A Scalable Parallel Sorting Algorithm Using Exact Splitting

Christian Siebert 2 and Felix Wolf 1:2:3

! German Research School for Simulation Sciences, 52062 Aachen, Germany
2 RWTH Aachen University, Computer Science Department, 52056 Aachen, Germany

3 Forschungszentrum Jiilich, Jiilich Supercomputing Centre, 52425 Jiilich, Germany

c.siebert@grs-sim.de

Abstract

Sorting is one of the most fundamental algorithmic kernels, used
by a large fraction of computer applications. This paper proposes
a novel parallel sorting algorithm based on exact splitting that
combines excellent scaling behavior with universal applicability.
In contrast to many existing parallel sorting algorithms that make
limiting assumptions regarding the input problem or the under-
lying computation model, our general-purpose algorithm can be
used without restrictions on any MIMD-class computer architec-
ture, demonstrating its full potential on massively parallel systems
with distributed memory. It is comparison-based like most sequen-
tial sorting algorithms, handles an arbitrary number of keys per
processing element, works in a deterministic way, does not fail
in the presence of duplicate keys, minimizes the communication
bandwidth requirements, does not require any knowledge of the
key-value distribution, and uses only a small and a priori known
amount of additional memory. Moreover, our algorithm can be
turned into a stable sort without altering the time complexity, and
can be made work in place. The total running time for sorting n
elements on p processors is O(% log n + plog®n). Practical scal-
ability is shown using more than thirty thousand compute nodes.
This paper presents the first parallel sorting algorithm to combine
all herein before mentioned properties, while laying the founda-
tions to overcome scalability problems for sorting data on the next
generation of massively parallel systems.

Keywords parallel algorithms, sorting, exact splitting, median

1. Introduction

From search engines and data bases to mail clients and address
books — sorting is at the foundation of most everyday computer
applications, not to mention the millions of programs that employ
sorting algorithms in less obvious places. It therefore does not come
as a surprise that sorting is among the most intensively studied
problems of computer science, constituting an indispensable key
element of academic programming education across the globe.
Sorting lets us easily spot items with the same identification, helps
us prioritize tasks, and enables efficient searches for information
based on a key. However, although the amount of information
subject to single sorting operations is growing at rapid pace, the
stagnating performance development of single processing elements
imposes a limit on the suitability of sequential sorting algorithms,
calling for efficient parallel alternatives. In addition, the availability
of parallelism of unprecedented scale on modern supercomputers
creates a need for solutions tailored to architectures with distributed
memory and limited communication bandwidth.

f.wolf@grs—-sim.de

Although a huge body of literature on parallel sorting exists,
many of the proposed algorithms either scale poorly or make re-
strictive assumptions with respect to the expected underlying hard-
ware or properties of the input problem. In this paper, we pro-
pose a novel parallel sorting algorithm based on exact splitting
that combines excellent scaling behavior with universal applica-
bility. Splitter-based methods minimize communication bandwidth
requirements by first sorting the data locally before moving indi-
vidual partitions of the pre-sorted data directly to their final destina-
tion. This makes splitter-based methods an ideal solution for large-
scale distributed-memory supercomputers with low bisection band-
width. Such methods require the advance identification of so-called
splitters. Splitters delineate the partitions, which represent adjacent
ranges of the sorting domain. Exact splitting ultimately achieves
both minimal communication bandwidth requirements and that the
initial distribution of keys per processing element is exactly pre-
served. This has further advantages under tight memory require-
ments or if the distribution pattern serves a purpose, for example,
to compensate for disparities among compute nodes or data items.

Being comparison-based like most sequential sorting algo-
rithms, our method can be used with any sortable data type. In
addition, it does not make any assumptions regarding the distri-
bution of keys, concerning neither their number per processing
element nor their values. Moreover, the algorithm is fully determin-
istic and does not fail in the presence of duplicate keys. Compared
to existing approaches, the main contribution of our work is

e anew exact splitter-finding technique,
e a fast approximative median selection mechanism,
e a practical solution to deal with duplicate keys and

e anew guideline for choosing the local sorting algorithm.

Although not working in place yet, the amount of additional mem-
ory required by our algorithm is O(p) and thus comparatively small
and known a priori. Including all steps, the running time for sorting
n elements on p processors is O(% log n 4 plog®n). Furthermore,
our algorithm can be turned into a stable sort without altering the
time complexity, and can be made work in place.

We start in Section 2 with a brief survey of (parallel) sorting
algorithms in general and related splitter-based methods in partic-
ular. In Section 3, we give a high-level overview of our algorithm,
followed by a detailed description of the individual phases and a
thorough analysis of their theoretical performance. Practical per-
formance results with more than thirty thousand compute nodes
are presented in Section 5. Finally, Section 6 concludes the paper
and discusses potential optimizations.

2010/12/22

2. Background and Related Work

While a comprehensive overview of this vast topic is clearly be-
yond the scope of this paper, we try to classify sorting algorithms
according to their requirements and characteristics briefly before
we discuss the approaches closest to our own. Formally, the sort-
ing problem refers to the question of how to find a permutation
< al,...,al, > of an input sequence < a1,...,a, > such that
ay < ah... < al,. The input elements always contain a key value
that is used in pairwise comparisons to determine if a key is less
than, equal to or larger than another key. Optionally, elements can
contain further data records like a reference to a larger data struc-
ture.

2.1 Sequential Sorting Algorithms

As the problem statement intuitively suggests, many well-known
sorting algorithms such as insertion sort, merge sort, heapsort, or
quicksort, only rely on a comparison operator whose existence can
be evidently assumed for every sortable data type. This widely ap-
plicable class of sorting algorithms is called comparison sorts. Us-
ing a decision-tree model, it can be shown that comparison-based
algorithms that work correctly for all n! possible input permu-
tations need (at least) Q(n logn) binary comparisons. Assuming
that a comparison can be done in constant time, this directly trans-
lates to a lower-bound running time of {2(nlogn). Although the
worst-case efficiency of quicksort [1] is O(n?), its high average-
case efficiency of O(nlogn) in combination with small hidden
constant factors in quality implementations often make it the first
choice when sorting large input arrays. Another class of algorithms
achieves even linear running times by exploiting special properties
of the key data type such as a very small value range. Although
very efficient, these “integer-sorting” algorithms, including count-
ing sort, radix sort, and bucket sort, rely on limiting assumptions
that restrict the number of application areas. Another distinctive
feature of sorting algorithms is their stability. A sorting algorithm
is called stable if the original order of equal element keys and thus
of their potentially attached data records is retained in the sorted se-
quence. For example, most merge sort implementations are stable,
whereas quicksort is typically not stable. Moreover, some sorting
algorithms operate in place, that is, only a small number of ele-
ments of the input array are ever stored outside the array. Whereas
insertion sort is an example for an in-place algorithm, the simple
merge procedure of merge sort operates out of place. In such cases,
memory needs have to be balanced against efficiency requirements.
Furthermore, the efficiency of an algorithm may depend on its in-
put data, leading to different best, average and worst-case running
times. The degree to which this dependence becomes manifest is
called sensitivity. Finally, specialized sorting algorithms have been
designed to cope with the deficiencies or to exploit the capabilities
of specific systems, adding further parameters to our performance
considerations. For example, whereas the algorithms above seek to
minimize the number of comparisons and/or memory moves, im-
plicitly assuming that the sequence to be sorted fits in the main
memory, the class of external sorting algorithms aims at minimiz-
ing disk I/O when sorting the contents of a large file whose size
exceeds the main memory capacity.

