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Abstract

Molecular organic compounds are employed as active materials in a variety of applica-
tions, including organic light emitting diodes (OLEDs) and organic thin film transistor
(OTFTs). These devices consisting of sequentially deposited layers of organic materials
have been demonstrated with active device thicknesses of only a few hundred nanome-
ters or less. For a better understanding and design of such devices, it is necessary to
understand the structural and optical properties of the organic thin films employed.

Polymers based on the family of five-membered thiophene conjugated ring and its
derivates, due to their self-assembling nature, have been considered as one of the most
common conducting organic polymers used in OTFT devices. We have studied the adsorp-
tion of 3-nitrothiophene/selenophen/tellurophen on Cu(110) surface, utilising ab initio
calculations. These calculations provide a basic understanding and forecasting of intra-
and inter-molecular interactions present in the observed structures. Monolayers of 3-
nitrothiophen/selenophen/tellurophen on a Cu(110) surface are well ordered with the
aromatic ring perpendicular to the surface, in a close packed structure. Due to the strong
lateral interaction between the hydrogen atoms of the neighboring conjugated rings, they
rotate relative to the nitro (−NO2) group.

Tris-(8-hydroxyquinoline) aluminum (Alq3) and N,N’-diphenyl-N,N’-bis(1-naphthyl)-1-
1’biphenyl-4,4”iamine (α-NPD) are among the most commonly used electron-transport
and hole-transport materials suitable for OLED applications. The optical and structural
properties of the thin films of these materials deposited by organic vapor phase deposition
(OVPD) have been studied by spectroscopic ellipsometry (SE). Employing this technique
enables the precise determination of the dielectric function as well as thickness of the
organic thin films of each material. This result can be explained by the characteristic
features of electronic states in organic molecules.

In order to tailor and modify thin film properties to be suitable for desired applications,
e.g. organic light emitting devices (OLED) in this case, it is necessary to study and
understand the influence of deposition parameters on thin film growth. Our study is
focused on the influence of deposition rate and substrate temperature on (α-NPD) film
morphology. A remarkable dependence of the film morphology on deposition rate and
substrate temperature is observed. A detailed quantitative morphology analysis provides
an excellent description of the growth mechanism of OLED films.
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Kurzfassung

Molekulare organische Verbindungen werden als aktive Materialien in einer Vielzahl un-
terschiedlicher Anwendungen, einschließlich der organischen Leuchtdioden (OLEDs) und
organischen Dünnschichttransistoren (OTFTs) eingesetzt. Diese Bauelemente, bestehend
aus aufeinanderfolgenden Schichten organischer Materialien, wurden mit aktiven Filmen,
die eine Dicke von nur einigen hundert Nanometer oder weniger aufweisen demonstriert.
Für das bessere Verständnis und das Design solch einer Anordnung ist es erforderlich
die Struktur und die optischen Eigenschaften der bestehenden organischen Schichten zu
verstehen.

Polymere, basierend auf die Familien der fünfgliedrigen Thiophene gepaarten Ringe
und deren Derivate, werden aufgrund der Natur ihres Eigenaufbaus als eins der
häufigsten allgemein behandelten leitfähigen organischen Polymere betrachtet, die
in OTFT Anordnungen verwendet werden. Wir haben die Adsorption von 3-
nitrothiophene/selenophen/tellurophen auf Kupfer (110) Oberflächen mit der ab initio
untersucht. Diese Kalkulationen bieten das Basisverständnis und eine Vorausberechnung
der intra- und-intermolekulare Wechselwirkungen die in den beobachteten Strukturen
bestehen. Monolagen von 3-nitrothiophene/selenophen/tellurophen auf Kupfer(110)
Oberflächen sind mit dem aromatischen Ring senkrecht zur Oberfläche gut in einer dicht
gepackten Struktur angeordnet. Wegen der starken lateralen Wechselwirkung zwischen
den Wasserstoff Atomen der benachbarten konjugierten Ringe, rotieren sie relative zu der
Nitro (-NO2) Gruppe.

Tris-(8-hydroxyquinoline) aluminum (Alq3) und N,N’-diphenyl-N,N’-bis(1-naphthyl)-1-
1’biphenyl-4,4”iamine (α-NPD) sind unter den meisten üblich verwendeten Elektron-
Transport und Loch-Transport Materialien für OLED Anwendungen geeignet. Die optis-
chen und strukturellen Eigenschaften dieser dünnen in der organische Gasphaseabschei-
dung (OVPD) hergestellten Schichten wurde mit der spektroskopischen Ellipsometrie (SE)
untersucht. Das Einsetzten dieser Technik ermöglicht die präzise Bestimmung der dielek-
trischen Funktion ebenso wie der Dicke der organischen Dünnschichten jedes Materials.
Dieses Ergebnis kann durch die charakteristische Eigenschaft der elektronischen Zustände
in organischen Molekülen erklärt werden.

Für das Maßschneidern und Modifizieren der Dünnschichteigenschaften, um sie für
Anwendungs- zwecke, in diesm Fall beispielsweise organische Leuchtdioden (OLED) ist
es erforderlich den Einfluss der Dipositionsparameter auf das Dünnschichtwachstum zu
untersuchen. Unsere Untersuchung ist auf den Einfluss der Depositionsrate und der
Substrattemperatur auf die (α-NPD) Schichtmorphologie fokussiert. Es wurde eine be-
merkenswert Abhängigkeit der Schichtmorphologie auf Ablagerungsraten und der Sub-
strattemperatur beobachtet. Eine detaillierte quantitative Analyse der Morphology bietet
eine ausgezeichnete Beschreibung der Wachstumsmechanismen der OLED Schichten.
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1 Introduction

During the last decades, organic materials have received considerable attention as po-
tential replacement for their inorganic counterparts in applications such as organic light
emitting devices (OLEDs) and organic thin film transistors (OTFTs). Organic materials
have the key advantage of simple and low temperature thin film processing and low cost
of production. In addition, the flexibility of organic chemistry enables the formation of
organic molecules with useful luminescent and conducting properties. [1] Since the first
consideration of organic electroluminescence (EL) devices more than 30 years ago [2],
organic light-emitting devices (OLEDs) have been widely pursued, and commercial dot-
matrix displays have recently been demonstrated [3]. Luminous efficiencies in excess of
30 lm/W and operating voltages as low as 4 V have been reported. [4], [5] In addition to
emitting light, the semiconducting properties of some organic materials enable promising
technologies for organic field-effect transistors (OFETs). Over the last few years, the
carrier mobilities of organic channel layers in OFETs have increased dramatically from
10−4 to 1 cm2/V s (comparable to those of amorphous silicon, 1 cm2/V s) [6], [7].

Thin films of organic materials are commonly deposited on inorganic surfaces. Such com-
posites, represent a new class of materials that may combine desirable physical properties
characteristic of both organic and inorganic components within a single system. Inorganic
materials offer the potential for a wide range of electronic properties (enabling the design
of insulators, semiconductors, and metals), magnetic and dielectric transitions, substan-
tial mechanical hardness, and thermal stability. Organic molecules, on the other hand,
can provide high fluorescence efficiency, large polarizability, plastic mechanical properties,
ease of processing, and structural diversity.

The optical and structural properties of organic materials are different from those of the
inorganic ones. In contrast to the strong covalent or ionic bonds in inorganic materials,
organic molecules are bound to each other by the relatively weak van der Waals forces.
Conjugated organic molecules, the most interesting class of organic compounds, have the
electronic structure based on the π orbitals between the carbon atoms. These electronic
states, which are delocalized in the whole molecule, govern the structural as well as the
opto-electronical behavior of the materials. Furthermore, in the electronic excitation of
organic molecules, the tightly bound excitonic states, i.e. the Frenkel excitons, play an
important role. These excitonic states are strongly coupled with the vibrational modes
of organic solids. This electron-phonon coupling has a significant effect on the opto-
electronic behavior of organic materials. [8] Hence due to these clear differences, the
knowledge obtained during the last several decades on the deposition, growth and the

1



2 Chapter 1: Introduction

optical properties of inorganic thin films cannot be directly applied to the ones of organic
materials.

In general, there are two types of organic substances, amorphous materials and crystalline
ones. For several applications including electronic devices such as transistors, the high-
est possible electron mobilities are required. This property is only found in the films
with ultimate structural order and crystalline properties. For other applications such as
light emitting devices, the highest possible quantum yield is most important. This yield
depends upon the probability of radiative electron-hole recombination which is highest
for amorphous materials where the electron and hole mobilities are low. Therefore, the
opto-electronic performance of these materials are strongly dependent on the structural
properties of the organic films employed. Hence to design organic thin film based devices
a detailed understanding of the mechanisms governing film structure and growth as well
as the knowledge of the optical properties is a necessity.

The present work aims at promoting our understanding of structural and optical proper-
ties of organic thin films. This should provide a deeper insight into the parameters that
determine the molecular interactions, vibronic-electronic transitions and growth modes
of organic materials. Therefore, it should help to improve the characteristics and perfor-
mance of crystalline materials for OTFTs and amorphous materials for OLED applica-
tions.

Oligomers based on the family of five-membered thiophene conjugated ring and its
derivates have been considered as one of the most common conducting organic oligomers
used in OTFT devices. According to the self-assembling nature of these oligomers,
they should produce highly ordered organic thin films with remarkable crystallinity.
Such well ordered structures are highly demanded for better electron mobilities in or-
ganic transistors. In this work we have studied the structure and the adsorption of 3-
nitrothiophene/selenophen/tellurophen on Cu(110) surface utilising ab initio calculations.
A fundamental new insight into the very detailed geometries and ordering of the molecules
on surface and specificity of the interactions that occur between anchored molecules can
be obtained by performing ab initio calculations. The basis of ab initio calculations is the
density functional theory (DFT), which have been explained shortly in chapter 2. For the
purpose of these calculations EStCoMPP program have been used. Chapter 3 contains
the flow diagram of the EStCoMPP-code and the implementation of all theoretical ideas.
In chapter 4 we are discussing about our obtained results for the structural and binding
properties of the 3-nitrothiophene/selenophen/tellurophen on Cu(110) surface.

As it has been mentioned above, the next and interesting type of organic materials are
amorphous ones which are being widely used in OLED applications. Chapters 5-9 of
this thesis are focused on this type of materials and among them we are studying two
specific molecules Tris-(8-hydroxyquinoline) aluminum (Alq3) and N,N’-diphenyl-N,N’-
bis(1-naphthyl)-1-1’biphenyl-4,4”diamine (α-NPD). These molecules are among the most
commonly used electron-transport and hole-transport amorphous organic materials used
for OLED applications. In this work we have investigated the optical and structural
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properties of Alq3 and α-NPD thin films. As it has been briefly mentioned, the optical
properties of organic materials are different from the inorganic ones. The theoretical
background of optical properties of organic materials is provided in Chapter 5. And
chapter 7 contains the obtained results for optical properties of Alq3 and α-NPD thin
films.

For a better understanding and design of organic thin films based devices, in this case
OLEDs, it is necessary to characterize and understand the morphology and growth modes
of the consisting thin films. Chapter 8 provides the basic knowledge of the thin film growth
with the emphasis on the amorphous growth models. Also, it provides the detailed quan-
titative methods for characterizing the morphology and height fluctuations of thin film
surfaces. In this work, in order to determine a quantitative model for growth and mor-
phology of α-NPD thin films, a systematic study on the influence of deposition rate and
substrate temperature on film morphology have been done. Our results are demonstrated
in Chapter 9.
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2 First-principles methods

The electronic structure of atoms, molecules and solids can be described as a many-
particle-system of interacting electrons and nuclei. The description of such systems
has been an important goal of physics during this century. Analytic solutions of the
Schrödinger equation are possible for a few very simple systems, and numerically exact
solutions can be found for a small number of atoms and molecules. However, most cases
of interest, such as reaction at surfaces or electron-electron interactions in solids, require
the use of model Hamiltonians or simplified computational schemes. The development of
schemes that provide useful information on real systems continues, and it is the purpose
of this chapter to describe one of the them, the density functional theory (DFT). [9]

DFT calculations are widely used in determining the electronic and structural properties
of molecular solids and interfaces. In this chapter the basis of the density functional
theory (DFT) and ab initio methods will be explained.

In the most general form, the total hamiltonian for the system of electrons and nuclei
can be written as summation of the kinetic energies of nuclei and electrons, the Coulomb
energies due to ion-ion repulsion, ion-electron attraction, and electron-electron repulsion.
Due to the large mass difference of electrons and nuclei the two systems can be separated
in many cases. If we set the mass of the nuclei to infinity, then the kinetic energy of the
nuclei can be ignored. [10] In this Born-Oppenheimer or ”adiabatic” approximation the
dynamics of electrons has to be treated in a frozen-in configuration of the nuclei. This
leads to electronic energies and wave-functions which contain the nuclear coordinates
as external parameters. The nuclear motion is then treated separately. It contains the
ground-state energy of the electrons E0(Ri) for each nuclear configuration Ri as part
of the potential energy. Finding the eigenfunctions and eigenvalues of the electronic
system is still impossible without drastic simplifying assumption. Hartree [11] introduced
the ”independent electron approximation” in which the many-electron wave function is
reduced to a product of single-particle function:

Ψ(r1,r2, · · · ) = Ψ1(r1) · · ·Ψ1(r2) (2.1)

Each of the functions Ψi(ri) satisfies a one-electron Schrödinger equation with a potential
term arising from the average field of the other electrons:

[− ~2

2m
∇2 + Vext + Φi]Ψi(r) = εiΨi(r), (2.2)

5



6 Chapter 2: First-principles methods

where Vext is a potential due to the fixed nuclei or other external fields and Φi the Coulomb
potential due to the electrons which is given by Poisson’s equation

∇2Φi = 4πe2
N∑

j=1,i6=j

|Ψj|2. (2.3)

The Hartree approximation was extended by Fock and Slater in 1930 by replacing the
product wave function by a single determinant function:

Ψ(r1,r2, · · · ) =
1√
N !

∣∣∣∣∣∣∣
ψ1(r1) · · · ψN(r1)

...
...

ψ1(r2) · · · ψN(r2)

∣∣∣∣∣∣∣ (2.4)

Thus, the wave function of a many-electron system is antisymmetric under exchange of
any two electrons as demanded by the Pauli principle. The spatial separation of two
electrons with the same spin reduces the Coulomb energy of the system. The energy dif-
ference between the Hartree-Fock and Hartree approximation is the ”exchange” energy.
The Coulomb energy can be reduced below its Hartree-Fock value at the cost of increasing
kinetic energy if electrons with opposite spins are also spatially separated. This is intro-
duced by additional correlations between the electrons. The energy difference between
the true many-electron energy and the Hartree-Fock approximation is the ”correlation
energy”. In contrast to Hartree-Fock, DFT provides in principle an exact solution of the
many-body problem in the electronic ground state as will be shown in the following.

2.1 Density functional theory

2.1.1 Hohenberg-Kohn theorem

In DFT, all ground state properties such as the total energy are expressed as a function of
the density distribution. Hohenberg and Kohn have established two remarkable theorems
for interacting electrons in an external potential V (r) whose Hamiltonian is

H =
N∑
i=1

[−∂2
ri

+ V (r)] +
N∑

i,j,i 6=j

1

|ri − rj|
. (2.5)

1: The ground-state of an inhomogeneous interacting many-electron system is a unique
functional of the ground-state electron density n0(r).
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2: There exists an energy-functional E[n] which is minimized by the ground-state den-
sity n0(r) under the condition of charge conservation.

While Hohenberg and Kohn proved their theorems indirectly with the assumption that
n(r) is uniquely determined by the external potential (V-representation of n(r) ), Levy [12]
showed more precisely that the energy-functional is minimized by n0(r), using a variational
method. He defined the energy-functional as:

E[n] := minΨ 〈Ψ |H|Ψ〉 (2.6)

The expectation value of the Hamiltonian operator has to be minimized with respect to
the norm conserving, antisymmetric many-particle wave-function Ψ, which reproduces a
given electron-density n(r) (Ψ representation of n(r)). The ground-state density n0(r)
and the ground-state energy E[n0] is determined by minimizing the energy-functional:

δE[n] = 0 (2.7)

The subsidiary condition of the particle conservation

∫
d3(r)n(r) = N, (2.8)

is taken into account using the Lagrangian-parameter µ. This leads to the minimization
of a modified energy-functional

δ

{
E[n]− µ(

∫
d3r−N)

}
= 0, (2.9)

which yields the following Euler-Lagrange equation:

δE[n(r)]

δn(r)

∣∣∣∣
n0(r)

= µ. (2.10)

An explicit form of the energy-functional could not be derived from the approach of
Hohenberg and Kohn, nor from Levy’s formulation. Thus, additional approximations
need to be considered.

2.1.2 The Kohn-Sham formalism

The main idea of the Kohn-Sham formulation is to map the system of N interacting
electrons onto an auxiliary system of N non-interacting electrons with the same density
as the interacting system. In this case the charge density can be expressed in terms of
single particle orbitals Ψi
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n(r) =
N∑
i=1

|Ψi(r)|2 . (2.11)

With the kinetic energy of the non-interacting particle is given by1

E0
kin[n(r)] = −1

2

N∑
i=1

∫
drΨ∗(ri)∇2Ψ(ri) (2.12)

The contributions to the total energy of the ground state are formally split-up into four
parts

E[n(r)] = E0
kin[n] + Eext[n] + EH [n] + Exc[n], (2.13)

where E0
kin is the functional of the kinetic energy of N non-interacting electrons. Eext

describes the energy of electrons with the density n(r) in an external potential Vext(r),
e.g. the interaction with the nuclei. EH gives the Coulomb energy in the Hartree approx-
imation, and all unknown many-particle effects, including the corrections to the kinetic
energy, are contained in the exchange-correlation functional Exc which is defined by Eq.
2.13. To find an explicit form of the functional E[n] only Exc[n] has to be approximated.
The successful and widely used approximations for Exc will be presented in Section 2.1.3.
This, however, is only a small contribution to the total electron energy [9].

Within this scheme, the system of interacting particles in an external potential Vext is
now replaced by a system of non-interacting particles in an effective potential Vtot . The
single particle wave functions in Eq. 2.11 are orthogonal to each other and fulfill the norm

〈Ψi(r)|Ψi(r)〉 = 1. (2.14)

If the variational principle for the total energy E is applied with respect to the function
Ψi, the norm is enforced by the constraint instead of the particle conservation. With
the introduction of N independent Lagrangian parameters εi one can then minimize the
functional

Ẽ = E[n(r)]−
N∑
i

εi[

∫
driΨ

∗(ri)Ψ(ri)− 1]

using
δE

δΨi

=
δE

δn
· δn
δΨi

. (2.15)

1In the following atomic units will be used, i.e.: ~ = 1, e = 1, me = 1
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This yields a simple equation of motion for each of the functions Ψi(r) which has the
appearance of a single particle Schrödinger equation where the Lagrangian parameter εi
takes the role of the eigenvalue:

(−∂2
r + Vtot(r))Ψi(r) = εiΨi(r) (2.16)

The potential Vtot(r) is an effective single particle potential

Vtot(r) = Vext(r) + VH(r) + Vxc(r), (2.17)

which contains the contributions:

Vext(r) =
δEext
δn(r)

= V (r), (2.18)

VH(r) =
δEH
δn(r)

=

∫
dr′

n(r
′
)

|r− r′|
, (2.19)

Vxc(r) =
δExc
δn(r)

. (2.20)

Vtot(r) is density dependent and thus a functional of the function Ψ(ri). A solution of the
Kohn-Sham equations

[−∂2
r + Vext(r) + VH(r) + Vxc(r)]Ψi(r) = εiΨ(r) (2.21)

has to be found by iterating to self-consistency. This Kohn-Sham approach represents a
mapping of the interacting many-electron system onto a system of non-interacting elec-
trons moving in an effective potential due to all the other electrons. The self-consistent
solution of the Kohn-Sham equation gives the set of wave-functions Ψi that minimizes
the Kohn-Sham energy-functional. If the exchange-correlation energy functional were
known exactly, the functional derivative of the Kohn-Sham equations are formally one-
particle energies. However, since they are only Lagrangian parameters in density func-
tional theory, they have strictly speaking no physical meaning. The same argument holds
for one-particle wave-functions, which have no physical meaning as well. Nevertheless,
following Koopmans-theorem, an interpretation of the εi and Ψi(r) as eigenvalues and
one-particle wave-functions is generally possible [9]. For delocalized states, where the
correlation effects are relatively small, the spectroscopically measured ionization energies
and the energies calculated with the density functional theory are indeed in good agree-
ment. This is not true for strongly localized states (e.g. atomic states). However, the
surface-states which are calculated in this thesis are sufficiently delocalized and can be
interpreted as physical states.
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2.1.3 Exchange-correlation approximations: LDA and GGA

Approximations enter density functional theory due to the fact that the exchange-
correlation energy is unknown for inhomogeneous systems. The simplest method of de-
scribing the exchange-correlation energy is to use the local-density approximation (LDA),
which assumes that the exchange-correlation energy per electron at a point r in the elec-
tron gas εxc(r), is equal to the exchange-correlation energy per electron in a homogeneous
gas that has the same density as the electron gas at point r. Thus, the exchange-correlation
energy density

εLDAxc [n(r)] = εhomxc (n(r)) (2.22)

now is a function and not any more a functional of the density n(r) and spatial integration
yields the exchange-correlation energy:

ELDA
xc [n(r)] =

∫
d3rεLDAxc (r)n(r) (2.23)

The Vxc-potential is then calculated

V LDA
xc [n(r) =

δELDA
xc [n(r)]

δn(r)

= εLDAxc (n(r)) + n(r)

(
dεLDAxc (n)

dn

)
n=n(r)

. (2.24)

The Hartree-Fock equation can be solved exactly for a homogeneous electron gas yielding
for the exchange energy εx(n) the result

εx(n) = −3

2

(
3

π

)
n1/3. (2.25)

The ground-state energy as a function of the electron density can be calculated numerically
and under the assumption that any correlation beyond exchange is written as:

εxc(n) = εx(n) + εc(n). (2.26)

Now commonly used parameterizations of the LDA are based on the quantum Monte Carlo
results by Ceperley and Adler [13] and have been proposed by Perdew and Zunger [14],
or Teter et al. [15]. Calculations using these functionals yield good result for the ground
state properties for a wide range of materials, Gunnarson et al. [16], [17] pointed out, that
this is due to the fact, that only the spherical average of the exchange-correlation hole (the
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hole near the origin of the pair distribution function) determines the exchange-correlation
potential and that this spherical average is reproduced well by the LDA [17].

An extension of the LDA is the General Gradient Approximation (GGA) which describes
the exchange-correlation energy not only as a function of the local density but also of its
variation

E(GGA)
xc [n(r)] =

∫
drn(r)εhomxc (n(r))Fxc[n(r),∇n(r)]. (2.27)

The enhancement factor Fxc[n(r),∇n(r)] has two separate parts due to the exchange
and correlation contributions. In common parameterizations εxc is an analytical function
designed to satisfy certain conditions e.g. that the exchange hole is negative everywhere
and represents a deficit of one electron [105]. Among those GGA’s one finds those of
Perdew and Wang [18] or Perdew, Burke and Ernzerhof, PBE [19]. The generalized
gradient approximation implemented in the code is PBE-GGA in which all parameters
other than those due to the correlation contributions are fundamental constants.

2.1.4 Spin-density functional theory

So far we have described the non-polarized form of the density functional theory. To study
the magnetic properties like the ferro- or antiferromagnetism of solids and molecules or
surface magnetism, spin polarization of the electron density needs to be considered. The
expansion of the density-functional for spin-polarized electrons is straightforward. The
generalization is achieved by considering the collinear magnetic states. In this case, the
Hamiltonian can be written as two diagonal blocks for each spin direction and the electron
density n(r) can be replaced by the spin-densities n↑(r) and n↓(r) for electrons with spin-
up and spin-down, respectively. The electron-density and the magnetisation-density are
then defined as

n(r) = n↑(r) + n↓(r),

m(r) = n↑(r)− n↓(r). (2.28)

The energy-functional in the Hohenberg-Kohn theorems is generalized to a functional of
two densities

E[n] → E[n↑(r),n↓(r)]. (2.29)

It is minimized by the ground-state densities n↑0(r) and n↓0(r). The Kohn-Sham equations
are obtained by the variation of the energy-functional with respect to the spin-densities.
The approximation used most widely is the local spin-density approximation (LSDA),
where

εLSDAxc [n↑(r),n↓(r)] = εhomxc (n↑,n↓) (2.30)

is the exchange and correlation energy per particle of a homogeneous, spin-polarized
electron gas [20].
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2.2 Density functional theory in a plane wave
implementation

2.2.1 Periodic suppercells

With the application of the Kohn-Sham formalism a many-body problem of N interacting
particles can be reduced to the calculation of N single-electron equations. We have to
define an appropriate basis set to expand the wave-functions, and express the different
parts of the Hamiltonian. The systems we want to describe are usually non-periodic, but
in order to use well-established band structure methods developed for ideal crystals, one
approximates the inhomogeneous system by a periodic continuation of a supercell con-
taining the structural inhomogeneity. For a crystal lattice the elementary cell is defined as
the smallest structure, whose periodic continuation describes the crystal. The elementary
cell is defined by three basis-vectors a1, a2, a3. Each lattice-vector

Rn = n1a1 + n2a2 + n3a3, n = (n1,n2,n3), ni ∈ N, (2.31)

points to the position of a different elementary cell and any property of the lattice f(r)
(f(r) e.g. potential V (r), electric density n(r)) has to be periodic in Rn:

f(r + Rn) = f(r) (2.32)

The volume of the elementary cell is

Ω = a1 · (a2 × a3). (2.33)

The basis-vectors of the reciprocal space are defined by

bi = 2π
aj × ak

Ω
, (2.34)

for cyclic i,j,k. The reciprocal space is then spanned by the reciprocal lattice-vectors

Gm = g1b1 + g2b2 + g3b3, (2.35)

which ensures that for each Gm and Rn

eiGR = 1. (2.36)

To describe inhomogeneous systems like molecules or surfaces of solids, a supercell has
to be defined which contains the molecule and enough of its neighborhood to be able to
describe the required electronic and atomic configuration meaningfully.
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2.2.2 Bloch’s Theorem

Using the supercell approach, the potential V (r) also has the periodicity of the suppercell:

V (r+R) = V (r) (2.37)

Bloch’s theorem states that in a periodic potential each wave-function can be expressed
as the product of a cell-periodic part uν,k(r) and a plane-wave part eikr

Ψν,k(r) = eikruν,k(r). (2.38)

The cell periodic part of the wave function can be expanded using a basis set consisting
of a discrete set of plane waves whose wave vectors are reciprocal lattice vectors

uν,k(r) =
∑
G

cν,GeiG·r. (2.39)

Therefore, each electronic wave-function can be written as a sum of plane waves

Ψν,k =
∑
G

cν,k+Ge
i(k+G)·r. (2.40)

The wave-vector k can always be confined to the first Brillouin zone (1.BZ), because any
k

′
outside the 1.BZ can be written as

k
′
= k + G, (2.41)

where Gm is a reciprocal lattice vector and k lies in the first Brillouin zone. Since there
are many solutions for a given k the band index ν has to be used to fully characterize the
wave-functions.

