventionellen DTA-TG charakterisiert. Um die Laborergebnisse auf eine reale 

Glaswanne übertragen zu können, ist es nötig, die Experimente in größerem 

Maßstab durchzuführen. Die im Institut verfügbaren Methoden sind thermisch-

optische Untersuchung mittels Beobachtungsofen (30 g Proben), modifizierte 

Batch-Free-Time (50 g Proben), Conductometrie (200 g Proben) und 

Schmelzversuche im 10-kg-Maßstab (4 kg Gemenge; 7 kg geschmolzene 

Glasscherben bei 1200 °C). In der vorliegenden Arbeit werden alkalfreie- und 

borhaltige Gemengesysteme untersucht. Gemengen im eutektischen CaO-Al2O3-

SiO2 (CAS) und verschiedenen CaO-MgO-Al2O3-SiO2 E-glassystemen mit 

variierendem Boroxidgehalt werden charakterisiert. Es wird gezeigt, dass sich die 

Methoden auch für diese Gemenge eignen. Das unterschied ist die Bildung von 

Erstschmelze nicht einem rasch aufschmelzenden Rohstoff wie Soda; 

ausschlaggebend ist vielmehr die eutektische Temperatur des Oxydsystems. In 

einer anschließenden Studie wird die Einsetzbarkeit von alternativen 

Boroxidträgern in Gemengen verschiedener borhaltiger Gläser diskutiert, da sich 

konventionelles Boraxpentahydrat auf der Liste der SVHC (Substance of Very 

High Concern) innerhalb von REACH (Registration, Evaluation, Authorization of 

Chemicals) befindet. Aufgrund unzureichender Versuchdaten eines 

durchgeführten industriellen Schmelzversuchs mit dem Borträger Ulexit konnte 

kein wesentlicher Unterschied im Schmelzverhalten und im Wärmebedarf im 

Vergleich zum konventionellen Gemenge festgestellt werden, obwohl man 

kinetische Vorteile des Gemenges mit Ulexit in den Laborexperimenten 

beobachten kann. Allerdings wurden bei der Analyse des Elektrofilterstaubes an 

der Wanne erhöhte Primäremissionen festgestellt, da das Ulexit als 

feingemahlener Rohstoff in das Gemenge eingebracht wird. 
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1. Introduction  1 

 

 1. Introduction 

  

1.1 Motivation  

Batch melting is the first step of high temperature process in glass production. It is 

characterized by endothermic reactions in which high energy is required. Tailoring 

batch melting reactions is one of the many attempts to decrease the energy 

consumption and emission produced by glass industries. It poses a challenge for 

many glass technologists on how to obtain proper and reliable batch melting 

characterizations in laboratory, whose results could then be transferred to the 

industrial melting tank. Modification of raw materials or batch formulation is of high 

risk, which could have a serious impact on the stability of the furnace and its 

lifetime. 

In general, the batch melting can be examined from both thermodynamic and 

kinetic aspects. The former is related to the intrinsic enthalpy formation of 

individual raw materials, while the latter is associated with grain-to-grain contact, 

particle size, nature and viscosity of primary melt, gas release, and dissolution of 

quartz in molten glass. Unfortunely, these batch properties cannot be 

characterized by conventional methods, such as different thermal analysis 

integrated with thermogravimetry (DTA-TG) and hot-stage microscopy (HSM). 

Experiment results from these methods give rather a fair insight of the reactions 

that occur under particular heating rates and are difficult to help in evaluating 

batch melting phenomena in the industrial melter in a straightforward way. The 

main reason is significantly different boundaries and heat transfer conditions 

between laboratory experiments and the industrial glass tank. 

Since the results of conventional methods cannot be used to evaluate the batch 

melting occurrence in industrial scale, new methods of batch characterization is 

necessary. Conradt and his co-workers [CON 1994, 1997] [DUB 2004] have 

developed methods to deliver detailed information on the occurrences within the 

batch during melting in the laboratory scale. The methods are the measurement of 

batch conductivity, batch-free time (BFT) and 10 kg range test in the soda-lime 

silica batches. However, these methods have not been ascertained yet for either 
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poor alkali or B2O3-containing glass batches, which obviously have different 

properties from that of the soda-lime-silica glass. Moreover, employing the results 

of the laboratory experiment to an industrial campaign is also a challenge; this is 

not only to get a better understanding of the batch melting behaviour in the 

industrial melter, but also to gauge the relationship between batch and energy 

consumption. Evaluation of the fuel flow rate used for combustion process, melter 

temperatures (stack, crown, bottom, throat, riser), and production rate (pull) 

provides us with a comprehensive understanding of the batch melting behaviour 

corresponding to the furnace performance.  

1.2 Objective 

It is the objective of the present study to characterize the batch melting of free or 

low- alkali content E-glass batches. The batch melting experiments, which are 

limited to the DTA-TG, represent conventional experimental methods; while the 

newly developed methods characterizing the batch by a much bigger sample size 

are observation furnace in a sample size of 30 g, conductometry in a sample size 

of 200 g, modified batch-free time in a sample size of 250 g, and 10 range kg 

experiment. The results of the experiments, using both conventional and newly 

developed methods, are then compared, to get a better understanding of the batch 

melting occurrences under a particular heating rate.  

The knowledge gained from the previously mentioned methods are then applied to 

investigate the batch melting behaviour of the B2O3-containing E-glass batches 

with varied B2O3 content and the feasibility study of alternative B2O3 carriers in the 

E-glass as well as in borosilicate, lamp, and insulation wool batches. Selection of 

the alternative B2O3 carrier for industrial trials is not only assessed by the 

laboratory experiment results, but also by its availability in large amounts. The 

industrial trial results, using an alternative batch, are evaluated with the 

conventional batch with regard to the energy demand and emission level. 

1.3 Scope  

The chapter with results and discussions will be divided into three main sub-

chapters. The first sub-chapter discusses the batch melting behaviour of the E-

glass batches derived from the ternary as well as quaternary systems of CaO-

Al2O3-SiO2 (CAS) and CaO-MgO-Al2O3-SiO2 (CMAS). The second sub-chapter 
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describes the investigation of the batch melting behaviour of the E-glass batch 

with varied B2O3 content. The results of the two-year project of alternative boron 

oxide carriers for glass industries will be reported at the end of Chapter 4 (results 

and discussions), and the results of industrial trials will be addressed separately in 

Chapter 5. The latter is a project sponsored by the German government through 

the German Federation of Industrial Research Associaion, also known as 

Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF). This is a 

collaboration between Institute of Mineral Engineering, RWTH Aachen (GHI), 

German Glass Society (DGG-HVG), and industrial partners. A part of the project 

scope is devoted to the study of borate minerals (mineralogy, petrology, and 

availability), and will be described at the end of Chapter 2 (theory). Due to 

confidential issues, both glass and batch compositions of the last study case 

cannot be shown in the chapter of experiments (Chapter 3). They will be, however, 

assumed to be similar to the acknowledged compositions derived from different 

sources.  

1.4 Literature survey 

Many studies have been published in the field of batch melting process. Four 

different scales are required to get a comprehensive view of the batch melting 

process: 

 atomic scale of thermochemical reactions and local equilibrium 

 microscopic scale of grain-to-grain-contact 

 mesoscopic scale of local transport process, including heat transfer, 

viscous fluid, and gas reactions within a batch 

 macroscopic scale of mass, heat, and power balance of the total 

glass melting process. This also considers batch heap distribution, 

primary emission, and carryover.  

Application of either the thermodynamic data base [KUB 1993] or computer-based 

calculation [GTT 2004] can be utilized to understand the atomic scale of 

thermochemical reactions and local equilibrium of different types of glass and 

batch. The soda-lime glass system is the main subject of earlier publications from 

Tamman [TAM 1930], Kröger [KRÖ 1948], [KRÖ 1952], [KRÖ 1953a], [KRÖ 
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1955], [KRÖ 1957], Kautz [KAU 1969], Frischat [FRI 1986], and Hrma [HRM 1982] 

with regard to the atomic scale of batch melting.  

The method that uses DTA-TG was applied for comprehensive studies on the 

transition from atomic to microscale of batch melting. Thermochemical and kinetics 

reactions are characterized as either endothermal or exothermal reaction during 

the heating process. Grain size should be taken into consideration since it 

normally requires small amounts of sample (10–100 mg). Several works of Abou-

El-Azm [ABO 1953], Wilburn et al. [WIL 1961], [WIL 1963], [WIL 1965], Speyer et 

al. [SPY 1993a], [SPY 1993b], and Hrma [HRM 1985] comprise the DTA-TG 

studies on various batches. Other authors investigated batch melting by using 

various methods, such as X-ray diffraction (XRD), to investigate the reaction 

product [MUK 1980], [IZA 2001a], [IZA 2001b], [DOL 2004a], [DOL 2004b] hot-

stage microscopy (HSM), to observe reactions that occur [WIL 1965] and the 

evolved gas analysis (EGA), to determine the rate of the evolved gas produced 

from the batch during heating [KRÄ 1980], [LAI 1998], [LAI 2000], [KAW 1999], 

[KIM 2002]. Except the work of Dolan et al. [DOL 2004c], most of the publications 

are focused on the soda-lime glass batch.  

Other publications on the subject of the microscale of grain-to-grain contact can be 

found in the works of Hrma [HRM 1999], Babushkin et al. [BAB 1985], Flick et al. 

[FLI 1995], and Sheckler et al. [SHE 1990]. The microscopic scale of grain-to-grain 

of batch melting is difficult to quantify; thus the above publications only showed the 

nature of the phenomena in empirical ways. There are approaches, however, to 

evaluate batch melting in a reliable way. Batch-Free-Time (BFT) is the time 

required for a batch to dissolve up to 98% in molten glass at isothermal conditions; 

this method was introduced by Bieler et al. [BIE 1969], [BIE 1984] to investigate 

the influence of NaOH in the soda-lime glass system. Pimkhaokham et al. [PIM 

1993], [PIM 1995] and Conradt et al. [CON 1994], [CON 1997] have published 

papers on a newly developed method to determine and to observe this microscale 

of batch melting thoroughly. Kim et Al. [KIM 1990], Hrma et al. [HRM 2011] have 

published batch melting characterizations, based on the expansion of a batch. 

Batch samples can be in the range of 5–25 g of size with this method. A batch is 

heated with a particular heating rate, and then, observed through the quartz 

window. The gas evolved during the decomposition of the gas product mainly CO2 
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is analysed by the integrated EGA, and the batch’s shrinkage or expansion is 

recorded through the image software analysis. 

Studies on the mesoscale of batch melting, in which temperature fields in batch 

heap are distributed, can be found in the publications by Fuhrmann [FUH 1973], 

Daniels [DAN 1973], Costa [COS 1977], Beerkens et al. [BEE 1992-1], [BEE 1992-

2], as well as by Conradt [CON 1994] and Dubois [DUB 2004]. The last two 

publications showed not only the temperature field, but also the development of 

the first liquid phase within the batch as a function of position and melting time. 

Observation of this mesoscale leads to the development of either mathematical or 

computer modelling of batch heap in the furnace tank, as reported by Mase [MAS 

1980], Hilbig [HIL 1986], and Ungan-Viskanta [UNG 1986]. One way to overcome 

the limitations and boundary conditions of the furnace tank model for batch heap is 

by performing mass, energy, and power balance, based on the fundamental 

principles presented by Kröger [KRÖ 1953, 1955]. Conradt [CON 1990], [CON 

2008, 2012] calculated the mass, heat, and power balance by utilizing the 

thermodynamic, fuel gas, daily routine temperature, and glass capacity data. 

Based on the work of Madivate et al. [MAD 1996] and data from Conradt [CON 

1990], it is found that the deviation of thermochemistry calculations from the 

calorimetrical measurement of a industrial glass batch is around 3–5 %.  
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2. Basic theory 

 

2.1 Heat, power, and mass balance 

Glass melting tank can be considered as a heat exchanger, where the heat 

transfer from the hot stream coming from combustion space passes through the 

tank basin. Off-gas heat is recovered partly by the external heat exchanger 

equipment (a regenerator or recuperator), and recycled into a hot stream. A typical 

heat/power balance of the glass melting tank is illustrated by Figure 1, which is 

associated with the amount of heat that flows through the basin from combustion 

space and heat losses through the boundaries of the system. All quantities are 

referred to a standard temperature, T = 298.15 K, and pressure level 1 bar to 

simplify the calculation.  

 

Fig. 1. The glass furnace viewed as a heat exchanger between adiabatic 
temperature, Tad, and off-gas, Toff, on the hot stream side, and ambient 
temperature, T0, and pull temperature, Tex, on the cold stream side; the Two 
and Twu are upper and lower wall temperatures, respectively; the dotted line 
denotes the temperature of the heated air from a regenerator or 
recuperator [CON 2012b] 
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Fig. 2. Heat balance of a glass melting tank, with a heat recovery system [CON 
2007] 

 

The individual quantities of the heat balance, as illustrated by Figure 2, can be 

expressed either through the heat quantities with respect to 1 t of the produced 

glass [kWh/t], or to powers, P [kW/t], or even to heat fluxes q [kW/(t·m2)]. Those 

quantities are correlated to the production rate (m’) or pull [t/h], and pull rate r 

[t/(m2·h)], respectively, as they are marked within the box in Figure 2. The 

following equations can be derived to determine individual balances [CON 2007]: 

The complete installation 

Hin = Hex+ Hwu+ Hwo+ Hstack+ Hwx (1) 

The furnace  

Hsf = Hin+ Hre = Hex+ Hwu+ Hwo+ Hoff (2)  

Hin= Hex+ Hwu+ Hwo+ Hoff·(1 – ηre) (3) 

in which, ηre = Hre/Hoff 
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The heat exchanger 

Hoff = Hre+ Hstack+ Hwx (4); 

The combustion space: 

Hsf = Hin+ Hre= Hht+ Hwo+ Hoff (5); 

Hin = Hht+ Hwo+ Hoff·(1 – ηre) (6); 

The tank: 

Hht = Hex+ Hwu (7). 

All the individual quantities can be calculated by an assessment of the amount of 

fuel and air (or oxygen) used, glass melt produced, the temperatures of the off-gas 

at flue gas exit (Toff), stack (Tstack), pre-heated air (Tre), as well as of the melt pulled 

from the furnace (Tex). The symbol ηre = Hre/Hoff denotes the efficiency of the heat 

exchanger. The amount of heat corresponding to the combustion space can be 

derived by combustion calculations. Heat required for the batch to produce 1 t of 

glass melt is expressed by Hex in the balance system, and it is strongly related to 

the pull temperature Tex at the throat of the glass tank. This quantity can be 

expressed by the following equation: 

Hex = (1-yC)·∆H°chem + ∆HT=Tex (8) 

The standard enthalpy difference between the batch converted to glass and batch 

gases, at T=298 K, is denoted as ∆H°chem. 

batch (298 K)  glass (298 K) + batch gases (298 K) (9) 

ΔH°chem = H°glass + H°gas –H°batch (10) 

While yC and ∆HT=Tex indicates the percentage of internal cullet addition to the 

batch, and the enthaply difference between the glass at 298 K and the glass melt 

at pull temperature, T=Tex, respectively. Note that, the temperature at 298 K is a 

fictive temperature to simplify the thermochemical calculation of the batch-to-melt 

conversion, which is known as chemical heat demand, ΔH°chem, i.e. the standard 

enthalpy formation; the total reaction is denoted by the Equation 10. Symbolization 
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of the heat formation of solid glass, individual raw materials, and gaseous products 

from decomposition process in the batch at 298 K and 1 bar pressure is 

designated as H°glass, H°batch, and H°gas, respectively. 

The quantities of the heat balance in Figure 2 can be accurately evaluated from 

the daily routine production data. Hin, Hoff, Hstack, and Hre are contributed by the 

combustion calculation. The exploited heat Hex depends on the available data of 

the heats of formation of: (1) individual batch materials at room temperature; (2) 

multicomponent glass at room temperature; and (3) multicomponent melts at 

arbitrary temperature T. The heat loses from the furnace walls through the 

boundaries can only be estimated roughly, due to the fact that the industrial glass 

tank has a very complex design, small openings and the corrosion of refractories 

which gives impact to heat loss as function of furnace age. Accurate calculation of 

Hex leads to the completion of overall heat balance evaluation which includes the 

amount of heat loss through the boundary.  

 

2.2 Thermodynamic aspects of batch melting 

2.2.1 Multi-component glasses and glass melts 

The thermodynamic approach to describe the batch-to-melt process and the 

quantities ∆H°chem, ∆Hex, H°batch, H°glass , and H°gas has been partially discussed in 

the previous sub-chapter. Some problems may occur in determining the ∆Hglass of 

a multicomponent system since it cannot be derived by a set of experimental data 

through statistical methods. There are several approaches or models to describe 

the thermodynamic properties of a multicomponent system, e.g. the (modified) 

quasi-chemical model [PEL 1986], the cell model [GAY 1984], and the model of 

ideal mixing of complex component [BON 1990, SHA 1994]. However, a major 

problem can occur even though the computer-based calculation of codes and 

databases is utilized [ERI 1990, GTT 2004]. The most recent approach explores 

the concept of crystalline reference system developed by Conradt [CON 2009]. 

The rigid glass and the glass melt are identified by their crystalline reference 

system (c.r.s) which describes the energetic and entropic difference to a normative 

state of mineral phases k. Both the c.r.s and the glass state would form and co-

exist at the glass transition temperature Tg under equilibrium conditions. The rigid 
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glass and its crystalline system can be distinguished by the enthalpy and entropy 

of vitrification, Hvit and Svit , respectively, in the temperature interval from absolute 

zero to Tg. Analog to this approach, the melt at the liquidus temperature Tliq is 

characterized by the enthalpy and entropy of fusion, Hfus and Sfus , respectively. 

The glass and the melt are associated with a mixture of glass and melted 

compounds k. In the c.r.s system, the heats and entropies of mixing are negligible 

if referred to the oxide component j. The key step is the identification of the 

suitable set of compounds k, which can be determined by exploiting two basic 

principles known in the mineral world. They are the principle of majoritty partition in 

which multi-component systems, such as magmatic and igneous rock melts, can 

be represented by a predominant quaternary comprising more than 85–95 % of 

the oxides on a molar basis. The second principle is the principle of parsimony in 

which quaternary predominant oxides are identified and reconstructed by the 

evaluation of the existing phase diagrams, while the minor oxides are alotted to a 

set of a normative phases as suggested by the CIPW norm calculation. 

According to Gibbs’ phase rule, the number of the oxides j in a glass composition 

is identical to the number of the compounds k in the corresponding c.r.s.; the 

molar amounts n or masses m of j and k (given in kmol or kg, respectively, per 

1000 kg of glass) are thus related by a linear equation system, 

nj = (vjk)·nk (11) 

nk = (Bkj)·nj (12) 

in which (Bkj) = (vjk)-1 

mj = (µjk)·mk (13) 

mk = (Akj)·mj (14) 

in which (Akj) = (µjk)-1. 

Here, vjk is the matrix element indicating how many mol of the oxides j are found in 

the compound k; µjk is the weight of the oxides j contained in 1 kg of the compound 

k. Akj and Bkj are the elements of the inverted matrices (vjk) and (µjk), respectively. 
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The thermodynamic quantities of a glass or its melt are obtained by the following 

set of equations: 

°௚௟௔௦௦ܪ = 	∑ ݊௞௞ · °௞ܪ) +  ,௞௩௜௧) (15)ܪ

ଵ଺଻ଷ,௠௘௟௧ܪ
° =	∑ ݊௞ · ଵ଺଻ଷ,௠௘௟௧,௞ܪ

°
௞  (16),  

௚ܵ௟௔௦௦
° = 	∑ ݊௞௞ · (ܵ௞° + ܵ௞௩௜௧) (17), 

ଵܵ଺଻ଷ,௠௘௟௧
° =	∑ ݊௞ · ଵܵ଺଻ଷ,௠௘௟௧,௞

°
௞  (18),  

ܿ௉,௠௘௟௧ = 	∑ ݊௞ · ܿ௉,௠௘௟௧௞  (19),  

௠௘௟௧,்ܪ ଵ଺଻ଷ,௠௘௟௧ܪ	=
° +	ܿ௉,௠௘௟௧ · (ܶ − 1673) (20),  

்ܵ,௠௘௟௧ = 	 ଵܵ଺଻ଷ,௠௘௟௧
° +	ܿ௉,௠௘௟௧ · ݈݊(ܶ − 1673) (21),  

 

Standard enthalpy or heat formation of the rigid glass at 25 °C and enthalpy of the 

melt at 1400 °C,1 bar pressure are denoted as H°glass and H°1673,liq. The latter gives 

a generalization of HT,liq, i.e., enthalpy of the melt at the arbitrary temperature T. 