2.2 Parallel Sorting Algorithms

Parallel sorting algorithms take advantage of multiple processing
elements to speed up the sorting procedure. Given the large va-
riety of parallel systems, they can be classified according to the
underlying model of parallel computation, usually encompassing
the memory architecture, the network topology, and the number of
processing elements. A comprehensive albeit not necessarily up-to-
date taxonomy of parallel sorting algorithms can be found in [2].
Parallelization of serial sorting algorithms using n processing el-

ements can be easily achieved for many algorithms in the O(n?)
class such as bubble sort, resulting in a parallel time complexity
of O(n) [3]. In contrast, the inherent parallelism available in the
O(nlogn) class of comparison-based algorithms seems too lim-
ited to reach the optimal complexity of O(log n). Sorting networks,
an alternative parallel sorting paradigm, consist of one or more
stages of comparator modules that route input elements to subse-
quent stages depending on their relative size, ultimately guiding
every element to its final position in the destination sequence via
iterative merging. A prominent example is the bitonic merge net-
work [4], which can be shown to require O(log? n) steps using n/2
comparators [5]. Although of major theoretical importance due to
their low complexity, most known sorting algorithms that operate
on a shared-memory model require at least as many processors as
the number of elements to be sorted, rendering them unsuitable for
practical implementations. For example, bucket sort [6] sorts n in-
teger numbers with n processors in O(logn) time, provided the
numbers are small enough. Block sorting algorithms address the
problem of limited parallelism by replacing comparison-exchange
steps in traditional sorting algorithms with merge-split steps, during
which a processors merges two sorted blocks and splits the result-
ing block into a lower and a higher half to be sent to two different
destination processors [3, 7]. A non-comparison-based algorithm
example that can be easily parallelized in practice is radix sort [8],
which assigns keys to buckets based on a subset of the keys’ bi-
nary representation. Parallelization is achieved by distributing the
buckets across the available processors, although frequent all-to-all
communication may limit its scalability. External parallel sorting,
in contrast, often relies on k-way merge sort, taking advantage of
a variety of optimizations [9]. Finally, whereas in the past research
also concentrated on how to design specialized sorting hardware
such as VLSI sorters [10], recent approaches increasingly try to
leverage general purpose accelerators such as GPUs [11].

2.3 Splitter-based Methods

Splitter-based sorting algorithms split process-local subsequences
attached to each of the p processing elements into p partitions.
These partitions are subsequently dispatched to the final respon-
sible processing elements, where a local step brings them into
sorted order. Since each element is sent across the network only
once, splitter-based methods minimize communication bandwidth
requirements, making them well suited for distributed memory ar-
chitectures. A common splitting technique is sample sort [12],
which picks s key samples at random on each process, and sorts
the combined sample of size s - p to determine p — 1 splitters as
if this was the entire data set. Afterwards, the algorithm broadcasts
those splitting keys' to all processes, where the local data is parti-
tioned and scattered to all destination processes before a local sort-
ing operation eventually completes this algorithm. While sample
sort is relatively easy to implement, a disadvantage is that infe-
licitous samples can lead to an extremely imbalanced partitioning
of data among the processing elements. In fact, it is only guaran-
teed that a process will finally have at least s elements (e.g., when
the s - p globally smallest keys are equally distributed and picked
as samples). Only due to the randomization of the algorithm, it is
more likely that each process gets roughly the same amount of data.
While a larger sample size helps to improve the load balance, pro-
cessing the samples quickly becomes the bottleneck. This is espe-
cially true for regular sampling [13], a popular variant of sample
sort that takes samples of size p — 1. Often preferred for its good
load balancing, regular sampling does not scale well because a sin-
gle master process requires additional memory of size ©(p?) to

!'With respect to quicksort, the splitting keys in sample sort can be regarded
as multiple pivots.

2010/12/22

store and an effort of O(p? log p2) to process the combined sample,
rendering the algorithm impractical beyond thousand processes.

Just like quicksort, sample sort partitions first and sorts at the
end. It is also possible to proceed in the opposite direction like
merge sort in that the process-local data is sorted first and merged at
the end. Parallel splitter-based methods of the second group divide
the pre-sorted subsequences attached to each of the p processing
elements into p consecutive partitions and immediately dispatches
these to their final destination, where a multi-way merge step com-
bines them into a sorted consecutive partition of the final overall
sequence. A benefit of this way is that splitters can be chosen more
properly without relying on a random selection process. Probably
the most successful representative, called Histogram sort [14], fol-
lows an iterative approach during which splitters are successively
refined until all partitions have an approximately equal number of
keys. During each iteration, all processes calculate a histogram with
the number of elements between adjacent splitters, after a master
processor broadcasts splitter guesses. Because the local data is al-
ready sorted, these guesses can be found efficiently using binary
searches. The local histograms are subsequently accumulated into
a global histogram to evaluate the quality of a current splitting. Un-
less the partitions produced by the guesses are within an accept-
able range of their ideal sizes, interpolation or a median function
is used to improve these guesses further towards their intended lo-
cation. A more recent implementation of the algorithm [15] uses
the Charm++ parallel programming system and suggests optimiza-
tions that essentially overlap sorting, histogram creation, the all-
to-all communication, and merging phase. Because histogram sort
iterates until suitable splitter approximations are found, its running
time still depends on the initial guesses and the distribution of the
key values. Fortunately, a much better data distribution can be guar-
anteed compared to sample sort. While this significant improve-
ment comes at the expense of repeating potentially redundant op-
erations, our algorithm ultimately identifies exact splitting points
directly. Rather than approximating equal output partition sizes,
we can precisely reproduce the original data distribution. The lat-
ter property is of practical importance if the memory requirements
need to be precisely estimated, or if unequal partition sizes are
chosen on purpose, for example, in response to non-uniform local
memory sizes or heterogeneous processing capabilities.

An alternative exact splitting method was described by Cheng
and colleagues in [16]. Despite their algorithm being more com-
plex and less general than ours, the main drawback of their solu-
tion is that it needs a running time of O(p? log n 4 plog® n) com-
pared to our O(plog® n) approach just to find the splitters. This
O(p?log n) difference can have a noticeable impact already for a
very small number of processing elements. Compared to their own
performance numbers, we achieve a thousandfold increase in scal-
ability. However, some of their ideas may serve as inspiration to
further improve the efficiency of our algorithm.

3. Algorithm

Our algorithm sorts a total of n elements using p processes. Each
process is identified by a unique number ¢ € [0, p), which we call
the rank. The input elements are distributed across all processes
so that each process ¢ holds a subset of n; elements in a local ar-
ray A;[0,...,n; — 1] with n = 3"~ n;. Using terminology of
the Message Passing Interface standard, this algorithm can thus be
regarded as “irregular” like a hypothetical MPI_Sortv interface be-
cause it supports arbitrary numbers of elements per process. How-
ever, our simplified running-time analysis refers to a regular data
distribution with (approximately) % elements per process. After
completion of this algorithm, each process will hold the same num-
ber of keys n; but with potentially different values (depending on

rank 0 rank 1 rank 2 rank 3

it o s W

1** step: local sorting

- A - -

oM step: exact splitter finding

SIS2 83 s480

S0 S1 $2 $3 S4.80
3" step: data redistribution

e e it S

4™step: p-way merging

s s s3 s4sg SIS s3 sy

S0 S| B 3 sy

e e

Figure 1. Algorithm overview using an example with p = 4
processes and n = 60 + 45 + 70 + 50 keys.

the sorting permutation), which are then both locally and globally
in sorted order. Assuming ascending order, this means that

LS [O,p),O <k<l<n: Al[k‘] < AZ[Z] and
o V0 <i<j<p ki €[0,m)k; €[0,m;) : Aslhki] < Ajk;].

