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ABSTRACT 
 

The present work describes an experimental investigation of the influence of the step 
properties on the submonolayer growth at the Si(111) surface. In particular the influence of 
step properties on the morphology, shape and structural stability of 2D Si/Ge nanostructures 
was explored. Visualization, morphology and composition measurements of the 2D SiGe 
nanostructures were carried out by scanning tunneling microscopy (STM). 

The formation of Ge nanowire arrays on highly ordered kink-free Si stepped surfaces is 
demonstrated. The crystalline nanowires with minimal kink densities were grown using Bi 
surfactant mediated epitaxy. The nanowires extend over lengths larger than 1 µm have a 
width of 4 nm. To achieve the desired growth conditions for the formation of such nanowire 
arrays, a modified variant of surfactant mediated epitaxy was explored. It was shown that 
controlling the surfactant coverage at the surface and/or at step edges modifies the growth 
properties of surface steps in a decisive way. The surfactant coverage at step edges can be 
associated with Bi passivation of the step edges. The analysis of island size distributions 
showed that the step edge passivation can be tuned independently by substrate temperature 
and by Bi rate deposition. The measurements of the island size distributions for Si and Ge in 
surfactant mediated growth reveal different scaling functions for different Bi deposition rates 
on Bi terminated Si(111) surface. The scaling function changes also with temperature. The 
main mechanism, which results in the difference of the scaling functions can be revealed with 
data of Kinetic Monte-Carlo simulations. According to the data of the Si island size 
distributions at different growth temperatures and different Bi deposition rates the change of 
SiGe island shape and preferred step directions were attributed to the change of the step edge 
passivation. It was shown that the change of the step edge passivation is followed by a change 
of the preferred steps direction resulting into different islands shapes. 

The symmetry of the properties of the different step directions can determine the 
symmetry of the 2D islands. The growth shape of reconstructed 2D islands (nanostructures) 
on reconstructed surfaces can deviate from the internal symmetry of the substrate and the 
island. An analysis of the symmetry of the combined system of reconstructed substrate and 
island can deduce predictions for the island growth shape. It was found experimentally that 
the shape of two-dimensional (2D) Si or Ge islands has a lower symmetry than the threefold 
symmetry of the underlying Si(111) substrate if Bi is used as a surfactant during growth. 
Arrow-shaped or rhomb-shaped 2D islands were observed by scanning tunneling microscopy. 
This symmetry breaking was explained by a mutual shift between the surface reconstructions 
present on the substrate and on the islands. The mutual shift results into different step 
structure for initially symmetry related step directions. Using the kinematic Wulff 
construction the growth velocities of the steps could be determined from the island shape if 
the nucleation center had been located by a marker technique. 

The structural stability of 2D SiGe nanostructures was studied by scanning tunneling 
microscopy (STM). The formation of pits with a diameter of 2 – 30 nm in one atomic layer 
thick Ge stripes was observed. The unanticipated pit formation occurs due to an energetically 
driven motion of the Ge atoms out of the Ge stripe towards the Si terminated step edge 
followed by an entropy driven GeSi intermixing at the step edge.  

The pit formation can be also used for nanostructuring. Using conditions at which pit 
formation is enhanced the fabrication of freestanding GeSi stipes with single digit nanometer 
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width is possible. Continuous ~ 8 nm wide freestanding GeSi wires have been fabricated by 
pit coalescence. 
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1 Introduction 
 
The enormous interest in the development of the methods for fabrication of smaller and 

higher density nanostructures is triggered by both: new demands for micro/nano-electronics 
and also interests in the physics of these structures. One of the effective strategies in the 
nanostructure synthesis is the bottom-up strategy, in comparison with the top-down the 
bottom-up strategy is not limited by lithography. The bottom-up methods enable to create 
structures in the single-digit nanometer range, such small structures can be also interesting for 
subsequent investigations of their electronic properties. Bottom-up methods can follow two 
different approaches: one is the direct atom manipulation by the tip of the scanning tunneling 
microscope (STM) and other is self-assembly or self-organization. The first is ultimate in 
terms of size of the nanostructures but a very slow and sophisticated method, the second is a 
parallel method which enables to form billions of nanostructures in parallel. However, this 
method is limited in the degree of uniformity and size control which can be achieved. Both 
methods can be complementary to each other. The processes based on self-assembly have the 
key advantage that they can be easily used for fabrication of electronic devices. One approach 
for the self-assembly synthesis of nanostructures is epitaxial growth. In the last decades 
several epitaxial growth techniques have been developed: chemical vapor deposition (CVD), 
molecular beam epitaxy (MBE) and surfactant mediated epitaxy (SME). More advanced 
methods like CVD and SME are more complicated but those offer the opportunity to fabricate 
structures which can’t be created by standard MBE. 