2.2.3 k-point sampling

By imposing appropriate boundary conditions (e.g. Born-von Karman [or periodic]
boundary conditions) on the wave functions, it can be shown that the wave vector k
must be real, and electronic states are only allowed at a discrete set of k-points. The
electronic wave-functions Ψνk are continuous functions of k. Thus, it is possible to rep-
resent the wave-function over a region of k-space approximately by the wave-function at
a single k-point. In this case the electronic states at only a finite number of k-points are
required to calculate the electronic potential. The distribution of these k-points in the
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first Brillouin-zone, which yield accurate results for calculation of the electronic potential,
have been studied by a number of groups ( [21], [22], [23]). In the EStCoMPP-program
the Monkhorst-Pack method is used to generate the special k-point set. Using these k-
point sets, the BZ integration can be done, yielding an accurate approximation for the
electronic potential and the total energy, by calculating the electronic states at only a
small number of k-points. Thus, the convergence of the total energy has to be checked
by a series of calculations with increasing k-point density. With a set of special k-point
the integration over the first Brillouin-zone is replaced by a weighted summation over the
k-points:

∫
1.BZ

d3k · · · →
∑
k

ωk · · · (2.42)

where ωk is the weight of the k-point, which are also given by the Monkhorst-Pack method.

2.2.4 Plane-wave basis sets

In the plane wave expansion the KS wave functions are represented in terms of discrete
plane-wave basis sets, as it has been stated by Bloch’s theorem, Eq.2.40. In principle, an
infinite basis set is required to expand the electronic wave-functions. However, since we
want to describe rather smooth valence wave-functions the importance of the coefficients
cν,k+G decreases with increasing |k+G|. Thus, the plane-wave basis set can be truncated
to include only plane waves that have kinetic energies less than some particular cutoff-
energy Ecut = |k+Gcut|2. The error for the calculation of the total energy with a particular
plane-wave basis can be reduced by increasing the cutoff-energy. As for the k-points, the
appropriate cut-off has to be checked by a series of calculations with increasing cutoff-
energy.

2.3 The pseudopotentials

Pseudopotentials were originally introduced to simplify electronic structure calculations
by eliminating the need to include atomic core states and the strong potentials responsible
for binding them. [24] Under the assumption that the charge-densities of the core-electrons
do not overlap with neighboring atoms, it is possible to treat them as frozen-in. They
shield the strong ionic potential, and it should be possible to replace the true potential by
a weaker pseudopotential for the valence electrons. Outside the core region, i.e. beyond a
cutoff radius rc , the true all-electron potential and the pseudopotential are identical, see
Fig. 2.1. The weaker pseudopotential should ideally remove the rapid oscillation of the
valence wave-functions in the core region. For density functional calculations one has to
construct norm-conserving pseudopotentials, which guarantee charge conservation. Two
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contradictory criteria determine the usefulness of a pseudopotential: (i) the pseudopo-
tential should be ”soft”, i.e. only a small number of plane-wave basis states should be
necessary to describe the wave-functions, and (ii) the pseudopotentials should be trans-
ferable, which means that the potential should give the correct ground-state energy of the
valence electrons in different chemical environments. Condition (i) can easily be met by
using a large cutoff radius while condition (ii) requires a small cutoff radius. In the actual
construction a compromise has to be found in each case.

Figure 2.1: Schematic illustration of an all-electron (dashed lines) and pseudoelectron (solid
lines) valence wave-function and potentials. Beyond the cutoff radius rc, the scattering from the
two potentials is indistinguishable.
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2.3.1 Norm-conserving pseudopotentials

Generating a norm-conserving pseudopotential proceeds as follows [24]. All-electron cal-
culations for an isolated atom in its ground-state and some excited states are performed.
Then one choses a cutoff radius rc,l and constructs a pseudo (ps) wave-function Ψps,l

and pseudopotential Vps,l(r) with adjustable parameters, which deviate from the true
all-electron functions only inside of the cutoff radius. The pseudo wave-functions and
pseudopotentials are constructed in such a way, that the following conditions are ful-
filled [25]

(1) The pseudo-eigenvalues have to be equal to the all-electron valence-eigenvalues.

(2) The pseudo wave-functions Ψps,l(r) has to be node-less and continuously differentiable.

(3) Charge conservation is guaranteed if Ψps,l(r) fulfills the norm-conserving condition

∫ r

0

dr |Ψps,l(r)|2 =

∫ r

0

dr |Ψl(r)|2 ∀r ≥ rcut. (2.43)

Since outside rc the wave-functions are identical by construction, norm conservation is
then guaranteed in the entire space.

(4) The logarithmic derivatives of the true all-electron and pseudo wave function and their
first energy derivatives agree for r ≥ rcut

∂(lnΨps,l(r,r))

∂r
=
∂(lnΨl(r,r))

∂r
∀ |r| ≥ rcut. (2.44)

This condition ensures that the scattering properties are accurately described.

2.3.2 Semi-local pseudopotentials and Kleinman-Bylander
factorization

In its the most general form, the semi-local pseudopotential is given by

V PS(r) =
∑
l

V PS
l (r)P̂l, (2.45)

where P̂l is a projection-operator for the angular momentum component l. Since all
potentials show the same long-range Coulomb-behavior, a common local potential can be
separated:
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V PS(r) =
∑
l

Vl(r)P̂l +
∑
l

(V SL
l (r)− Vloc(r))P̂l

= Vloc(r) +
∑
l

∆V SL
l (r)P̂l (2.46)

The semi-local, l-dependent potentials ∆V SL
l (r) are limited to the core-region. Using a

plane-wave basis, a matrix element of such a semi-local pseudopotential would have the
form

∆V SL
l (k + G,k + G′) :=

1

Ω

〈
ei(k+G)r

∣∣∆V SL
l (r)P̂l

∣∣∣ei(k+G′)
〉

=
4π

Ω
(2l + 1)Pl(cos γk+G,k+G′)

×
∫
drjl(|k + G| r)∆V SL

l (r)jl(|k + G′| r)r2, (2.47)

where jl is a spherical Bessel-function, Pl a Legendre-polynomial, Ω the volume of the
cell and γk+G,k+G′ the angle between (k + G) and (k + G′). Hence, the pseudopotential
contribution to the Hamiltonian is a matrix with the dimension N × N , were N is the
number of plane waves. The computational effort for diagonalization of such a matrix
scales with N3. Such calculations are very time consuming, for large systems.

The choice of Vloc is arbitrary and if it is made equal to one of the Vl this avoids the
need for the corresponding set of angular momentum projectors. Kleinman and Bylander
proved that each semi-local pseudopotential can be transformed into a fully non-local
pseudopotential. With ∆V SL

l (r) = V SL
l (r)−Vloc(r) and the pseudo-wave function, Ψlm(r),

the Kleinman-Bylander form is

∆Vl(r)P̂l ∼= ∆V KB
l =

+l∑
m=−l

|∆Vl(r)Ψlm〉 〈Ψlm∆Vl(r)|
〈Ψlm |∆Vl(r)|Ψlm〉

, (2.48)

where Ψlm are the pseudo wave-functions which were used for the construction of the semi-
local pseudopotential ∆Vl(r). The application of the Kleinman-Bylander pseudopotential
to the pseudo wave-function yields the same results as the application of the semi-local
pseudopotential by construction. Using the lm-representation of Ψlm in the form Ψlm =
gl(r)
r
Ylm(θ,ϕ), the plane-wave matrix element of ∆Vl(r) is given by
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∆V KB
l (k + G,k + G′) :=

1

Ω

〈
ei(k+G)r

∣∣∆V KB
l (r)P̂l

∣∣∣ei(k+G′)
〉

=
4π

Ω
(2l + 1)Pl(cos γk+G,k+G′)

× T ∗
l (|k + G|)Tl(|k + G′|)

Wl

, (2.49)

Using this form of the pseudopotential, it is found that if the pseudo wave function is
expanded in plane waves the double sum over G and G′ becomes separable, and the
computation of the non-local part of the potential scales like N · log(N) if iterative diago-
nalization schemes are used.

2.3.3 The PAW pseudopotentials

The basic idea of the projector augmented wave method (PAW) has been developed in
Blöchl [26] and W. Kromen [27] works. The PAW method combines the concept of the
pseudopotential (PS) and linear augmented plane wave method (LAPW) in a way that
all-electron valence wave functions are reconstructible.

To sketch the basic ideas of the definition of the PAW method for an atom, one can define
a smooth part of valence wave function Ψ̃υ

i (r) and a linear transformation Ψυ = T Ψ̃υ. This
transformation relates the set of all-electron valence functions Ψυ

j (r) to the smooth pseudo

wave functions Ψ̃υ
i (r), not necessary norm-conserving. The transformation is assumed to

be unity except with a sphere centered on the nucleus, T = 1+T0. For simplicity, we omit
the superscript υ, assuming that the Ψs are valence states, and the labels, i,j. Adopting

the Dirac notation, the expansion of each smooth function
∣∣∣Ψ̃〉 in partial waves m within

each sphere can be written, ∣∣∣Ψ̃〉 =
∑
m

cm

∣∣∣Ψ̃m

〉
, (2.50)

with the corresponding all-electron function,

|Ψ〉 = T | Ψ̃ 〉 =
∑
m

cm |Ψm〉 . (2.51)

Hence, the full wave function in all space can be written

|Ψ〉 = | Ψ̃ 〉+
∑
m

cm{|Ψm〉 − | Ψ̃m 〉}, (2.52)

If the transformation T is required to be linear, then the coefficients must be given by a
projection

cm = 〈 p̃m | Ψ̃ 〉 , (2.53)



2.3 The pseudopotentials 19

for some set of projection operators p̃. [10] If the projection operators satisfy the biorthog-
onality condition,

〈p̃m | Ψ̃′
m 〉 = δm,m′ , (2.54)

then the one-center expansion
∑

m | Ψ̃m 〉 〈 p̃m | Ψ̃ 〉 of the smooth function Ψ̃ equals Ψ̃
itself. Finally, the transformation can be written as

T = 1 +
∑
m

{|Ψm〉 − | Ψ̃m 〉} 〈p̃m| . (2.55)

The general form of the PAW equations can be cast in terms of transformation (Eq. 2.55).
For any operator Â in the original all-electron problem, one can introduce a transformed
operator Â that operates on the smooth part of the wave functions

Â = T †ÂT = Â+
∑
m,m′

|p̃m〉 {〈Ψm| Â |Ψ′
m〉 − 〈 Ψ̃m | Â | Ψ̃′

m 〉} 〈p̃′m| . (2.56)

The expressions for physical quantities in the PAW approach follow from Eq. 2.55)and
Eq. 2.56). For example, the density is given by

n(r) = ñ(r) + n1(r)− ñ1(r) (2.57)

where ñ(r) represents the charge over the entire space due to the extended pseudo wave
functions (it is the charge due to the plane wave expansion of the smooth pseudo wave
functions throughout the space), ñ1(r) is the charge due to the smooth pseudo wave
functions inside of the augmentation sphere, and n1(r) represents the ’true’ charge within
the augmentation sphere (it is the charge due to the all electron wave functions inside of
augmentation sphere).
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3 The EStCoMPP-program

The Electronic Structure Code for Materials Properties and Processes , EStCoMPP,was
created by S. Blügel and K. Schroeder and developed by B. Engels, P. Richard, R. Berger,
W. Kromen, A. Antons and N. Atodiresei in the framework of their PhD-Theses ( [28],
[29], [30], [27], [31], [32]). The following chapter is a brief introduction into the methods
and algorithms used in the EStCoMPP program for calculating total energy and forces.

3.1 Minimization of the energy functional

In order to calculate the physical properties of a system for a given atomic configuration,
the electronic states that minimize the Kohn-Sham energy have to be determined. To
achieve this, an iterative scheme is used, where starting from a trial electron-density, the
eigenvalue equations are solved (also by iterative methods), and a new electron-density
is generated successively until self-consistency is reached. The energy-functional consist
of the electronic energy (Eq. 2.13) and the Ewald-energy EEw[n], due to the Coulomb
interaction of the ions. There are several contributions due to the Coulomb interaction,
i.e. Hartree energy, local pseudopotential energy and ion-ion interaction, which diverge
separately. But one can combine the contributions to non-divergent expressions by adding
and subtracting appropriate compensating charges. When the energy scale is fixed in
such a way that the average electronic potential of the system is set to zero, a constant
contribution to the total energy, called Eloc[n], has to be taken into account:

Etot[n(r)] = Ekin[n] + Eext[n] + EH [n] + Exc[n] + EEw[n] + Eloc[n] (3.1)

Depending on the functional form of the operators in the Hamiltonian, the matrix-vector
products H |Ψ〉 are either solved in real-space or in k-space. All contributions to the
total energy are finally summed up in k-space. To avoid questionable convergence of the
self consistency iterations due to oscillations of states close to the Fermi-level (i.e. states
that are occupied in one iteration step but empty in the next) oscillations are damped
by using a Fermi-distribution at a finite temperature T. The occupation numbers of the
states with eigenenergies εν,k are defined as:

fν,k =
1

exp(εν,k − εF )/kBT + 1
. (3.2)

21
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This yields a smooth variation of the occupation numbers around the Fermi-energy, but
simultaneously introduces a temperature dependence of the total energy, which can define
the total energy of the electron system

F = E − TS, (3.3)

where the entropy-term for independent electrons can be expressed by

S = −2kB
∑
ν,k

ωk(fν,klnfν,k + (1− fν,k)ln(1− fν,k), (3.4)

with the factor 2 from spin-degeneracy. The free energy converges faster than the total
energy at a given temperature T . For low temperature T the total energy E and the free
energy F can be expressed by the ground state energy E0

F = E0 − γT 2,

E = E0 + γT 2, (3.5)

Hence, the ground-state energy at T = 0 can be approximated by

E0 =
1

2
(E + F ). (3.6)

The iteration cycle should start at a sufficiently high temperature, so that the density and
the free energy F converge smoothly. Afterwards, the temperature can be decreased to
assure that the extrapolation to the ground-state energy is accurate. The iterative method
to reach ground-state electron-density (and ground state-energy) is demonstrated in the
flowchart of Fig. 3.1.

3.2 Explicit form of the equations

The explicit form of the equations, used in the EStCoMPP code, are shortly presented in
the following subsections.The detailed description of the pseudopotential generation code
and the program used for solid state calculations can be found in the PhD-theses of B.
Engels, P. Richard, R. Berger and W. Kromen ( [28], [29], [30], [27]).
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Figure 3.1: Flowchart of the iterative procedure for the calculation of the electronic energy.
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3.2.1 The kinetic energy

The Kinetic-energy functional is diagonal in k-space, and thus can be evaluated by

Ekin[n(r)] = 〈Ψ| − ∂2
r |Ψ〉Ω =

∑
ν,k

ωkfν,k 〈Ψν,k| − ∂2
r |Ψν,k〉Ω

=
∑
ν,k

∑
G

ωkfν,k |k + G|2 u∗ν,k(G)uν,k(G). (3.7)

The matrix-vector products reveals

〈r|Ekin |Ψν,k〉Ω =
1√
Ω

∑
G

|k + G|2 uν,k(G)e−i(k+G)r (3.8)

with the following matrix-elements:

〈k + G|Ekin |Ψν,k〉Ω = |k + G|2 uν,k, (3.9)

〈k′ + G′|Ekin |k + G〉Ω = |k + G|2 δk,k′δG,G′ . (3.10)

3.2.2 The local energy

The local energy consists of the exchange-correlation part, the local part of the pseudopo-
tential and the Hartree contribution. The local potentials are applied to the wave-function
in real-space to avoid the calculation of convolution-equations. The transformation from
reciprocal-space to real-space is obtained via fast-fourier transformations (FFT’s). The
Hartree-potential is determined by Poissons’ equation :

∆VH(r) = −8πn(r) (3.11)

The Fourier transformation yields

VH(G) =
1

Ω

∫
Ω

d3rVH(r)e(iG . r)

=
1

Ω

8π

G2n(G). (3.12)

Thus the Hartree-potential is calculated in reciprocal space. The matrix-vector products
are given by
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〈r|VH |Ψν,k〉Ω =
1√
Ω

∑
G

(∑
G′

VH(G′)uν,k(G−G′)

)
e−i(k+G)·r, (3.13)

with the matrix-elements

〈k′ + G′|VH |k + G〉Ω =
∑
G′

VH(G′). (3.14)

The exchange-correlation energy in the local density approximation is defined as

ELDA
xc [n(r)] =

∫
d3rεLDAxc n(r). (3.15)

The matrix-vector products are calculated in real-space as

〈r|Vxc |Ψν,k〉Ω = Vxc(n(r))Ψν,k(r). (3.16)

The local part of the pseudopotential consists of the spherical-symmetric contributions of
the atoms at the position R + τµ. Thus the local pseudopotential is given by

Vloc(r) =
∑
µ

V
α(µ)
loc (r + τµ). (3.17)

Here we have used the fact that all chemically identical atoms (of kind α) are described

by the same pseudopotential V
α(µ)
loc . With the Fourier transformation

Vloc(r) =
∑
µ,G

Sτµ(G)V
α(µ)
loc (G)e−iG . r, (3.18)

this transforms to

Vloc(G) =
∑
µ

Sτµ(G)V
α(µ)
loc (G), (3.19)

where

V
α(µ)
loc (G) =

1

Ω

∫
∞
drV

α(µ)
loc (r + τµ)e

−iG . r, (3.20)

and the structure-factors are
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Sτµ(G) = e−iG·τµ . (3.21)

The expressions for the matrix-vector products are

〈r|Vloc |Ψν,k〉Ω =
∑
G,G′

∑
µ

1

Ω
Sτµ(G′)V

α(µ)
loc (G)× uν,k(G−G′)e−i(k+G)·r, (3.22)

〈k + G|Vloc |Ψν,k〉Ω =
∑
G′

Vloc(G
′)uν,k(G−G′). (3.23)

The electron-ion Coulomb interaction leads to a long-range term ≈ −2Z/r for each of

the local pseudopotentials. To allow the numerical integration of ν
α(µ)
loc in k-space, the

long-range part has to be separated and solved analytically.

3.2.3 The non-local part of the energy

The non-local contribution of the pseudopotential consists of the l-dependent part of the
total energy. This energy is evaluated by different expressions for the norm- and non-norm-
conserving (PAW) pseudopotentials. For the case of Kleinman-Bylander pseudopotentials
(see section 2.3.2 )the non-local parts are expressed as follows:

VKB =
∑
R

∑
µ

lmax∑
l=0

+l∑
m=−l

E
l,α(µ)
KB TR,τµ

∣∣tl,m,α(µ)

〉 〈
tl,m,α(µ)

∣∣
=
∑
µ

lmax∑
l=0

+l∑
m=−l

E
l,α(µ)
KB Tτµ

∣∣tl,m,α(µ)

〉 〈
tl,m,α(µ)

∣∣ (3.24)

where Tτµ is the translation-operator, which shifts the non-local part of the pseudopoten-
tial to the position τµ of the ions. For the matrix vector products the following expressions
are derived

〈r|VKB |Ψν,k〉Ω =
∑
µ

lmax∑
l=0

+l∑
m=−l

(∑
G′

T ∗
l,m,µ(k,G

′)uν,k(G
′)

)
E
l,α(µ)
KB

× 1

Ω

∑
G

Tl,m,µ(k,G)e−i(k+G)·r, (3.25)
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〈k + G|VKB |Ψν,k〉Ω =
∑
µ

lmax∑
l=0

+l∑
m=−l

Tl,m,µ(k,G)E
l,α(µ)
KB

×

(∑
G′

T ∗
l,m,µ(k,G

′)uν,k(G
′)

)
, (3.26)

where

Tl,m,µ(k,G) = Sτµ(G)Υlm(θk+G,ϕk+G)tl,α(µ)(|k + G|), (3.27)

and

tl,α(µ)(|k,G|) =
4π√
Ω

∫
∞
drrtl,α(µ)(r)jl(|k + G| r). (3.28)

Due to the dyadic structure of the KB pseudopotentials, the evaluation of the expectation
values in reciprocal space is favorable.

The non-local part of the non-norm-conserving pseudopotentials (PAW) is expressed in
k-space as [27]:

〈k + G| νNL |k + G′〉 =
∑
µ;γ,γ′

〈k + G| P̃µ

γ 〉Dγ,γ′

〈
P̃
µ

γ

∣∣∣k + G′ 〉 (3.29)

〈k + G| νNL
∣∣∣Ψ̃k,ν

〉
=
∑
µ;γ

〈k + G| P̃µ

γ 〉
∑
γ

Dγ,γ′

〈
P̃
µ

γ

∣∣∣ Ψ̃k,ν 〉 (3.30)

for which the 〈k + G|Pµ
γ 〉 and

〈
Pµ
γ

∣∣k + G′ 〉 are evaluated in reciprocal space:

〈k + G| P̃µ

γ 〉 = ilei·k·τµSµ(G)P̃
α(µ)

l,i (|k + G|)
√

4π · Y (k + G) (3.31)

〈Ψk,ν | P̃
µ

γ 〉 =
∑
G

〈Ψk,ν |k + G 〉 〈k + G| P̃µ

γ 〉 (3.32)

where

P̃
µ

γ(r) =
1

r
YL(r̂)P̃

α(µ)

l,i (r) (3.33)

P̃
α(µ)

l,i (k + G) =

√
4π

Ω

∫ Rµ

0

r · jl (|k + G|) P̃α(µ)

l,i (r)dr (3.34)
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Sµ(G) represents the structure factors, α(µ) is the type of atom µ, P̃
α(µ)

γ ; γ = (l,i) are the
projector functions localized in the augmentation sphere of the type of atom µ ; ΥL are
the spherical harmonics, jl the spherical Bessel-functions, L represent the (l,m)-channels
and i represent the index of the projectors belonging to the same atom and l-channel, but
generated at different energies.

3.2.4 The Ewald-energy

The Coulomb interaction of the ions µ at the positions Rn+τµ is described by the Ewald-
energy EEw. This term can be expressed in real or reciprocal space

EEw =
1

2

∑
Rn

∑
µ,µ′

ZµZ
′
µ∣∣τµ − (Rn + τ ′µ)

∣∣(1− δτµ,Rn+τ ′
µ
).

=
1

2

∑
G 6=0

∑
µ,µ′

ZµZ
′
µ

1

Ω

4π

G2 e
−iG(τµ−τ ′

µ). (3.35)

A faster convergence of the sums is achieved by applying Ewlad summation formula [33]
yielding a splitting of the sums with contributions from real and reciprocal space which
include damping factors. The separately divergent terms for the (|G| = 0) components
of the Hartree-energy, the local pseudopotential and the Ewald-energy compensate each
other. Since, we use an energy scale for the eigenvalue problem where the sum of the
average Hartree and local pseudopotential is set to zero we have to consider a constant
term [34], [29] to the total energy

Econst
loc =

N ν

Ω

∑
µ

∫
∞
d3r

(
V
α(µ)
loc (r) +

2Nα(µ)(r)

r

)
, (3.36)

where

N ν =

∫
Ω

d3rn(r) = n(G) |G=0 . (3.37)

3.2.5 The Hellman-Feynman forces

In the Born-Oppenheimer approximation the total energy of the system is explicitly para-
metric dependent on the coordinates of the ions τµ. Thus, the forces on the ions can be
calculated by the derivative of the energy-functional Etot[n(r),{τµ}] with respect to the
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coordinates of atoms τµ, where µ numbers the ions. In the Born-Oppenheimer approxi-
mation the energy-functional consists of the ground-state electronic-energy Eel[n(r),{τµ}]
and the Coulomb-interaction of the ions:

Eion[τµ] =
1

2

∑
µ′

ZµZµ′

|τµ − τµ′|
(3.38)

Thus, the forces are given by

F = −∂τµEel[n(r,τµ)]− ∂τµEion[τµ]. (3.39)

While the forces on the ions due to the Coulomb-interaction can easily be calculated
analytically

Fion(τµ) = −1

2
∂τµ
∑
µ′

ZµZµ′

|τµ − τµ′|
, (3.40)

the forces due to the electronic ground-state energy are given by

Fel(τµ) = −∂τµ 〈Ψ(τµ)|H |Ψ(τµ)〉 , (3.41)

where H is the Hamiltonian-operator of the electronic system. The evaluation of this
expression is complicated, since, the wave functions depend implicitly on the atom coor-
dinates. In Born-Oppenheimer approximation this equation is reduced to the Hellman-
Feynman force

FHF = −∂τµ 〈Ψ(τµ)|H |Ψ(τµ)〉 = −〈Ψ(τµ)| − ∂τµ(H) |Ψ(τµ)〉 − E∂τµ 〈Ψ(τµ)| Ψ(τµ)〉

= −〈Ψ(τµ)| − ∂τµ(H) |Ψ(τµ)〉 (3.42)

Under the subsidiary condition of charge conservation this functional is minimal for the
ground-state density n(r). The functional derivative of the electronic energy-functional
with respect to the density yields the chemical potential µ :

µ =
∂E[n(r),τµ]

∂n(r)
(3.43)

Thus, the force resulting from the electronic contribution to the total force is given by:
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Fel(τµ) = −∂Eel[n(r),τµ]−
∫
d3r

(
∂E[n(r),τµ]

∂n(r)

)
∂τµn(r,τµ)

= −∂Eel[n(r),τµ]− µ

∫
d3r∂τµn(r,τµ)

= −∂Eel[n(r),τµ]− µ ∂τµN︸ ︷︷ ︸
=0

(3.44)

As conclusion, the electronic contribution to the forces on the atoms are simply given
by the partial derivative of the energy-functional with respect to the coordinates of the
atoms.