The parallel sorting algorithm comprises four steps, which are
illustrated in Figure 1:

1. Local sorting
2. Exact splitter finding
3. Data redistribution

4. Local p-way merging

The first step sorts all local arrays A; in parallel using a sequen-
tial sorting algorithm. In Section 3.1, we will discuss criteria for the
selection of a suitable algorithm, which may lead to choices differ-
ent from what has been used in the literature so far at this stage. The
second step, which constitutes the actual core of our work, identi-
fies each splitter via a global binary search. Here, the main chal-
lenge lies in performing the binary search globally across data that
is sorted only locally. While cutting the search space successively
in halves is accomplished via a combination of local and global
median selection, choosing either the upper or lower half requires
determining the global rank of the selected median via a reduction
operation across all processes. Once the splitters have been identi-
fied and the local arrays partitioned accordingly, the data is redis-
tributed in a collective all-to-all communication operation during
the third step. The fourth step finally merges the redistributed sorted
partitions locally, resulting in a globally sorted overall sequence. In
the following, we will explain each step in detail.

2010/12/22

So S S5 ... Spo Sp1 Sp

| — e

[rankO)[rank1)[)[rank p—2)[rank p-1)

Figure 2. Global partitioning of sorted sequence using splitters.

3.1 Local Sorting

During the first step, all process-local arrays are sorted in paral-
lel, with each individual array being sorted sequentially. Requir-
ing no interaction among different processes, these operations can
be performed independently from each other with a running time
of O(3; log) using an asymptotically optimal sorting algorithm.
The well-known quicksort algorithm reaches this upper time bound
only with a deterministic median selection, which is rather slow and
therefore rarely used in practice. In contrast, the more prevalent
randomized or median-of-three quicksort variants (e.g., the gsort()
or sort algorithms from the libc or C++ STL, respectively) can yield
this running time only on average. In these cases the actual per-
formance not only depends on the number of elements but is also
sensitive to the input data itself. In general, using such sensitive ker-
nels with unpredictable running times in spite of constant numeric
problem sizes in parallel applications can cause serious load imbal-
ance, resulting in large implicit synchronization overhead during
subsequent communication steps.

Merge sort, on the contrary, never exceeds its upper bound run-
ning time, while being almost completely insensitive to the actual
input data. That is, the performance is only influenced by the num-
ber of elements. Provided that all processes hold roughly the same
number of elements and all processors can sort equally fast, all pro-
cesses will accomplish this first step within the same time span —
a desirable property for our parallel sorting algorithm. Another ad-
vantage of a straightforward merge sort implementation is its sta-
bility, that is, it maintains the relative order of elements with equal
keys, thus enabling a stable parallel sorting algorithm. On the other
hand, the extra memory consumed by the temporary buffer for
the merge sub-step can be seen as a drawback, although in-place
merging strategies exist in the literature [17]. We managed to tune
our merge-sort implementation to be competitive to existing quick-
sort implementations within our algorithmic framework, making it
much faster than the frequent outliers of quicksort, which become
more dominant as the number of processes increases. Note also that
the probability of bad choices in quicksort rises with an increasing
number of processes. Therefore we strongly advise against using
quicksort in any parallel application at larger scale because even a
single slow process will degrade the overall performance.

3.2 Splitter Finding

The most challenging part of our parallel sorting algorithm is to
determine the exact splitting points. The splitters so, s1,. . ., sp de-
fine a global partitioning of the overall sequence with two adjacent
splitters delineating the partition assigned to a single process. This
means that the process with rank ¢ will eventually hold all elements
in the range [s;, si+1) (cf. Figure 2). In the rest of this paper, we
assume the most common scenario, where the number of input ele-
ments n; equals the number of output elements. However, because
this final partitioning is independent of n; (except that the total
number of elements needs to stay constant), our algorithm can be
easily extended to support a partitioning different from the initial
distribution. To allow duplicate keys, each splitter consists of a key
value and additionally an index representing the position relative to
all elements matching the same key value.

Since the outermost splitters so and s, reflect —oo and o0,
they seem to be trivially defined and not worth further consider-
ation. However, given that we search for the remaining splitters

only across the existing keys instead of searching their whole do-
main, we need the outermost splitters as starting point for our bi-
nary searches, initializing them with the global minimum and max-
imum of the key values, respectively. In addition, the index of s is
set to 0 and the index of s, to the number of elements equal to this
global maximum key. In our MPI-based implementation, this is ac-
complished using reductions across all processes using minimum,
maximum, and summation as operators, as shown in the simplified
pseudocode given in Listing 1. The remaining p — 1 splitters can
be found by leveraging global binary searches.

loc_min = A[0]
glo_min = Allreduce(loc_min , OP_MIN)
splitter[0] = <glo_min , 0>

loc_max = A[loc.n — 1]

glo_max = Allreduce(loc_max , OP_MAX)

loc_cnt = loc_n — num_less_than(A , loc_n , glo_max)
glo_cnt = Allreduce(loc_cnt , OP_SUM)

splitter[p] = <glo_max , glo_cnt>

target_cnt = Broadcast(loc_n , 0)
fori=1top—1
splitter[i] = find_splitter(target_cnt ,
A, loc_n,
splitter[0] , splitter(p])
target_cnt += Broadcast(loc_n , %)
end for

return splitter

Listing 1. Pseudocode for the splitter finding loop.

The initial reductions as well as the communication overhead
involved in the median selection (discussed later in this section)
would not be necessary if we followed a naive approach, search-
ing across the whole domain of key values. This would lead to
O(log n') binary search rounds where n’ corresponds to the range
of the values to be searched, which can be moderate if the keys are
smaller integer types but can also be high, for example, if keys are
floating-point or big-integer types. However, we disqualified this
approach also because it only works for certain key types and eas-
ily fails for other types like strings. Instead, we suggest a global
binary search across the actual key values itself that cuts the search
space into two halves, globally counts the number of elements in
each of them, and proceeds with the half where the target count de-
rived from the n; values resides until the desired splitter is found.
With this approach, each of these splitter searches needs O(log n)
rounds, where n reflects the total number of keys, independently of
the range covered by their values.

Each round consists of the following three sub-steps: (i) select-
ing a global median to split the search space, (ii) searching locally
for this median to determine its local position, and (iii) counting
globally all elements that are (a) less than and (b) less than or equal
to this median using global reductions. The two counts (a, b) in
the latter sub-step are needed in the presence of duplicate keys.
In this case, the target count derived from the n; should reside in
the interval delimited by those two values. At this point, either the
desired splitter is found and the search is finished, or the search
is continued to the left or to the right of the median value. More
detailed information about this global binary search can be found
within the non-recursive pseudocode given in Listing 2. The ag-
gregate time complexity to find all exact splitting points amounts
to O(plog®n) because local binary search can be accomplished
in time O(log %), and parallel median selection (discussed next)
as well as global summation can both be done in time O(log p)
using reductions and broadcasts within tree-based communication
graphs.