Entropies S have the analogous meaning; cP,liq is the heat capacity of the melt 

above Tliq. The quantities of the individual compounds k used in the above 

equations are compiled in Table 1. This table can be used to calculate different 

kinds of glass systems, ranging from the conventional soda-lime silica to boron 

oxide-containing glasses [CON 2004].  
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Table 1 Thermodynamic data of the compounds k related to the c.r.s of industrial 
glasses; enthalpies H in kJ/mol, entropies S and heat capacity cP in 
J/(mol·K); the superscripts ° denotes standard state at 298.15 K, 1 bar, 
subscripts vit = vitrification;: liq = liquid state: 1673 = 1673,15 K [CON 2009] 

phase k -H° S° Hvit Svit -H1673, liq cP, liq 
P2O5·3CaO 4117.1 236.0 51.5 3417.1 898.7 324.3 
Fe2O3 823.4 87.4 17.2 550.2 370.3 142.3 
FeO·Fe2O3 1108.8 151.0 31.4 677.8 579.9 213.4 
FeO·SiO2 1196.2 92.8 13.8 962.3 342.7 139.7 
2FeO·SiO2 1471.1 145.2 20.5 1118.8 512.1 240.6 
MnO·SiO2 1320.9 102.5 15.1 1085.3 345.2 151.5 
2ZnO·SiO2 1643.1 131.4 31.4 1261.1 494.5 174.5 
ZrO2·SiO2 2034.7 84.5 32.6 1686.2 381.2 149.4 
CaO·TiO2 1660.6 93.7 25.5 1365.7 360.2 124.7 
BaO·Al2O3·SiO2 4222.1 236.8 95.4 3454.3 1198.3 473.2 
BaO·2SiO2 2553.1 154.0 26.8 2171.1 533.5 241.4 
BaO·SiO2 1618.0 104.6 41.0 1349.8 361.1 146.4 
Li2O·SiO2 1648.5 79.9 6.3 1416.7 339.7 167.4 
K2O·Al2O3·6SiO2 7914.0 439.3 29.3 6924.9 1559.4 765.7 
K2O·Al2O3·2SiO2 4217.1 266.1 22.1 3903.7 666.5 517.6 
K2O·4SiO2 4315.8 265.7 21.3 3697.8 983.7 410.0 
K2O·2SiO2 2508.7 190.6 23.9 2153.1 595.4 275.3 
Na2O·Al2O3·6SiO2 7841.2 420.1 28.4 6870.1 1512.5 648.1 
Na2O·Al2O3·2SiO2 4163.5 248.5 27.9 3614.1 856.9 423.8 
B2O3 1273.5 54.0 11.3 1088.7 271.1 129.7 
Na2O·B2O3·4SiO2 5710.9 270.0 21.1 4988.0 1090.2 637.6 
Na2O·4B2O3 5902.8 276.1 40.1 4986.7 1275.5 704.2 
Na2O·2B2O3 3284.9 189.5 26.6 2735.9 780.3 444.8 
Na2O·B2O3 1958.1 147.1 19.5 1585.7 538.7 292.9 
2MgO·2Al2O3·5SiO2 9113.2 407.1 41.4 7994.8 1606.2 1031.8 
MgO·SiO2 1548.5 67.8 13.6 1318.0 296.2 146.4 
2MgO·SiO2 2176.9 95.4 11.0 1876.1 402.9 205.0 
CaO·MgO·2SiO2 3202.4 143.1 25.7 2733.4 621.7 355.6 
2CaO·MgO·2SiO2 3876.9 209.2 32.0 3319.2 775.3 426.8 
CaO·Al2O3·2SiO2 4223.7 202.5 37.7 3628.8 791.2 380.7 
2CaO·Al2O3·SiO2 3989.4 198.3 49.4 3374.0 787.8 299.2 
CaO·SiO2 1635.1 83.1 18.8 1382.0 329.7 146.4 
2CaO·SiO2 2328.4 120.5 38.5 1868.2 509.2 174.5 
Na2O·2SiO2 2473.6 164.4 13.2 2102.5 588.7 261.1 
Na2O·SiO2 1563.1 113.8 9.8 1288.3 415.1 179.1 
Na2O·3CaO·6SiO2 8363.8 461.9 20.5 737206.0 1555.6 786.6 
Na2O·2CaO·3SiO2 4883.6 277.8 13.4 4240.9 990.4 470.3 
2Na2O·CaO·3SiO2 4763.0 309.6 22.6 4029.6 1107.9 501.2 
SiO2 908.3 43.5 4.0 809.6 157.3 86.2 
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Table 2 Comparison of the chemical heat demand ∆H°chem of two different E-glass 
batches calculated for 1000 kg glass; M = molar mass, H° = standard 
enthalpy [CON 2009] 

  M H° batch 1 batch 2 
  g/mol KWh/kg kg kWh kg kWh 
sand 60.084 -4.2211 -562.0 2366.7 -562.0 2366.7 
Al2O3 101.961 -4.5652 -144.0 657.4 -144.0 657.4 
3H2O·B2O3 123.664 -4.9152 -97.3 78.2 -97.3 478.2 
Na2O·2B2O3·5H2O 291.292 -4.5676 -28.9 132.0 -28.9 132.0 
dolomite 184.410 -3.4859 -192.8 672.1 - 0.0 
burnt dolomite 96.390 -3.5634 - 0.0 -100.8 359.2 
limestone 100.089 -3.3495 -211.5 708.4 - 0.0 
burnt lime 56.079 -3.1449 - 0.0 -118.5 372.7 
I. sum of batch     -1236.5 5014.8 -1051.5 4366.2 
              
CO2 44.010 -2.4837 185.0 -459.6 0.0 0.0 
H2O 18.015 -6.7284 51.5 -191.9 51.5 -192.0 
II. sum of gases     236.5 -651.4 51.5 -192.0 
              
III: glass   -4.107 1000.0 -4106.5 1000.0 -4106.5 
              
∆H°chem = I + II + III       256.9   67.7 

 

2.2.2 Individual raw materials and batch gases 

For simple batches containing chemically pure raw materials, the equation may be 

evaluated in a straightforward way by using tabulated data for pure substances. 

This is, however, an over-simplification. The formation data of some natural raw 

materials deviate considerably from those of their chemically pure counterparts. 

Fundamentally, each of such raw materials represents an individual 

multicomponent mineral system of its own and has to be treated this way. Table 2 

shows an example of calculating the chemical heat demand ∆H°chem of two 

different E-glass batches. Further details of the thermodynamic properties of 

batch-to-melt can be read in the book authored by Conradt: The SGTE Casebook-

Thermodynamics at work [CON 2008] and continuous glass fibres Chapter 9, 

Section II: ‘Thermodynamics of glass melting process’ [CON 2009]. 
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2.3 Thermochemistry and local reaction kinetics of batch melting 

2.3.1 Thermochemistry of batch reactions 

The following thermochemical reactions can be observed within the batch during 

the melting process [CON 1999]: 

 physical melting from low temperature raw materials or eutectic 

reactions among the batch raw materials 

 evolution of gaseous products from the decomposition of raw 

materials, mainly from dolomite and limestone  

 CaCO3 CaO + CO2 

 the two-step decomposition process of dolomite: 

 CaMg(CO3)2  (MgO, CaCO3) + CO2, 

 (MgO, CaCO3)  MgO + CaO + CO2, 

 formation of double carbonate, leads to lower melting at 785 °C 

 Na2CO3 + CaCO3  Na2Ca(CO3)2, 

 formation of the first liquid formation of eutectic reactions between 

silicate and soda ash via the following reaction: 

 Na2CO3 + n·SiO2  Na2O·nSiO2 + CO2, 

  n = ½, 1, 2 at temperature 837 °C 

 formation of higher silicate melts in the limestone-containing batch in 

the dolomite-containing batch: 

 837 °C (NS-NS2)  821 °C (NS-NS2-N2CS3),  

  837 °C (NS-NS2) 731 °C (NS-NS2-N2M3S5), 

 coal-sulphate reactions, 

 Na2SO4 + 4CO  Na2S + 4CO2 
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Water is usually added to the batch to make material handling easier and avoid 

dust problems due to fine particles. Water is also used to help to ease the mixing 

process. However, addition of water in the batch increases the energy heat 

demand ∆H°chem and the impregnation of the soda ash-containing batch. Water in 

the batch influences the formation of cement phase (CaO-SiO2-H2O) and the coal-

sulphate reaction at high temperature. The cullet-containing batch reactions do not 

have an impact on the amount of ∆H°chem and react first with soda ash, limestone, 

and dolomite.  

2.3.2 Liquid phase formation and batch-to-melt turnover 

Thermodynamically, the oxide components such as SiO2, CaO, and Na2O in a 

simple glass system form eutectic melting at temperatures lower than 300 °C (see 

Table 3). 

Table 3 Equilibrium temperatures of various eutectic phase compounds in system 
NaO-CaO-SiO2  

eutectic systems Teq in  °C 

2Na2O·SiO2 703 

Na2O·SiO2 287 

Na2O·2SiO2 256 

2Na2O·CaO·3SiO2 281 

Na2O·2CaO·3SiO2 175 

Na2O·3CaO·6SiO2 153 

 

However, the batch-to-melt reactions occur at higher temperatures than the 

thermodynamically predicted temperatures. This can be explained by considering 

the kinetic aspects of batch melting. At lower temperatures, the batch-to-melt 

turnover is indicated by the atomic mobility, and restricted by heterogeneous grain 

sizes, grain-to-grain-contact, humidity, and temperature in the batch. A simple 
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description of the correlation between the reaction turnover and the atomic mobility 

can be seen in Equation 22.  

ݎ݁ݒ݋݊ݎݑݐ	݊݋݅ݐܿܽ݁ݎ = ௖௥௢௦௦	௦௘௖௧௜௢௡	×௠௢௕௜௟௜௬
ௗ௜௦௧௔௡௖௘

 (22), 

Atomic movement within the grains also depends on both defect formation and 

thermal process at lower and higher temperatures. The batch-to-melt process 

yields high turnover rates as soon as the liquid phase formation is formed, and 

acts as a bridge which connects unreacted raw materials.  

An illustration of the connection between two solid particles through the liquid 

phase formation can be seen in Figure 3. The easier the melt is spread through 

the entire batch, the higher is the atomic mobility in the system, and thus higher 

turnover rates of the batch-to-melt reactions. The melting properties, along with 

the liquid phase formation, such as viscosity and surface tension of the batch, play 

an important role for successful batch-to-melt conversions.  

 

Fig 3. Illustration of the reaction steps of batch grains before and after the liquid 
phase formation; the pictures below show two different wetting scenarios as 
the liquid phase makes a bridge between two grains; [CON 1999] 

2.4 Experimental assessment of batch melting behaviour 

To view batch melting, one should consider both the thermodynamic and kinetic 

aspects. The thermodynamic aspects are associated with the theoretical heat 
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demand required for a batch-to-melt conversion, and can be calculated by utilizing 

the thermodynamic data and daily production data, such as temperatures and 

production rate. On the other hand, the kinetic aspects are correlated to the 

following occurrences within the batch: 

 onset of melting/primary during the liquid phase formation 

 batch gas release 

 time required to reach the stage of clear melt 

 dissolution rate of residual crystalline matters 

These phenomena can only be quantified by performing laboratory experiments. 

Problems may arise in selecting suitable laboratory experiments because the 

results should be transferrable to the industrial scale. In other words, closing the 

gap between laboratory experiments and the industrial glass tank has still 

remained a novel and challenging task. Some approaches used for this are: 

 scaling up laboratory experiments from the milligram to kilogram 

scale 

 calculating the intrinsic heat demand of the batch-to-melt conversion 

 analysing furnace performance by plotting power inputs against 

either the relative pull rate or power drawn from the furnace 

 

Scaling up laboratory experiments from milligram to kilogram can be carried out, 

based on either the amount or size of the sample. These are: 

 Microscale (milligram range of the sample). Fundamental 

thermochemical reactions of the batch constituents, up to ternary 

combinations, are evaluated. For example:  

♦ different thermal analysis-thermogravimetry (DTA-TG), 

♦ high temperature X-ray diffractometer (HT-XRD),  

♦ hot-stage microscopy (HSM), 

 Mesoscale. The local progress of batch reactions in the range of 10 g 

to 400 g is characterized. The advantage of this method is that the 
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sample can be a complete batch with industrial grain size raw 

material. These methods are: 

♦ thermo-optical observation (thermo optical measurement 

device and observation furnace) 

♦ conductometry (electrical and thermal diffusivity), 

♦ modified batch-free time (BFT), 

 Kilogram scale. Up to 4 kg of batch is charged into 7 kg melting cullet 

at 1200 °C. A detailed description of the respective method will be 

discussed in the next chapter on materials and methods. 

 

2.5 Mineralogy and petrology of borate minerals 

As mentioned in Chapter 1, the application of the alternative boron oxide carriers, 

in terms of batch melting behaviour, were studied and investigated. The following 

sub-chapter is one of the results of the respective study, specifically, research on 

the mineralogy and petrology of borate minerals. From the literature research, one 

gets an ample knowledge of origins, particle size distribution, phase, and the oxide 

composition of borate minerals.  

High demand of the high-quality optical glass at the end of the 19th century 

changed the role of borate from enamel glaze and ceramics to glass applications. 

The new discovery of large deposits of borate in North and South America at the 

end of the 19th century lowered the price, and borate was widely used, particularly 

in the production of soap and detergent. At the beginning of this century, two large 

borate deposits were found in Death Valley and Turkey; they played an important 

role in increasing the borate consumption around the world and made the US and 

Turkey as the largest borate producers in the world [SIM 2000]. Boron, in 

comparison to that of other minerals, is a minor component, even though 

mineralogists have identified more than 200 minerals containing boron oxide. 

Figures 4 and 5 show the boron deposits in the world and boron oxide production 

between 2002 and 2006.  
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Fig. 4 Mining sites of boron oxide production around the world [KIS 1975] 

 
Fig. 5 Commercial production of borate minerals between 2002 and 2006 [CON 

2012a] 

 

The main deposits of borate minerals can be found along extensive deep-seated 

fault systems at which the Cenozoic tectonic volcanic belts pass through the 

regions of arid climate. The Pacific Ocean boron belts have produced deposits in 
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North and South America while the Mediterranean boron belts have produced 

large borate deposits in Turkey. The two major borate producing regions in 

Southern California and Turkey supply about 80% of the world’s demand of 

borate. 

In North America, sodium borates are extracted from large deposits of Boron and 

also as a by-product of the Searles Lake brines operations near Death Valley. In 

Turkey, there are three main borate production sources: Kirka which produces 

borax, Emet basin which produces colemanite, and Bigadic basin which produces 

colemanite and ulexite. Deposits of sodium-calcium-magnesium borate minerals 

such as ulexite, colemanite, and hydroboracite can be found in South American 

nations like Argentina, Chile, Bolivia, and Peru. In Asia, deposits ulexite and 

ascharite are found in China and Korea, respectively. A rare and an unusual 

borate mineral, datolite, is mined in the eastern part of Russia at Dalnegorsk; it is 

used mainly for the production of boric acid. 

Formation of various types of borate minerals in nature largely depends on the 

source of their occurrence. Based on the type of occurrences, borate minerals can 

be classified into: 

 Intrusive magmatic activities. This includes skarn-type minerals 

which is mainly associated with silicate and iron oxide-containing 

minerals (example: datollite, tourmalline, and ludwigite) 

 Marine evaporite. Sediment for magnesium-containing borate 

minerals are the typical minerals that formed from this process 

 Continental/volcanic source. It supplies 90 % of all borate minerals 

such as sodium borate, ulexite, colemanite, and tincal. 

Natural borates are widely distributed in low concentration. They are typically 

found in soil and rock in concentrations of up to 450 ppm of total boron [KIS 1975], 

distributed in more than 150 minerals primarily as salts of sodium, calcium, and 

magnesium. The average of boron in surface water is 0.1 ppm and about 4.6 ppm 

in sea water. In general, various types of borate minerals undergo physical and 

chemical reactions, also known as diagenesis. Diagenesis is classified into two 

processes—thermal and reactive diagenesis. The first one is the alteration of a 

mineral mainly due to a change of temperature and pressure. The reactive 
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diaganesis can be defined as the change of mineral composition in the isothermal 

way. The burial process of borate minerals is an example of the concurrent 

diagenesis process. Pressure and temperature changes at different levels from 

surface lead to thermal diagenesis, in which the amount of water molecules 

change significantly. The change of type and content of cations occurs at the 

same temperature level, and it leads to reactive diagenesis in the burial process. 

This simultaneous process during burial could be the reason of the existence of 

alkali, alkaline earth cations as well as hydrated water molecules in natural 

borates.  

The shift of the cations related to the species of borate minerals can be observed 

in the cation-water-phase diagram as seen in Figures 6 (Na2O·B2O3·4H2O–

2CaO·3B2O3·5H2O–H2O), Figure 7(2CaO·3B2O3·5H2O-2MgO·3B2O3·7H2O–H2O), 

and 8 for the systems 4CaO·5B2O3·7H2O–B2O3·H2O–H2O. Hundreds of borates 

are identified; however, only a few of them can be applied in glass industries. 

Table 4 shows several natural borates and their main oxide compositions relevant 

to the glass applications. 

 

Fig. 6 Equilibrium phase diagram of Na2O·B2O3·4H2O – 2CaO·3B2O3·5H2O – H2O 
at isotherm and isobar conditions. Solid lines denote the limit of co-
existence area in saturated solution; the dashed line denotes a metastable 
area [CHR 1976] 
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Fig. 7 Equilibrium phase diagram of 2CaO·3B2O3·5H2O – 2MgO·3B2O3·7H2O – 
H2O [CHR 1976] 

 

 
Fig. 8 Equilibrium phase diagram of 4CaO·5B2O3·7H2O –B2O3·H2O – H2O [CHR 

1976] 
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Table 4 List of natural borate minerals relevant to glass industries [CHR 1976] 

name oxide formula B2O3 Na2O CaO MgO H2O SiO2 

        
sassolite H3BO3 56.30    43.70  
        
borax Na2O·2B2O3·10H2O 36.51 16.25   47.24  
kernite Na2O·2B2O3·4H2O 47.97 21.35   27.93  
tincalconite Na2O·2B2O3·5H2O 48.81 21.73   29.47  
        
ulexite Na2O·2CaO·5B2O3·8H2O 42.95 7.65 13.84  35.57  
probertite Na2O·2CaO·5B2O3·15H2O 49.56 8.82 15.97  26.65  
        
colemanite 2CaO·3B2O3·5H2O 50.81  27.28  21.91  
inyoite 2CaO·3B2O3·13H2O 34.62  20.20  42.18  
priceite 4CaO·5B2O3·7H2O 49.83  32.11  18.05  
meyerhofferite 2CaO·3B2O3·7H2O 46.71  25.08  28.20  
        
inderite 2MgO·3B2O3·11H2O 37.32   14.40 48.28  
szaibelyite 2MgO·B2O3·H2O       
hydroboracite CaO·MgO·3B2O3·6H2O       
        
howlite 4CaO·2SiO2·5B2O3·5H2O 44.48  28.66  11.51 15.35 
datolite 2CaO·2SiO2·B2O3·H2O 21.76  35.05  5.63 37.56 
danburite CaO·2SiO2·B2O3 28.32  22.81   48.88 
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3. Materials and methods 

 

3.1 Composition of glass batch and raw materials 

Compositions of the E-glass model in the present work were derived from the 

eutectic composition of the system CaO-Al2O3-SiO2 (CAS) and CaO-MgO-Al2O3-

SiO2 (CMAS). Two types of CMAS glass batches will be investigated; the first one 

is the B2O3-containing CMAS glass systems with adjusted MgO, while the second 

type of batch is the CMAS-based E-glass as described in the literature [WALL 

2009] with variations of B2O3 content. The compositions are given in Table 5 

below.  

The amount of B2O3 added to the E-glass composition was adjusted accordingly 

by the amount of SiO2 (see Table 6). The designations of the sample are 0B, 3B, 

5B, and 7B, which correspond to B2O3 content of 0 wt. %, 3 wt. %, 5 wt. %, and 7 

wt. % B2O3, respectively. 