3.3 The loop-structure and the algorithms

In the last sections, the theoretical aspects of density functional theory and the pseudopo-
tential method were discussed. In order to determine the atomic and electronic structure
of a system one needs to proceed with the following steps:

• Calculate the electronic structure

• Calculate the forces on the atoms

• relax the atoms towards the equilibrium positions.

In the EStCoMPP code, all these steps are done using iterative procedures in nested loops
as shown in Fig 3.2

3.3.1 Iterative Eigenvalue Determination

The electronic states that minimize the Kohn-Sham energy have to be determined for a
given ionic configuration. For a typical calculation of interest in this work, suppercells
with about 200 atoms are being treated for which a high-energy cutoff may be required
(about 150 plane waves per atom). Due to this large dimension and the fact that only the
lowest 2-10% of the eigenvalues εi and eigenvectors have to be determined, the preferred
method is to iteratively improve upon initial functions.

Among different methods available to carry out the iterative eigenvalue determination,
the Davidson-Kosugi algorithm ( [35], [36]) is the method implemented in the EStCoMPP
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code. This method is an extended version of the Davidson and then of the Block-Davidson
algorithm with a fixed dimension of the sub-space to avoid memory problems. The original
Davidson algorithm is developed for the calculation of a single eigenvalue and eigenvector.
It begins with a starting vector, to which in each iteration, one correction vector is added.
For calculating more eigenvectors, Block-Davidson algorithm has been used. A correction-
vector for each eigenvector is calculated in each iteration and added to the sub-space.
Thus the dimension of the sub-space is increase in each iteration. To avoid this memory
problems, the Davidson-Kosugi algorithm, in which the dimension of the sub-space is
fixed, is used. In each iterations, if all unit-vectors are filled, the oldest correction-vectors
will be replaced instead until the eigenvalue problem is converged. The iterative procedure
consists of the following steps:

• guess the starting vectors |Ψi〉(0)

• solve the matrix products |HΨi〉(j) = H |Ψi〉(j)

• construct the correction-vectors |Ψcorr
i 〉(j)

• calculate the new starting vectors |Ψcorr
i 〉(j+1)

• iterate until the norm of the correction-vectors is smaller than a given quality cri-
terion

Figure 3.2: Loop-structure schemes in the EStCoMPP -program.
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3.3.2 The electronic self-consistency and molecular relaxation loops

The degrees of freedom of the system can be separated into electronic and ionic degree
of freedoms, within the Born-Oppenheimer approximation. Hence, the energy functional
can be divided into two parts:

• electronic degrees of freedom, i.e. the density n(r), resp. the effective potential
Veff [n(r)].

• The ionic degrees of freedom, i.e. the positions of the ions τµ

The energy-functional is minimized with respect to the electronic degrees of freedom
(and fixed ion-positions) by a self-consistent calculation. This results in the ground-state
density, ground state potential and the ground state energy for fixed ion positions. Thus,
starting with a density ni(r) resp. a potential V [ni(r)] the Kohn-Sham equations are
formulated. In general, the new density and potential for the next iteration step can be
written as

ni+1(r) = F{ni(r)}

and
V [ni+1(r)] = F ′{V [ni(r)]}. (3.45)

Hence, at the fixed points of F{n(r)} and F ′{V [n(r)]} the energy-functional will be
minimized. Furthermore, for the molecular-relaxation, the energy-functional has to be
minimized with respect to the atomic coordinates. Hence, a similar fix point scheme can
be formulated for the ionic degrees of freedom using the atomic coordinates and Hellman-
Feynman forces. In the EStCoMPP-program, both fixed point problems are solved with
the iterative Quasi-Newton method [37].



4 3-nitrothiophene/selenophen/
tellurophen on Cu(110)

4.1 Introduction

Organic electronics, a technology that uses carbon-based semiconductors, is viewed as
a promising compliment to silicon-based electronics. [38] One particular device that is
being developed using organic semiconductors is the organic thin film transistor (OTFT).
These devices are currently receiving a great deal of attention, as their performance has
reached levels comparable to that of transistors based on amorphous silicon. [39] The
realization that the performance of these devices is intimately connected to the structure
and morphology of the organic film has motivated numerous studies of organic thin film
growth, which has revealed interesting physics. [40], [41], [41] For several applications
including electronic devices such as transistors, the highest possible electron mobilities
are required. This property is only found in the films with ultimate structural order and
crystalline properties. In contrast to the strong atomic binding forces in inorganic crystals
and thin films, organic molecules, as building blocks of organic solids, are bound to each
other by the relatively weak van der Waals forces. Furthermore, for the case of the organic
molecules based on aromatic hydrocarbons which generally possess extended anisotropic
shapes, specific molecular orientation and order for the crystal and thin film nucleation
are required. Therefore, the knowledge obtained during the last several decades on the
deposition and growth of inorganic thin films can not be directly applied to the growth
and nucleation of organic films. [42] Nevertheless, it has been realized that the molecule-
substrate interaction plays a crucial role in determining the molecular orientation [43],
growth mode [44], film morphology [43], and even the crystal structure [45]. However,
the complete description of the mechanisms by which the molecule-substrate interaction
affects the film properties still remain unclear.

Considerable work is now being undertaken in molecular self-assembly experiments lead-
ing to growth of oriented organic films. [46] Detailed investigations of bonding, interaction
and orientation of these molecule-substrate interfaces are necessary. Such investigations
can be performed both experimentally by utilizing techniques such as high resolution elec-
tron energy spectroscopy (HREELS), low energy electron diffraction (LEED), scanning
tunneling microscopy (STM) and theoretically by Ab initio calculations. [47] With such
information it should be possible to fabricate a specific molecular-surface structure whose
chemistry and physics can be controlled and optimized to achieve a desired goal.

33
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In this work we have studied the adsorption of 3-nitrothiophene/selenophen/tellurophen
on Cu(110) surface, utilising ab initio calculations. Polythiophene and its derivates have
played an important role as a prototypical conducting polymer. The self-assembling
nature of thiophene derivatives can produce highly ordered organic films with remark-
able crystallinity. [32], [47] The experimental studies of the similar molecules (containing
thiophene ring or benzen one) such as 3-thiophene carboxylate [32], [47], benzoate [48], ni-
trobenzen [49] using HREELS shows that at high coverage the molecules are adsorbed on
the surface perpendicularly. The (2×1) super structure that is formed is confirmed also by
the LEED experiments. The overall behavior of 3-nitrothiophene/selenophen/tellurophen
is similar to benzoate [48], nitrobenzen [49] and 3-thiophene carboxylic acid [47], [32], ad-
sorbing on Cu(110) in an upright orientation near saturation coverage. The perpendicular
orientation found here for these molecules allows for a higher surface coverage, which may
lead to greater possibilities for crystalisation within organic films of related compounds.
Thus such molecules can be considered as good candidates for self assembled organic thin
films.

In this chapter, we will present the result of our investigation on the (2 × 1) struc-
ture of 3-nitrothiophene/selenophen/tellurophen on Cu(110) surface. For this purpose
we have used the EStCoMPP computer program (Chapter 3). These calculations pro-
vide a basic understanding of intra- and inter-molecular interactions present in the
observed structures. These results will be compared with the ones obtained for 3-
thiophene/selenophen/tellurophen carboxylic acid [50] on the same substrate.

4.2 Free molecules in the gas phase

In order to investigate the adsorption process of 3-nitrothiophene/selenophen/tellurophen,
we need first to optimize the structure of each single molecule in the gas phase.

As shown in Fig. 4.1, each molecule contains a π-conjugated ring (thio-
phene/selenophen/tellurophen) and a strong electron-withdrawing nitro (−NO2) group.
The π-conjugated ring in this molecule is formed by four sp2-hybridized carbon atoms and
an atom of sulfur/selenium/tellurium. The ring structure can be assumed to derive from
a benzene molecule by replacing two of CH groups with sulfur. In this five-membered
ring the sulfur/selenium/tellurium atoms act as an electron donating heteroatom. Hence,
they contribute two electrons to the aromatic ring, and consequently this π-conjugated
ring (thiophene/selenophen/tellurophen) is considered as an electron-rich heterocycle. [32]
Furthermore, the anchoring nitro(−NO2) group is a strong electron-withdrawing sub-
stituent. [49] Hence, these molecules don’t have a centrosymmetric electron distribution
and they possess a considerable dipole moment.
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Figure 4.1: Schematic view of the 3-nitrothiophene/selenophen/tellurophen molecule. Each
molecule contains a nitro (−NO2) group and a π-conjugated ring consisting of four carbon
atoms and an atom of sulfur/selenium/tellurium. S/Se/Te-green, C-gray, O-red, N-purple, H-
dark gray. The array shows the dipole direction of the molecule.

4.2.1 Structure optimization

The atomic structure of the 3-nitrothiophene/selenophen/tellurophen (3NTh/Se/Te)free
molecules, have been optimized using the PBE-GGA functional for the exchange-
correlation function. The calculation has been performed in a box of 12 × 11.5 × 6.5
Å3 using a 3 × 3 × 3 k-point set and a energy cutoff of 25 Ry. The corresponding pseu-
dopotentials of the atoms were generated [32] using the same PBE-GGA scheme.

The structure of 3-thiophene carboxylate radical, optimized by N. Atodiresei [32] has
been considered as the starting configuration in our calculations. To reach the optimized
structure, the atoms of the 3-nitrothiophene/selenophen/tellurophen (3NTh/Se/Te) have
been allowed to relax till the energy minimum is reached. These calculations show that,
in the final relaxed configuration molecules have a planar geometry. This means that the
π-conjugated ring and nitro group are in the same plane. Figure 4.2 shows the optimized
structures of the three molecules of 3-nitrothiophene/selenophen/tellurophen. The result
of the calculated bonds are presented in Table 4.1 and Table 4.2.

According to these results single molecules in the gas phase have a planar geometry and
in the final relaxed configuration the conjugated ring and nitro group of the molecules
are in the same plane. Moreover, it is possible to compare the bond length and bond
angles for these three molecules according to Fig. 4.2, Table 4.1, Table 4.2. This com-
parison shows that C-S bond in the thiophene ring has the smallest length and going
from sulfur to selenium and tellurium, the C-S/Se/Te bond length increases. Further-
more, the angle between these bonds in the thiophene ring (C-S-C) with the ones in
the selenophen and the tellurophen rings (C-Se/Te-C) have been compared. This com-
parison shows that thiophene ring has the largest angle and respectively selenophen and
tellurophen have smaller angles. This observation that has been demonstrated in Fig.
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Bond (Å) thiophene selenophen tellurophen

N8 −O6 1.31 1.31 1.31
N8 −O5 1.31 1.31 1.31
N8 − C1 1.44 1.44 1.44
C1 − C2 1.39 1.38 1.38
C1 − C3 1.43 1.43 1.44
C3 − C4 1.38 1.38 1.37
C4 − S7 1.75 1.91 2.12
C2 − S7 1.72 1.87 2.09
C2 −H9 1.11 1.11 1.11
C3 −H10 1.11 1.11 1.12
C4 −H11 1.11 1.11 1.11

Table 4.1: The bond lengths in the conjugated ring and the nitro group for the optimized
configurations of single molecules.

Angle (degree) thiophene selenophen tellurophen

O6 −N8 −O5 124 124 124
C2 − C1 − C3 114 116 119
C3 − C4 − S7 112 112 112
C2 − S7 − C4 92 87 81
C1 − C2 − S7 111 111 111
C1 − C3 − C4 111 114 117

Table 4.2: The angles in the conjugated ring and the nitro group for the optimized configura-
tions of single molecules.

4.2, can be explained by considering the fact that with increasing the atomic radius, from
sulfur (1.03 Å) to selenium (1.19 Å) and tellurium (1.42 Å) atoms, atomic electronega-
tivity decreases. Therefore, their corresponding bond lengths increases though the angle
between these bonds decreases.

4.3 Adsorption of the molecules on the surface

After structure optimization of the single molecules, we continue calculations for the
structure and the nature of the bondings of the adsorbed molecules on the surface.
The experimental results show that for monolayers of molecules such as 3-thiophene
carboxylic acid [47], nitrobenzene [49] and benzoate [48] on Cu(110), at high cover-
age, molecules are well oriented with the aromatic ring perpendicular to the surface.
However, to our knowledge there has not been a study, before ours for the case of 3-
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nitrothiophene/selenophen/tellurophen (3NTh/Se/Te). Figure. 4.3 shows the high cov-
erage adsorption process of 3NTh/Se/Te molecules on Cu(110) surface.

Ab initio calculations of 3-nitrothiophene/selenophen/tellurophen molecules on Cu(110)-
substrate have been performed. In these calculations, the dense packed structure ((2 ×
1) unit cell) has been considered. The exchange-correlation functional used in these
calculation is PBE-GGA and the pseudopotentials are generated with the same PBE-
GGA functional.

(a) 3-nitrothiophene (b) 3-nitroselenophen

(c) 3-nitrotellurophen

Figure 4.2: Schematic view of the optimized structures of single 3-
nitrothiophene/selenophen/tellurophen molecules in the gas phase. S/Se/Te-green, C-gray,
O-red, N-purple, H-dark gray.
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Figure 4.3: Schematic view of the high coverage adsorption of 3-
nitrothiophene/selenophen/tellurophen on Cu(110) surface.

4.3.1 Rotation angle for conjugated rings: selenophen and
tellurophen

The previous studies, [32], [47], have indicated that the thiophene conjugated ring is
rotated with respect to the anchoring group (carboxylate). In this study, the rotational
angle of the other two conjugated rings, selenophen and tellurophen, has been determined.
This rotation is mainly due to the interaction of the rings with each other. Therefore, we
expect the rotational behavior to be affected by changing the ring. However, changing
the anchoring group dose not have a considerable influence on the ring rotation. The
purpose of this angle determination is to find a good starting positions for a full structure
optimization.

In order to determine the optimum rotational angle, a series of calculations has been
performed for selenophen and tellurophen rings in carboxylate molecules. In these calcu-
lations, the copper atoms have been placed in the same plane as the carboxylate group
and under its oxygen atoms. During calculations, the copper atoms are kept fixed at the
nearest neighbors distance along the [11̄0] direction of the Cu(110) surface, and only the
molecule is allowed to relax. The calculations have been performed in the (2 × 1) cell
which contains 2 layers of copper (4 atoms) and a molecule on each side (2×11 atoms) of
the copper slab. Since in this part we are mainly focused on the interaction of the conju-
gated rings with neighboring ones and according to the test calculations, considering only
2 layers of Copper atoms should be sufficient. The inversion symmetry of the system has
been included in the calculations. The dimension of the unit cell is 7 · a ·

√
2 (vertical),

a ·
√

2, a (lateral). a = 3.641Å is the copper-fcc lattice constant fitted for bulk calculations
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using 12× 12× 12 k-point set. The calculations have been done using 1× 3× 4 k-points
and an energy cutoff of 25 Ry. With this arrangement a series of calculations have been
done to estimate the optimum rotational angle of each ring. Without relaxing the atom
distances each selenophen and tellurophen ring has been rotated from 0o up to 90o (in
steps of 5o) relative to carboxylate group. The energy (with respect to the minimum)
of each configuration is shown in Fig. 4.4. These results indicates that the minimum is
located in the interval 20o − 30o. Further series of calculations has been done for this
interval, using smaller step of 1o. These calculations show (Fig. 4.4 and Table 4.3) that
the minimum energy is corresponding to the rotation angle of 23o for thiophene, 25o for
selenophen and 26o for the tellurophen ring, with respect to the [11̄0] direction. Moreover,
Fig. 4.4 indicates that the total energy of the rings consisting of larger atoms (selenium
and tellurium) is more sensitive to the angle of rotation.

Figure 4.4: Energy (with respect to the minimum) vs. rotation angle. Thiophene ring-green,
selenophen ring-red, tellurophen ring-blue.

4.3.2 Full relaxation of 3-nitrothiophene/selenophen/tellurophen on
Cu(110) surface

In order to perform a full relaxation of the molecules on the substrate, the optimum
configuration from the ring rotation calculations has been used as the starting posi-
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tions. These calculations have been done for a dense packed (2 × 1) structure of 3-
nitrothipohen/selenophen/tellurophen on Cu(110) substrate. The supercell contains 7
layers of Cu (14 atoms) and two molecules each on one side of the copper slab. The inver-
sion symmetry of the system has been included in the calculations. The vacuum region
above the molecules has a thickness of about 6.6Å (vertical distance between two adjacent
molecules). In these calculations the size of the unit cell and the number of k-points are
the same as in the rotation angle optimization.

3-nitrothipohen/selenophen/tellurophen are adsorbed on the surface in two most probable
configurations, named as ’bridge’ and ’top’. As shown in Fig. 4.7 these configurations
refer to the position of the C-atom with respect to the Cu layer. In the ’bridge’ position
both oxygen atoms of each molecules are placed on top of the two nearest-neighbor copper
atoms in a form that the nitro group make a bridge between the copper atoms. ’Top’
position is the configuration in which the nitrogen atom of the nitro group is placed on top
of the copper surface and the oxygen atoms are placed in the bridge position between two
copper atoms of the neatest-neighbors. In these calculations, the structure optimization
has been done by relaxing the first two copper layers and the adsorbed molecule. The
optimization has been done until the minimum energy is reached. The ring rotation for
the two configurations ’bridge’ and ’top’ is demonstrated in Fig. 4.5 and Fig. 4.6. In
these figures, the oxygen atoms are bounded to the Cu atoms, the nitro group is in a
plane parallel to the [11̄0] direction, and the ring is rotated away from the [11̄0].

The relaxed structures of the 3-nitrothiophene/selenophen/tellurophen adsorbed on
Cu(110) substrate are shown in Fig. 4.7, Fig. 4.8 and Fig. 4.9. ’Bridge’ configuration
in comparison with ’top’ position is energetically more favorable with almost 1 eV lower
in total energy of the whole system. The relative stability of the different configurations
can be explained in terms of the chemical bonding of the copper surface with the oxygen
atoms of the nitro group. In Table 4.5 the ”Cu-O” bond length for the optimized configu-
ration of all these three molecules are given. ”Cu-O” bond length in ’bridge’ configuration
is shorter comparing with the ones in ’top’ position. Hence, the bridge configuration is
more stable than the top one.

The bond lengths and the angles in the thiophene/selenophen/tellurophen rings and in
the nitro group for the optimized structures of both the ’bridge’ and the ’top’ positions
are given in Table 4.5 and Table 4.4. These results show that for each conjugated ring, the
bond lengths and angles are just slightly changed from the ’bridge’ position to the ’top’
one. Moreover, the comparison of the different rings (thiophene/selenophen/tellurophen)

Ring name Optimum rotation angle

thiophene 23o

selenophen 25o

tellurophen 26o

Table 4.3: Optimum rotation angle for the thiophene, selenophen and tellurophen rings.
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(a) Top view (b) Side view

Figure 4.5: Rotation of the thiophene ring with respect to the [11̄0] direction for the ’bridge’
configuration. (a) Top view and (b) Side view

show the same trend as the one obtained for the single molecular case. Therefore, by
increasing the atomic radius, from sulfur to selenium and tellurium atoms, the C-S/Se/Te
bond length increases and the angle between them decreases.

ring thiophene selenophen tellurophen

Angle (degree) bridge top bridge top bridge top

O24 −N30 −O26 124 121 124 121 123 120
C20 − C16 − C18 114 114 116 116 119 119
C22 − C20 − C16 112 112 114 114 117 117
S28 − C22 − C20 112 112 112 112 112 112
C16 − C18 − S28 111 111 111 110 111 111
C18 − S28 − C22 92 92 87 87 82 81

Table 4.4: The angles in the conjugated ring and the nitro group for the optimized configura-
tions of the adsorbed molecules of the adsorbed molecules.

4.4 Anchoring groups nitro versus carboxylate

In this section two anchoring groups, carboxylate and nitro, will be compared. For the
anchoring nitro group, the results of the relaxed structures of the adsorbed molecules
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(a) Top view (b) Side view

Figure 4.6: Rotation of the thiophene ring with respect to the [11̄0] direction for the ’top’
configuration. (a) Top view and (b) Side view

3-nitrothiophene/selenophen/tellurophen on Cu(110), Sec. 4.3.2, have been considered.
These results are compared with the optimized configuration of the molecules with car-
boxylate group, 3-thiophene/selenophen/tellurophen carboxylate on Cu(110), [50]. For
this comparison we have considered the structures of the ’bridge’ configuration, since it
is the more stable configuration. Table 4.6 contains the bond lengths in each group and
the bonds between each group and the substrate. Furthermore, the adsorption enthalpy
of the molecules with both nitro and carboxylate attached groups have been calculated
using

∆Hadsorption|T=0 = ∆Eadsorption = Etotal(adsorbed molecule)− (ECu(110) +Esingle molecule).
(4.1)

These calculations show that, the adsorption enthalpy for the molecules with anchoring
nitro (−NO2) group is larger than that of the molecules with carboxylate (−CO2) group.
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Figure 4.7: Side view ([100] direction) of the adsorbed 3-nitrothiophene on Cu(110). S-green,
C-gray, O-red, N-purple, H-dark gray, Cu-blue.

Figure 4.8: Side view ([100] direction) of the adsorbed 3-nitrothiophene on Cu(110). Se-green,
C-gray, O-red, N-purple, H-dark gray, Cu-blue.
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Figure 4.9: Side view ([100] direction) of the adsorbed 3-nitrothiophene on Cu(110). Te-green,
C-gray, O-red, N-purple, H-dark gray, Cu-blue.

4.5 Summary and conclusions

These results show that the single molecules of 3-nitrothiophene/selenophen/tellurophen
in the gas phase have a planar geometry. The comparison of the different conjugated rings
(thiophene/selenophen/tellurophen) indicates that by increasing the atomic radius, from
sulfur to selenium and tellurium atoms, the C-S/Se/Te bond length increases while the
angle between these bond decreases. Our results show that C-S bond in the thiophene
ring has the smallest length and C-S-C angle has the largest value.

Monolayers of 3-nitrothiophene/selenophen/tellurophen on Cu(110) surface are well or-
dered with the aromatic ring perpendicular to the surface, in the dense packed structure.
Adsorption of the molecules on the surface breaks the planarity of single molecules. Due to
the strong lateral interaction between the hydrogen atoms of the neighboring conjugated
rings, they rotate relative to the nitro (−NO2) group. The optimum rotation angles are
obtained as 23o (for thiophene ring) to 25o (for selenophen ring) and 26o (for tellurophen
ring). The optimization calculations show that the total energy of the rings consisting of
larger atoms (selenium, tellurium) is more sensitive to the rotation angle of the ring.

Molecules are adsorbed on the surface in the two most probable configurations: ’bridge’
and ’top’. The ’bridge’ configuration is more stable with the 1 eV difference in the
total energy. The detailed structures and binding information of these two configurations
have been evaluated. The comparison of the two anchoring groups, nitro (−NO2) and
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ring thiophene selenophen tellurophen

Bond (Å) bridge top bridge top bridge top

O24 −N30 1.34 1.34 1.34 1.34 1.34 1.34
O26 −N30 1.34 1.34 1.34 1.34 1.34 1.34
O24 − Cu12 2.21 2.39 2.24 2.46 2.27 2.44
O24 − Cu14 3.27 2.49 3.29 2.54 3.31 2.56
O26 − Cu14 2.12 2.41 2.12 2.39 2.11 2.34
O26 − Cu12 2.84 3.82 2.84 3.81 2.81 3.75
N30 − C16 1.40 1.39 1.40 1.40 1.40 1.40
C20 − C16 1.42 1.42 1.43 1.43 1.44 1.43
C16 − C18 1.39 1.39 1.39 1.39 1.39 1.39
C22 − C20 1.38 1.38 1.37 1.37 1.37 1.37
C20 − C16 1.42 1.42 1.43 1.43 1.44 1.43
S28 − C22 1.75 1.75 1.90 1.09 2.12 2.11
C22 − C20 1.38 1.38 1.37 1.37 1.37 1.37
C16 − C18 1.39 1.39 1.39 1.39 1.39 1.39
C18 − S28 1.73 1.73 1.88 1.88 2.09 2.10
C20 −H34 1.11 1.11 1.11 1.11 1.11 1.11
C22 −H36 1.11 1.11 1.11 1.11 1.11 1.11
C18 −H32 1.11 1.11 1.11 1.11 1.11 1.11

Table 4.5: The bonds in the conjugated ring and the nitro group for the optimized configura-
tions of the adsorbed molecules.

ring thiophene selenophen tellurophen

group −NO2 −CO2 −NO2 −CO2 −NO2 −CO2

Bond length (Å)

N/C-O 1.34 1.32 1.34 1.32 1.34 1.32
Cu-O 2.21 1.93 2.24 1.94 2.27 1.96

Angle (degree)

O-N/C-O 124 127 124 128 123 128

∆Hadsorption(eV ) -0.72 -0.27 -0.31 -0.06 -0.58 +0.85

Table 4.6: Comparison of the two anchoring groups, nitro and carboxylate.

carboxylate (−CO2), show that the adsorption enthalpy for the molecules with anchoring
nitro (-NO2) group is larger than the ones with carboxylate (−CO2) group.
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5 Optical properties of organic
materials

The optical properties of organic materials have become a foremost topic since the 1990s,
mainly as a result of technological advances that have led to the development of a whole
range of organic electroluminescent devices and organic light emitting diodes (OLEDs).
The optical properties of organic materials are different to that of the inorganic ones. For
the case of inorganic materials, the solid is held with strong covalent or ionic bonds. This
yields broad bands with delocalized electronic states. However, the organic solids are
held together by weak van der Waals type interactions. These interactions are relatively
weak compared to the covalent bond between the atoms within the molecule. Therefore,
the electronic and vibrational states of the solids are mainly localized near each single
molecule. On the contrary, the optical properties of the inorganic materials are governed
by the delocalized states. The optical properties of organic solids are determined by
the electronic states of the individual molecules. The optical transition simultaneously
changes the electronic and vibrational state of the molecule. The same as electronic states,
vibrational states are also mainly localized on each single molecule. The most important
phonons of molecular solids are localized modes with discrete frequencies. Strong covalent
bonds hold the atoms in each molecule together. Hence, the atoms in a molecule can
vibrate about their bonds, which gives the molecule vibrational energy in addition to
its electronic energy. These are essentially just the vibrational modes of the constituent
molecules, perhaps with their frequencies slightly altered in the condensed phase. There
will, of course, be delocalized phonon bands present in organic solids, but these play a
secondary role in the optical properties in most instances. [8]

It should be noted that, the localized nature of the electronic and vibrational states
means that the optical properties of the solid are similar to those of the single molecules.
Hence, in order to explain the optical properties of organic solids, we need to understand
the electronic and vibronic transitions in individual molecules. In the following sections,
we will first start the chapter with a brief summary of the chemical structures of organic
compounds. We then consider the basic principle of optical transitions. Then, we continue
further with the basic principles of vibronic transitions in isolated molecules. These will
provide us with the knowledge that leads us to the goal of explaining the physical principle
of organic optoelectronics.