2010/12/22

/* [omitted handling of same key but different count] =*/
loop /+ O(logn) rounds */
x = loc_n — num _greater_than(A , loc_n , min)
y = num_less_than(A , loc_n , max)
ifx <y
have _value = true
loc_median = median(A , x , y)
else
have _value = false
end if
glo_median = sparse_median(loc_median , have_value)

loc_cnt = num_less_than(A , loc_n , glo_median)
a = Allreduce(loc_cnt , OP_SUM)
if target_cnt < a
max = glo_median
continue loop
end if

loc_cnt = num _greater_than(A , loc_n , glo_median)
b = Allreduce(loc_n — loc_cnt , OP_SUM)
if target_cnt > b
min = glo_median
continue loop
end if

return <glo_median , target_cnt — a>
end loop

Listing 2. Pseudocode for a single splitter search.

Due to the work of Han [18], we can presume that a parallel
median algorithm exists with an optimal running time of O(log p).
For all practical purposes however, it is sufficient to implement a
potentially much simpler “approximate” median algorithm to find
the splitters. Only the running time of this 2™¢ step is influenced
by the choice of the selected value, not the correctness of the re-
sulting exact splitting points. Thus an eligible method needs to
globally agree upon one key value that splits the search range into
two halves, which are not necessarily exact but nearly of the same
size. We propose a median-of-3 reduction scheme within a com-
plete ternary tree topology, like the example shown in Figure 3(a).
Processes that correspond to inner nodes of such a tree receive the
local median from two other processes (except for the last node
in each round, which may receive less), determine the median of
those values including the own value, and forward the result to the
next level, where the same reduction procedure gets recursively ap-
plied until a single result is selected. This final value 7 is a suitable
approximation of the real median, and as such broadcasted to all
participating processes.

Because there is no identity element for comparisons, a sparse
median selection procedure is needed that can handle dispens-
able processes without contributions to the median selection. This
scenario occurs when the remaining number of local keys to be
searched reaches zero on some but not all processes. Fortunately,
an exclusive prefix sum followed by a sum reduction to all pro-
cesses (alternatively a broadcast from the last process) and a single
element redistribution (a.k.a. data shift) can be used to transform
such a sparse algorithm back into a dense one, which subsequently
proceeds as explained before. This transformation does not over-
balance the O(log p) running time, while alternatives like creating
a new communicator (e.g., using MPI_Comm_split) would inflate
the running time to Q(p).

Another noteworthy approach to implement the median algo-
rithm creates a data structure holding O(log n) values, each con-
sisting of a key and a count. A cell at position i (0 < 7 < |logn])
holds either 0, 1, or 2 key values representing an intermediate me-
dian of 2* elements. An MPI user-defined data type is created for
this data structure, and a user-defined operation needs to be imple-

mented to combine two such structures into a single one. Such a
combination proceeds from the lowest to the highest cell position,
and puts all key values from the same position together. When-
ever the number of gathered values exceeds two, they are replaced
by their median value, which is put back into the corresponding
cell(s) of the accumulated size. This is comparable to the procedure
for adding big integers digit by digit while dealing with the carry.
Once everything is set up, the data structure is initialized with the
local median value, and a single MPI_Allreduce operation is used
to accomplish the complete median selection procedure. While this
can be beneficial on some architectures, for example when the MPI
collective function is optimized for the underlying interconnection
network, the additional combination overhead leads to a trivial run-
ning time of O (log? p), exceeding our targeted running time. Using
a sparse representation of the data structure and clever techniques
similar to recursive doubling, the running time can be improved
to yield the intended running time again. However, due to space
restrictions and non-generality issues we do not go into more de-
tails of this quite complex method and therefore stick to the first
commended approach for the sparse median selection also for the
evaluation.

While such a median approximation Z does not necessarily re-
flect the exact median, it is in practice very close to it. It can be
shown (straightforward proof via induction) that the 2!°8s™ — 1
smallest as well as 2'°83™ — 1 largest keys out of n = 3* (V k € N
and k£ > 0) keys will never be chosen as an approximate me-
dian. Indeed, based upon the vertex coloring/symbols given in Fig-
ure 3(a), it is even possible to construct such a worst case input
for any number of input keys n. However, simulations with 2187,
6561 and 19683 random keys (corresponding to the same number
of processes) substantiate the expectations in that the true median
is picked with highest probability, and the likelihood that this al-
gorithm returns a key further away from the median decreases ex-
ponentially with its distance to this median. Figure 3(b) shows a
simulation with a true median of 1093, resulting in an expected
distance to this median E(X) of merely 36.427. While the theo-
retically possible worst case split is 1 : 16, we never encountered
more than a 1 : 1.9 split in trillions of executions in practice.

We distance ourselves from using interpolation functions such
as a weighted arithmetic mean value for several reasons. While this
is very simple to compute and therefore extremely fast (e.g., a sin-
gle Allreduce with sum as operation) compared to our slow median
selection (which currently uses Exscan + Broadcast + data shift +
median-of-3 reduction + Broadcast), it only works on computable
keys (like floating point or integer values®). Thus our algorithm
would loose its general applicability. Additionally, we discussed
the quality of the selected approximation to the true median and
therefore were able to give a complete running time analysis of
our parallel sorting algorithm. But none of the referenced papers in
Section 2 that used this computational shortcut to appear fast were
able to do so. We decided not to sacrifice general applicability for
the sake of a running time reduction by a factor of 5 in the splitter
finding step. Instead, we believe that further optimizations of the
more general median selection algorithm might eventually be able
to achieve similar speedups.

3.3 Data Redistribution

Once the exact splitters have been determined in step 3.2, all ele-
ments can be redistributed accordingly to their final destinations. In
order to accomplish this task with a single complete data exchange
operation, the necessary process-local send and receive lists have to

2 Nonetheless, there are practical issues like integer overflows or non-
associativity of floating point numbers when adding and multiplying very
small with very large values.

2010/12/22

less than 7
equal to T

)
o
@ greater than 7

unrelated to &

Q

%

(a) Median-of-3 reduction tree

109

108

10

100

100
1000 1250

on of the Approximative Median

Pe

(b) 244 billion approximations with 2187 elements showing the areas
for impossible (crosshatch) and never encountered results

Figure 3. Median reduction scheme and simulation of quality.

be prepared. All information for the send lists, consisting of p dis-
placement and p count values, can be assembled by utilizing O(p)
local binary searches followed by global prefix summations (e.g.,
MPI_Scan with MPI_SUM as operation), to account for duplicate
keys. The corresponding process-local receive lists can be derived
directly from these send lists using a regular complete exchange
of those O(p) values per process (e.g., by invoking MPI_Alltoall).
Now everything is setup to finally redistribute the actual user data
within a single but complete data exchange operation, like the irreg-
ular MPI_Alltoallv collective. This is the only step where complete
elements (i.e., keys and their potentially attached information) are
communicated between processes.

