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Abstract 

After decades of research, Automated Glucose Control (AGC) is still out of reach for 
everyday control of blood glucose. The inter- and intra-individual variability of glucose 
dynamics largely arising from variability in insulin absorption, distribution, and action, 
and related physiological lag-times remain a core problem in the development of 
suitable control algorithms. Over the years, model predictive control (MPC) has 
established itself as the gold standard in AGC systems in research. Models of 
glucose metabolism are a core element of MPC control schemes. The standard two- 
or three-compartmental models, i.e. - [1], represent little biological 
detail, hampering the integration of multi-scale data, thus confining capabilities of 
model extrapolation. 

To overcome remaining challenges, a new approach to MPC AGC is developed here. 
The MPC uses, for the first time, an individualizable generic whole-body physiology-
based pharmacokinetic/pharmacodynamic (PBPK/PD) model of the glucose-insulin-
glucagon regulatory system. The model reflects detailed physiological properties of 
healthy populations and type 1 diabetes individuals expressed in the respective 
parameterizations. The model features a detailed representation of absorption 
models for oral glucose, subcutaneous insulin and glucagon, and an insulin receptor 
model relating pharmacokinetic properties to pharmacodynamic effects. Model 
development and validation is based on literature data. The quality of predictions is 
high and captures relevant observed inter- and intra-individual variability, thus 
improving model long-term predictions. This significantly strengthens the rationale for 
the use of MPC. To increase robustness vs. uncertainties (closed-loop stability), 
model kernels were updated with growing patient data and the MPC was integrated 
in a control cascade with a proportional, integrative, derivative (PID) based offset-
control. Both, model and control algorithm, were validated and evaluated within an in-
silico environment before testing the control approach within two 30-h clinical trials. 
The trials were each conducted in ten subjects with type 1 diabetes without 
endogenous insulin secretion. Blood glucose was controlled by subcutaneous 
delivery of insulin based on plasma glucose (PG, in trial #1) and continuous blood 
glucose monitors (CGMs, subcutaneous sampling, trial #2) measurements in 15 min 
intervals. Meal information, but no priming bolus (pre-meal insulin), was given to the 
controller at start of each meal.  

For the first clinical trial, the overall mean (n=10) PG was 156 mg/dL, with 74% time 
of PG values in the target range of 70 180 mg/dL. With 2 incidents during 240 h of 
closed-loop control, hypoglycemia (PG < 60 mg/dL) was rare. During nighttime 
control, prior to model adaptation (adaptation was slow if successful at all), mean PG 
was elevated (149 mg/dL, with 38% time in target 70 140 mg/dL). For the second 
clinical trial, control performance improved significantly due to an improved workflow 
and faster (earlier) model adaptation with an overall mean (n=10) PG of 127 mg/dL, 
with 76% time of PG values in the target range of 70 180 mg/dL. With 9 incidents 
during 240 h of closed-loop control, hypoglycemia (PG < 60 mg/dL) was slightly 
increased. Nighttime control improved the most with a mean PG exactly on target 
(110 mg/dL, with 78% time in target 70 140 mg/dL). Retrospective analysis of insulin 
and glucagon measurements collected during the trial, revealed significant glucagon 
surges, which were observed postprandial and coincided with severe morning insulin 
resistance for some patients. Whereas a consistent interpretation of the observed 
behavior is outstanding, the modeling framework allowed a structural mode-of-action 
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evaluation to shed new light on the role of glucagon and nutrition (i.e. coffee) in the 
-  in Diabetes. 

This work shows that large-scale in-silico models of the glucose metabolism can 
provide a framework to improve diabetes research, the development of automatic 
control strategies for diabetes and ultimately every day diabetes management. The 
algorithm for the integrated closed-loop control system was benchmarked both, 
within in-silico clinical trials as well as within clinical feasibility studies. Once the 
relevance of (postprandial) glucagon in T1DM has been analyzed, fully understood 
and captured by PBPK/PD modeling, future trials testing the improved system seem 
very promising.  
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Zusammenfassung 

Auch nach jahrzehntelanger Forschung steht die automatisierte Blutzuckerregelung 
(AGC) noch nicht für den täglichen Gebrauch zur Verfügung. Die inter-und 
intraindividuelle Variabilität der Blutzuckerverläufe, die sich weitgehend aus 
Variabilität in der Insulin- Absorption, Verteilung, und Wirkung, und der damit 
verbundenen physiologischen Verzögerungszeiten zusammensetzt, bleibt ein 
Kernproblem bei der Entwicklung von geeigneten Regelalgorithmen. Im Laufe der 
Jahre hat sich die Modellprädiktive Regelung (MPC) als Goldstandard bei AGC-
Systemen in der Forschung etabliert. Modelle des Glukosestoffwechsels sind hierbei 
ein Kernelement der MPC Systeme. Einfache kompartimentelle (Regressions-) 
Modelle beinhalten nur wenig physiologisches (strukturelles) Detail, was die 
Integration von Multi-Skalen Daten einschränkt und die Gültigkeit von 
Extrapolationen einschränkt. 
Um diese verbleibenden Herausforderungen zu überwinden, wird hier ein neuer 
robuster MPC AGC Regelungsansatz entwickelt. Dieser MPC-Ansatz verwendet, 
zum ersten Mal, eine individualisierbares generisches Physiologie-basiertes 
Ganzkörper- pharmakokinetisches/pharmakodynamisches (PBPK/PD) Modell des 
Glukose-Insulin-Glukagon Stoffwechselsystems. Das Modell spiegelt detaillierte 
physiologische Eigenschaften gesunder Individuen, sowie Individuen mit Typ-1- 
Diabetes in den jeweiligen Parametrisierungen wieder. Das Modell verfügt über eine 
detaillierte Darstellung der Absorption oraler Glukose, und von subkutanem Insulin 
und Glukagon. Es beinhaltet außerdem ein Insulin-Rezeptor-Modell zur Abbildung 
der pharmakodynamischen Wirkung auf das pharmakokinetische Verhalten von 
Insulin. Modellentwicklung und Validierung basiert auf Literaturdaten. Das Modell 
liefert qualitativ hochwertige Vorhersagen und bildet auch beobachtete relevante 
inter-und intraindividuelle Variabilität ab womit auch langfristige Modellvorhersagen 
gestützt werden. Dies stärkt deutlich die Argumentation für den Einsatz von einer 
MPC Strategie. Um die Robustheit gegen Unsicherheiten (Closed-Loop-Stabilität) zu 
erhöhen, wird der Modellkern mit Hilfe der kontinuierlich gemessenen Patientendaten 
aktualisiert und zusätzlich in einer Regelkaskade mit einem PID-Regler zur Offset-
Regelung integriert. Modell und Regelalgorithmus wurden in-silico validiert um dann 
in zwei 30 stündigen klinischen Machbarkeitsstudien getestet. Die Studien wurden an 
jeweils zehn Patienten mit Typ-1-Diabetes ohne endogene Insulinsekretion 
durchgeführt. Der Blutzucker wurde durch subkutane Verabreichung von Insulin, 
basierend auf Messungen der Plasmaglukose (PG, in Studie 1) und mit Hilfe von 
kontinuierlichen Blutzuckermessgeräten (CGMs, subkutane Messung, Studie 2) in 
Intervallen von 15 min geregelt. Zu den Mahlzeiten wurde die Information über 
Mahlzeitzusammensetzung an den Regler übergeben. Es wurde jedoch kein vorab 
Insulin-Bolus zu den Mahlzeiten verabreicht. 
Der mittlere Blutzuckerwert während der ersten Studie (n = 10) war 156 mg / dl, 
wobei 74% der PG -Werte im Zielbereich von 70 bis 180 mg/dL lagen. Insgesamt 
gab es nur zwei Vorfälle von Hypoglykämie (PG <60 mg/dL) innerhalb 240 h. Über 
die Nacht war, ohne Modellanpassung (da zu langsam oder nicht möglich), ein leicht 
erhöhter mittlerer PG festzustellen (149 ml/dL, mit 38% Zeit im Zielbereich 70-140 
mg/dL). Die Regelgüte konnte in der zweiten Studie (n = 10) aufgrund eines 
verbesserten Ablaufplans und einer schnelleren (frühzeitigen) Modelladaptation 
signifikant verbessert werden. Der mittlere Blutzuckerwert war 127 mg / dl, wobei 
76% der PG -Werte im Zielbereich von 70 bis 180 mg/dL lagen. Insgesamt gab es 
mit 9 Vorfällen einen leichten Anstieg von Hypoglykämie (PG <60 mg/dL) innerhalb 
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240 h. Die größte Verbesserung der Regelgüte konnte über die Nacht erzielt werden 
und es konnte ein mittlerer PG erreicht werden, der exakt dem Zielwert entspricht 
(110 ml/dL, mit 78% Zeit im Zielbereich 70-140 mg/dL). Retrospektive Analyse der 
Insulin- und Glukagon-Messungen aus der Studie zeigten einen erheblichen Anstieg 
von Glukagon während der Mahlzeiten, der bei einigen Patienten mit schwerer 
morgendlicher Insulinresistenz einherging. Obwohl eine konsistente Interpretation 
des beobachteten Verhaltens aussteht, erlaubt der Modellierungsansatz eine 
Strukturelle Analyse der Wirkungsweise und bringt damit neue Erkenntnisse zur 
Rolle von Glukagon und Nahrungsbestandteilen (z.B. Kaffee/Koffein) im " 
Morgengrauen-Effekt" in Diabetes Mellitus. 
Diese Arbeit zeigt, dass physiologische Modelle des Glukosestoffwechsels die 
Diabetes-Forschung, die Entwicklung von automatisierten 
Blutzuckerregelungssystemen und letztlich den täglichen Umgang mit Diabetes 
verbessern können. Der modellbasierte Regler wurde sowohl in-silico, als auch in 
klinischen Machbarkeitsstudien erfolgreich getestet. Das Gesamtverständnis zum 
Glukosestoffwechsel und speziell zur Bedeutung von Glukagon in T1DM kann durch 
die PBPK/PD-Modellierung signifikant verbessert werden, womit zukünftige Studien 
mit dem hier vorgestellten Systems sehr vielversprechend sind.  
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I.1 Background & Motivation 

Diabetes Mellitus is a metabolic disorder characterized by hyperglycaemia (high 
 response to, 

insulin. Diabetes affects a continuously growing population of already over 382 
million patients worldwide. The associated morbidity and mortality of diabetes 
represents a major healthcare burden. Diabetes (Type1 and 2) is affecting approx. 6 
% of the adult population and approx. 15 % of the population over 65. In 2013, the 
disease caused  5.1 million deaths and accounted for global healthcare expenditures 
of USD 548 billion [5].  

Blood glucose levels in healthy humans lie within a narrow range of approximately 
70-110 mg/dl at fasting conditions. In diabetes mellitus type 1 the Insulin secreting 
beta-cells in the pancreas are destroyed by a selective auto-immune reaction, 
whereas in diabetes type 2 th , 
managed by complex interactions of neuronal, hormonal and metabolic signalling 
networks is defective and glucose levels spiral out of control. In both cases the 
balance of insulin and glucose can only be controlled by constant vigilant manual 
insulin therapy by the afflicted individual. Maintaining blood glucose levels within a 
normal range is crucial to reduce long-term complications in patients with diabetes 
mellitus [6, 7]. Automation of this task would relieve patients of the burden of manual 
control and has been shown to lower risk of hypoglycaemia [8] increasing quality of 
life. It also offers good prospects in clinical and economic terms [9], important factors 
which drive the research of automated, integrated glucose control systems aiming for 
an artificial, technical substitution of the defective natural regulatory system in 
diabetes patients. Combined with a subcutaneous (s.c.) continuous glucose monitor 
(CGM) and an insulin infusion pump (IIP), such an integrated system is often referred 

 

To improve both, preventive measures and economic disease management options, 
more research is required to understand all relevant aspects of the glucose insulin 
metabolism (GIM). These can range from disease prevention to management by 
identification of novel targets for type 1- and type 2 diabetes mellitus (T1 and T2DM) 
pharmacotherapies and automation of blood glucose control, i.e. the development of 
artificial pancreas systems [10-13]. 

AP systems have been in research & development for over 50 years but are still out 
of reach for everyday control of blood glucose. Improvements in glucose sensing and 
insulin analogs and their delivery devices have advanced the conditions for 
developing a feasible solution for a fully integrated AP system [14, 15]. The 
superiority of automatic glucose control by s.c. glucose measurements and s.c. 
insulin infusions (s.c.-s.c. route) over manual control has already been demonstrated 
[16].  

Although various control strategies have been designed for the AP [12, 17-21], safety 
concerns remain, which makes bringing these systems to market maturity 
cumbersome. Remaining concerns are partly owed to technical and system inherent 
hurdles such as: (a) accuracy of (s.c.) CGM devices, and (b) physiologic lag times of 
s.c. glucose (measurements) during rapid changes in blood glucose, (c) onset of 
insulin action after s.c. administration, and (d) lingering/tailing insulin action after s.c. 
injection [13, 14, 22]. Various control strategies, from proportional-integral-derivative 
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(PID) control [17-19], to complex fuzzy-logic methods, imitating the decision-making 
of an expert, i.e. the physician [20, 21] have been designed for the AP.  

Nevertheless, physiologic lag times remain a core problem in reactive feedback-
control solutions [12].  Lag-times are best handled with feed-forward control 
solutions, the most widely used approach being model predictive control (MPC) [23-
26]. A key component for such model predictive control approaches are 
mathematical models of the relevant processes. Understanding the complex system 
of interacting hormonal and metabolic signalling networks on the molecular level 
regulating whole-body blood glucose homeostasis, however, still remains 
challenging. Model based research is a standard approach for gaining a deeper 
understanding of diabetes for over half a century now and has since become the 
state-of-the-art approach. Mathematical models of the GIM are developed mainly for 
two reasons: as a tool for fundamental research to analyze the underlying properties 
of the GIM in healthy individuals and individuals with diabetes or as a model kernel 
for automatic blood glucose control in T1DM.  

Structures of early mathematical models of the GIM [1, 27] are, as in classical 
(empirical/descriptive) PK/PD modelling, an abstracted and lumped reflection of the 
underlying physiological properties and mechanisms involved in hormonal glycaemic 
control. Over the years, the availability of highly informative but complex 
physiological data over multiple scales has steadily increased, allowing for detailed 
mechanistic modelling approaches through holistic data integration. Whereas 
empirical modelling is a data-driven, abstract description of input/output relations, 
mechanistic modelling is a direct mechanism-based mathematical representation of 
the underlying physics and chemistry of a certain process using knowledge of the 
interaction/interdependency of process variables. 

The identification of drug targets and the development of pharmaceutical intervention 
strategies as well as modern model-based glucose control algorithms can benefit 
from model kernels with increased accuracy and predictive power [12, 13, 28] 
achieved through detailed mechanistic and structural representations of physiology. 
In recent years, semi-mechanistic modelling approaches with an increased level of 
detail have gained in popularity. The UVa/Padova simulator [29, 30], and the 
Cambridge Model [31] for closed-loop glucose control, do contain physiological 
aspects and represent the current state-of-the-art in glucose modelling used for 
model-based glucose control. However, to date, no system for automatic glucose 
control has been brought to market [15]. Current state-of-the-art models contain 
semi-mechanistic aspects and lumped designs as used in classical PK/PD modelling, 
but are not physiology-based, i.e. do not explicitly reflect physiology in their structure 
by using blood flows for mass flows or organ volumes for model 
compartmentalization. A state-of-the-art model developed more than 25 years ago by 
Sorensen [32] already included such details for the distribution, metabolization and 
excretion dynamics of glucose, insulin, and even glucagon but is no longer used in 
current research..  

Thus, currently used models only partly accommodate the increased availability of 
data with augmented model structures or by only analyzing subsystems leaving the 
following issues: 1) An abstracted, lumped model design (semi-
mechanistic/physiological) masks the mechanistic and structural relation to 
processes and compartments of the organism, making the integration of multi-scale 
data and related translation steps required for fundamental research difficult. 
Integration of multi-scale data can strengthen the extrapolative properties of the 



Optimal Glycaemic Control using PBPK/PD Models  RWTH Aachen University 

 18  
 

simulation models, a critical aspect in automatic glucose control. 2) Isolated analysis 
of subsystems neglects the effect of interacting subsystems. 3) Model simplification 
(abstraction and lumping) obliterates the structural relation between important 
physiology and its mathematical representation, hindering the identification and direct 
quantification of detailed (metabolic) processes to distinguish physiologic differences 
in healthy and diabetic populations. Most importantly for individualized glucose 
control, this simplification also 4) masks the lag-times of distribution processes and 5) 
does not allow the integration of a generic framework for model individualization 
based on patient physiology. 

To address these challenges, a new approach to AGC is taken, which, for the first 
time, combines a detailed generic whole-body PBPK/PD model [2], with a robust 
MPC algorithm for automatic glucose control. The integrated approach presented 
here will address above raised issues with a generic, widely applicable physiological 
model of the glucose-insulin-glucagon regulatory system providing 1) the necessary 
structural detail for the integration of multi-scale data, and 2) detailed mathematical 
descriptions of physiologic processes and properties. 3) It combines subcellular 
systems in one single model, 4) including detailed mechanistic description of 
distribution and action processes (thereby addressing system inherent time-delays, 
i.e. lag-times) and 5) it provides a generic framework for a-priori model-
individualization. The generic mechanistic approach of PBPK models is therefore well 
suited to mechanistically link PK and PD at an organ and molecular level. Based on 

glucose levels [2], adapted over time using continuously gathered patient data, the 
MPC computes an optimal feed-forward control input. To increase closed-loop 
stability and robustness against disturbances and model uncertainties a PID-based 
feedback controller is used for compensation of prediction errors (offset). 

After having evaluated the reliability of the developed PBPK/PD models of the GIM 
[2], and the integrated model predictive control approach [3] in-silico, two mono-
centric, open, non-controlled feasibility studies in subjects with type 1 diabetes were 
conducted.  

Whereas most control approaches [12, 13, 33-35], even semi-physiological MPC 
approaches using the UVa/Padova simulator [29, 30] or the Cambridge Model [31], 
only use insulin for closed loop glucose control, a new approach is bi-hormonal 
control, using glucagon in addition and as a counter-regulating measure to insulin to 
avert episodes of hypoglycaemia [26, 36, 37]. Although El-Khatib et al. have 
evaluated the efficacy of exogenous glucagon in treating hypoglycaemia [38], the 
relevance and influence of endogenous glucagon in the control of blood glucose in 
T1DM is diversely discussed [39]. Even though no exogenous glucagon was used for 
control, blood glucagon levels were measured.  

Retrospective analysis of insulin and glucagon measurements collected during the 
trial, revealed significant glucagon surges, which were observed postprandial and 
coincided with severe insulin resistance for some patients. It has been reported that 
postprandial glucagon surges may occur in individuals with T1DM [40], however, no 
strong evidence for postprandial glucagon was found in previous studies [2, 26, 36]. 
A structural mode-of-action evaluation was conducted to analyze the role of glucagon 
in the -  [41, 42] in T1DM and to evaluate the relevance of glucagon for 
glycaemic control (in T1DM). 
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Here, the results of model development and validation, in-silico evaluation of the 
developed model-based control concept and last but not least the clinical evaluation 
of the integrated control approach within in two 24h feasibility studies for automatic 
glucose control is reported. The studies have been designed as a feasibility study to 
evaluate for the first time the in-vivo performance of the algorithm, first using 
accurate i.v. blood glucose measurements and in the second study using 
commercially available continuous glucose monitors (CGM), in a sedated scenario 
including four meal challenges.  
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I.2 Outline 

This work describes the development of a new control approach, combining a 
detailed generic whole-body physiology-based pharmacokinetic/pharmacodynamic 
(PBPK/PD) model [2], with a robust MPC algorithm for automatic glucose control 
which was subsequently tested within clinical trials. The work is composed of three 
major parts with Part I providing details of the developed model, describing modelling 
methodologies and tools as well as a detailed description of the relevant model 
equations and the methods used for model individualization, 2) Part III describing the 
control concept and the developed algorithm in detail and lastly 3) Part IV, 
documenting the detailed results of two 24h feasibility clinical trials/studies for the 
validation of the integrated control system. As listed above, these three main 
outcomes have been published, are, or will be submitted in peer-reviewed journal 
articles [2-4]. 

After providing background information in Part I, Part II starts with a brief overview on 
state-of-the-art in glucose modelling in Section II.1. Section II.2 gives an introduction 
into modelling tools and then describes the model development and the used 
material. Model development is described in detail in Section II.2.1.  A description of 
modelling tools, data used for model development as well as background information 
on the physiology and pathophysiology of the glucose metabolism is provided in 
Section II.2.2 (and Appendix V.5.2.1.2). Results of the model prediction performance 
are presented in Section II.3. 

Part III describes in detail the integrated control concept. State-of-the-art in control 
algorithms used for glucose control and the most prominent representatives of 
glucose control systems are presented in Section III.1. Background information, 
challenges in glucose control and system integration as well as a detailed description 
of the implemented algorithm, and the methods used to improve control performance 
are described in Section III.2.  Results of the in-silico validation and retrospective 
analysis of the control algorithm are then presented in Section III.3. 

Part IV describes the clinical evaluation of the integrated Automatic Glycaemic 
Control (AGC) system within two 24h feasibility studies conducted at the Medical 
University of Graz. Section IV.1 gives an overview on the setup of the clinical trials. 
The results of the clinical trial are then presented in Section IV.2. The whole 
approach of combining a detailed generic whole-body PBPK/PD model, with a robust 
MPC algorithm for automatic glucose control is then discussed in Part V. 
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Part II.  
 

Physiology-Based Pharmacokinetic / 
Pharmacodynamic Model 
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II.1 State of the Art in Glucose Insulin Models 

The first simple mathematical models of the glucose-insulin metabolism (GIM) 
appeared around 1960 [27]. More advanced models appeared in the following years 
[43]. In 1979, Bergman and Cobelli et al. [1] 
Minimal Model of the GIM that can be considered a milestone and which is still 
subject to examination and criticism in these days [44, 45]. 

Since then, countless models were published trying to capture the dynamics of the 
GIM using different approaches. Attempts were made to:  

 combine the advantages of existing models [46],  

 stabilize model dynamics and improve physiological acceptance [47],  

 derive detailed (glucose absorption) dynamics and equip the models for 
simulation studies [48-50],  

 include transient physiological phenomena like changes in ultradian/circadian 
glucose metabolism and insulin action, as well as oscillations in secretion [50-
53],  

 derive/better characterize specific mechanistic properties (e.g. hepatic glucose 
dynamics) through specific experimental designs [54],  

 model external influences like exercise [55] or  

 use novel modelling techniques like population driven stochastic/Bayesian 
approaches [56-58] or data driven non-parametric (Volterra-type) models [59].  

A review of model types (ODE, PDE, etc.) is given in [60] including parameter 
estimation techniques. A detailed review of PK/PD models with different modelling 
aspects in diabetes mellitus (e.g. effect of catecholamines, fatty acids, steroids and 
drugs) is given in [61]. Further models of the GIM are reviewed in [62] including 
exercise, closed-loop control strategies and global disease models. Up to date 
reviews of current simulation models used for blood glucose control in T1DM was 
published by Roman Hovorka [63] for in-silico evaluation and by Frank J Doyle [64] 
for in-vivo (i.e. clinical) application.  

II.1.1  

The first model of the glucose metabolism that had a remarkable influence on the 

[1]. Its main purpose was to assess the insulin sensitivity SI and glucose 
effectiveness SG in a human individual [65, 66]. 

The model was developed to describe the dynamics of the GIM during an 
intravenous glucose tolerance test (IVGTT) with simple equations (linear and second 
order mass action kinetics) and a minimal number of states and parameters. Over 
the years, a number of groups have adapt , adjusted, 
and even extended it according to their needs [44, 50, 67]. The model was used for 
meal tests [68, 69] and even in industrial applications [63] and extended to describe 
the dynamics of the oral glucose tolerance test (OGTT). A short review of the 
adaptations and extensions (including beta-cell function, insulin secretion and its 
dynamics on a molecular level) of the minimal model is given in [70]. 
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II.1.2 Compartmental PK/PD Models of the GIM  

many cases existing models are augmented but new models are still developed and 
tailored towards the specific interest of each research group. Due to the vast impact 
of Diabetes on society, a number of research groups elevated the topic of the GIM to 
one of their main research areas [71-73]. 

II.1.2.1  Model (Canterbury Model) 

el to 

Insulin-Nutrition-Glucose) model developed at the University of Canterbury by Chase 
et al., the Minimal Model was adapted by using nonlinear saturation dynamics 
(Michaelis Menten) for plasma insulin clearance and insulin-dependent glucose 
uptake. Hepatic glucose production as well as glucose uptake by the central nervous 
system was accounted for [74-77]. 

Chase et al. concentrated their research on blood glucose control in intensive care 
wards (ICU) developing simple but effective protocols for glucose management [74]. 
They are further working on the prediction of sepsis using model-based estimates of 
insulin sensitivity derived from blood glucose measurements [78, 79]. 

II.1.2.2  The UVa/Padova Simulator  

This simulator was jointly developed by the University of Virginia, United States, and 
the University of Padova, Italy. The latest model version originally developed by Dalla 
Man et al. [29] has been accepted by the Federal Drug Administration (FDA) to 
replace animal testing of glucose controllers [30, 63]. 

The simulation model is made up of several parsimonious sub-models. There are two 
main subsystems in the model: the glucose subsystem, and the insulin subsystem, 
which are both described by a two-compartment model. The main novelty of this 
simulation model is a more detailed representation of glucose transit through the 
gastrointestinal tract. The main weakness, however, is that the diurnal variations, i.e. 
intra individual variability, of certain model parameters have not been modelled [63]. 

[29] and in contrast to [31] no information 
on the inter-individual distribution of the model parameters (variability), which would 
be required for robust testing of glucose controllers, is given. 

An overview of the up to date model equations (now including influences of physical 
exercise) can be found in the appendix of [80]. 

II.1.2.3  The Cambridge Model 

Hovorka et al., one of the leading groups in diabetes modelling and control also work 
with compartmental models [81] of the GIM and use model based approaches to gain 
greater detail of the GIM (e.g.: glucose flux distributions during OGTT [82]; interstitial- 
and plasma glucose dynamics [83]). 

The model consists basically of 3 sub-models. One for glucose dynamics (two 
compartmental), a second for insulin dynamics (4 compartmental with one for plasma 
insulin and 3 for interstitial insulin effects) and a third for oral glucose absorption (two 
compartments; a more detailed gut absorption model is used by Dalla Man [29]). 
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The current model (2008) is used for tight glycaemic control in critical care [31] as 
well as for continuous blood glucose control trials for (juvenile and adult) patients with 
T1DM mellitus (T1DM) [16, 84, 85]. 

In the early 2000s, Hovorka participated in 
[86]. His first, often cited approach of a nonlinear 

MPC approach with T1DM patients can be found in [24]. In [87], the ability of the 
MPC algorithm to regulate fasting blood glucose concentration in T1DM patients 
using the s.c. s.c. route is tested. This method is compared with 2 own algorithms in 
[88]
provided by the Medical University of Graz (MUG) for the use within this work. 

Later, Hovorka started to focus his work on tight glycaemic control in ICU patients 
using time variant sampling [89] to estimate changes in insulin sensitivity. He 
compared the performance of tight glycaemic control with standard care [90]. In his 
present work, he still uses the same model in combination with an adaptive algorithm 
for the closed-loop system that is based on model-predictive control (MPC algorithm 
from [22]) [84]. 

II.1.2.4  Physiology-based Modelling 

As mentioned, parsimonious models  originating from 
classical PK/PD modelling did not represent human physiology in detail and semi-
mechanistic modelling approaches with an increased level of detail have gained in 
popularity in recent years [62]. The above mentioned UVa/Padova simulator [29, 30] 
and the Cambridge Model [31] but also the AIDA simulator [91-95], a model initially 
developed for educational purposes, which can also be accessed and used via an 
online platform [96], contain physiological aspects. Although they can be considered 
as semi-mechanistic, they are not physiology-based, e.g. do not explicitly consider 
blood flows or organ volumes.  