Surfactant Mediate Epitaxy (SME) is a powerful method with the following modification 
of the standard Molecular Beam Epitaxy (MBE). Using a third element named surfactant in 
SME allows to change (modify) kinetics and energetic of elementary processes on the surface 
during epitaxy. A striking example is Si/Ge Bi-SME on the Si(111) surface. Using Bi as 
surfactant suppresses Si/Ge exchange intermixing and allows to achieve layer-by-layer 
growth of Ge on Si. Due to that Bi-SME allows to form different 1 ML high 2D Si/Ge 
nanostructures. This beneficial growth behavior is explained by strong Bi passivation of the 
Si(111) surface and surface steps resulting in suppression of Si/Ge exchange intermixing and 
3D island formation during growth.  

The 2D Si/Ge nanostructures, nanowires and nanorings, can be used as a template for the 
following applications, for example: selective adsorption of foreign chemical elements, 
organic molecules or fullerenes. Ge and Si are essential for the technology of semiconductor 
devices. Besides the technological importance, the Ge/Si Bi-SME system can serve as a 
model system for the study of elementary processes at the surface by means of Scanning 
Tunneling Microscopy (STM). STM is usually a topographic method since it has no chemical 
sensitivity. The use of Bi as surfactant gives an unique ability to control SiGe composition on 
the surface. Due to different electronic structure of the Bi terminated Si and Ge surfaces an 
apparent height difference between Ge and Si is observed in STM images. The Ge area 
appears in STM images about 0.1 nm higher than the apparent height of Si. The apparent 
height difference in comparison with pure Si(Ge) is proportional to the local Ge concentration 
in SiGe composition of the surface layer. This allows to determine the SiGe composition on 
the nanoscale via the measured height contrast and introduces a powerful method for studying 
of the atomic diffusion processes at the surface and at the surface steps. 

In the growth of 2D nanostructures the step properties are very important since the step is 
the structural key element in 2D growth which determines the incorporation of growing 
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material into the crystal. Specifically the step properties influence the morphology, shape and 
the structural stability of the 2D nanostructures. The influence of the step properties is 
particularly important for the growth of 1 ML high 2D structures. 

The present work describes an experimental investigation of the influence of the step 
properties on submonolayer growth at the Si(111) surface. The results of investigations allow 
to synthesize new nanostructures (free standing SiGe stripes, chapter 9) and find an optimized 
procedure for the preparation of highly ordered Ge nanowire arrays on the Si(111) surface 
(chapter 6). The thesis includes a description of the following phenomena:  

• different preferable step directions during Ge Bi-SME on Si(111) surface at different 
Bi vapor pressure (Modified surfactant mediated epitaxy, chapter 6, 8).  

• symmetry breaking in the growth of 2D structures on Si(111) surface (chapter 7).  
• pit formation at 2D Ge layer on Si (chapter 9). 
The present phenomena were investigated theoretically and experimentally and were 

explained as result of different processes at the step edges. 
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2 Fundamentals of epitaxial growth 
 
 
 2.1 Elementary processes at surface  
 
2.1.1 Adsorption and desorption 
 
• Adsorption 
 
According to kinetic theory of gases the flux of atoms I  coming from a vapor phase on 

the surface is described by expression:  
 

Tmk
pI

Bπ2
= , 

(2. 1) 

 
where p  is a partial pressure of gas of adsorbate, m  is a molecular (atomic) mass, Bk  is the 
Boltzmann constant (8.617Ԝ343×10−5 eV/°K), T  is a temperature. 