Because the data in the send buffer is not needed anymore, it
could be replaced by the received data. Unfortunately, there is no
“in place” option for the general MPI_Alltoally functionality with
differing send and receive lists®. Thus our current implement needs
a second buffer just for the data reception. Fortunately, some recent
developments explained in [19] and [20] suggest that it is possi-
ble to implement such a generic (i.e., non-symmetric) “in place”
variant of an irregular and complete data exchange operation.

Assuming an underlying interconnection network that provides
full bisection bandwidth and therefore enables simultaneous pair-
wise communication, the running time of the pure data redistribu-
tion can be done in time O(%). Together with the O(p) local binary
searches and global prefix summations, each working in O(log)
and O(log p) time respectively, the total running time of this third
step of our parallel sorting algorithm becomes O(% + plogn).

3Version 2.2 of the MPI standard includes the “in place” option for
MPI_Alltoally, but the wording only covers the simpler symmetric variant.

However, due to the quadratic growth of cabling costs that is
needed to obtain full bisection bandwidth, large supercomputers
typically provide a much smaller bisection bandwidth. This neg-
atively impacts the performance of any complete exchange oper-
ation. For supercomputer architectures, such as the Blue Gene/L
or the Cray XT5, where every node is only linked to a constant
number of neighbors (i.e., 6 in those three dimensional tori), the
data exchange scales only according to O(p x %) which equals
the very poor O(n) performance. Other parallel sorting algorithms
like parallel quicksort or parallel merge sort [21] need O(log p) or
even O(logn) complete data exchanges. Although the proposed
parallel sorting algorithm needs only one such exchange operation
and therefore reduces the bandwidth requirements to an absolute
minimum, the necessary complete data exchange can anyhow and
easily become the main bottleneck. Since this problem is expected
to become even more severe in the future, as system sizes increase
further, we would like to encourage architectures aiming at a high
effective bisection bandwidth.

3.4 p-way Merging

After the previous data redistribution step, all elements reside at the
correct processing elements. To conclude the parallel sorting algo-
rithm, a process-local operation is needed that brings the elements
into a sorted order. One might be tempted to apply a normal sort-
ing operation as we did in the first step. However, because the data
is already arranged in at most p sorted pieces, this approach would
perform too much work and could cut the overall parallel efficiency
in half. A multi-way merge operation, often used in the context of
file-based sorting algorithms, accomplishes this last task by merg-
ing the O(p) pre-sorted pieces into the final sorted sequence.

We propose to use a binary min-heap data structure capable
of holding p elements, each consisting of a key and two index
values. A new heap element is created for each pre-sorted piece
and inserted into this heap. Its key is initialized according to the
first entry of the corresponding piece, and the starting position as
well as the end of this piece is assigned to the two index values.
Once the heap is built, O(%) extract-min operations are eventually
utilized to copy all user elements in ascending order into a second
buffer. The starting index of a heap element is increased after each
such extraction. As long as the associated end index has not been
reached, the key is updated according to the next user element and
the heap element is inserted back into the heap structure. Given that
each heap operation works in time O(log p), this approach yields
the asymptotically optimal running time of O(% log p).

An alternative approach could utilize a bottom-up variant of the
merge sort algorithm. However, as opposed to the full sorting algo-
rithm that starts merging single-element arrays, it commences at a
later stage by merging the larger pre-sorted pieces. Both approaches
accomplish the p-way merging task and both can be implemented to
be stable. The min-heap solution spends O(log p) time per element
operating within the small heap structure of size O(p) whereas each
of the O(2) user elements is only moved exactly once, laying the
foundations for exploiting CPU caches very well. This gives a per-
formance advantage on moderate-scale parallel architectures such
as common cluster systems. On the other hand, the merge sort solu-
tion can again be made to work “in place” just like in step 3.1. Since
we currently need a temporary buffer anyway because of the com-
plete data exchange, we have chosen the cache-friendly min-heap
approach for our evaluation.

Last but not least, there still might be a rationale for using a
complete sorting algorithm in this step, for example, if there exists
a very fast sequential sorting implementation, such as an optimized
version for GPUs, but no equally fast p-way merge operation. So
whenever the best merge operation would perform worse than a
complete sort, one might consider just applying the latter one.

2010/12/22

3.5 Algorithm Summary

All four steps of our parallel sorting algorithm are visually repre-
sented in Figure 1 for a total of 225 elements that are unequally
distributed among 4 processes. Each individual key value is illus-
trated by the height of the bars. The top most row shows the ini-
tial array contents for each process, which are filled with random
values at the beginning. During the first step, these elements are lo-
cally sorted using merge sort. Afterwards, the resulting array con-
tents show monotonically increasing key values at the individual
ranks. The second step finds all 5 exact splitting points, drawn as
red vertical lines in the middle row. The complete data exchange
operation in step 3 moves all elements to their final destination pro-
cess. This bandwidth-intensive all-to-all communication operation
is indicated by the arrows. A p-way merging operation completes
the parallel sorting algorithm by bringing the resulting pre-sorted
pieces into the final sorted order. At the end, all elements in the bot-
tom row are globally in sorted order. For completeness, the splitters
that are found in the second step are shown again in the last row,
matching the initial objective given in Figure 2. The following table
summarizes all four steps together with the corresponding running
times.

15" step | local sorting O(Zlog2)
274 step | global splitter finding O(plog®n)
3% step | global data redistribution O(% +plogn)
4™ step | local p-way merging O(2 logp)

The total running time of this parallel sorting algorithm is there-
fore O(% log n-+plog®n). Considering only comparison-based ap-
proaches, an optimal parallel sorting algorithm with p processes
runs in time O(2 logn) because optimal sequential sorting al-
gorithms are bounded by O(nlogn). The presented algorithm is
therefore asymptotically optimal as long as O(p?) < O(logn).
Assuming a fixed number of elements per process c, our sorting
algorithm scales as long as ¢ > O(y/nlogn).

4. Example

To further improve upon the understanding of our parallel sorting
algorithm, a detailed example will be provided in this section. Ran-
domly chosen prime numbers between 10 and 99 form the input
data, which shall be sorted in parallel using p = 4 processes. For
best performance, these n = 40 elements are equally distributed
across all processes, thus giving n; = 10V 0 < ¢ < 4 with the
following initial array contents A;.

rank 0: 47, 23, 29, 79, 83, 79, 47, 59, 67, 31
rank 1: 71, 71, 13, 13, 97, 37, 97, 73, 23, 41
rank 2: 37, 47, 43, 53, 59, 73, 53, 13, 17, 43
rank 3: 11, 97, 13, 61, 29, 83, 47, 89, 67, 11

4.1 Local Sorting

Each process starts by sorting its own local array in ascending
order, yielding the following array contents after the 1 step.

rank 0: 23, 29, 31, 47, 47, 59, 67, 79, 79, 83
rank 1: 13, 13, 23, 37, 41, 71, 71, 73, 97, 97
rank 2: 13, 17, 37, 43, 43, 47, 53, 53, 59, 73
rank 3: 11, 11, 13, 29, 47, 61, 67, 83, 89, 97

4.2 Splitter Finding

Finding the exact splitting points so, s1, S2, s3 and s4 is the most
challenging part. The keys of the outermost splitters so and s4 rep-
resent the global minimum and maximum key value respectively.
These can be derived from the local minimum residing at the first

array position and the local maximum given by the last element
in the array. The corresponding index value for the first splitter is
always defined to be zero, and becomes three for the last splitter
because the maximum 97 globally exists three times.