The latest physiology-based state-of-the-art model was developed more than 25 
years ago by Sorensen [32]. This model already explicitly included details on blood 
flows and organ volumes and deduced processes for the distribution, metabolization 
and excretion dynamics of glucose, insulin, and even glucagon, the latter of which is 
neglected in most other models. The model is adapted to the dynamics of a mean 
T1DM individual and concepts for an optimal controller for glucose administration in 
T1DM patients under consideration of glucose measurement limitations are also 
provided. The mean diabetic patient was characterized by nineteen differential 
equations, with eleven describing glucose dynamics, seven for insulin dynamics, and 
a single compartment for glucagon. Drawbacks are missing 
detail on the organ level, and a missing framework for model individualization, 
making model individualization and adjustments to inter-individual variability (IIV) 
cumbersome, if not impossible. This may be the reason why on the one hand this 
model was used only for in-silico studies in closed loop control [23, 97-100], meal 
absorption [91] and exercise metabolism  [101], but has never been used as a kernel 
for automated closed loop control in a clinical trial for individual patients, and why on 
the other hand current state-of-the-art models rely on a more parsimonious but easy 
to individualize model structure.  

Since then (the work by Sorensen), no physiology-based model of the glucose-, 
insulin-metabolism has been published. The development of a new integrated 
physiology-based whole-body PK/PD model of the glucose-insulin-glucagon 
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regulatory system consisting of three coupled PBPK models for glucose, insulin, and 
glucagon, built on an easy to individualize modelling framework, will be presented 
here. 
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II.2 Materials and Methods 

II.2.1 Physiology-based PK/PD Modelling 

In the pharmaceutical field, an iterative process is established in which generic PBPK 
models are informed by experimental data, ranging from biochemical molecule 
properties over protein expression data to concentration time profiles. This multi-
scale 
physiological question at hand and subsequently the informed model is used to 
predict outside of the experimental data space. Using this step-wise procedure, all 
experimental data can be effectively integrated into the PBPK model as it becomes 
available over time, as is the case in clinical development. 

The coupled PBPK/PD model of glucose metabolism was developed using 
Computational Systems Biology Software Suite® 5.1.3 (PK-Sim® 5.1.3 and MoBi® 
3.1.3), commercial software packages for PBPK and molecular biology modeling 
[102-104]. The detailed model is described in II.2.1.1. Model identifications and 
model parameterization have been conducted using the MoBi® Toolbox for MATLAB® 
2.2 (PK-Sim®, MoBi®, and the MoBi® Toolbox for MATLAB® have been developed by 
Bayer Technology Services GmbH, Germany, available free of charge for academic 
use @ www.systems-biology.com; MATLAB® is a product of The MathWorks Inc., 
USA). A general description of the software platform including a detailed example of 
how to build coupled PBPK models and simulate virtual populations has been 
published [103, 105]. Model development is described in detail in Section II.2.1.1.  

 

Figure 1: Graphical user interface of MoBi®  
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(Figure 2), mainly in terms of permeation and partitioning into the different sub-
compartments. A detailed description of the distribution equations can be found in 
[103]. 

Starting with a general model overview, the following section describes in detail the 
development of the PBPK/PD model of the glucose-insulin metabolism. 

II.2.1.1 Modelling the Glucose Insulin Metabolism 

The strategy for the development of a computational kernel for individualised 
mechanistic models was to start with healthy subjects and then move towards 
modelling of subjects with diabetes. Although individuals with T2DM, in severe cases, 
do also use insulin replacement therapy, this work focuses on automated glucose 
control in T1DM. This was done mainly for two reasons: First, there is a lot more data 
available on subjects with T1DM than for T2DM and healthy individuals, and second, 
the glucose metabolism of subjects with T2DM is far more challenging to model due 
to co-morbidities and the multifaceted background from which the disease evolved. 

The dynamics of glucose, insulin and glucagon are interdependent [106]. The models 
of each compound can thus not be developed separately [103] by first fitting the 
compound pharmacokinetics (PK) and then being coupled by the pharmacodynamic 
(PD) interactions. The models have to be developed together as an integrated PK/PD 
model of all three compounds. 

II.2.1.1.1 Model Overview 

The basis for the model is the combination of formalisms for drug distribution with the 
spatial structure of the physiology-based compartmentalization. The modeling 
platform [104] offers two formalisms for drug distribution: a 4-compartment model 
with reduced complexity [102] used for the calculation of small molecules, and a two-
pore formalism model (describing endothelial diffusion using a porous-membrane 
model based on [107]) developed for large proteins (therapeutic proteins/biologics). 
As, insulin and glucagon are proteins 20 and 30 times the size of glucose, the two-
pore formalism model was chosen as the common calculation method for all three 
compounds.  

The rates of PK-Sim® default distribution processes as well as all additionally 
implemented transport and metabolization processes and PD interactions of the GIM 
model are implemented dependent on organ sizes to allow individualization, 
generally using allometric scaling considerations. 

This is done by incorporation of a priori knowledge into the model that is relevant for 
predicting the pharmacokinetics of a drug in adults with varying anthropometric 
properties. Required knowledge on anthropometric properties includes the 
anatomical and physiological changes associated with age, weight, height, gender 
and race (e.g. age dependence or whole-body weight dependence of organ sizes, 
blood flows, etc.) as well as an understanding of how the activity of active processes 
(e.g. clearance processes, transporters), which affect drug pharmacokinetics, scale 
with relation to these properties. Once this adult PBPK model has been established, 
it can be used to extrapolate to individuals, be it adults, children or elderly outside the 
selected cohort [85]. 

The workflow for the model development was to use publicly available glucose-
metabolism models as a basis and inspiration for the physiology-based PK/PD model 
(see Table 1). Due to the very detailed compartmental structure of the PBPK models 
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that are developed with PK-Sim® a strong physiological focus is paramount. After 
reviewing the literature, the physiological model developed by Sorensen [32] was 
used as an initial basis. The implemented pharmacodynamic interactions of the 
PBPK/PD model developed here are based on the Sorensen model equations. 
These pharmacodynamic interactions were extended and refined based on current 
biomedical knowledge and new experimental data. Data from literature, from a 
clinical partner (the Medical University of Graz (MUG)), and data collected during the 
clinical trials conducted within the framework of this thesis was used for model 
development. The latter also led to a redesign of pharmacodynamic effects of 
glucagon (Section II.2.1.1.3.1.2). Also, the model developed here provides a more 
detailed compartmental model structure with a powerful database and framework for 
model individualization which comes with PK-Sim®.  

The concept of translating whole-body GIM physiology into a PBPK model structure 
is depicted in Figure 3A/B and, on a more detailed (mechanistic) organ and 
molecular level, in Figure 3C. The model components and sub-models, characterized 
by number of parameters (#P) and system states (#S) as well as their developmental 
history are listed in Table 1.  

The glucose PK model features a detailed compartmental oral absorption model 
[108] reflecting gastrointestinal (GI) physiology such as anatomical dimensions and 
mucosal blood flow with explicit representations of facilitating and sodium-dependent 
glucose transporters 2 and 1 (GLUT2 and SGLT1). To reflect known glucose 
distribution physiology the model features tissue specific facilitating transporters 
(Figure 3C, h, GLUT-2,-3,-4) in liver, brain and periphery. The PBPK model for insulin 
was extended by an adapted version of a published subcutaneous (s.c.) absorption 
model [109, 110] to account for s.c. administrations. As literature data [111] and 
model simulations suggest that insulin distribution, i.e. extravasation, is an insulin-
receptor (IR) mediated process [112], receptor-mediated transcytosis of insulin was 
implemented as PD dependent PK (Figure 3C, g). Similar as for insulin, the PBPK 
description of glucagon, a generally omitted [1, 31, 113] or lumped [32, 46] 
component in state-of-the-art models, was also extended by a s.c. absorption model. 

The PBPK models are interlinked via detailed molecular PD mechanisms (Figure 
3A/C, Table 1 lower half). As in Sorensen [32], the mathematical representation of 
the PD interactions is based on sigmoidal transfer-functions. The model features two 
additional key PD components. A model representing the incretin mediated effects 
following oral absorption of carbohydrates and an insulin receptor model within the 
insulin sensitive tissues, fat, muscle, and liver. The insulin receptor is the key 
mediator of insulin action but also clearance. It thereby couples PK with PD and 
reflects in a natural physiological way the observation that insulin action in insulin 
sensitive tissues correlates better with degradation than with delivery [117, 118]. 
Standard compartmental GIMs do not explicitly represent this dependency. 

Model development was based on datasets from standard tolerance tests (glucose 
and insulin) [32] and a published clinical-trial dataset by El-Khatib et al. [36]. The 
respective simulation results are presented in Section II.3. First, the performance of 
mean models for healthy volunteers and T1DM patients are described. In a second 
part, evaluation results for individualized models based on the clinical-trial data are 
presented. Here, data from the first visit was used for parameter identification, and 
data from the second visit was used for model evaluation. Details on the model 
development are documented in Section II.2.1.1. 
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(IR) insulin is eliminated from the plasma (g) by trans-endothelial transport, and in the interstitial space (k) 
triggering molecular signaling in target tissues inherently coupling its PK and PD (k, m). Two receptor models 
from literature (Quon et al. [114], dashed lines; Koschorreck at al. [115], solid shaded lines) were evaluated. 
Adapted to the same organism and tissues (human fat, muscle, and liver), both models show similar responses to 
insulin stimulation [116]. Thus, the less complex model by Quon at al. was implemented in the PBPK model, 
curated and adapted to human physiology (un-shaded receptor-states, see Section II.2.1.1.3.3). At the molecular 
level, downstream signaling of the insulin receptor model in fat and muscle triggers translocation of insulin 
sensitive glucose transporter GLUT4, increasing peripheral glucose uptake (m, h). 

Table 1: Overview of model components/sub-models giving a short description of used model components 
and the associated number of parameters (#P) and system states (#S). Models are described in detail in Section 
II.2.1.1 and referenced publications. Modified parameters are documented in Appendix V.5.1.2. 

Model #P #S Description Sourcea 

PK 
Base model 

PBPK 
models 

~2000 ~1000 Coupled protein (2-pore formalism) PBPK 
models for glucose, insulin and glucagon 

None, developed 
within this work; 
for software see 
Eissing et al. [103] 

Subcellular models 

Insulin 
Receptor 

18 6x15 Published receptor model, neglecting the 
twice bound insulin receptor state; used for 
trans-endothelial transport of insulin in 15 
organs. 

Quon/Sedaghat et 
al. [114, 119] 

Add. absorption models 

Oral 
Glucose 
Absorption 

10 [-] GI-Tract model integrated in the PBPK 
modelling platform (PK-Sim®) extended by 
facilitating glucose transporters in the small 
intestine. 

Extension of 
Thelen et al. [108] 

Insulin 
Absorption 

6 3 Single shell representation (mainly used for 
fast-acting insulin) of a published model. 

Tarín et al. [109, 
110] 

Glucagon 
Absorption 

2 2 Parsimonious absorption model with 
unspecific binding and degradation 
reactions. 

None, developed 
within this work 

PD 

Base model 

PD 
interaction
s 

34 2 PD interaction transfer functions, adapted 
and refitted. 

Sorensen et al. 
[32] 

Incretin 
Effect 

10 2 Empirical model to describe the effect of 
oral glucose absorption on insulin secretion. 

None, developed 
within this work 

Subcellular models 

Insulin 
Receptor 

22 6x3 Published receptor model, neglecting the 
twice bound insulin receptor state; used for 
target tissue effect of insulin in 3 organs 
(muscle, fat, and liver). 

Quon/Sedaghat et 
al. [114, 119] 

Insulin 
Secretion 

12 3 Published insulin secretion model, 
implemented from literature. 

Sorensen et al. 
[32] 

Glucagon 
secretion 

4 - Published insulin secretion model, 
implemented from literature. 

Sorensen et al. 
[32] 

II.2.1.1.2 Pharmacokinetics 

In this section, the pharmacokinetics, i.e. in simple terms the processes exerted on 
the drug by the body, the ADME of glucose, insulin and glucagon are described 
together with their mathematical representation in the model. The 
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pharmacodynamics, in simple terms the effects of glucose, insulin, and glucagon on 
the body, is documented in Section II.2.1.1.3. 

II.2.1.1.2.1 PK of Glucose 

Distribution of glucose, as shown in the schematic in Figure 3C, is mediated by the 
PK transport processes blood flow (a) and diffusion (b) and to a minor extent by two-
pore transport (e) and lymph flow (c).  

Facilitative processes for glucose uptake were implemented in the model to reflect 
known glucose distribution physiology via tissue specific facilitating transporters 
(Figure 3C, f); Sodium-dependent glucose co-Transporter-1 (SGLT-1) in the intestinal 
mucosa, Glucose Transporter 2 (GLUT-2) in the liver and intestinal mucosa, Glucose 
Transporter 3 (GLUT-3) in the brain, and insulin sensitive Glucose Transporter 4 
(GLUT-4) was implemented in the insulin sensitive tissues fat and skeletal muscle. 

Further, glucose is metabolized in all tissues in the intracellular compartment as well 
as in red blood cells and, at high plasma concentrations, excreted by the kidneys. 
The renal glucose excretion function was adapted from Sorensen [32].  

II.2.1.1.2.1.1 Oral Glucose Absorption 

The default PBPK model features a detailed generic oral absorption model structure 
[108, 120] reflecting detailed GI physiology such as anatomical dimensions, mucosal 
blood flow, local pH profiles, fluid secretion and resorption as well as entero-hepatic 
circulation [121]. The generic structure allows for (multiple) applications of multiple 
drugs to transit at any time, which is important for repeated food intake in 
combination with (anti-diabetic) drugs. Basolateral facilitating and apical active 
sodium-dependent glucose transporters GLUT2 and SGLT1 are added for glucose 
transit from lumen to the mucosal interstitial space [122-125].  

The extent of the postprandial appearance of glucose in the blood is defined by the 
amount of carbohydrates (CHO) per meal [126]. The GI model accounts for food 
effects on gastric emptying time and intestinal transit times in the small and large 
intestine dependent on the caloric content, meal volume and the fraction solid of a 
meal [104]. 

Once absorbed, glucose is transported to the interstitial space of the mucosa by 
GLUT2 on the basolateral membrane of the enterocytes. Transport processes were 
modeled using Michaelis-Menten kinetics for SGLT1 and Convenience kinetics [127] 
for the bi-directional GLUT2: 

 

 

 

 

 

with transporter concentrations  and , catalyzation constants  for 
luminal SGLT1 uptake of glucose,  for GLUT2 transport of glucose from mucosa 
cellular to interstitial space,  for reverse GLUT2 transport of glucose from mucosa 
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interstitial to cellular space,  the volume fraction of mucosa cellular space,  
the total volume of mucosal tissue,  concentration for half maximal SGLT1 
uptake rate of glucose from intestinal lumen,  concentration for half maximal 
GLUT2 transport rate of glucose from cellular to interstitial space,  concentration 
for half maximal GLUT2 transport rate of glucose from interstitial to cellular space, 

 luminal glucose concentration,  cellular mucosal glucose concentration, 
and  interstitial mucosal glucose concentration. 

  values were taken from literature [128] and set to 17 mmol/l (~300 mg/dl) and 0,2 
mmol/l (~11,11 mg/dl) for GLUT2 and SGLT1, respectively. Values  for absolute local 
expression levels  in the respective segment of the small intestine and a 
global catalytic rate constant  (giving  [129]) of the SGLT-1 
transporters distributed over the small intestine (duodenum, jejunum, ileum and 
caecum) have been fitted using the glucose appearance rate from the OGTT in [32]. 
The values identified (for a 70 kg male) are depicted in Table 4. 

Accordingly, absolute local expression levels  in the respective segment of 
the small intestine of the corresponding GLUT2 transporters were set to the same 
value. The estimated glucose appearance rate profile can be partially validated as 
the total amount absorbed from a OGTT corresponds to values that have been 
reported in literature (approx. 97-100% of total glucose administered) [32]. Also, the 
model predictions of glucose absorption from meals in the tested datasets were 
satisfactory. 

Oral ingestion of glucose triggers a pharmacodynamic effect on insulin secretion and 
intestinal blood flow. This effect is called the incretin-effect and is described in 
II.2.1.1.3.5. 

II.2.1.1.2.1.2 Organ Glucose Metabolization  

Basal metabolization rates (Figure 3C, i) of glucose in brain tissue, peripheral tissue 
(fat and muscle), the liver, and red blood cells (RBC) were taken from [32], while the 
RBC metabolization of glucose was distributed over all RBC compartments. The 
metabolization rate of the periphery was divided between fat and muscle tissue and 
gut tissue metabolization was redistributed over all remaining passive tissues in the 
PBPK model. The first step in glucose metabolization (respectively glycolysis) is 
mediated by hexokinase: 

 

With cellular concentrations of hexokinase , organ cellular volume , maximal 
rate of metabolization , cellular glucose concentrations , and concentration 
value of half maximal rate . 

We neglected an explicit distinction of resting energy expenditure by both, age as 
well as sex, as effects are below 5% over 30 years and non-existent below 30 years, 
respectively [130]. The resulting cellular concentrations of hexokinase in each organ 
are listed in Table 4, Appendix V.5.1.2. 

II.2.1.1.2.1.3 Glucose Transporters  

The number of known glucose transporters (GLUT) which have been identified over 
the past years has increased considerably [131]. Besides facilitating glucose 
transporter GLUT2 and sodium-dependent glucose transporter SGLT1 in the small 
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intestine, GLUT2 in hepatic tissue, GLUT3 in the Brain and GLUT4 in insulin 
sensitive peripheral tissue are also included. 

Rate of GLUT4-dependent glucose uptake is defined as saturating irreversible MM 
kinetics with a Km-Value of 8 mmol/l ((144 mg/dl), approx. two fold above steady state 
of physiological glucose concentrations [128]). The -value of GLUT4 is 
determined by the amount of GLUT4 translocated to the cell surface through the 
stimulation of insulin. This process is described in Section II.2.1.1.3.4. 

The basal glucose uptake from the periphery, , i.e. fat tissue and skeletal 
muscle, amounts to approximately 35 mg/min for a mean adult male individual [32]. 
As adipose and muscular tissues are modelled separately, this basal rate is divided 
between those two tissues. Fat is reported to account for approx. 20% and muscle 
for approx. 80% of peripheral glucose uptake [132]. This is reflected by the relative 
distribution of amounts of GLUT4 available for translocation in the respective tissue. 

GLUT2 in the liver is modelled as in the small intestine (see Section II.2.1.1.2.1.1). 
GLUT3 in the Brain was also implemented as a reversible Michaelis-Menten kinetics 
to overcome the blood-brain barrier and defined as: 

 

with transporter concentration , catalyzation constants ,  the volume 
fraction of brain vascular space,  the total volume of brain tissue,  
concentration for half maximal GLUT3 transport rate of glucose from cellular to 
vascular space,  concentration for half maximal GLUT2 transport rate of glucose 
from vascular to cellular space,  cellular cerebral glucose concentration, and 

 vascular cerebral glucose concentration. 

II.2.1.1.2.2 PK of Insulin 

Key features of the insulin PK model are the role of the insulin receptor in distribution 
and uptake/excretion of insulin and the absorption of subcutaneously (s.c.) 
administered insulin. Further, as a large molecule, passive diffusion of insulin is 
significantly reduced, thus increasing the relevance/impact of lymph flow, as well as 
endothelial convection and diffusion flows through endothelial pores [107], based on 
the hydrodynamic radius and the molecular weight of the compound. 

Especially in insulin sensitive tissues like muscle, fat, and the liver, diffusion across 
the endothelial barrier is enhanced via receptor-mediated transcytosis [112]. In these 
tissues, uptake, metabolization, and excretion (or degradation) of insulin is also 
mediated by the insulin receptor (Figure 3C, k). Insulin receptor mediated clearance, 
besides glomerular filtration, is also involved in renal clearance, but not specifically 
accounted for within the PBPK/PD model. Renal insulin clearance, was modeled as a 
non-saturating plasma clearance process expressed in Fractions of the standard 
glomerular filtration rate. 

Degradation and transport of insulin can be impaired by circulating levels of anti-
insulin antibodies [133]. Effects of antibodies were modeled using the standard PBPK 
description of protein binding to compounds assuming quasi-stationary dynamics 
[104]. 
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II.2.1.1.2.2.1 Subcutaneous Absorption 

Injected insulin in the s.c. depot can transfer to hexameric and microprecipitated 
states, thus complicating the absorption process. As insulin is typically administered 
s.c. in clinical practice, the PBPK model for insulin was extended by a loose single 
compartment adaptation of a published s.c. absorption model [109, 110], here used 
only for the absorption of rapid acting insulin. Hexamerization is substituted for 
unspecific binding, as tendency of rapid-acting insulin to form hexamers is minimized 
[134]. The absorption model was implemented in a small fat-depot, with physiological 
properties identical to fat tissue as represented in PK-Sim®, which was added to the 
compartmental structure.  

We added s.c. degradation, as it is reported that s.c. insulin has a bioavailability of 
below 100%. Degradation of s.c. insulin is not accounted for in the model of Tarín et 
al. [110]. However, insulin Lispro, which is used in this study, has a reported 
bioavailability of only 55-77% [135]. Although, other models of s.c. insulin absorption 
already account for s.c. degradation [136], the model used here showed the best 
results (data not shown). Transport of insulin monomer/dimer from the depot to 
plasma and through lymph was calculated by standard PK-Sim® distribution rates. 

 

 

 

 

 

with interstitial insulin concentration,  bound interstitial insulin concentration, 
 rate of s.c. insulin infusion,  , rate of s.c. unspecific insulin binding,  , 

with binding affinities,  , and rate constant,  , rate of insulin absorption from the 
s.c. depot,  , which is described by the standard passive PK distribution 
processes from PK-Sim®, rate of s.c. insulin degradation,  , with degradation 
constant, . The model concept of Tarín et al. [110] was designed for bolus 
injections and is unsuitable for the continuous mass flow of continuous insulin 
infusions as volumes for injection depots were calculated from the amount and 
concentration of the injected insulin, and thus only suitable for single injections. 
Switching to mass balances and dynamically changing volumes for continuous 
infusion on the other hand proved computationally exhaustive. Thus, for now, only a 
single static shell was retained. Effects of individual properties of s.c. tissue on 
hexamerization were fitted individually via the parameter . The extent of s.c. 
degradation  was also fitted individually. The default parameters [110] were 
scaled to the base unit [µmol/l]. 

II.2.1.1.2.2.2 Trans-endothelial Insulin Transport 

The exchange across capillary walls in each organ is modeled using the 2 pore 
model formalism. The exchange across capillary walls is described by the two pore 
theory, assuming convection and diffusion through two types of pores [107, 137]. 
Compound-dependent parameters (permeability and osmotic reflection coefficients) 
are estimated from the hydrodynamic radius or the molecular weight of the 
compound. From the interstitial space the drug is transported back to circulation by 
lymphatic flow.  
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Model simulations show that the passive diffusion processes (2-pore transport and 
trans-membrane diffusion) across the vascular endothelium is too slow to account for 
observed peripheral plasma/interstitial concentration gradients [111], suggesting 
additional transport mechanisms. Additional unidirectional apical to basolateral trans-
endothelial transport, mediated by insulin receptors (transcytosis), was implemented 
to take place in endothelial cells (via endosomes) of each organ [112, 138, 139]. 
Even for liver endothelium, extensive receptor-based transcytosis was observed 
suggesting the presence of a tissue-blood barrier in the liver [140]. Once ligands are 
bound to the insulin receptor in the endosome they are transported one-way from 
plasma to the interstitial space of the organs (Figure 3C, g). Receptor-based 
transcytosis of insulin uses the same receptor model as for target tissues but within 
the endosomal compartment. Endosomal degradation of insulin was neglected 
assuming a recycled fraction of 100%. Insulin is released into the interstitial space in 
parallel to reaction  (Figure 3C) also with the rate of . 

As insulin stimulates trans-endothelial transport, an insulin stimulated increase in 
endosomal insulin receptor transcription is assumed. A slow change in the rate of 
receptor transcription is assumed and thus the total amount of endosomal insulin 
receptor is scaled with the value for insulin sensitivity: 

 

With the default basal endosomal insulin receptor concentration  and insulin 
sensitivity . Further, endocytosis of insulin receptor to the apical membrane is 
stimulated by receptor phosphorylation: 

 

With the default endocytosis rate constant  [119], insulin sensitivity, , and basal 
( ) and total ( , sum of edocytosed and membrane standing) 
phosphorylated insulin receptor. 

II.2.1.1.2.3 PK of Glucagon 

ADME properties for glucagon are less well understood as for glucose and insulin 
and glucagon kinetics are generally omitted in state-of-the-art models [1, 31, 113] or 
implemented using parsimonious models [32, 46]. Here a full PBPK description of the 
glucagon model is used. The model was only extended by processes for s.c. 
absorption and hepatic uptake, excretion, and metabolization and Dipeptidyl 
Peptidase-4 (DPP-4) associated plasma degradation. 

Based on new insights gained from the clinical feasibility studied conducted within 
the framework of this thesis (see Section IV.2.3, Figure 31), the original glucagon 
secretion function from [32] is extended by an incretin effect mediated component 
(Section II.2.1.1.3.5). 

II.2.1.1.2.3.1 Subcutaneous Absorption 

As for insulin, a reduced one-shell adaptation of the model by [110] was implemented 
into the PBPK/PD model structure for the s.c. absorption of glucagon. Parameter 
values were recalculated for the model base unit µmol/l. 

The model consists of two states and two reactions. Molecular glucagon ready for 
absorption can react to an unspecific-bound glucagon state but is also subject to s.c. 
degradation to account for the low bioavailability, as glucagon reaches the systemic 
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circulation with a minor time-delay and a bioavailability of 35%-39% [141]. The model 
was identified using the glucagon data from the study by El-Khatib. The model is 
defined as follows: 

 

 

 

with interstitial unbound and bound glucagon, , and, , injected glucagon, 
, rate of absorption from the interstitial compartment, , which corresponds to 

the standard passive transports from a PBPK/PD model, the rate of unspecified 
binding , with binding affinity,  , and rate constant,  , and s.c. clearance, 

. The default parameters [110] were scaled to the base unit [µmol/l]. 

II.2.1.1.2.3.2 Glucagon Clearance/Degradation 

The mechanisms regulating degradation and clearance of glucagon from the plasma 
remain incompletely understood. The enzyme Neutralendopeptidase 24.11 in pigs 
[142, 143] and DPP-4 in vitro [144, 145] have been shown to degrade Glucagon. The 
kidney also remains as a major determinant for glucagon elimination [146]. 
Enzymatic plasma degradation (i.e. by DPP-4) has been implemented as: 

 

with vascular organ glucagon concentration, , Hematocrit,  , total organism 
plasma volume, , , the volume fraction of the respective organ vascular 
space, , the total organ volume the fraction unbound, , of glucagon. 

As insulin, glucagon is most likely cleared by the liver through receptor-mediated 
endocytosis. Due to the limited knowledge about glucagon receptor, a G-protein 
coupled receptor (GPCR), a simple representation of receptor dynamics in liver 
tissue was chosen. Glucagon is extracted from hepatic interstitial space when it binds 
to its receptor and cleared in the hepatic endosome upon receptor internalization. 
The receptor dynamics are defined: 

 

 

 

 

with rate constants , free membrane receptor , bound and endocytosed 
receptor , endocytosis rate  and receptor recycling rate . 

II.2.1.1.3 Pharmacodynamics 

The pharmacodynamic (PD) processes of the GIM model describe the direct and 
indirect interaction of glucose, insulin and glucagon. Pharmacodynamics can be 
either modelled as empirical/descriptive effect models, i.e. black boxes or as 
(molecular) mechanistic models. A number of interactions are described by the 
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threshold functions adapted from Sorensen et al. [32]. However, the insulin 
modulated functions are now modulated by concentration of activated 
(phosphorylated) insulin receptor. For this, an insulin receptor model adapted from 
Quon et al. [114] is included. For peripheral translocation of GLUT4, a simplification 
of the post-receptor signaling cascade model developed by Sedaghat et al. [119] is 
used. Further, model descriptions for the incretin-effect describing the PD effect of 
orally ingested glucose on insulin secretion and intestinal blood flow is added. 

In many cases, enzymatic pharmacodynamic effects (i.e. mediated by a signalling 
cascade) are often described with empirical functions (or transfer-functions) that 
directly relate the applied input to the observed effect. Enzymatic interactions are 
often described by Michaelis-Menten or Hill equations [147]. For example, Figure 4 
describes the relative change in hepatic glucose production as a function of hepatic 
interstitial glucagon concentrations. As described above, the generic modulating 
functions M used for the description of PD effects of glucose, insulin and glucagon 
were inspired by the threshold functions in [32] and are defined as: 

 

with effector responsiveness , effector sensitivity , the relative effector (e.g. 
relative concentration of phosphorylated insulin receptors: , or interstitial 
glucagon or glucose) concentration , the reaction rate at zero concentration V0, 
the maximal change in the rate of reaction , the relative concentration of half 
maximal change in rate of reaction  and the cooperativity exponent . The effect of 
changes in ,  and , are shown exemplary for glucagon-dependent hepatic 
glucose production in Figure 4. 