47
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5.1 Different organic compounds

As we have mentioned above, the knowledge about organic molecules is necessary before
we can understand molecular solids in any detail. In this section we will give an overview
about different types of organic molecules which are classified depending on type of bond-
ing in the molecule as well as their structures. In general, organic compounds can be
classified into either saturated or conjugated systems.

In saturated compounds, the valence electrons are held in strong localized bonds between
neighboring atoms. This means that all the electrons are tightly held in their bonds, and
can only respond at high frequencies in the ultraviolet spectral range. Therefore, they are
usually colorless and do not absorb in the visible region. Their optical properties is not
significantly different to that of insulators or glasses. Plastics are an example of saturated
compounds.

Organic molecules, like benzene, with alternating double and single bonds are named as
conjugated molecules. Conjugated molecules have much more interesting properties. The
chemistry of these molecules is based on the π orbitals between the carbon atoms in the
whole molecule. These delocalized π orbitals are formed by the electrons form the p-like
atomic states of the carbon atoms. π electrons are less tightly bonded than the ones in
saturated molecules. Therefore, they can respond to lower frequencies. As the standard
example, benzene (C6H6) molecule, have the ring-like π orbitals above and below the
molecular plane. The absorption edge in benzene is placed in the ultraviolet, but for the
other large molecules it is shifted to the visible range. Therefore, these molecules are good
candidates for the technological applications such as LEDs.

Conjugated organic compounds can be classified into two main groups (Fig.5.1) , according
to their structures:

• conjugated polymers

• aromatic hydrocarbons

Conjugated polymers, are long chain molecules made by bonding many individual molec-
ular units (’monomers’) together. In these molecules π electrons are delocalized along
the chain, and they have linear conjugation. The aromatic hydrocarbons, on the other
hand, are carbon-hydrogen compounds containing benzene rings in their structure. The
aromatic hydrocarbons have cyclic periodicity of the electron wave-function and cyclic
conjugation.

5.1.1 Electronic states in conjugated molecules

In this section we will present a brief summary of the electronic states that determine the
optical properties of conjugated molecular solids. In fact, the covalent bonds between the
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(a) Coronene(C24H12)

(b) DE15:poly(1,4-phenyleneethylene-1,4-(2,5-didodecyloxylphenylene)-1,4-
phenyleneethene-1,2-diyl-1,4-(2,5-didodecyloxyphenylene)ethene-1,2-diyl)

Figure 5.1: Examples of an aromatic hydrocarbon (a) and a conjugated polymer (b).

carbon atoms of organic molecules are controlling the chemistry of these molecules. Each
carbon atom has six electrons with four electrons in valence state (n=2) and the electronic
configuration of 1s22s22p2. In organic solids, carbon atoms may form, single, double, or
triple bonds between adjacent carbon atoms. In molecules with double or triple bonds,
the valence electrons are divided between the σ bonds and the π bonds. Now, the simple
aromatic molecule, benzene (C6H6) is considered (Fig. 5.2). This is a planar molecule
with the six carbon atoms arranged as a hexagon. Each carbon atom is bonded to one
hydrogen atom, and has a double bond with the adjacent two carbon atom. From the
valence electrons of each carbon atom, the one 2s electrons hybridize with one one of the
2p ones to form three sp2 bonds. They form σ bonds with one hydrogen atom and two
neighboring carbon atoms. The other 2p electron from the valence state, form π orbitals
derived from the 2pz atomic orbital. The wave functions of these π electrons have a ring
shape above and below the molecular plane. The π electrons are shared equally between
the two bonds on either side of each carbon atom.

In the small scales of the order of the few molecules, the optical properties of solids depend
on their size. This has been explained as the quantum confinement theory. This theory
is based on the Heisenberg uncertainty principle which indicates for a particle confined to
a region of length ∆x, there is an uncertainty in its momentum, given by ∆px ∼ ~/∆x.
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Figure 5.2: The benzene molecule (C6H6). The π electrons form a delocalized ring orbital
above and below the plan of the hexagon defined by the six carbon atoms.

For a free particle with mass m, the confinement energy is

Econfinement =
(∆px)

2

2m
∼ ~2

2m(∆x)2
. (5.1)

In the molecular conjugated compounds, π electrons are spread in large delocalized or-
bitals. The spreading of the π electron wave function leads to a reduction in the energy.
Increasing the number of these delocalized π electrons, can reduce the confinement en-
ergy. As an example, one may compare the lowest electronic transition energy of ethylene
with the equivalent transition in benzene. This transition occurs for ethylene with two π
orbitals at 6.9 eV while for benzen with six π orbitals at 4.6 eV. Using larger conjugated
molecules can reduce the transition energy even more, and push it down into visible spec-
tral region. This arises particular interests to the transitions of the π electrons in large
conjugated molecules. In general, the reduction in the transition energy for the larger
molecules (such as benzen) in comparison with the smaller ones (such as ethylene) can be
explained by considering the ideas of quantum confinement theory. However, the exact
quantitative description of the difference between the lowest transition energies of these
two molecules can not be explained completely only by considering Eq. 5.1. The other im-
portant terms that contributes in the transition energies of molecular compounds are the
HOMO-LUMO band gap (Fig. 5.3), the excitonic effect and the strong electron-phonon
coupling. The strength of these effects is different for different organic molecules, and
depends on the number of the π states of the molecule. These effects will be explained in
more detail in the following sections of (5.3),(5.2.3) and (5.2.5).

Figure 5.3 shows a schematic diagram of the electronic states of a typical conjugated
molecule. The molecular orbitals are filled up by the electrons of the constituent atoms,
all paired off in bonds. The highest occupied molecular orbital (HOMO) is the highest
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filled energy state. The first energy state above the HOMO is called LUMO which is
lowest unoccupied molecular orbital. In conjugated molecules, HOMO level will be a π
orbital, since the σ bonds are consist of the tightly bond electrons. For these molecules,
LUMO will be a excited configuration of π orbitals, labeled as π∗ state. Therefore, the
lowest electronic transition occurs as a π electron is promoted to a π∗ state. On the other
hand, transitions of the σ electrons to the σ∗ excited states occur at much higher energies,
because it takes a large amount of energy to break a σ bond.

Figure 5.3: Schematic energy level diagram for a conjugated molecule. The lowest energy
electronic transition takes place between the HOMO (highest occupied molecular orbital) and
the LUMO (lowest unoccupied molecular orbital) state. This a π → π∗ transition.

The ground state of a molecule, HOMO level, is a singlet state, since, all its electrons
are paired off with their spin antiparallel. However, the excited state, could be either a
singlet or triplet. This is due to the fact that the excitation process puts an unpaired
electron in the excited state and leaves an unpaired electron in the HOMO state. (fig.
5.4 ) According to the spin selection rule, the main optical transition is S0 −→ S1 singlet-
singlet transition. However, spin-orbit coupling allows some probability of triplet-singlet
transitions. The single excited states, have short lifetime of order 1-10 ns due to the
dipole-allowed transitions to the S0 ground state. The low probability of the T1 −→ S0

transition, on the other hand, leads to long radiative life time of the triplet state. In order
to distinguish, these two type of transitions, the fast singlet-singlet transition is noted as
fluorescence while the slow singlet-triplet transition is named phosphorescence (Fig.
5.5).
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Figure 5.4: The unpaired electrons of an excited molecule can either have their spins antipar-
allel or parallel. The states with antiparallel spins have spin quantum number S=0 and are
called singlets after their multiplicity. The states with parallel spins have S=1 and are called
triplets. The ground state is always a singlet. [8]

Figure 5.5: Level diagram for the anthracene molecule. Absorption and fluorescence transitions
can occur between the S0 excited state. Phosphorescent transitions from T1 state to the ground
state occur on a slow time scale. Electrons in the S1 state have a small probability of transferring
non-radiatively to the T1 state by intersystem crossing. [8]

5.2 Electrons in a radiation field

In order to explain the optical properties of molecules in different spectral regions, we
need to understand the general basis of the effect of a radiation field on the electronic
states. In this section we will start with a general theoretical basis for direct band-
to-band, electronic, transitions. Then, we continue to study the indirect band-to-band,
vibrational-electronic, transitions and electron-phonon coupling. [51]
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5.2.1 Band-to-band optical transitions

The effect of a radiation field on the electronic states of the solid can be expressed by the
following Hamiltonian: [52]

HeR =
e

mc

N∑
i=1

A(ri,t) ·Pi. (5.2)

where e is the absolute value of the electron charge, A is the vector potential of the
electro-magnetic field and Pi is the momentum of a charged particle.

The effect of a radiation field on the electronic states of a solid can be studied by treating
HeR as a time dependent perturbation acting on the electronic states. This time depen-
dent term will cause electrons to make transitions between occupied and empty bands.
From the transition probability rate, the relationship between the electronic structure and
phenomenological optical constants can be derived.

From elementary quantum mechanics we know that, to first order perturbation theory,
the probability per unit time that a perturbation induces a transition from the initial
state |i > of energy Ei to the final state |f > of energy Ef is

Pi−→f =
2π

~
| < f |L |i > |2δ(Ef − Ei ∓ ~ω). (5.3)

where, L e−iωt is the time dependent perturbation. The above relation declare that a
perturbation L e−iωt induces transitions with absorption of a quantum ~ω, while a per-
turbation L eiωt gives rise to emission of a quantum ~ω. If the initial state is the ground
state, the emission term makes expression Eq. 5.3 to vanish. Thus only the absorption
term needs to be considered in order to discuss the optical excitation spectrum of a solid
in the ground state. The emission term in Eq. 5.3 is relevant in discussing the radia-
tive emission due to electrons in excited states (luminescence, phosphorescence, and pair
recombination at impurity centers). We will neglect the emission term in the present
treatment, keeping in mind that it could be considered, when needed, just by putting the
appropriate sign into the argument of the δ function.

To the second order, the transition probability rate is

Pi−→f =
2π

~

∣∣∣∣∣∑
β

< f |L |β >< β|L |i >
Eβ − Ei ∓ ~ω

∣∣∣∣∣
2

δ(Ef − Ei ∓ ~ω ∓ ~ω). (5.4)

where |β > indicates all intermediate states including initial and final states. The matrix
elements appearing in Eq. 5.4 can be regarded as a result of two successive processes,
firstly, the system makes a transition from the state |i > to the state |β >, and, secondly,
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from |β > to |f >. Energy is not conserved in the intermediate transition; it is only
conserved between the initial and the final states.

We now calculate the contribution to the optical constants due to a couple of valence
and conduction bands. The ground state of the electronic system, Ψ0, can be considered
(in the adiabatic and one-electron approximation) as a slater determinant of the single
electron wave functions in the valence band. A trial excited state Ψ′ is the same state as
Ψ0, only having one excited electron for which the conduction wave function is replaced
by the valence wave function. The matrix elements of the operator HeR (defined in Eq.
5.2) between the ground state and the excited states needs to be calculated. Since HeR

is a sum of one-particle operators, the non-vanishing matrix elements connect the ground
state Ψ0 with states Ψ′ having only one electron which is excited. Hence, we can write

〈Ψ′|HeR |Ψ0〉 =
e

mc

〈
ψckf sf

∣∣A ·P |ψvkisi
〉 =

e

mc
δsi,sf

〈
ψckf

∣∣A ·P |ψvki
〉 . (5.5)

Here, s is the spin index, A is the vector potential with a frequency ω and polarization
vector e in the direction of the electric field.

Considering the direct transition, and since ki and kf are confined to the first Brillouin
zone, we may write

ki ' kf (5.6)

We thus arrive at the result that only ”vertical” transitions can be induced in an energy
band diagram by the radiation field. [51] We can therefore simplify the expression for the
probability per unit time as

Pvks→cks =
2π

~

(
eA0

mc

)2

|e.Mcv(k)|2 δ(Ec(k)− Ev(k)− ~ω), (5.7)

where

e ·Mcv(k) = 〈ψck| e · p |ψvk〉 = e ·
∫
volume

ψ∗
c (k,r)(−i~∇)ψv(k,r)dr. (5.8)

To obtain the number of transitionsW (ω) per unit volume induced by light with frequency
ω, we must sum Eq. 5.7 over all possible states in the unit volume, i.e. we must sum over
k, the spin variable s, and over the band indices v (occupied) and c (empty). Since the
allowed k vectors are distributed in the Brillouin zone with a density V/(2π)3 (V being
the crystal volume),

W (ω) =
2π

~

(
eA0

mc

)2∑
v,c

∫
BZ

2dk

(2π)3
|e.Mcv(k)|2 δ(Ec(k)− Ev(k)− ~ω), (5.9)

where the integral extends over the first Brillouin zone and the factor of 2 arises from the
integration of spin variables.
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5.2.2 Connection with the optical constants

The optical constants which are used phenomenologically to describe the optical properties
of matter, could be related to the expression of Eq. 5.9 if all relevant transitions are
included. [53], [52], [54] Optical properties can be described in terms of the complex
dielectric function ε = ε1 + iε2 or the complex refraction index N = n + ik, where n is
the ordinary refraction index and k is known as the extinction coefficient. The optical
constants ε and N are connected by the relation ε = N2, and the absorption coefficient α
depends on the above optical constants via

α =
2kω

c
, (5.10)

α =
ω

nc
ε2. (5.11)

The average density u in a medium of a radiation field described by the vector potential
A, is related to the optical constants through the relation

u =
n2A2

0ω
2

2πc2
. (5.12)

It is also known that the radiation in the medium propagates with velocity c/n. Using
Eq. 5.9 we can now obtain microscopic expressions for the absorption coefficient and the
other band constants. The absorption coefficient is by definition the energy absorbed in
the unit time in the unit volume divided by the energy flux

α(ω) =
~ωW (ω)

u× (c/n)
, (5.13)

where ~ωW (ω) is the energy absorbed per unit volume and time, and the energy flux
u × (c/n) is the product of the energy density by the velocity of propagation in the
medium. We thus obtain for the absorption coefficient

α(ω) =
4π2e2

ncm2ω

∑
v,c

∫
BZ

2dk

(2π)3
|e ·Mcv(k)|2 δ(Ec(k)− Ev(k)− ~ω). (5.14)

Using Eq. 5.11

ε2(ω) =
4π2e2

m2ω2

∑
v,c

∫
BZ

2dk

(2π)3
|e ·Mcv(k)|2 δ(Ec(k)− Ev(k)− ~ω). (5.15)
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This is the basic expression which connects the band structure with the optical properties;
it is preferred over related expressions for other optical constants because it does not
depend on the refractive index.

The expression for ε1(ω) can be obtained using the dispersion relation of Kramers-Kronig

ε1(ω) = 1 +
2

π
P

∫ ∞

0

ω′ε2(ω
′)

1

ω′2 − ω2
dω′, (5.16)

where P indicates the principal part. By direct substitution of Eq. 5.15 into Eq. 5.16,

ε1(ω) = 1 +
8πe2

m2

∑
v,c

∫
BZ

2dk

(2π)3

|e ·Mcv(k)|2

[Ec(k)− Ev(k)]/~
1

[Ec(k)− Ev(k)]2/~2 − ω2
(5.17)

The relation Eq. 5.15 and Eq. 5.17 allow in principle the computation of all optical
constants once the band structure is known.

The optical constants satisfy some general relations which are often used to test the
consistency of the approximations involved in their computation. [54], [55], [56] A very
useful relation is the sum rule ∫ ∞

0

ωε2(ω)dω =
π

2
ω2
p, (5.18)

where the plasma frequency ωp is given by

ωp =

(
4πne2

m

)1/2

(5.19)

and n denotes the density of the electrons which take part in the transition. Another
useful sum rule is obtained as a particular case of the dispersion relation Eq. 5.16, taking
the limit ω → 0

ε1(0) = 1 +
2

π

∫ ∞

0

ε2(ω)

ω
dω. (5.20)

Two particularly important sum rules on the index of refraction for isotropic media are∫ ∞

0

[n(ω)− 1]dω = 0 (5.21)

and ∫ ∞

0

ωk(ω)dω =
π

4
ω2
p. (5.22)
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5.2.3 Indirect band-to-band transitions: general remarks on
electron-phonon interaction

In the previous section, the interaction of the electrons with the radiation filed has been
considered, and it has been mentioned that only vertical transitions may occur. For a
number of materials such as organic solids, semiconductors (silicon, germanium, etc.)
and insulators like AgCl, their electronic structure is characterized by the fact that the
bottom of the conduction band (HOMO level in case of organic materials) and the top of
the valence band (LUMO level for organic materials) are at different points of the Brillouin
zone. Transitions between states which are not vertical in an energy band diagram are
called indirect transitions. The possibility of indirect transitions is due to the interaction
of the electrons with the vibrations of the lattice. The theory was first provided by
Bardeen et al [57] in order to explain the absorption tail of germanium.

It is well known that one can describe the motion of nuclei in the adiabatic approximation
by a system of independent harmonic oscillators. This approximation is valid in the case
that the total potential energy is expanded up to second order in the nuclear displacements
from the equilibrium position and the normal coordinates are introduced. Corresponding
to every normal mode of wave vector q there is an harmonic oscillator whose energy can
be an integer multiple of ~ωq. The frequency ωq as a function of momentum gives the
classical vibrational dispersion spectrum which is called as phonons. At a given q vector
of the Brillouin zone the phonon states can be classified according to the irreducible
representations of the group of vector q. Their number is given by the number of degrees
of freedom of the atoms in the unit cell.

Even in the adiabatic approximation the presence of the phonon field produces an
electron-lattice/electron-molecule interaction. In fact, during the vibrations of the lat-
tice/molecules the atoms are displaced from their regular positions, and the actual poten-
tial on any of the electrons is consequently changed. To illustrate typical consequences
of electron-molecule interaction, we consider a simplified model in which the electron
potential is taken as a sum of superimposed atomic-like potentials rigidly following the
displacements of the nuclei. In the above approximation the electron-lattice/electron-
molecule perturbation Hamiltonian HeL can be written as

HeL =
∑
Ra

[V (r−Ra − δRa)− V (r−Ra), (5.23)

where the sum runs over all the equilibrium atomic positions Ra in the crystal/molecule,
δRa represents the vibrational displacement, and V (r−Ra) is atomic-like potential cor-
responding to the atom placed at Ra. We expand Eq. 5.23 in terms of δRa and retain
the first order term

HeL =
∑
Ra

δRa · ∇rV (r−Ra). (5.24)
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The electron-lattice interaction Eq. 5.24 can be written separately as a sum of terms,
each appropriate for a given phonon of a given branch, as an electron-phonon interaction
of the type

Hep = A(q)e−iωqtVp(q,r) + c.c. (5.25)

with

Vp(q,r) =

(
~

2Mωq

)1/2∑
Ra

eiq·Raea · ∇rV (r−Ra).

where ea is an appropriate polarization vector corresponding to a phonon of momentum q
and frequency ω, M indicates the mass of crystal/molecule unit cell and c.c. indicates the
complex conjugate of the first term. [51] In the above equation, A(q) and A∗(q) are the
annihilation and creation operators respectively. The normalization factor (~/2Mω)1/2

has been introduced so that the matrix elements of A(q) and A∗(q) between multiphonon
wave functions satisfy the condition [58]

〈nq − 1|A(q) |nq〉 =
√
nq,

〈nq + 1|A∗(q) |nq〉 =
√
nq + 1, (5.26)

where |nq〉 indicates a state with phonon occupation number nq.

The theory of electronic-vibrational transitions can be developed by considering molecule
vibrational energy in addition to its electrical energy,

E = EeR + Eep. (5.27)

As shown in Fig. 5.6, a series of vibrational levels must be associated with each electronic
state. The energy of a vibrational oscillation, Eep with frequency ωq is equal to (nq+

1
2
)~ωq,

where nq is the phonon occupation number. Hence, the electronic-vibrational energy of
such molecule, at the electronic state of Ei and vibrational frequency ωq can be written
as E = Ei + (nq + 1

2
)~ωq.

Figure 5.6 indicates an optical transition in which an electron is promoted from the ground
state, with n1 excited quanta of frequency ω1, to the excited state, with n2 excited quanta
of frequency ω2, by absorbing a photon. We assume that the molecule is initially in the
n1 = 0 vibrational level of the ground state. Conservation of energy during absorption
process yields:

~ωa = (E2 + (n2 +
1

2
)~ω2)− (E1 +

1

2
~ω1)

= ~ω0 + n2~ω2 (5.28)
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Figure 5.6: Schematic diagram of the vibrational-electronic transitions in a molecule. The four
processes indicated are respectively :(1) absorption; (2) non-radiative relaxation; (3) emission
and (4) non-radiative relaxation.

where ωa is the angular frequency of the absorbed photon, and

~ω0 = (E2 − E1 +
1

2
~(ω2 − ω1)). (5.29)

This absorption process involves both the electron jump to the excited electronic state, and
simultaneously creation of vibrational quanta which yield a large amount of vibrational
energy. The corresponding vibrational-electronic states consist of a series of discrete lines,
since n2 can only take integer values (Eq. 5.28). Further rapid radiationless relaxation
processes, as indicated in Fig. 5.6, brings the molecule to its minimum vobronic energy
state. This rapid relaxation occurs by spreading the vibrational energy of the individual
excited molecule throughout the rest of the system. This process is followed further by
returning the molecule to the ground state during the emission process which produces a
photon with energy ~ωe, as shown in Fig. 5.6 . Hence, the molecule is left in an excited
vibrational level of the ground state. The frequency of the photon is given by:

~ωe = (E2 +
1

2
~ω2)− (E1 + (n1 +

1

2
)~ω1)

= ~ω0 − n1~ω1 (5.30)

The emission spectrum, as well as absorption one, consists of a series of discrete
vibrational-electronic lines with frequencies given by Eq. 5.30. During the further ra-
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diationless relaxation process, the molecule finally looses its excess vibrational energy
and returns to the n1 = 0 level of the ground state, as shown in Fig. 5.6. Comparison of
Eq. 5.28 and Eq. 5.30, depicted that the absorption occurs at a higher energy than the
emission, except for the cases when no vibrational state are excited during the electronic
transitions. The difference in energy between the maximum absorption and the maxi-
mum emission is called the Stokes shift. This phenomenon is hence quite different from
transitions, during which the absorption and emission frequencies coincide.

5.2.4 The Franck-Condon principle

The Frank-Condon principle is a rule in spectroscopy and quantum chemistry that ex-
plains the intensity of viobronic transitions. Vibronic transitions are the simultaneous
changes in electronic and vibrational energy levels of a molecule due to the absorption
or emission of a photon of the appropriate energy. The principle states that during an
electronic transition, a change from one vibrational energy level to another will be more
likely to happen if the two vibrational wave functions overlap more significantly. As a
consequence of the fact that electrons are much lighter than the nuclei and considering
the Born-Oppenheimer approximation, the Franck-Condon principle, in classical view,
tells that the electronic transitions take place so rapidly that the nuclei do not move
significantly during the transition. In the quantum mechanical picture, the vibrational
levels and vibrational wavefunctions are those of quantum harmonic oscillators, or of more
complex approximations to the potential energy of molecules. The vibronic transition is
indicated by a vertical arrow due to the assumption of constant nuclear coordinates dur-
ing the transition. The Franck-Condon principle is a statement on allowed vibrational
transitions between two different electronic states, other quantum mechanical selection
rules may lower the probability of a transition or prohibit it altogether. The probability
that the molecule can end up in any particular vibrational level is proportional to the
square of the (vertical) overlap of the vibrational wavefunctions of the original and final
state (see Eq. 5.34).

For the case of a simple molecule with two atoms, Fig. 5.7, photon absorption and
emission can be explained according to the Franck-Condon principle. The mean nuclear
distance of atoms is r1 for the ground state. By absorbing a photon, an electron from
the ground state is promoted to an excited state without changing the nuclear separation
distance, r1. The separation of the nuclei relaxes to r2 before re-emitting a photon. This
leaves the molecule in the vibrational ground state (but electronically excited state) with
a mean nuclear separation of r2. Further rapid relaxation processes occur to complete
the cycle and bring the molecule back to its equilibrium separation in the ground state.
It should be noted that, the vibrational relaxation typically occurs in less than 1 ps in a
solid, which is much faster than the ∼1 ns taken to re-emit a photon.