<11, 0> // <min({23, 13, 13, 11}), 0>
<97, 3> // <max({83, 97, 73, 97}), fequal(97)>

S0
S4

To find splitter s;, we note that the first process with rank
0 holds 10 elements. Therefore, exactly 10 elements in the final
sorted sequence must be located in the range covered by [so, 51).
Because sg with key 11 globally exists only twice and s4 with key
97 exists only three times, neither of both known keys can already
fulfill this target count. So we initiate a global binary search for
a key larger than 11 and smaller than 97 that satisfies a target
count of 10. First, we determine the global median* of all elements
between 11 and 97, which is 47. Using local binary searches, we
can essentially “count” the number of elements with respect to
this median. Reducing these local counts into a global sum reveals
that there are in total 17 smaller elements, which is too large for
our target count of 10. Continuing the global binary search within
the lower key range (11,47) with the next median 23 gives 7
smaller elements and 2 equal elements, which is quite close but
still one element too small. Therefore the splitter must be located
somewhere in the upper halve (23,47). The median there is 37
and turns up 12 smaller elements, making it slightly too large. Note
that not all processes contribute elements to the next median finding
step in the lower key range (23, 37). The resulting median value of
29 globally causes 9 elements to be smaller, 2 elements to be equal
and 29 elements to be greater. So finally we found s; with a key
equal to this median value of 29 and an index value of 1, because
there are 10 elements before this splitting point.

The next splitter s2 is found in a similar fashion by adding
the number of elements at rank 1 to the present target count. A
following global binary search tries to find a splitter preceded by
these 20 elements. Luckily, the first median value of 47 from the
search range (11,97) results in 17 elements that are smaller but
additionally 4 elements that are equal to it. Since 20 < 17 + 4,
we already found a suitable key for s2 and the corresponding index
value needs to be 3.

Our search for the last remaining splitter s3 proceeds with a
target count of 30 and successively examines the ranges (11, 97)
and (47, 97). The second median value of 71 makes a total of 28
smaller elements and 2 equal elements. Therefore s3 = <71,2>
serves as a suitable splitter after 30 global elements. However,
depending on the actual implementation and the selected median
values, note that it is also possible for s3 to end up having a key of
73 and an index value of 0. Both variants of s3 represent the exact
same splitting point, merely expressed in two different ways.

s1 = <29, 1> // comparison keys: 47, 23, 37, 29
sg = <47, 3> // comparison keys: 47
s3 = <71, 2> // comparison keys: 47, 71

4.3 Data Redistribution

Now that we have all necessary splitters, they are used to split the
process-local arrays up. The only difficulty here lies in the handling
of duplicate keys. For example, splitter s; has a key value of 29 and
an index of 1. Since both rank 0 and rank 3 have one element with
this key, they need to know if the splitting needs to be done before
or after this element’. A so-called exclusive prefix sum (a.k.a. scan,

4Remember: an arbitrary element close to the median, which bisects a given
sequence nearly equally, would be sufficient.

5 If there are multiple equal elements on a process, splitting can also happen
anywhere between the first and last occurrence of elements with this key.

2010/12/22

prefix reduction or partial sum) determines the number of elements
with the same key on all processes before the inquiring process. All
processes simply provide their number of elements with the related
key as input: <1,0,0,1>=-<0, 1,1, 1>. As a result, rank 0 knows
that it has to split after this element because it is the first processor
having this key, and rank 3 knows that it needs to split before this
element because there is another process already handling the one
element with this key. The local splitting of the arrays looks as
follows.

rank 0: 23, 29 | 31, 47, 47 159, 671 79, 79, 83
rank 1: 13, 13, 23 | 37, 41| 7L, 71| 73, 97, 97
rank 2: 13, 17 | 37, 43, 43, 47 | 53, 53, 59 | 73
rank 3: 11, 11, 13 | 29 | 47, 61, 67 | 83, 89, 97

The first process notices that the first two elements need to be
moved to itself, the next three elements to rank 1, the next two
elements to rank 2, and the last three elements to the last process.
All other processes also know to whom to send their elements. If
all processes scatter this send information to all processes, then
everyone grasps the complete receive information including where
to receive the elements. So we can finally accomplish the complete
data exchange, resulting in the following array contents.

rank 0: 23, 29 | 13, 13, 23 | 13, 17 | 11, 11, 13
rank 1: 31, 47, 47 | 37, 41 | 37, 43, 43, 47 | 29
rank 2: 59, 67 | 71, 71 | 53, 53, 59 | 47, 61, 67
rank 3: 79, 79, 83 | 73, 97, 97 | 73 | 83, 89, 97

4.4 p-way Merging

Almost completed, every process holds the correct elements after
the previous step. The pre-sorted pieces only need to be merged into
a final sorted sequence. Since there are four processes, applying two
bottom-up merge steps can accomplish this task.

rank 0: 13, 13, 23, 23, 29 | 11, 11, 13, 13, 17
rank 1: 31, 37, 41, 47, 47 | 29, 37, 43, 43, 47
rank 2: 59, 67, 71, 71 | 47, 53, 53, 59, 61 , 67
rank 3: 73, 79, 79, 83, 97, 97| 73, 83, 89, 97
rank 0: 11, 11, 13, 13, 13, 13, 17, 23, 23, 29
rank 1: 29, 31, 37, 37, 41, 43, 43, 47, 47, 47
rank 2: 47, 53, 53, 59, 59, 61, 67, 67, 71, 71
rank 3: 73, 73, 79, 79, 83, 83, 89, 97, 97, 97

As demonstrated in this example, the parallel sorting algorithm
correctly placed all elements in a globally ascending order.

5. Implementation and Results

Our implementation of the presented parallel sorting algorithm is
completely written in the ANSI-C language and only uses a Mes-
sage Passing Interface library to accomplish the communication
between the processes. For this reason, it is at the same time very
portable and highly efficient, especially when used together with
the vendor-tuned MPI implementation and compiler for the paral-
lel computer architecture. We use merge sort for the local sorting
step, and the native MPI_Alltoallv operation of the underlying MPI
for the data redistribution. The splitter finding step implements the
sparse median selection procedure (using amongst other collectives
MPI_Exscan), and the p-way merge is build upon the presented
min-heap approach. Since the median selection is also a collective
operation (although not part of the MPI standard), our parallel sort-
ing algorithm solely uses collective operations within a single com-
municator (i.e., MPI_.COMM_WORLD). Thus, except for our me-
dian implementation, no point-to-point communication operations
are used. The more sophisticated approaches would additionally re-
quire user-defined reduction operations and complex user-defined
data types.