 
Figure 4: Exemplary illustration of how changes in the sensitivity ( , left plot, sensitivities ranging from 0.1 (flat) 

to 6 (steep), or right to left) and responsiveness ( , right plot, responsiveness ranging from 0.1 to 6, from flat to 
steep at (1/1)) of a PD function changes its properties. The thick line represents the PD function at  =1 (left plot) 

and =1 (right plot) which is the same for both plots. Shown is the effect of glucagon on liver glucose production 
as modelled by the generalized Hill-function and corresponding data shown as squares (  from Section 
II.2.1.1.3.1.2) 
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The reason why generalized Hill-functions were used instead of hyperbolic tangent 
functions for the description of the threshold function is the intuitive parameterization 
for changes in sensitivity and responsiveness. Here, only changes in the threshold 
functions in comparison to the functions used by Sorensen [32] will be described.  

Functions for peripheral glucose uptake were replaced by the GLUT4 transporter 
subsystem (Sections II.2.1.1.2.1.3 and II.2.1.1.3.4). Earlier publications showed that 
glucose effectiveness of the original Sorensen model and other glucose models 
seemed to be excessive in studies with type 1 diabetes [45, 148] (no studies for 
healthy individuals available). Thus, glucose effectiveness was reduced to dampen 
the fast decrease from high glucose levels at basal insulin. Consequently the effect of 
insulin on glucose production was increased for low insulin levels and glucose uptake 
was increased for high insulin levels (Figure 5, Section II.2.1.1.3.1.1, and Table 4, 
Appendix V.5.1.2). Insulin PD functions are now dependent on concentrations of 
phosphorylated insulin receptor. Taking the time-delay of the insulin receptor 
subsystem into account, the time constant for the insulin PD functions was reduced 
from 25 min to 5 min. Changes are described in detail in the following section. 

II.2.1.1.3.1 Liver Glucose Homeostasis 

The liver is an organ that can both, store glucose and release glucose back into the 
blood stream. Glucose is mainly stored in the liver as glycogen and the liver is also 
capable of generating new glucose from proteins and pyruvate (gluconeogenesis). 
The liver is therefore responsible for maintaining a steady glucose balance, i.e. 
homeostasis, in the blood. The equations to describe (saturating) insulin, glucagon, 
and glucose-dependent glucose production and storage in the liver were 
implemented in the PBPK model and are described in the following. Again, for many 
of the following equations, the model by Sorensen [32] served as a template from 
which the final equations were derived. 

II.2.1.1.3.1.1 The Effect of Insulin 

Insulin exerts its effect in liver glucose homeostasis via two partly distinct pathways: 
the stimulation of hepatic glucose uptake (HGU) and the inhibition of hepatic glucose 
production (HGP). In the Sorensen model, the effects of insulin on HGU and HGP 
were implemented as modulating functions  and  using the hyperbolic 
tangent function. With the implementation of the insulin receptor model (described in 
Section II.2.1.1.3.3) the effector of both,  and , were changed to the sum 
phosphorylated insulin receptor . The function of insulin-dependent glucose 
production ( ), here described once as an example for all modulating functions is 
thus defined: 

 

with sum of phosphorylated insulin receptor , sum of basal phosphorylated insulin 
receptor , liver insulin responsiveness , and liver insulin sensitivity . As 
explained above, the insulin effect on glucose production was increased because at 
low insulin levels it was observed that glucose production was higher than previously 
assumed by Sorensen. The function of  is shown in Figure 5 (left). 
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Figure 5: Corrected PD-function of  (left) and  (right). The green line represents the original 
hyperbolic tangent threshold function used by Sorensen. The blue line represents the refitted generalized 
Michaelis-Menten/Hill-equation used here. Measurement data as extracted from [32] is plotted as black squares. 

Insulin-dependent glucose uptake is also adjusted. As the glucose effectiveness of 
the original Sorensen model is excessive [148], glucose effectiveness is reduced to 
dampen the fast decrease of glucose at basal insulin; consequently the insulin effect 
had to be increased (see Results, Figure 11, Section II.3.1). The resulting function of 

 is shown Figure 5 (right). 

It is to be noted that in state-of-the-art models of glucose metabolism [149], basal 
hepatic glucose production for subjects with type 1 diabetes is adjusted (i.e. 
increased) to emulate the reduced hepatic exposure to insulin (see Section 
II.2.2.2.2). Given the physiologic structural detail of the model developed here, a 
different approach is taken. In healthy subjects, insulin is endogenous, meaning that 
the liver is exposed to high levels of insulin which is released from the pancreas in 
close proximity to the liver, and this proximity is actually reflected in the 
compartmental structure and connectivity of the model. In subjects with T1DM, where 
insulin is exogenous and the pancreas does not release insulin, the liver is exposed 
to a lower level of insulin and insulin control over hepatic glucose homeostasis is 
reduced. This natural distribution of insulin is thus accounted for in the physiology-
based PK/PD model due to its detailed description of the human physiology and 
distributive fluid flows. 

On the other hand, with exogenous insulin, the periphery is now exposed to a higher 
level of insulin compared to the healthy subject. Insulin may thus still exert almost its 
full inhibitory effects on hepatic glucose production by indirect means by reducing 
gluconeogenic precursor load or insulinization of the brain, thus activating a central 
nervous system signal to the liver [150]. However, this route of insulin action is 
difficult to quantify and has never been modelled before and is not included here. 

II.2.1.1.3.1.2 The Effect of Glucagon 

Glucagon kinetics may be deteriorated in subjects with T1DM [151]. As this may be 
the case only for some subjects, the effects of glucagon on glucose homeostasis are 
especially hard to be identified when using mainly clinical data from subjects with 
T1DM as it was done here. Due to the yet limited knowledge on the PK/PD of 
glucagon, initial implementations were based on the simple model from [32]. 
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Based on the data gathered from the clinical feasibility studied conducted within the 
framework of this thesis (see Section IV.2.3, Figure 31), the possibilities of glucagon 
not only affecting hepatic glucose production, , but also uptake, , was 
evaluated to assess if postprandial surges of glucagon, caused by the incretin effect 
(Section II.2.1.1.3.5) may explain temporary periods of insulin resistance in the early 
morning. However, no consistent explanation was found. Elucidating the role of 
glucagon in glucose homeostasis is thus an on-going effort. The parameterizations 
for  and  are listed in Table 4. 

II.2.1.1.3.1.3 The Effect of Glucose 

In simulation experiments (see Results, Figure 11, Section II.3.1) it was observed 
that the counter-regulation of glucose at the low and high end of glucose levels is 
generally too strong. Even at basal insulin (infusion of a basal rate in Subjects with 
T1DM assured a constant low basal insulin concentration) the decrease in glucose 
levels was immense. The values of the generalized Hill-function for  and  
were thus reduced at the upper and lower end of glucose concentration scale, 
respectively, as can be seen in Figure 6. Parameterizations are listed in Table 4, 
Appendix V.5.1.2. 

 

 

Figure 6: Corrected PD-function of  (left) and  (right). The green line represents the original 
hyperbolic tangent threshold function used by Sorensen. The blue line represents the refitted generalized 
Michaelis-Menten/Hill-equation used here. Measurement data as extracted from [32] is plotted as black squares. 

II.2.1.1.3.2 Insulin Production and Secretion 

The pancreatic islets are innervated by the autonomic nervous system and some of 
the pathways have been traced. Islet cells are excitable and their membrane 
potentials may oscillate. Glucose is transported into beta-cells through low affinity 
GLUT1 and GLUT2 (mainly GLUT1) plasma membrane transporters. However, this 
means of glucose supplementation are inefficient at basal blood glucose 
concentrations (5 mM) such that the cells are starved for glucose. Any increase in 
plasma glucose consequently increases glucose availability within the cells. 

Glucose phosphorylation in beta-cells uses low-affinity glucokinase. The enzyme is 
not saturated with its substrate. The phosphorylation rate varies with intracellular 
glucose concentration, so in beta-cells the glycolytic rate ultimately depends on the 
glucose concentration in arterial blood. This means that intra-islet ATP 
concentrations rise directly with arterial blood glucose levels causing Potassium 
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efflux channels to close which leads to a drop in potassium levels and depolarization 
and activation of voltage-dependent calcium channels. This leads to calcium spikes 
and action potentials triggering exocytosis and insulin release from stored secretory 
granules. 

A pancreatic insulin secretion sub-model from Landahl and Grodsky [152], re-
parameterized to the human metabolism in [32], was implemented in the PBPK 
model. A schematic of the model can be seen in Figure 7. The insulin secretion 
model was extended by incorporating the influence of incretins after oral glucose 
absorption as described in Section II.2.1.1.3.5. 

 

Figure 7: Schematic of the insulin secretion model developed by Landahl and Grodsky [78] taken from [32]. 

A small labile insulin compartment was assumed in exchange with a large storage 
compartment, with a glucose-stimulated provisionary factor  regulating the rate of 
labile compartment filling. The rate of insulin secretion  is dependent on the quantity 
of labile insulin  and the difference between a glucose enhanced excitation moiety 

and its inhibitor . The model was basically adapted in its original form for humans. 
Only the effect of incretins after oral carbohydrate absorption in non T1DM patients 
and a volume specific scaling factor to account for individual volumes of the pancreas 
was introduced.  

Secretion is directly stimulated by the incretin GLP and probably via the vagus 
nerves by GIP. GLP stimulation of insulin release was integrated in the enhanced 
excitation moiety  and is described in section II.2.1.1.3.5. 

For C-Peptide negative individuals with T1DM the insulin secretion model was 
deactivated. For individuals with T1DM and remaining basal secretion activity (C-
Peptide positive) the insulin secretion model can be fixed at basal secretion rate. 

II.2.1.1.3.3 Insulin Receptor Model 

The importance of the insulin receptor for insulin PK and PD and the observation that 
insulin action in liver and adipocytes correlates better with degradation than with 
delivery [117, 118] made it necessary to evaluate the benefits of the implementation 
of a receptor model. 

Two models of rat insulin receptor dynamics from literature [114, 115] were evaluated 
as the receptor model for the PBPK model. The model by Koschorreck et al. [115] 
was parameterized for hepatocytes and showed a 10 fold higher rate of receptor 
internalization. Once the model by Quon et al. was aligned to this rate, the dynamic 
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properties of the two models were too similar to discern their benefits for the PBPK 
model (data not shown). In the end, an adapted and curated version of the model by 
Quon et al. [114] was chosen due to the parsimonious structure. As only minor 
elements of the original literature model were adapted, only these changes are 
documented here. A detailed description of the original model can be found in [119]. 

The original receptor model was developed on the basis of insulin receptor dynamics 
in rat adipocyte including feedback mechanisms from receptor downstream signaling 
and receptor degradation and transcription. Both feedback mechanisms and receptor 
degradation and transcription were omitted in the present model development, as 
both properties were not validated properly in the original model. When tested, 
receptor degradation did not affect receptor dynamics in the time horizon it was 
validated in. Feedback mechanisms were also not included in the receptor model 
from [115].  

When transferring a receptor model developed and verified for adipocyte cells in rats 
to human fat, muscular and hepatic tissue it has to be considered if: 

 Kinetic parameters have to be adjusted when switching the model organism? 

 Kinetic parameters and receptor concentrations vary in between tissue types? 

Molecular structure of insulin receptors in the respective organism could differ, 
affecting its dynamic properties. No data could be found from which these properties 
could be inferred, thus two scaling parameters for receptor internalization ( , 
multiplied with the original rate constants , ) and receptor recycling rates 
( , multiplied with the original rate constants , , ) are included. 

For receptor concentrations in the different tissue types, literature values are 
available for hepatic and adipose tissue [115, 119]. Koschorreck et al. assumes the 
same concentrations for muscular and adipose tissue. However, in hepatic, fat and 
muscle tissue, insulin is cleared via receptor binding and internalization processes. 
The contribution of peripheral (muscle and fat) tissue to insulin clearance is relatively 
low but not negligible when compared to liver clearance rates (5-15% in comparison 
to 40-50% [118]).  

From quantitative data on the receptor concentrations in muscle tissue of bovine 
heifers [153] the insulin receptor concentration in 16 month old heifers was calculated 
to amount to approximately 50 fmol/mg protein, which corresponds to a receptor 
concentration in muscle tissue of 10 nM, assuming a muscle protein content of 20% 
and tissue density of 1kg/l. For receptor internalization, a similar value as in 
adipocytes was assumed. Taking into account the approx. 10 fold difference in tissue 
volume (25 l of muscle volume compared to 2-3 l of liver volume) an approximate 
difference of factor 3 between muscle tissue and the liver was calculated, which 
corresponds well with clearance values found in literature [118] (15% periphery to 
approx. 50% liver). 

These concentration values served as initial guesses and final receptor 
concentrations were fitted (Table 5) based on their contribution to insulin clearance 
(see above) and taking into account tissue specific insulin concentration gradients 
[111]. These two adaptations regarding initial concentrations and internalization rates 
were made when the receptor model was implemented in the PBPK / PD model of 
the glucose metabolism for humans. Downstream signaling and the translocation of 
GLUT4 transporters are described in the following section. 
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II.2.1.1.3.4 Peripheral Glucose Uptake 

As mentioned in Section II.2.1.1.2.1.3, cellular peripheral glucose uptake is mainly 
managed by insulin sensitive glucose transporter GLUT4 [128, 132, 154, 155]. The 
specific glucose-dependent rate of GLUT4 mediated glucose uptake was modelled 
using irreversible MM-Kinetics. The -Value of GLUT4 is determined by the 
amount of GLUT4 translocated to the cell surface through the stimulation of insulin. 
The processes involved in GLUT4 translocation is described in the following. 

The translocation of GLUT4 to the cell surface is stimulated by a downstream 
signalling cascade of the insulin receptor model (which is described in Section 
II.2.1.1.3.3), as described and modelled for example in [119]. Describing the full post-
receptor signal transduction cascade is not required here and is thus replaced by a 
simple single function. The rate of translocation is now directly stimulated via the sum 
of phosphorylated insulin receptors. The equations for the post-receptor signalling 
cascade are then defined: 

 

with cytosolic  and translocated  and the translocation rate  
defined: 

 

with constants ,  and , insulin sensitivity , and the total sum of 
phosphorylated receptors . Total peripheral (here exemplary for muscle tissue) 
glucose uptake is defined as a generalized Hill-equation for the GLUT4 transporter: 

 

with actual and basal interstitial glucose concentrations  and , glucose 
responsiveness and sensitivity  and  and rate of maximal GLUT4 dependent 
peripheral glucose uptake , which is defined: 

 

with the organ volume-specific scaling factor , basal muscular rate of 
glucose uptake  (corresponding to 80% of total basal peripheral glucose uptake 
as described in Section II.2.1.1.2.1.3:  = 0.8· ), insulin responsiveness , 
and concentration of translocated . 

II.2.1.1.3.5 The Incretin Effect 

Here, the influence of oral glucose on the secretory profile of gastric hormones 
(incretins) and their effect on the GIM, more specifically on insulin secretion, is 
described in detail. 

Glucagon-like peptide 1 (GLP) is not modelled as an actual drug concentration with 
an individual PBPK model but rather as a state describing the overall incretin effect. It 
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is augmented in relation to the total (sum of all intestinal SGLT-1 transport rates) 
SGLT-1 glucose uptake rate using saturating dynamics and decreases according to a 
first order rate law, representing a simple clearance process: 

 

The effect of GLP on insulin secretion, as mentioned in Section II.2.1.1.3.2, was 
implemented, like glucose, as an additional increase in excitation moiety X of the 
insulin secretion model from Section II.2.1.1.3.1: 

 

This function was developed using data published in [32] of a 100 g OGTT. In [32] 
the necessary insulin secretion profile was estimated (omitting the pancreatic insulin 
secretion model) from the measured insulin concentrations in the peripheral venous 
blood. In a second step, the needed glucose appearance rate in the portal vein from 
gut glucose absorption was estimated from the measured glucose concentrations in 
the peripheral venous blood. The parameters  and  were fitted 
based on the estimated glucose absorption rate and by forcing the actual insulin 
secretion rate to the estimated necessary insulin secretion profile from [32] (see 
Figure 11 D). 

It has been reported in literature that mixed meals may cause glucagon surges in 
individuals with T1DM [39, 156]. This may be caused by meal composition and 
especially the protein content of these meals. (In T1DM, influence of glucose levels 
on glucagon secretion subside over time probably due to a deficiency in amylin-
mediated intra-islet signalling necessary for glucose sensing [157]).  

Whereas this was not observed in early datasets used for model development (El-
Khatib dataset [36], Section II.2.2.1), significant postprandial glucagon surges were 
observed in the data gathered from the clinical feasibility studied conducted within 
the framework of this thesis (see Section IV.2.3, Figure 31). The original version of 
the model as it was used in the control trial did not account for this behaviour. To 
better describe the observed glucagon dynamics, incretin-dependent prandial 
glucagon secretion was modelled dependent on oral meal (glucose) absorption. 

In addition to the multiplicative modulation function for insulin and glucose-dependent 
glucagon secretion (  and ), a modulation function for GLP-1was included 
(multiplicative), which only increased glucagon secretion for GLP-1 concentrations 
above basal level: 

 

with scaling constant, . However, as discussed in Section V.1, no consistent 
explanation could be found. Elucidating the role of glucagon in glucose homeostasis 
is an on-going effort. The parameterizations for incretin mediated glucagon secretion 
are listed in Table 4. 

II.2.2 Datasets and Model Individualization 

For the development and individualization of the generic whole-body physiology-
based pharmacokinetic/pharmacodynamic model kernel of the glucose-insulin-
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glucagon metabolism, an extensive amount of data as well as a good understanding 
of inter- and intra-individual diversity in physiological properties is required. 

In the following sections a brief overview is given on the two main datasets used as 
well as a review is given on the physiology and pathophysiology relevant for 
distinguishing healthy and diabetic populations and model individualization. 

II.2.2.1 Clinical Trials Datasets 

The two main datasets of full day clinical trials in a controlled clinical environment 
have been used for model development and validation and also for development and 
in-silico as well as retrospective validation of the AGC system. Results obtained with 
the respective datasets are documented in Sections II.3 and III.3. 

In 2010 a detailed dataset of a clinical bi-hormonal closed-loop glucose control trial 
was published by El-Khatib et al. [36]. This dataset contains 30 hours of 
measurement data of glucose insulin and glucagon per visit and patient from 8 
subjects with two clinical visits each (glucose measured every 5 min for closed loop 
control and once per hour for control measurements. Insulin and glucagon measured 
every 15-30 min retrospectively). Subjects were required to be 18 years of age or 
older and diagnosed with T1DM at least 5 years before enrolment. They had to have 
a HbA1c of <8.5%, have body mass index between 20 and 31 kg/m2, and be treated 
with an insulin pump with a total daily insulin dose of <1 U/kg. Potential subjects were 
excluded if their C-peptide after a mixed-meal challenge was >0.03 nM. Other 
exclusion criteria are detailed in the supplementary material Note 4 of [36]. An 
exemplary extract from the dataset from the supplementary material is shown in 
Figure 8. 

The study was a bi-hormonal control trial with both insulin and glucagon used for 
glucose control. Both hormones were administered via the subcutaneous route and 
glucose interventions were administered (15 g) intravenously. All measurements of 
glucose, insulin, and glucagon were taken from venous blood samples. Thus, blood 
glucose was controlled via the i.v.-s.c. route and not via the more challenging s.c.-
s.c. route. Also, for the second visit, the internal PK-model of insulin was re-
parameterized based on the measurements from the first visit. 

Subjects received meals for dinner, breakfast and lunch with a fixed nutritional 
composition from carbohydrates, fat and proteins. The full details can be found in [36] 
and the supplementary material thereof. 

The second dataset from MUG was collected from 12 patients during a 2-phase 
randomized crossover trial with patients with T1DM in 2004 (unpublished) and kindly 
provided for the purpose of this research. The trial was conducted for the comparison 
of conventional insulin pump therapy, i.e. continuous subcutaneous insulin infusion 
(CSII), and an insulin dosing algorithm, i.e. model predictive control algorithm (MPC), 
for the control of blood glucose in the everyday life of patients. The dataset was 

(ADICOL) [86] using the MPC from Hovorka et al. [24]. Relevant information of the 
trial is summarized below, as extracted from an unpublished internal report of MUG. 
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Glucose measurements were taken intravenously, although for the trial a simulated 
s.c.-s.c. route was mimicked by delaying glucose measurements by 30 min. Insulin 
was administered subcutaneously. Every 15 min blood glucose measurements were 
taken and the insulin infusion rate was adjusted according to the respective 
algorithm. An exemplary Datasheet is shown in Figure 10. 

The dataset provided by MUG was used not only for model development and 
validation, but also for in-silico controller evaluation as described in Part III. 

II.2.2.2 Individual Properties 

One possible route to the development of an AP for the individual diabetes patient is 
through control algorithms using mathematical modelling and computer simulation. A 
number of simulation models have been proposed in the last 4 decades and used to 
assess the performance of control algorithms and insulin infusion routes, some of 
which have been presented in Section II.1. However, many of these models are only 
able to simulate mean population dynamics but do not account for inter-individual 
variability. Mean models are not sufficient for realistic in-silico evaluation of control 
scenarios [14] and short-term risk analysis. For this purpose, model kernels that 
allow the simulation of inter-individual variability in physiological properties such as 
key metabolic parameters and drug distribution parameters are required. The 
knowledge on inter-individual variability is indeed crucial to the design of robust 
controllers, providing valuable information about their safety and limitations. 

In the following sections a brief overview is given on the implications of inter-
individual (patho-) physiological changes, extremes of which occur during diabetes, 
obesity, sickness and stress, on the individualization of a glucoregulatory model. 
These implications are to some extent similar to the influences of differences in 
individual physiology on the glucoregulatory system. For an in-depth review on 
physiological changes associated with insulin resistance, please refer to Appendix 
V.5.1.1. 

II.2.2.2.1 Insulin Resistance 

usually used to refer to the defective regulation of carbohydrate metabolism by 
-dependent 

glucose uptake in muscle, adipose and hepatic tissue. Insulin resistance has been 
quantified by numerous methods [158], usually by measuring the amount of glucose 
infused to maintain euglycaemia at a fixed insulin concentration (glucose clamp). The 
main consequences of insulin resistance include [159]:  

 Impaired insulin-dependent down-regulation of hepatic glucose release.  

 Impaired insulin-mediated increase in peripheral (muscular, adipose) glucose 
uptake. 

A reduction in insulin sensitivity, called a state of insulin resistance, therefore impairs 

causes for the reduction in insulin sensitivity are many-sided, making insulin 
sensitivity a multi-parametric property. 

In general, the interaction of signalling proteins, including insulin itself, with the insulin 
signalling pathway are thought to cause these changes in insulin sensitivity. Known 
mechanisms to reduce insulin sensitivity are reduction in receptor transcription and 
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receptor translocation or effects on downstream signalling like serine phosphorylation 
of insulin receptor substrate-1 (IRS-1) or activation of protein kinase C (PKC). 
Several of these crosstalk signalling pathways are known [158].  

Within the GIM model, changes in insulin sensitivity (and similar for glucose and 
glucagon sensitivity) are expressed within the global fitting parameter . This 
parameter is part of most pharmacodynamic functions (see Section II.2.1.1.3) 
mediating the effect of insulin (and glucose and glucagon) on target tissue glucose 
metabolism. 

II.2.2.2.2 T1DM 

T1DM is characterized by the destruction of insulin secreting pancreatic beta-cells 
during a selective auto-immune reaction [106]. Whereas this happens in most cases 
at a very young age, T1DM can also be developed as late as at the age of 40. Due to 
the loss of endogenous insulin, blood glucose levels, left untreated, can climb to 5 to 
10 times normal. Fat metabolism in liver and kidney is increased to substitute for the 
loss of energy provided by glucose metabolization, producing ketone bodies as by-
products. These keto acids are moderately strong acids and can be toxic at high 
levels.  

A key difference between subjects with type 1 diabetes and healthy subjects is, from 
a modelling perspective, the distinctive route by which insulin is provided to the body. 
Whereas insulin in healthy subjects is released by the pancreas into the portal vein, 
subjects with Diabetes receive exogenous insulin via subcutaneous (or IV) injections. 
This means that in healthy subjects the liver is saturated in insulin, compared to 
subjects with T1DM, where insulin basically only part wise stimulates the full glucose-
lowering capabilities of the liver. 

The important question for model development is how this could affect the physiology 
and hence the parameterization of the model. Semi-physiological models like the 
UVa/Padova Simulator [29] assume an increase in basal glucose concentration of in 
average 50 mg/dl compared to healthy subjects and also steady-state insulin 
concentration (due to an external insulin pump) is assumed to be on average (four 
times) higher than in healthy subjects. To achieve this, they changed parameters for 
basal endogenous glucose production (+ 35%) and steady-state insulin clearance (- 
33%) as well as parameters relating to insulin action on both glucose production and 
utilization (- 33%) as compared to subjects in health [160]. 

However, it is known that stimulation with insulin reduces receptor expression but 
increases receptor recycling rates [161-163]. The detailed description of the human 
physiology and distributive fluid flows within the PBPK/PD model result in the 
naturally expected change in insulin concentration levels at the target tissue following 
a shift from endogenous to exogenous insulin supply. Fits for the PBPK/PD model 
show that the reduced hepatic insulin levels in T1DM result in an increased receptor 
expression, but reduced recycling rate, in-line with the experimental observations, 
delivering a physiological explanation for the changes during disease progression 
(Results Section II.3.2, parameter sets for healthy vs. T1DM are listed in Table 5). 

II.2.2.2.3 Absorption 

As described in Sections II.2.1.1.2.2.1 and II.2.1.1.2.3.1 insulin, and also glucagon 
for bi-hormonal control, are typically administered s.c. in clinical practice. Injected 
insulin in the s.c. depot can transfer to hexameric and microprecipitated states or 
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undergo unspecified binding, as does glucagon, thus complicating the absorption 
process. Further, bioavailability of both, insulin and glucagon, are far below 100% 
[135, 141]. Depending on the individuals tissue composition and the injection site for 
insulin and glucagon, absorption is subjected to a high degree of inter- and intra-
individual variability with respect to binding properties and local degradation [164, 
165]. As intra-individual variability is mostly due to a change in injection site, this is 
not of relevance here, as patients use insulin pumps, for which the location of 
injection is not altered during a trial. 

Effects of individual properties of s.c. tissue on unspecific s.c. binding were fitted 
individually via the parameter . The extent of s.c. degradation  was also 
fitted individually.  

II.2.2.3 Model Identification 

In an identifiable (PK/PD) model, all parameters are uniquely determinable if the 
required measurement data is available. In an analytical sense, this is called 
structural identifiability, if the data is not subjected to limitations such as noise or 
sample size. This means that the uncertainty in the data determines the uncertainty 
in the model parameter estimates. In a practical sense, i.e. practical identifiability, 
parameter uncertainty is quantified considering the data set and deemed practically 
identifiable, if the remaining uncertainty is acceptable [166]. For classical PB/PK 
models analysis of remaining uncertainty is done using local measures, such as the 
Fisher Information Matrix, the Covariance Matrix, and the posterior distribution. 

PBPK models, especially a coupled PBPK/PD model as developed here, are much 
larger (in terms of the number of systems states and parameters) than the average 
PKPD model. If data informativity stays the same, i.e. the same data is used, over-
fitting and non-identifiability may become an issue. Thus, PBPK/PD modelling takes 
a different, i.e. a structural, approach. As shown in Section II.2.1, most of the model 
parameters are defined by a-priori data gained from data-bases on physiology and 
compound properties or from existing sub-models, which have been integrated (see 
Table 1). Furthermore, the detailed PBPK/PD model structure allows the integration 
of additional data on different scales than standard PK/PD models, e.g. 
measurements for glucose concentrations in specific compartments or insulin 
receptor concentrations in the different target tissues (Section II.2.1.1.3.3). 

There is no straightforward, rigorous, methodology for parameterization of coupled 
PBPK/PD models with complex or nonlinear dynamics. Assumptions are built on 
bounding conditions derived from combining literature data on different scales. This 
could be e.g. the amount of insulin receptors, which, through their abundance, 
determine tissue insulin clearance, in combination with measurement for insulin 
concentration gradients across an organ/tissue, which is again dependent on the rate 
of tissue insulin clearance. The inter-dependency then confirms or strengthens the 
validity of the assumption. 

In general, fitting of a PBPK/PD model such as the GIM model, has to take into 
account a number of considerations: 

 Patient Populations 

o How do healthy individuals and individuals with diabetes compare 

 Are there possible parameter subsets that differ in populations? 
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o What can we learn from animal studies and parameter values obtained 
from them? 