As shown in Fig. 5.8, the optical transitions are represented by vertical arrows in con-
figuration diagrams. Photon absorption excites molecular vibronic as well as electronic
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states. As represented by the dotted lines in Fig. 5.8, the excess vibrational energy is
lost in a rapid relaxation processes. In more complicated molecules with many degrees of
freedom, the vibrational motion is described in terms of the normal modes of the coupled
system. These vibrational modes are usually represented by a generalized coordinate Q ,
which has the dimension of a length. The Born-Oppenheimer approximation allows us
to produce configuration diagrams in which we plot the electronic energy as a function
of Q . Fig. 5.9 is an example of such a configuration diagram. In general, the ground
state and the excited state have approximately parabolic minima at different values of
the configuration coordinate. The absorption and emission spectra consist of a series of
lines with frequencies given by Eq. 5.28 and Eq. 5.30. The relative intensities of the
manifold of vibronic transitions can be calculated in the Franck-Condon approximation.
The transition probability (Eq. 5.7) for an electric-dipole transition from an initial state
Ψ1 to a final state Ψ2 is proportional to the square of M12 by Eq. 5.8:

M12 =

∫
Ψ∗

2(−i~∇)Ψ1drdQ . (5.31)

For the coupled vibrational-electronic states that we are considering here, the total wave
function will be a product of an electronic wave function that depends only on the electron
coordinate r, and a vibrational wave function that depends only on the configuration

Figure 5.7: Schematic representation of the processes that occur during the absorption and
emission of photons by vibronic transitions in a molecule.
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Figure 5.8: Energy level diagram for the ground state and an excited state of a simple diatomic
molecule, as a function of the separation between the two nuclei.

coordinate Q . We thus write the vibronic wave function for an electronic state i and a
vibrational level n as:

Ψi,n(r,Q) = ψi(r)ϕn(Q −Q0). (5.32)

The vibrational wave function ϕn(Q −Q0) is just the wave function of a simple harmonic
oscillator centered at Q0, the equilibrium configuration for the ith electronic state. By
inserting Eq. 5.32 into Eq. 5.31, M12 can be separated into two parts:

M12 ∝
∫
ψ∗

2(r)∇ψ1(r)dr×
∫
ϕ∗n2

(Q −Q ′
0)ϕn1(Q −Q0)dQ . (5.33)

In this equation, the first factor which is due to the electronic-dipole moment is assumed
to be non-zero. The second factor represents the overlap of the initial and final vibrational
wave functions. According to Fermi’s golden rule, the transition rate is proportional to the
square of M12. Therefore, the intensity of each vibrational transition will be proportional
to the Franck-Condon factor:
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In1,n2 ∝

∣∣∣∣∫ ∞

0

ϕ∗n2
(Q −Q ′

0)ϕn1(Q −Q0)dQ

∣∣∣∣2 . (5.34)

In the other words, the Franck-Condon factor indicates that the intensity of the transition
is proportional to the overlap of the initial and final vibrational wave functions.

5.2.5 Electron-phonon coupling

As it has been discussed in the previous sections, electronic transitions in molecular solids
are tightly coupled with the vibronic modes. Hence, a complete understanding of the
optical properties requires knowledge of the details of electrons, phonons, and their in-
teraction. The strength of this coupling can be different for different organic molecules.
The calculation of the electron-phonon coupling of a series of aromatic molecules shows
that electron-phonon coupling behaves inversely to the number of π bonded atoms. The
result of these calculations is shown in Fig. 5.10 [59].

In this figure (Fig. 5.10), Nπ is the number of atoms involved in the π states of the
molecule and Vel−ph is a purely intramolecular quantity, describing the strength of the

Figure 5.9: Configuration diagram for two electronic states in a molecule. Vibrational-
electronic transitions are indicated by the vertical arrows, together with a schematic repre-
sentation of the absorption and emission spectrum.
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electron-phonon coupling as the gain in energy due to this effect. The detailed expression
of V derived in ref. [59] is

Vel−ph =
∑
q

1

Mω2
q

1

ν2

∑
i,j

(
∂Mij

∂Qq

)2

, (5.35)

in which ν is the degeneracy of the partially filled molecular level which generates the
conduction band at the Fermi level, ∂Mij/∂Qq is the electron-phonon matrix element
between two of its basis states |i〉 and |j〉 for the molecular vibrational mode Qq of
frequency ωq normalized over the whole molecule. The data presented in Fig. 5.10 have
been obtained by A. Devos and M. Lannoo performing numerical calculations. For each
molecule, a geometry optimization has been performed using quantum-mechanical forces
at the ab initio level in the local-density approximation (LDA) 2.1.3. The electronic-
structure calculation was then performed by two techniques. First, density-functional
theory has been used within the local-density approximation (LDA). Also, the electronic

Figure 5.10: The electron-phonon coupling constant for a series of organic molecules is shown as
a function of π-electrons associated with their carbon rings. Squares indicate the data obtained
by numerical calculations. [59]
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structure has been calculated with the nearest-neighbors empirical tight-binding method
(TB).

In order to understand the trends of Vel−ph for the family of aromatic molecules shown
in Fig. 5.10, with their number of atoms Nπ involved in the π states of the molecule,
the following simple argument is used. According to the Einstein approximation, ω2

q

in Eq. 5.35 can be replaced by an average value. Then the only quantity left in Eq.
5.35 is

∑
q(∂Mi,j/∂Qq)

2 =
∑

α(∂Mi,j/∂rα)
2 where rα are the components of the atomic

displacements. In the tight-binding (TB) model, where |i〉 and |j〉 are delocalized over
the Nπ atomic π states, each individual term (∂Mi,j/∂Qrα)2 is of order of 1/N2

π and their
sum is then of order 1/Nπ. This proves that, at least in an average way V (Nπ) ∝ 1/Nπ.
This basic behavior has been confirmed analytically, as well, for a simple model of CnHn

molecules. [59].

5.3 Exciton effect

In the previous section, the absorption of photons by inter-/intra-band transitions has
been discussed. This process creates an electron in the conduction/LUMO band and a
hole in valence/HOMO band. But the effect of the Coulomb interaction between these
pairs has been neglected. In this section, it will be shown that the Coulomb interaction can
give rise to the formation of new excitations of the solid, called ”excitons”. These excitons
have interesting optical properties and are important for optoelectronic applications. The
optical spectra of organic solids are strongly affected by excitonic effects. Excitonic effects
are present in molecular materials because the unpaired electron left in the ground state
by an optical transition can be regarded as hole state. This hole acts like a positive
charge because it represents the absence of a negative electron. The Coulomb interaction
between the electrons and holes has a strong effect on the optical spectra.

5.3.1 The concept of excitons

In materials such as semiconductors, insulators or molecular materials, the absorption of
a photon by an interband transition creates an electron in the conduction band and a hole
in the valence band. The attractive Coulomb interaction between these two oppositely
charged particles increases the probability of the formation of an electron-hole pair. This,
in turn, increases the optical transition rate. Moreover, if the right conditions are satisfied,
a bound electron-hole pair can be formed. This neutral bound pair is called an exciton.
In the simples picture, the exciton may be conceived as a small hydrogenic system similar
to a positronium atom with the electron and hole in a stable orbit around each other.
There are two basic types of Excitons, observed in different solids 5.11:

1. Wannier-Mott excitons, which are also named as free excitons and are mainly ob-
served in inorganic semiconductors.
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2. Frenkel excitons, which are also called tightly bound excitons and are found insulators
and molecular solids.

(a) Free exciton (b) Tightly bound exciton

Figure 5.11: Schematic diagram of: (a) a free exciton, and (b) a tightly bound exciton. [8]

5.3.2 Free excitons

The Wannier-Mott type excitons are illustrated schematically in Fig. 5.11(a). The dia-
gram shows an electron and hole orbiting around each other within a crystal. This type of
excitons has a large radius that encompasses many atoms. These excitons are delocalized
states that can move freely throughout the crystal which are also called ’free’ excitons. In
a free exciton, the average separation of the electrons and holes is much greater that the
atomic spacing. This means that the free exciton is a weakly bound electron-hole pair.
Since, the electron-hole separation is so large, it is a good approximation to average over
the detailed structure of the atom in between the electron and hole and consider the par-
ticles to be moving in a uniform dielectric material. We can then model the free exciton
as a hydrogenic system similar to positronium. So, the Bohr model can be applied to the
exciton, by taking into account the fact that the electron and hole are moving through
a medium with a high dielectric constant εr. The bound states are characterized by the
principal quantum number n. The energy of the nth level relative to the ionization limit
is given by

E(n) = − µ

m0

1

ε2r

RH

n2
= −RX

n2
, (5.36)

where µ is the reduced mass, RH is the Rydberg constant of the hydrogen atom (13.6
eV). The quantity RX = (µ/m0ε

2
r)RH introduced here is the exciton Rydberg constant.

The radius of the electron-hole orbit is given by
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rn =
m0

µ
εrn

2aH = n2aX . (5.37)

In Eq. 5.37, aH indicats the Bohr radius of the hydrogen atom (5.29 × 10−11m) and
aX = (m0εr/µ)aH is the exciton Bohr radius. Equation 5.36 and Eq. 5.37 show that for
the sates with greater quantum number, n, binding energy is less and exciton-radius is
larger. Free excitons are typically observed in direct gap semiconductors. These type of
excitons are created during direct band-to-band optical transitions between the valence
and conduction bands. As discussed in Section 5.2.1 this creates an electron-hole pair in
which the electron and hole have the same k vector. Excitons can only be formed if the
electron and hole group velocities ve and vh are the same. This is a necessary condition for
the electrons and holes to be able to move together as a bound pair. The group velocity
of an electron in a band is given by

vg =
1

~
∂E

∂k
. (5.38)

The condition ve = vh can only be satisfied if the gradients of the conduction and valence
bands are the same at the point of the Brillouin zone where the transition take place.
Therefore, excitons can be formed during a direct transition at k = 0, since all bands
have zero gradient at the zone center. In a direct gap semiconductor these transitions
correspond to a photon energies of Eg. Hence, we expect to observe strong excitonic
effects in the spectral region close to the fundamental band gap. The energy of the
exciton created in a direct transition at k = 0 is equal to the energy required to create
the electron-hole pair, less the binding energy due to the Coulomb interaction. Therefore,
the energy of the exciton could be written by:

En = Eg −
RX

n2
. (5.39)

At the photon energy equal to En, excitons can be formed. Since, it is energetically
favorable for the exciton states to be formed compared to free electron-hole pairs, the
probability of the exciton formation is expected to be high. Therefore, strong optical
absorption lines are expected to be observed at energies equal to En. This effect is
represented schematically in Fig. 5.12, which shows the band edge absorption spectra for
a direct gap semiconductor with excitonic effects included. The absorption appears at
energies just below the fundamental band gap.

5.3.3 Frenkel tightly bound excitons

Frenkel type excitons, as shown in Fig. 5.11, have a small electron-hole radius which
is comparable to the interatomic spacing. This makes them localized states which are
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Figure 5.12: Excitonic effect in band edge absorption spectra for a direct gap semiconductor.
The dashed line represents the expected absorption when the excitonic effects are ignored. [8]

tightly bound to specific atoms or molecules; hence their alternative name of ’tightly
bound’ excitons. Tightly bound excitons are much less mobile than free excitons, and
they have to move through the crystal by hopping from one atom site to another.

Stable excitons will only be formed if the attractive potential is sufficient to protect the
exciton against collisions with phonons. Frenkel excitons are localized on the atom site at
which they are created. The excitons may therefore be considered as excited states of the
individual atoms or molecules on which they are localized. They have very small radii and
correspondingly large binding energies, with values ranging from about 0.1 eV to several
eV. Since the maximum energy of a thermally excited phonon at temperature T is ∼ kBT ,
where kB is Boltzmann’s constant, this condition will be satisfied if the exciton binding
energy is greater than kBT . Since, kBT ∼ 0.025 eV at room temperature, this means
that Frenkel excitons are usually stable at room temperature. The excitons can propagate
through the solid by hopping from atom site to site in the same way that spin excitations
propagate through crystals as magnon waves. These type of excitons can be observed in
large band gap materials with small dielectric constants and large effective masses. In
these materials, the free exciton model that leads to Eq. 5.36 and Eq. 5.37 breaks down,
since the predicted radius becomes comparable to the interatomic spacing. This type of
excitons are found in insulator crystals and molecular solids. The theoretical treatment
of Frenkel excitons requires techniques more akin to atomic or molecular physics than
solid sate physics. There is no simple model similar to the one that led to Eq. 5.36 and
Eq. 5.37 for free excitons. The calculation of the exciton energies usually follows a tight
binding approach, in order to emphasize the correspondence to the atomic or molecular
states from which the excitons are derived. The calculation is further complicated by the
fact that coupling between the excitons and the crystal lattice is usually very strong. This
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leads to ’self-trapping’ effects, in which the exciton produces a local distortion of lattice,
which then causes further localization of the exciton wave functions.

5.3.4 Molecular crystals and organic thin films

Frenkel excitons have been observed in many inorganic and organic materials. Here, the
properties of molecular crystals and organic film structures will be described. In most
cases, there is a very strong correspondence between the optical transitions of the isolated
molecules and the excitons observed in the solid state. This is a consequence of the fact
that the molecular solids are held together by relatively weak van der Waals forces, so
that the molecular levels are only weakly perturbed when condensing to the solid state.

Figure 5.13: Absorption spectrum of pyrene C16H10 single crystals at room temperature. [60]

Fig. 5.13 shows the fundamental absorption edge of pyrene crystals at room temperature.
The pyrene molecule has a composition of C16H10 and is an example of an aromatic
hydrocarbon, that is, a carbon-hydrogen compound based on benzene rings. The 4-ring
structure of pyrene is given in th e inset. The absorption spectrum show a clear excitonic
peak at 3.29 eV. Other aromatic hydrocarbons such as anthracene (C14H10) also show
very strong excitonic effects, but the optical spectra are more complicated because of
the strong coupling to the vibrational modes of the molecule. The pyrene spectrum is
relatively simple because the 4-ring structure makes the molecule very rigid and reduces
the effects of the vibrational coupling.

Furthermore, Frenkel excitons are very important in conjugated polymers, such as poly-
diacetylene (PDA) and also small molecules such as Perylene. Single crystals of PDA can



70 Chapter 5: Optical properties of organic materials

be grown, but the optical properties are often studied by using amorphous films coated
onto glass substrates. The strong excitonic effects in conjugated polymers have acquired
considerable technological significance in recent years, following the development of or-
ganic light emitting diodes for use in display technology. The optical properties of organic
semiconductors such as PDA will be discussed in more detail in the following section.

5.4 Optical response of conjugated polymers

In this section, we present more details about the structure and optoelectronic proper-
ties of conjugated polymers. Polymers are long-chain molecules which are composed of
repeated sequences of monomer unit. Hence, the name polymer is the logical progression
of the sequence starting from the monomer (single molecule), then to the dimer (dou-
ble molecule), and on to polymer (many molecules). The monomer units are based on
carbon-carbon bonds. The progression which leads to polymer formation is illustrated
for ethylene (C2H4) in Fig. 5.14. The dimer [C2H4], which is cyclobutane (C2H8). The
polymer is polyethylene, or polythene for short, with a formula of [CH2]n, where n is a
large number.

Figure 5.14: An example of monomer, dimer and polymer. (a) Ethylene (C2H4) monomer.
(b) Ethylene dimer ([C2H4]2). (c) Poly-ethylene ([C2H4]n).
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Polymers such as polythene are called saturated, since all the electrons are incorporated
into σ bonds, and are therefore very tightly bound. Optical transitions of this type of
polymers are at high energies in the ultraviolet region, and are not of particular interest
here. Therefore, in this session we will focus more on conjugated polymers with alternating
single-double bounds along the chain.

The chemical structure of two conjugated polymers are shown in Fig. 5.15. Polyacetylene,
the simplest conjugated polymer, is shown in Fig. 5.15(a). This polymer is formed by
combining many acetylene molecules (C2H2, bonding HC ≡ CH) into a long chain with
alternating single and double bonds between the carbon atoms:

· · · = CH − CH = CH − · · · .

It should be noted that, the depiction of alternating single and double bonds for the
conjugated polymers in this figure is , obviously, schematic. In reality, the spare electron
of the double bond is shared equally between both bonds in a delocalized Π orbital.

(a) Polyacetylene

(b) Polydiacetylene (PDA)

Figure 5.15: Chemical structure of two conjugated molecules.

Polydiacetylene (PDA) is a slightly more complicated conjugated polymer, demonstrated
in Fig. 5.15(b), which incorporates both double and triple bond Π electrons. PDA is one
of the most widely studied conjugated polymers because it is able to form high quality
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crystals at room temperature. The Π → Π∗ transitions occur in the visible spectral region
for many of these conjugated polymers.

Fig. 5.16 shows both the absorption and photocurrent spectrum of polydiacetylene (PDA)
single crystals. The absorption spectrum shows a broad S0 → S1 absorption band starting
at 1.8 eV. The band shows a clear substructure, with two well-resolved vibronic peaks at
1.9 eV and 2.1 eV. The peaks around 3.6 eV are caused by S0 → S2 transitions.

Figure 5.16: Absorption spectrum of polydiacetylene (PDA) crystals at room temperature.
The photocurrent spectrum of the same crystal is shown for comparison. [61]

The optical spectra of conjugated polymers like PDA are strongly affected by excitonic
effects. As it have been already mentioned in section (5.3), these excitons are tightly
bound, Frenkel, type. The excitonic effects create bound states below the band edge
and enhance the probability for radiative transitions. The binding energy of the excitons
in PDA can be determined by comparing the absorption and photocurrent spectra of
the same crystal. As shown in Fig. 5.16 , the photocurrent spectra has a threshold
at 2.4 eV, which is about 0.5 eV above the absorption edge. This is a clear indication
that the absorption line at 1.9 eV is excitonic in character. The creation of the neutral
tightly bond excitons does not affect the conductivity, and the photon energy must exceed
the HOMO-LUMO band gap at 2.4 eV before free electrons and holes are available to
produce a photocurrent. The measurement therefore indicates that the binding energy of
the exciton is 0.5 eV.



6 Scientific instruments

This chapter is a review on different scientific instruments which have been used through-
out this work. The purpose of this review is to give a simple but brief overview. For
more detailed information, the reader may be referred to the extensive literature available
for each instrument.The description is not product-related, and also not related to the
purpose for which an individual instrument is used in this work. This is described in
detail in the ”Experimental methods” sections in the subsequent chapters.

6.1 Organic vapor phase deposition (OVPD)

Organic Vapor Phase Deposition (OVPD) was invented by S. Forrest at Princeton Uni-
versity to transfer all the benefits of the gas phase process in the organic electronics
applications. [62] [63] The OVPD technology is well suited for thin film deposition of
organic materials on large-area substrates. In this process, the organic compound is ther-
mally evaporated and tranferred by an inert gas within a hot-walled reactor toward a
cooled substrate where condensation occurs.

As shown in Fig. 6.1 the evaporation of the organic material occurs in individual and
decoupled quartz pipes. [64] By using the standard Mass Flow Controllers (MFC) a pre-
cise amount of carrier gas, for example nitrogen, is added into each quartz pipe to carry
the organic molecules. The organic molecules are transported by the carrier gas into the
hot wall deposition chamber and are uniformly mixed, in the case that more than one
organic material is evaporated simultaneously. Finally the organic molecules in the gas
phase diffuse through the boundary layer and are deposited onto the cooled substrate
where condensation occurs. One of the advantages of this controlled gas phase transport
technique is that no unintended deposition of expensive organic molecules occurs in the
hot wall OVPD chamber. Using a carrier gas in OVPD enables the deposition of organic
materials in a controlled pressure regime of 10−3 − 101 Torr. Thus the OVPD cham-
ber has not to be pumped down to high vacuum conditions like VTE (Vapor Thermal
Evaporation).

Compared to vacuum and spin deposition techniques, OVPD gains an extra degree of
freedom by using carrier gases to transport source materials to a substrate. Near the
sublimation point, the vapor pressure of the organic material varies rapidly with temper-
ature. This makes it difficult to have the accurate control of transport rates by varying
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Figure 6.1: OVPD R© principle and quartz flow deposition module invented by Forrest. [64]

the source temperature. However, if source temperatures are controlled to within a few
degrees, the relative concentrations of organic constituents in the gas stream can be ac-
curately varied by adjusting the carrier gas flow rates. Thus, amongst its other features,
OVPD is suited to the fabrication of organic light-emitting devices (OLEDs) and lasers
consisting of low concentrations of dopant molecules incorporated into a host matrix. [62]
Significantly, OVPD and related techniques [65] are also capable of crystalline growth and
generating thin films of stoichiometric organic salts, [66], [67] enabling the exploitation of
this wide family of organic materials.

There are two regimes of vapor phase growth. [68] The mass transport limit occurs when
the growth rate is determined by the arrival rate of the source materials at the substrate.
Due to viscous flow effects, slower moving gas forms a boundary layer close to the substrate
through which the source materials must diffuse, as shown in Figure 6.2. In this case, the
growth rate is dependent not only upon the concentration of source material, but also
upon the shape and depth of the boundary layer. This can often lead to non-uniform film
growth. In contrast, in the kinetic limit, the growth rate is determined by the rate at
which reactions occur, ultimately reducing the influence of non-uniform boundary layers.

At lower pressures, the diffusion rate of source materials is increased, and growth is more
likely to be kinetically rather than mass-transport limited. Thus, lower reactor pressures
are commonly used in organometallic vapor phase epitaxy (OMVPE) of semiconductors
to improve film uniformity. [68] In addition, lower pressure reduces nucleation of source
materials in the gas phase as the number of intermolecular collisions is decreased. Gas flow
rates also increase, reducing residence times by minimizing turbulent flow, and eliminating
vortices and thermal non-uniformities. For large area depositions, this is particularly
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Figure 6.2: Schematic representation of the boundary layer in an LP-OVPD system with a
horizontal substrate (from [68])

.

important because small nonuniformities in growth rates are magnified as the system
scale is increased. Hence, it is likely that large vapor deposition chambers will operate at
reduced pressures. In our laboratory, therefore, vapor deposition of organic materials is
typically performed below atmospheric pressure (9-10 torr) using the modified process of
low pressure organic vapor phase deposition (LP-OVPD). [69] Where high growth rates
are desired, for example in the deposition of amorphous films used in OLEDs, growth is
typically mass-transport limited. This is the result of substrate cooling, which eliminates
substrate kinetics by increasing the adhesion of source materials, and correspondingly
maximizes growth rates. Consequently, growth rates are principally determined by the
diffusion rates across the boundary layer. Thus, even in a laminar flow, low pressure
reactor, diffusion-limited growth implies that thickness nonuniformities will accompany
high growth rates unless gas dynamics and boundary layer shape are well understood and
controlled. 1

6.2 Atomic force microscopy (AFM)

Atomic force microscopy (AFM) can be used for the characterisation and imaging of
surfaces in the atomic range but also for the manipulation of matter on the nanoscale.
The principle of the AFM is based on the interaction of a fine tip with the sample surface.
The tip radii can be as small as one atom and larger than 1 µm [70]. Of most current
interest are the smaller tips, where in principle one could directly measure the force
between an individual atom and a surface. This adhesion force, which would be necessary
to separate the tip and the surface from contact, is in the order of only 10−9 to 10−10N.
To measure such forces the AFM technology has been developed, using highly sensitive
micron-sized force-sensing devices. A variety of laser-optical techniques is also required

1Sample preparation has been done by AIXTRON AG, Aachen, Germany.
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for detecting such small changes in the interaction forces. The obtained sensitivity is then
sufficient for measuring adhesion and very short-range forces between molecular-sized tips
and surfaces, but not longer range forces.

The principle of the AFM is presented in Fig. 6.3. The tip is moved over the sample
surface in a raster scan, similarly to the principle of a Scanning tunnelling microscope
(STM). On the contrary to an STM, which requires conducting surfaces, the AFM can
also be applied for materials that are not conducting, because the tip and the surface
interact via Van-der-Waals forces.

(a) Measurement principle of an AFM. (b) Atomic force microscope at RWTH Aachen.

Figure 6.3: Atomic force microscope

Two piezoelectric scanners are used to scan the cantilever in lateral (x and y) direction
over the sample (Fig. 6.3). A very fine tip is located underneath the cantilever to scan
the topography. A laser is reflected at the back side of the cantilever towards a position-
sensitive split photodiode detector that measures the deflection of the cantilever, which
is related to the topography. A feedback loop controls a third piezoelectric scanner to
re-adjust the height of the cantilever (z coordinate). Two operational modes are most
frequently used:

• Contact mode (constant force mode): The tip is in continuous contact with the
sample surface during scanning. The feedback loop maintains a constant cantilever
deflection (’setpoint’) and therefore a constant force on the sample. For instance, a
hillock on the surface would induce a larger force and therefore a stronger deflection.
The feedback loop however counteracts by lifting the scanner by the height of the
hillock. Similarly, the feedback loop lowers the scanner by a distance equal to the
depth of a depression. Hence, the movement of the scanner exactly reproduces the
surface topography. Silicon nitride cantilevers are usually used for contact mode.
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• Tapping mode (constant amplitude mode): The cantilever is oscillated ver-
tically (normal to the sample surface) by an external periodic force at or near its
resonance frequency of about 300 kHz. The oscillation amplitude typically ranges
between 20 and 100 nm. The tip ’taps’ on the sample surface at each oscillation
minimum, which leads to a damping of its oscillation amplitude. The feedback loop
maintains this amplitude (’setpoint’) at a constant level and therefore, the move-
ment of the scanner reproduces the surface topography as in contact mode: If a
hillock occurs, the scanner lifts the cantilever to prevent an amplitude decrease due
to an increased damping. On the other hand, if a depression occurs, the scanner
lowers the cantilever to prevent an amplitude increase due to a decreased damping.
For tapping mode, the cantilever and the tip are usually an integrated assembly of
single crystal silicon.