 

Table 5 CAS and CMAS-based E-glass target composition in wt. % 

 
glass systems 

oxide CAS CMAS 1 CMAS 2 CMAS 3 CMAS 4 

SiO2 62.00 61.00 61.00 57.50 56.50 

Al2O3 14.50 16.50 13.50 13.50 13.50 

B2O3 0.00 0.00 0.00 1.50 5.00 

MgO 0.00 8.50 3.00 2.50 2.00 

CaO 23.50 14.00 22.50 25.00 23.00 

Sum 100 100 100 100 100 
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Table 6 Glass composition of E-glass derived from the CMAS system with varied 
B2O3 content 

Oxides 0B 3B 5B 7B 

SiO2 60.0 57.0 55.0 53.0 

Al2O3 13.5 13.5 13.5 13.5 

B2O3 0.0 3.0 5.0 7.0 

MgO 3.0 3.0 3.0 3.0 

CaO 22.0 22.0 22.0 22.0 

 

The industrial grade of silica flour, kaolin, colemanite, dolomite, and limestone 

were applied as oxide carriers for the following oxides: SiO2, Al2O3, B2O3, MgO, 

and CaO, respectively. Very low amounts of sodium sulfate (Na2SO4) and coal (C) 

were also added to the batch as a redox and fining agent.  

The oxide composition of laboratory glassware borosilicate, lamp, insulation wool, 

and E-glass in Table 7 are the approximated values due to confidential issues of 

the industrial partners. Similar to the previous studies, industrial grade raw 

materials were also used. Borax pentahydrate Na2O·2B2O3·5H2O (NB2H5) was 

used as conventional boron oxide carrier, while colemanite, CaO·3B2O3·5H2O 

(CB3H5), ulexite, Na2O·2CaO· 5B2O3·8H2O (NC2B5H8), hydroboracite, 

CaO·MgO·3B2O3·6H2O (CMB3H6), tincal, Na2O·2B2O3·5H2O (NB2H5), and kernite, 

Na2O·2B2O3·4H2O (NB2H4), were applied as the alternative boron oxide carriers. 

In the laboratory glassware and lamp glass, the amounts of MgO and CaO are 

strictly limited. On the other hand, the total amount of alkaline oxide in E-glass 

fibre is limited to 1.0 wt. %. The composition of insulation wool glass is not 

restricted to the amount of alkaline and alkaline-earth oxides; however, care 

should be taken in adjusting the amount of dolomite, the only MgO and CaO 

carriers, since it significantly affects the viscosity range of fibrization temperature, 

i.e. the temperature at which log η = 3.0 dPa·s. 
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Table 7 Glass composition of the B2O3-containing glasses  

 glass types 

 
laboratory 

ware lamp insulation E-fibre 

SiO2 77.00 68.00 64.00 54.00 
TiO2 0.05 0.02 0.25 0.40 
Al2O3 4.00 2.00 2.50 13.50 
B2O3 12.00 3.00 5.00 6.00 
Fe2O3 0.02 0.07 0.10 0.30 
ZrO2 0.85 0.00 0.00 0.00 
MgO + CaO 0.04 0.01 10.50 24.50 
SO3 0.01 0.00 0.10 0.05 
ZnO 0.00 0.00 0.00 0.00 
SrO 0.00 0.00 0.00 0.25 
BaO 0.03 6.50 0.05 0.00 
Na2O + K2O 6.00 19.50 17.50 1.00 
CeO2 0.00 0.90 0.00 0.00 

 

3.2 Experimental methods 

3.2.1 DTA-TG 

DTA-TG is used for evaluation of the reactions that might take place in one, 

binary, ternary, and multicomponent systems under a particular heating rate, 

which, in this case, is 10 K/min. Figure 9 shows a typical curve produced from the 

DTA-TG measurement in a glass batch. The general principle of DTA 

measurement is simultaneous heating/cooling of test sample and an inert 

reference. Any changes in the sample, resulting in the absorption or evolution of 

the heat, can be detected as temperature differences between the sample and the 

inert reference. Thus, each physical reaction creates a peak related to either the 

endothermal or exothermal reactions. In many cases, the DTA peak for the 

endothermal reaction is towards a negative value of the DTA signal, and positive 

value for the exothermal reaction. Typical endothermal reactions that can be 

detected by the DTA-TG measurement are the dehydration process (removal of 

physical or crystallized water), dehydroxylate (removal of –OH from the main 

structure), phase transformation, gas evolution, and melting. Both dehydration and 
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gas evolution are usually followed by a reduction of the sample mass, which can 

be evaluated through the TG curve. Therefore, the endothermal peak, followed by 

the mass loss, is associated with the physical reactions that involve mass 

reduction. In general, exothermal reaction refers to the process of crystallization 

within the batch, and is not followed by the mass loss.  

 

 
 

Fig. 9 The result of a typical DTA-TG analysis of a single, binary, and ternary 
batch. Water release and gas evolution are typical endothermal reactions 
followed by the mass reduction. Melting reaction is normally indicated by 
the endothermal reaction without mass loss. 

 

3.2.2 Conductometry 

Moving to larger experiment scales, in which the multicomponent system and 

particle size distribution as well as grain size of the real glass batch can be easily 

compensated, the conductometry method was conducted in a 200 g sample. 

Figure 10 shows a schematic diagram of the self-developed conductometry 

method. Voltage drop Ux that is associated with electrical resistivity, and ion 
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conductivity of the batch, are measured through multimeter KEITHLEY model 

2800. 

 

 

Fig. 10  Schematic diagram of an experimental set-up of conductometry 
measurement of the batch [CON 1994] 

 

The following equation explains the physical relationship between resistivity and 

conductivity:  

ߢ = 	 ஼೎೐೗೗
ோೣ

 (23) 

with Ccell as a cell constant; C ≈ 1 cm-1. Rx can be calculated by the principle of 

combination series and parallel electrical circuit from Figure 10 .  

ଵ
ோ೤

=	 ଵ
ோೣ

+	 ଵ
ோଶ

 (24) 

ܴ௬ = ோమ∙ோೣ
ோమାோೣ

 (25) 
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Ry is a substitute electrical resistor of the parallel circuit between Rx and R2. The 

recorded Ux are converted to batch resistivity Rx by applying the Kirchoffs equation 

(see Equation 26 and 27) in which the current flow from U0 through R1 and Ry is 

similar to that of from Ux through Ry. 

 

௎ೣ
ோ೤

= ௎బ
ோమାோ೤

 (26) 

ܴ௫ = ௎ೣ∙ோభ∙ோೣ
ோమ∙(௎బି௎ೣ)ି௎ೣ∙ோభ

 (27) 

 

A special solenoid-type sensors (snippet picture in Figure 10) is applied to 

measure the electric resistance under the Alternating Current (AC) circuit. The 

resistors R1 and R2 are 1 MΩ and 10 kΩ, respectively, and used for smoothing the 

measured Rx signal. Voltage drop Ux is measured continually and is treated as an 

indicator of the change of electrical resistance within the batch. This measurement 

is recorded through the data acquisition board installed in the personal computer, 

along with the batch (Tb) and furnace temperature (To). This method is not 

intended to accurately measure the absolute value of the conductometry, but to 

give an overview of the occurrences in the batch during heating. Fingerprints of 

the reactions occurred within the batch can be observed. Interpretation of the 

conductivity curve as a function of batch temperature can be seen in Figure 11. 
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Fig. 11  Interpretation of the local batch melting reactions of soda-lime silicate glass 
via the conductometry measurement as a function of batch temperature 

 

There is no change in the conductivity value at low temperatures due to very low 

ion mobility and insufficient grain-to-grain-contact reactions within the batch. 

Conductivity increases gradually as impurities via the vacancy diffusion 

mechanism induce ions to be more mobile. At higher temperatures, the ion 

mobility is thermally induced, which is indicated by the steep ascending 

conductivity curve. The formation of primary melt is unambiguously indicated by 

the conductivity jump up to three or four order of magnitude [CON 1994].  

The conductivity sensor during the reaction foam measures portion of melt, 

bubbles as well as un-melted batch constituents rapidly, which leads to chaotic/up 

and down conductivity signal. The conductivity value becomes steady after a 

rough melt is formed within the batch. From this point, the batch melting process is 

solely a dissolution process of residual sand grains. The following figures show the 

combined graph of DTA and the conductometry () signal as a function of batch 

temperature. This gives a comprehensive analysis of the batch occurrences of 

during melting under 10 K/min heating rate. 
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3.2.3 Observation furnace 

The observation furnace method is another batch melting characterization in which 

batch occurrences is visually observed during the melting process. An 

experimental set-up is illustrated in Figure 12. A 50 cm-long special quartz glass, 

with 3 and 4 cm inner and outer diameter, respectively, is transparent and suitable 

for being used as a crucible in this method. The amount of charged batch is 30 g. 

The height of the crucible, with respective amounts of sample, should be adjusted 

to have an optimum observation, especially during the end of the foaming phase. 

All batch melting processes are conducted with the 10 K/min heating rate from 

room temperature to 1400 °C. Calibration of batch temperature was conducted 

prior to the test, in which the furnace temperature was compared to that of the 

temperature of the known melting point of substances, e.g. NaCl, K2SO4, among 

others. The batch melting process was captured by an analog video camera and 

directly recorded into DVD media.  

 

 

Fig. 12 Schematic diagram of an experimental set-up of observation furnace in 
which the batch melting process is optically observed through the analog 
video camera 
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Fig. 13.  Analysis of the results of analog video recorded during the observation 
experiment; a) starting condition; b) beginning of solid-state reactions 
(onset of melting); c) liquid phase formation (yellow line separates solid and 
liquid phase of the batch); and d) bubble followed by foam formation  

 

3.2.4 Modified batch-free time (BFT) 

Originally, batch-free time (BFT) is defined as the time required for a batch to melt 

or dissolved 98 % in molten glass melt [BUN 1969]. In the present study, BFT is 

modified to give immediate judgment on the melting behaviour of two or more 

batches.  

Preliminary test using reference batch is usually performed for different time 

windows. The objective is to find suitable time frames, t2 and t3 which denotes time 

at which degree of batch dissolution in the melt is approximately 50 % and 100 %, 

respectively.  The BFT experiments for the rest of the batch sample follow those t1 

and t2.  

To avoid the cracks that may develop due to internal stress during cooling, the 

BFT probe is annealed in another furnace. The annealing process is programmed 
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at around the glass transition temperature Tg , and then, it is cooled at a slow 

cooling rate of 2 K/min. Visual examination of the surface condition of the sample 

includes calculation of the percentage dissolution rate of the batch and 

identification of undissolved batch, such as foam, bubbles or crystalline matters, 

and crystalline scums.  

 

 

Fig. 14 Illustration of batch melting characterization via the batch-free time (BFT) 
test. The batch is charged into a pre-conditioned melt at 1400 °C; the 
modified BFT compares the melting progress of two or more batches, in 
which one of those batches is set as a reference batch 

 

3.2.5 10 kg test 

In the 10 kg range test, the type of the experiment becomes more realistic to the 

batch heap condition in a typical industrial tank. Different from the BFT test in 

which both radiation-conduction temperatures are kept constant (1400 °C), the 10 

kg test utilizes 7 kg of molten glass kept at 1200 °C for several hours, and a 4 kg 

batch that is exposed to the radiation heat of 1400 °C as soon as the charging is 

completed. The progress of batch melting is observed by analysing five 

temperatures from type-K (NiCr-Ni) thermocouples, which were vertically set up 

with 1 cm distance between each of the thermocouples inside the batch (see 

Figure 14). Temperature profile obtained from the measurement (see Figure 15) 

gives an insight of the time required for the batch to finish endothermal reactions 
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(tendo). At the end of the experiment, temperature differences (ΔT in K) between 

melt side position (T2) and outer thermocouple on fire side position (T5) is then 

calculated to see the heat distribution from melt and fire side after a particular 

melting time. Effective thermal diffusivity a can also be derived from this 

experiment by applying the second law of Fourier’s heat transfer. 

 
Fig. 15 Illustration of an experimental set-up for the 10 kg range test. In the 

beginning, 7 kg glass cullet is melted and conditioned at 1200 °C; batch 
charging is the next step, and temperature of the upper part of the furnace 
is increased to 1400 °C  
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Fig. 16 Vertical set up of five thermocouple (Tmelt, T1, T2. T3, T4, T5) within the batch. 

The picture on the right shows the temperature distribution after the test 

 

The possibility of uncertainty in measuring temperature field is higher under the 

high heat flux and electromagnetic field, compared to other methods. It is then 

necessary to assess its reproducibility by performing a double test. Table 8 shows 

the previous reproducibility tests in which the 10 kg test was applied twice to one 

type of batch with the same conditions (see Figures 17 and 18 for the double test 

results). 

Table 8 Results of 10 kg duplicate test of six different batches 

double test no. tendo ±     
[s] 

  


1 772 ± 7  45 ± 9 

2 1506 ± 54  65 ± 11 

3 1366 ± 1  62 ± 7 

4 1304 ± 1  56 ± 8 

5 1443 ± 5  69 ± 15 

6 1066 ± 32 105 ± 8 
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Fig. 17 Reproducibility of the 10 kg test of a particular batch. Only slight differences 
of tendo of both batches were observed 

 

Fig. 18 Average value of tendo in the double 10 kg tests; the error bar indicates 
upper and lower limit of three times standard deviation (± 3σ). 
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3.3 Phase equilibrium analysis 

The additional phase equilibrium calculation is performed to provide a 

comprehensive analysis of the phase equilibrium of a particular glass oxide 

system. A commercial thermodynamic software, FactSage, was utilized to 

calculate the phases of a given glass composition in equilibrium state, including 

the amount of liquid phase that may be formed from the cooling scenario. It is 

assumed in the calculation that the cooling scenario of glass melt forms a 

crystalline material, which, in reality, is not always the case. One can distinguish 

between the glassy and crystalline states from the energy point of view by 

considering an additional enthalpy unit, ∆Hvit , for the glass at lower than the glass 

transition temperature. This enthalpy difference can be used to calculate the 

enthalpy energy of the glass at room temperature. The thermodynamic calculation 

helps the batch melting technologist to understand the reactions (crystallization 

and phase transformation) prior to the primary melt formation, or liquidus 

temperature as in the present study.  

 
Fig. 19 An example of the equilibrium phase calculation by using the commercial 

thermodynamic software FACTSAGE  
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4. Results and discussions 
 

4.1 CaO-Al2O3-SiO2 (CAS) and CaO-MgO-Al2O3-SiO2 (CMAS) E-glass 

It is the objective of the present study to characterize the batch melting of an 

alkali-free glass batch. The scope of batch melting experiments was limited to 

DTA-TG which represents the conventional method, while, for newly developed 

methods, conductometry and observation furnace were implemented. The 

experiment results are compared to the equilibrium phase calculation to obtain a 

comprehensive analysis of the batch melting behaviour. 

4.1.1 DTA-TG 

The total mass loss of the CAS system is relatively minor so as to be 

characterized as the gas evolution phenomena (0.61 wt. % of mass loss), and 

hence, the endothermal peak of quartz-crystobalite phase transformation at 581 

°C in Figure 20 should not be interpreted as the mass reduction phenomena since 

it was not followed by a decreasing TG curve. 

 

Fig. 20 DTA-TG results of the CAS system under 10 K/min heating rate. 

 



4. Results and discussions  39 

 

Moisture content from the environment or water crystal in each substance might 

be the reason for the mass reduction observed by DTA-TG. An exothermal peak 

was also observed between 876 °C and 980 °C, which could be associated either 

with the crystallization phenomena or with the structural change in the sample. 

The endothermal peak in temperature range of 1340 °C and 1370 °C was denoted 

as the liquid phase formation. The formation of the liquid phase in the CAS system 

is strongly related to the eutectic reactions among the batch constituents; for, in 

the respective system, the melting point of individual oxide is higher than 1400 °C. 

Both the temperatures of onset and maximum peak were at 1342 °C and 1368 °C, 

respectively. These values, however, are significantly different to the liquidus 

temperature predicted by the respective phase diagram, 1170 °C. 

Figures 21 and 22 show the DTA-TG curve of the CMAS systems. The quartz 

inversion is difficult to observe, and probably was superimposed by the broad 

dehydration endothermal peak from 470 °C to 600 °C. Different shapes and 

positions of the endothermal peak at 800 °C, which is followed by a higher amount 

of mass loss due to gas evolution, were observed for both the CMAS systems. 

The gas evolution is mainly outcome of carbonate decompositions from limestone 

(CaCO3) and dolomite (Ca,Mg(CO3)2). Similar patterns for crystallization and 

melting peaks lie at temperatures beyond 1000 °C. 

 
Fig. 21 DTA-TG of the CMAS system 1 (with 8.5 wt. % MgO) under 10 K/min 

heating rate 
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Fig. 22.  DTA-TG of the CMAS system 2 (with 3.0 wt. % MgO) under 10 K/min 

heating rate 

 

Identical to the CMAS systems, the endothermal peak for quartz inversion in the 

E-glass systems in Figures 23 and 24 was also obscured by another endothermal 

peak at temperatures between 400 °C – 600 °C. The gas release occurs at 800 °C 

for both the E-glass systems. However, crystallization and melting peaks in the E-

glass with 1.5 wt. % B2O3 shift to higher temperatures, compared to the 5.0 wt. % 

B2O3 E-glass system. 

 

Fig. 23 DTA-TG of the CMAS-derived E-glass system 1 (with addition of 1.5 wt. % 
B2O3) 



4. Results and discussions  41 

 

 

 
Fig. 24 DTA-TG of the CMAS-derived E-glass system 2 (with addition of 5.0 

weight. % B2O3) 

 

4.1.2 Conductometry 

In the CAS system, there was no significant conductivity increase below 1200°C; 

however, the DTA curve shows two endothermal peaks, specifically at 430 °C and 

580 °C and they refer to the release of structural water and quartz-to-crystobalite 

phase transformation. The onset of melting in the DTA curve, accompanied by the 

increase of  signal and the  jump at 1368 °C, coincides with the melting peak of 

the DTA signal.  
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Fig. 25  DTA and the conductometry () signal as a function of the batch 
temperature of CAS system 

 

Fig. 26 DTA and conductometry () as a function of the batch temperature of a 
CMAS system 1 (with 8.5 wt. % of MgO) 
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Figure 26 shows a CMAS system with 8.5 wt. % MgO. It is different from Figure 25 

for the CAS system, solid state reactions as it is denoted by the gradual increase 

of , started at 500 °C, coincided with the DTA signal for the dehydration process. 

As the reactions within the batch occur, they are followed by the change of the  

signal. The gradient of  shifts during the endothermal peak for the gas evolution 

observed by the DTA signal at 800 °C. During the exothermal process, indicated 

by the DTA signal at 1000 °C, the slope of the  signal changed towards a higher 

conductivity value. Steep increase of the conductivity signal, associated with the 

onset of melting in the DTA curve, is consistent with the results of the CAS 

system. The melting peak in the DTA curve corresponds to the  jump at 1240 °C.  

 

Fig. 27 DTA and conductometry () as a function of the batch temperature of 
CMAS system 2 (with 3.0 wt. % of MgO) 

 

Melting behaviour of CMAS 2 with 3.0 wt. % of MgO can be evaluated from Figure 

27. Similar to CMAS 1, the conductivity change corresponds to the reactions 

detected by the DTA measurement. However, the  changed towards more 

negative value after the completion of crystallization peak in the DTA signal. This 
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unexpected phenomena could be the effect of solid-state reactions occurred in the 

batch, e.g., shrinking or sintering process among the batch constituents in which 

the sensor could not detect the overall bulk solid (the value of the conductivity 

signal changed towards the starting value log  = -6). However, as the batch 

begins to melt, steep increase in the signal is observed. This abrupt increase 

coincides with the DTA signal at 1274 °C and reaches its maximum at the same 

temperature of the maxima of the melting peak in DTA signal. Due to the lower 

amount of MgO than in CMAS 1, the peak temperature shifts to 15 °C higher. The 

addition of MgO into the CAS system gives significant impact on the formation of 

primary melt in the batch, by altering the liquidus temperature of the respective 

system.  