 However, only a fraction of atoms adsorbs on the surface. The ratio of adsorption rate 
to the coming flux is a sticking coefficient or sticking probability s . Thereby the rate of 
adsorption ar  is: 

 
sIra = . (2. 2) 
 

General formula for sticking coefficient reads: 
 
( ) ( )TkEfs Bact−= expθσ , (2. 3) 

 
where σ  is a condensing coefficient, takes orientation effects into account (steric factor) and 
for energy transmission of adsorbed atoms (molecules); ( )θf  is a function depending on 
coverage describes probability of atom to find an adsorption state; actE  is an energy 
activation of adsorption. In simple case of Langmuir adsorption model [1,2] nondissociative 
( )θf  takes the form: 

 
( ) θθ −= 1f , (2. 4) 

 
and kinetics of Langmuir adsorption is given by: 

 

( )θθ
−= 10 Is

dt
d , 

(2. 5) 

 
where 0s  is a sticking probability at zero coverage. For dissociative adsorption when a fallen 
molecule dissociates on n atoms which occupy the adsorption sites: 
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( ) ( )nf θθ −= 1 . (2. 6) 
     
Usually chemisorption is going through intermediate state named as precursor state. In 

the precursor state an atom can diffuse over the surface until it reaches a position with a 
higher energy (chemisorbed state). The case with one potential well for simple chemisorption 
is shown on Figure 2. 1 (a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. 1. Potential curves of chemisorption as functions of distance z between an adsorbed atom 
and the surface. (a) - presents the case of simple not activated adsorption. (b), (c) – potential curves 
for precursor chemisorption; (b) – the case of activation chemisorption with energy activation 

daactE εε −= , (c) – not activated chemisorption when da εε < , adsE  - bonding energy of 

chemisorbed state, desE  - energy barrier for desorption from the chemisorbed state, aε  and dε  - 
energy barriers for adsorption and desorption from the precursor state, respectively. 
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Precursor adsorption diagram consists of two wells: a small well for a physisorbed 
precursor state and a deep well for the final chemisorbed state Figure 2. 1 (b), (c). 

 An atom in the precursor state can desorb into the gas phase or adsorb into the 
chemisorbed state. The rate of desorption dk  and adsorption ak  from the precursor state can 
be written as: 

 
( )Tkk Bddpd ενθ −= exp , (2. 7) 

 
( )Tkk Baapa ενθ −= exp , (2. 8)  

 
where dν  and aν  are attempt frequencies, pθ  is a coverage in the precursor state. The 
sticking coefficient (from precursor to chemisorbed state) can be written correspondingly: 

 
1

0 exp1
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+=

+
=

Tkkk
k

s
B

ad

a

d

da

a εε
ν
ν

, 
(2. 9) 

   
 
• Desorption 
 
The kinetics of desorption is described in terms of the rate of desorption desr  which is 

equal to the number of particles desorbing from a unit area of the surface per unit time. In a 
general form the rate of desorption is an expression of the form: 

 
( ) ( )TkEfr Bdesdes −⋅= ∗∗ expθσ , (2. 10) 

 
where ( )θ∗f  describes dependence on coverage, and ∗σ  is a steric coefficient of desorption. 

In assumption that all adsorbed atoms or molecules occupy identical states and no 
interaction between each another, the rate of desorption can be expressed as: 

 

( )TkEkk
dt
dr Bdes

n
n

n
ndes −==−= exp0θθθ , 

(2. 11) 

 
where desE  is energy activation of desorption, n is the order of desorption kinetics, and nk  is 
an attempt frequency of desorption.  

In first order kinetics (n = 1) the rate of desorption is proportional to the coverageθ . 
That  corresponds  to  the  most  simple  case  when  atoms  desorb  independently  on 
adsorption sites. In the case of desorption of molecules consisting of n atoms the kinetic 
of desorption is proportional to  nθ [2]. 
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2.1.2 Diffusion 
 
On the atomic scale the surface can be considered as a periodic potential landscape with 

adsorption places which correspond to energy minima Figure 2. 2. Because of thermal 
excitation the atoms can jump from one neighbor adsorbed place to another. The change of 
atom position on defect free surface can be described by a random walk model. It can be 
shown that after n jumps of length a the atom will have moved, on average, a distance of: 