 Individual Patients 

o What subset of parameters is required for model individualization? 

o Are glucose measurements obtained during a clinical trial sufficient for 
model individualization? 

 Variability in Datasets/Experiments 

o What dynamics are captured in the data 

 Are observed model deviations due to structural model deficits or 
suboptimal model fits? 

o How precise is the data 

 Are observed model deviations due to measurement errors or 
suboptimal model fits? 

o How do disturbances/Measurement errors influence identifiability? 

A large number of the remaining parameters have been either directly taken or 
estimated for their population mean from literature data (see model development 
process as described in Section II.2.1). Based on their inter-individual variability the 
parameters were divided into three sets: 1) a global set displaying the lowest 
variability and assumed equal for all subjects, 2) a set of parameters distinguishing 
healthy volunteers and T1DM patients, and 3) a set of parameters for patient 
individualization (Table 4, Table 5, and Table 6, Appendix V.5.1.2). All model 
parameters are time-invariant. 

Global and group parameters were defined as population mean values. The 
parameters from the individual parameter-set were identified for each individual 
during the glucose control trials. Grouping of the three different parameter-sets 
evolved from experience as the model development advanced, based on the general 
knowledge (values found in literature) or knowledge on variability, either in between 
individuals or the two patient groups. Informed parameters were kept in the global 
group, if no strong evidence for inter-individual variability was found. The patient 
group sets are mostly representing insulin receptor related parameters which had to 
be adjusted for each group to accommodate the different routes of insulin entry to the 
circulation. The size of the individual dataset was set by trial-and-error by checking 
identifiability (convergence of optimization runs within a reasonable time frame 
feasible for online blood glucose control in a clinical setting, see IV.1) and weighing 
the parameter by its physiological relevance in inter-individual variability. 

The defined range of distribution of parameter values for the individual parameter-set 
used for model-individualization in the clinical trials was guided by experience, i.e. by 
the range of parameter values which were obtained from model fits from existing 
datasets, and literature data. Individuals were identified by optimizing the individual 
parameter set (Table 6, Appendix V.5.1.2) using the fmincon routine from the 
MATLAB® identification toolbox.  
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without insulin response (F). The dataset triggered the reevaluation of glucose effectiveness and was necessary 
for the identification of the vascular and cellular insulin receptor parameterization in T1DM (Table S2). 

The identified mean models for healthy subjects and subjects with T1DM agree well 
with the experimental datasets with only a minor delay in the recovery of glucose 
levels after an IVITT.  

The study by Regittnig et al. [45] using a hot and cold IVGTT for T1DM patients with 
artificial and without insulin response was designed for the estimation of glucose 
effectiveness using a minimal model. The purpose of the study was to point out that 
the minimal model was not suitable for the reliable estimation of glucose 
effectiveness. It is postulated that this may be due to a missing remote compartment 
for glucose, or even a missing distinction between peripheral and hepatic remote 
glucose compartments. 

The model by Sorensen et al. [32] in its original parameterization was also not able to 
reproduce the kinetics of the IVGTT with basal insulin [148]. When the original PD 
functions of the Sorensen model into the PBPK/PD model were implemented, the 
same results were obtained. Thus, the pharmacodynamic functions were refitted in 
such a way (see Section II.2.1.1.3.1) that they could reproduce both, the IVGTT for 
T1DM with biostator response and at basal insulin (Figure 11E/F).  

The key result here is the distinguishing parameterization for healthy subjects and 
subjects with T1DM. Dynamics in healthy individuals, especially with respect to 
insulin action, are faster as compared to subjects with T1DM. This is reflected in the 
difference in receptor recycling and internalization rates but also insulin receptor 
expression levels (Table 5). For T1DM, model fits showed a 50% increase in liver 
receptor concentrations with minor changes in concentrations in muscle and adipose 
tissue. Also, receptor recycling- and internalization rates were reduced by 20% - 30% 
in T1DM. 

II.3.2 Post-hoc Evaluation of T1DM Model Predictions 

We parameterized and validated the PBPK/PD model for T1DM in a post-hoc in-silico 
study using the published dataset by El-Khatib [36]. The cohort investigated in this 
study covers a broad range of individual PK/PD properties for validation of the model. 
Although the individuals in the study were sedated, the dataset is challenging, as the 
time between the two visits spanned up to several months. For each subject, the 
dataset obtained in the first visit was used for model individualization (fit). This 
individualized model was then used to predict the outcome (i.e. dataset) of the 
second visit of the same subject. Differences between the two visits in their 
experimental setup (i.e. time-course and amount of injection rates) were considered. 
Without a treatment plan for each subject in between visits, estimates on long-term 
intra-individual changes in patients cannot be obtained and were neglected in the 
following. 

We present model results for a single representative patient (Subject 117, Figure 12), 
as well as the summarized results for the whole cohort (Figure 13). The fitted 
individualized PBPK/PD model of the single subject accurately captures the 
measurement data of all three compounds, glucose, insulin, and glucagon (Figure 
12A). For the initial conditions of each patient, the steady state with half of the total 
daily insulin dose (see Table 7, Appendix V.5.1.2) given s.c. over 24 h were 
simulated. 
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During model predictions, all parameters, including meal parameters, were left at 
their fit values. The second half of the glucose prediction (i.e. second visit) of Subject 
117 corresponds well with the measurement data (Figure 12B, top), whereas the first 
half is characterized by a large error during absorption of the first meal (average 
error: Individual 117: 25% absolute normalized prediction error, cohort: 29%). In 
average, the variations in meal absorption become apparent for the prediction of the 
second visit (Figure 13B, top). Although the patients received the exactly same meals 
with respect to carbohydrate, fat and protein content, the qualitative shape of the 
measured glucose curves during a meal were strikingly different, reflecting IOV of 
glucose absorption from meals. In the Clarkes Error Grid, in contrast to the model 
fits, the predictions show a larger absolute error in the hyperglycemic range than in 
the normo-glycemic range. This indicates that the predictions during meal absorption 
are less reliable as compared to predictions in the fasted state. 

Prediction of glucagon and insulin profiles are equally good as the model fit, 
indicating a reduced long-term IOV of PK properties but also underlining the very 
good long term predictive power of the model when taking into consideration that the 
two visits were months apart. 
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Part III.  
 

Automated Glucose Control 
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III.1 State of the Art in Blood Glucose Control 

interactions of neuronal, hormonal, and metabolic signalling networks is defective 
and at present can only be controlled by constant vigilant manual insulin therapy by 
the affected individual. The concept of blood glucose control in diabetes is the 
compensation of these  own glucoregulatory system. The 
challenge is to design algorithms that can make the right decision, at the right time, 
with minimal human (user) input (fully autonomous). The elements needed to create 
such an algorithm are based on a structured modular approach. The modular 
architecture includes three main components [14]: 

 A module responsible for basal-rate and pre-meal control that is adjusted 
every 24 hours (run-to-run control for improvements on a long time-scale) 

 A module to address real-time corrections of insulin delivered as needed 
(actual glycaemic control at medium time-scale) 

 A safety module that monitors the risk for hypoglycaemia continuously and 
adjusts insulin delivery accordingly (e.g. insulin pump shut-off) to increase the 
robustness of the control algorithm. 

Such a modular approach allows for incremental testing and potential for increased 
acceptance by regulatory authorities, offering some flexibility to the developer as 
each control module can be used separately or within an integrated control system. 
The following sections cover a short introduction on control algorithms used in 
glycaemic control as well as describe a number of control systems which have been 
used in practice.  

III.1.1 Algorithms 

Automatic blood glucose control has been the subject of intensive research for over 3 
decades and is becoming more important as the knowledge about diabetes and the 
computational power and capabilities of small electronic devices increases. 

Effective automatic control of blood glucose levels can reduce the burden of manual 
therapy and may improve risk profiles of most people with type 1 diabetes thereby 
improving quality of life and offers good prospects in clinical and economic terms [9]. 
Research groups, partly in cooperation with industry and non-profit organizations are 
putting a lot of effort in the development of the artificial pancreas. Even though the 
first positive reports have been published, remaining hurdles have to be overcome 
before automated blood glucose control becomes possible [14, 15]. 

One of the main issues of current model-based approaches is the empirical 
modelling approach. A drawback of existing compartmental models in literature with 
respect to model-based control is the parsimonious model structure as discussed in 
Section II.1.2.4, which may result in limitations in the predictive quality of the model, 
thus, requiring robust controllers. 

A number of reviews have been published on control systems used for blood glucose 
control [12, 15, 22, 31, 167-169] as well as on suitable models for model based 
control [63], and control strategies for intensive care units [75, 170]. 

Control concepts that received the most attention in glucose control over the last 
years are briefly reviewed in the following. 
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III.1.1.1 Model-Free Control 

In principle, there is actually no such thing as model-free control, as every control 
algorithm reflects in some way the dynamic properties of the process it is designed to 
control. The control laws, e.g. output feedback controllers like PID controllers, are 
tuned from the response to perturbation experiment from the process (Ziegler & 
Nichols [171]) or using loop shaping/tuning based on input-output transfer functions 
(i.e. simple models) of the process [172, 173]. Even lookup tables are based on 
heuristics which have been inferred from experience and with extensive amounts of 
data from experiments with the respective process. 

However, once designed, these control algorithms and protocols are no longer 
dependent on a model representation of the controlled process for online control 
performance, which is why they are referred to as model-free controllers. 

III.1.1.1.1 Lookup Tables 

The main advantages of lookup-tables are savings in terms of processing time, which 
can be significant, and their simple implementation. A runtime computation is 
basically replaced with a simpler associative array indexing operation. Retrieving a 
value from memory is often faster than undergoing a computation or input/output 
operation. In most cases, the tables are pre-calculated and stored on a database or 
simple memory.  

Prominent representatives of lookup-tables in glucose control are the Rabbit2 trial for 
patients with T2DM [174], the SPRINT protocol used in intensive care [175] and the 
REACTION algorithm [176] developed by MUG. 

III.1.1.1.2 PID Control 

The proportional-integral-derivative (PID) controller is widely used in industrial 
processes. This controller calculates the feedback control input from the present 
state (proportional), the history (integral) and the change (derivative) of the output 
error [172].  

An argument for the use of PID control is that a glucose control system should 
emulate the normal physiology of the pancreatic beta-cell [17], which responds to a 
glucose challenge in a way similar to the characteristics of a PID system. However, it 
has to be considered that the glycaemic control of the beta-cell is not subjected to 
severe time-delays as compared to glucose control through the s.c.-s.c. route. To 
enhance robustness and performance properties of PID control in glucose control 
various adaptations of the control law have been published.  

Steil et al. have been instrumental in conceptualizing and testing PID algorithms for 
closed loop control and tested PID control on different glucose models [177]. 
Marchetti et al. evaluated a number of adaptations like feed forward control (pre-meal 
insulin boluses) and switching strategies like, on/off time points, gain scheduling and 
time-varying set-points (reducing the set-point prior to a meal) [178]. Meal information 
was assumed for most of these strategies. A promising PID-like controller is the PD 
controller with fading memory [18], emulating, unlike integral control, the less then 
infinity memory of a physiological pancreas. 

A version of a PID like controller with fading memory was also implemented within 
the framework of this work. The details of the controller development are 
documented in Section III.2.3.  
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III.1.1.1.3 Fuzzy (Logic) Control 

In the control theory field, the fuzzy logic has emerged as a powerful tool to 
incorporate expert knowledge about the systems into the controllers design [179]. 
Fuzzy Logic Control is based on the model representation by fuzzy logic modelling 
using fuzzy sets or membership functions [180]. Unlike bang-bang control (or on-off 
control) that has only two values, namely true or false, membership functions are 
defined as graded truths for a number of criteria. 

Fuzzy logic has the advantage that the solution to the problem can be cast in terms 
that human operators can understand, so that their experience can be used in the 
design of the controller. This makes it easier to mechanize tasks that are already 
successfully performed by humans and allows the integration of expert knowledge 
into the controller, e.g. the experience of diabetologists in glycaemic control [20, 21, 
181]. Other examples of fuzzy control in glucose management are [99, 182]. 

Another noteworthy approach using fuzzy logic is the combination of fuzzy modelling 
with neural networks, the so-called neuro-fuzzy method [183], where neuronal 
models are used to adapt the membership functions of the fuzzy system. 

III.1.1.2 Model-based Control 

In model-based control, the control method uses a model representation of the 
controlled process for the calculation of the control input. 

III.1.1.2.1 H-infinity Control 

Linear H-infinity control is a robust control method. The goal of this control 
methodology is to lower-bound the worst-case closed-loop performance of the 
process under study. The feedback controller design is thus based on an 
optimization problem to minimize the H-infinity norm, which is the maximal amplitude 
or singular value of the frequency response of the system transfer function, of the 
closed loop system considering structured and unstructured uncertainties [184, 185]. 

Robust H-infinity control has been applied in in-silico glycaemic control using large 
scale physiologic models [98, 100] as well as simpler minimal-model type glycaemic 
models [186]. H-infinity based glucose control has, however, never been evaluated in 
a clinical setting. 

III.1.1.2.2 Model Predictive Control (MPC) 

MPC is one of the most successful and most popular advanced control methods. It is 
based on the repeated solution of a finite-horizon optimal control problem subject to a 
performance specification, constraints on states and inputs, and a system model 
[187, 188]. The success of the MPC is mostly attributed to its optimization based 
approach. In many control problems it is desired to be optimal with respect to some 
performance specification as profit or yield. However, it is often hard or even 
impossible to find analytically a closed form solution to such a problem. Therefore, in 
MPC, the given optimal control problem is solved repeatedly online based on the 
current measurement of the system states. Additionally, MPC is one of the few 
control methods able to explicitly consider state and input constraints [188]. 
Constraints occur in a vast number of practical applications, such as the use of 
actuators, as in this case an insulin pump, which are naturally limited, or the 
necessity to operate within safety bounds as in this case the blood glucose 
concentration range. 
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MPC is probably also the most popular control method used for glycaemic control 
since around the year 2000, following the easy availability of computational power 
necessary for MPC. In earlier studies, MPC was applied for 1 day crossover trials, for 
example, in [86] (with 
algorithm [24]). However, as daytime control proved challenging due to the 
unpredictability of meal absorption, research switched to trials under increasingly 
controlled conditions, for example, the control of a single meal [87], but in most cases 
overnight studies in children [84, 189] and adults [16, 33]. A current review in 
overnight and day and night trials with duration of more than 8 h can be found in [13]. 
Another field of application is tight glycaemic control of the critically ill in intensive 
care units [74, 75, 77, 78, 88-90, 186]. 

III.1.2  

an integrated system coupling 
s.c. continuous blood glucose monitoring (CGM) systems with insulin infusion pumps 
(IIP) that are worn externally by the patient and automatically inject an insulin dose 
calculated from a blood glucose measurement value  [12, 167, 168].  

AP systems are investigated for more than 50 years but are still not in use for 
everyday control of blood glucose, partly owed to technical and system inherent 
hurdles such as: (a) accuracy of s.c. CGM devices, (b) physiologic lag times of s.c. 
glucose (measurements) during rapid changes in blood glucose, (c) onset of insulin 
action after s.c. insulin administration, and (d) lingering/tailing insulin action after s.c. 
injection [13, 14, 22]. 

Recent improvements in the accuracy of s.c. CGM devices, IIPs and safety systems 
have advanced the conditions for developing a feasible solution for a fully integrated 
AP system [14, 15]. The superiority of automatic glucose control by s.c. glucose 
measurements and s.c. insulin infusions (s.c.-s.c. route) over manual control has 
already been demonstrated [16].  

In the following, a brief overview is given on the state of the art of control algorithms 
used in integrated (artificial pancreas) systems that have been tested clinically. 

III.1.2.1 The UVa/Padova Simulator combined with the iAP 

In September 2006, the JDRF initiated the (international) Artificial Pancreas Project 
(iAP or APP) and funded a consortium of centres to carry out closed-loop control 
research [33]. The work of some of the main groups involved is centred around a 
glucose model, the UVa/Padova Simulator, originally developed by Dalla Man et al. 
[29], which has been accepted by the Federal Drug Administration (FDA) to replace 
animal testing of glucose controllers [30, 63]. 

In the past, the model of the UVa/Padova Simulator was used in combination with 
various control concepts for blood glucose control. In most cases, the model was 
used in combination with model-predictive control algorithms (MPC) [25, 30, 149, 
160, 190]. Along this line of development it is now further developed and evaluated 
within the EU funded research project AP@Home [191, 192].  

III.1.2.2 The Cambridge Model and MPC 

Hovorka et al. from Cambridge, one of the leading groups in diabetes modelling and 
control also works with compartmental models [81] of the GIM and uses model based 
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approaches to gain greater detail of the GIM (e.g.: glucose flux distributions during 
OGTT [82]; interstitial- and plasma glucose dynamics [83]). 

In the early 2000s, Hovorka et al. have 
[86] using their first, often cited 

approach of a nonlinear MPC approach with T1DM patients [24]. The MPC algorithm 
was applied to regulate fasting blood glucose concentration in Type 1 diabetic 
patients using the s.c. s.c. route [87] and repeatedly re-evaluated [88] and adapted 
[16, 84, 89], also for tight glycaemic control in ICU patients [90]. The current model 
(2008) is also used within a MPC framework for tight glycaemic control in critical care 
[31] as well as for continuous blood glucose control trials for (juvenile and adult) 
patients with T1DM [16, 84]. The algorithm is currently also further developed and 
evaluated within the EU funded research project AP@Home [191, 193]. 

III.1.2.3 Controllers using Physiology-based Models 

Even though the first models did not accurately represent physiological properties in 
their structure, the criteria of physiology-based models with parameters that have 
physiological meaning became more important [62]. 

However, to date, the only real physiology based model of the GIM is the Sorensen 
model [32]. The model was used as a basis for closed loop control research [23, 97-
99] and in one case augmented by a generalized meal model developed by Lehmann 
and Deutsch [91] to be used again as a reduced linear model by Parker and Doyle 
for proof of concept of H-infinity control in Diabetes [100]. 

To date, the model has never been used for closed loop control in a clinical trial. 
Thus, the physiology-based pharmacokinetic / pharmacodynamics (PBPK/PD) model 
developed here was the first of its kind to be clinically tested as a model kernel for 
model based automatic glucose control. 
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III.2 Materials and Methods 

We have developed a new approach to AGC, which, for the first time, combines a 
detailed a-priori individualizable generic whole-body physiology-based 
pharmacokinetic/pharmacodynamic (PBPK/PD) model [2], with a robust MPC 
algorithm for automatic glucose control in a post-hoc in-silico study. Based on this 
accurate prediction (PBPK/PD) model of the individuals core dynamics of blood 
glucose levels, adapted over time using continuously gathered patient data, the MPC 
computes an optimal feed-forward control input. To increase closed-loop stability and 
robustness against disturbances and model uncertainties a PID-based feedback 
controller is used for compensation of prediction errors (off-set). 

The following sections show that the PBPK/PD modeling approach can make 
significant contributions to the automatic glucose control community both, for 
controller evaluation, but also as a component within the presented MPC framework. 

For the evaluation of the control algorithm, an in-silico clinical trial was simulated 
based on the dataset provided by the clinical partner MUG (details in Section 
II.2.2.1). In the following section, the clinical dataset and the implementation and 
evaluation of the implemented algorithms is presented. 

III.2.1 The Integrated System 

III.2.1.1 Integration of Automatic Glucose Control in a Clinical Setting 

The developed glucose control framework allows both, in-silico evaluation of 
controller concepts and control of blood glucose of type 1 diabetes patients in a 
clinical setting. A block diagram of the presented MPC strategy for an integrated 
system within a clinical environment is shown in Figure 14. 

The interaction of the components of the integrated system is based on the modular 
approach described in [14]. Here, interacting layers work on different timescales, 
where the outer layer with the larger timescale adjusts the parameters of the inner, 
fast layer. For the system described here, the outer layer is represented by the model 
adaptation, i.e. individualization routine, using glucose measurement data for the 
adjustment of the model kernel of the control algorithm (middle layer), which 
calculates insulin delivery based on latest CGM data, and meal information. The 
middle layer is further restricted by the innermost layer, the robustness layer. The 
robustness layer is comprised of the offset-controller with algorithms for pump shutoff 
and insulin-on-board constraints and adjusts or rejects the insulin doses calculated 
by the MPC and also adjusts the blood glucose target value for the MPC. 

Once the integrated system is in place, various increasingly complex configurations 
of an AP system become possible. The modular approach is necessary for the 
control system to adapt to or handle the process variability at the different time-
scales. Whereas the offline optimization adjusts the model to the core dynamics of 
the controlled individual on a long term, the MPC adjusts Insulin doses based on 
known boundary conditions (e.g. meal input and past insulin infusions) whereas the 
innermost layer reacts to disturbances/uncertainties not captured by the model. 
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III.2.1.3.1 Disturbances 

Despite important developments in sensor and pump technology, the AP must cope 
with the delays and inaccuracies in both glucose sensing and insulin delivery 
described in the previous sections. This is particularly difficult when a system 
disturbance, e.g., a meal, occurs and triggers a rapid glucose rise that is substantially 
faster than the time needed for insulin absorption and action [14] or physical activity 
reduces (consumes) the blood glucose levels in addition to the injected insulin [194, 
195].  

Even if the carbohydrate (CHO) content of a meal is known beforehand, it is not 
assured that the controlled subject will show the same glucose response for meals 
with the same CHO content as the absorption of a meal also depends on the specific 
type of CHO [126] as well as on the amount of fat a protein contained in the meal. 
Meal composition may have an effect on gastric emptying time as well as on the 
speed CHOs are processed for absorption. As both these properties can be explicitly 
taken into account by the PBPK/PD model kernel, the effect of nutrition-based 
variability of glucose absorption is currently investigated. Thus, meals by themselves 
are not treated as disturbances but with variation in meal-to-meal absorption 
properties contribute to inter-occasion (intra-individual) variability. 

Another major influence on whole-body glucose metabolism is the cellular energy 
expenditure during physical activity (exercise). Physical (muscular) activity increases 
the whole-body energy expenditure and thereby muscular glucose consumption and 
hepatic glucose output. Model-based control algorithms may need to get informed by 
the user regarding oncoming exercise episodes. However, here, physical activity is 
treated as a disturbance and its effect is not explicitly included in the model and 
related changes in blood glucose levels have to be compensated by the robustness 
(FMPD feedback-controller) component of the control algorithm. 

Other disturbances, all yet unaccounted for, include patient conditions and 
treatments as they occur in intensive care. Medication, inflammatory stress and other 

to insulin, i.e. insulin sensitivity. However, control of blood glucose in critically ill is 
outside the scope of this work, but has been done before by others (algorithms listed 
in Sections II.1.2.1 and III.1.2.2). Here, the focus is on disturbances as they occur in 
otherwise healthy subjects with T1DM. 

III.2.1.3.2 Inter- and Intra-Individual Variability 

Additional difficulties that the control algorithm must face arise from coping with inter- 
and intra-patient variability.  

Although a number of simulation models have been proposed in the last four 
decades (Section III.1.2), 
only able to simulate average population dynamics but not the inter-individual 
variability. However, realistic in-silico experimentation within control scenarios 
requires computational mechanistic model kernels [14] that allow the simulation of 
inter-individual variability of physiological properties as key metabolic parameters and 
drug distribution parameters in the type 1 diabetic population.  

As mentioned in Section II.2.2.2, the knowledge on inter-individual variability provides 
valuable information on safety and limitations of the chose control concept. Thus, 
successful control concepts should focus on the inter-patient variability of the integral 
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number of model parameters at the interface of insulin action that have to be 
estimated from patient specific measurement data. Its reliable estimation for 
sensitivity-value-based blood glucose control is the basis of the control concept that 
has been developed here. 

Model based controllers allow for relatively straightforward individualization using the 
patient-specific parameters of the individualized model core. However, identification 
of accurate individual models still proves challenging. Here, inter individual variability 
on a physiological level (e.g. organ volumes, blood flows) are covered by the PBPK 
framework the model is built on (Section II.2.1). The inter-individual variability in 
pharmacodynamics (drug action/interaction properties) is defined through a small set 
of parameters (individual patient dataset Table 6, Appendix V.5.1.2) which is initially 
identified from glucose clamp data at start of the trial (Section III.2.1.2). 

Intra-individual (or intra-occasion) variability is partly system-inherent. This is 
expressed by changes in the dose/effect relation of insulin e.g. within the insulin 
receptor model upon insulin treatment. Unexplained (by the model) intra-individual 
variability, i.e. possible diurnal variations in insulin action (see Appendix V.5.2.1.2) is 
handled by the adaptive control scheme, i.e. the dynamic target value shift and dose 
correction of the FMPD controller (Section III.2.3.1). 

III.2.2 Virtual Patient Generation & Trial Design 

The model used for generation of the in-silico subjects of the simulation environment 
has been previously described in detail (Part II, [2]). Individualized virtual patient 
models were generated from datasets of a 2-phase randomized crossover trial 
(2PRCT from MUG, Section II.2.2.1) collected from 12 patients with T1DM. 

The in-silico trials for the evaluation of the integrated algorithms followed the same 
protocol as the 2PRCT. The trial data and protocol, as it is also used here, is 
described in detail in Section II.2.2.1. Subjects were admitted to the clinical research 
center at the Medical University of Graz (MUG) and received basal insulin from 
insulin pumps corresponding to their own basal insulin infusion rate until initiation of 
closed-loop control. Meal information was transferred to the controller at the time of 
meal onset, so no insulin infusions prior to the meal were injected for better meal 
rejection. Parameterization of the algorithm is documented in Table 8 in Appendix 
V.5.2.4. 

III.2.3 The Control Algorithm 

Many algorithms, as listed in Section III.1, have been developed for AGC to date. 
MPC became the approach of choice in current research, for a number of reasons: it 
is a predictive approach, allowing the handling of system inherent time-delays 
(subcutaneous glucose monitoring and subcutaneous insulin infusion); It is model-
based, allowing a straightforward personalization using patient-specific 
parameterization [196], and it is optimization-based, allowing the integration of 
performance specifications, e.g. through constraints on states (i.e. penalization of 
hypoglycaemia) and inputs (constraining insulin infusions). 

The common approach to AGC using MPC, additionally to patient-specific 
parameterization of the model by adaptation of a number of (time-invariant) model 
parameters to individual experimental data, is adjustment of a single input-output 
sensitive parameter for each sampling time to handle/explain process variability as 
time advances (intra-individual or inter-occasion variability), resulting in a discrete-
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time dependent profile for this parameter. Commonly, a parameter representing 
insulin sensitivity in the model is chosen for this time-dependent adaptation [24, 197]. 
Feed-forward calculation of the control input is then based on the identified sensitivity 
from the past. 

Here, a different approach to handle process variability is chosen. As 
adaptation/optimization of a single parameter (i.e. insulin sensitivity) within the 
PBPK/PD model is too time-consuming and would exceed the time in-between 
sampling times, instead the target value for the MPC is adapted to mitigate transient 
changes in process variability. The necessary shift in target value is calculated from 
the model deviation from measurement data using Fading Memory Proportional 
Derivative control (FMPD). 

III.2.3.1 MPC Algorithm for Glucose Control 

MPC is a form of control in which the current control action is obtained by solving, at 
each sampling instant, a finite horizon open-loop optimal control problem . A 
schematic of the general concept is shown in Figure 16. The optimization of the cost 
function  at time , subject to any imposed control, state and terminal 
constraints, yields an optimal control sequence  of  piecewise constant calculated 
control inputs and the first control in this sequence at time  is applied to the 
controlled system [187, 188]. In this way, a closed-loop control strategy is obtained 
solving an open-loop optimization problem. The general control problem is defined: 

 

with the discretized point in time , and the general cost function 

 

With stage cost ,  the optimized input sequence , system 
state , and terminal cost . At time  the optimal control problem  of 
minimizing  subject to any imposed control, state and terminal constraints is 
solved, yielding the optimizing control sequence 

 

and the resulting cost value function 

 

However, this is a multidimensional optimal control problem using a sequence of 
piecewise constant inputs  and may become 
computationally demanding. A common approach to save computational time and to 
increase the convergence of the optimization problem is to restrict optimization on 
the first input of a sequence. The cost function is defined: 

 

yielding the control feedback law: 
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The second component of the offset controller is the input correction of the MPC 
dose calculations. Here, the error calculation also takes into account the target value 
shift for the MPC controller, only correcting remaining deviations, which gives a 
prediction error of , taking into consideration the dynamic shift  
of the MPC such that the input correction  becomes zero once the target value 
is shifted by the value of the prediction error ( ). A generalized formulation 
of FMPD control for the calculation of the input correction  is: 

 

with the controller gains  and the forgetting factors  and , which determine 
how fast past values fade from memory. Again, an exponentially decaying fading 
function is chosen.  