 
Fig. 28 DTA and conductometry of the CMAS-based E-Glass system 1 (with 1.5 

wt. % B2O3) 

 

Figure 28 shows the DTA and conductometry results of the CMAS-based E-glass 

batch, with an additional 1.5 wt. % B2O3. The quartz inversion and dehydration 

reactions were characterized by the endothermal DTA signal at 580 °C; however, 

the increase conductivity started at a lower temperature. The exothermal peak in 
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DTA signal refers to the crystallization phenomena within the batch. The significant 

increase of conductivity curve occurred at the same temperature as the onset of 

the melting peak of the respective DTA signal. Conductivity jump coincides with 

the melting peak of the DTA signal at 1200 °C.  

In the high B2O3-containing E-Glass system (see Figure 29), a similar pattern can 

be observed that the reactions determined by the DTA measurement always 

correspond to the change of conductivity.  

 
Fig. 29 DTA and conductometry of the CMAS-based E-Glass system (with 5.0 wt. 

% B2O3) 

 

There are similarities in characterizing the melting process between the DTA and 

the conductometry of various CAS and CMAS glass systems. The gradual 

increase of conductivity corresponds to the solid-state reactions, quartz inversion, 

and crystallization as premised by Conradt et al. [CON 1994]. Only the evolution of 

the gas product is difficult, or even impossible to detect by the means of 

conductometry measurement. A rapid increase of conductivity signifies liquid 

phase formation in the system, and the conductivity jump coincides with the 

melting peak of the DTA signal. 
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4.1.3 Observation furnace 

Figure 30 summarizes the experiment results of different types of alkali-free glass 

batch via the observation furnace method.  

 

Fig. 30 Observation furnace experiment results of various types of alkali-free glass 
batches 

 

The sign “±” behind the measured liquid phase formation temperature indicates 

the deviation of variation in determining the actual temperature during the video 

analysis. There is differences in temperature reading between the batch inside the 

quartz crucible and on display of the furnace controller. The solid-to-liquid phase 

transformation is characterized by endothermal reactions at certain temperatures, 

and it involves the latent heat, i.e. heat required for the completion of phase 

transformation. During the phase transformation, the temperature remains 

constant until the phase is completely changed, and then, it increases without 

following the heating rate of furnace temperature.  

 
 



4. Results and discussions  47 

 

Table 9 Temperature summary in °C of the primary melt formation of various alkali-
free glass batches  

 

Table 9 is a collective temperature data of the primary melt formation through 

three different batch melting characterization methods: DTA-TG, conductometer, 

and observation furnace. From Table 9, it can be seen that there is a good 

agreement between the results of DTA-TG and conductometry. Small deviations, 

however, are observed in the observation furnace method. This method is very 

useful to investigate the life-time of the bubble and foam that are formed during 

batch melting, which is not to be discussed in the present study.  

glass 
system  

observation furnace DTA-TG conductivity 
jump onset of 

melting 
liquid 
phase 

onset of 
melting 

melting 
peak 

CAS 1325 1345 1342 1368 1368 

CMAS 1 1152 1246 1227 1240 1240 

CMAS 2 1199 1265 1247 1257 1258 

E-Glass 1 1058 1171 1170 1200 1200 

E-Glass 2 981 1124 1091 1110 1115 
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4.1.4 Interpretation of results 

From the previous studies done by Conradt et al. [CON 1990, 1994, 1997], it is 

known that the formation of liquid phase triggers the kinetic reactions of batch raw 

materials. One of the kinetic parameters that can have a great impact on the 

melting behaviour of a batch is the particle size of the batch. The finer the particle 

size, the faster is the kinetic reactions, especially in the dissolution of refractory 

materials, such as quartz and alumina in the glass melt. The thermal analysis 

evaluation, using DTA-TG, gives a good overview and the fingerprints of the 

occurrences within the batch under a particular heating rate. However, the amount 

of the sample requires only several milligrams in the form of very fine powder, 

lower than 63 µm in size. For that reason, the boundary and heat conductivity 

conditions of the sample are different from that of the industrial glass tank. 

Conductometer is another way of characterizing the batch under a specific heating 

rate similar to the DTA-TG. With larger and bigger sample size, i.e. 200 g, 

industrial grade batch materials with random particle size distribution and grain 

size can be characterized in a reliable way; thus it represents physical and 

chemical reactions occurring in the industrial glass tank. 

The results of DTA-TG and conductometry measurement showed a good 

agreement in several aspects. Both endothermal and exothermal reactions, which 

occurred within the batch, were attributed to hydration, solid-solid phase 

transformation, gas evolution, crystallization, and melting. These typical reactions 

can be examined through a combination of the DTA and TG measurements, and it 

leads to the change of the diffusion path in ionic crystals. Conductometry is 

strongly related to the temperature-dependent diffusion coefficient of ionic oxide. 

As the solid-state reactions occur, the structure of the crystal is changed and so 

does the diffusion path, and therefore, an increase of conductivity can be detected.  

Due to the lack of active mobile ions like alkali ions, a further increase is 

supressed. Monovalent sodium ion, Na+, is the responsible species for charge 

carriers in soda-lime silica; while, in the CMAS system, divalent ions such as Ca2+ 

and Mg2+ are responsible for ionic conductivity within the solid body. The work of 

Natrup et al. [NAT 2005] stated that the conductivity of pure alkaline-earth silicate 

glass, 3CaO∙4SiO2, is governed by the migration of impurity charge carriers, which 

are likely to be Na+ ions. The mobility of Ca2+ ion is clearly slower than Na+ since 
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the diffusion speed of both the cations is also different. Diffusion is associated with 

the ability of an ion to jump into its neighbour site, and it involves a large dipole 

moment. In the case of no structural change in the local environment, Ca2+ ion 

draws very likely back to its original position due to this dipole moment. The 

presence of Na+ as impurities reduces the dipole moment since the Na+ ion 

occupies the vacated Ca2+ site. The higher the number of sodium ions as 

impurities in the system, the higher is probability for Ca2+ to jump successfully.  

The relation between diffusion of the diffusing species (Di) and conductivity () of 

ion species is also described by the Nernst-Einstein equation. The conductivity is 

directly proportional to the atomic mobility of charge carrier species (zi·e) in the 

batch. The charges of ion  is expressed by charge number z and elementary 

charge e, while the concentration, Boltzman constant, and temperature are 

expressed by Ci, kB, and T, respectively, 

 

௜ܦ = ߢ ∙ ௞ಳ·்
஼೔·௭೔·௘

  (28) 

 
 

Additionally, from Stoke’s Law, the ionic mobility is related to the viscosity of the 

medium, and further substitutions of the charges of ion into the Einstein relation 

gives the diffusion equation without any reference to the charge of the diffusing 

species. This expression is known as the Stokes-Einstein equation. 

 

௜ܦ = ௞ಳ·்
଺గ·ఎ·௥

  (29) 

 

where r is the radius of the diffusing species. 

Figure 31 shows conductometry curves of conventional soda-lime silica and E-

glass batch as a function of the temperatures. Below 600 °C, both batches have 

similar behaviour, i.e. conductivity remains unchanged because the ion mobility is 

limited by defect concentration. From the simple hopping mechanism, as 

previously discussed, the diffusion path for ion to be mobile depends on the 
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concentrations of defect or free volume in the solid. As the temperature increases, 

though it remains below the liquidus temperature, a thermally induced defect 

formation is observed which leads to an increase in the conductivity. At 

temperature 750 °C, the conductivity starts to increase rapidly followed by the 

jump of the conductivity value to three or four order of magnitude at 850 °C. This is 

the melting temperature of the soda ash as one of the batch constituents. In the E-

glass batch, the increasing of the conductivity extends up to 1000 °C and it begins 

to increase rapidly until the eutectic temperature of the system is reached, i.e., at 

temperature 1170 °C. The conductivity jump, however, is different to that of soda-

lime silica batch. Looking back to the previous Nernst-Einstein and Stokes-

Einstein equations, alkali ion in the soda-lime is more mobile in the salt-like liquid 

identical to soda ash melt, in which the viscosity is very low. In the E-glass, the 

viscosity of the melt is already high at the eutectic (log  = 3.0 dPa·s), thus impede 

the ion mobility. The details of the mechanism of the alkali-deficient glass system 

will be discussed in the next paragraphs. 

Most of the batches show an exhibited exothermal peak prior to the onset of 

melting. Similar to the solid-solid phase transformation, the structure of the sample 

changes, and this is followed by an increase of the conductivity value. Melting 

peak of DTA signal without any change in its TG curve indicates liquid phase 

formation. As the liquid phase is formed in the system, the diffusion of ionic 

species increases rapidly, and hence, initiates the rapid batch-to-melt at turnover 

rates.  

Similar to the soda-lime-silica batch, the fingerprint of the liquid phase formation in 

the free alkali batches was indicated by the conductivity jump and it coincides with 

the maxima of the melting peak in the DTA-TG measurement. Figure 32 shows the 

summary of the DTA melting peak and conductivity jump. 
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Fig. 31 Conductometry of a typical soda-lime-silica and E-glass batch as a function 
of temperature 

 

Fig. 32 Summary of melting peaks from the DTA measurement and conductivity 
jump from the conductivity test 
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Despite the fact that the maxima of the melting peak from DTA-TG and 

conductivity jump have identical temperatures, it does not agree with the CAS 

phase diagram as well as the FactSage thermochemical calculation (see Figures 

33 and 34). This difference might arise due to different approaches in determining 

the liquidus temperature (Tliq) from the eutectic composition. In equilibrium, the 

liquidus temperature is determined by cooling the melt until the Gibbs formation of 

solid and liquid are in equilibrium, and in contrast, the melting process of the batch 

in the CAS system is followed by the batch-to-melt heating route. The lack of liquid 

phase formation at lower temperatures causes the segregation of batch raw 

materials—albeit the usage of fine and analytical-grade raw materials—and hence, 

sets the eutectic to a higher temperature, i.e. 1370 °C instead of 1170 °C, 

according to the phase diagram, number 630 [PHA 1998]. 

 

 

 

Fig. 33 Partial phase diagram of the system CAS [No. 630] at which the 
composition of CAS lies on the eutectic point at 1170 °C (red circle) [PHA 
1998] 
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Addition of other oxides, such as MgO and B2O3, into this CAS eutectic system 

lowers the liquidus temperature. This addition modifies the alumosilicate glass 

structure by lowering the network connectivity, and therefore, reduces the viscosity 

and liquidus temperature of the glass since they are a function of the glass 

structure.  

Another way to evaluate the relationship between the experiment results and 

theoretical thermodynamic, is by performing thermodynamic calculation in 

equilibrium state. A commercial thermodynamic software, FactSage, was again 

used for determining both the crystalline and liquid phases that occur upon cooling 

at high temperature. The following series of figures show the conductivity signal as 

combined with the equilibrium liquid phase and effective viscosity calculated from 

the amount of the solid-liquid fraction.  

 

Fig. 34 A comprehensive analysis of the conductivity curve ( signal) and 
calculated equilibrium liquid phase formation as well as effective viscosity 
as a function of the temperature in the system CAS 
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Fig. 35 A comprehensive analysis of the conductivity curve ( signal) and 
calculated equilibrium liquid phase formation as well as effective viscosity 
as a function of the temperature in the CMAS 1 system 

 

Fig. 36 A comprehensive analysis of the conductivity curve ( signal) and 
calculated equilibrium liquid phase formation as well as effective viscosity 
as a function of the temperature in the CMAS 2 system 
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Fig. 37 A comprehensive analysis of the conductivity curve ( signal) and 
calculated equilibrium liquid phase formation as well as effective viscosity 
as a function of the temperature in the E-glass batch  1 (with 1.5 wt. % 
B2O3) 

 

Fig. 38 A comprehensive analysis of the conductivity curve ( signal) and 
calculated equilibrium liquid phase formation as well as effective viscosity 
as a function of the temperature in the E-glass batch  2 (with 5.0 wt. % 
B2O3) 
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Different from the results of batch melting in the CAS system, the CAS-based 

systems, after addition of MgO (CMAS) and B2O3 (CMAS-B), shows good 

agreement between the thermodynamic calculations and results, especially at the 

points where the  signal increases significantly, i.e. the liquid phase formation. 

The liquid phase formation indicated by the jump of the conductivity signal is not 

yet observable at lower temperatures, even though the respective calculated liquid 

phase was already formed. This conductivity jump was detected as the amount of 

the liquid generated at a significant amount, i.e. at reaction points or liquidus 

temperature. The above series of figures show that the primary melt formation, 

indicated by the conductivity jump, indeed coincides with the liquidus temperature 

of the equilibrium system. As previously discussed, an exception has to be made 

for the CAS system.  

The utilization of FactSage for thermodynamic calculation of the respective 

systems leads to the calculation of liquid composition formed in the equilibrium 

state. Therefore, it can also be combined by the effective melt viscosity which is 

calculated empirically as a function of the glass composition. A combination of 

Lakatos and self-developed model calculation (UNIGLASS) is used as a tool to 

predict the viscosity of the liquid phase ηliq at a particular temperature and 

composition. The solid fraction below the liquidus temperature should also be 

taken into account for predicting the viscosity in the multiphase systems, known as 

effective viscosity, ηeff , as proposed by Krieger-Dougherty [KRI 1959] (see 

Equation 30) 

 

௘௙௙ߟ = ௙௟௨௜ௗߟ ∙ ቂ1 −
∅ೞ೚೗೔೏
∅೘ೌೣ

ቃ
ିଶ.ହ

  (30) 

 

The effective viscosity ηeff is a function of the liquid phase viscosity ηfluid and solid 

phase fractions Φsolid in the mixture. It is assumed that the batch powder is random 

close packing with approximated value of Φmax is 0.64. 
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4.2 Batch melting behaviour of varied B2O3 content in E-glass batch 

E-glass composition for general purpose is usually derived from the eutectic 

composition of the CaO-Al2O3-SiO2 (CAS) or CaO-MgO-Al2O3-SiO2 (CMAS) 

system with several additions of melting fluxes. According to the ASTM, the 

maximum amount allowed for alkali oxides in E-glass is 1.0 wt. % maximum. It has 

a great impact on the production process since liquidus and the fibrization 

temperature (Tlog η = 2.5), i.e. the temperature at which glass melt is drawn to 

produce glass fibre becomes very high. Therefore, the process becomes very 

costly, and possesses high energy demand. Addition of B2O3 into the E-glass 

system is a common practice since other melting fluxes used for lowering liquidus 

and viscosity are mostly alkali-containing oxides. However, B2O3 is easily 

vaporized at high temperature and shorten the lifetime of the furnace refractory. 

Much efforts have been made to optimize the E-glass composition in terms of 

energy saving and devitrification problems. It is then a necessity to test all the 

modified E-glass compositions in laboratory, prior to putting them into operation in 

the large industrial tank. One of the strategies that represent the real batch melting 

behaviour in large scale is scaling-up laboratory experiments from the milligram to 

kilogram range. Most of the conventional methods, such as DTA-TG, Hot-Stage 

Microscopy (HSM), and High Temperature X-ray Diffractometer (HT-XRD), are 

classified into the milligram or small scale methods. Other means of batch melting 

characterization involve larger amounts of sample, and most of them are either 

self-developed (conductometry, BFT, 10 kg test) or specific-purposed instrument 

(thermo-optical, observation furnace)  

The last study case (sub-chapter 4.1) with various alkali-free glass batches 

showed that conductometry can be also applied for alkali-free glass batches. In 

the present study case, batch melting characterization methods, ranging from the 

milligram to kg scale, are utilized to investigate the batch melting behaviour of the 

E-glass model system with varied B2O3 content. The raw materials and glass 

compositions are given in the chapter of materials and methods (Chapter 3).  
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4.2.1 DTA-TG 

Decomposition peak pattern as seen in Figure 39 of DTA-TG results is likely a 

finger print of decomposition of dolomite and limestone. The results are 

summarized in Table 10 below. Note that small decomposition peaks below 

temperature 600 °C, i.e. 150 °C and 580 °C, are associated with water release and 

the SiO2 phase transformation, respectively, and they are not included in the 

respective table. Only the onset, peak and end set of the melting DTA signal are 

different. The increase of the amount of B2O3 content in the CMAS system gave a 

significant impact on the liquid phase formation at lower temperatures.  

 

Fig. 39  A typical DTA-TG result of batch raw material under 10 K/min heating 
rate,from room temperature up to 1400 °C. DTA signal refers to either 
physical or chemical reactions within the batch, while TG shows mass 
change due to the respective reactions 

 

The boron oxide-containing samples 3B, 5B, and 7B lead to the dehydration 

process denoted by the endothermal peak at temperatures lower than 200 °C (see 

Figure 40). Most of the boron oxide carriers contain several water molecules 

attached to their structure, and at a certain temperature, vaporize by consuming 

heat (endothermal reaction). The release of water molecules within the batch was 
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quantitatively summarized in Table 10. The B2O3-containing batch samples 3B, 

5B, and 7B had obviously higher mass loss than that of the 0B sample.  

 
Fig. 40 DTA signal of the CMAS E-glass batch with different amounts of boron 

oxide  

 

Table 10 Results of DTA-TG of the CMAS glass batches with varied B2O3 content 

batch 
type 

decomposition peak melting peak total 
mass 
loss onset max. 

Peak Onset max. 
peak 

0B 640 °C 840 °C 1294 °C 1314 °C 17.92 % 

3B 655 °C 845 °C 1209 °C 1233 °C 18.94 % 

5B 679 °C 842 °C 1142 °C 1200 °C 19.59 % 

7B 750 °C 850 °C 1122 °C 1163 °C 20.78 % 

 

The small endothermal peak without reduction of the sample mass in the 

temperature range of 550 °C and 650 °C is associated with the inversion of quartz. 

Large endothermal peaks, followed by a significant mass loss, represent un-

ambiguously a CO2 decomposition, which, in the present case, was from dolomite 



60  4. Results and discussions 
 

and limestone. The release of gas started and finished at 650 °C and 900 °C, 

respectively, which corresponds to the onset of the decomposition temperature for 

both dolomite and limestone The effects of additional B2O3 in the CMAS batch are 

not only lowering the melting peak, but also creating small exothermal peaks 

associated with the crystallization prior to melting. As predicted by the equilibrium 

thermodynamic calculation, showed in Figure 41, the respective crystal that may 

be formed are wollastonite CaO·SiO2 and anorthite CaO·Al2O3·2SiO2. The molten 

borate formed at lower temperatures acted as a solvent which assist the liquid 

state diffusion, and thus enhance the crystal formation and melting of the system. 

The lower melting of boron oxide might be absorbed or reacted with other oxides, 

and form a new crystal structure which leads to lower liquidus temperature of the 

system. 

4.2.2 Conductometry vs. thermochemical calculation 

Several phenomena difficult to observe in the DTA-TG can be observed through 

the conductometry. In soda-lime silica glass batch, mobile Na+ ions are 

responsible for ionic conductance in the glass. Mobility of such ions is an indicator 

of the particular reactions that may occurr in the glass batch. Figure 11 in the 

previous chapter shows the interpretation of temperature-dependence of the 

measured conductometry related to the events in the batch during heating, e.g. 

water release, solid-state reactions, primary melt formation, foaming phase, and 

rough melt formation. 

Conductometry experiment results of various B2O3 content in the CMAS glass 

batch can be seen in Figure 43. The conductivity curve remains steady at 

temperatures below 1000 °C, and thus there are no significant reactions leading to 

the batch-to-melt turnover. The conductivity curve of 0B batch decreases up to two 

orders of magnitude and increases abruptly in three or four of orders magnitude at 

1316 °C, which coincides with the maximum peak of melting in the DTA signal 

(1314 °C). The jump of conductivity in an alkali-free glass batch, as discussed in 

the previous chapter, is correlated to the eutectic melting of the respective system. 