The advantage of contact mode is that it can yield atomic resolution. Moreover, mechan-
ical properties of the sample can be measured. However, the disadvantage of this mode
is that the tip can damage (scrape) soft samples easily. Hence, contact mode is usually
only used for hard samples.

Tapping mode can be used for softer samples because it applies marginal (usually non-
damaging) forces to the sample, still at a good resolution.

6.3 X-ray-reflectometry (XRR)

X-rays are sensitive to the changes of the electron density of solid structures. Their
wavelength is in the range of 0.1 pm to 10 nm and is therefore comparable to the distances
separating atoms in crystals. The interaction between x-rays and matter can be traced
back to three different processes, which take place in the electron sheath of the atoms [71]:

• The atom is transferred into an excited state, when the x-ray radiation has enough
energy to remove one electron from the inner shell. When the electron returns to a
state with a lower energy, a characteristic x-ray radiation is emitted.

• Incoherent scattering occurs, when during an impact between an x-ray quant and
an electron the energy of both impact partners is changed. The incoherent radiation
thereby has a longer wavelength than the original x-ray radiation.

• The electrons can also start to oscillate, when they are excited by incoming x-rays.
Thus, they send out radiation with the same wavelength as the incoming x-rays and
coherent scattering occurs.

X-ray-reflectometry (XRR) is a non-destructive technique for thickness determination
between 2-200 nm with a precision of about 1-3 Å. In addition to thickness determination,
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Figure 6.4: θ/2θ-Scan: The condition of incident angle ω = 2θ/2 = θ = outgoing angle is sat-
isfied. The detector D rotates at twice the speed around the sample P. This arrangement is sen-
sitive only to the planes parallel to the surface of the sample. The beam makes an incident angle
ω with the surface of the sample P . The reflected intensity at angle of 2θ is measured. Both the
rotation of the sample ω and the detector (2θ) are about the same axis MP (perpendicular to the
drawing). The sample is adjusted so that the rotation axis lies on the sample surface. The Detec-
tor circle is fixed through the (programmable) detector slit(PRS, programmable receiving slit).
The anode focus, F of the tube lies on the detector circle.

this technique is also employed for the determination of density and roughness of the films
and multilayers with a high precision.

XRR method involves monitoring the intensity of the x-ray beam reflected by a sample
at grazing angles. A monochromatic x-ray beam of wavelength λ irradiates a sample at
a grazing angle ω and the reflected intensity at an angle 2θ is recorded by a detector,
see Fig. 6.4 This figure illustrates specular reflection where the condition ω = 2θ/2 is
satisfied. The mode of operation is therefore a θ/2θ mode which makes sure that the
incident angle is always half of the angle of diffraction. The reflection at the surface and
interfaces is due to the different electron densities in the different layers (films), which
corresponds to different refractive indexes in classical optics. For incident angles θ below
a critical angle θc, total external reflection occurs. The critical angle for most materials is
less than 0.3o. The density of the material is determined from the critical angle. Above
θc the reflection from the different interfaces interfere and give rise to interference fringes.
Fig. 6.5 The period of the interference fringes and the fall in the intensity are related to
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the thickness and the roughness of the layer (layers in case of multilayers). The reflection
can be analyzed using the classical theory, i.e. the Fresnel equations. The typical range
for these measurements are between 0o and 5o in θ. [71]

Figure 6.5: An example of XRR spectrum. The period of the interference fringes and the fall
in the intensity are related to the thickness and the roughness of the layer. The total reflection
edge is related to the film density.

In Fig. 6.5, the oscillations stem from the interference of beams reflected at the air/film
and at the film/substrate interface. The refractive index, n, of all materials (except air)
in the x-ray region is slightly less than 1, n = 1 − d. Hence, a sudden decrease of the
intensity in the XRR spectrum is observed at the total reflection edge. By applying Snell’s
law and the small angle approximation, the critical angle, θc, can be related to the film
density as follows

θc =

√
r0λ2

π
NA

z + f ′

A
ρ. (6.1)

As can be seen from Eq. 6.1 , the critical angle increases with the density of the film. 2

2AFM and XRR measurements have been performed by P. Niyamakom and M. Beigmohamadi, respec-
tively.
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Figure 6.6: Schematic setup of an ellipsometry experiment.

6.4 Spectroscopic Ellipsometry (SE)

Spectroscopic ellipsometry (SE) is a versatile and powerful optical technique for the in-
vestigation of the dielectric properties (complex refractive index or dielectric function)
of thin films. It has applications in many different fields, from semiconductor physics to
microelectronics and biology, from basic research to industrial applications. Ellipsometry
is a very sensitive measurement technique and provides unequalled capabilities for thin
film metrology. As an optical technique, spectroscopic ellipsometry is non-destructive and
contactless.

Upon the analysis of the change of polarization of light, which is reflected off a sample,
ellipsometry can yield information about layers that are thinner than the wavelength of
the probing light itself, even down to a single atomic layer. Ellipsometry can probe the
complex refractive index or dielectric function tensor, which gives access to fundamental
physical parameters and is related to a variety of sample properties, including morphology,
crystal quality, chemical composition, or electrical conductivity. It is commonly used to
characterize film thickness for single layers or complex multilayer stacks ranging from a
few angstroms or tenths of a nanometer to several micrometers with an excellent accuracy.

The name ”ellipsometry” stems from the fact that the most general state of polarization is
elliptic. SE measures the change of polarization upon reflection or transmission. Typically,
ellipsometry is done only in the reflection setup. The exact nature of the polarization
change is determined by the sample’s properties (thickness, complex refractive index or
dielectric function tensor). Although optical techniques are inherently diffraction limited,
ellipsometry exploits phase information and the polarization state of light, and can achieve
angstrom resolution. In its simplest form, the technique is applicable to thin films with
thickness less than a nanometer to several micrometers.
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Figure 6.7: Rotation of the polarization ellipsis upon reflection on a surface.

Figure 6.6 shows a schematic view of an ellipsometry setup. Electromagnetic radiation
is emitted by a light source and linearly polarized by a polarizer, it can pass an optional
compensator (retarder, quarter wave plate), and falls onto the sample. After reflection
the radiation passes a compensator (optional) and a second polarizer, which is called
analyzer, and falls onto the detector. Instead of the compensators some ellipsometers
use a phase-modulator in the path of the incident light beam. Ellipsometry is a specular
optical technique (the angle of incidence equals the angle of reflection). The incident
and the reflected beam span the plane of incidence. Light, which is polarized parallel or
perpendicular to the plane of incidence, is called p or s polarized, respectively.

(Standard) Ellipsometry measures two of the four Stokes parameters, which are conven-
tionally denoted by ψ and ∆. The polarization state of the light incident upon the sample
may be decomposed into an s and a p component. The s component is oscillating perpen-
dicular to the plane of incidence and parallel to the sample surface, and the p component
is oscillating parallel to the plane of incidence. In the Fig. 6.7, a linearly polarized input
beam is converted to an elliptically polarized reflected beam. For any angle of incidence
greater than 0o and less than 90o, p-polarized light and s-polarized will be reflected dif-
ferently. The amplitudes of the s and p components, after reflection and normalized to
their initial value, are denoted by rs and rp, respectively. Ellipsometry measures the ratio
of rs and rp, which is described by the fundamental equation of ellipsometry:

ρ =
rp
rs

= tan(ψ)ei∆ (6.2)

Thus, tan(ψ) is the amplitude ratio upon reflection, and ∆ is the phase shift (difference),
as shown in Fig. 6.8.
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Figure 6.8: The polarization defined by the ratio between s− and p− polarized beam and the
phase retardation between these two components.

Because ellipsometry measures the ratio of two values, it can be highly accurate and
very reproducible. Since ellipsometry is measuring the ratio (or difference) of two values
rather than the absolute value of either, it is very sensitive and reproducible characteriza-
tion method. The desired information must be extracted through a model-based analysis
using equations to describe interaction of light and materials. Using such models it is pos-
sible to extract information such as film thickness, dielectric function, surface roughness,
anisotropic behavior and crystalinity of the films, from the SE spectra.



7 Optical properties of organic films of
Alq3 and α-NPD

The optical and structural properties of tris(8-hydroxyquinoline) aluminum (Alq3) and
N,N’-diphenyl-N,N’-bis(1-naphthyl)-1-1’biphenyl-4,4”diamine (α-NPD) films deposited
by organic vapor phase deposition (OVPD) have been studied by spectroscopic ellipsom-
etry (SE). Employing this technique enables the precise determination of the dielectric
function as well as the thickness of the organic thin films of each material. This result can
be explained by the characteristic features of the electronic states in organic molecules. [72]

7.1 Introduction

Organic light emitting diodes (OLEDs)are among the most promising applications of or-
ganic semiconductors. OLEDs offer high luminance, low power consumption, and full
color capability. For this application, the highest possible quantum yield is of paramount
importance. This yield depends upon the probability of radiative electron-hole recombi-
nation which is highest for amorphous materials where the electron and hole mobilities are
low. [41] OLED prototypes consisting of sequentially deposited layers of hole- and elec-
tron transport materials have been demonstrated with active device thicknesses of only
a few hundred nanometers or less. Tris-(8-hydroxyquinoline) aluminum (Alq3) and N,N’-
diphenyl-N,N’-bis(1-naphthyl)-1-1’biphenyl-4,4”diamine (α-NPD) are among the most
commonly used electron-transport and hole-transport materials. To design Alq3/α−NPD
thin film based devices, the knowledge of the optical properties as well as the structural
properties is therefore a necessity.

In recent years, the computation of optical properties has progressed considerably. There
exist two computational tools, which are prominent for the calculation of electronic exci-
tations. Calculations based on many-body perturbation theory, employing multivariable
Green’s functions, are computationally heavy calculations. Hence, computations for com-
plex systems such as amorphous organic thin films are still beyond the present scope
of the technique. [73] An alternative computational approach is time-dependent density
functional theory (TDDFT), which offers the important practical advantage of a depen-
dence on density rather than the need to use multivariable Green’s functions. Although,
TDDFT gives promising results for finite systems, it has significant disadvantages in the
description of absorption spectra of organic solids. [74] In the electronic excitation of

83



84 Chapter 7: Optical properties of organic films of Alq3 and α-NPD

organic materials, the tightly bound excitonic states, i.e. the Frenkel excitons, play an
important role. [8] TDDFT still fails in practice to describe the exact optical response
of organic materials due to its deficiency in describing these excitonic states. Hence, the
most advanced computation schemes have not yet been adequate for the investigation of
the optical properties of organic molecules. Therefore, in this study, we have focused on
the precise measurement of optical properties using spectroscopic ellipsometry and the
subsequent simulation of the dielectric function.

In this chapter, we report the results of an investigation using spectroscopic ellipsometry
(SE) for the determination of optical and structural properties of Alq3 and α-NPD films.
The ellipsometry spectrum is sensitive to several material characteristics such as film
roughness, film thickness, density and optical constants. In addition, XRR measurements
and AFM have been performed as well to determine several film properties independently
with high precision.

7.2 Experiments

Single layers of Alq3 and α-NPD were deposited by organic vapor phase deposition
(OVPD) on 8” Si wafers covered by a native Silicon dioxide (thickness approximately
3-4 nm). For each material, Alq3 and α-NPD respectively, a series of six samples with
different deposition rates, varying from 5.9 Å/s to 24.00 Å/s for Alq3 and from 3.3 Å/s
to 12.7 Å/s for α-NPD, have been investigated. The substrate temperature was kept at
5◦ C.

7.2.1 Spectroscopic ellipsometry measurements

SE spectra have been measured in the spectral range from 0.7 to 5.0 eV using a variable-
angle SE (VASE, Woollam Co.). The ellipsometry spectra were acquired at angles of
incidence near the Brewster angle of Si (74o), i.e. angles of 65o, 70o, and 75o, respectively
were chosen. The spectra were fitted using the SCOUT software ( c©Wolfgang Theiss). [75]

An accurate model for the dielectric function, ε(ω), is necessary for the accurate fitting
of SE data or any form of electroreflectance. The dielectric function, ε(ω) = ε1(ω) +
iε2(ω) fully describes the optical properties of any homogeneous medium at all photon
energies ~ω. ε1(ω) and ε2(ω) are the real and the imaginary part of the dielectric function,
respectively. Values for ε(ω) obtained from experimental data have the serious deficiency
that they are not expressed as functions of electronic critical-point energies Ek. The
construction of accurate model line shapes is necessary for the accurate determination
of critical-point energies Ek, line widths Γk and the detailed characterization of optical
materials. Such model should be able to describe the properties of the measured film with
best precision.
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In this study, the optical properties of Alq3 and α-NPD thin films have been modeled using
both the standard harmonic oscillator [76] and the modified Kim oscillator model. [77]
The harmonic oscillator (HO) model is a phenomenological model that approximate the
continuum of transitions possible between band states in a solid, with the resultant critical-
point structure, by a small discrete set of transitions. In the standard harmonic oscillator
model of Erman etal., the dielectric function, ε(ω), is given by

ε(ω) = ε1(ω) + iε2(ω)

= 1−
n∑
k=1

Ak

(
1

~ω − Ek + iΓk
− 1

~ω + Ek + iΓk

)
, (7.1)

where Ek is the resonance energy, Ak is the oscillator strength and Γk is the line-width
broadening (damping) of the harmonic oscillator. Comparing Eq. 7.1 with Eq. 5.15 and
Eq. 5.17 shows that HO model is much simpler and describes each single optical transition
from a lower band to a higher band by a harmonic oscillator. In practice, the minimum
possible number of oscillators is used to represent the dielectric function.

The Kim oscillator is an extension of the simple harmonic oscillator model originally
developed to describe line broadening induced by electronic-vibronic interactions, as sug-
gested by Kim et al.. This model allows a continuous shift of the line shape between a
Gaussian and a Lorentzian profile. The energy-dependent broadening employed in this
model is given by the empirical expression:

Γ′
k(ω) = Γjexp

(
− 1

1 + σ2

(
~ω − Ej

Γj

)2
)
. (7.2)

The constant σ is called Gauss-Lorentz switch, which can vary from 0 to infinity. For
σ = 0 a Gaussian lineshape is achieved, and large values of σ (σ > 5) lead to a Lorentzian
broadening. At temperatures above 20 K, the absorption lineshape in molecular crystals
is Gaussian and its width increases with temperature. [78] This broadening is due to the
exciton-phonon coupling. [79], [80] Therefore, in this study the Gauss-Lorentz-switch, s,
has been set to zero.

7.2.2 XRR and AFM measurements

To independently determine the thin film structure and morphology, AFM and XRR
measurements have been performed. The tapping mode of the AFM was employed to
determine the surface roughness, including the surface morphology. Figure 7.1 shows
an example of an AFM image of an Alq3 film deposited with a rate of 14.0 Å/s. For
each sample, three AFM scans at different sample positions have been measured. The
rms-roughness, which is defined as the height variance around the mean value, has been
calculated for each AFM image.



86 Chapter 7: Optical properties of organic films of Alq3 and α-NPD

Figure 7.1: AFM image of the Alq3 sample deposited with a rate of 14.0 Å/s. The AFM scan
size is 5µm× 5µm and the gray scale corresponds to 5 nm. This sample is very smooth with an
rms-roughness of 0.6 nm.

XRR provides the possibility to determine film density, thickness and surface roughness.
XRR experiments were carried out using a Philips X’pert Pro MRD system with a wave-
length of 1.54 Å, (CuKα). Figure 7.2 depicts the XRR spectrum of the same Alq3 sample
obtained with a deposition rate of 14.0 Å/s. The decay of the oscillation amplitude of
the XRR spectrum is due to the roughness while the period of the oscillations (Kiessig
fringes) is related to the thickness of the film.

Often, for inorganic materials on top of typical substrates, the density of the film is
higher than the density of the substrate. Therefore, the position of the total reflection
edge determines the density of the film. However, in the case of organic films deposited
on top of the Si substrate, the film density is less than the density of the substrate. In
this case, for very small incidence angles, two critical angles have been observed. The
first one is the position of the small dip which is related to the density of the organic film.
The second edge, which is the main total reflection edge, is linked to the density of the
Si substrate. Hence, in the case of organic films, it is the position of the small dip in the
first part of the XRR spectrum which determines the film density. [81] [82]

7.3 Results and discussions

Spectroscopic ellipsometry measurements have been performed for both Alq3 and α-NPD
samples. In order to model and fit the ellipsometry data, the surface roughness has been
assessed as the first important parameter which, in general, has an impact on the accuracy
and precision of film thickness and optical property determination. The surface roughness
has been obtained by AFM and XRR. The roughness values vary from 5 Å to a maximum
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Figure 7.2: XRR spectrum of Alq3 sample deposited with a rate of 14.0 Å/s. From the
oscillation period the thickness is determined as 141.2 nm. Since the film is extremely smooth
(roughness 0̃.5 nm) there is only a very small decay of the oscillation amplitude. The film density
has been determined from the position of the small dip in the first part of the spectrum (see
insert).

of 14 Å, which is very small in comparison with the wavelength of the incident beam
used in ellipsometry. Hence, such a small roughness can be neglected in SE modeling
without any considerable effect on the resulting accuracy. Therefore, as shown in Fig.
7.3, a three-phase model (organic film/Si-oxide/Si) was employed for the analysis. In this
model, the optical constants obtained by Jellison were used for Si. [83] Furthermore, the
optical response of the Si-oxide layer was described by a single harmonic oscillator model.
The thickness of this layer was determined as 3.7 nm.

The standard harmonic oscillator is the first model considered in this work for the organic
film. By using four independent harmonic oscillators, it is possible to derive the optical
response and the thickness of the samples. This number of oscillators has been chosen,
considering four main peaks in the dielectric function of the point-by-point fit. The data
fitting is then applied by adjusting the model parameters to find the best-fit values of
HO model parameters and the film thickness. The Marquardt-Levenberg algorithm is
most commonly used to quickly determine the model that exhibits the smallest difference
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Figure 7.3: The three-phase model (organic film/Si-oxide/Si).

between the measured and calculated values. The difference is quantified by using mean
squared error (MSE) defined by

MSE =
1

2N −M

N∑
i−1

(tanψMod
i − tanψExpi

σExpψ,i

)2

−

(
cos∆Mod

i − cos∆Exp
i

σExp∆,i

)2
 , (7.3)

where N is the number of ψ−∆ pairs, and M is the number of variable parameters used
in the model.

Our fitting results show that MSE of the HO fits (average for all Alq3 samples) is 0.0061.
MSE of the fits (average for α-NPD ones) is 0.0226. The refractive index n and extinction
coefficient k are shown in Fig. 7.4 for the series of Alq3 and α-NPD samples.

The generalized Kim oscillator model has been applied as well to fit the ellipsometry
spectrum of these samples. In this model four oscillators with Gaussian broadening have
been employed. Fig. 7.5 shows the SE spectrum for an Alq3 sample deposited with a
rate of 14.0 Å/s. The MSE of this fit (Fig. 7.5) using Kim oscillators is 0.0009, while
the corresponding value for harmonic oscillators is 0.0029. This shows clearly that using
Kim’s model improves the quality of the fits. The best-fit parameters employing Kim’s
model are listed in Table 7.1 and Table 7.2. The dispersion of the optical constants for
Alq3 and α-NPD deposited with different rates is shown in Fig. 7.6. The average of fit
deviation from the experimental spectrum (MSE) is 0.0012 for Alq3 samples and 0.0117
for a-NPD ones, using Kim model.

By using X-ray reflectometry (XRR) it is possible to determine the density of thin films.
The film density is related to the optical properties of the film, via the Clausius-Mossotti
equation. [8] Table 7.3 and Table 7.4 contain the values derived for the density of Alq3
and α-NPD films for different deposition rates. These values clearly show that with
changing deposition rate the density of the films remains constant within the error bar
of ±0.02g/cm3. Therefore the optical constants of the samples are expected to be the
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(a) Refractive index n and extinction coefficient k of Alq3 samples.

(b) Refractive index n and extinction coefficient k of α-NPD samples.

Figure 7.4: Refractive index n and extinction coefficient k, obtained for the harmonic oscillator
model of Alq3 and α−NPD samples deposited with different rates.

same for different deposition rates. This finding is confirmed by the optical constants
determined employing the Kim simulation model. Comparing the refractive index n and
extinction coefficient k in Fig. 7.6 and Fig. 7.4 shows that by using the Kim model it
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Figure 7.5: Measured and simulated ellipsometry spectra, at an angle of 70o, for the Alq3

sample deposited with a rate of 14.0 Å/s employing the Kim model.

is possible to achieve a unique SE fit of the dielectric function for the Alq3 and α-NPD
films, respectively independent of deposition rate. However, this is not the case if the
harmonic oscillator model is used.

In the thickness range used here, XRR is considered the most accurate method for thick-
ness determination. [84] Therefore, in this study, the thickness determined from XRR
was used as a reference to compare the thickness values derived from the harmonic oscil-
lator and the generalized Kim models. In Table 7.4 and Table 7.3 the thickness values
determined by XRR and SE simulations are shown. Although the thickness results de-
rived from the harmonic oscillator model in the case of Alq3 films seem to show a good
agreement with the XRR data, this model does not provide a good agreement for the
α-NPD samples. Considering both series of Alq3 and α-NPD samples, the Kim model
can provide the more precise thickness values with very low deviation in comparison with
the XRR data. The average multiplication factor of both series is 0.986±0.007 for the
Kim model, while for the Harmonic oscillator model it is 1.022±0.016. This comparison
illustrates that the film thickness determined by the generalized Kim model can be con-

Kim oscillator Resonance energy,Ek(eV ) Oscillator strength,Ak(eV ) DampingΓ
′

k(eV )

1 3.15 0.81 0.46
2 3.79 0.99 0.89
3 4.64 2.14 0.33
4 6.29 5.93 1.76

Table 7.1: Generalized Kim model parameters for fitting SE spectra of Alq3 thin film.
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Kim oscillator Resonance energy,Ek(eV ) Oscillator strength,Ak(eV ) Damping Γ
′

k(eV )

1 3.57 1.94 0.69
2 4.41 1.36 0.67
3 5.69 4.45 0.92
4 6.64 3.74 0.00

Table 7.2: Generalized Kim model parameters for fitting SE spectra of α-NPD thin film.

Sample Deposition XRR thickness XRR density Harmonic model Kim model
name rate (Å/s) (nm) (g/cm3) thickness(nm) thickness(nm)

Alq3-1 5.9 117.4 1.31 116.4 114.7
Alq3-2 10.4 126.4 1.30 124.8 123.4
Alq3-3 14.0 141.2 1.31 140.8 139.4
Alq3-4 16.5 125.3 1.30 125.0 123.6
Alq3-5 20.2 123.3 1.31 122.8 121.3
Alq3-6 23.6 119.2 1.31 118.7 116.9

Multiplication 0.995 0.982
factor ±0.004 ±0.005

Table 7.3: Density and thickness for different Alq3 samples.

Sample Deposition XRR thickness XRR density Harmonic model Kim model
name rate (Å/s) (nm) (g/cm3) thickness(nm) thickness(nm)

α-NPD-1 3.3 96.7 1.12 96.5 94.0
α-NPD-2 5.4 82.7 1.11 84.9 81.6
α-NPD-3 7.1 87.1 1.12 90.3 87.0
α-NPD-4 8.4 84.8 1.12 90.3 84.3
α-NPD-5 10.4 79.3 1.10 81.9 78.3
α-NPD-6 12.7 64.7 1.13 70.5 64.7

Multiplication 1.040 0.990
factor ±0.029 ±0.010

Table 7.4: Density and thickness for different α-NPD samples.

sidered as more precise and accurate. Figure 7.7 demonstrates the excellent agreement
of the thickness values derived from the Kim model with respect to the XRR thickness
measurements as compared with the Harmonic oscillator model.
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(a) Refractive index n and extinction coefficient k of Alq3 samples.

(b) Refractive index n and extinction coefficient k of α-NPD samples.

Figure 7.6: Refractive index n and extinction coefficient k, using the generalized Kim model
for (a) Alq3 and (b) α−NPD samples deposited with different rates.

7.4 Conclusions

The dielectric function of Alq3 and α-NPD films have been determined in the spectral
range of 0.7 eV to 5.0 eV by spectroscopic ellipsometry. The optical constants of these
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(a) Film thicknesses determined using XRR vs. the film thickness
obtained from the generalized Kim oscillator model.

(b) Film thicknesses determined using XRR vs. the film thickness
obtained from the Harmonic oscillator model.

Figure 7.7: Comparison of film thicknesses determined using XRR vs. the film thickness
obtained from the generalized Kim oscillator model (a) and Harmonic oscillator (b) for α-NPD
samples. The straight line with a slope of 1.0 has been plotted as a reference to show the
agreement between the film thickness determined by XRR and SE.

samples were determined using the normal harmonic oscillator and the generalized Kim
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model with Gaussian broadening. AFM and XRR measurements have been performed
for the independent determination of film structure. Employing the Kim oscillator model,
the quality of the fit has been improved in average by the factor of 4. Furthermore, using
the Kim model the film thickness is reproduced to within 1% accuracy. Moreover, we have
shown that by using the generalized Kim model, we can obtain a single dielectric function
for all samples of the same material. This is in line with the constant film density values
determined by XRR. The superior quality of the fits employing the Kim model seems to be
attributed to the better description of electron-phonon coupling in the organic materials.