The input correction was tuned to react quicker to changes in . The tuning of the 
forgetting factors  and  within a real control setting is always a trade-off 
between the susceptibility to sensor error/noise and increase in controller time delay 

characteristic of a beta-cell a larger factor and thus a faster decay of the memory was 
chosen. Also, to accommodate for the effects of model nonlinearity, in both cases, an 
integral component is included to obtain zero set-point (dynamic target value) error. 

Both, MPC (penalty function) and offset-control are subject to additional safety 
constraints and parameterizations which are described in detail in Appendix V.5.2. 

Although the control algorithm is robust is case of significant prediction errors, as will 
be shown, the model kernel is continuously updated as more measurements become 
available over time. For this a standard optimization routine was chosen (fmincon, 
MATLAB®) optimizing the individual parameter set [2]. 
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III.3 Results 

The in-silico trials for the evaluation of the integrated algorithms followed the same 
protocol as the 2PRCT described in Section II.2.2.1. In-silico evaluation of the control 
algorithm was conducted to assess control performance and safety/risk before each 
of the two clinical trials. The in-silico evaluation was tailored to the specific workflow 
setting of the respective clinical trial. For each in-silico evaluation, the mentioned 
2PRCT trial dataset is used in two different scenarios.  

The first scenario is for online controller evaluation within an in-silico re-simulation of 
the clinical trial. The controller was evaluated in three test cases vs. model 
uncertainty, disturbances, and noise. For the first trial, low measurement noise 
(Gaussian) is used to emulate the error in i.v. blood glucose measurements. For the 
second trial, a noise generator is used to emulate the measurement error observed in 
continuous blood glucose measurement devices (CGMs) [198] as commercial CGMs 
are used to obtain the blood glucose values for glucose control. The test cases have 
been conducted all at once for each of the 12 in-silico patients. To evaluate controller 
performance in a critical-case scenario, kernel adaptation is omitted, thus using sub-
optimal model-fits for uncertainty evaluation. 

The second scenario is retrospective verification. In preparation for the first trial, the 
actual measurement data obtained during the 2PRCT trial is used for offline 
controller evaluation. For the second trial, an actual sensor noise signal obtained 
within the first clinical trial (in parallel to glucose control in the first trial, a sensor 
development group tested a newly developed CGM device on the same patients) is 
used to assess controller performance in the presence of high sensor noise. 

III.3.1 In-silico Evaluation (First Trial, Blood Glucose) 

In-silico evaluation is used for verification and validation for closed-loop control 
algorithms and is a prerequisite for in-vivo tests of artificial pancreas systems within 
clinical trials [30]. It provides valuable information about controller performance 
(safety and limitations) and may help guiding the optimal design of clinical studies. 

We have tested the developed control system against the 12 in-silico individuals 
parameterized based on clinical trial data. Controller performance is evaluated 
versus 1) model uncertainties, with a sub- optimal fit of the internal MPC model 
kernel; 2) disturbances, testing the robustness properties of the offset-controller in 
case of unannounced intake of carbohydrates; and 3) sensor error, with simulated 
sensor noise with a mean standard deviation of 5% (expected measurement error 
within the planned clinical trial is 2% for i.v. glucose measurements).  

For the MPC algorithm a prediction horizon of  = 240 min (6 h) was chosen. A 
piecewise constant insulin infusion over the first 15 min was calculated solving the 
nonlinear constrained optimization problem described in Appendix V.5.2.2.1. Meal 
information was transferred to the controller only at the time of meal onset, so no 
insulin infusions prior to the meal were administered for better meal rejection.  

III.3.1.1 Model Uncertainties 

The glucose control algorithm relies on an internal model description of the controlled 
subject. Wrong parameterizations could lead to miscalculations of insulin doses by 
the MPC component. Figure 18 shows an exemplary in-silico trial run for Subject 08.  
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Especially during the early phase, directly after the clamp phase, without adaptation 
of the model kernel, model uncertainties are more likely and both, the target value 
shift and the offset-control adapt only slowly to prediction errors. The controller thus 
starts with an increased target value (150 mg/dl) at start of control (t = 330 min), 
which is continuously lowered to the desired target level (110 mg/dl). 

We have conducted the in-silico evaluation based on the initial model 
parameterization during clamp phase, but without additional kernel adaptation, thus 
using inaccurate model-fits for uncertainty evaluation. Also, parameters affecting 
meal absorption (caloric content, fraction solid, and meal volume) which have the 
highest inter-occasion variability within the model [2], were varied for each meal 
within a uniform distribution of max. relative change of 30%.  

 

 
Figure 18: Evaluation of an in-silico control run for Subject 08 to assess effects of model uncertainty. Red 
triangles represent measurements from the in-silico individual. Blue curves represent model predictions. The 
chosen blood glucose concentration target value for control is 110 mg/dl. Only carbohydrates (meals and i.v. / 
oral glucose) are administered based on the original protocol of the clinical trial. Information on carbohydrate 
intake is passed to the controller upon start of intake, except for extra orange juice (12g) on day 2 (4:00 p.m., 
t=1560 min). The optimal insulin dose is calculated by the controller and applied to the process (centre plot). Blue 
bars represent doses calculated by the MPC and red parts subtracted and green parts added by the offset 
controller. 

For the exemplary virtual patient displayed in Figure 18, the predicted half-life time 
for insulin has been underestimated causing a faster decay of predicted insulin 
values and consequently a faster rise of predicted glucose levels than measured 
levels (t = 400 min). This prediction causes the MPC to supplement the falling 
predicted insulin levels with additional insulin. However, measured insulin is still 
sufficient and measured glucose is already below target, causing the offset controller 
to correct (restrict) the dose calculated by the MPC. Once glucose rises above target 
level again, dose reduction by the offset controller abates. This reactive control 
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behaviour slightly restricts the feed-forward capabilities of the MPC and causes the 
glucose trajectories to slightly oscillate. Especially for high doses, i.e. prandial insulin, 
underestimated half-life time of insulin action is critical, e.g. for breakfast at time t = 
1000 to 1200 min. However, overall the glucose trajectories stay well in target, also 
after a glucose disturbance at t= 1560 min (elaborated in next section). 

III.3.1.2 Disturbance Rejection 

Despite important developments in sensor and pump technology, the controller must 
cope with both, inaccuracies in glucose sensing and delays in insulin action. This is 
particularly problematic when a system disturbance, e.g., an unannounced meal, 
occurs and triggers a rapid glucose rise that is substantially faster than the time 
needed for insulin absorption and action [14]. Other disturbances include changes in 
metabolism, i.e. during exercise, stress or medical treatment. 

 
Figure 19: Evaluation of an in-silico control run for Subject 06 to assess effects of disturbances. Red 
triangles represent measurements from the in-silico individual. Blue curves represent model predictions. The 
chosen blood glucose concentration target value for control is 110 mg/dl. Only carbohydrates (meals and i.v. / 
oral glucose) are administered based on the original protocol of the clinical trial. Information on carbohydrate 
intake is passed to the controller upon start of intake, except for extra orange juice (12g) on day 2 (4:00 p.m., 
t=1560 min). The optimal insulin dose is calculated by the controller and applied to the process (centre plot). Blue 
bars represent doses calculated by the MPC and red parts subtracted and green parts added by the offset. 

Here, to evaluate disturbance rejection, a disturbance corresponding to an intake of 1 
glass of orange juice (12 g glucose) was triggered at 4:00 p.m. on the second day (t 
= 1560 min). As shown exemplary for Subject 06 in Figure 4, the resulting divergence 
of model predictions and measurements triggers a quick reaction by the offset-control 
and a slow and steady shift of the dynamic target value. In spite of under-prediction 
of insulin half-life time, the disturbance is handled well and does not result in a 
controller overreaction with a risk for hypoglycaemia. 
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III.3.1.4 Retrospective Controller Verification 

Retrospective controller verification returns, at each sampling point, the theoretically 
calculated control input by the in-silico AGC system given the (control) input history 
of the actual clinical trial before that sampling point. The verification of the control 
algorithm is conducted on the glucose measurement data from the original 2PRCT 
clinical trial. The control trajectories and the given doses of the original trial and the 
in-silico AGC system can thus not be compared in whole, but only point-wise. This 
allows a judgment on the reasonability and verity of the theoretically calculated dose 
within a realistic clinical trial setting. However, the effect of the calculated control 
input by the in-silico AGC system, as well as its overall stability and performance 
cannot be validated as the analysis is retrospective. 

As initial conditions (IC) are subjected to high uncertainty, if no information on prior 
inputs is available, the workflow as described above, using initial model screening, is 
not applicable. Here, the scenario if the controller has already been provided with a 
reasonable model fit is evaluated. 

 

Figure 21: Retrospective evaluation of the MPC glucose control algorithm. Red triangles represent 
measurements from Subject 03 of the original trial dataset. Blue curves represent model simulations. Quality of 
model predictions here is average (compare to profiles in Appendix V.5.3.2.2). The chosen blood glucose target 
value for control is 110 mg/dl. Blood glucose is predicted based on the original input history of the clinical trial. In 
parallel, hypothetical insulin dosing suggestions are calculated at each time-step by the controller, but are not 
applied to the process, and therefore repeatedly high doses are recommended. This allows a qualitative 
comparison of the controller output within real clinical trial conditions (prediction error in glucose levels). 

Figure 21 shows an exemplary run of retrospective controller evaluation for Subject 
03. Overall, the glucose (top) and the corresponding insulin infusion rate (middle) 
trajectories show that the algorithm increases insulin dosing correspondingly by 
reasonable amounts as glucose levels rise (e.g. at times t = 600 min, t = 1100 min , t 
= 1350 min and t = 1700 min). Also, there is no insulin dosing at low glucose levels 
and insulin infusion is correctly reduced at times of low glucose levels. 
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III.3.2 In-silico Evaluation (Second Trial, CGM) 

As a step forward and to comply with current state-of-the-art, it was planned for the 
2nd trial to use CGM devices (s.c. measurements) to drive the control algorithm. The 
MATLAB based tool (including a Graphical User Interface) for glucose control in 
subjects with type 1 Diabetes Mellitus T1DM was extended and adapted for control 
by subcutaneous glucose measurements from CGM (Dexcom G4 Platinum) devices. 
The integrated system has been thoroughly evaluated in-silico by conducting an 
extensive robustness analysis vs. measurement errors and time-delays associated 
with s.c. measuring methods to define acceptance criteria for the required sensor 
system. The results of this analysis are presented here.  

III.3.2.1 Model Uncertainties 

To evaluate the effect of sensor error on AGC performance, a robustness analysis 
within an in-silico clinical trial (trial protocol as described in Section II.2.2.1) of 
automatic glucose control (on the same virtual patient cohort as described above) is 
conducted. For each patient, 15 tested artificial error/time-delay sets were evaluated 
resulting in a total of 180 trial runs. Tested error/time-delay sets were assembled 
assuming sensor errors ranging from 3 to 17 % MARE and subjected to a time delay 
of 0 to 30 min (Figure 22). Additionally, the sensor output error of a newly developed 
sensor (Fraunhofer ICT-IMM) was evaluated retrospectively using the sensor output 
data collected during the first clinical trial (REACTbyALGO, n=8) in month 35 with 
time-delays of 0, 15 and 30 min, resulting in additional 36 in-silico individuals 
simulated. 

Following the trial protocol ensures an evaluation under realistic conditions. Under 
realistic conditions, the initial model identification may result in a non-ideal model fit, 
thus the effect of sensor error is evaluated in the presence of model errors (see 
Figure 25). 

III.3.2.2 In-silico-Sensor Noise 

 

 
Figure 22: 300 random in-silico sensor noise signal profiles generated with the method described by 
Fachinetti et al. [198]. 

To generate the artificial error signal, the method described by Fachinetti et al. [198] 
is used. The s.c. measurement ( ) signal is calculated: 
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with , a Gaussian noise signal (zero mean, max. rel. error 35%), , the actual 
interstitial (s.c.) glucose levels and , the error drift factor generated from 
integration of a Gaussian noise signal:  

 

With  as the Gaussian noise (zero mean and max 1% random drift per time step 
of 15 min) resulting in a maximal relative drift of = 80% within a 24 h time 
interval. Exemplary relative time-error profiles are displayed in Figure 22. 

The artificial s.c. glucose measurement ( ) is thus generated by 
superimposing the raw glucose trajectories from the subcutaneous compartment 
(interstitial skin) from the simulated individual with a single artificial sensor noise 
signal profile from Figure 22. 

III.3.2.3 Retrospective Evaluation of IMM Sensor Noise 

To evaluate the impact of the actual sensor error generated by the IMM sensor, the 
error signal from the measurement output collected with the IMM sensor during the 
first clinical trial (REACTbyALGO at MUG in M35) is used. To extract the relative 
error, the difference between collected i.v. measurements and the IMM output 
divided by the i.v. values was calculated: 

 

The calculated relative error was then multiplied with the simulated in-silico 
predictions of subcutaneous glucose from the respective virtual patient (exemplary 
result displayed in Figure 23; Aggregated results of controller performance based on 
the IMM sensor error signal are displayed in Figure 26). The retrospectively 
calibrated IMM sensor output has a MARD of 14%. 

 
Figure 23: Exemplary take-out from an in-silico trial using the error signal from the measurement output 
collected with the IMM sensor during the first clinical trial (REACTbyALGO1). Sensor signal was collected from 
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individual No. 10 with a simulated time-delay of 30 min. Top plot displays glucose trajectories from: s.c. 
measurements by simulated IMM sensor (red triangle), i.v. reference measurements (black crosses) and the 
predicted glucose level by the algorithm (blue line). The black line represents the base target value the glucose 
levels and the dynamic target value which represents the actual target, the controller is aiming for due to 
differences in measured and predicted glucose values. Middle plot: infused insulin (every 15 min), infused dose is 
blue amount increased by green or reduced by red amount (increase and reduction corresponds to FMPD based 
input correction). Lower plot: measured (red triangles) and predicted (blue lines) insulin levels. 

III.3.2.4 Measurement Error/Noise and overall Performance 

To visualize the results of the robustness analysis, a control-variability grid analysis 
chart (Figure 24) and a traffic-light plot (Figure 26) were generated. The control-
variability grid analysis shows that increasing error leads to a higher prevalence of 
hypoglycaemic events whereas an increase in time-delay especially increases the 
glucose levels at the higher end with a higher prevalence for hyperglycaemia. An 
exemplary trial run is displayed in Figure 25. 

 
Figure 24: Control-variability grid analysis of the simulated 216 individuals (15x12 with artificial sensor 
noise plus 3x8 with IMM sensor). Error sets are separated as: circles for zero time-delay, squares for 15 min time-
delay and triangles for 30 min time-delay. Colours code the different relative errors of 3 (red), 6 (green), 10 (blue), 
14 (black), 17 (magenta), and IMM with 14% (turquoise). Control variability deteriorates for increasing time-delay 
and increasing relative error. 
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Figure 25: Exemplary summary plot of in-silico evaluation of AGC robustness properties vs. sensor 
errors. Simulated sensor error was 6% MARD with a time-delay of 30 min. Displayed are: Top plot: in-silico s.c. 
glucose measurements subjected to simulated error (red triangles), in-silico i.v. reference glucose measurements 
(black crosses) and predicted s.c. measurements (blue line). The black line represents the base target value the 
glucose levels and the dynamic target value which represents the actual target, the controller is aiming for due to 
differences in measured and predicted glucose values. Middle plot: infused insulin (every 15 min), infused dose is 
blue amount increased by green or reduced by red amount (increase and reduction corresponds to FMPD based 
input correction). Lower plot: measured (red triangles) and predicted (blue lines) insulin levels. 

To define criteria for acceptable measurement errors, metrics for control performance 
are evaluated. Ranges for time-in-target (glucose levels between 70 and 180 mg/dl 
up to 3h postprandial and between 70 and 140 mg/dl during other times), time below 
70 mg/dl (mild hypoglycaemia), time below 50 mg/dl (hypoglycaemia) and time above 
140 mg/dl (hyperglycaemic episodes) were defined.  

For each criterion, an acceptable total amount of measurements in the defined range 
is defined. The colours green, orange and red highlight, if control performance 
(acceptable total amount of measurements in the defined range) is good 
(acceptable), critical (acceptable in controlled conditions) or bad (unacceptable). For 
each criterion, the colours have been specified together with experts from MUG, 
indicating the acceptance level of time in the respective range:  

 Time in target: green: above 80 %, red: below 60 %;  

 Time above 140 mg/dl: green below 30 %, red above 50 %;  

 Time below 70 mg/dl: green below 1 % (exact, not rounded), red above 3 %;  

 Time below 50 mg/dl: green for 0 %, red above 1 % (both exact, not rounded);  
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Everything in-between the values for red and green is still acceptable in controlled 
conditions and marked in colour orange. The summarized results are plotted in 
Figure 26. 

 
Figure 26: Summary chart of sensor error-dependent control performance. Each large circle represents a 
trial using a virtual cohort (n=12) to evaluate the effect of error (expressed as MARD in %) and time-delay (up to 
30 min) in s.c. measurements. The left part represents in-silico trials with artificially generated sensor noise 
(Breton 2008, Facchinetti 2007 & 2010) and the right part represents in-silico trials with the sensor noise 
observed during REACTbyALGO by the IMM sensor. The chart shows (in % of total time) the time in target, time 
above 140 mg/dl, time below 70 mg/dl (mild hypoglycaemia) and the time below 50 mg/dl (hypoglycaemia). The 
colours green, orange and red highlight, if control performance is good, critical or bad. For each criteria, colours 
have been specified as follows: time in target: green above 80 %, red below 60 %; time above 140 mg/dl: green 
below 30 %, red above 50 %; time below 70 mg/dl: green below 1 % (absolute, not rounded), red above 3 %; time 
below 50 mg/dl: green for 0 %, red above 1 % (both absolute, not rounded); Everything in-between the values for 
red and green is still acceptable in controlled conditions and marked in colour orange.  

The analysis (Figure 26) shows that sensor noise up to 14 % MARD without time-
  with just above 10% [200], 

which was also used later in the clinical trial #2) is acceptable for closed-loop control 
and that the sensor error by the IMM sensor is not suitable for driving an AGC 
algorithm. 

In principle, the controller could still handle a time delay of 15 min. However, this 
would result in a significant reduction of time in target-range. These results now allow 
an overall assessment of the controller performance, also required for risk evaluation 
for the in-vivo clinical trial (Part IV). The in-silico evaluation shows, that the controller 
is able to control blood glucose in an acceptable range even in the presence of 
model uncertainties, disturbances and significant measurement errors. 
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Part IV.  
 

Results from a Clinical Trial 
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IV.1 Clinical Trials: Materials and Methods 

After having evaluated the reliability of the developed PBPK/PD models of the GIM 
[2], and the integrated model predictive control approach [3], two mono-centric, open, 
non-controlled feasibility studies in subjects with type 1 diabetes were conducted in 
successive steps.  

The glucose control algorithm (GCA) developed here has never before been used on 
patients in a clinical trial. The first (iteration) prototypes have been evaluated in-silico 
(Section III.3.1) before tests were conducted in a first clinical feasibility 
(REACTbyALGO) study in Graz in Jan/Feb 2013 using, for safety reasons, accurate 
glucose measurements from blood. 

In the second iteration, the AGC has been tailored towards blood-glucose control 
using subcutaneous continuous glucose monitoring (CGMs) data for the calculation 
of insulin dosing, which corresponds to the state of the art in (other) AGC systems 
currently in development [64, 192]. Performance of the control system using CGM 
data has first been evaluated in-silico to assess the required sensor accuracy for 
save control in a clinical trial. The final system was then evaluated within the second 
clinical trial for AGC in Jan 2014. 

In both trials, each of the 10 subjects participated in a 6h clamp and 24h-manual-
closed-loop blood glucose control experiment (total 30h). The trials were performed 
in a controlled setting at the Clinical Research Centre (CRC) at Medical University of 
Graz. The patients were recruited from the diabetes outpatient clinic of the centre. 
The results of the 24h feasibility studies for automatic glucose control are presented 
in the following sections.  

IV.1.1 Trials 

IV.1.1.1  REACTbyALGO (Trial #1) 

We conducted two mono-centric, open, non-controlled feasibility studies in subjects 
with type 1 diabetes, the first in February 2013, the second in January 2014. The 
study protocol was approved by the local ethics committee and performed in 
accordance with the Declaration of Helsinki and the principles of Good Clinical 
Practice. The study included a total of 10 subjects and was performed in a controlled 
setting at the Clinical Research Centre (CRC) at Medical University of Graz. The 
patients were recruited from the diabetes outpatient clinic of the centre. 

IV.1.1.1.1 Subjects 

Signed informed consent was obtained before any trial-related activities. (Trial-
related activities are any procedure that would not have been performed during 
standard medical care). Subjects were 40.7 ± 12.5 (25-59) years of age and had type 
1 diabetes (as defined by WHO) for at least 24 months with C-peptide levels below 

 HbA1c was required to be below 10%, and the Body 
Mass Index (BMI) was 27 ± 3 (24-32) kg/m2, with body weights of 87.5 ± 10.5 (67-
101) kg and body heights of 179 ± 6.5 (169-191) cm. All subjects have been treated 
with continuous subcutaneous insulin infusion (CSII) for at least 3 months prior to 
start of the study. Further exclusion and withdrawal criteria, analysis methods as well 
as intervention and stopping rules are listed in Appendix V.5.3.1. 
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IV.1.1.1.2 Trial Protocol 

The trial protocol was adapted from the protocol of the 2PRCT described in Section 
II.2.2.1, Figure 9. Subjects were admitted to the clinical research centre at 1:30 p.m. 
in the afternoon of the study day and underwent the study day examination 
(concomitant illness, vital signs, adverse events) and preparation (insertion of 
cannulas for blood sampling). Patients arrived in fasted state (last meal and above 
basal insulin dose at 10:00 a.m.) and switched basal insulin delivery from their own 
pump to a constant basal insulin infusion rate from the study pump. Throughout the 
study blood glucose measurements were taken every 15 min. During clamp phase 
(2:00 p.m. until 5:00 p.m.), patients received additional i.v. insulin Actrapid 
(NovoNordisk) or i.v. glucose if required to stabilize patients at a glucose level in the 
range of 100 mg/dl (5.55 mmol/l) < BG < 120 mg/dl (6.67 mmol/l) at 5:00 p.m. After 5 
p.m., the clamp protocol (i.v. insulin and glucose administration) was discontinued. 
Basal insulin (IIP) was continued. From 2:00 p.m. on blood samples for insulin and 
glucagon measurements are taken every 30 min postprandial and once every hour 
during the night.  

At 6:00 p.m. the patients received standardized first dinner. The prandial insulin need 
is covered by a dose of short acting insulin delivered with the installed insulin pump. 
The basal insulin infusion rate from 1:30 p.m. until 7:30 p.m. and the insulin dose 
before the first standard dinner was derived from the individual insulin need and 
determined by the investigator. Patients received four standardized meals: Dinner 
(60 g CHO, 18:00 p.m. day 1), breakfast (48 g CHO, 8:00 p.m. day 2), lunch (60 g 
CHO, 12:00 p.m. day 2), and again dinner (60 g CHO, 18:00 p.m. day 2). From 7:30 
p.m. until end of the study day all insulin doses, including the prandial insulin doses 
(breakfast, lunch, second dinner), have been determined by the MPC algorithm 
administered via the insulin infusion pump. At 7:30 p.m. the next day all patients 
followed their normal treatment regimen and came back 3 days later for a follow up 
visit. 

IV.1.1.2  REACTbyALGO2 (Trial #2) 

IV.1.1.2.1 Adapted Trial Protocol 

The trial protocol was further adapted from the protocol of the first trial described 
above. In the first trial, initial model identification was based on the clamp data during 
the first 6h of the trial. At this time, insulin was infused i.v., and blood glucose levels 
were stabilized. The resulting smooth dynamics (containing only a reduced amount of 
information on dynamic model behaviour) and missing information on absorption 
behaviour of s.c. glucose did not suffice for good model identification. Thus, for the 
second trial, subjects were screened one day prior to start of the clinical trial, where 
they also were equipped with a CGM device. They were then admitted on the 
following day to the clinical research centre at the Medical University of Graz (MUG) 
for the clinical trial and received basal insulin from insulin pumps until initiation of 
closed-loop control. After start of control, the protocol and all criteria are as in the 
protocol for the first trial. 
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insulin infusion rate. This insulin infusion rate is checked for plausibility by the staff 
and entered manually into the insulin pump. The insulin pump is filled with short-
acting insulin (Lispro) whose PK/PD parameters are part of the kernel/algorithm. 

weight, BMI, and history of diabetes are collected prospectively. 

  



Optimal Glycaemic Control using PBPK/PD Models  RWTH Aachen University 

 94  
 

  



Optimal Glycaemic Control using PBPK/PD Models  RWTH Aachen University 

 95  
 

IV.2 Control Performance 

The GCA has not been used on patients within a feasibility study before. Thus, within 
the first study glucose control was performed with intravenous glucose 
measurements for reasons of safety.  For the second study, after adaptation of the 
control algorithm to cope with s.c. measurements, CGM data was used to drive the 
algorithm. Each of the 10 subjects in the two trials participated in a 6h clamp and 
24h-manual-closed-loop blood glucose control experiment (total 30h). The 
aggregated results of the study are shown in Figure 28 and Table 3.  

IV.2.1 Glycaemic Control 

To demonstrate clinical performance of the AGC system, the control performance of 
the two trials are compared to competitor systems (for which data was available). 
The times in target range achieved by the different Algorithms is listed in Table 3. A 
visual representation of the key performance indicators is shown in Figure 28. 

Table 3: Summary statistics of results of all 30-h closed-loop experiments of REACTbyALGO (RbA1 and RbA2) 
in comparison to trial results from studies by El-Khatib-1 et al. (with two visits for each patient, EK-11 and EK-12) 
[36] and the ADICOL trial (comparison of an open-loop CSII standard-of-care protocol and the Cambridge 
algorithm, results unpublished, Dataset presented in Section II.2.2.1). Results are separated into overall, day-
time-, and night-time-control. The left 3 columns correspond to the first visit/protocol/algorithm version and the 
right 3 columns correspond to the second visit/protocol/algorithm version of the respective clinical trial. 

 EK-11 CSII  RbA1 EK-12 Cambridge RbA2 
OVERALL 

t in Target1 70 (54 to 82) 81 (56 to 97) 74 (51 to 93) 61 (50 to 70) 83 (58 to 98) 76 (60 to 93) 

t in Target2 64 (50 to 81) 71 (43 to 97) 50 (32 to 80) 52 (40 to 58) 68 (42 to 92) 66 (52 to 89) 

t below 50 mg/dl 3 (0 to 11) 3 (0 to 20) 0 (0 to 3) 0 (0 to 0) 0 (0 to 2) 3 (0 to 6) 

t below 70 mg/dl 7 (0 to 19) 11 (0 to 44) 1 (0 to 7) 2 (0 to 8) 3 (0 to 13) 9 (0 to 17) 

t above 170 mg/dl 36 (24 to 42) 26 (1 to 65) 61 (19 to 82) 51 (44 to 64) 41 (25 to 65) 32 (18 to 59) 

Mean Glucose 137 117 156 161 138 128 

Mean Glucose stdv 60 36 38 60 38 47 

Mean Glucose Amp 215 (152 to 299) 148 (80 to 232) 157 (93 to 223) 202 (170 to 230) 154 (105 to 227) 194 (158 to 247) 

OVERNIGHT 
t in Target1 91 (70 to 100) 81 (22 to 100) 79 (12 to 100) 95 (85 to 100) 95 (78 to 100) 90 (78 to 100) 
t in Target2 88 (67 to 100) 71 (3 to 100) 38 (0 to 83) 81 (70 to 97) 75 (35 to 100) 78 (56 to 90) 
t below 50 mg/dl 5 (0 to 18) 2 (0 to 8) 1 (0 to 7) 0 (0 to 0) 0 (0 to 3) 1 (0 to 7) 
t below 70 mg/dl 9 (0 to 27) 13 (0 to 49) 2 (0 to 17) 0 (0 to 0) 2 (0 to 16) 9 (0 to 22) 
t above 170 mg/dl 3 (0 to 6) 17 (0 to 100) 61 (0 to 100) 19 (3 to 30) 23 (0 to 65) 14 (0 to 34) 
Mean Glucose 100 110 149 119 124 109 
Mean Glucose stdv 18 17 21 24 21 27 
Mean Glucose Amp 69 (37 to 107) 61 (25 to 168) 74 (49 to 133) 89 (49 to 113) 74 (39 to 151) 113 (61 to 184) 

DAYTIME 

t in Target1 63 (50 to 77) 79 (37 to 100) 69 (50 to 93) 53 (23 to 61) 79 (38 to 98) 67 (54 to 85) 
t in Target2 57 (45 to 70) 71 (37 to 100) 63 (43 to 93) 44 (11 to 57) 68 (28 to 87) 62 (48 to 85) 
t below 50 mg/dl 2 (0 to 7) 4 (0 to 32) 0 (0 to 0) 0 (0 to 0) 0 (0 to 3) 4 (0 to 11) 
t below 70 mg/dl 5 (0 to 9) 11 (0 to 63) 0 (0 to 0) 0 (0 to 0) 2 (0 to 8) 9 (0 to 17) 
t above 170 mg/dl 51 (39 to 59) 32 (2 to 85) 62 (37 to 89) 65 (55 to 91) 53 (33 to 93) 43 (17 to 74) 
Mean Glucose 150 123 163 175 149 140 
Mean Glucose stdv 60 33 41 52 37 53 
Mean Glucose Amp 189 (113 to 238) 132 (80 to 186) 142 (93 to 198) 160 (109 to 186) 135 (98 to 227) 189 (147 to 236) 

As can be seen in Figure 28, the developed algorithm can compete with existing 
algorithms, especially in its second version in RbA2. When comparing the different 
trials, it has to be noted: the El-Khatib, the Cambridge, and the RbA1 trial use i.v. 
glucose measurements with an accuracy of approximately 2% MARE, although the 
Cambridge algorithm emulates the time-delay of s.c. measurements by delaying the 
sensor signal by 15 min. The RbA2 trial uses real s.c. measurements by CGM 
devices (Dexcom G4 Platinum) with an MARE of 10%. The values show that 
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improved time-in-target is overall bought with a higher risk for hypoglycaemia. When 
looking only at daytime control, in both trials the controller can compete very well with 
other algorithms. It shows similar values for time in target an only slightly higher than 
average values for time in low glucose ranges (< 70 mg/dl), although still less so than 
the open-loop CSII standard-of-care protocol. However, the figure shows that night-
time control of the system in RbA1 (trial #1) was below average (see also Figure 29). 
In RbA2 (trial #2), also night-time control was very good in terms of time in target. 