5.1 Sequential Performance

To determine the parallel efficiency of our parallel sorting algo-
rithm, we need to know the running time of the fastest sequential
sorting algorithm. Since we were able to tune our merge sort im-
plementation to be competitive to best case runs of existing quick-
sort implementations, we use this as a basis for the comparisons.
However, currently there are no machines with terabytes of shared
memory, which is the reason why we cannot just measure the sort-
ing time for data sets at these sizes. Instead we need to be able to
accurately predict the performance at this scale. As we discussed
in the introduction, the theoretical runtime of merge sort for n ele-
ments is © (n log n). And indeed, the measured running time (given
in nanoseconds) can be relatively well estimated using the formula

Tmergesort (n) =Cc-n- 10g2 n

resulting in a c between 14.4 and 13.9 for our first architecture.
Plotting several of such derived c values in a logarithmic scale start-
ing with 131 thousand elements up to 402 million elements clearly
shows a linear trend downwards. We assume that this behaviour can
be explained with cache utilization. The sequential performance
prediction will thus fit a linear function ¢(2%) =y = a-x + b
to the measured results. The outcome will be merged with the first
formula resulting in

Tseq_sort (n) = (a . log n+ b) cn - 10g2 n

Once the sequential sorting performance can be predicted accu-
rately, it will be used to calculate the achieved parallel efficiency
E(n, p) according to the formula

Tseq_sort (n)

E(n,p) = —ca=orl)__
(p) p- Tpar_sort(n7 p)

5.2 Juropa

“Juropa” is an InfiniBand cluster at the Supercomputing Center
in Jiillich/Germany with 2208 nodes, each equipped with two Intel
Xeon X5570 (Nehalem-EP) quad-core processors running at 2.93
GHz and 24 GiB of memory.

The sequential sorting performance on this architecture can be
predicted using ¢(2%) = 14.9153 — 0.0289 - = with high accuracy.
The difference of this prediction compared to the actual measured
performance was always less than 1.1%.

Figure 4 shows the performance of our implementation of the
presented parallel sorting algorithm, running in a weak scaling
mode on up to 512 compute nodes’. Using the sequential perfor-
mance prediction, we have calculated the achieved parallel effi-
ciency, which is given as number in percent above each bar. Up
to 384 processes, the parallel efficiency is always above 97%. Af-
terwards it slowly decreases to 82.1% for the largest run with 1024
processes.

Due to the enormous memory required by the InfiniBand layer
in the MPI library, we only used 2 MPI processes per node and
671, 088, 640 elements per process. As can be seen, the data re-
distribution is not the bottleneck within this scale in this tightly
coupled cluster system, which uses a Fat Tree topology. How-
ever, the memory requirements are becoming a serious problem
at this scale, even inhibiting larger runs. Therefore an alternative
but memory-economic MPI_Alltoallv implementation (even if it is
slower) would help to scale further.

5.3 Jugene

“Jugene” is a Blue Gene/P installation at the Supercomputing
Center in Jiilich/Germany consisting of 72 racks with 32 nodecards

%No run for 2 MPI processes can be shown, because the MPI_Alltoallv
implementation provided by the vendor always crashes in this scenario.

2010/12/22

Parallel Sorting Performance on “Juropa”

(sorting up to 687.2 billion 64-bit clements (5.0 TiB) in less than 443 seconds)

400

350

300

250

200

Running time [seconds]

150

100

50

4 8 16 32 64 128 256 512 1024
Number of Processors

OO0 s) s

local sorting splitter finding data redistribution p-way merging

Parallel Sorting Performance on “Jugene”

(sorting up to 3.85 trillion 64-bit clements (28 TiB) in less than 13 minutes)

700 o

600

500

400
5.3

-
e
s
300 mmiii.
100 IIIIII IIIIIII

2 8 32 128 512 2048 8192 32768
Number of Compute Nodes

OO0 s) s

local sorting splitter finding data redistribution p-way merging

Running time [seconds]

Figure 4. Weak scaling results on a Nehalem-based cluster.

each having 32 compute nodes. All nodes are equipped with a 4-
way SMP PowerPC processor running at 850 MHz as well as 2 GiB
memory.

The sequential sorting performance on this supercomputer can
be predicted using ¢(2%) = 62.4121 — 0.128476 - = with high
accuracy. The difference of this prediction compared to the actual
measured performance was always less than 0.5%.

The parallel sorting algorithm performs pretty well on this ar-
chitecture, as can be seen in the weak scaling results up to 32, 768
compute nodes in Figure 5. The resulting implementation has been
executed in SMP mode, meaning that only one MPI process per
node was used. The application sorts 117, 440, 512 64-bit elements
per process in a parallel and distributed fashion, leading to 3.85
trillion elements in total or 28 TiB of aggregated data. This huge
amount of data is completely sorted in less than 13 minutes using
32768 processor cores on this system. Even if there would exist a
huge shared-memory architecture, capable of holding such an enor-
mous data set, the fastest sequential sorting algorithm would need
more than 9 million seconds or the equivalent of 106 days for the
same task. Interestingly, the data redistribution is not (yet) the bot-
tleneck because the complete exchange operation is heavily tuned
towards the torus interconnect of the Blue Gene architecture [22].
As a result of these great optimizations, the speed of the Alltoallv
operation — compared to the implementations provided by the open
source MPIs Open MPI and MPICH?2 — is a factor of 16.3 higher
on just 13824 compute nodes. Without this specialized implemen-
tation, our 3" step would become a serious performance problem
on this architecture. Instead of that, the scalability can keep up ad-
equately with the presented cluster systems: up to 4096 compute
nodes, our parallel sorting algorithm achieves a parallel efficiency
of 70% or more. This steadily diminishes further to 36% for the
largest run with 32768 nodes.

The Blue Gene/P architecture provides an additional network
to improve the performance of collective operations such as Broad-
cast, Allgather and Allreduce with sum as operation. Unfortunately,
our splitter finding step does not benefit from this enhancement,
because currently neither Exscan nor Allreduce with user-defined
reduction operations is tuned to use this “collectives” network. Im-
provements in this respect could speed up our 2"¢ step of the pre-
sented parallel sorting algorithm significantly, as a non-optimized
reduction over the torus network is more than 8 times slower at this
scale. Once the local sorting and the p-way merge operation is fur-
ther parallelized using all available cores (e.g., by using OpenMP
or POSIX Threads), the scaling of the implementation can pos-

Figure 5. Weak scaling results on a Blue Gene/P architecture.

sibly be multiplied by the additional speedup gained by such a
shared-memory parallelization. Thus this scaling chart could likely
be stretched to its equivalent of 131, 072 processor cores. However,
this paper only presents a distributed parallelization for the sorting
problem. Many other publications exists, dealing with a shared-
memory parallelization of sorting algorithms — the only addition
needed for our parallel sorting algorithm is a shared-memory par-
allel p-way merge operation.

5.4 Huygens

“Huygens” is another InfiniBand cluster, located at SARA in
Amsterdam/Netherlands. It consists of 104 compute nodes, each
equipped with 16 dual core Power6 processors running at 4.7 GHz
and typically 128 GiB of memory.

Unfortunately, the sequential sorting performance cannot be
predicted as accurately as on the other two systems. Although we
carried out more than 8000 measurements, no clear trend could
be determined — the values for ¢ always fluctuate, seemingly in a
random fashion, in the range between 20.168 and 22.269 with an
average of ¢ = 21.340. We will use this constant (i.e., independent
of n) average value for our parallel efficiency analysis. The result-
ing difference compared to the measured average performance is
higher than for the other systems but still less than 5.9%.

Similar to the “Juropa” chart, Figure 6 shows the performance
of our parallel sorting implementation running in a weak scaling
mode on up to 1024 processors. We always used 16 tasks (i.e., MPI
processes) per node with 301, 989, 888 elements per process, and
repeated the measurements at least three times, taking their median
value to be resistant to outliers.