This statement is supported by the calculated liquidus temperature at 1300 °C of 

the respective system by using FactSage (see Figure 42).  
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Fig. 41 Equilibrium phase calculation of the system CMAS with 22 CaO, 3 MgO, 
13.5 Al2O3, and 60 SiO2 in weight percentage. The red line is the calculated 
liquid phase that is formed during cooling from high temperature. The 
liquidus temperature is denoted as the temperature at which the equilibrium 
lies between 100 wt. % liquid phase and formation of CaO∙Al2O3∙SiO2-
MgO∙SiO2 i.e. at 1300 °C 

 

A strong deviation from the batch melting characteristics occurred for the B2O3-

containing batch. Small increase of conductivity for 3B, 5B, and 7B were observed 

at temperatures around 700 °C, and the conductivity signal became steady at 900 

°C for the 3B batch. Further solid state reactions were detected for 3B at 1170 °C, 

and it reached ultimate conductivity jump at 1275 °C. In 5B and 7B, the 

conductivity signal decreased slighlty before it started to increase till formation of 

the liquid phase. The conductivity jump at 1230 °C and 1200 °C for the 5B and 7B 

batches, respectively, was observed.  
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Fig. 42  Calculated liquidus temperature (Tliq) of various B2O3-containing glass 
batches in the system CMAS, as described in Table 6. The capital letters 
on the graph denote the glass type and its liquidus temperature, A (7B; 
1085 °C), B (5B; 1125 °C), C (3B; 1165 °C) and D (0B; 1300 °C)  

 

In comparison to the thermochemical calculation of the relevant glass systems, the 

liquidus temperatures did not agree with the conductivity jump, but coincided with 

the change of conductivity prior to the jump. This occurrences might be attributed 

to the difference between thermodynamic equilibrium of the system and the real 

batch condition under a particular heating rate in the experiments. As the liquid 

phase formed within the batch, the reaction progress increased as it is denoted by 

the significant increase of the conductivity signal. The conductivity jump takes 

place, as the quantity of the melt formed is sufficiently high.  

Additional B2O3 in the CMAS system leads to the solid-state reactions, including 

the eutectic melting as indicated by the changes of the conductivity curve prior to 

the formation of liquid phase in the batch. The higher the amount of B2O3 added 

into the system, the earlier is the liquid phase formation.  
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Fig. 43  Conductometry results of different amounts of B2O3 content in the CMAS 
batch as a function of batch temperature 

 

4.2.3 Observation furnace 

Temperatures of the liquid phase formation by means of DTA, conductometry, 

thermodynamic calculation and observation furnace are summarized in Table 11. 

Direct observation of occurrences of the batch during heating under a particular 

heating rate can be carried out by the observation furnace. However, 

determination of the accurate temperature of the corresponding occurrence within 

the batch was very difficult to perform. This is because the batch temperature was 
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not directly measured in the batch, but solely depended on the calibrated value of 

the furnace-batch temperature conducted before the experiment.  

Table 11 Summary of the liquid phase formation temperature through evaluation of 
the results of DTA, conductometry, thermodynamic calculation 
(FactSage) and observation furnace 

sample DTA peak conductivity 
jump FactSageTM observation 

furnace 

0B 1314 1362 1300 1289 

3B 1233 1337 1165 1199 

5B 1199 1270 1125 1135 

7B 1165 1230 1085 1099 

 

The furnace temperature was programmed at a constant heating rate, i.e. 10 

K/min, and so was the batch temperature. However, this is unlikely to have 

happened in the batch because the batch reactions increase significantly as the 

liquid phase is formed. Figure 44 shows the batch temperature profile in the batch 

from conductometry experiments. At lower temperatures, both the batch and 

furnace temperatures have similar pattern in a particular heating rate. At the 

melting temperature, the curve becomes plateau (difficult to recognize in the given 

example) as the result of latent heat required to complete phase transformation. 

This point is characterised by constant temperature and changes in time to allow 

the phase to transform completely. Therefore, the observed temperatures of liquid 

phase formation via the observation furnace were comparatively lower than that of 

the results of DTA and conductivity measurement.  
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Fig. 44 Batch and furnace temperatures denoted by red and black lines, 
respectivley, from conductometry measurement  

 

4.2.4 Modified batch-free time 

Evaluation of the melts in this experiment was based on solely visual appearance 

of surface and cross-section of the sample. In the first case, the amount of the 

reacted batch and un-dissolved batch materials was also analysed quantitatively 

by counting black and white pixels relative to the pre-defined calibrated picture 

with either 100% of clear melt or unreacted batch. In this case, the black pixels 

within the circle which resembles the top view of the crucible refer to the amount of 

free surface or clear melt. In contrast, the white pixels are denoted as the amount 

of undissolved batch materials.  
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Fig. 45  BFT results of various B2O3 content in the system CMAS. The original 
images have been converted into a black (free surface) and white 
(undissolved batch) mode. This is then utilized to count the amount of black 
and white pixels with respect to the amount of melt and undissolved batch, 
respectively 

 

The amount of free surface that was formed during the experiment can be 

determined quantitatively by calculating the amount of black and white pixels by 

utilizing image processing software, such as Gimp and Image J. Figure 45 

shows the surface appearance of the BFT test of the CMAS glass system with 

various B2O3 content. Early liquid phase formation in the batch gives significant 

contribution of the kinetic aspect of batch melting progress, as discussed in the 

previous section.  

Without adding B2O3, the CMAS system has higher liquidus temperature; 

therefore, the liquid phase within the batch was inhibited or delayed at a high 

temperature. In isothermal process or arbitrary heating rate situation, the batch 

was exposed to radiation heat from the top and convection from the molten glass. 

The liquid phase formation might occur at a lower temperature. The batch 

temperature was then homogenized for a particular melting time, and the melting 

progress was solely based on the ability of the batch component to dissolve into 

the existing melts. The addition of B2O3 into the CMAS glass system promoted the 
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liquid phase formation during the earlier stage of melting; hence, the batch melting 

progress increased gradually as more B2O3 was added into the batch. The liquid 

phase of the B2O3-containing batch has low viscosity and surface tension, which 

easily spread throughout the batch materials, thus promoting further reactions. 

For a quantitative analysis, Table 12 shows the estimated result of the analysis of 

the amount of black and white pixels which correspond to the amount of free 

surface (batch-to-melt turnover) and undissolved crystalline materials, 

respectively.  

Table 12 Quantitative evaluation of BFT tests  

 % of free surface 

sample t = 10 t = 15 

0B 22.11 54.20 

3B 35.41 73.16 

5B 44.65 78.55 

7B 69.19 81.94 
 

 

Cross-sectional analysis of those samples revealed that there were neither 

bubbles nor crystalline relics in the bulk sample even at below 1 cm from the 

surface. The convection heat transfer between the molten glass and the batch 

prevailed, while the radiation heat transfer from the furnace heating elements into 

the batch was relatively slower. The convection current in the molten glass melt 

strongly depends on the temperature of the molten glass, which also affects other 

properties like viscosity, and hence, heat transfers units The molten E-glass with 

5.0 wt. % B2O3 had quite a low viscosity level at 1400 °C; however, in the present 

study, there was not sufficient evidence that the batch-to-melt conversion is 

directly related to the convection current. In an earlier study by Beerkens [BEE 

1992-1], the measurement of five different temperatures in the batch, which was 

exposed to radiationheat from the top and convection-conduction under the batch 

pile, showed that heat conduction from the glass melt was faster, and hence, 

played an important role in the process of the batch-to-melt conversion.  
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Bunting and Bieler [BUN 1969] studied the correlation between the batch-free time 

and volume of the corresponding crucibles. They found that there was no 

significant effect of convection current in the batch melting process for the volume 

of crucible up to 3 l, while, in contrast, the work from Berkeens utilized 40 l of 

ceramic pot. Depending on the furnace design, the bigger the crucible, the higher 

was the temperature variation along the crucible, which generates more 

convection current.  

 
Fig. 46 Cross-sectional view of the CMAS batches with varied B2O3 content melted 

at 1400 °C for 10 and 15 min of soaking time; The numbers in front of 
alphabet B refer to the weight percentage of B2O3 added into the batch 

 

4.2.5 10 kg test 

In the present study, 3 kg batch was applied, instead of 4 kg, since the industrial 

grade raw materials used in this experiment were very finely grounded. The larger 

amount of fine batch has a very large surface area that cannot be compensated by 

the crucible size. Five temperatures were set up in each thermocouple, which 

were placed vertically in 1 cm distance from each other, within the batch. The 

measured temperatures gave information of the batch melting behaviour under the 
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exposition of heat radiation, influence of heat convection from the molten glass, 

and intrinsic heat conductivity of the batch.  

 
Fig. 47 Vertical temperature distribution in the kg range experiment; temperature in 

the melt and fire side are denoted as T1 and T5, respectively; while T2 is the 
temperature at the interface between melt and batch; the number indicated 
by the bold red indicates tendo of the respective 10 kg result, i.e. the time 
required to complete endothermal reactions 

 

Figure 47 shows temperature distribution after the batch was charged. Several 

minutes after the batch charging, the temperatures of the melt side, i.e. T1, T2, and 

even T3, were already high due to the influence of convection heat flowing from 

the molten glass. Temperatures in the fire side increased gradually until the point 

of the completion of endothermal reactions occurred in the batch. It is the point in 

which all the temperature curves become plateau and it is a typical curve for 

identifying the occurrence of endothermal reactions at any particular time and 

temperature.  
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Figure 47 shows the results of the kilogram test of the CMAS batch with varied 

B2O3 content. The temperature distribution among the batches was quite similar 

among the batch samples. The heat transfer from the molten glass melt was 

obviously better than that of the fire/combustion side. Temperatures of T1 and T2 

were higher than that of the fire side T3 and T4. It was difficult for the heat radiation 

from combustion space to penetrate the batch due to the formation of foams and 

crystallization scums. Foam and scums have relatively lower heat conductivity, 

thus the temperatures T3 and T4 were relatively ‘cold’. As soon as the foaming 

reactions were finished, heat conductivity from the fire side showed a rapid 

increase.  

The plateau of the temperature curves at a particular melting time is signified as 

the time required for the batch to complete the overall reactions in the batch. This 

plateau was hardly seen for the 0B batch since the thermocouples were broken 

beyond 65 min of melting. All the temperatures in the highest B2O3-containing 

batch were low after the charging process. This can be occurred as the batch raw 

materials penetrate several cm depth into the melt, thereby affecting the heat 

conduction from the molten glass melt into the batch. However, the increase of T3 

and T4 were faster than other batches as the result of the higher content of B2O3 

that influences the foam stability in the batch. The better the heat conduction 

within the batch, the faster the reactions within the batch, thus the tendo of 7B was 

the fastest. This result was in agreement with the evaluation of BFT in the previous 

chapter.  

At the end of the test, it is also necessary to measure the temperature difference 

which denotes if the batch has melted homogenously. However, in the present 

study, this could not be performed because the end time of temperature 

distribution among the 0B, 3B, 5B and 7B batches were not in the same 

timeframe. As seen in Figure 47, the thermocouples of the 0B batch beyond its 

tendo were broken, and thus, the evaluation of heat distribution could not be 

realized.  

Utilizing arbitrary heating rates for investigating the batch melting behaviour, as 

shown in the BFT and 10 kilogram tests, had similar tendencies as the batch 

melting experiment with a particular heating rate (DTA-TG, observation furnace, 

and conductivity tests). Early formation of the liquid phase in the batch is the rate-
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determining factor for the batch-to-melt turnover, regardless of the applied heating 

rate to the batch.  

To give a comprehensive analysis of the behaviour of batch melting, a 

thermodynamic calculation in equilibrium state on the CMAS system with an 

addition of B2O3 was conducted. As shown in Figure 41, the formation of the B2O3-

containing phases whose melting points are lower than the melting point of 

CaO∙SiO2 might act like a solvent which change the silicate and calcite reaction 

route. The reaction proceeds, first, through the dissolution of SiO2 into the borax 

melt from 800 °C, and formation of MgO∙2B2O3 from 700 °C. This enables the 

liquid state diffusion of SiO2 and CaO, and rapid first order formation of CaO∙SiO2 

which dissolves into the melt above 900 °C andsimultaneously dissolves the rest 

of quartz. As the result, the system was completely in the liquid form at 1170 °C for 

the 7B batch.  

4.3 Alternative boron oxide carriers in glass industry 

The European Union (EU) has issued a new regulation to lower the environment 

and health risks of chemical substances under REACH—which stands for 

Registration, Evaluation, Authorization of Chemical Substances—specifically, 

chemical substances derived from chemical treatments. Exemptions can be 

applied for those substances beneficiated or treated through the physical process 

(grinding, crushing, milling, drying). The chemical substances strictly limited to this 

regulation are boric oxide (B2O3), boric acid (H3BO3), and borax pentahydrate 

(Na2O·2B2O3·5H2O) which are mainly used in borosilicates, insulation wool, and E-

fibre glass industries. Substitution of B2O3 in glass composition is not a wise 

decision since it requires long and complicated research and development. The 

most economic and feasible way to overcome this problem is to replace the 

conventional boron oxide carriers with alternative borate minerals.  

The present study suggests more research on the occurrences and physical 

properties of borate minerals as the first step to find suitable B2O3 carriers. The 

available borate minerals are characterized by their particle distribution and 

chemical analysis either via X-Ray Fluorescence (XRF) or titration, phase analysis 

through X-Ray Diffractometer test and observation of their reactions under heating 

by means of the DTA-TG. The chemical analysis data of individual borate minerals 
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are applied to adjust the batch and glass composition of the target glass. The 

boron-containing glass batches used for the present study are borosilicate 

laboratory ware, lamp, wool, and E-glass. The present study is a process-oriented 

study which focuses on the influence of alternative borate minerals in boron-

containing glass batches in terms of batch melting behaviour. The main objective 

is to make sure that the application of the alternative borate minerals is safe in 

terms of the melting process and emission to be transferred to industrial tanks. 

This project is financially supported by the German government public funded 

organization through The German Federation of Industrial Research Association 

(AiF), German Glass Society (DGG-HVG) and industrial partners.  

In the previous paragraphs, natural borates are said to contain other phases and 

large amounts of impurities and gangue that cannot be applied directly into the 

glass production process. Another problem is the commercial availability of natural 

borates to be accessed for mass production. Only five types of alternative borates 

were successfully made available in the present study, e.g. colemanite (CB3H5), 

ulexite (NC2B5H8), hydroboracite (CMB3H6), tincal (NB2H5), and kernite (NB2H4). 

The first two borates are already commercially available. Colemanite has been 

widely used as a boric acid replacement in the E-glass fibre production, albeit 

small amounts of borax pentahydrate are added to introduce a few Na2O into the 

E-glass composition. Even though a deposit of ulexite is sufficient for mass 

production, it is rarely used as a boron oxide carrier for insulation wool and E-glass 

producers as per the writer’s knowledge.  

4.3.1 Particle size distribution, phase, and chemical analysis 

The characterization of natural borates is relatively complicated since they may 

have variation in either the chemical composition or the phase composition in 

different particle sizes. The first step of characterization of individual natural 

borates is an analysis of the particle distribution of as-received borate minerals 

from the supplier. The size range of every particle was analysed to find out oxide 

and phase compositions through a combination of X-Ray Fluorescence (XRF) and 

volumetry for oxides and boron content. The phase composition was analysed by 

X-Ray Diffractometry (XRD). The Sieve analysis method was applied to analyse 

particle sizes between 63 µm and 2000 µm. Fine raw materials can only be 

characterized by the means of laser granulometry. Except kernite and tincal, other 
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natural borates are available as very fine powders; hence, they may contribute to 

high amounts of carryover and emission problem. 

Getting such fine powders cannot be avoided during the boron up-grading 

process. After the sieve analysis, the phase analysis of main borate minerals and 

its impurities in every particle size range was conducted via XRD. It is then found 

that the borates are mixtures of different types of mineral. Boron oxide content in 

natural borate minerals is very difficult to be determined either via XRF or 

Inductive Couple Plasma (ICP)/Atomic Absorption Spectrometry (AAS). In the XRF 

measurement procedure, it is necessary to fuse the sample together with Lithium 

tetraborate as a melting flux in a glass or platinum bead, in order to diminish the 

mineralogical and particle effects. The content of boron oxide may evaporate 

along with the melting flux and other volatile matters. ICP/AAS is actually suitable 

for determining boron oxide; however, it is only valid for the sample that contains 

only small amounts of B2O3. Wet chemistry or titration method is the solution to 

determine the content of boron oxide in borate minerals. However, skilled and 

experienced laboratory assistants are required for this measurement to be 

performed. The results of the characterization of borate minerals are summarized 

in Table 13 and 14. 

 

Table 13 Particle size distributions, boron oxide content, and phase analysis of raw 
materials from the sodium borate mineral group [CON 2012a] 

borate mineral and phase composition particle size 
distribution 

main oxide 
composition in wt. % 

              
Borax-Pentahydrate    < 1200 µm 100.0% B2O3 48.5 
     > 600 µm 91.2% Na2O 21.6 
     > 500 µm 16.4% H2O 29.9 
     > 315 µm 11.6%     
     < 250 µm 2.54%     
              
            
Tincal    < 3000 µm 100.0% B2O3 36.1 

Tincalconite (NB2H9) 48 – 52 %  > 2000 µm 99.5% Na2O 16.4 
Borax decahydrate (NB2H10) 48 – 52 %  > 1200 µm 55.6% H2O 44.8 
Kernite (NB2H4) 2 – 5 %  > 600 µm 49.9%    

     
 

< 500 µm 5.0%    
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borate mineral and phase composition (cont.) particle size 
distribution 

main oxide 
composition in wt. % 

            
Kernite    < 5000 µm 100.0% B2O3 54.8 

Kernite (NB2H4) 80 – 90 %  > 4000 µm 96.3% Na2O 23.8 
Tincalconite (NB2H9) 10 – 20 %  > 3000 µm 96.9% H2O 20.3 

     > 2000 µm 79.0%     
     > 1200 µm 70.2%     
     > 600 µm 63.8%     
     < 500 µm 6.2%     
              

 
 

 
Fig. 48 (a) Natural kernite consists of a mixture of borate mineral phase, i.e. kernite 

and tincalconite; (b) kernite-rich fraction; and (c) tincalconite-rich fraction 

 

Table 14 Particle size distributions, boron oxide content, and phase analysis of raw 
materials from the sodium-calcium-magnesium borate mineral group [CON 
2012a] 

borate mineral and phase composition particle size 
distribution 

main oxide 
composition in wt. % 

             
Ulexite            

Ulexit (NC2B5H8) 85 – 95 %   < 500 µm 100.0% B2O3 37.7 
Colemanit (C2B3H5) 3 – 5 %   > 315 µm 99.8% CaO 16.7 
Meyyerhofferit (C2B5H7) 2 – 5 %   > 250 µm 99.7% Na2O 6.4 
Quarz(SiO2) 2 – 4 %   > 160 µm 97.4% H2O 18.6 
Calcite (CaCO3) 8 – 10 %   > 90 µm 87.3%     

     > 63 µm 90.2%     

     
 

< 63 µm 74.4%     
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borate mineral and phase composition (cont.) particle size 
distribution 

main oxide 
composition in wt. % 

             
Colemanite            

Colemanite (C2B3H5) 70 - 80  % < 160 µm 100.0% B2O3 43.1 
Meyyerhofferite (C2B3H7) 15 – 20 % > 90 µm 99.6% CaO 26.7 
Quartz (SiO2) 2 – 5 % > 63 µm 96.8% H2O 21.3 
Calcite (CaCO3) 5 – 8 % < 63 µm 96.4%     
              
             

Hydroboracite            
Hydroboracite (CMB3H6) 70 – 80 % < 250 µm 100.0% B2O3 37.2 
Quartz (SiO2) 8 – 12 % > 160 µm 99.8% CaO 12.7 
Anorthite (CAS2) 5 – 10 % > 90 µm 94.8% MgO 8.1 
Gismondine (CAS2H4) 3 – 5 % > 63 µm 85.2% H2O 16.2 
Dolomite (Ca, Mg (CO3)2) 4 – 8 % < 63 µm 79.8%     

              
 

Tincal and kernite have the same origin and can be found as a mixture of sodium 

diborate, NB2Hx, such as natural borax (NB2H10), tincalconite (NB2H9), and kernite 

(NB2H4) in which N, B and H stand for Na2O, B2O3, and H2O, respectively; while 

the subscript denotes the number of moles of the corresponding oxide. In the 

previous phase diagram (see Figures 6, 7 and 8), the difference among the 

sodium diborate minerals lies on their amount of water molecules. The physical 

appearance of up-graded and as-received natural kernite from the borate producer 

(Rio Tinto) can be seen as flake-rand and round-grain-form (see Figure 48), The 

flake-rand fractions consisted of kernite phase as their main phase, while other 

fractions contained the mixture phases of natural borax and tincalconite. The other 

groups of borate minerals are very fine raw materials, as reflected by the results of 

particle size distribution in Table 14, of ulexite (NC2H5B8), colemanite (C2B3H5), 

and hydroboracite (CMB3H6). 