 

Figure 28: Graphical representation of the key performance indicators of published control trials (El-
Khatib-1 [36]; El-Khatib-2 [26] and unpublished Data (CSII: standard clinical (non-automated) basal-bolus 
therapy; Cambridge: Hovorka et al. [24]) and the REACTION control trials (REACTbyALGO1/2: the two control-
trials using the control algorithm developed here). Time in Target (left) is defined as Time of measured blood 
glucose levels within: 70 mg/dl < BG < 140 mg/dl (in fasted state) and 70 mg/dl < BG < 180 mg/dl (for 3h 
postprandial). Time below 70 mg/dl (right) is defined as Time of measured blood glucose levels BG < 70 mg/dl. 
Displayed are percentages of measured glucose values in the respective range for overall control performance 
(top axis) and daytime control (bottom axis). 

Even though in trial #1, the controller overall does not achieve the best scores for 
the glucose trajectories within trial #1 show the least 

individuals with episodes below 70 mg/dl. In general, basal insulin provision was too 
restrictive (especially during the night). Insulin action was overestimated and dose 
correction did not adapt accordingly. This was the case due to a conservative 
parameterization of the correction module (the FMPD controller) and due to issues in 
initial model identification. Initial model identification was based on the clamp data 
during the first 6h of the trial. At this time, insulin was infused i.v., and blood glucose 
levels were stabilized. The resulting smooth dynamics (containing only a reduced 
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estimated from glucose response dynamics during the clamp phase and then refined 
during the trial by model adaptation. Parameters for insulin sensitivity ( ), renal 
clearance ( ), subcutaneous degradation ( ), and subcutaneous 
unspecified binding ( ) were identified. No a-priori assumptions on insulin PK 
parameters were used as compared to other algorithms [36].  

In the first trial, for four out of ten subjects (Subjects 01, 03, 04 and 05), insulin PK 
properties were correctly identified from glucose clamp data before start of control 
(For all individual plots, see Appendix V.5.3.2). For all others, insulin half-life was 
overestimated, except for Subject 09, where it was underestimated. For Subjects 08-
10, the qualitative prediction of insulin PK was significantly improved through model 
adaptation during control. 

In the second trial, insulin PK was correctly estimated in 7 out of 10 subjects. For the 
remaining 3 (Subjects 7-9), the qualitative fit, with respect to t1/2, was still good. This 
means that insulin PK can be identified from subcutaneous glucose measurements in 
most cases and at least qualitatively (quantitative mismatch compensated for by 
insulin sensitivity ) in all cases. 

IV.2.3 Endogenous Glucagon PK/PD 

We have collected blood samples of glucagon to gain insight in possible 
dysregulation of glucagon plasma levels and to evaluate the influence of glucagon in 
glucose control in T1DM within a post-hoc evaluation. 

The model used during the trial only assumed plasma glucose regulated endogenous 
secretion of glucagon resulting in basal glucagon levels throughout, with small 
variations during high and low glucose. 

The retrieved glucagon measurements revealed, however, that for many patients, 
significant postprandial surges of glucagon levels were observed (Figure 30, and 
Appendix V.5.3.2 for all individual profiles). In some patients, Subjects 3 and 4 for 
trial #1 (early morning until midday on the second day, see Figure 30 for Subject 03 
and also Figure 31 for Subject 03 and Subject 04 from trial #1) and Subjects 1, 2, 5-9 
for trial #2, glucose values remained significantly above predicted levels. This could 
be associated to the observed glucagon surges for all subjects except Subjects 5, 6 
and 9 from trial #2, for which glucagon levels did not significantly increase. 

It has been reported in literature that mixed meals may cause glucagon surges in 
individuals with T1DM [39, 156]. This may be caused by meal composition and 
especially the protein content of these meals. In T1DM, influence of glucose levels on 
glucagon secretion subside over time probably due to a deficiency in amylin-
mediated intra-islet signalling necessary for glucose sensing [157]. Thus, the glucose 
absorbed from a meal does no longer supress glucagon   secretion. 
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Figure 30: Glucose control experiment in Subject 03. During morning hours and early afternoon (8:00 a.m. (t 
= 1100 min) until 2:00 p.m. (t = 1100 min)) a systematic error of glucose predictions (underprediction) can be 
observed. At the same time, a distinct elevation of glucagon (postprandial glucagon surge) has been observed. 

The original version of the model as it was used in the control trial was adapted to 
account for an alternative mode of action for glucagon on liver glucose homeostasis 
to better describe the observed glucagon dynamics (Figure 31). Incretin-dependent 
prandial glucagon secretion is modelled dependent on oral meal (glucose) absorption 
(Section II.2.1.1.3.5). In addition, a function for glucagon-dependent suppression of 
hepatic glucose uptake (  Section II.2.1.1.3.1.2) is included which was not 
accounted for before but as previously hypothesized [2] could be necessary to 
strengthen the effect of glucagon. Two refitted simulations on Subjects 03 and 04 
(From trial#1, Figure 31) are compared, once without and once with the new 
glucagon mechanistics to illustrate the evaluation and effect of the tested mode of 
action. 

Although the postprandial glucagon surges are now better captured, the deviations in 
the morning of the second day (t = 1150 to t = 1400) remain. In return, glucose levels 
after dinner on day one are now overestimated, as are the underlying glucagon 
levels. 
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Figure 31: Post-hoc simulation: dynamics of Subject 03 and Subject 04 with the new mechanistics for prandial 

glucagon secretion and glucagon-dependent suppression of glucose uptake ( ). 

In the second trial, deviations of model predictions in the morning -
were even more prominent, but accompanied by smaller glucagon surges. 

But as this effect was not associated with glucagon surges in Subjects 5, 6 and 9, 
and the adapted model, as shown in in Figure 31, could also not fully connect this 
effect to glucagon, a different explanation was sought. Thorough retrospective 
analysis of trial documentation of the second trial revealed that these deviations were 
always accompanied by consumption of coffee with breakfast. And caffeine has been 
associated with acute insulin resistance [201]. However, morning coffee consumption 
was not documented consistently throughout the trial (only Subjects 1, 6, 8 & 9), 
limiting the impact of this observation. 

IV.2.4 Adherence to Dose Recommendations 

Adherence to dose recommendations by the medical staff during the trial was an 
issue. For the trial, medical doctors were present to confirm the dose 
recommendations given by the algorithm. Although the trial protocol provided 
rigorous rules for the adherence to dose recommendations within a given value 
range for blood glucose measurements, final decision on the given dose could still be 
decided on by the physician. In many cases dose recommendations were rejected 
although individuals were not outside (below 110 mg/dl) the specified range for 
glucose measurements, but rather within a range for which the recommended dose 
could have been feasible. An example is Subject 05 (Figure 32). Even though 
glucose values remain above 140 mg/dl after dinner on the first day (time > 400 min), 
dose recommendations were not accepted. After a further increase to 180 mg/dl 
(time = 800 min), a single dose recommendation was accepted but subsequent 
suggestions were again rejected even though glucose levels did not fall below 140 
mg/dl. 
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This circumstance significantly reduces the impact of the aggregated statistics on the 
feasibility study (RbA1 in Table 3 and Figure 28). Rejection of dose 
recommendations in general leads to increased glucose levels and avoids low blood 
glucose levels. This means, that statistics of RbA1 are biased towards a higher 
glucose level and a lower risk for hypoglycaemia. This has to be taken into account 
when interpreting the results. 

In the second trial, physicians were instructed to be more rigorous in adherence to 
the protocol. Thus, almost all, except for 3 time-periods in Subjects 1, 4 and 10, dose 
recommendations were adhered to. This allows interpretation of the trial results with 
respect to performance of the control algorithm. 

 

Figure 32: Glucose control experiment in Subject 05. MPC dose recommendations were rejected from the 
start of control (7:30 p.m., t = 330 min) until 7:00 a.m. (t = 1020 min). Following that, dose recommendations were 
accepted and control results were good. Two more dose rejection at 11:00 a.m. (t = 1260 min, recommendation 
of 0 units was raised to 2 units of insulin, unnecessarily as glucose levels were already falling steeply) and 6:15 
p.m. (t = 1695 min, 1.2 U recommended, 0 U applied, medical staff was taking no risks for overdose as this was 
shortly before end of trial). 

IV.2.5 Hypoglycaemia 

In the first trial, there were two incidents of hypoglycaemia (Glucose < 60 mg/dl, 
Subject 01 and Subject 02), and both were caused by technical issues. 

In the second trial, there were 9 hypoglycaemia incidents caused by the algorithm, 
most of which occurred before dinner in between 3-5 p.m. (Subjects 2, 4-7 and 10). 
All of them were related to unpredicted mid-day increase in insulin sensitivity. For 
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some (Subjects 2, 4, and 10) hypoglycaemia incidents occurred at the end of the first 
day (between 10 p.m. and midnight) due to sub-optimal model fits. A reason for the 
low number of hypoglycaemic incidents in the first trial is the fact that physicians 
more often rejected dose recommendations. In the second trial, almost all, except for 
3 time-periods in Subjects 1, 4 and 10, dose recommendations were adhered to. 

IV.2.6 Summary 

When comparing the different trials and considering the fact that the RbA2 trial uses 
real s.c. measurements by CGM devices (Dexcom G4 Platinum) with an MARE of 
10%, ultimately the controller can compete with current state-of-the-art algorithms 
and is superior to standard-of-care open-loop control.  

The fact that insulin PK was correctly estimated in 7 out of 10 subjects and 10 out of 
10 qualitatively shows, that the established workflow for the PBPK/PD model 
individualization is a feasible approach. In addition, the PBPK/PD approach also 
helps to reveal yet unexplained phenomena within the system and allows systematic 
post-hoc analysis thereof (mode-of- -  

An issue was adherence to dose recommendations, limiting the impact of the 
aggregated statistics on the first feasibility study (RbA1) and the outcomes are 
biased towards a higher glucose level and a lower risk for hypoglycaemia. This has 
to be taken into account when interpreting the results. This could be avoided for the 
second trial. 

Overall, it can be said, that a tighter control of blood glucose levels (improved time-in-
target)  is bought with a higher risk for hypoglycaemia, even more so, if glucose 
measurements become less accurate and this fact poses the greatest hurdle (safety 
of control) for commercialization of ACG devices.  
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Part V.  
 

Discussion & Appendix 
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V.1 Model 

Within the second part of this thesis (Part II, Section II.2.1.1), the development of a 
physiology-based PK/PD model for glucose, insulin, and glucagon is described. 
Application to clinical data in Section II.3.2 showed that the model is able to predict 
the time-courses of these three substances with one consistent time-invariant 
parameter set with an overall good accuracy. While this clearly demonstrates the 
power of the PBPK/PD modeling approach, a full quantification of the quality of fit 
and predictions of the model presented here in comparison to state-of-the-art model 
implementations of the GIM is difficult as no validations of individual model 
predictions of full-day trials are published, but only pure predictions without data [113] 
or only fitted trajectories [202]. In summary, the here chosen modeling approach 
distinguishes itself from state-of-the-art models by its generic concept separating 
compound and organism properties, the detailed whole-body physiological 
compartmental structure, the a-priori individualization framework, and the integration 
of detailed cellular mechanistic processes. Although the resulting models are 
computationally demanding, they were solved on standard laptop computers within a 
minute and the steady increase in computational power makes this a minor 
drawback. 

Given the individualization framework and the detailed model structure, the 
developed model captures IIV and IOV. With respect to the numbers of parameters, 

-priori parameterization of the individual 

anthropology. With over six hundred unique parameters in the whole model, only 38 
for the global mean and 26 distinctive parameters for healthy and T1DM mean 
population models were fitted. Ultimately only 10 parameters were used for model 
individualization. As the results clearly show, each of the patients was fitted 
successfully.  

Although the development of a global generic integrated GIM model with parameters 
representing explicit physiological detail, e.g. transporter expression and 
parameterization, is new, a key result is the distinguishing parameterization for 
healthy and T1DM individuals (Section II.2.2.2.2). Current state-of-the-art models of 
glucose metabolism merely change basal hepatic glucose production to distinguish 
these groups [32, 149]. However, considering subjects with T1DM, where insulin 
secretion and the incretin effect are lacking, a key difference to healthy subjects is, 
from a modeling perspective, the distinctive route by which insulin is provided to the 
body. In healthy subjects large amounts of endogenous insulin first pass the liver 
before being distributed to other tissues, whereas in subjects with T1DM, where 
insulin is exogenous, the liver is exposed only downstream to a lower level of insulin 
and insulin may exert only a fraction of its regulatory (e.g. glucose lowering) effect on 
the liver.  

It is known that stimulation with insulin reduces receptor expression but increases 
receptor recycling rates [161-163]. The detailed description of the human physiology 
and distributive fluid flows within the PBPK/PD model result in the naturally expected 
change in insulin concentration levels at the target tissue following a shift from 
endogenous to exogenous insulin supply. Model fits show that the reduced hepatic 
insulin levels in T1DM result in an increased receptor expression but reduced 
recycling rate, in-line with the experimental observations. 
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To predict concentration levels or even to fit data over a longer time-scale, the model 
also needs to capture IOV, i.e. dynamics on a separate time scale than plasma 
glucose or insulin levels, e.g. insulin receptor dynamics or vascular endosomal transit 
of insulin. In current state-of-the-art models IOV is captured by time-variant 
parameter-sets [24, 113]. However, to improve the predictive power of the model, a 
mechanistic, preferably also physiologic description of IOV is paramount. The here 
integrated insulin receptor model is a first step in this direction, as it directly couples 
insulin clearance with insulin action as a dynamic system with long-term changes in 
surface receptor levels dependent on long-term cellular insulin load due to the slow 
receptor recycling rates. However, long-term changes in post-receptor signaling may 
also be a yet unresolved issue. The rationale for the distinguishing parameter set for 
T1DM and healthy individuals is a self-regulating feedback-loop of insulin receptor 
transcription and recycling rates [203]. As insulin levels were predicted with high 

probably arises at the post-receptor level. And, indeed, the observed average drift, 
caused by a major deviation of fasting glucose levels in only one single subject out of 
eight, can be compensated by a change in the single parameter insulin sensitivity 
(data not shown). 

In general, model components, which self-adapt would be beneficial. Adaptation on a 
long time-scale could be e.g. insulin signal transduction or transcription and 
degradation dynamics of insulin receptors adjusting to average cellular insulin load 
[53]. Adaptation on a short time-scale could be e.g. an exercise model with metabolic 
and regulatory networks [204, 205], to exogenous influences. Here, however, the 
subjects were sedated, experiencing only little change in physical activity and 
variation in metabolic rate. 

One of the largest sources of IOV is probably the absorption of carbohydrates of a 
meal as outlined in Section II.3. The most likely explanation for the changes 
observed in meal absorption is the high variability in the characteristic properties of 
meal absorption, depending on nutrient content. Different types of carbohydrates, 
with varying glycemic indices define how quickly glucose is available for absorption 
[126]
proteins, meal texture as well as fiber content influence stomach emptying rates as 
well as intestine transit rates [206] and additional regulation of hepatic glucose 
control [207, 208]. Due to a lack of information, only total carbohydrates, caloric 
content, meal texture (fraction solid) and total meal volume is considered. Detailed a-
priori food characterization, with respect to covariates influencing gastric emptying 
(i.e. through the incretin effect itself), intestinal transit and absorption, integrated 
within a reliable mechanistic model describing effects of nutrition [206, 209, 210] 
could likely improve predictions of meal absorption.  

Another source of IOV (mainly glucagon) but also IIV is subcutaneous absorption. 
The reduced-order adaptation for continuous infusion of the s.c. absorption model 
also reduces the effect on the time delay of insulin appearance by local distribution at 
the injection site. However, implementation of the full model, adapted to continuous 
infusions seemed excessive as the time delay is only minor and shows high 
variability. Possibly, variability could be reduced if a better understanding of insulin 
distribution and degradation at the s.c. injection site is obtained [211]. For s.c. 
glucagon absorption this could be due to changing s.c. properties over time or 
changing injection sites with different s.c. diffusion/absorption properties and/or 
additional subcutaneous degradation [212]. 
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Not only insulin absorption, but also action and/or secretion in healthy subjects are 
reported to be subjected to a circadian rhythm leading to additional variation [213]. 
However, the results within this post-hoc study including only individuals with T1DM 
do not further support this observation (Figure 13). A plausible explanation could be 
that these circadian properties are a property of insulin secretion or are otherwise 
disturbed in T1DM [214]. Another unresolved issue is the effect on hepatic glucose 
production of high hepatic glucagon levels in the presence of increased insulin levels 
(Figure 12 A, top, Section II.3.2). This strongly indicates that insulin inhibition of 
glucagon action is too strong or too prolonged. This indicates a necessity for stronger 
dynamic decoupling either at the interstitial or intracellular level. Solutions for 
dynamic decoupling of insulin and glucagon could be decoupling of plasma and 
interstitial dynamics in general or the inclusion of an intracellular cAMP pool affected 
by both hormones [215, 216], instead of the direct multiplicative inhibition as adapted 
from Sorensen. 

Lastly, for the outlier Subject 122, a consistent explanation has to be validated with 
respect to the abnormally high insulin levels. Possible reasons could be differences 
in insulin receptor levels or insulin antibodies, both strongly impacting the distribution 
and clearance. During model development, both hypotheses were tested, latter being 
carried forward as it both resulted in better predictions and was supported in 
discussions with El-Khatib (data not shown; personal communication). A fraction 
unbound of 1% was necessary for Subject 122 to achieve the observed 20-fold 
increase in total plasma insulin levels. Plausibility of the low fraction unbound for 
insulin in Subject 122 remains to be confirmed and requires trials where antibody 
levels are measured. 
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V.2 Controller 

Within the third part of this thesis, the development of a novel approach to 
individualized automated glucose control is presented. The control approach uses, 
for the first time, a detailed generic whole-body physiology-based 
pharmacokinetic/pharmacodynamic (PBPK/PD) model [2] within a robust MPC 
algorithm. The control approach was evaluated within a post-hoc in-silico study. The 
algorithm was tested vs. model uncertainty using sub-optimal model fits, and 
scenarios were subjected to glucose sensor noise and unannounced carbohydrate 

properties (height, weight, gender and age) and the amount of consumed 
carbohydrates. The approach combines a predictive system (MPC) with a reactive 

uncertainty. All control insulin inputs are calculated and no additional pre-meal insulin 
bolus is required. Overall, the controller shows good control performance.  

Comparison of AGC algorithms generally problematic as ultimately it is only possible 
within a clinical field trial on a large number of individuals. In some cases, others 
have conducted similar in-silico studies [23, 25, 30, 31, 149, 160, 217]. The main 
drawback of such studies is that the in-silico patient on which the controller is tested 
is always derived from the same model that the controller works with. These 
evaluations thus only reflect the controller performance in conditions of wrong model 

ch could never be achieved. This is why a comparison of algorithms from 
different research groups has never been done before in-silico. 

The main difference between state-of-the-art MPC AGC algorithms [24, 74, 149] and 
the MPC developed here is, besides the different core models used, the handling of 
transient process variability, i.e. the dose-effect ratio of infused insulin. Whereas all 
approaches are self-adapting over time through an optimization of the internal model, 
state-of-the-art MPC AGC algorithms in addition use piecewise (per sampling 
interval) fitt -wise exact model 
fits [12]. Here, the model adaptation is not designed to accommodate for short term 
changes through a parameter change in insulin sensitivity. This is thought to be partly 
captured by the internal model [2]. Self-adaptation of the model over time is solely for 
improving prediction of the -dynamics. Remaining uncertainties and 
disturbances on a shorter time-scale are handled by the dynamic target value shift 
and dose correction components of the offset-controller.  

Although performance of the controller was good, it will require further development 
for future versions. Model uncertainties in insulin dynamics/predictions reflecting 
wrong half-life time of insulin do result in inversely oscillating measured patient 
plasma glucose and insulin infusion rates. This is due to the resulting slight shift in 
time scales between the dynamic behaviour 
insulin dynamics of the internal model and attenuated by model adaptation and may 
be critical for high, e.g. prandial, insulin doses. Overall, the MPC AGC algorithm can 
handle control using a CGM device for glucose measurements with sensor noise up 
to 14 % MARD with up to 15 minutes of time-delay, although a time-delay would 
result in a significant reduction of time in target-range. The in-silico evaluation further 
indicates, that the controller is able to control blood glucose in an acceptable range in 
the presence of model uncertainties and disturbances, in addition to measurement 
errors. 
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V.3 Clinical Trial 

Part four of this thesis the new control approach is evaluated within two clinical 
feasibility studies. In the first study, as prior information, the controller only requires 

rate of the insulin infusion pump prior to trial start. In the second trial, CGM data, 
collected 24h prior to start of the trial was required for initial model identification, i.e. 
model individualization. The approach, as presented in Part III, combines a predictive 

vs. uncertainty. The controller directly calculates all insulin inputs and does not 
require (partial) meal-priming boluses of insulin. In the first trial, the controller shows 
acceptable control performance. Although the latest state-of-the-art systems are 
developed for s.c. glucose measurements this controller has in a first step been 
evaluated in a clinical setting with plasma glucose measurements for safety reasons. 
In the second trial, after thorough in-silico testing, the controller was applied in a 
control setting using s.c. glucose measurements and achieved very good control 
performance. 

Although the controller has achieved satisfactory results in trial #1, workflow 
adjustments were required for the second trial. As the controller needs an initial 
estimate of the individualized model [3] at start of control, clamp data was used  for 
initial model individualization. This step was required as online model adaptation 
within the algorithm is computationally demanding and does not deliver the required 
estimates in time by start of control. But data collected during the clamp phase has a 
high degree of uncertainty due to an unknown initial state. It was assumed that 
subjects arrived in a well-controlled steady state as they arrived at the clinic in a 
fasted state, with only the basal rate of their insulin pumps running. However, many 
subjects arrived in an uncontrolled state with extreme hypo/hyperglycaemia, possibly 
caused by distress from travelling or from anticipation of the enrolment process 
(preparation of catheters for clamps and sensor micro-dialysis access catheters), 
introducing a significant amount of disturbance/uncertainty. Partly, patients then 
either omitted or reduced basal insulin to correct glucose levels at time of enrolment 
and required either oral or i.v. glucose or insulin interventions. Also, the use of 
different insulin during clamp (Aspart, in contrast to the s.c. pump insulin Lispro) 
could have influenced model identification as insulin properties (PK and PD) of 
insulin Lispro and insulin Aspart were assumed as being identical, which may not be 
the case. In addition, conditions for model identification were suboptimal as i.v. 
clamping does not deliver information on absorption properties of subcutaneous 
insulin and the s.c. insulin infusion rate was kept constant except for the meal bolus 
right before start of control. Further, patients arrived in fasted state, omitting lunch. 
The fasted state itself may be a condition not well described by the model with 
processes of cellular glucose metabolism (glycogen storage and glucose production) 
affecting glucose homeostasis. All these criteria make initial model optimization 
challenging and resulted in below optimal performance of the controller.  

Thus, for the second trial, an extension of the observation phase with additional time-
data on the effect of s.c. insulin was decided to handle these uncertainties. This new 
workflow approach was successful, as the controller performance improved 
significantly. Although this algorithm now requires an initial model fit from a priori 
glucose measurements, the adapted workflow shows that this approach, by a-priori 
data collection or a 24h run-in phase for the algorithm, is feasible. Taking into 
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account that long-term core dynamics [2] are stable, and the model can subsequently 
be adapted for long-term shifts (change in life-style etc.) as long as intra-day 
variability is structurally captured (glucagon dynamics) or informed (e.g. better meal 
characterization). 

An unresolved issue in this regard is the observed deviations in model predictions on 
the morning of the second day ( - ), possibly associated with 
meal/nutrition-dependent postprandial glucagon secretion. In most control studies, 
the dynamics and influence of glucagon is omitted completely [24, 149]. And in 
glucose control studies which explicitly use exogenous glucagon for glycaemic 
control, these postprandial surges are not discussed as they are not observed in the 
studied T1DM individuals [2, 26, 36]. And in trial #1 the associated model deviations 
are only observed in the morning, and only in the presence of glucagon surges, but 
this was not the case for Subjects 05, 06 and 09 from trial #2, where these deviations 
occurred even though no significant glucagon surges were observed. The observed 
peak postprandial excursion of endogenous glucagon are comparable to peak 
concentration levels reached in bi-hormonal control of T1DM [36] for effective 
treatment of hypoglycaemia [38, 218]. However, if at all, only in Subjects 03, 04, and 
06 (trial #1) and Subjects 01, 02, 07 and 09 (trial #2), the rising glucagon may have 
caused these deviations, but had not effect on glucose levels in Subject 09 (trial #1) 
or Subject 10 (trial #2). The fact that a morning rise in glucose has been observed 
without a simultaneous rise in glucagon and, on the other hand, a rise in glucagon 
did not cause a simultaneous rise in glucose, indicates other processes involved.  
In T2DM, it is a well-established rule to calculate a relatively higher dose for 
breakfast than for later meals [219] to counteract this - . But also in T2DM 
[220, 221] (and the elderly [222]) this does not seem to be associated with increased 
glucagon levels. Also, in healthy, young individuals, the - , is absent, and 
even an inverse behavior, with increased morning glucose tolerance [213, 219], is 
observed, possibly by circadian insulin receptor modulation [222]. In trials #1 and #2 
conducted here (in T1DM), the effect seems only meal associated and unlike in 
T2DM [221] does not occur before onset of Breakfast. This effect could thus be a 
combinatory effect which occurs due to diurnal variations in regulatory hormones 
such as cortisol, which are known to effect glucose homeostasis and are elevated in 
the morning [223] and a defective regulation of postprandial intra-islet signalling, e.g. 
suppression of glucagon secretion by amylin [157] or glucose [40, 151, 224, 225] as 
well as nutrition.  

As analyzed here, it is now questionable, if the rise in glucagon or change in 
metabolism is the main cause for the observed model deviations, as, on the one 
hand this effect is not observed in all patients, and not during the evening meals and 
on the other hand does not occur before start of a meal. Rather, nutritional effects, 
e.g. coffee [201] as the data from trial #2 indicates, are likely to be the cause for 
these episodes of insulin resistance.  

In the second trial, a slight increase in the number of hypoglycaemic events was 
observed, especially after lunch. Data indicates that the midday increase in insulin 
sensitivity following the morning episode of reduced insulin sensitivity accompanied 
by uncertainty in meal absorption leading to a slight insulin overdose are most likely 
the cause for this. Nevertheless, the model developed here does not use time-variant 
parameters but rather builds on a mechanistic description of the systemic properties 
underlying these variations over time. In this regard, in combination with additional 
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experimental studies, the -  in T1DM will have to be further analyzed for a 
better understanding of the relevant processes and effectors underlying this effect. 