8 The theory of thin film growth

The study of growth processes has always constituted, explicitly or implicitly, an integral
part of solid state physics and materials science. Indeed, most properties of real materials
depend crucially on their structure and morphology. Surface and interface roughness are
often a relict of the nonequilibrium conditions under which the material has formed. Dur-
ing the last decades the science of thin film growth has progressed rapidly as evidenced
impressively by different modern deposition techniques. This allows for the engineering
of solid state devices at the level of individual atomic/molecular planes. Nevertheless, the
success of these deposition techniques depends crucially on the ability to control the disor-
dering effects of the non-equilibrium growth conditions, and to assess, at least empirically,
the relationship between the growth conditions and the resulting structure. Apart from its
outstanding technological significance, the growth of solids is of considerable fundamen-
tal interest, since it may provide us with important clues to the way in which complex
structures form in nature, through the agglomeration of simple, microscopic processes
operating in a highly disordered, noisy environment. [85]

8.1 General concepts of thin film growth

8.1.1 Surface free energy

Crystal and thin film growth are enormously rich subjects with many different facets and
theoretical approaches. Here we shall only briefly touch on selected aspects which we feel
are important in the present context and help to explain the issues related to thin film
growth. One approach to describe the various relevant interactions uses the concept of
surface and interface energies, γ, similar to what is done for wetting phenomena. Typically,
the surface energies, i.e. the relative contributions of the free substrate surface, γs, the film
surface, γf , and the film-substrate interface,γi, are then related to the different growth
modes.

The common classification of growth modes, based on thermodynamic arguments [86],
which has been mainly developed for epitaxial growth, [87], [88] treats film growth anal-
ogous to the surface tension consideration of a liquid on a solid substrate. This consider-
ation leads to three growth modes that are illustrated in Fig. 8.1.

• Layer-by-layer growth, also called two-dimensional (2D) or Frank-van der Merwe
growth, is predicted if the sum of the surface free energy of the deposited film and

95
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the free energy of the film-substrate interface is comparable to the surface free energy
of the free substrate surface (Fig. 8.1(a).

• The case of
γs < γi + γf . (8.1)

results in the formation of three-dimensional islands also called three-dimensional
(3D) or Volmer-Weber growth (Fig. 8.1(b)

• For the condition that

γs > γi + γf . (8.2)

several monolayers grow in the layer-by-layer mode forming the so-called wetting
layer before the formation of 3D islands starts. This growth is called Stranski-
Krastanov mode [89] (Fig. 8.1(c).

Because ’growth’ is per definition a non-equilibrium process determined by kinetic phe-
nomena, growth morphologies will deviate more or less from the above thermodynamic
picture.

Figure 8.1: The three growth mechanisms close to thermodynamic equilibrium. (a) layer-
by=layer growth (Frank-van der Merwe), (b) island growth (Volmer-weber) and (c) layer-plus-
island growth (Stranski-Krastanov). The situations are shown in cross-sectional representation
for a coverage Θ of one complete layer (top) and for the continuation of growth at higher
coverages (bottoms). [90]

8.1.2 Microscopic processes

It should be emphasized that growth is actually a non-equilibrium phenomenon, and equi-
librium or near-equilibrium energy considerations alone cannot properly account for all
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growth scenarios. Thus, a dynamic description is needed. This description has to take
into account the flux of adsorbates towards the surface (corresponding to a certain su-
persaturation), the adsorption and re-desorption probabilities, and the diffusion processes
on the surface (interlayer and intralayer) and their respective barriers. The three main
processes which are depicted in Fig. 8.2, are described in the following.

Figure 8.2: Schematic of processes relevant in thin film growth, such as adsorption (as a result
of a certain impingement rate), (re-)desorption, intra-layer diffusion (on a terrace), interlayer
diffusion (across steps), nucleation and growth of islands. [91]

• Adsorption:

A particle from the vapor phase arrives at a random position on the interface, forms
bonds with the surface and sticks. This process is termed adsorption. They are
several methods for the material deposition such as MBE (Molecular Beam Epitaxy),
VTE (Vapor Thermal Evaporation), OVPD (Organic Vapor Phase Deposition).

• Desorption:

An effect competing with adsorption is desorption during which some particles de-
posited on the surface leave this interface. The desorption probability depends on
how strongly the particle is bonded to the surface. The strength of these bonds
depends on the type of particle and the local geometry of the surface where parti-
cles sticks. The strength of a bond is expressed in terms of the amount of energy
needed to break it. The usual procedure for measuring the lifetime of a deposited
molecule or atom is to measure the average time τ spent by the atom on the surface
from deposition to desorption. According to the Arrhenius law, this life time can
be written in the form
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τ = τ0exp

(
ED
KT

)
. (8.3)

Here, ED is the characteristic desorption energy to release an atom from the surface.

• Surface diffusion:

From a microscopic point of view, surface diffusion is an activated process. For a
particle on the surface to diffuse to the next position, it must overcome the lattice
potential existing between two neighboring positions. This excess energy required
for diffusion, E0, is the microscopic origin of the lattice potential schematically
illustrated in Fig. 8.3. In this figure, atom A forms two bonds with the surface
atoms which is energetically favorable, corresponding to a minimum of the lattice
potential V (x). In order to diffuse, it must move into an intermediate position,
such as B, where there is only one strong bond. This is an energetically unstable
configuration, corresponding to maximum in the lattice potential.

The magnitude of the diffusion barrier depends both on the substrate orientation
and the nature of the diffusing particle. The average number of jumps in a unit
time interval has no exponential temperature dependence, given by Arrhenius law

N = ωDexp

(
− E0

kBT

)
, (8.4)

where ωD is the frequency of small atomic oscillations (Deby frequency) and E0

is the activation energy needed for diffusion. Measuring the number of jumps i.e.,
the average distance traveled by an atom on the surface is a standard experimental
technique used for determining the activation energy E0 needed for diffusion.

8.2 Quantitative parameters

In the last two decades a theoretical framework has been established, which relates growth
mechanisms to different parameters which quantitatively describe surface morphology
and a set of scaling exponents for describing the dependence of the surface roughness
on film thickness and lateral length scale. Much effort has been spent to theoretically
investigate scaling exponents for certain growth models, as well as to determine them
experimentally. [92], [93], [94] In this section we will study the quantitative description of
the surface morphology.
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Figure 8.3: Schematic illustration of the lattice potential and its microscopic origin. Position
A is energetically more favorable and corresponds to a minimum of the lattice potential V (x).
Diffusion occurs by moving into the intermediate position B, which is an energetically unstable
configuration, corresponding to a maximum in the lattice potential.

8.2.1 Surface roughness

It is known that to derive a quantitative information of a surface morphology, [92], [94]
one may consider a sample of size L and define the mean height of the growing film h̄ by

h̄(t) ≡ 1

L

∫ L/2

i=−L/2
h(r,t)dr (8.5)

where h(r,t) is the height of surface at position r and time t. If the deposition rate
(number of particles arriving on surface) is constant, the mean height increases linearly
with time,

h̄(t) ∼ t. (8.6)

The rms-roughness is defined as the rms-fluctuations in the height,

Rrms(L,t) ≡
(〈

(h(r)− h̄)2
〉
r

)1/2
, (8.7)

where <...> denotes an averaging over different positions on the sample.

Another quantity that scales in the same way as the rms-roughness Rrms is the height
difference correlation function,

C(l,t) ≡
(
〈(h(r,t′)− h(r′,t′ + t))〉r′,t′

)1/2

|r− r′| = l. (8.8)
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where <...> means the average over all possible pairs in the matrix that are separated by
|r− r′| = l.

8.2.2 Lateral correlation length

Moreover, to quantify structure size on the surface, lateral correlation length can be
calculated. Lateral correlation length is the distance over which the heights ’know about’
each other or the characteristic distance over which they are correlated. This implies that
the different sites of the surface are not completely independent, but depend upon the
height of the others. [92] In order to obtain this quantity, the following method can be
used. First, function G(r), named height-height correlation function is calculated by

G(r) = 〈G(r)〉|r|=r

≡
〈〈

(h(r′ + r)− h̄)× (h(r′)− h̄)
〉
r′

〉
|r|=r , (8.9)

Figure 8.4: Height-height correlation function vs. length scale. Lateral correlation length
corresponds to G(ξ) = Rrms

2/e and the maximum value , G(0) = Rrms
2, yields the root mean

square roughness.

In this equation (Eq. 8.9), G(0) = Rrms
2 yields the root mean square roughness. Next,

G(ξ) = Rrms
2/e defines the lateral length scale ξ in order to obtain lateral correlation

length as 4× ξ. [90], [88] As an example Fig. 8.4 show height-height correlation function
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versus length scale for the height fluctuations of a sample morphology. The lateral length
scale at which the height-height correlation function falls off to 1/e of its maximum value
is shown as ξ. Four times of this value 4 × ξ is called correlation length and depicts the
quantified measure of the lateral structure size on the surface.

8.2.3 Scaling concepts and critical exponents

One of the modern concepts used to study various roughening processes is scaling. Scal-
ing has a surprising power of prediction, simple manipulations allowing us to connect
apparently independent quantities and exponents. We shall see that many measurable
quantities obey simple scaling relations.

For example, to monitor the roughening process quantitatively, we measure the height
difference correlation, C(l,t), as a function of time. By definition, the growth starts from
a horizontal line (the substrate); the interface at time zero is simply a straight line, with
zero roughness. As deposition occurs, the interface gradually roughness.

A typical plot of the time evolution of the surface height difference correlation function
has two regions separated by a ’crossover’ time tx, as shown in Fig. 8.5. It should be
noted once again that height difference correlation function, scales in the same way as
rms-roughness (Sec. 8.2.1) .

Figure 8.5: Scaling behavior of surface roughness which is shown as height difference correlation
function vs. length scale (green) and time (red).

1. Initially, the correlation C(l,t) increases as a power of time,
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C(l,t) ∼ tβ [t� tx] (8.10)

where tx is called saturation thickness.

The exponent β which is named the growth exponent, characterizes the time-
dependent dynamics of the roughening process.

2. The power-law increase in correlation C(l,t) as well as the roughening process do not
continue indefinitely, but is followed by a saturation regime, the horizontal region
of Fig. 8.5. The crossover time, tx, is called the saturation time.

Furthermore, as it is shown in Fig. 8.5, the height difference correlation function, C(l,t),
has the following behavior with respect to the length scale

C(l,t) ∼ lα [l� ξ]. (8.11)

This power law is only valid for small lengths. C(l) vs. l saturates at the length scale
equal to lateral correlation length ξ.

The ratio of exponents α and β is called the dynamic exponent:

z =
α

β
. (8.12)

Studying such scaling relations will allow us to define universality classes. The universality
class concept is a product of modern statistical mechanics, and codifies the fact that there
are but a few essential factors that determine the exponents characterizing the scaling
behavior. Thus different systems which at first sight may appear to have no connection
between them, behave in a remarkably similar fashion.

8.3 Different growth models

In this section we will begin the systematic investigation of different growth processes.
We will start from the simplest growth model (random deposition) and continue to more
complicated ones such as the Raible [95] model. Our main focus will be models which
can explain the growth of amorphous thin films. While the models are mainly motivated
by their simplicity and should not be expected to precisely describe any specific system,
they should be able to explain structural properties of thin films to a good approximation.
[92], [93], [85]
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8.3.1 Random deposition

In this part, the simplest growth model, called random deposition is introduced. The
simplicity of this model makes it possible to construct a continuum growth equation and
to determine the scaling exponents exactly. Figure 8.6 demonstrates the schematic view
of the discrete RD model in one dimension. From a randomly chosen site over the surface,
a particle falls vertically until it reaches the top of the column under it, whereupon it is
deposited.

Figure 8.6: The random deposition, RD, model for discrete one dimensional system. Particles
A and B are dropped from random positions above the surface and are deposited directly on
the top of the column under them.

Because the RD model is simple, it is possible to calculate exactly all the relevant quan-
tities using the microscopic growth rules. [96]. This is not the case for the other growth
models which are more complicated. In order to study analytically such growth models,
alternative methods have been introduced. One particularly successful approach is to
associate a stochastic growth equation with the given growth process.

In order to illustrate this approach, a differential equation for describing RD growth is
introduced. The goal is to find the variation with time of the height h(r,t) at any position
r on the substrate. In general, the growth can be described by the continuum equation:

∂h(r,t)

∂t
= ΦN(r,t), (8.13)

where ΦN(r,t) is the number of particles per unit time arriving on the surface at position
r and time t. Since the particles are deposited on random positions, the particles flux is
not uniform and has random nature. Hence, by decomposing ΦN into two terms, so that
Eq. 8.13 becomes
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∂h(r,t)

∂t
= F + η(r,t) (8.14)

The first term is F , the average number of particles arriving at position r. The second
term η(r,t) is an uncorrelated random number with zero configurational average which
represents the random fluctuations in the deposition process. The noise has no correlations
in space and time and its first and second moments are given by

〈η(r,t)〉 = 0,

〈η(r,t)η(r′,t′)〉 = 2Dδ(r− r′)δ(t− t′). (8.15)

where the brackets denote ensemble averaging and D the fluctuation strength. Using
Eq. 8.13, critical exponents can be analytically determined. Thus, for RD model, growth
exponent is obtained as

β =
1

2
. (8.16)

Since, the columns are not correlated and there are no correlations in this model, the cor-
relation length ξ is always zero. Hence, the interface does not saturate and the roughness
exponent α is not defined.

8.3.2 Linear theory

In this chapter, we study another growth model that leads to a correlated surface. This
model is called random deposition with surface relaxation(RDSR). There is no exact solu-
tion to the discrete version of the model. In this section a linear equation will be presented
to construct the growth equation. This equation can be solved exactly to determine the
values of the scaling exponents. [92]

The model of random deposition with surface relaxation (RDSR) is constructed by in-
cluding surface relaxation in RD model. As it is demonstrated in Fig. 8.7, each particle
falls along a single column toward the surface, it reaches the interface, during a finite
diffusion along the surface, it relaxes to a nearest neighbor if it has a lower height. As a
result of the relaxation process, the final interface will be smooth, compared to the model
without relaxation.

The simplest equation describing the fluctuations of an equilibrium interface, called the
Edwards-Wilkinson (EW) equation [97], has the form
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Figure 8.7: Random deposition with surface relaxation (RDSR). The freshly-deposited atoms
do not stick irreversibly to the site they fall on, but rather they can ’relax’ to a nearest neighbor
if it has a lower height.

∂h(r,t)

∂t
= a1∇2h+ η(r,t). [EW ]. (8.17)

Here a1 is sometimes called a ’surface tension’. For the negative values , a1 < 0, the
a1∇2h term tends to roughen the interface, however, for the positive values, a1 > 0 this
term smoothens the surface. A simple but intuitive geometrical interpretation, shown in
Fig. 8.8, illustrates the smoothing effects of the Laplacian term a1∇2h with a1 > 0. Its
most important property is smoothening/roughening by ’redistributing’ the irregularities
on the interface, while maintaining the average height unchanged. For the case of a1 > 0,
as shown in Fig. 8.8, materials are taken from the highest point and ’redistributed’ on the
two sides, which soomthens the surface. For the case of a1 < 0 materials are going to the
top hills rather than the lower parts which leads to an increase of the surface roughness.

After, solving EW equation, Eq. 8.17, the critical exponents have the form

α =
2− d

2
, β =

2− d

4
, z = 2. [EW ] (8.18)

As it is clear from Eq. 8.18, the scaling exponents depends on the dimension of the
interface. For d > 2, the roughness exponent α becomes negative, which means that
the interface is flat. Every noise-induced irregularity which generates nonzero width is
suppressed by the surface tension.

8.3.3 Nonlinear models

In the previous section, we have discussed the results of the linear growth in terms of
the EW equation. By adding the nonlinear terms to the growth equation, the results
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Figure 8.8: The effects of the Laplacian term a1∇2h on surface morphology. (a) Assumed
’bump’ in the height profile of the interface at time t. (b) Laplacian term a1∇2h which is
negative at the maximum of h. (c) At time t + δt, with a1 > 0 the height of the original ’bump’
reduces by redistributing surface height.

and predictions of this linear theory change. The first extension of the EW equation to
include nonlinear terms, suggested by Kadar, Parisi and Zhang, is well known as the KPZ
equation. [93]

One example of the systems with nonlinear behavior is ballistic deposition (BD). Figure 8.9
illustrates the schematic view of BD. This model is also an extension of RD by considering
the new rule that the arriving particles stick to their nearest neighbors. It should be noted
that the main difference between the BD model with the RDSR model is that, in RDSR,
particles arrive at the surface and then relax, while for BD they stick to the first particle
they meet.

The nearest-neighbor (NN) sticking rule in ballistic deposition induced lateral growth
which is in Fig. 8.10. This implies that growth occurs in the direction of the local normal
to the interface. This nonlinear term is the essential term in order to obtain the KPZ
equation from the EW equation.
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Figure 8.9: The ballistic deposition model with the nearest-neighbor (NN) sticking rule,
illustrating two sticking possibilities for the newly-deposited particles.

Figure 8.10: The lateral growth in the KPZ equation. Growth occurs along the local normal
v.

∂h(r,t)

∂t
= a1∇2h+ a2(∇h)2 + η(r,t). [KPZ] (8.19)

The first term is the same as in the EW equation and describes smoothening/roughening
of the surface caused by particle redistribution. The second term is the nonlinear part
of the growth equation. In order to better understand the effect of the nonlinear term,
geometrical interpretation of this term has been illustrated in Fig. 8.11. Thus we see that
the nonlinear term increases the height of the interface by adding more material to the
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parts of the interface where the local slope is larger, and the average height of the surface
increases.

Figure 8.11: The effect of the nonlinear term a2(∇h)2 in the KPZ equation on the morphology
of the surface. (a) Assumed ’bump’ in the height profile of the interface at time t. (b) Laplacian
nonlinear term a2(∇h)2 which is always positive. (c) At time t + δt, with a2 > 0 the height
of the interface increases by adding more ’material’ to the parts of the surface where the local
slope is larger.

Considering the KPZ model, it is possible to obtain the scaling exponents for this model.
An exact analytical solution for this problem is only available for the one dimensional
problem. Thus for d = 1 the scaling exponents are

α =
1

2
, β =

1

3
, z =

3

2
. [KPZ] (8.20)

However, for dimensions larger than one, (d > 1) there is no a precise analytical solution,
but the results of calculated simulations are available.
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8.3.4 Diffusive growth

We have studied various deposition models in previous sections. In RDSR, particles
’search’ for the lowest height position. In BD particles stick to the first point on the surface
with which they come in contact. In contrast to these processes, in diffusive growth model,
the deposited particles diffuse on the surface, searching for the energetically most favorable
position. The diffusion length can be quite large, and depends on the temperature and
binding energies (Sec. 8.1.2).

In order to include the surface diffusion in the growth equation, the simplest scenario is
considered: particles are deposited on a surface, whereupon they diffuse. The goal is to
find a continuum equation that describes the variations in the interface height h(r,t) in
the following form

∂h

∂t
= F (h,r,t). (8.21)

Surface diffusion implies that the deposited particles generate a macroscopic current j(r,t),
which is a vector parallel to the average surface direction. By neglecting the desorption,
the diffusing particles can never leave the surface. Thus the local changes in the surface
height are the result of the nonzero currents along the surface. Since the total number
of particles remains unchanged during the diffusion process, the current must obey the
continuity equation

∂h

∂t
= −∇ · j(r,t). (8.22)

The surface current is driven by the differences in the local chemical potential µ(r,t)

j(r,t) ∝ −∇µ(r,t). (8.23)

Surface diffusion is an activated process. The motion of an atom does not depend on the
local height of the interface, but only on the number of bonds that must be broken for
diffusion to take place. The number of bonds that a particle may form increases with
the local curvature of the interface at that position. As it is shown in Fig. 8.12, if the
local radius of curvature R is positive, the particle has a large number of neighbors, and
moving away from the site will be difficult. In contrast, if R is negative, the atom has a
few neighbors, and is able to diffuse easily. The simplest assumption is that the chemical
potential controlling the diffusion probability is proportional to −1/R, which in turn is
proportional to ∇2h(r,t). Hence, the chemical potential can be written as

µ(r,t) ∝ −∇2h(r,t). (8.24)
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Figure 8.12: Schematic illustration of the three possible local geometries on the surface
according to the number of bonds with the neighboring particles.

Hence, the equation describing the surface diffusion has the form

∂h

∂t
= a3∇4h(r,t) + η(r,t). (8.25)

where a3 is negative. The growth Eq. 8.25 is a stochastic differential equation, similar
to the EW equation. The difference comes in the linear term in the EW equation, a1∇2,
while in Eq. 8.25 there is a3∇4h with a3 < 0. This difference affects the value of the
scaling exponents. From the Eq.8.25, the scaling exponents are determined as

α =
4− d

2
, β =

4− d

8
, z = 4. (8.26)

8.3.5 Raible’s model for amorphous growth

Till now, we have presented different models for describing growth mechanisms. Although
all these models have their differences, they are similar in the sense that they all provide
a description of the growth process which describes the dynamics and morphology of
an interface at large scales (larger than the typical interatomic distance) and for large
times (after the deposition of several monolayers). Here, we want to present a more
general model for the evolution of the surface morphology of amorphous thin films in
the presence of potential density variations. This model has been initially suggested
by Raible et. al. to explain the formation of moundlike surface structure of amorphous
thin films on a mesoscopic length scale. [98], [95], [99] Figure 8.13 shows a sketch of an
amorphous film on a substrate. The generalized Raible model consists of all the different
contributions of the previous models, considering the intra-particle attractions and density
inhomogeneities, in the following form

∂h

∂t
= a1∇2h+ a2(∇h)2 + a3∇4h+ a4∇2(∇h)2 + η(r,t). (8.27)
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Figure 8.13: Sketch of amorphous film on a substrate.

The first term on the rhs of Eq. 8.27 is related to the deflection of the initially perpen-
dicular incident particles caused by inter-particle attraction. When the particles are close
to the surface, their trajectories are bent towards the surface. As a consequence, more
particles arrive at places with ∇2 < 0 than a places with ∇2 > 0. In a simplified model,
this deflection (in a direction perpendicular to the surface) happens instantaneously when
a particle arrives at a distance b from the surface, as shown in the upper part of Fig. 8.14.
Distance b characterizes the typical range of interparticle forces. A detailed mathematical
analysis of this simplified model yields the explicit relation a1 = −Fb, where F is the de-
position rate. [98] The negative coefficient a1 < 0 represents the growth instability (Sec.
8.3.2)that results for the growth of top-hills.

The second term is the nonlinear term of Eq. 8.27, the same as discussed in Sec. 8.3.3.
It is responsible for the increase of the height of the interface by adding more ’material’
to the sides of the hills. This term is related to the density variation.

The third term on the rhs of Eq. 8.27 represents the surface diffusion suggested in Sec.
8.3.4. The particles arrive at the surface, diffuse there and relax at surface sites that
offer a sufficiently strong binding. Because these binding places are mainly areas on a
surface with positive curvature ∇2h, the surface diffusion results in a current of the form
j ∝ ∇(∇2h), as shown in the middle part of Fig. 8.14. This surface currents adds the
term −∇ · j ∝ −∇4h to the growth equation. Therefore, the sign of a3 is negative.

The forth term on the rhs of Eq. 8.27 is related to the equilibration of the inhomogeneous
concentration of the diffusing particles on the surface. If only the just deposited parti-
cles diffuse before their relaxation, their surface concentration is weighted by the surface
inclination, as shown in lower part of Fig. 8.14.

This model may exhibit different values of scaling exponents depending on which systems
of molecules or atoms are studied.
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Figure 8.14: Microscopic effects of amorphous thin film growth. Upper part: Deflection
of the particles due to the inter-particle forces. Middle part: Surface diffusion of deposited
particles to places with larger curvature. Lower part: Equilibration of the inhomogeneous
particle concentration due to the inhomogeneous particle concentration due to the geometry of
the surface.

8.4 Quantifying deterministic and random influences on
the surface morphology

In Sec. 8.2 some of the important quantitative parameters of the surface morphology
have been introduced. Later, in Sec. 8.3, different growth models have been explained.
These models provide a quantitative description of height evolution during growth time.
In this section, the method which provide complete analysis on morphology of a surface
at a specific time (t = const.) will be introduced. This method, proposed by the group of
Rahimi Tabar, provide the general equation which governs surface morphology and height
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fluctuations , h(r), as a function of r at t = const.. [100], [101] As it has been shown,
in addition to being highly accurate, the method is quite general and it is capable of
providing a rational explanation for complex features of the surface morphology, without
requiring scaling feature. [102], [103]

In the following the steps that lead to the development of a stochastic equation, based on
the (stochastic) height fluctuations, is described.

8.4.1 The Markov nature of height fluctuations

As the first step we check whether the data follow a Markov chain and, if so, estimate the
Markov length scale lM . As is well-known, a given process with a degree of randomness or
stochasticity may have a finite or an infinite Markov length scale. The Markov length scale
is the minimum interval over which the data can be considered as a Markov process (a
process without memory). [104], [103], [105] To determine the Markov scale lM , we note
that a complete characterization of the statistical properties of the height fluctuation
requires the evaluation of joint probability density functions (PDFs), P (h1,r1; ...;hN ,rN)
for any arbitrary N . If the process is a Markov process (a process without memory),
an important simplification arises. For this type of process the N -point joint PDF, PN ,is
generated by a product of the conditional probabilities P (hi+1,ri+1|hi,ri) for i = 1,...,N−1.
As a necessary condition for being a Markov process, the Chapman-Kolmogorov (CK)
equation, [106]

P (h2,r2|h1,r1) =

∫
d(r3)P (h2,r2|h3,r3)P (h2,r2|h1,r1), (8.28)

should hold for any value of r2 < r3 < r1. One should check the validity of CK equation
for different r1 by comparing the directly-evaluated conditional probability distributions
P (h2,r2|h1,r1) with the ones calculated according to right side of Eq. 8.28. The simplest
way to determine lM for stationary or homogeneous data is the numerical calculation of
the quantity, S = |P (h2,r2|h1, r1) −

∫
dr3P (h2,r2|h3,r3)P (h3,r3|h1,r1)|, for given h1 and

h2, in terms of, for example, r3 − r1 and considering the possible errors in estimating S.
Then, Markov length is lM = r3 − r1 for that value of r3 − r1 for which S vanishes or is
nearly zero (achieves a minimum).