The chemical analysis of individual borate mineral was performed by a 

combination of the following methods: X-Ray flourescence (XRF), loss of ignition 

(LOI), and wet chemistry (volumetry). Different from Table 13 and 14, Table 15 

shows a complete analysis of the oxide contents. Kernite has relatively high 

amount of B2O3 content with the lowest amount of water H2O as anticipated in its 

oxide formula. In contrast, tincal has the lowest B2O3 content, compared to that of 

borax pentahydrate; thus more tincal is required to replace borax pentahydrate in 
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the batch calculation. Sodium bearing borate minerals can only be used for 

borosilicate glass due to the earth alkaline’s constraint. The batch calculation for 

both borosilicate glasses, (laboratory ware and lamp glass) showed a slight 

excess of MgO and CaO; however, they are still in the allowed level.  

The natural borate minerals always contain impurities regardless of whether they 

physically undergo the beneficiation process. Depending on the glass type, the 

iron oxide, alkali, and earth alkaline content should be considered. Borosilicate 

glass, as previously discussed, is restricted in earth alkaline, and in contrast, E-

glass fibre is limited to the content of alkaline oxide. The main concerns could be 

the fact that most natural borate minerals consist radioactive and hazardous 

components, such as Strontium Sr, Barium Ba and Arsenic As, in the oxide form.  
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Table 15 Chemical analysis of individual borate minerals normalized to 100 wt. % by 
means of X-ray fluorescence (XRF); the single asterisk symbol (*) denotes 
that B2O3 content was analysed by titration; the double asterisk symbol (**) 
signifies the amount of H2O determined by the loss of ignition method (LOI) 

 

 

borax 
penta-

hydrate 
tincal kernite ulexite colema-

nite 
hydro-

boracite 

SiO2     0.00 1.74 0.43 2.90 4.40 12.12 

Al2O3    0.00 0.39 0.16 0.08 0.20 1.01 

B2O3
* 48.55 35.89 54.79 37.73 43.18 37.37 

Fe2O3    0.00 0.14 0.06 0.30 0.08 0.51 

Cr2O3    0.00 0.00 0.00 0.00 0.00 0.00 

TiO2     0.00 0.03 0.02 0.00 0.00 0.06 

MnO     0.00 0.00 0.00 0.00 0.00 0.05 

BaO 0.00 0.00 0.00 0.00 0.00 0.01 

CaO     0.00 0.41 0.21 16.71 26.75 12.62 

MgO     0.00 0.27 0.11 1.42 1.88 8.08 

K2O      0.00 0.14 0.05 0.03 0.00 0.30 

Na2O     21.52 16.31 23.76 6.4 0.08 0.30 

SO3     0.00 0.00 0.00 0.00 0.65 1.31 

As2O3 0.00 0.00 0.00 0.00 0.00 0.12 

SrO 0.00 0.00 0.00 0.61 1.43 0.09 

H2O 29.93 44.68 20.39 33.85 21.34 26.10 

sum 100.00 100.00 100.00 100.00 100.00 100.00 

 



78  4. Results and discussions 
 

4.3.2 Thermal analysis of borate minerals  

Figures 49, 50, and 51 show the results of the DTA of individual sodium borate 

minerals (borax pentahydrate, tincal, and kernite) in which all sodium borate 

minerals display similar behaviour under 10 K/min heating rate. The first relatively 

wide endothermal peak refers to water molecule (H2O) hydration at temperatures 

below 200 °C. Subsequently, there is re-crystallization to anhydrous borate 

(Na2O·2B2O3) within the borate structure as water molecules hydrate completely. 

The last endothermal peak at 740 °C is narrow and sharp, which is associated with 

the melting point of the anhydrous sodium borate minerals.  

 
Fig. 49 Results of thermal behaviour of individual sodium borate mineral group by 

means of Different Thermal Analysis (DTA) under 10 K/min heating rate. 
The upper case of N, B, and H designated to Na2O, B2O3 and H2O 

 

In contrast to that of sodium borate minerals, the DTA-TG results showed that the 

sodium-calcium and calcium-magnesium borate minerals have different melting 

behaviour. The peaks in the DTA signal can be categorized into three distinctive 

peaks. The first endothermal peak, accompanied by mass reduction, was an 

indicator of the dehydration process of water molecules within the structure. The 
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second peak observed was an exothermal peak which is associated with the new 

crystal structure formation. Shallow endothermal peak at high temperatures was 

ambiguously interpreted as a melting peak of the respective borate mineral. 

According to Celik [CEL 1995] and Demirci [DEM 2000], this shallow endothermal 

peak at a temperature region between 800 °C and 900 °C is denoted as either the 

continuation of the calcination process or the melting point of amorphous 

structures developed during the formation of new crystal.  

 

Fig. 50 General interpretation of the DTA signals associated with physical reactions 
of the hydration of water molecule (Entwässerung), crystallization/solid 
state phase transformation (anhydrous formation), and melting point (Tm) 

 

The dehydration of water molecules of individual borate minerals is indicated by 

the endothermal peaks below 400 °C occurred at different temperatures. The 

onset temperature of water dehydration of ulexite, hydroboracite, and colemanite 

lie at 65 °C, 180 °C and, 300 °C, respectively. Ulexite undergoes gradual 

decomposition in a wide range of temperatures, up to 800 °C. Ulexite releases 

water molecules at different steps upon heating as indicated by the TG signal in 

Figure 51. The hydration process can be discriminated by two different 
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mechanisms. The first is the release of free H2O molecules at temperatures below 

120 °C, and left the –OH group attached to the main borate structure as the 

second mechanism. The bond strength between the cations and the –OH group 

determines the temperature of further dehydration processes. The higher the 

bonding energy between cations and –OH groups, the higher is the temperature. 

Compared to that of ulexite, the dehydration temperature of colemanite and ulexite 

shifted at higher temperatures and occurred at a relatively narrow temperature 

region.  

Sharp exothermal peaks related to recrystallization phenomena can be observed 

obviously for ulexite at 650 °C. The melting point of these borate minerals in the 

present study is somewhat beyond the experiment temperature window. The 

melting area can be theoretically defined by determining solidus (Tsolidus) and 

liquidus temperature (Tliquidus). The theoretically calculated value of melting area 

temperature i.e. Tsolidus, Tliquidus [ °C], and solid phase at the liquidus temperature of 

the anhydrous form of colemanite C2B3 are 1262 °C (solidus), 1371 °C (liquidus) 

CaB2O4 (phase at liquidus temperature). In anhydrous ulexite NC2B6, solidus 

temperature is at  834 °C, while liquidus temperature is 1176 °C, with CaB4O7 as 

the phase at liquidus temperature. In hydroboracite CMB3, the solidus, liquidus 

temperatures are 1180 °C, 1273 °C, (phase at liquidus: Mg2B5), respectively. 
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Fig. 51 Results of the DTA experiment of magnesium-calcium-sodium-borate 
mineral group; N = Na2O, M = MgO, B =B2O3, and H = H2O.  

 

4.3.3 Selection of boron oxide carriers and batch calculation 

The characterization of individual borate minerals—specifically, phase and 

chemical analysis—is a very important step for determining the suitable boron 

oxide carriers for particular boron oxide-containing glasses. Based on the chemical 

analysis, not all borate minerals can be applied in certain types of glasses. For 

instance, the laboratory glassware batch requires a restricted amount of alkaline 
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earth oxide, CaO and MgO; so, borax pentahydrate (NB2H5) can only be replaced 

by the alternative sodium-borate group, tincal (NB2H9) and kernite (NB2H4). 

Another example is the E-glass batch in which alkali oxide content should not 

exceed 2.0 wt. % of total oxides. In a recent development, small amounts of Na2O 

are allowed in the E-glass composition, and both colemanite and borax 

pentahydrate are used as B2O3 and Na2O carriers, respectively. The possibility of 

replacing colemanite and borax pentahydrate can be achieved by hydroboracite. 

However, complete B2O3 carriers replacement in E-glass decreases the amount of 

Na2O slightly. In general, a combination of two or more alternative B2O3 carriers 

can be performed to find the optimum composition. However, due to technical and 

economic constraints of procurement of silos that might be required for two or 

more alternative B2O3 carriers, the scope of study is limited to only one alternative 

carrier for particular glass batch types. 

Batch calculation is the next step to determine not only the amount of required 

alternative B2O3 carriers, but also the deviation of non-linear composition-

properties relationship between reference and modified batch i.e. viscosity and 

liquidus temperature. Viscosity was calculated by a combination of Lakatos and 

self-developed model, while the liquidus temperature was calculated by using the 

commercial thermodynamic software FactSage. Due to the confidential issues 

between industrial partners for the present study, the following glass composition 

of lamp, laboratory ware, wool, and E-glass can only be expressed in the 

composition range.  

There were no significant deviation of viscosity in all temperature ranges by 

alternative borate minerals, even though natural borates contain impurities. As 

previously stated, not all available borate minerals can be applied to all glass types 

due to the constraints of maximum impurities allowed for the particular glass type. 

Borosilicate glasses, such as lamp and laboratory glassware, can only adopt the 

sodium borate mineral group (tincal and kernite) as the boron oxide carrier due to 

the alkaline earth constraint. The conventional borax pentahydrate in the E-glass 

batch can be replaced by tincal, kernite, and ulexite; while in the wool glass batch, 

all available borate minerals—tincal, kernite, ulexite, colemanite, and 

hydroboracite—can be applied. Hydroboracite is the only B2O3 carrier used for 

substituting colemanite since Na2O content might exist as the trace element. 
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However, significant amounts of MgO and B2O3 content in hydroboracite may 

influence the viscosity level at fibrization and liquidus temperature; so, the 

application of hydroboracite in E-glass should be carefully taken.  

4.3.4 Conductometry 

4.3.4.1 Laboratory glassware batch 

Figure 52 shows the conductivity result of laboratory glassware batch between 

reference batch in which the conventional borax pentahydrate was applied and 

alternative batches with tincal and kernite as B2O3 carriers. The primary melt 

formation indicated by the conductivity jump of the alternative B2O3 carrier-

containing batches shifted to higher temperature compared to the reference batch.  

 

Fig. 52 Conductometry  of the laboratory glassware batch with various B2O3 
carriers as a function of temperature with 10 K/min heating rate 

 

The temperatures of the primary melt formation of reference, kernite, and tincal 

batch are 800 °C, 844 °C, and 890 °C, respectively. Below 500 °C, all the batches 

showed similar behaviour characterised by the increase of conductivity signal 
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within the range of physical batch water removal. The  conductivity signal  was 

slightly changed at temperature range between 500 °C and 550 °C. Fluctuation of 

the signal was observed in the alternative B2O3-containing batches, while the 

reference batch showed relatively smooth transition. This point indicates the 

beginning of solid-state reactions as the mobile ion species within the batch starts 

to be active. 

From the previous chapter, this phenomenon is related to the theoretical solidus 

temperature calculated by FactSage of the batch (Tsolidus = 550 °C), as shown in 

Figure 51. As the amount of local occurrence of the bulk primary melt increases, 

the conductivity signal jumps three to four order of magnitude, and compared to 

that of the calculated phase equilibrium in Figure 53, it is correlated to the liquidus 

temperature (Tliquidus = 800 °C) of the corresponding system. Cullet content up to 

50 wt. % influenced the behaviour of the laboratory glassware batch melting.  

 
Fig. 53 Thermodynamic calculations of phase equilibrium via FactSage [GTT] of 

the commercial laboratory glassware. Liquidus temperature is 810 °C; 
phase: Quartz 
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The difference of conductivity jump temperature can be explained in terms of the 

grain-to-grain interaction in which the particle size of raw materials—in this case 

borate minerals— play a significant role. Tincal and kernite have relatively large 

particle size and elongated form, as seen in Figure 48, compared to borax 

pentahydrate. Large particle size slowed down the reactions; even though the 

beginning of the solid-state reactions at 550 °C were relatively similar among the 

batches, the temperature of the conductivity jump were shifted by 50 °C.  

Tincal and kernite used in the conductivity experiment were in the as-received 

form, as seen in Figure 48, thus kinetic aspects, which were influenced by particle 

size, played a major role in determining the batch melting behaviour. These 

events, in contrast, cannot be observed in the DTA measurement because the 

sample should be prepared in fine powder (lower than 63 µm) in order to diminish 

the heat transfer problem between sample and Pt-crucible. For that reason, the 

effect of particle size in characterizing the batch melting behaviour in the small 

experiment scale is neglected; thus there is a significant difference between the 

DTA and conductivity results. 
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4.3.4.2 Lamp glass batch 

 
Fig. 54 Conductometry of various B2O3 carriers-containing batches against the 

batch temperature of 10 K/min heating rate 

 

The above figure showss the results of conductometry of various B2O3 carriers in 

the lamp glass batch. It is shown that there was no significant impact of the 

application of the alternative B2O3 carriers in lamp glass batch. The batch contains 

40 wt. % of glass cullet and differs to the previous borosilicate glass batch in which 

Na2O and B2O3 carriers originated from borax pentahydrate. The lamp glass batch 

utilizes soda ash (Na2CO3), potassium carbonate (K2CO3), and barium carbonate 

(BaCO3) as raw material carriers for Na2O, K2O, and BaO, respectively. Therefore, 

the conductivity jump similar to that of the soda-lime-silica glass batch represents 

the physical melting of the carbonates or eutectic reactions of the salt-like melt. 

The batch components developed the primary melt formation at the temperature 

680 °C as predicted by the phase diagram in Figure 55. 
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Fig. 55 Phase diagram of the system Na2O·BaO·B2O3 – Na2CO3 [PHA 1998]. The 
thin red line indicates the temperature and actual composition in the glass 
batch 

 

4.3.4.3 E-glass batch 

Figure 56 shows the results of the conductometry of E-glass batches with various 

boron oxide carriers. Reactions turnover do not achieve significant turnovers at 

temperatures below 1000 °C. At higher temperatures, solid-state reactions, and 

eventually, the primary melt formation can be observed by the increase of the 

conductivity curve and conductivity jump, respectively. In the E-glass batch, 

however, the relatively weak conductivity jump is detected, compared to that of the 

two previous borosilicate glasses. In the alkali-poor E-glass batch, the change of 

the conductivity signal is solely dependent on the amount of mobile ion species, 

which, in this case, is Na+. The temperature, where the conductivity jump occurs, 

coincides with the liquidus temperature of the system in the equilibrium as it is 

calculated theoretically by FactSage (see Figure 57).  
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Fig. 56 Conductometry signals of E-glass batches with various types of boron 
oxide carriers 

 

Fig. 57 The thermochemical calculation of the phase equilibrium for the E-glass by 
system using FactSage; The liquiuds temperature is 1120 °C with 
Wollastonite (CS) as the predicted phase prior to melting 
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The melting progress among the batches show the similar behaviour as indicated 

by the similar conductivity curves, except for the ulexite batch, in which the primary 

melt formation associated with the conductivity jump shifted to a lower temperature 

of 1095 °C, instead of 1120 °C, for the other batches. The ulexite batch, however, 

has obviously larger amounts of Na2O content than the other batches, thus 

lowering the liquidus temperature of the system. 

4.3.4.4 Insulation glass wool batch 

In this particular batch, the melting behaviour of kernite, tincal, and hydroboracite 

as the alternative boron oxide carriers. The conductometry results are similar for 

all the batches, and they can be seen in Figure 58. The temperature at which the 

primary melt formation occurred in the hydroboracite-containing batch (755 °C) is 

slightly higher than that of borax pentahydrate and kernite batch (750 °C), but 

slightly lower than the ulexite batch (800 °C). The ulexite batch showed relatively 

shorter foaming phase than the others, since several parts of the  the raw material 

which contribute to the gas decomposition is partly replaced by the ulexite.  

 

Fig. 58 Conductometry of the insulation glass wool batches by applying various 
types of boron oxide carrier 
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The behaviour of the conductometry signal in this batch is similar to that of the 

lamp glass batch, in which salt-like melt formation of the raw materials determine 

the mechanism of primary melt formation. Large amounts of soda ash, utilized as 

the Na2O carrier in the respective batch, contribute to the lower primary melt 

formation temperature. Interactions of raw materials within the batch lead to a 

lower eutectic melting that can be detected by the conductometry method.  

 

4.3.5 Modified batch-free time (BFT) 

Different than conductometry and other thermal analysis methods, in which the 

heating rate is set as a constant value (10 K/min) from room to final temperature, 

the batch-free time (BFT) test is a method to observe the dissolution rate of the 

batch under the influence of both glass melt and radiation heat at a constant 

experiment temperature (1400 °C), thus at an arbitrary heating rate. The definition 

of BFT is literally the time required for the batch to dissolve into molten glass at a 

particular temperature. However, in the present paper, the method is modified as it 

is intended to compare the batch melting behaviour between the designated 

reference and tested batches at a particular temperature; therefore, instead of 

determining the dissolution rate, a qualitative comparison of the batches is 

analysed in at least two window timeframes. One of the timeframes should be 

defined as the time required for the reference batch to dissolve completely in the 

molten glass. From that point, one can determine the other timeframes for all 

batches, and compare them, mostly in the qualitative way.  

4.3.5.1 BFT of laboratory glassware batch 

Figure 59 shows the surface appearance of the laboratory glassware batch after 

the BFT test after 30 and 60 minutes of exposure time at 1400 °C. In the first time 

window, 30 min, the batch melting behaviour of the tincal-containing batch has 

better melting progress than that of the reference (borax pentahydrate) and kernite 

batches. Both the borax pentyhdrate and tincal batches do not show different 

appearances by longer melting time, while the kernite batch has similar 

appearances between 30 min and 60 min of exposure time and more foams than 

the others. 
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Fig. 59 BFT results of the laboratory glassware batch; (a), (d): reference batch 
(Borax Pentahydrate); (b), (e): Tincal batch; (c), (f): Kernite batch; The 
series of pictures (a-c): 30 min of exposure time, (d-f): 60 min of exposure 
time 

4.3.5.2 BFT of lamp glass batch 

The behaviour of batch melting with various types of boron oxide carriers in the 

lamp glass batch show no significant differences. In the respective batch, two 

exposure times were chosen, namely 10 and 40 min. The surface appearance of 

the BFT result (see Figure 60) shows that the application of tincal and kernite as 

the alternative boron oxide carrier in the lamp glass batch is not critical during the 

melting progress. The melting formation of carbonate raw materials shown in the 

conductometry tests may contribute in the melting progress under an arbitrary 

heating rate.  
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Fig. 60 Surface appearance of BFT results of the lamp glass batch; (a), (d): 

Reference batch; (b), (e): Tincal batch; (c), (f): Kernite batch; Upper (a-c) 
and below (d-f) picture series corresponds to 10 min and 40 min at 1400 
°C, respectively 

 

4.3.5.3 BFT of E-glass batch 

Similar tendencies of the batch melting behaviour are also observed in the E-glass 

batch (see Figure 61). Two exposure times, 15 and 40 min, were chosen as the 

BFT time-windows. The role of alternative boron oxide carriers has an insignificant 

impact on the melting behaviour of E-glass batch. The ulexite-containing batch is 

the best batch in terms of the batch melting behaviour, and it is consistent with the 

conductometry results. In 15 min of exposure time, the area of free volume of the 

ulexite batch at the surface is the largest, thus the melting progress is obviously 

faster. No significant impact can be observed for other batches, since only small 

amounts of the sodium-bearing borate minerals (tincal and kernite) were added to 

the batch. Recently, colemanite (C2B3H5) has been considered, indeed, as the 

conventional B2O3 carrier in the E-glass production. The alternative boron oxide 

carriers in the present study were used for substituting the borax pentahydrate of 

limited Na2O in the E-glass composition. 
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Fig. 61 Surface appearance of the BFT results of the E-glass batch; (a), (e): 
reference batch; (b), (f): tincal batch; (c), (g): kernite batch; (d), (h): ulexite 
batch. Upper (a-d) and below (e-h) are picture series correspond to 15 min 
and 40 min at 1400 °C, respectively 

 

4.3.5.4 BFT of wool glass batch 

The complete melting progress of all batches in the insulation glass wool batch is 

achieved after 15 min of BFT, as shown in Figure 62, because the wool glass 

batch composition in the present study contains 50 wt. % cullets. Evaluation of the 

surface appearance can be carried out in 5 min of exposure time, and based on 

that result, ulexite has a slightly better melting progress than the other batches 

using borax pentahydrate, tincal and kernite. 