V.4 Conclusion 

Within this thesis a  blood glucose control system has been described and evaluated 
that combines a highly predictive whole-body physiology-based 
pharmacokinetic/pharmacodynamic (PBPK/PD) model [2] within a model predictive 
control framework and a reactive dose-correction module reacting to unpredictable 
individual patient behaviour.  

As personalized control of blood glucose requires an understanding of the 
mechanistic properties within an individual subject with T1DM and PBPK/PD models 
deliver the ideal framework for such ambitious integration of knowledge and 
information. With all the remaining issues considered, the GIM model presented here 
shows reliable predictive capabilities, also on a long time frame, once it has been 
parameterized for the respective individual as shown in Section II.3. The model was 
developed in such a way that its purpose of use is versatile. The generic modeling 
concept provides a rigorous framework for individualization (even across organisms), 
data integration, and model extension for (given the good model predictivity) e.g. 
mode-of-action analysis. It could thus also be used for 1) fundamental research to 
uncover physiological properties and the relevance of cellular processes in whole-
body physiology, as well as 2) fundamental research on diabetes related drug targets 
and corresponding pharmaceutical intervention strategies. Last but not least, the 
model can be used, as it is here, for the 2) prediction and automatic control of blood 
glucose in T1DM.  

And although the automatic control system has been developed for use in a 
controlled clinical environment and evaluated w.r.t. model uncertainty and 
carbohydrate disturbances, it would be of interest how the system would cope with 
sickness, medication, and stress i.e. in an intensive-care setting, or physical 
exercise. Although, in-silico evaluation and results from the feasibility study indicate 
that the controller can handle significant disturbances. The question for the future 
here is, how predictive should such a system be if it does not account for all external 
or internal disturbances to the patient.  

Whereas the PBPK/PD model-based MPC approach is a feasible approach to AGC, 
the modeling framework can also help to better understand the inner working in the 

- and 
continuously adapted to - an operating point, the model developed here captures 
glucose core dynamics in a time-invariant and global manner. Nevertheless, a better 
understanding of individual counter-regulatory mechanisms in extreme situations, 
e.g. the effect of prolonged hyperglycaemia (glucose toxicity [226]) in Subject 10 (trial 
#1), or hypoinsulinaemia after insulin under-dosing in Subjects 04, 06, 08, and 10 
(trial #1),  is required to increase efficiency (robustness and tightness) of glycaemic 
control.  

This work demonstrated, that the predictive control approach using PBPK/PD models 
is well suited for automated glucose control, especially to handle the long dead-time 
in effect of subcutaneous insulin. The trade-off for highly predictive systems is the 
computational power they require within a model predictive control setting and the 
reduced flexibility in case of short-term changes in patient behaviour. Nevertheless, 
the control approach showed comparable performance to competing approaches 
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with overall promising results and significant improvement after workflow adaptation 
and improved online model identification.  

This work brings a new approach to the AGC (or AP) community by introducing 
PBPK/PD models as computational kernels for the MPC algorithm. Ultimately, 
performance of the different systems, be it in terms of predictivity or control 
performance, which have been developed to date (Section III.1), will only be possible 
in a head-to-head comparison within the same clinical setting. The PBPK/PD 
approach has been developed with a perspective towards the increase in data 
availability on multiple scales and to gain a better understanding of the physiologic 
processes involved in the regulation of whole-body glucose homeostasis, as e.g. the 

- . Until this system can be brought to market 
it will require additional validation in a wider variation of real-life scenarios and 
stronger system integration, i.e. miniaturization. Similarly as for an in-silico analysis 
of predictivity of different model types, comparison of AGC algorithm performances 
from different trials is problematic and statistically questionable due to the low 
number of participants, and is only feasible within the same clinical field trial on a 
large number of individuals. Common practice is a general statistical analysis as 
done in Section IV.2.1 giving a rough estimate of controller performance [192, 193]. 
However it has to be noticed, that boundary conditions during clinical trials may have 
a strong influence on outcome measures, amongst others: the selected individuals 
(strong inter-individual variability, requiring a large number of subjects to achieve 
statistical relevant outcome measures) and trial protocol (especially initial conditions, 
nutrition and allowed physical activity). This should be considered when comparing 
different algorithms. Another difficulty for offline-AGC comparison are the additional 
support or add-on systems like post-sensor signal processing [227] which are not 
fully disseminated in the public domain. 

Even within AP@Home [191], a EU research funded project currently in progress, 
where two different MPC AGC algorithms [190, 228] are further developed and 
evaluated, no head to head comparison was conducted within a single field trial. 
Judging from published trial summaries, a time-in-target value (70-180 mg/dl, 
c Table 3, of 60 % and time in and hypoglycaemia (< 70 
mg/dl) < 5 % is currently the benchmark in AGC; Values which were almost also 
reached within RbA2 (trial #2) here. 

To this state, using predictions 
levels within the proposed control approach has proven feasible proving that once an 

parameterization, safe and good control of blood glucose levels is possible. 
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V.5 Appendix 

V.5.1 PBPK/PD Model 

V.5.1.1 Medical Conditions for Model Individualization 

V.5.1.1.1 T1DM 

T1DM is characterized by the destruction of insulin secreting pancreatic beta-cells 
during a selective auto-immune reaction [106]. Whereas this happens in most cases 
at a very young age, T1DM can also be developed as late as at the age of 40. Due to 
the loss of endogenous insulin, blood glucose levels, left untreated, can climb to 5 to 
10 times normal. Fat metabolism in liver and kidney is increased to substitute for the 
loss of energy provided by glucose metabolization, producing ketone bodies as by-
products when fatty acids are broken down for energy. The resulting increase in 
glucose and ketone bodies provides an immense solute load to the kidneys. 
Additionally the keto acids that are produced are moderately strong acids and their 
increased production causes severe metabolic acidosis. Another problem is the 
imbalance in the regulation of the remaining glucoregulatory hormones. A major 
dysregulation is postprandial hyperglycaemia caused by glucagon surges. This could 
be caused by the missing amylin mediated suppression of glucagon secretion from 
endocrine inter-islet insulin signalling [151, 225]. The relevance of glucagon in T1DM 
has been further evaluated in this thesis and is presented in Section IV.2.3, and 
discussed in Section V.3.  

A Key difference between subjects with type 1 diabetes and healthy subjects is, from 
a modelling perspective, the distinctive route by which insulin is provided to the body. 
Whereas insulin in healthy subjects is released by the pancreas into the portal vein 
(also the superior mesenteric vein ((SMV) is a blood vessel that drains blood from the 
small intestine (jejunum and ileum)) and the splenic vein. At its termination behind 
the neck of the pancreas, the SMV combines with the splenic vein to form the hepatic 
portal vein [106], subjects with Diabetes (also) receive exogenous insulin via 
subcutaneous (or IV) injections. 

This means that in healthy subjects the liver is saturated in insulin, compared to the 
T1DM type, where insulin basically only part wise stimulates the full glucose-lowering 
capabilities of the liver. However, insulin may still exert is full inhibitory effects on 
hepatic glucose production through indirect means by reducing gluconeogenic 
precursor load or insulinization of the brain thus activating a central nervous system 
signal to the liver [150]. 

The important question for model development is how this could affect the physiology 
and hence the parameterization of the model. Semi-physiological models like the 
UVa/Padova Simulator [29] assume an increase in basal glucose concentration of in 
average 50 mg/dl compared to subjects in health and also steady-state insulin 
concentration (due to an external insulin pump) is assumed to be on average (four 
times) higher than in subjects in health. To achieve this, they changed parameters for 
basal endogenous glucose production (+ 35%) and steady-state insulin clearance (- 
33%) as well as parameters relating to insulin action on both glucose production and 
utilization (- 33%) as compared to subjects in health [160]. 
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However, it is known that stimulation with insulin reduces receptor expression but 
increases receptor recycling rates [161-163]. The detailed description of the human 
physiology and distributive fluid flows within the PBPK/PD model result in the 
naturally expected change in insulin concentration levels at the target tissue following 
a shift from endogenous to exogenous insulin supply. Fits for the PBPK/PD model 
show that the reduced hepatic insulin levels in T1DM result in an increased receptor 
expression, but reduced recycling rate, in-line with the experimental observations, 
delivering a physiological explanation for the changes during disease progression 
(Results Section II.3.2). 

Subjects with T1DM are the population group for which the physiology-based model 
and the automatic glucose control system is developed and if left untreated, subjects 
with T1DM can experience severe acidosis and dehydration that can ultimately lead 
to death from diabetic ketoacidosis [106]. 

 

V.5.1.1.2 Tissue Resistance to Insulin Action 

In all subjects with T2DM, some subjects with T1DM, and also the critically ill, the 
metabolic system is compromised in its ability to maintain homeostatic control of 
glucose levels. This is due to a reduced sensitivity to insulin. Insulin sensitivity is of 
major importance at intensive care units, where the effects of inflammation and its 
treatment, e.g. with anti-inflammatory steroids like cortisone, can cause severe 
dynamic changes in insulin sensitivity [158, 229-234]. Hyperglycaemia is prevalent in 
critical care [75, 235-238]. Tight control of blood glucose has been shown to improve 
clinical outcomes [237, 238]. More importantly, van den Berghe et al [235-238], and 
Chase et al [75] have shown that tight glucose control can reduce mortality in the 
intensive care unit (ICU) by 18-45%. Glucocorticoids are used in critical care to treat 
a variety of inflammatory and allergic disorders, but may inadvertently cause 
hyperglycaemia through reduced insulin sensitivity. 

It would go beyond the scope of this work to quantify all of the crosstalk mechanisms 
that are thought to be interacting with insulin action (i.e. the insulin signalling 
pathway). Therefore this work focuses on the most relevant and best studied 
pathways that are known to be interacting with insulin signalling. In the following 
sections, a short review of the effects of nutrition, (inflammatory) stress and 
medication (steroids) on insulin signalling is given, including the potential role of the 
involved cross signalling mechanisms in hepatic, adipose, and muscular tissues. 

V.5.1.1.2.1 Inflammation and Cellular Stress 

In septic patients, inflammation and related cellular stress responses are causes for 
increased insulin resistance. Inflammation causes macrophages to release cytokines, 
which cause a rise in anti-inflammatory steroids, catecholamines and glucagon via 
activation of the hypothalamic-pituitary-adrenal (HPA) axis [239].  

Cytokines are important mediators of septic shock, having a pivotal role in regulating 
the host response to sepsis. Important cytokines are tumour necrosis factor (TNF-
alpha) and interleukins (IL-1 and IL-6). Cytokines are released in response to injury, 
infection and also by adipocytes to control their fat content. Studies have 
demonstrated that TNF-alpha causes insulin resistance and that this is associated 
with increased levels of fatty acids and impaired insulin signalling in skeletal muscle, 
hepatic and fat tissues [158, 233, 240-244]. 
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The mechanisms by which TNF-alpha modulates the insulin signalling pathway 
involve the activation of the phosphatase PTP1B [234], reduction of insulin stimulated 
tyrosine phosphorylation and site-specific serine/threonine phosphorylation of IRS-1 
[158]. This causes inhibition of IRS protein binding to the insulin receptor, thus 
preventing propagation of the insulin signal. TNF-alpha also reduces the availability 
of IRS-1 and GLUT4 in the adipocyte by reducing gene transcription [158, 240]. 

TNF-alpha may also promote insulin resistance through its effects on fat metabolism 
by increasing levels of FFAs in the blood plasma [158, 240]. Also, the TNF-alpha 
mediated rise in catecholamines and glucagon may cause a rise in glucose 
production [241]. 

When the body experiences inflammatory stress, e.g. during sepsis, catecholamine 
levels are increased. Catecholamines are sympathomimetic -or- hormones 
that are released by the adrenal glands in response to stress. The metabolic effects 
of catecholamines are mediated through adrenergic receptors, so called G-protein 
coupled receptors (GPCR) that mediate different cell responses. Catecholamines 
cause, among other things, endogenous glucose production, inhibition of insulin 
secretion, inhibition of insulin-dependent glucose uptake and lipolysis [158]. 

Free fatty acid (FFA) concentrations in blood plasma play a significant part in the 
regulation of the glucose metabolism. Increased quantities of free fatty acids are 
released from adipocytes under conditions of starvation, diabetes, obesity and 
inflammation as described above. FFAs can be utilized interchangeably with glucose 
for energy in most tissues [158, 239, 245]. The FFAs are released from the adipocyte 
into the blood plasma to be extracted as metabolic fuel by the muscle or the liver 
[239]. In the liver, FFAs are split into ketone bodies as an alternative metabolic fuel 
for the nervous system and the heart. They are oxidized, or used to form TAGs to be 
released back into the blood.  

Fat is the preferred fuel for oxidation in patients with sepsis. The high resting energy 
expenditure in sepsis is accompanied by increased FFA and glycerol turnover, 
although fat mobilization is far greater than fat oxidation, causing raised levels of 
plasma FFA concentrations. These changes in the metabolism during sepsis are 
mediated by cytokines and hormones, amongst others steroids and catecholamines 
and glucagon [239, 246]. A schematic of the effects of Inflammation and cellular 
stress is shown in Figure 33. 

The mechanism through which FFAs bring about insulin resistance is by elevating 
intracellular long-chain acetyl CoA, producing diacyl glycerol (DAG), which activates 
the serine/threonine kinase protein kinase C (PKC) isoform [158]. PKC- can 
interfere with the intracellular signalling pathway of insulin via serine/threonine 
phosphorylation of IRs and IRS proteins. FFAs may also impair GLUT4 translocation 
directly [231]. Because lipolysis in adipocytes is repressed by insulin, insulin 
resistance from any cause can lead to FFA elevation, which, in turn, induces 
additional insulin resistance as part of a vicious cycle [229]. 
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V.5.1.1.2.3 Nutrition 

The effect of nutrition on blood glucose levels is still one of the greatest challenges in 
glucose modelling and control [14]. Especially the variation in glucose absorption 
observed in between meals but also in between individuals cannot be predicted 
reliably. It is known that the composition of a meal can be associated with the 
absorption characteristics of oral glucose. For example the effects of glycaemic index 
and glycaemic load on glucose absorption was reported in [126]. Other studies show 
that the fat content of a meal has a significant influence on gastric emptying and that 
a high fat diet is associated with delayed gastric emptying [248, 249]. However in 
most cases, the exact composition of a meal is unknown or in the worst case even 
the fact that a meal is absorbed is unknown, which makes predictions of 
characteristics of oral glucose absorption challenging. 

Effects of meal composition are incorporated within the Model, taking into 
consideration (besides CHO content) the volume, solid fraction and caloric load of 
the meal. Structure and processes of the new GI-tract are documented in Section 
II.2.1.1.2.1.1. 

V.5.1.1.3 Effects of Insulin Antibodies 

In [32] an extensive review on the effects of insulin antibodies is given. However, at 
that time (1980s) swine insulin was a common analogue used for insulin 
replacement. With swine insulin, subjects were more prone to develop anti-insulin 
antibodies than they are nowadays using modern recombinant analogues [133]. 

Nevertheless, occasionally, subjects can still develop severe antibody reactions to 
insulin as observed for Subject 122 in [36]. The effect of insulin antibodies, as they 
are not involved in the degradation of insulin, can be modelled by assuming that a 
fraction of insulin is constantly bound to the antibodies, thus delaying the clearance 
of insulin from the system. Also, antibody-bound insulin does not affect the 
glucoregulatory system. Antibody binding of insulin is accounted for via the fraction 
unbound property of the PBPK/PD models developed within PK-Sim®. 

V.5.1.1.4 Pathophysiology of T2DM 

As described at start of Section II.2.1, the human metabolism is a highly regulated 
system. Numerous metabolites are involved in the control of the metabolic system 
and pathological conditions or exogenous influences like illness, stress or medication 
can severely impair the performance of this system and disturb glucose homeostasis.  

In individuals with diabetes, the glucoregulatory system is severely impaired. The 
following two sections give a brief overview on the pathological conditions in both, 
type 1 and type 2 diabetes mellitus. 

connected to Metabolic Syndrome, adiposity, inflammation, and stress [158, 250]. 
The current rise in prevalence of T2DM and the metabolic syndrome is believed to be 
a result of increasingly sedentary life-styles combined with ready access to energy-
rich food sources in genetically susceptible individuals. 

More than 90 per cent of patients with diabetes have T2DM [5]. Although the primary 
factors causing this disease are unknown, it is clear that insulin resistance has a 
primary role in its development [250]. As with T1DM, T2DM is characterized by 
elevated blood glucose if left untreated. However, here the cause of hyperglycaemia 
is more complex. In summary, subjects with type two diabetes are spiralling down a 
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vicious cycle of insulin resistance and beta-cell dysfunction [251], which is triggered, 
either by a genetic predisposition or unhealthy lifestyle, through the onset of minor 
insulin resistance. Insulin resistance forces the beta-cells to produce more insulin 
than they are in many cases capable of, thus overpowering their normal capacities. 
This can lead to hyperplasia of beta-cells and ultimately to an impaired function of 
insulin production, thus marking the onset of T2DM as exogenous insulin needs to be 
administered to supplement the decrease in beta-cell functionality. 

The increase in insulin resistance seen in subjects with T2DM appears often to be 
accompanied by hypertension, obesity, and specific dyslipidaemia. Insulin resistance, 
along with one or more of the previously mentioned metabolic abnormalities, can 
often be found in individuals before the diagnosis of T2DM and is referred to as 
metabolic syndrome [106]. Due to the complexity of the disease including partly 
unknown pathophysiological changes and varying levels of endogenous insulin 
production, no detailed model capturing these influences has been developed for 
T2DM, yet. 

V.5.1.2 Parameter Sets 

Table 4: Global parameter set of the GIM model 

Parameter Value Dim. Description Sourcea 

Pharmacokinetic Parameters: Insulin 

 0.218 [-] Lipophilicity [252] 
 5808 [g/mol] Molar Weight [252] 

 10 [-] Renal clearance as a multiple of 
glomerular filtration rate 

Fit 

Pharmacokinetic Parameters: Glucose 

 -2.5 [-] Lipophilicity [252] 
 180 [g/mol] Molar Weight [252] 

 0 [-] Renal clearance as a multiple of 
glomerular filtration rate (Renal 
clearance modeled by a reabsorption 
function instead [32]) 

[32] 

Pharmacokinetic Parameters: Glucagon 

 -1.197 [-] Lipophilicity [252] 
 3483 [g/mol] Molar Weight [252] 

 10 [-] Renal clearance as a multiple of 
glomerular filtration rate 

Fit 

Hexokinase (Concentrations Recalculated from basal rates in [32]) 

 0,2 [mmol/l] Concentration of half max. rate of 
intracellular glucose metabolization 

Fit 

 267 [1/min] Max. rate of metabolization Fit 
Passive 
Organ 

0.029 [µmol/l] Intracellular enzyme concentration Recal 
[32] 

Fat 0.016 [µmol/l] Intracellular enzyme concentration Recal 
[32] 

Muscle 0.0214 [µmol/l] Intracellular enzyme concentration Recal 
[32] 

Liver 0.272 [µmol/l] Intracellular enzyme concentration Recal 
[32] 

Brain 1.05 [µmol/l] Intracellular enzyme concentration Recal 
[32] 

RBC 0.082 [µmol/l] Intracellular enzyme concentration Recal 
[32] 

Threshold Functions 

 1.33 [-] Rate at zero substrate  concentration Refit [32] 
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 3 [-] Rate at zero substrate  concentration Fit 
 0.14 [-] Rate at zero substrate  concentration Fit 
 2.06 [-] Rate at zero substrate  concentration Fit 
 0 [-] Rate at zero substrate  concentration Fit 
 0.7 [-] Rate at zero substrate  concentration Fit 
 -1.33 [-] Max. change in transporter rate Refit [32] 
 -2.95 [-] Max. change in transporter rate Fit 

 2.69 [-] Max. change in transporter rate Fit 
 2 [-] Max. change in transporter rate Fit 
 5 [-] Max. change in transporter rate Fit 
 18 [-] Max. change in transporter rate Fit 
 1.45 [-] Concentration of half max. rate Refit [32] 
 0.78 [-] Concentration of half max. rate Fit 
 1.52 [-] Concentration of half max. rate Fit 
 0.97 [-] Concentration of half max. rate Fit 
 1.41 [-] Concentration of half max. rate Fit 
 4 [-] Concentration of half max. rate Fit 
 3 [-] Hill/cooperativity exponent Refit [32] 
 3 [-] Hill/cooperativity exponent Fit 
 1.8 [-] Hill/cooperativity exponent Fit 
 3.77 [-] Hill/cooperativity exponent Fit 
 4 [-] Hill/cooperativity exponent Fit 
 3 [-] Hill/cooperativity exponent Fit 

 5750 [µmol/l] Basal cellular hepatic glucose Refit [32] 
 2e-5 [µmol/l] Basal interstitial hepatic glucagon Refit [32] 
 4500 [µmol/l] Basal interstitial pancreatic glucose Refit [32] 
 1,4e-4 [µmol/l] Basal interstitial pancreatic insulin Refit [32] 

Sensitivities 

 1 [-] Insulin Responsiveness Default 
 0.7 [-] Glucose Responsiveness Fit 
 1 [-] Glucagon Responsiveness Default 

 1 [-] Insulin Sensitivity Default 
 1 [-] Glucose Sensitivity Default 
 1 [-] Glucagon Sensitivity Default 

GLUT4     
 0.0037 [1/mg] Rate constant scaling factor Fit 
 35 [mg/min] Basal peripheral glucose uptake [32] 

 8 [mmol/l] Concentration of half max. rate [128] 
 3.36 [µmol/l] Total muscular transporter 

concentration 
Recal 
[32, 119] 

 3,72 [µmol/l] Total fat transporter concentration Recal 
[32, 119] 

GLUT3     
 1000 [1/min] Catalytic rate constant Fit 

 3 [mmol/l] Concentration of half max. rate of 
transport from plasma to intracellular 

[128] 

 3 [mmol/l] Concentration of half max. rate of 
transport from intracellular to plasma 

[128] 

 8.5 [µmol/l] Concentration of cerebral transporter 
expression 

Fit 

GLUT2 

 10 [1/min] Catalytic rate constant Fit 
 17 [mmol/l] Concentration of half max. rate of 

transport from interstitial to 
intracellular 

[128] 

 17 [mmol/l] Concentration of half max. rate of 
transport from intracellular to 

[128] 
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interstitial 
 0.55 [µmol/l] Concentration of hepatic transporter 

expression 
Fit 

 2.22 [µmol/l] Concentration of transporter 
expression in the small intestine 
duodenum 

Fit 

 6.15 [µmol/l] Concentration of transporter 
expression in the small intestine 
upper jejunum 

Fit 

 1.82 [µmol/l] Concentration of transporter 
expression in the small intestine 
upper ileum 

Fit 

 1.79 [µmol/l] Concentration of transporter 
expression in the small intestine 
lower jejunum 

Fit 

 0.57 [µmol/l] Concentration of transporter 
expression in the small intestine 
lower ileum 

Fit 

SGLT1 

 40 [1/min] Catalytic rate constant Fit 
 0,2 [mmol/l] Concentration of half max. rate of 

transport from lumen to intracellular 
[128] 

 2.22 [µmol/l] Concentration of transporter 
expression in the small intestine 
duodenum 

Fit 

 6.15 [µmol/l] Concentration of transporter 
expression in the small intestine 
upper jejunum 

Fit 

 1.82 [µmol/l] Concentration of transporter 
expression in the small intestine 
upper ileum 

Fit 

 1.79 [µmol/l] Concentration of transporter 
expression in the small intestine 
lower jejunum 

Fit 

 0.57 [µmol/l] Concentration of transporter 
expression in the small intestine 
lower ileum 

Fit 

Clearance of glucagon  
 100 [l/µmol/

min] 
Glucagon receptor binding affinity Fit 

 0 [1/min] Rate constant of glucagon recycling Fit 
 0.01 [1/min] Rate constant of GPCR recycling Fit 

 1e-5 [µmol/l] Total concentration of hepatic GPCR Fit 
 2 [1/min] Intrinsic plasma clearance Fit 

Secretion of glucagon  
  [-] GLP-1-dependent secretion constant Fit 

The incretin Effect  
 1.2 [1/min] GLP-1 clearance rate constant Fit 
 15 [µmol/l 

/min] 
GLP-1 production rate constant Fit 

 1e-4 [µmol/l] Basal GLP-1 concentration Fit 
 17 [mmol/l 

/min] 
Rate of half max. rate of glucose 
absorption-dependent GLP-1 
production 

Fit 

 2 [-] GLP-1-dependent insulin secretion 
constant 

Fit 

 0.6 [µmol/l] Concentration of half max. rate of 
GLP-1-dependent insulin secretion 

Fit 

a The table includes, besides the fitted values, parameter values taken from literature. 
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distributed over the larger number of organs, but remained the same in total) or 

tanh-functions to Michaelis-Menten functions) from Sorensen [32]. 
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Table 5: Patient Group Parameter Set 

Parameter Value T1 Value H Dim. Description Source 

Endosomal insulin receptor 

 0.1 0.04 [nmol/l] Total conc. of fat endosomal 
IR 

Fit 

 18 6 [nmol/l] Total conc. of liver endosomal 
IR 

Fit 

 0.4 0.15 [nmol/l] Total conc. of muscle 
endosomal IR 

Fit 

 0.2 0.05 [nmol/l] Total conc. of non-target-tissue 
endosomal IR 

Fit 

 0.01 0.004 [nmol/l] Conc. of phosphorylated fat 
endosomal IR at basal insulin 

Fit 

 1.8 0.6 [nmol/l] Conc. of phosphorylated liver 
endosomal IR at basal insulin 

Fit 

 0.04 0.015 [nmol/l] Conc. of phosphorylated 
muscle endosomal IR at basal 
insulin 

Fit 

 0.02 0.005 [nmol/l] Conc. of phosphorylated non-
target-tissue endosomal IR at 
basal insulin 

Fit 

 50 65 [-] Receptor recycling factor Fit 
 3 3 [-] Receptor internalization factor Fit 

Target tissue insulin receptor 

 0.1 0.1 [µmol/l] Total conc. of fat cellular IR Fit 

 12 8 [µmol/l] Total conc. of liver cellular IR Fit 
 0.5 0.5 [µmol/l] Total conc. of muscle cellular 

IR 
Fit 

 0.0044 0.005 [µmol/l] Conc. of phosphorylated fat 
cellular IR at basal insulin 

Fit 

 0.19 0.15 [µmol/l] Conc. of phosphorylated liver 
cellular IR at basal insulin 

Fit 

 0.011 0.01 [µmol/l] Conc. of phosphorylated 
muscle cellular IR at basal 
insulin 

Fit 

 7 10 [-] Fat receptor recycling factor Fit 
 3 3 [-] Fat receptor internalization Fit 
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factor 
 20 25 [-] Liver receptor recycling factor Fit 
 5 5 [-] Liver receptor internalization 

factor 
Fit 

 7 10 [-] Muscle receptor recycling 
factor 

Fit 

 3 3 [-] Muscle receptor internalization 
factor 

Fit 

Glucose-dependent Glucagon Secretion 

 1.3 4.16 [-] Rate at zero substrate  
concentration 

Fit 

 -0.6 -3.66 [-] Max. change in transporter 
rate 

Fit 

 1.07 0.65 [-] Concentration of half max. rate Fit 
 3 4.25 [-] Hill/cooperativity exponent Fit 

 

Table 6: Individual Parameter Set (T1DM) 

Table 7: Patient Properties 

Subject Gend.a T #b  c  [cm] d Av. e [%] f g h i j 

110 M 2 49 73 1.58 29.2 7.89 6.57  25 140 58.6 3.72 14.67 

    3 49  73     8.56 6.98  20 70 43.3 4.33 14.78 

115 M 2 19 80.8 1.87 23 8.00 6.65  10 80 73.3 2.61 15.94 

    3 20 80.4     9.78 7.74  10 80 56.9 5.50 15.89 

117 F 1 28 85 1.66 30.9 7.11 6.09  10 70 57.3 3.67 14.67 

    2 29 80.6     8.94 7.24  10 55 55.7 4.33 17.39 

122 M 1 47 110 1.89 30.9 7.61 6.39  500 1200 95.1 2.50 16.56 

    2 48 107     8.61 7.04  200 750 62.7 3.83 14.67 

126 F 1 50 68.6 1.61 26.5 7.61 6.39  25 110 54 4.11 15.28 

Paramete
r 

Unit Value for Subject No. 