8.4.2 Governing equation of height fluctuations

Deriving an effective stochastic equation that describes the fluctuations of the quantity
h(r) constitutes the second step. The CK equation yields an evolution equation for the
change of the distribution function P (h,r) across the scales x. The CK equation, when
formulated in differential form, yields a master equation which takes the form of a Fokker-
Planck equation:
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d

dr
P (h,r) =

[
− ∂

∂h
D(1)(h,r) +

∂2

∂h2
D(2)(h,r)

]
P (h,r). (8.29)

Kramers-Moyal coefficients of D(1)(h,r) and D(2)(h,r) are estimated directly from the data
using the following equation:

D(k)(h,r) =
1

k!
lim∆r→0

1

∆r

〈
[h(r + ∆r)− h(r)]k

〉
|h(r)=h (8.30)

We note that this Fokker-Planck equation is equivalent to the following Langevin equation
[100]:

d

dr
h(r) = D(1)(h,r) +

√
D(2)(h,r)f(r), (8.31)

where f(r) is a random force with zero mean and Gaussian statistics, δ-correlated in r,
i.e., < f(r)f(r′) >= 2δ(r − r′). It turns out the resulting deterministic and random
part coefficients, directly estimated from the morphology data, are linear and quadratic
functions of h, respectively.

Furthermore, with this last expression (Eq. 8.31), it becomes clear that we are able to
separate the deterministic and the noisy components of the surface height fluctuations
in terms of the coefficients D(1) and D(2). Equation 8.31 enables us to regenerate rough
surfaces which are similar to the original one (in the statistical sense).



9 Growth and morphology of α-NPD
amorphous thin films

In order to tailor and modify thin film properties to be suitable for desired applications,
e.g. organic light emitting devices (OLED) in this case, it is necessary to study and un-
derstand the influence of deposition parameters on thin film growth. The chosen material
is N,N’-diphenyl-N,N’-bis(1-naphthyl)-1-1’biphenyl-4,4”diamine (α-NPD) processed by
organic vapor-phase deposition (OVPD). Film growth in OVPD is controlled by three
independent parameters which are deposition rate, substrate temperature and chamber
pressure. Our study is focused on the influence of deposition rate and substrate tem-
perature on film morphology. A remarkable dependence of the film morphology upon
deposition rate and substrate temperature is observed. A detailed quantitative morphol-
ogy analysis provides excellent description of the growth mechanism of OLED films. [107]

9.1 Introduction

During the past decade, enormous progress has been made in growing ultrathin organic
films and multilayer structures with a wide range of exciting optoelectronic properties.
[41], [63] One of the most advanced applications of molecular organic materials are light-
emitting diodes (OLEDs). These devices have a multilayer structure and consist of several
thin films of organic materials. For a better understanding and design of such devices,
it is necessary to know and understand the morphology, structure and growth modes of
the organic films. Therefore, to tailor and control the surface morphology, understanding
of the influence of deposition parameters on the organic film growth mechanism is very
important.

In this work, we perform a systematic study on morphology and growth of amor-
phous organic thin films of α-NPD (N,N’-diphenyl-N,N’-bis(1-naphthyl)-1-1’biphenyl-
4,4”diamine). These thin films are deposited by Organic Vapor Phase Deposition, OVPD
(Sec. 6.1). By controlling the deposition rate, substrate temperature and reactor chamber
pressure, the film growth can be modified in OVPD which in turn, strongly affects the
device performance. [63], [108] In this chapter, our investigation is focused on the influence
of deposition rate and substrate temperature on the morphology of organic thin films. For
this purpose, the surface morphology was measured by Atomic Force Microscopy (AFM).
A remarkable dependence of the film morphology upon deposition rate and substrate
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temperature has been observed. Performing a detailed analysis of surface morphology as
well as investigating the initial growth stage an in-depth description of the film growth
has been enabled.

9.2 Experiments

α-NPD thin films have been deposited on top of silicon substrates using (OVPD). The
silicon substrate is covered with a thin layer (∼ 2 nm) of native silicon dioxide. The
roughness of the silicon substrate is 0.40 nm, measured by AFM. The deposition technique
is OVPD (Sec. 6.1). At the constant reactor chamber pressure, series of α-NPD films have
been deposited with different deposition rates and substrate temperatures. The expected
film thickness is around 50 nm for all samples. The deposition rate, R, was varied between
2 Å/s and 17Å/s. The substrate temperature (T), was set to temperatures of 5◦C, 25◦C,
45◦C and 65◦C, respectively.

In order to investigate the initial stage of the growth, ultra-thin samples have been de-
posited at both the highest and the lowest substrate temperatures, i.e. 65◦C and 5◦C.
The thickness of these ultra thin samples are about 2-3 nm and and their deposition rate
was kept at the lower range between 2 Å/s and 4Å/s.

For each sample, at least three AFM scans at three different positions on the surface have
been performed. The AFM images and their corresponding quantitative information are
shown in the following sections.

9.3 Results and discussions

AFM images for different deposition rates and substrate temperatures are shown in Fig.
9.1. This matrix of AFM images depicts a clear trend for the morphology of the films at
different deposition rates and substrate temperatures. As can be seen from Fig. 9.1, the
films have a rough morphology at the two off-diagonal corners of this AFM matrix. These
two corners represent the one deposited at low substrate temperature (5◦C) with the
high deposition rate (17 Å/s) and the other one deposited at high substrate temperature
(65◦C) with the low deposition rate (2 Å/s). However, films are relatively smooth around
the main diagonal which consists of the samples with the low deposition rate at 5◦C, the
intermediate deposition rate at 25◦C and 45◦C, and the high deposition rate at 65◦C.

9.3.1 Quantitative analysis

To derive quantitative information of the surface morphology, as the first quantity, the
corresponding rms-roughness (Sec. 8.2) has been extracted from the AFM images of each
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Figure 9.1: AFM images of α-NPD films on Si-substrate deposited by OVPD for different
deposition rates and substrate temperatures. In this matrix the deposition rate varies from
2Å/s to 17 Å/s, and the substrate temperature varies from 5◦C to 65 ◦C. The AFM scan is
5µm × 5µm and the color height scale corresponds to 5 nm. At the two off-diagonal corners,
the films have a rough morphology.

sample. Figure 9.2 shows the rms-roughness as a function of deposition rate at different
substrate temperatures. At low substrate temperature (5◦C), the rms-roughness increases
with deposition rate. On the contrary, for the highest substrate temperature (65◦C), the
films become smoother with increasing deposition rate. At the two moderate substrate
temperatures (25◦C and 45◦C) films are relatively smooth and there are rather small
changes in rms-roughness upon increasing deposition rate. Hence the rms-roughness is
clearly effected by the substrate temperature (Fig. 9.2).

Furthermore, the roughness exponent α (Sec. 8.2.3) of all samples has been calculated.
The result of these calculations is shown in Fig. 9.3. The scaling exponent α is clearly
different at different substrate temperatures, however, it has the same trend for different
deposition rates. It should be noted that, a large α is consistent with the picture that the
surface diffusion generates a rough surface, at large length scales. [92]
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Figure 9.2: Rms-roughness as a function of deposition rate at different substrate temperature.
Both the samples deposited at low substrate temperature (5◦C) and the highest rates (14 Å/s
and 17 Å/s) and the films deposited at the highest temperature (65◦) and low deposition rate
(2 Å/s) show a high rms-roughness.

Figure 9.3: Roughness exponent α as function of substrate temperature.
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Figure 9.4: Correlation length as a function of substrate temperature for different deposition
rates. The largest correlation length is observed at the highest temperature of 65◦C.

In order to quantify the lateral structure size on the surface, the lateral correlation length
(Sec. 8.2.2) has been calculated. Figure 9.4 displays the calculated correlation length for
different substrate temperatures and deposition rates. This plot shows a clear increase of
the correlation length with substrate temperature.

The trends of rms-roughness, roughness exponent and correlation length depict a strong
effect of the substrate temperature. One can see that, at the low substrate temperature
(5◦C), due to lower diffusion possibility, films become rough with deposition rate, and they
are smooth only at low deposition rates (2 Å/s-10 Å/s). At high substrate temperature
(65◦C), surface diffusion is playing a more important role to make larger structures on
the surface, which indeed increases the lateral correlation length and rms-roughness of
the films respectively.

In order to achieve a complete characterization of the surface morphology and to construct
the governing equation of the height fluctuation, a series of calculations have been done,
based on the model proposed in Sec. 8.4. In the first step, the Markov length scale, lM
has been estimated for each sample. The result of these calculations are demonstrated in
Table 9.1

The next step is to calculate the deterministic and the random noise coefficients of
D(1)(h,r) and D(2)(h,r) directly from the data, using Eq. 8.30. These two coefficients
are linear and quadratic functions of h, respectively, and are well-presented as the ap-
proximations,
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(b) Random noise coefficient (A(2)) as a function of deposition rate for different
substrate temperature calculated from AFM images of α-NPD samples. At
low substrate temperature increasing deposition rate rises these fluctuations.
However, for the highest temperature the contrary effect is observed.

Figure 9.5: Determined deterministic coefficient (A(1)), and Random noise coefficient (A(2))
for α-NPD samples with different deposition rates and substrate temperature.
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D(1)(h) = −A(1)h, D(2)(h) = A(2) −B(2)h+ C(2)h2 (9.1)

In order to estimate the coefficients A(1),A(2),B(2) and C(2), the functions D(1)(h,r) and
D(2)(h,r) vs. h need to be fitted by a linear and quadratic function of h, respectively.
As well as morphology, coefficients D(1) and D(2) are also dependent on deposition pa-
rameters, substrate temperature, T, and deposition rate, R. Hence, D(1),D(2) and their
consisting terms have been calculated for all samples with different deposition parame-
ters. The corresponding results for these coefficients are demonstrated in Table 9.1. In
Fig.9.5(a), the A(1) coefficient of the deterministic term D(1), is plotted as a function of
substrate temperature for different deposition rates. This term shows an obvious decrease
upon the increase of temperature and demonstrates an inverse trend as the correlation
length in Fig. 9.4.

sample lM (nm) A(1) A(2) B(2) C(2)

Tsub = 5oC

Rate = 2Å/s 39.08 0.0018 0.44 0.0037 7.81×10−6

Rate = 5Å/s 39.08 0.0019 0.49 0.0041 8.80×10−6

Rate = 10Å/s 29.31 0.0021 0.53 0.0042 9.43×10−6

Rate = 14Å/s 29.31 0.0024 0.75 0.0050 10.80×10−6

Rate = 17Å/s 39.04 0.0022 0.74 0.0044 12.50×10−6

Tsub = 25oC

Rate = 2Å/s 29.31 0.0021 0.44 0.0039 9.20×10−6

Rate = 5Å/s 29.31 0.0022 0.50 0.0047 9.19×10−6

Rate = 10Å/s 48.85 0.0015 0.48 0.0040 8.73×10−6

Rate = 14Å/s 48.85 0.0017 0.45 0.0038 8.39×10−6

Rate = 17Å/s 48.85 0.0017 0.48 0.0039 8.12×10−6

Tsub = 45oC

Rate = 2Å/s 39.08 0.0018 0.41 0.032 6.86×10−6

Rate = 5Å/s 68.39 0.0016 0.47 0.0039 8.57×10−6

Rate = 10Å/s 58.62 0.0017 0.48 .0040 8.64×10−6

Rate = 14Å/s - - - - -
Rate = 17Å/s 58.62 0.0015 0.39 0.0034 7.62×10−6

Tsub = 65oC

Rate = 2Å/s 87.93 0.0018 0.35 0.0020 4.72×10−6

Rate = 5Å/s 87.93 0.0019 0.36 0.0029 6.17×10−6

Rate = 10Å/s 87.93 0.0021 0.30 0.0025 5.43×10−6

Rate = 14Å/s 48.85 0.0024 0.24 0.0024 5.12×10−6

Rate = 17Å/s 39.08 0.0022 0.22 0.0018 3.96×10−6

Table 9.1: Markov length scale (lM ), deterministic coefficient (A(1)) and random noise coeffi-
cients (A(2),B(2),C(2)) for all samples at different substrate temperature and deposition rate.
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The second term in the Eq. 8.30 for the height fluctuation is D(2) , the coefficient of
random noise which has a quadratic form as seen from Eq. 9.1. According to our calcu-
lations (Table 9.1), the first and second order terms of this quadratic equation are very
small. Hence, the constant part, A(2), is considered as the representative quantity for
D(2). Figure 9.5(b) shows D(2) as a function of deposition rate for different substrate tem-
peratures. The trend observed is different at various substrate temperatures. At 5◦C, an
increasing deposition rate yields an increase of the random noise term. However, at 65◦C,
the random coefficient decreases upon rising rate. Furthermore, at a constant deposition
rate, by increasing the temperature D(2) decreases. Hence, from this observation, we infer
that the more efficient surface diffusion the smaller the resulting surface randomness.

Figure 9.6: AFM images of ultra thin films (3-4 nm) of α-NPD. (a) with the deposition rate
of 2 Å/s at the highest substrate temperature (65◦C). (b) with the deposition rate of 4 Å/s at
the lowest substrate temperature (5◦C). Increasing the substrate temperature increased surface
diffusion of molecules and this leads to more molecular agglomeration. The color height scale is
20 nm for both images. The image size is 2.5µm× 2.5µm. .

9.3.2 Initial stages of growth

In order to confirm the effect of diffusion in the growth of α-NPD samples, the morphology
at the initial stages of growth has been investigated. For this purpose, two ultra thin
samples were deposited at both the highest and the lowest substrate temperatures, i.e.
65◦C and 5◦C.

The AFM images of these samples (Fig. 9.6) show that for the sample deposited at
65◦C (Fig. 9.6(a)) molecules tend to rather agglomerate together than to the substrate.
However, at the substrate temperature of 5◦C (Fig. 9.6(b)) molecules spread over the
substrate. This is due to the fact that at the highest substrate temperature of 65◦C
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molecules surface diffusion is more favorable; hence, they can travel easily on the substrate
and coexist to form separate islands. In this case, it is more energetically favorable for
molecules to stick together than to wet the substrate. However, at the lowest substrate
temperature of 5◦C, the diffusion process is less probable, hence, molecules prefer to stick
at the positions nearby the area at the time of arrival and spread over the surface. Hence,
Fig. 9.6 shows a clear effect of surface diffusion in the initial stage of the growth, which
has been additionally confirmed by further annealing of the sample Fig. 9.6(a) up to
100◦C for 10 min. The AFM image of the annealed sample is displayed in Fig. 9.7. One
can see that the size of the initial islands has been increased upon annealing. This is due
to further diffusion of molecules on the surface which yields larger agglomerated islands.

Figure 9.7: AFM image of the annealed sample of Fig. 9.6(a) up to 100◦C. The color height
scale is 20 nm and the image size is 2.5µm× 2.5µm. .

9.4 Conclusion and outlook

Considering both the detailed characterization of the full coverage films (with thickness
∼ 50 nm) and the investigation of the initial growth stages, makes it possible to explain
the growth of α-NPD films. A clear change in the calculated critical exponents α vs.
substrate temperatures (Fig. 9.3) indicates that there can be different modes which govern
the growth of α-NPD films at different substrate temperatures. At the two extreme
temperatures, 5◦C and 65◦C, rms-roughness values vs. deposition rate, depicts quite
reverse trends. At the lowest temperature of 5◦C we have observed the increase of rms-
roughness with deposition rate, while at 65◦C films become smoother with deposition
rate. These results indicate that surface diffusion and random fluctuations govern the
film growth mechanism.

Taking into account the initial growth stages Fig. 9.6(a), at high substrate temperature,
due to high surface diffusion, there is distinct island formation. This, in turn, increases the
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correlation length and surface roughness for the thicker films. However, at high tempera-
ture, increasing deposition rate, decreases diffusion time for each molecule. According to
the non-wetting growth model, [88] this raises the number of islands but reduces islands
size, which leads to smoother surface morphology at high coverage. Therefore, we can
make the statement that the growth model at high substrate temperature is similar to
the one for metal on metal growth.

On the other hand, at 5◦C, surface diffusion is less important (Fig. 9.6(a)) and molecules
are adsorbing on the surface in more spread. At this temperature, surface roughness in-
creases with deposition rate. This observation can be explained considering the growth
model of Raible et.al. As mentioned in Sec. 8.3.5, in case of negligible diffusion coef-
ficients, there is a pronounced tendency for the molecules to go on the top-hills rather
than valleys. Since the corresponding coefficient a1 = −Fb of Eq. 8.27 is proportional to
deposition rate. Hence, film instabilities and morphology random fluctuations increases
with deposition rate.

However, at two moderate temperatures of 25◦C and 45◦C, there is a compromise between
deposition rate and diffusion process. For these samples, the substrate temperature is
insufficient for molecular agglomeration; contrastingly, it is a driving force for smoothening
of the surface. These moderate temperatures can be considered as the optimum substrate
temperature for producing smooth films at different deposition rate in the production
lines.

Furthermore, besides deposition rate and substrate temperature, film growth in OVPD
is controlled by the third independent parameter which is chamber pressure. Hence, the
aim of our further study is to investigate the influence of OVPD chamber pressure on
surface morphology of organic thin films. [109]
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Molecular organic compounds are employed as active materials in a variety of applica-
tions, including organic light emitting diodes (OLEDs) and organic thin film transistors
(OTFTs). These devices consisting of sequentially deposited layers of organic materials
have been demonstrated with active device thicknesses of only a few hundred nanome-
ters or less. For a better understanding and design of such devices, it is necessary to
understand the structural and optical properties of the organic thin films employed.

In this work, the structural and optical properties of organic thin films have been investi-
gated. Our investigation is focused on the two types of organic materials, crystalline and
amorphous. For several applications including electronic devices such as transistors, the
highest possible electron mobilities are required. This property is only found in the films
with ultimate structural order and crystalline properties. For other applications such as
light emitting devices, the highest possible quantum yield is most important. This yield
depends upon the probability of radiative electron-hole recombination which is highest
for amorphous materials where the electron and hole mobilities are low.

Oligomers based on the family of five-membered thiophene conjugated ring and its
derivate, due to their self-assembling nature, have been considered as one of the most
common conducting organic oligomers used in OTFT devices. We have studied the
single molecules of 3-nitrothiophene/selenophen/tellurophen and the adsorption of these
molecules on Cu(110) surface, utilising ab initio calculations. These calculations provide
a basic understanding and forecasting of intra- and inter-molecular interactions present
in the observed structures. Our results for single molecules shows that in the gas phase
molecules have a planar geometry. The comparison of the different conjugated rings (thio-
phene/selenophen/tellurophen) indicates that by increasing the atomic radius, from sulfur
to selenium and tellurium atoms, the C-S/Se/Te bond length increases while the angle
between these bond decreases. According to these results, the C-S bond in the thiophene
ring has the smallest length and the C-S-C angle has the largest value.

Adsorption of the molecules on the surface breaks the planarity of single molecules. Mono-
layers of 3-nitrothiophene/selenophen/tellurophen on a Cu(110) surface are well ordered
with the aromatic ring perpendicular to the surface, in a close packed structure. Due to
the strong lateral interaction between the hydrogen atoms of the neighboring conjugated
rings, they rotate relative to the nitro (−NO2) group. The optimum rotation angles are
obtained as 23o (for thiophene ring) to 25o (for selenophen ring) and 26o (for tellurophen
ring). The optimization calculations show that the total energy of the rings consisting of
larger atoms (selenium, tellurium) is more sensitive to the rotation angle of the ring.
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Based on these results, it is possible to optimize geometry and structure of many other
interesting π-conjugated molecules. The most straight forward calculations can be done
for the molecules with similar conjugated rings such as longer chain of thiophene derivates
which are widely being used as self assembled monolayers (SAM). Furthermore, it will
be interesting to investigate the adsorption of the different types of π-conjugated organic
molecules on the surface, such as the ones containing benzene ring in their structures.
Perylene and Pentacene are the two examples of such molecules which have been exper-
imentally investigated as well, at our institute, I. Physikalisches Institut, Physik neuer
Materialien (IA), RWTH-Aachen. [110]

As the next type the organic materials, amorphous ones, tris-(8-hydroxyquinoline)
aluminum (Alq3) and N,N’-diphenyl-N,N’-bis(1-naphthyl)-1-1’biphenyl-4,4”diamine (α-
NPD) have been investigated. These molecules are among the most commonly used
electron-transport and hole-transport materials suitable for OLED applications. The op-
tical and structural properties of the thin films of these materials deposited by organic
vapor phase deposition (OVPD) have been studied by spectroscopic ellipsometry (SE).
Employing this technique enables the precise determination of the dielectric function as
well as thickness of the organic thin films of each material. This result can be explained
by the characteristic features of electronic states in organic molecules. The dielectric func-
tion of Alq3 and α-NPD films have been determined in the spectral range of 0.7 eV to
5.0 eV by spectroscopic ellipsometry. The optical constants of these samples were deter-
mined using the normal harmonic oscillator and the generalized Kim model with Gaussian
broadening. AFM and XRR measurements have been performed for the independent de-
termination of film structure. Employing the Kim oscillator model, the quality of the fit
has been improved on average by the factor of 4. Furthermore, using the Kim model the
film thickness is reproduced to within 1% accuracy. Moreover, we have shown that by
using the generalized Kim model, we can obtain a single dielectric function for all samples
of the same material. This is in line with the constant film density values determined by
XRR. The superior quality of the fits employing the Kim model seems to be attributed
to the better description of electron-phonon coupling in the organic materials.

In order to tailor and modify thin film properties to be suitable for desired applications,
e.g. organic light emitting devices (OLED) in this case, it is necessary to study and
understand the influence of deposition parameters on thin film growth. Our study is
focused on the influence of deposition rate and substrate temperature on (α-NPD) film
morphology and growth. The expected film thickness is around 50 nm for all samples. The
deposition rate, R, was varied between 2 Å/s and 17Å/s. The substrate temperature (T),
was set to temperatures 5◦C, 25◦C, 45◦C and 65◦C, respectively. A remarkable dependence
of the film morphology on deposition rate and substrate temperature is observed. A
detailed quantitative morphology analysis provides an excellent description of the growth
mechanism of OLED films. In order to investigate the initial stage of the growth, ultra thin
samples have been deposited at both the highest and the lowest substrate temperatures,
i.e. 65◦C and 5◦C. The thickness of these ultra thin samples are about 2-3 nm and and
their deposition rate was kept at the lower range between 2 Å/s and 4Å/s.
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Considering both of the detailed characterization analysis of the full coverage films (with
thickness ∼ 50 nm) and investigation of the initial growth stages, makes it possible
to explain the growth of α-NPD films. At the two extreme temperatures, 5◦C and
65◦C, rms-roughness values vs. deposition rate, depict quite reverse trends. At the
lowest temperature of 5◦C we have observed the increase of rms-roughness with deposition
rate, while at 65◦C films become smoother with deposition rate. Also, at the moderate
substrate temperatures (25◦C and 65◦C) films are relatively smooth and there are rather
small changes in morphology upon deposition rate. A clear change in the calculated
critical exponents α vs. substrate temperatures is observed. This indicates that there
can be different modes which govern the growth of α-NPD films at different substrate
temperatures. The obtained results are indicative for a clear effect of surface diffusion
and random fluctuations on the film growth mechanism.

Taking into account the initial growth stages, at high substrate temperature, due to high
surface diffusion, there is distinct island formation. This, in turn, increases the correla-
tion length and surface roughness for the thicker films. However, at high temperature,
increasing deposition rate, decreases the diffusion time for each molecule. According to
the non-wetting growth model, this raises the number of islands but reduces islands size,
which leads to smoother surface morphology after high coverage. Therefore, we can make
an statement that the growth model at high substrate temperature is similar to the one
for metal on metal growth. On the other hand, at 5◦C, surface diffusion is less important
and molecules are adsorbing on the surface in more spread. At this temperature, surface
roughness increases with deposition rate. This observation can be explained considering
the growth model of Raible. In case of negligible diffusion coefficients, there is a pro-
nounced tendency for the molecules to go on the top-hills rather than valleys. Hence, film
instabilities and random morphology fluctuations increase with deposition rate. How-
ever, at two moderate temperatures of 25◦C and 45◦C, there is a compromise between
deposition rate and diffusion process. For these samples, the substrate temperature is in-
sufficient for molecular agglomeration; contrastingly, it is a driving force for smoothening
of the surface. These moderate temperatures can be considered as the optimum substrate
temperature for producing smooth films at different deposition rate in the production
lines.

Besides deposition rate and substrate temperature, which were considered in this thesis,
film growth in OVPD is controlled by the third independent parameter which is chamber
pressure. Chamber pressure is considered as the characteristic deposition parameter in
OVPD in comparison with VTE (vacuum thermal evaporation) where we are in the vac-
uum regime. Hence, the aim of our further study is to investigate the influence of OVPD
chamber pressure on surface morphology of organic thin films. [109]

In this work, we have studied film growth and morphology at two different range of film
thicknesses, i.e. ∼50 nm and ∼2-3 nm. Morphology evolution upon thickness variation
between these two extremes is the next interesting subject we are investigating. This study
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will provide more detailed information about growth mechanism versus film thickness.
Furthermore, it will be possible to calculate the growth exponent β for such thin films.

It is highly desirable to study the correlation between surface morphology and device
efficiency. In general, to obtain high efficiency of devices, suitable for OLEDs, both of
amorphous and smooth films are mainly preferable; whereas, in some other applications,
such as organic sensors, rough interfaces could be desired. This statement admit the exis-
tence of a correlation between roughness of the films and the device properties. Moreover,
it arises the important challenging question that how this correlation could be specified.
For this purpose, besides AFM and XRR (for structure and morphology characterization),
photoluminescence, PL, and electrical measurements (for characterizing device efficiency)
can be performed. Our goal is to carefully investigate the relation between PL and elec-
trical measurements and the film morphology.
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