Similar to that of the lamp glass system, melting reactions are faster due to a 

combination of reactions between cullets and other raw materials. However, this 

behaviour cannot be observed in the laboratory glassware batch in which 40 wt. % 

of cullets are added into the batch. The cullets are melted at its liquidus 

temperature, i.e. 800 °C. Due to the lack of salt-like-melt bearing raw materials like 

soda ash, the high viscosity reached at lower temperatures impedes the sand 

dissolution progress. As a result, the laboratory glassware batch has a slow 

melting progress in comparison to that of other glass batches. 
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Fig. 62 Surface appearance of the BFT results of the wool glass batch; (a), (e): 
reference batch; (b), (f): ulexite batch; (c), (g): kernite batch; (d), (h): 
hydroboracite batch. Upper (a-d) and below are (e-h) picture series 
correspond to 5 min and 15 min at 1400 °C, respectively 

 

4.3.6 10 kg tests 

4.3.6.1 10 kg test of laboratory glassware batch 

The substitution of the conventional borax pentahydrate with tincal and kernite 

does not significantly alter the time required to complete endothermal reactions in 

the batch, tendo, of the laboratory glassware and lamp glass batches. In the 

laboratory glassware, temperature profiles are similar between reference and 

tincal-containing batches. Figure 63 shows that Temperatures in the melt side, T1 

and T2 for kernite batch is obviously colder than the reference and tincal at the 

same temperature positions. As the 1400 °C radiation heat was supplied by the 

upper compartment of the hood furnace, the melting progress in the kernite batch 

is the fastest among the others. At the end of the experiment (after 40 min of 

melting), the heat penetration, expressed by ∆T, of the kernite batch is slightly 

higher than that of reference and tincal batches. Based on the modified BFT 

results of the laboratory glassware batch in Figure 59, the degree of the amount of 

surface crystallization (scum) in the kernite batch is also slightlyhigher than in the 
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reference and tincal. The scum and foam formation at the glass melt surface 

obstructs the radiation heat transfer from combustion space to the batch. 

 
Fig. 63 Temperature profile of the laboratory glassware batch in the 10 kg test. 

 

4.3.6.2 10 kg test of lamp glass batch 

Despite the small variance of tendo among the reference, tincal and kernite batches 

in the lamp glass batches, the temperature profiles are slightly different, 

specifically for the kernite batch (see Figure 64). Both the temperatures in the 

melting and fire side in the kernite batch were already high at the beginning of the 

warming phase (0 to 15 min), in which the progress of the reaction is relatively 

slower than that of the reference and tincal batch within this range. Significant 

increases of temperature in the middle of the batch (T3) of the kernite batch 

indicate that heat transfer in the batch from below and combustion space improves 

significantly. At the end of the experiment, the reference batch has the largest ∆T 

value than the other batches. 
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Fig. 64 The temperature profile of lamp glass batch after the 10 kg test 

 

4.3.6.3 10 kg test of E-glass batch 

In E-glass batches, the excessive amount of Na2O in the ulexite-containing batch 

brings about faster tendo than the other batches, while the other batches show 

similar behaviour in terms of tendo. Higher amount of Na2O from ulexite decreases 

the eutectic points of the raw batch materials in the E-glass system. The E-glass 

system has different mechanisms of melting, compared to the conventional soda-

lime silica glass batch. According to the evaluation of the results of conductometry, 

the turnover reactions became faster after 1000 °C under the 10 K/min heating 

rate. Figure 65 shows the rapid temperature increase, specifically T2 and T3, 

occurred at lower temperatures because the heating rate is obviously higher in the 

10 kg test than in the conductometry. The influence of convective motion from 

molten glass and radiation heat transfer from combustion space is the same; it 

indicates the small temperature differences between T1, T2, T3, and T4. The heat 

transfer of the other batches were mainly contributed by the convectional motion 

from glass melt. The application of alternative borate minerals in the E-glass batch 

gives a better heat transfer by convection, radiation, and even conduction.  
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Fig. 65 The vertical temperature profile of E-glass batch in 10 kg test 

 

4.3.6.4 10 kg test result of wool glass batch 

In contrast to the E-glass batch, tendo for the ulexite batch in the wool glass batch is 

the slowest, as shown in Figure 66. The amount of ulexite in the wool glass batch 

is obviously higher than that of in the E-glass; therefore, ulexite plays a major role 

in the batch reactions. In the ulexite batch, the endothermal reactions involved 

during melting, such as the hydration, hydroxylation, and CO2 decomposition 

processes, require longer time and higher temperature which are indicated by the 

higher value of tendo and its respective temperature. However, the ΔT value after 

50 min of melting are similar for all batches; thus the ulexite batch requires longer 

time for the endothermal reactions to be completed, but as soon as the batch-to-

melt turnover point is reached, the reaction progress increases to the same extent 

to other batches.  
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Fig. 66 The vertical temperature profile of 10 kg test result of the wool glass batch.  

 

For a better understanding of this occurrence, there is, in fact, an interaction 

between the batch-to-melt turnover as indicated by the formation of primary melt in 

the batch and thermal diffusivity a [cm2/s]. The effective a value can be derived 

from the temperature profile of the 10 kg test results by applying the Fourier’s 

equation for heat transfer in the steady state. Figure 67 shows the relation 

between the thermal diffusivity of the batch derived from the 10 kg test result, and 

plots it with the conductometry signal. 
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Fig. 67 Conductometry and thermal diffusivity of wool glass batch as a function of 

temperature (left-hand side); Derivation of thermal diffussivity, a, from 
temperature profiles (Temperature vs. time and position) of the 10 kg result 
(right-hand side) [CON 1994] 

 

Based on the conductometry signal of wool glass batches in the previous sub-

chapter, the batch melting behaviour in terms of the primary melt formation of 

ulexite batch is shifted at higher temperatures, while no significant differences 

were observed among the sodium borate bearing and hydroboracite batches. As 

the primary melt is formed, the a value of each batch increases sharply, which 

indicates higher turnover of the batch-to-melt reactions within the batch. The slope 

change of a value at the primary melt formation temperature of reference, kernite, 

and hydroboracite batches is similar, whereas the ulexite batch has steeper slope, 

although the temperature of the primary melt formation is shifted 40 K higher than 

the reference. The sudden change of a value in the ulexite batch leads to the high 

melting progress; thus the next melting process, such as foaming phase and 

dissolution, can be reached at lower temperatures. Furthermore, application of 
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ulexite in the batch reduces the CO2-generated raw materials, such as Na2CO3 

and CaCO3, which contribute to bubbles and foams formation. 

4.3.7 Thermochemical calculations  

The theoretical heat capacity of the batch-to-melt turnover of a batch complex 

system can be derived by utilizing thermodynamic concepts, as it is not only a 

function of the glass tank construction and its operational condition, but also the 

internal characteristics of the batch. The thermochemical calculation details have 

been described in Chapter 2. 

The results of the thermochemical calculation of heat quantities of laboratory 

glassware, lamp glass, E-glass, and wool glass batches with various boron oxide 

carriers will be presented in Table 16, 17, and 18 below. 

Table 16 Results of the thermochemical calculation of the industrial batches of 
laboratory ware glass and lamp glass, with varied boron oxide carriers 

 

 laboratory glassware  lamp glass  

H in kWh/t reference Kernite tincal reference kernite tincal 

H° batch 4658.10 4649.96 5063.01 4085.07 4070.40 4207.36 

H° glass 4174.37 4171.88 4171.32 3669.70 3669.05 3669.47 

H° gas 356.46 349.00 623.67 363.94 352.81 446.50 

H° chem 127.28 129.08 268.02 51.42 48.55 91.39 

T off 650 650 650 650 650 650 

T ex 1300 1300 1300 1300 1300 1300 

yC [wt.-%] 39.98 39.98 39.43 22.69 22.69 24.357 

HTGas (Toff) 419.26 419.84 419.90 28.70 28.48 37.71 

HTGlass (Tex) 33.80 72.54 129.58 407.89 408.33 408.41 

Hex 495.66 497.32 582.25 447.65 445.86 477.55 
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Table 17 Results of the thermochemical calculation of the industrial batches of E-
glass, with varied boron oxide carriers 

 

 E-glass 

H in kWh/t reference ulexite kernite tincal 

H° batch 4837.18 4842.93 4829.53 4859.37 

H° glass 4050.87 4053.19 4051.64 4051.56 

H° gas 531.58 532.79 525.51 546.03 

H° chem 254.73 256.95 252.38 261.78 

T off [ °C] 650 650 650 650 

T ex [ °C] 1300 1300 1300 1300 

yC [wt.-%] 0.00 0.00 0.00 0.00 

HTGas (Toff) 46.38 46.54 47.40 49.42 

HTGlass (Tex) 458.27 458.60 458.49 458.46 

Hex 713.00 715.55 710.86 720.24 

 

Table 18 Results of thermochemical calculation of the industrial batches of wool 
glass, with varied boron oxide carriers 

 wool glass 

H in kWh/t reference ulexite kernite tincal hydrobor. 

H° batch 4365.16 4351.38 4316.15 4520.09 4286.09 

H° glass 3952.72 3949.01 3952.63 3952.22 3951.57 

H° gas 330.10 314.87 290.58 429.54 305.17 

H° chem 82.35 87.51 72.94 138.34 29.35 

T off [ °C] 650 650 650 650 650 

T ex [ °C] 1300 1300 1300 1300 1300 

yC [wt.-%] 0.00 0.00 0.00 0.00 0.00 

HTGas (Toff) 39.62 38.48 35.82 49.14 26.04 

HTGlass (Tex) 453.18 450.78 453.18 453.11 452.92 

Hex 535.53 538.29 526.12 591.45 482.27 
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It is assumed that the off-gas and pull temperatures are set to 650 °C and 1300 

°C, respectively, for all batches and individual raw materials involved in the 

calculation are in the pure phase; hence, only the value of its pure substance 

(neglecting the impurity factor) is considered. The highest heat demands (ΔH°chem 

and ΔHex) are found in the tincal-containing batch, independent of the glass types. 

The heat demand of a typical raw material depends on the chemical bonds within 

the structure as well as the amount of water (H2O) or hydroxyl (OH) attached to 

the structure. Stronger bond requires higher energy demand of formation, and 

additional energy is needed to release either hydrate or hydroxyl within the 

structure.  

Tincal has higher molecule water content, nine water molecules (9H2O), among 

other borate minerals, thus a higher standard enthaply of formation (4.807 kWh/t). 

The alternative sodium borate minerals, tincal and kernite, have nearly the same 

oxide structure with that of borax (Na2O·2B2O3·XH2O). The difference among 

those minerals is their water molecule content. The higher water molecule content 

within the structure leads to higher standard enthaply of formation, thus higher 

energy demand, in which tincal has the highest content (9H2O) followed by borax 

pentahydrate (5H2O) and kernite (4H2O). However, borax pentahydrate and 

kernite have standard enthalpy of formation, i.e. 4.568 kWh/t and 4.564 kWh/t for 

borax pentahydrate and kernite, respectively. In the E-glass and wool glass batch, 

the application of alternative borate minerals give no significant impact in terms of 

heat demand, compared to that of the conventional one. Few parts of non-boron 

oxide carriers, mostly alkaline and alkaline-earth carbonate, might be replaced by 

the alternative borate minerals. Gas decomposition of carbonate is a strong 

endothermal process, thus replacing a few weight percent of carbonate containing 

raw material by borate minerals lower the total ∆H°chem of the batch, and 

consequently, the overall heat demand is decreased. 
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Fig. 68 Chemical heat demand,ΔH°chem,of various batch glass systems with 
different types of borate minerals as boron oxide carrier 

 

Fig. 69 Calculated exploited heat demand, ΔHex, of various boron oxide-containing 
glass types with different borate minerals as boron oxide carrier 
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5. Application of alternative batch  
in the industrial melting tank 

 

5.1 Effect of alternative boron oxide carriers on furnace performance 

Comprehensive analyses and evaluations of batch melting behaviour have been 

performed to determine the possible alternative batch/raw material that can be 

applied for further investigation, i.e. the effect of alternative batch to furnace 

performance in an industrial glass tank. Daily production data, such as 

temperatures (crown, bottom, stack, throat, and riser), charge input (composition 

of glass, batch, and cullet ratio), fuel consumptions (gas, oxygen, and air), and 

pull/production capacity are utilized to calculate and complete the energy balance, 

as previously described in Chapter 2. 

In the present study, the industrial campaign was performed under an AiF project, 

‘Alternative boron oxide raw material in glass industry’. Selection of raw materials 

for the industrial campaign does not only depend on the laboratory results which 

require large amounts of raw material to obtain a good statistical data, but also on 

the availability of raw materials. Not all industrial partners were able to perform the 

trial due to several reasons; mainly because they had difficulties in making the 

alternative boron oxide carriers in the required volume since only a few were 

available commercially. Moreover, high risks of quality deviation of the product and 

complexity in providing additional silos were also the obstacles to the industrial 

experiment.  

Colemanite and ulexite are the alternative borate minerals that are available 

commercially for the production of B2O3-containing glasses. Most of the borate 

minerals are processed for the production of boric acid and sodium tetraborate 

pentahydrate, whose applications are not only for glass industries but also for the 

manufactures of detergent. Colemanite is already renowned as a substitute of 

boric acid in the E-glass production, but cannot be used for borosilicate glasses 

due to high content of CaO. The laboratory results of wool glass melts show that 

colemanite is less favourable than the other alternative boron oxide, as previously 

discussed in Chapter 4. For that reason, ulexite was the chosen raw material for 
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the boron oxide carrier to be applied in the glass melting furnace during the 

campaign.  

5.2 Furnace design and process parameter 

The methodology of the furnace performance evaluation is a comparison of 

process parameters, in terms of energy demand, production/pull rate, temperature 

data between the reference (borax pentahydrate), and the ulexite-containing batch 

[CON 2012]. Additionally, carryover and boron-compound vapours in off-gas are 

analysed and compared. Figure 70 shows a schematic view of a typical glass wool 

melter in longitudinal projection.  

 

Fig. 70 Schematic view of a wool glass melter in longitudinal projection. The melter 
is a cross-firing oxy-fuel furnace in which natural gas and high-purity 
oxygen are used for the combustion process 

 

Based on the melter crown and bottom temperature distribution, unlike flat and 

container glass production, foam is extended up to the front wall of the melter. 

Batch and recycled glass cullet are introduced through dog houses by screw 

chargers installed at the right and left side walls of the melter. The batch heap are 

exposed by radiation and convective heat from the combustion space and hot 

molten glass respectively. Electric boosting systems are installed in the rear and 

front of the melter not only to provide additional heat/energy but also play 
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important role in controlling the convective current of the glass melt. One electrode 

system is positioned under the batch blanket for high powerage and the other 

system is installed in the front part of he furnace with much lower power. The 

energy from boosting system is provided by Joulean heat due to the passage of 

electrical current between the electrodes in the glass melt. The campaign that 

uses ulexite as a B2O3 carrier lasted 30 days, and was compared to the current 

reference data in which borax was used as a B2O3 carrier.  

Table 19 Furnace set-up and process parameter 

Parameter unit/rate setting value 

cullet percentage % 49 

designed pull rate t/d 84.00 

temperatures  °C  

 crown rear  °C 1144 

 crown center  °C 1335 

 crown front  °C 1378 

 bottom rear  °C 1080 

 bottom middle  °C 1081 

 bottom front  °C 1121 

 Throat  °C 998 

 Riser  °C 1169 

 Offgas  °C 1069 

 Stack  °C 350 

number of burner  6 

gas consumption Nm3/h 305 

oxygen consumption Nm3/h 620 

average HNCV  kWh/m3 9.89 

800 kVA transformer (rear) kW 530 

60 kVA transformer (front) kW 20 



in the industrial melting tank  107 

 

The glass composition between reference and ulexite batch was adjusted to keep 

the properties constant, specifically its viscosity level (η) equivalent to log η = 3.0 

dPa·s. 

Energy input from the gas-oxy firing depends on the volumetric flow V’H and the 

net calorific heat value HNCHV of fuel used for the combustion process. 

Pin [kW] = V’H [m3/h]· HNCHV [kWh/m3]  (28) 

The chemical heat demand ∆H°chem calculation presented in Chapter 4 shows that 

the ulexite batch has a slightly higher heat demand than that of the borax 

pentahydrate batch. However, small variations in the ulexite batch lead to slight 

changes in the heat capacity of the glass melt. 

The composition of the glass wool insulation is similar to the composition that has 

been specified in Table 7. Table 19 shows the actual batch composition to 

produce 1000 kg of glass melt.  

Table 20  Comparison of batch compositions to produce 1000 kg of glass between 
borax pentahydrate and ulexite, during the industrial experiment 

 reference [kg]  ulexite [kg] 

sand [kg] 197.34 190.30 

nepheline [kg] 77.51 76.98 

dolomite [kg] 70.86  19.03  

soda ash [kg] 110.43  131.50 

external cullet 1 [kg] 36.95 37.31 

external cullet 2 [kg] 471.06 475.52 

internal cullet [kg] 55.42  55.97  

borax pentahydrate [kg] 99.50    

ulexite [kg]   118.65 

sum [kg] 1115.06 1105.47 
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Additional to the calculation results shown in Table 18 in Chapter 4, Table 21 

shows comparisons of oxide composition and its normative phase standard heat 

formation of the respective oxide between reference and ulexite batch. The batch 

composition is adjusted in such a way that the final glass oxide compositions are 

similar, and the usage of limestone as the CaO carrier is avoided. The change of 

raw materials was made under the boundary condition that Na2O + K2O and CaO 

+ MgO are constant. In fact, the concentration of individual alkali oxide could also 

be kept constant under the replacement. However, the reference batch yields a 

glass with 3.63 MgO + 6.87 CaO while the ulexite batch yields a glass with 2.75 

MgO and 7.64 CaO. Thus, there is  a slight shift not only in H°chem but also in 

HT. 

 

Table 21 Comparisons of oxide composition and its normative standard heat 
formation between reference and ulexite containing batch using a 
calculation method proposed by Conradt [CON 2007]  

oxide composition j reference ulexite difference 
SiO2 64.53 64.60 -0.07 
Al2O3 2.52 2.51 0.01 
B2O3 5.09 5.10 -0.01 
MgO 3.62 2.75 0.87 
CaO 6.87 7.64 -0.77 
Na2O 16.58 16.60 -0.02 
K2O 0.80 0.80 0.00 
sum 100.00 100.00   
Na2O+K2O 17.38 17.40 -0.02 
CaO+MgO 10.49 10.39 0.10 

standard heat formation of the glass [kWh/t] 
normative phase k reference ulexite difference 
CaO·2B2O3 332.94 333.88 -0.94 
K2O·Al2O3·6SiO2 184.34 184.92 -0.58 
Na2O·Al2O3·6SiO2 348.51 346.77 1.74 
MgO·SiO2 374.88 284.67 90.21 
Na2O·2SiO2 1514.11 1486.19 27.92 
Na2O·3CaO·6SiO2 655.34 759.62 -104.28 
SiO2 542.59 552.95 -10.36 
sum 3952.72 3949.01 3.71 
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Since the range of total alkaline earth content in the glass is very narrow, changing 

of the cullet ratio cannot be avoided, which leads to a similar exploited heat Hex 

between reference and the ulexite batch (see Equation 8, 9 and 10 in Chapter 2). 

The internal cullet has the same composition like that of the target glass, and can 

be treated as the cullet fraction yC in Equation 8, while the external cullets 

(recycled bottle and flat glasses) have to be evaluated as raw materials. By 

applying the thermodynamic concepts of multicomponent system [CON 2009], the 

calculated standard heat formations of the external cullet 1 and 2 are 4.126 

kWh/kg and 3.942 kWh/kg, respectively.  

5.3 Results 

Figure 71 and 72 show the results of furnace data analysis of reference and 

ulexite containing batch respectively. The quantities are given in terms of power, 

which is derived from the products of specific heat value in kWh/t and the pull rate 

in t/h, in the unit of kW, are plotted as a function of the pull rate p. All entities Pin, 

Pex and, Ploss show linear correlation with the production rate.  

 
Fig. 71 The input [kW], exploited and loss powers of the reference batch are 

plotted as a function of pull rate [t/h] [CON 2012] 
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Fig. 72 The input [kW], exploited and loss powers of the ulexite containing batch 
are plotted as a function of pull rate [t/h] [CON 2012] 

 

According to Conradt [CON 2012], the mathematical linear relationship between 

power input and pull rate can be derived as:  

Pin = a + b·p ;  (30) 

The exploited power Pex at the drawn temperature 

Pex = Hex·p ;  (31) 

The energy loss is calculated in a straightforward way, according to the equation; 

Ploss = Pin - Pex = a + (b - Hex)·p (32) 

All the statistical values described in Figure 71 and 72 (slope, intercept, error 

range, and exploited heat Hex) are shown in Table 22. The error range (± Pin) is 
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defined as a standard deviation of power input. Both reference and ulexite batches 

share the same b value since the trial was conducted in the same furnace. 