It turned out that our algorithm scales perfectly over the whole
range up to 1024 processes. Several times it even achieves super-
linear speedup (i.e., in the meaning of a parallel efficiency above
100%). The reason is our p-way merge implementation, which
turned out to be more cache friendly than the local sorting itself.

A disadvantage of this architecture is the large load imbalance
(probably due to operating system noise) resulting from local sort-
ing times that differ by more than 11% in the run with 1024 pro-
cesses (compared to the Blue Gene/P system with almost identical
running times and less than 0.1% variation for 32768 processes).
Therefore most of the time for the subsequent splitter finding step
simply represents the waiting time between the fastest and the slow-
est processor, becoming evident within the first collective commu-
nication operation. Interestingly, we did not observe such a strange
anomaly in the cluster system presented first.

2010/12/22

Parallel Sorting Performance on “Huygens”

(sorting up to 309.24 billion G4-bit clements (2.25 TiB) in less than 250 seconds)

Running time [seconds]

2 4 8 16 32 64 128 256 512 1024
Number of Processors

OO0 s) s

local sorting splitter finding data redistribution p-way merging

Figure 6. Weak scaling results on a Power6-based cluster.

6. Conclusion and Future Work

A novel parallel sorting algorithm was presented that is especially
well suited for use on large-scale supercomputers with distributed
memory. Applicable to any data type with a comparison operator
and not making any assumptions regarding the initial composition
of the input problem and its mapping onto processing elements,
our algorithm represents an ideal candidate for integration into a
generic library. Since it determines exact splitters and the size of
all auxiliary memory is known in advance, it also offers a safer
alternative to existing methods — in particular in view of shrinking
memory per core ratios. Given that our algorithm supports output
distributions different from the input distribution, it could even
form the basis for the standardization of a most general irregular
MPI_Sortv function. We expect a significant number of HPC codes
to appreciate such a fundamental tool with use cases, for example,
in the context of efficient dynamic load balancing under massive
parallelism [23].

Although our initial implementation is already capable of sort-
ing 3.85 trillion 64-bit integer keys in 13 minutes using 32k com-
pute nodes of a Blue Gene/P system, we still see significant room
for improvement: with shared-memory nodes becoming wider in
the wake of growing numbers of cores per die, an obvious optimiza-
tion is the node-internal parallelization of the local sort and merge
operations (steps 1 + 4). We further assume that additional paral-
lelism can be exploited during the splitter search (step 2), for exam-
ple, by tapping the full potential of searching the splitters in arbi-
trary order, and/or by overlapping the search for different splitters.
Likewise, overlapping communication and computation appears to
be another untapped source of extra efficiency. Moreover, the pro-
posed median selection algorithm opens the door to a wide range
of further optimization options, such as the allreduce variant with
user-defined operations sketched earlier or a native architecture-
specific implementation using the collective messaging interface
(CCMI) for the Blue Gene/P. Concluding, we hope to speed up the
scaling of our parallel sorting algorithm in the near future by at
least an order of magnitude.

References

[1] C. A. R. Hoare, “Quicksort,” Computer Journal, vol. 5, no. 1, pp. 10—
15, 1962.

[2] D. Bitton, D. D. DeWitt, D. K. Hsiao, and J. Menon, “A taxonomy of
parallel sorting,” Computing Surveys, vol. 16, no. 3, 1984.

[3] G. Baudet and D. Stevenson, “Optimal sorting algorithms for paral-
lel computers,” IEEE Transactions on Computers, vol. 100, no. 27,
pp. 84-87, 1978.

[4] K. E. Batcher, “Sorting networks and their applications,” in Proceed-
ings of the Spring Joint Computer Conference (Atlantic City, NJ),
pp. 307-314, ACM, April 1968.

[5] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans-
actions on Computers, vol. 100, no. 20, pp. 153-161, 1971.

[6] D. Hirschberg, “Fast parallel sorting algorithms,” Communications of
the ACM, vol. 21, no. 8, pp. 657-661, 1978.

[7] D. Hsiao and M. Menon, “Parallel record-sorting methods for hard-
ware realization,” tech. rep., Ohio State University, Computer and In-
formation Research Center, Columbus, OH, July 1980.

[8] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J.
Smith, and M. Zagha, “A comparison of sorting algorithms for the
connection machine cm-2,” in Proceedings of the third annual ACM
symposium on Parallel algorithms and architectures, pp. 3—16, 1991.

[9] R. Dementiev and P. Sanders, “Asynchronous parallel disk sorting,” in
Proc. of the 15th annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pp. 138148, ACM, June 2003.

[10] H. M. Alnuweiri, “A new class of optimal bounded-degree VLSI
sorting networks,” IEEE Transactions on Computers, vol. 42, no. 6,
1993.

[11] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting
algorithms for manycore gpus,” in Proc. of the International Parallel
and Distributed Processing Symposium (IPDPS, Rome, Italy), IEEE
Computer Society, May 2009.

[12] W. D. Frazer and A. C. McKellar, “Samplesort: A Sampling Ap-
proach to Minimal Storage Tree Sorting,” Journal of the ACM, vol. 17,
pp. 496-507, July 1970.

[13] H. Shi and J. Schaeffer, “‘Parallel sorting by regular sampling,” Journal
of Parallel and Distributed Computing, vol. 14, no. 4, pp. 361-372,
1992.

[14] L. V. Kale and S. Krishnan, “A comparison-based parallel sorting
algorithm,” in Proc. of the 22nd International Conference on Parallel
Processing, (Syracuse University, NY), August 1993.

[15] E. Solomonik and L. V. Kale, “Highly Scalable Parallel Sorting,” in
Proceedings of the 24th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), (Atlanta, GA, USA), April 2010.

[16] D. R. Cheng, V. Shah, J. R. Gilert, and A. Edelman, “A novel parallel
sorting algorithm for contemporary architectures,” tech. rep., Univer-
sity of California, Santa Barbara, 2006.

[17] B.-C. Huang and M. A. Langston, “Fast Stable Merging and Sorting in
Constant Extra Space,” The Computer Journal, vol. 35, no. 6, pp. 643—
650, 1992.

[18] Y. Han, “Optimal Parallel Selection,” ACM Transactions on Algo-
rithms, vol. 3, no. 4, 2007.

[19] S. F. Siegel and A. R. Siegel, “MADRE: The Memory-Aware Data
Redistribution Engine,” International Journal of High Performance
Computing Applications, vol. 24, pp. 93—-104, February 2010.

[20] M. Hofmann and G. Ruenger, “An In-Place Algorithm for Irregular
All-to-All Communication with Limited Memory,” Recent Advances
in the Message Passing Interface, vol. 6305, pp. 113-121, 2010.

[21] R. Cole, “Parallel Merge Sort,” SIAM J. Comput., vol. 17, pp. 770—
785, August 1988.

[22] S. Kumar, Y. Sabharwal, R. Garg, and P. Heidelberger, “Optimization
of All-to-All Communication on the Blue Gene/L Supercomputer,”
in Proc. of the 37th International Conference on Parallel Processing,
(Washington, DC, USA), pp. 320-329, IEEE Computer Society, 2008.

[23] S. Aluru and F. E. Sevilgen, “Parallel Domain Decomposition and
Load Balancing Using Space-Filling Curves,” Proceedings of the

Fourth International Conference on High-Performance Computing,
pp. 230-235, December 1997.

2010/12/22