110 115 117 122 126 128 129 132 
a [1/min] 40 20 40 40 40 20 40 60 

b [-] 0.4 0.65 0.65 0.9 0.45 0.75 0.4 0.65 
c [-] 1.3 1.3 0.9 1 1 1 1.1 1 

d [U/µmol] 3500 6000 4000 100 2000 6500 12000 5000 
e [-] 1 5 3 6 0.3 3 7 5 

e [1/min] 1e-6 1e-5 6e-6 1.4e-5 1e-7 1.4e-5 1.3e-6 2e-5 
f [1/min] 7e-5 11e-5 6e-5 7e-5 1.5e-5 15e-5 5.5e-5 15e-5 

g [-] 1 1 1 0.1 1 3 4 0.1 
h [-] 15 4.5 10 10 25 1 8 5 

i [min] 150 350 120 120 120 350 200 120 
j [-] 1 1 1 0.02 1 0.95 1 0.25 

a Catalytic rate constant of SGLT1 
b Glucagon Sensitivity 
c Insulin Sensitivity 
d Subcutaneous insulin binding factor 
e Subcutaneous glucagon binding factor 
f Rate constant of subcutaneous insulin degradation 
g Rate constant of subcutaneous glucagon degradation 
h Fractional glomerular filtration rate of insulin 
i Fractional glomerular filtration rate of glucagon 
j Fraction unbound 
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    2 51 69.8     8.11 6.73  25 100 37.4 4.56 14.11 

128 M 1 30 94.8 1.77 30.1 7.61 6.40  10 55 68.9 4.11 12.72 

    2 31 98.3     8.50 6.97  12 50 55.6 4.67 14.22 

129 M 1 47 90.9 1.73 30.2 9.11 7.33  30 140 106.6 2.50 20.00 

    2 48 90.2     11.00 8.52  35 80 76.4 5.11 18.50 

132 M 1 71 79.5 1.85 23.3 7.17 6.11  50 210 66.5 1.78 14.94 

    2 71 77     8.72 7.10  25 150 52.2 4.22 16.28 
a Gender (M = male; F = female) 
b Trial Number 
c Body Weight [kg] 
d Body mass index [cm/m2] 
e Average blood glucose [mmol/l] 
f Minimal measured plasma Insulin levels [mU/l] 
g Maximal measured plasma Insulin levels [mU/l] 
h Total daily dose of insulin, given [U] 
I Minimal measured blood glucose levels [mmol/l] 
j Maximal measured blood glucose levels [mmol/l] 

 

V.5.2 Control Algorithm 

V.5.2.1 Challenges in Glucose Control (Detail) 

V.5.2.1.1 Disturbances 

V.5.2.1.1.1 Meals 

Before the artificial pancreas can be applied in everyday life or even in hospitals, a 
number of challenges remain to be solved. One of the most critical challenges is the 
regulation of glucose levels after a meal. This problem could, in principle, be solved 
with two different approaches. The first approach could be feed-forward control: by 
pushing a button the patient informs the controller that a meal is occurring, thus 
initiating an insulin bolus. However, even if the carbohydrate (CHO) content of a meal 
is known beforehand, it is not assured that the controlled subject will show the same 
glucose response for meals with the same CHO content as the absorption of a meal 
also depends on the specific type of CHO [126] as well as on the amount of fat a 
protein contained in the meal. Meal composition may have an effect on gastric 
emptying time as well as on the speed CHOs are processed for absorption. As both 
these properties can be explicitly taken into account by the PBPK/PD model kernel, 
the effect of nutrition-based variability of glucose absorption is currently investigated. 

The second approach could be feedback control, where the controller only reacts 
after a sufficiently large increase in blood glucose levels. However, due to system-
inherent time-delays this strategy has proven difficult in practice [253].  

V.5.2.1.1.2 Exercise 

One of the main influences on whole-body glucose metabolism is the cellular energy 
expenditure during exercise. Physical (muscular) activity increases the whole-body 
energy expenditure and thereby muscular glucose consumption and hepatic glucose 
output. Reliable mechanistic models, based on the concepts of metabolic and 
regulatory networks [204] in energy metabolism that describe the effects of exercise 
in muscular [204] and hepatic [205] tissue, could improve overall glucose control 
performance [194, 195].  

However, it has to be assumed that the model-based control algorithm may need to 
get informed by the user regarding oncoming exercise episodes. In the case of an 
uninformed exercise episode, the controller will not be able to use model predictions 
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alone to handle the oncoming disturbances in blood glucose levels. Nevertheless, 
even if the controller is informed about an oncoming episode of exercise, the 
effecting disturbances on glucose levels may vary depending on exercise duration 
and intensity (intra-individual property), and on fitness and gender (inter-individual 
property) of the controlled subject. Thus, the chosen algorithm should have 
robustness properties that could handle occurring episodes of exercise and their 
intra- and inter-individual variability. To overcome some of the uncertainties related to 
exercise, multi-parametric sensors measuring heart rate and the Q-T interval could 
be used for run-to-run control to adapt to changes in the subjects fitness. However, 
further evidence, e.g. from literature search, is necessary in order to clarify if 
measurements of heart rate and Q-T interval are sufficient for the unambiguous 
identification of exercise episodes or if they cannot, for example, be distinguished 
from adrenalin surges. 

V.5.2.1.2 Inter- and Intra-Individual Variability 

V.5.2.1.2.1 Diurnal Variations 

One of the main challenges of optimal blood glucose control in humans is the change 
, i.e. insulin sensitivity, over time (morning vs. 

evening, day vs. night). As insulin is the major component that controls the uptake 
and production of glucose in the human body, glucose control performance could be 
vastly improved with reliable models that describe this change in insulin sensitivity. 

It is known that certain metabolic processes and hormonal activities follow a 
circadian pattern managed by a hormonal circadian clock within the body [254]. 

The binding of insulin to the insulin receptor triggers a signalling cascade that is 
responsible for the action of insulin. Interaction with the signalling network may 
severely affect the propagation of the signal triggered by insulin receptor binding. 
Although the detailed mechanisms of interaction are not known [223], it is generally 
accepted that glucocorticoids (cortisol i.e.) cause insulin resistance [223, 247].  
Glucocorticoids themselves are produced by the human body and their blood 
concentration levels follow a circadian rhythm [255] and are also believed to have a 
strong influence on the circadian rhythm themselves [256]. Glucocorticoids that are 
administered exogenously as medication in critically ill patients could therefore cause 
a disturbance of the circadian profile of endogenous glucocorticoids and cause 
changes in insulin action. 

V.5.2.1.2.2 Severe Changes 

In all subjects with T2DM, some subjects with T1DM, and also the critically ill, the 
metabolic system is compromised in its ability to maintain homeostatic control of 
glucose levels. This is due to a reduced sensitivity to insulin. Insulin sensitivity is of 
major importance at intensive care units, where the effects of inflammation and its 
treatment, e.g. with anti-inflammatory steroids like cortisone, can cause severe 
dynamic changes in insulin sensitivity [158, 229-234]. Hyperglycaemia is prevalent in 
critical care [75, 235-238]. Tight control of blood glucose has been shown to improve 
clinical outcomes [237, 238]. More importantly, van den Berghe et al [235-238], and 
Chase et al [75] have shown that tight glucose control can reduce mortality in the 
intensive care unit (ICU) by 18-45%. Glucocorticoids are used in critical care to treat 
a variety of inflammatory and allergic disorders, but may inadvertently cause 
hyperglycaemia through reduced insulin sensitivity. Although tight glycaemic control 
in critical care is not a foremost objective within the scope of this work, similar severe 
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conditions could also arise in any subject with diabetes. These implications have to 
be taken into consideration when glycaemic control is performed at a clinical site. 

V.5.2.2 Insulin On-board (IOB) as a Safety Constraint 

As mentioned in Section III.2.1.2, time delays associated with physiological lag-times, 
e.g. the time it takes for subcutaneous insulin to reach the target tissue, do 
complicate glycaemic control. For example, a standard feedback controller like a PID 
controller has no information on remaining circulating insulin levels. During the meal, 
as glucose levels rise, the controller may calculate a high dose to prevent 
hyperglycaemia. If, within a short period of time, a second control input is calculated, 
glucose levels may still be rising and the controller would again calculate a high 
dose. Depending on the sampling time of the control system, this may occur several 
times during a meal and the body would accumulate large quantities of insulin that 
would then cause postprandial hypoglycaemia. Consequently, the aggressiveness of 
the controller would have to be reduced or the sampling times would have to be 
increased to accommodate for the large lag-times (to approx. one control input every 
2 hours). Both strategies however would severely reduce the quality of control [257].  

For that reason, recent control algorithms proposed for a closed-loop artificial 
insulin-on-board  (IOB) to reduce the probability of 

hypoglycaemic events. Also, to help subjects avoid problems associated with 
accumulating circulating insulin most current insulin pumps include an IOB feature. 
Current state-of-the-art algorithms use simple decay functions to describe the 
pharmacokinetics of IOB [257]. For this work, circulating insulin levels are used, as 
they can be simulated using the here developed PBPK/PD model, to calculate IOB 
and the associated constraint for the control system. 

A penalty function to account for the effect of endogenous (on-board) insulin (EIOB) 
was defined. To calculate the constraint for the control system, the functions of the 
model describing the pharmacodynamic effect of insulin, acting through the amount 
of phosphorylated insulin receptor at the respective target tissue, are used. For this, 
the function for insulin mediated hepatic glucose uptake ( ), Figure 34 (left)) and 
insulin mediated peripheral translocated glucose transporter 4 ( , Figure 35 
(left)) are used. 

 
Figure 34: Surface plot of the pharmacodynamic effect of insulin at the liver (left plot; insulin-dependent 
hepatic glucose production, ) and the surface plot of the constraint function based on the saturation of the 
pharmacodynamic effect of insulin at the liver  (right plot; hepatic effect of insulin on board,  with  
= 3000). 
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The EIOB functions are parameterized such that only insulin doses are penalized for 
which the resulting tissue concentration of insulin reaches levels at which the 
pharmacodynamics at the respective target tissue become over-saturated. Based on 
the individuals  and the amount of phosphorylated insulin receptor, the EIOB 
function for hepatic ( ) and peripheral/muscular ( ) insulin action is 
calculated: 

 

with relative effect of phosphorylated insulin receptors  and sum of 
phosphorylated insulin receptor , sum of basal phosphorylated insulin receptor 

, insulin sensitivity , threshold value , and the weight , of the constraint. 
When the PBPK/PD model is individualized, the pharmacodynamic functions are 
automatically adapted via the insulin sensitivity (parameter SI) allowing 
individualization of EIOB for each subject.  is calculated based on the patients 
basal state at the beginning of the clamp phase and EIOB is solved for  with 

.  

When the PBPK/PD model is individualized, the pharmacodynamic functions are 
automatically adapted via the insulin sensitivity (parameter ). The function of 

 is shown in Figure 34 (right) the function of  is shown is Figure 35 
(right). The functions of EIOB were parameterized in such a way that the control input 
was only penalized for resulting concentrations of insulin at which the 
pharmacodynamics at the respective target tissue were nearly saturated (red area in 
the surface plots of , Figure 34 (left) and GLUT4, Figure 35 (left)). Thus, 
through the parameter  the constraints are also individualized for each subject. 

 
Figure 35: Surface plot of the pharmacodynamic effect of insulin at the muscle (left plot; relative (in % of 
total GLUT4) concentration of insulin-dependent translocated GLUT4, ) and the surface plot of the 
constraint function based on the saturation of the translocation of GLUT4 (right plot; muscular effect of insulin on 
board,  with  = 3000). 

The constraint for EIOB was used for both, the Fading Memory Proportional 
Derivative controller as well as the model predictive control algorithm. The details of 
the application of the EIOB within the respective control system are described in the 
following. 
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V.5.2.2.1 MPC Cost Function 

Performance of the MPC algorithm strongly depends on the design of the cost 
function , or the stage cost , respectively. A general approach would be 
to use sum-of-squares to penalize the control error with  (dynamic 
target value vs. predicted glucose). However, as hypoglycaemia is more critical than 
hyperglycemia, an asymmetrical cost function was chosen. For this, two overlapping 
exponential functions were chosen with the function penalizing low glucose levels 
(lower threshold value function, ) defined as: 

 ([mg/dl]) 

and the function penalizing high glucose levels (upper threshold value function, ) defined as: 

 ([mg/dl]) 

and the stage cost  

 

with the correction constant  to set  and weight  

V.5.2.2.2 Insulin on Board 

The MPC cost function is penalized in case of insulin oversaturation. The EIOB value 
is added to the cost function giving: 

 

The weight chosen for EIOB is  

V.5.2.2.3 Negative Slope 

A negative slope of the blood glucose trajectory at glucose concentrations around the 
target value or below are undesired, as they indicate that glucose levels are still 
falling. Thus, an additional penalty for a negative glucose slope  was added to 
the cost function  if glucose levels below target value were falling, i.e. the 
slope was negative. The penalty was defined as: 

 

with a penalty weight of  and the constant  

V.5.2.3 FMPD Constraints 

V.5.2.3.1 Insulin on Board (IOB) 

Control of blood glucose via the subcutaneous route introduces severe time delays 
between application of the controller input and effect of control. These time-delays 
pose a significant challenge in glucose control as they in general cause the system 
(w.r.t. insulin levels and their effect) to overshoot, and more importantly for glucose 
levels, to undershoot. If not handled properly, severe episodes of hypoglycemia could 
occur. Feedback-systems with time-delay are especially prone to overshoot after 
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severe disturbances due to the delayed effect of control. With respect to glucose 
control, this is the case after the consumption of a meal or after physical activity 

The FMPD controller was combined with the EIOB constraint by weighing the 
feedback control input (dose correction)  with the sum of the weighted EIOB 
constraints: 

 

V.5.2.3.2 Gain Scheduling 

In general, a standard PD or PID controller is symmetric, i.e. both, positive and 
negative deviations from the target value are treated equally. However, depending on 
the tuning of the controller it could happen that after a meal, the integral component, 
or in the case of the FMPD the memorized proportional component could still cause 
the controller to inject insulin. It is common practice that if blood glucose levels go 
below the chosen target value, insulin infusion by the insulin pump is suspended to 
stop all insulin input until blood glucose reaches levels above the target value. 
However, experience with the dataset at hand revealed that if insulin levels reach 
very low values, which could happen during pump suspension, hepatic glucose 
output reacts very sensitive and large amounts of glucose are released by the liver. 
Thus, here, an approach is chosen that penalizes the input gain with the relative error 
below target value. Thus, the adjusted controller gains are calculated as: 

 

All calculated control inputs that are negative are set to zero. 

V.5.2.3.3 Target Value Attenuation 

As especially the integral components of both, the target value shift and offset-control 
adapt only slowly to prediction errors, the controller starts with an increased Target 
value (150 mg/dl) at start of control, which is continuously lowered to the desired 
target level (110 mg/dl) 
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V.5.2.4 Parameter Sets 

Table 8: Parameter set of the Control Algorithm 

Parameter Value Dim. Description Sourcea 

MPC 

 140 [mg/dl] Upper glucose target range limit GCP 
 70 [mg/dl] Lower glucose target range limit GCP 
 100 [-] Weight for target value cost function fit 

 2 [-] Ordinate shift for value cost function fit 
 1/2000 [-] Weight for Negative Slope penalty fit 

 1/100 [-] Gain for Negative Slope penalty fit 
 3000 [-] Weight of insulin-on-board constraint fit 

Offset Controller (FMPD) 

 0.2 [-] Controller gain for P-controller fit 

 0.02 [-] Controller gain for I-controller fit 
 0.02 [-] Forgetting factor for P-controller fit 

 4e-8 [U/(mg/dl)] Controller gain for P-controller fit 

 1e-9 [U/(mg/dl)] Controller gain for I-controller fit 
 5e-7 [U/(mg/dl)] Controller gain for D-controller fit 
 0.02 [-] Forgetting factor for P-controller fit 

 0.1 [-] Forgetting factor for D-controller fit 
 30 [-] Weight of insulin-on-board constraint fit 

 3 [-] Constant for Gain Scheduling fit 

 

V.5.3 Clinical Trials 

V.5.3.1 Trial Criteria 

V.5.3.1.1 Withdrawal Criteria 

The following have been used as withdrawing criteria for participating subjects: 

 Abnormal laboratory tests judged to be of clinical significance 

 Intercurrent illness requiring medication 

 Volunteers not wishing to continue with the study for other reasons, e.g. 
unavailability 

 Changes in concomitant medication of clinical relevance for continuing in the 
study 

 Strenuous exercise within 24 hours prior to the experiment 

 Consummation of alcohol within 24 hours prior to the experiment 

 Pregnancy or intention of becoming pregnant 

V.5.3.1.2 Stopping Rules 

The following have been used as stopping rules for discontinuation of the trial: 

1. If more than 2 subsequent blood samples cannot be obtained 

2. If blood glucose cannot be controlled with subcutaneous insulin infusion and 
insulin boluses according to the calculations of the algorithm 
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3. If the variable insulin infusion is interrupted for more than 30 minutes 

4. If the experiment is stopped due to point 1 or 3, the subject may undergo the 
experiment on another occasion 
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V.5.3.2 Individual Patient Profiles 

V.5.3.2.1 Trial #1 

 

Figure 36: Glucose control in Subject 01. This was the individual with the second and last technical failure 
during the trial at 6:00 a.m. (t = 960 min) resulting in oral carbohydrate intervention (12 g CHO (orange juice) at 
6:15 a.m. and 6:30 a.m.). Algorithm was reset at 7:30 a.m. (t = 1050 min). Subject 01 did not consider nutritional 
effects on meal absorption due to the issues discovered with Subject 02. Predicted meal absorption in Subject 01 
is thus handled like a glucose solution (fast absorption). Also, meal information at breakfast was not transmitted 
to the controller and was thus treated like a disturbance. Also, the Dynamic TV shift was not recorded/stored and 
is thus displayed as zero. 
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Figure 37:  Glucose control in Subject 02. First technical failure at start of control (7:30 p.m. (t = 330 min)), due 
to erroneous handover of meal effect parameters to the controller, requiring oral carbohydrate intervention (36 g 
and 24 g CHO (orange juice) at 9:15 p.m. and 9:30 p.m.). Control was discontinued at 9:30 a.m. (t = 450 min). 
During this first experiment, predictions for insulin were not stored. This was only commenced after the first 
experiment. Predictions for glucagon were only stored in the second trial. 
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Figure 38: Glucose control in Subject 03. First dose was rejected (7:45 p.m. (t = 345 min). 
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Figure 39: Glucose control in Subject 04. A single dose was rejected (7:45 p.m. (t = 345 min), 0.2 U rejected 
and 5 U applied). Divergence of predictions and measurements after breakfast could have been caused by the 
unexpected rise in glucagon levels after each meal. 
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Figure 40: Glucose control in Subject 05. MPC dose recommendations were rejected from the start of control 
(7:30 p.m., t = 330 min) until 7:00 a.m. (t = 1020 min). Following that, dose recommendations were accepted and 
control results were good. Two more dose rejection at 11:00 a.m. (t = 1260 min, recommendation of 0 units was 
raised to 2 units of insulin, unnecessarily as glucose levels were already falling steeply) and 6:15 p.m. (t = 1695 
min, 1.2 U recommended, 0 U applied, medical staff was taking no risks for overdose as this was shortly before 
end of trial). 
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Figure 41: Glucose control in Subject 06. Subject had very unstable conditions at start of clamp and required 
extensive amounts of i.v. glucose. Although this was taken into consideration, it made initial parameterization 
challenging. Two dose recommendations at 10:00 and 11:15 a.m. (t = 1200 and 1275 min), both 1 U, were 
rejected and raised to  3 and 2.5 U. Half-life time of insulin was overestimated causing a lay-off in insulin dosing 
after meal doses. Patient glucose levels subsequently rose quicker than predicted, causing oscillations upon 
delayed counter-regulation. 
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Figure 42: Glucose control in Subject 07. Half-life time of insulin was overestimated and insulin Sensitivity was 
underestimated (in relation to predicted vs. observed insulin levels). Patient glucose levels subsequently rose 
quicker than predicted, nevertheless, this was corrected by the dynamic target shift. However, the resulting 
increase dose recommendation was judged as too risky and subsequent recommendations were rejected. In 
between (7:15 a.m., t = 1035 min, 8:30 a.m., t = 1110 min) calculate doses were applied tentatively, but again 
rejected thereafter, even though glucose levels were too high. Only after 2:00 p.m. doses were after another 
tentative test, accepted and control was significantly improved. 
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Figure 43: Glucose control in Subject 08. This was the first experiment with a successful model kernel update. 
Subject arrived at clinic at 12:30 a.m. with hypo and received 48 g CHO (orange juice) and omitted basal insulin 
before clamp. The following clamp phase was very unpredictable resulting in initial overestimation of insulin half-
life time causing strong oscillations during night-time control. Model kernel was updated at 7:15 a.m. (t = 1035) 
with improved estimate of insulin half-life time and subsequent improvement of control. One dose rejection (1.8 U 
set to zero) after breakfast (9:00 a.m., t = 1140 min). 
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Figure 44: Glucose control in Subject 09. Second experiment with a successful model kernel update. Subject 
arrived at clinic at 12:30 a.m. with hypo and received 48 g CHO (orange juice) and omitted basal insulin before 
clamp. All dose recommendations were accepted. Even though basal insulin was suspended 90 min before the 
trial, initial measured insulin values were extremely high (approx. 4 times higher than predicted). This caused a 
sever overestimation of insulin sensitivity and a strong divergence of predicted and measured glucose. Model 
Kernel was updated at 8:00 a.m. (t = 1080) and model prediction and consequently control performance was 
improved significantly. 
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Figure 45: Glucose control in Subject 10. Third experiment with a successful model kernel update. Subject 
measured low glucose at 11:30 a.m. and stepwise reduced basal insulin to 50%, 30% and 0% before clamp. All 
dose recommendations were accepted. Even though basal insulin was significantly reduced and in the end 
suspended 150 min before the trial, initial measured insulin values were extremely high (approx. 4 times higher 
than predicted). This again caused a sever overestimation of insulin sensitivity and a strong divergence of 
predicted and measured glucose. Model Kernel was updated at 8:00 a.m. (t = 1080) and model prediction and 
consequently control performance was improved. 
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V.5.3.2.2 Trial #2 

 

Figure 46: Glucose control in Subject 01. The subject had 2 and 3.5 BE for breakfast (+ coffee) and second 
dinner. Overall good model fit (glucose and insulin PK) but glucagon surges were not identified. The controller 
achieved very good overnight control but the subject showed slight morning insulin resistance ( - ) and 
increased midday insulin sensitivity. No oral glucose interventions were required, but twice at 1 and 1:15 p.m. (t = 
1380/95 min) insulin suggestions were declined. 

0

100

200

300
G

lu
co

se
 C

. 
[m

g/
dl

]

 

 

TV Dyn. TV Meas. s.c. Meas. i.v. Pred. s.c.

0

10

20

In
su

lin
 I

nf
. 

[U
/h

]

 

 

MPC

Rejected

0

50

100

150

200

250

In
su

lin
 C

. 
[m

U
/l]

 

 

Predicted

Measured

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

G
lu

ca
go

n 
C

. 
[p

m
ol

/l]

Time [min]

 

 

Predicted

Measured



Optimal Glycaemic Control using PBPK/PD Models  RWTH Aachen University 

 142  
 

 

Figure 47:  Glucose control in Subject 02. The subject had 5 and 4 BE for breakfast and second dinner. Model 
fit overestimated insulin absorption and clearance and glucagon surges were not identified. The controller 
achieved very good overnight control after initial oral glucose intervention at around midnight (t = 600 min, 2 BE). 
The subject showed a strong morning insulin resistance ( - ) and increased midday insulin sensitivity. 
Oral glucose interventions were required again after midday (3:30 p.m., t = 1530 min). A suggestion (0.1 IU at 
3:30 a.m., t = 910) was once not given due to a delay. 
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Figure 48: Glucose control in Subject 03. The subject had twice 5 BE for breakfast (no coffee) and second 
dinner. Except for meal absorption, model fit (insulin and glucose PK) was very good. Subject showed almost no 
changes in glucagon. The subject went into hypo after self-injection for the first dinner and required oral glucose 
intervention with zero insulin dose suggestions yet (8:30 p.m., t = 390 min). The controller achieved very good 
overnight control. The subject showed no morning insulin resistance ( - ) but a strong increase in 
midday insulin sensitivity. The subjects showed altered insulin PK for the lunch insulin injections. 
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Figure 49: Glucose control in Subject 04. The subject had twice 5 BE for breakfast (no coffee) and second 
dinner. Initial accuracy of model fit was insufficient due to extreme glucose levels at start of clamp causing the 
first dose suggestion to be declined (7:30 and 7;45 p.m., t = 330 and 345 min, 3.6 and 1.5 IU). Insulin PK model 
fit was good with a slight underestimation of rate of absorption. Except for the clamp phase, subject showed 
almost no changes in glucagon. The subject required oral glucose intervention after breakfast and lunch (10 a.m., 
t = 1200 min, 3 BE and 3 p.m., t = 1500 min, also 3 BE). The controller achieved satisfactory overnight control. 
The subject showed no morning insulin resistance ( -effect ) but a slight increase in midday insulin 
sensitivity. 
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Figure 50: Glucose control in Subject 05. The subject had twice 3 BE for breakfast and second dinner. Insulin 
absorption and clearance were overestimated. Except for the first dinner, subject showed only marginal changes 
in glucagon. The subject required a single glucose intervention just before the last dinner (4:45 p.m., t = 1605 
min, 1 BE). The controller achieved good overnight control. The subject showed both a strong morning insulin 
resistance ( - ) and a strong increase in midday insulin sensitivity. No dose suggestions were declined. 
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Figure 51: Glucose control in Subject 06. The subject had twice 3 BE for breakfast (+ coffee) and second 
dinner. Except for a strong morning insulin resistance ( - ) and a strong increase in midday insulin 
sensitivity, model fit (insulin and glucose PK) was very good. Subject showed a slight increase in glucagon levels 
after breakfast. The subject required a single glucose intervention just before the last dinner (3:30 p.m., t = 1530 
min, 2 BE). The controller achieved good overnight control. No dose suggestions were declined. 
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Figure 52: Glucose control in Subject 07. The subject had 5 and 4 BE for breakfast and second dinner. Subject 
showed strong insulin resistance at enrolment and in the morning ( - ) and a strong increase in midday 
insulin sensitivity, which was not captured by the model. Insulin absorption was underestimated. Subject showed 
a slight increase in glucagon levels after breakfast. The subject required a single glucose intervention just before 
the last dinner (3:00 p.m., t = 1500 min, 2 BE). The controller achieved good control. No dose suggestions were 
declined. 
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Figure 53: Glucose control in Subject 08. The subject had 5 and 6 BE for breakfast (+ coffee) and second 
dinner. Subject showed no insulin resistance at enrolment but in the morning ( - ) and a marginal 
increase in midday insulin sensitivity, which was not captured by the model. Insulin absorption was quantitatively 
underestimated. Subject showed a slight increase in glucagon levels only after breakfast. The subject required no 
oral glucose intervention. The controller achieved very good overall control. No dose suggestions were declined. 
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Figure 54: Glucose control in Subject 09. The subject had 5 and 6 BE for breakfast (+ coffee) and second 
dinner. Subject showed insulin resistance at enrolment and in the morning ( - ) and a marginal 
increase in midday insulin sensitivity, which was not captured by the model. Insulin absorption was slightly 
underestimated. Subject showed a slight increase in glucagon levels during meals. The subject required no oral 
glucose intervention. The controller achieved very good overall control. No dose suggestions were declined. 
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Figure 55: Glucose control in Subject 10. The subject had 5 and 6 BE for breakfast and second dinner. Subject 
showed insulin resistance at enrolment with a steep increase in glucose levels and concomitant high glucagon 
levels. Although the model fit for glucose showed a constant offset, there was no IOV in insulin sensitivity. Insulin 
PK was captured very well but Subject showed an enormous glucagon surges after meals. The subject required 
oral glucose intervention at night (10:45 p.m., t = 575 min, 2 BE). After the first oral intervention the controller 
continuously suggested insulin doses of approx. 4.5 IU between 11:30 p.m. (t = 570 min) and 1:15 a.m. (t = 675 
min) (8 times) until the suggestion was accepted (4.8 IU) which led to an oral intervention of 2 BE at 4:30 a.m. (t = 
870 min). Another does was declined at 5:45 a.m. (t = 945 min). Again at midday oral intervention of 3 BE 3:45 
p.m. (t = 1545 min) was required. 
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