Table 22 Statistical values of linear regressions of the input energy Pin curve as 
shown in Figure 71 and 72 

  symbol reference ulexite 
number of observation n 535 97 

intercept at zero pull [kW]  a 1100  1100 

slope [kWh/t] b 717 724 

error range of Pin [kW] ± Pin 300 366 

exploited heat [kWh/t]  Hex 482 486 

 

It is a common in glass wool production to keep the pull rate constant over 

extended periods of time. Several pull rate changes have been observed by using 

the reference batch, while only four time pull rate adjustments were observed 

during the trial phase. However, the input power Pin fluctuated irrespectively by a 

constant pull rate. The value of Pin in Figure 71 and 72 is an average value, while 

the vertical error bars represent standard deviation  of Pin in its respective 

constant pull rate. The exploited power Pex , does not vary much since its value 

depends on the chemical heat demand H°chem and the glass exit temperature Tex 

measured in the melter riser.  
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  Fig. 73 Specific heat input versus pull rate of reference and ulexite containing 
batch during the industrial trial. The Hin is derived from the input power Pin 
in Figure 71 and 72 divided by the pull rate  

 

Figure 71 and 72 show that the application of ulexite as an alternative raw material 

does not give significant impact on the input Pin and exploited power Pex as 

compared to that of borax pentahydrate. The large error bars for ulexite batch are 

due to the small number of observations. Statistically, one can observe in Figure 

73, that  there is a tendency that less energy is used when the reference batch is 

applied. 

The average pull temperature Tex of the ulexite batch (1163 ± 9 °C) was slightly 

higher than that of borax pentahydrate (1159 ± 6 °C) as it is shown in Figure 73. 

According to Equation 8, the physical heat ∆HT (glass) strongly depends on the 

glass exit temperature Tex and has a linear correlation with the exploited heat. 

Therefore, the higher exploited heat is expected for the ulexite batch. In contrast, 

Figure 74 shows that the average exploited power Pex is slightly lower. The impact, 

however, is insignificant statistically.  
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Fig. 74 Glass exit temperatures Tex [°C] and power input Pin [kW] on the left and 

right Y-axis, respectively, as a function of time [day]. The numbers in the 
bracket “<>” signify the average value and standard deviation , 
respectively 

 

Laboratory results of the 10 kg test in Chapter 4 show that the ulexite batch have 

melting advantages in terms of foam decay. The effect is reflected by a higher pull 

temperature Tex. It is likely that the foam is stable up to the melter front wall 

because the batch composition of glass wool does not contain any fining agents 

e.g., sodium sulphate and even there is sulphate from the external cullet, the onset 

of fining temperature in the melt is not sufficient. This can be seen from the crown 

temperature readings. It is obviously that heat distribution along the furnace 

longitudinal section is the same, thus hot spot is not likely to form.  

However, bubbles in the melt are not considered as defects in the glass wool 

production. By longer trial times and pull variation one can anticipate that more 
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energy saving impacts of alternative ulexite against the conventional borax 

pentahydrate.  

Table 23 shows that the average specific heat energy in kWh/t between the batch 

containing borax pentahydrate or ulexite is similar in terms of the batch melting 

behaviour. Judging from the results of the batch melting behaviour in the 

laboratory scale, the application of ulexite in the wool glass batch has a slight 

advantage in kinetics than that of the borax pentahydrate. However, due to a 

relatively short trial phase, this effect is difficult to see. 

 

Table 23 Heat balance for the industrial campaign with two different boron oxide 
carriers relative to the power input 

reference Ulexite 
kWh/t % kWh/t % 

Hin 1034.67 100 1029.54 100 

Hre 1109.69 107.25 1107.75 107.06 

Hsf 575.07 55.58 576.04 55.67 

Hex 125.02 12.08 129.06 12.47 

Hstack 75.02 7.25 78.21 7.56 

Hoff 34.84 3.37 36.19 3.50 

Hwx 15.16 1.47 14.66 1.42 

Hwall 409.61 39.59 402.65 38.92 

Hloss 424.77 41.05 417.31 40.33 
          
re 0.60 60.05 0.61 60.60 

ex 0.58 58.14 0.58 58.05 

n 535 data 96 data 
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5.4 Emission analysis 

The Research Association of German Glass Industry, or Hüttentechnische 

Vereinigung der Deutschen Glasindustrie e. V. (HVG), was responsible to handle 

the carryover and primary emission in this project since they have experience and 

equipment in this field. The following substances were determined by taking 

samples in off-gas location before and after the electro fillter instrument during the 

industrial campaign of the ulexite batch: 

 total dust 

 dust composition (B, Ca, K, Mg, Na, S,As, Cd, Co, Cr, Cu, 

Mn, Ni, Pb, Sb, Se, Sn, V) 

 gaseous substances (B, Ca, K, Mg, Na, S,As, Cd, Co, Cr, 

Cu, Mn, Ni, Pb, Sb, Se, Sn, V) 

 nitrogen oxides  (NOx) 

 carbon monoxide (CO) 

 sulphate oxides (SO2) 

 inorganic gaseous chlorine (HCl) 

 inorganic gaseous Flour (HF) 

The collection of the emission produced during the melting process is through a 

steel duct connected to dry electrostatic precipitator, which is 56 m in height and 

has an entrance area of 2.545 m2. Four fields type electro filter was used as an 

instrument that functions to clean the off-gas from carryover and environmentally 

hazardous gas before their release to the atmosphere through the stack. The off-

gas was measured continuously by the paramagnetic analyser for O2 gas (OXOR 

610 Maihak) and infrared spectrometer, the so-called UNOR 610 for analysing 

CO2, CO, SO2, and NOx (UNOR 610). The other gas species, such as SO2, HCl, 

HF, and B were measured discontinuously. All the samples were analysed by HCl 

and HF, independent of vacuum methods and sorption agents used.  

Table 24 and 25 show the results of the off-gas emission measurement between 

the borax pentahydrate and ulexite batches during the industrial trial in raw and 

clean gas, i.e. before and after filtration. 



116  in the industrial melting tank 
 

Table 24 Comparison of the average composition value of off-gas emission between 
borax pentahydrate and ulexite before they were filtered; the given volume 
is associated with the dry off-gas in normal condition (NTP) 

 

 
borax pentahydrate  

28.09.2010 
ulexite                    

10.02.2011 
 emission 
dust particle species 

concentration 
[mg/m3] 

emission    
[kg/tglass] 

concentration 
[mg/m3] 

emission    
[kg/tglass] 

As 192·10-3 0.347·10-3 421·10-3 0.853·10-3 
Cd 336·10-3 0.609·10-3 88·10-3 0.178·10-3 
Co 4·10-3 0.008·10-3 < 1·10-3 < 0.002·10-3 
Cr 3381·10-3 6.12·10-3 2788·10-3 5.65·10-3 
Cu 87·10-3 0.158·10-3 115·10-3 0.233·10-3 
Mn 10·10-3 0.018·10-3 15·10-3 0.03·10-3 
Ni 53·10-3 0.097·10-3 39·10-3 0.079·10-3 
Pb 555·10-3 1.005·10-3 110·10-3 0.223·10-3 
Sb 57·10-3 0.103·10-3 77·10-3 0.156·10-3 
Se 82·10-3 0.148·10-3 137·10-3 0.278·10-3 
Sn 6·10-3 0.010·10-3 18·10-3 0.036·10-3 
V < 1·10-3 < 0.002·10-3 < 1·10-3 < 0.002·10-3 
B 183.20 0.332 211.00 0.427 
S 32.90 0.060 43.00 0.087 
Na 178.00 0.322 49.30 0.100 
Ca 23.00 0.040 28.30 0.057 
K 59.80 0.108 36.60 0.074 
Mg 0.60 0.001 2.50 0.005 
total dust 1173.00 2.120 1413.00 2.860 

gas species         
B 4.00 0.007 4.10 0.008 
NOx as (NO2)  454.00 0.820 230.00 0.470 
SO2 4.00 0.008 13.00 0.026 
HCl < 0.7 < 0.002 < 0.7 < 0.002 
HF 1.12 0.002 1.80 0.004 
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Table 25 Comparison of average composition value of the off-gas emission between 
borax pentahydrate and ulexite after cleaned/filtered; the given volume is 
associated to the dry off-gas in normal condition (NTP) 

 

 
borax pentahydrate  

29.09.2010 
ulexite                    

10.02.2011 
 emission 

dust particle species 
concentration 

[mg/m3] 
emission    
[kg/tglass] 

concentration 
[mg/m3] 

emission    
[kg/tglass] 

As 5.0·10-3 0.011·10-3 15.6·10-3 0.034·10-3 
Cd 15.6·10-3 0.033·10-3 6.4·10-3 0.014·10-3 
Co < 0.2·10-3 < 0.001·10-3 < 0.2·10-3 < 0.001·10-3 
Cr 124.4·10-3 0.263·10-3 164.8·10-3 0.360·10-3 
Cu 96.1·10-3 0.203·10-3 278.6·10-3 0.608·10-3 
Mn < 0.2·10-3 < 0.001·10-3 < 0.2·10-3 < 0.001·10-3 
Ni < 0.3·10-3 < 0.001·10-3 <0.2·10-3 <0.001·10-3 
Pb 6.1·10-3 0.013·10-3 7.7·10-3 0.0017·10-3 
Sb 1.7·10-3 0.004·10-3 3.1·10-3 0.007·10-3 
Se 1.6·10-3 0.003·10-3 5.6·10-3 0.012·10-3 
Sn < 0.2·10-3 < 0.001·10-3 0.9·10-3 < 0.001·10-3 
V < 0.2·10-3 < 0.001·10-3 < 0.2·10-3 < 0.001·10-3 
B 3.80 0.008 8.60 0.019 
S 0.70 0.001 1.70 0.004 
Na 6.60 0.014 1.20 0.026 
Ca 127·10-3 0.27·10-3 275·10-3 0.60·10-3 
K 1.60 0.003 3.10 0.007 
Mg 25·10-3 0.05·10-3 34·10-3 0.07·10-3 
total dust 31.50 0.067 63.30 0.138 

gas species         
B 1.60 0.003 1.90 0.004 
NOx as (NO2)  460.00 0.970 250.00 0.550 
SO2 3.00 0.006 1.60 0.004 
HCl < 0.6 < 0.001 < 0.6 < 0.002 
HF 0.60 0.001 0.60 0.001 

 

The average specific dust emission of ulexite as a boron oxide carrier in the 

unfiltered gas is 35 % higher than the normal condition (borax pentahydrate), i.e. 

2.86 kg/tglass (measured concentration is 1.413 mg/m3). There were two 

measurement data with high and lower concentration. After the off-gas was 

filtered, dust emission decreased up to 0.138 kg/tglass (measured concentration is 

63.3 mg/m3), or 95 % lower than the unfiltered one. However, this emission value 

is still relatively higher, compared to that of borax pentahydrate. The degree of 
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dust separation in the filter instrument can only be reduced by higher off-gas 

volume.  

The concentration of boron species found in the average total dust in the unfiltered 

off-gas of the ulexite batch is 211 mg/m3 , or in a specific way, it is accounted as 

0.427 kg/tglass. This value is 14.9 % higher than the borax pentahydrate batch. In 

the filtered off-gas, the average concentration of boron species is lowered up to 

8.6 mg/m3 (0.019 kg/tglass). The gaseous boron formation in off-gas is relatively low 

for both borax pentahydrate and ulexite batches. In the unfiltered off-gas, the 

amount of boron-containing gas species is 4.0 mg/m3 (7.3 g/tglass) and 4.1 mg/m3 

(8.3 g/tglass) for borax pentahydrate and the ulexite batch, respectively; while, in 

case of the filtered off-gas, it is 1.6 mg/m3 (3.0 g/tglass) in the borax pentahydrate 

batch and 1.9 mg/m3 (4.3 g/tglass) in the ulexite batch. The amount of NOx in the 

ulexite batch (0.55 – 0.47 kg/tglass) is obviously lower than the borax pentahydrate 

batch (0.82 – 0.97 kg/tglass). The concentration of the emission of other gas 

formation species, such as HCl, HF, and SO2 is very low, and so are the other dust 

particles. 
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6. Conclusion 

 

6.1 General conclusion on batch melting characterization 

Many efforts have been devoted to reduce the energy required for glass melting by 

optimization of the batch-to-melt turnover rate. The heat demand of the batch-to-

melt conversion can be solely figured by an assessment of the thermodynamic 

quantities of individual raw materials, the released gas, and the resulting glass. 

Kinetic influences like the grain size, primary melt formation, gas liberation, and 

quartz dissolution in the batch melting process is difficult to derive theoretically, 

and thus, they need to be quantified by laboratory experiments. 

The conventional DTA-TG is a powerful tool to examine both physical and 

chemical reactions in one-compound, binary, and ternary batch systems. 

However, due to the very small amount of sample size involved in the experiment 

(less than 150 mg), the boundary conditions and mechanisms of heat transfer are 

very different from the industrial glass tank. Therefore, the results cannot directly 

be transferred to the industrial scale. Scaling up the experiments from the 

milligram to the kilogram range is one of the approaches to close the gap between 

the laboratory and industrial scale, and to give a comprehensive overview of batch 

melting occurrences, such as primary melt formation, bubble generation followed 

by foaming formation, quartz dissolution, among others. The suitable methods are 

thermal-optical observation (30 g sample), conductometry (200 g sample), 

modified batch-free time (50 g sample, 250 g cullet), and melting test in the 

kilogram range experiment (10 kg test). The latter simulates the vertical 

temperature field in the batch heap similar to the real glass tank situation.  

The mechanism of batch-to-melt turnover is mainly driven by the atomic mobility 

within the batch. In the soda-lime silica glass, the sodium ion Na+ is the species 

with the highest atomic mobility. The concept of conductometry is based on the 

respectivephenomena. It was the question whether this method could also be 

applied for the poor alkali glass batch like E-glass. 
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6.2 Batch melting behaviour of alkali-deficient glass systems 

Similar to the conventional soda-lime silica glass, CAS and CMAS-based E-glass 

with additional B2O3, a conductivity jump of three to four orders of magnitude 

denotes the primary melt formation. A comprehensive analysis of the experimental 

results of DTA-TG, conductometry, observation furnace and calculation of the 

thermodynamic equilibrium showed a clear correlation among the melting peaks in 

the DTA signal, the conductivity jump and the thermodynamically calculated 

liquidus temperature.  

In contrast to the soda-lime silica glass, however, the conductivity jump in the E-

glass batches is not associated with the melting of batch constituent (soda ash-

Na2CO3), but it corresponded to the eutectic melting of the entire oxide system. 

The presence of liquid phase in the batch enhances diffusion, and hence, 

increases the ionic mobility.  

6.3 Batch melting behaviour at varied B2O3 content in CMAS-based E-
glass  

The batch melting of the CMAS-based E-glass, at varying B2O3 content was 

investigated from the milligram (DTA-TG) to the kilogram scale. The DTA-TG 

results showed water release identified by an endothermal peak followed by a 

mass loss at temperatures lower than 200 °C for only the B2O3-containing batches. 

The water molecule is mainly associated with the boron oxide carrier. Another 

endothermal peak is followed by the a mass reduction that indicated the release of 

CO2 from the batch. All samples have a similar temperature at 850 °C for this 

phenomena. The endothermal melting peaks, however, differ considerably. The 

higher the B2O3 content in the batch, the lower is the melting peak temperature.  

However, between the conductivity jump and the calculated liquidus temperature 

were not in agreement, but rather coincided with the change of conductivity prior to 

final jump. This can be explained by the fact that the applied E-glass batch had 

various grain sizes. The conductivity jump takes place as the quantity of the melt 

formed is sufficiently high. The same tendency can also be observed in the BFT 

and 10 kg tests. The time required for the batch to complete the quartz dissolution 

and endothermal reactions is shorter at higher B2O3 content. Boron oxide acts as a 

solvent which enhances the diffusion process in the solid-liquid state, thus 



6. Conclusion  121 

 

accelerates the batch-to-melt turnover. In general, the primary melt formation in 

B2O3-containinig E-glass batches is related to the liquidus temperature in the oxide 

system.  

6.4 Alternative boron oxide carriers in glass industry 

The European Union (EU) has issued a new environmental regulation by the name 

of REACH (Registration, Evaluation, Authorization, of Chemical Substances)—

specifically, chemical substances derived from chemical treatments/processing. 

Some chemical substances strictly limited by this regulation are boric oxide (B2O3), 

boric acid (H3BO3), and borax pentahydrate (Na2O·2B2O3·5H2O) which are mainly 

used in the borosilicates, insulation wool, and E-fibre glass industries. Economic  

and feasible way is by replacing the conventional boron oxide carriers by 

alternative borate minerals.  

Prior to the selection of alternative borate minerals, a literature research has been 

done. It was found that hundreds of borate minerals have been successfully 

identified. However, not all borate minerals can be readily applied for the 

production of glass. This is primarily due to the fact that boron is one of the rare 

minerals to be found in the earth’s crust. The mining of alternative borate minerals 

in tonnage, without any involvement of the chemical beneficiation processes, is 

economically not feasible, due to its high impurity level. The alternative boron 

oxide carriers available on the market for the glass industries are colemanite and 

ulexite. The availability of other minerals, such as tincal, kernite, and hydroboracite 

were investigated only for the pilot project in the present study. 

Two factors played an important role in selecting the alternative boron oxide 

carriers. Those factors are the impurity levels and its availability. Natural borate 

minerals typically contain several molecules of water and found in the forms of 

sodium, calcium, and magnesium salts. Based on the type of the salt, natural 

borate minerals can be classified into three major classes: sodium bearing, 

sodium-calcium, and calcium bearing boron minerals. For particular glasses, such 

as borosilicate and lamp glass, the amount of alkaline earth is very restricted, thus 

only sodium-bearing borate minerals can be used. In the E-glass batches, the 

amount of alkali should not exceed 1.0 wt. %. As previously stated, although many 

different borate minerals identified, at least only five alternative borate minerals 
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have been collected from various sources; they are kernite, tincalconite, ulexite, 

colemanite, and hydroboracite. Colemanite has been used as a replacement of 

boric acid in the E-glass production.  

As a main conclusion, the application of alternative boron oxide carriers does not 

have a negative affect the melting behaviour and glass quality produced. The strict 

limitation of alkaline-earth content in some glass compositions is the main reason 

for no further possibilities to use calcium or magnesium-bearing borate minerals in 

this case. The application of sodium-bearing borate minerals, such as tincal and 

kernite for the replacement of borax pentahydrate, resulted in a similarly good 

batch melting behaviour. Both colemanite and ulexite can be applied in the E-glass 

batches. The amount of sodium oxide, however, is the main limitation for ulexite in 

the E-glass batches. This time the limiting factor is MgO. In the insulation glass 

batches, there is no significant problem in applying all the previously mentioned 

alternative boron oxide carriers. However, stringent composition adjustment 

should be performed to maintain suitable fibrization temperature (T log  = 3.0) 

and to avoid crystallization during fibre drawing. 

An industrial campaign was successfully conducted in insulation wool glass 

batches. The thermodynamic assessment showed that the hydroboracite-

containing batch has the lowest chemical heat demand and a slightly better batch 

melting behaviour. However, due to an insufficient quantity available in the market, 

ulexite was used in the industrial campaign. If compared to the reference batch 

containing borax pentahydrate, the batch melting behaviour of the ulexite batch 

was better in terms of foam decay and effective thermal diffusivity. The analysis of 

daily furnace and production data between borax pentahydrate and ulexite for a 

one-month trial test showed no significant difference in terms of the power input 

Pin, and the exploited power Pex. The results of the off-gas and dust analysis 

showed an increase of boron emission by with the ulexite batch. High amounts of 

boron- containing dust in the ulexite batch generated relatively enhanced dust 

emission; however, it is still within the allowed level. No significant impact of the 

amount of gaseous boron species as well as other critical gases such as HCl, HF, 

and SO2 was observed. Due to the relatively short period of the industrial 

campaign, the batch kinetic advantage of ulexite could not be demonstrated in a 

statistically relevant way.  
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