 

tanar ⋅==Δ ν2 , (2. 12) 

 
where a is a distance between adsorption places, and ν is the jump or hopping rate. The 

relation (2. 13) can be written as: 
 

tDr ⋅=Δ 2 , (2. 13) 

where the diffusion coefficient D is given by relation: 
 

z
a

zt

r
D

22
⋅

=
Δ

=
ν , 

(2. 14) 

where z is a number of neighbor states, z = 2 for the 1D diffusion, z = 4 for a diffusion on 
square lattice and z = 6 for a diffusion on hexagon lattice. A jumping of adsorbed atom from 
one state to another needs for thermal activation energy which must be higher than energy 
activation for diffusion diffE , then frequency of successful jumps can be present: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Tk
E

B

diffexp0νν , 
(2. 15) 

where 0ν  is an attempt frequency. Energy activation of diffusion diffE  is a difference of 
potential energy in adsorbed state (position 1) and potential energy in transient state (position 
2) Figure 2. 2. diffE  is much less than desorption energy desE , usually diffE  is about 5 – 20% 
from desE  [2]. For chemisorbed particles TkE Bdiff >>  and we have a hopping diffusion 
mechanism. If TkE Bdiff < , then we have a mobile diffusion mechanism. 

In the presence gradient of concentration of atoms we have an averaged migration flux 
from area with higher concentration to area with lower concentration of atoms. The diffusion 
flux J  is proportional to gradient of concentration c∇ and described by Fick’s first law: 

 
cDJ ∇⋅−= , (2. 16) 

 
For one dimensional diffusion: 

 

x
cDJ
∂
∂

−= . 
(2. 17) 
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Fick’s second law describes a nonstationary case when diffusion flux and concentration are 
changing in time. For one dimension case it can be written as: 

 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

x
cD

xt
c . 

(2. 18) 

 
There are two types of diffusion: 
 
• tracer diffusion is observed at low concentrations when particles have no interaction 

between each other,  
• and chemical diffusion observed at high concentrations when an interaction between 

particles is significant. 
 
At high coverage when an interaction between particles is significant, Fick’s first low 

must be written in more general form: 
 

( )
x

D
x

L
x

LJ c ∂
∂

−=
∂
∂

∂
∂

−=
∂
∂

−=
θθθ

θ
μμ , 

(2. 19) 

Figure 2. 2. The one dimensional schematic diagram representing, (a) – substrate (white balls) and an 
adatom (dark ball). The adsorbed state of adatom is marked by “1” and transition state of atom is 
marked by “2”. Z – is the distance from the surface, and x – is the lateral position on the surface. (b) 
schematic diagram of potential energy of an adatom on the surface. Ediff - activation energy for surface 
diffusion. 
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where µ  is a chemical potential of diffusing particles,  L is a  transport coefficient, Dc is a 
chemical diffusion coefficient depending on coverage ߠ. 

 
 
2.1.2 Surface electromigration 
 
An external force can have a strong influence on the diffusion process. Drift of atoms 

along direct current on the surface is named as surface electromigration. The effective force 
acting on migrating atom is proportional to the electric field E and can be written as sum of 
two components [2,3,4]: 

 
( ) eZEEZZeFFF wdwd =+=+= , (2. 20) 

 
where wd ZZZ +=  is a sum of effective charges of an atom. dF  presents a direct force 
acting on an atom by electric field. wF  is a force of electron wind induced by impulse pass 
from the current electrons scattered on the atom.  
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 2.2 Thin film growth  
 
 
2.2.1 Growth modes 
 
The thin film growth can proceed by one of three essential types of growth modes [2,5,6] 

Figure 2. 3: 
 
• Layer-by-layer growth (2D) or Frank-van der Merwe growth mode. 
• Island growth (3D) or Vollmer-Weber growth mode. 
• Layer by layer plus island growth or Stranski-Krastanov growth mode. 
 

In terms of wetting – not wetting the two first modes can be classified by relations between 
surface energies of substrate sγ , film fγ , and the interface energy sfγ . In the case of wetting 
(Frank-van der Merwe) the surface energy of substrate is larger than a sum of energies of 
film surface and interface surface: 

sffs γγγ +> , 
a nucleation and a growth of subsequent layer start after the completion of the preceding 
layer. This kind of growth realizes when atoms of film are stronger bonded to substrate than 
to each other. In the case of not wetting (Vollmer-Weber) the surface energy of substrate is 
lower than a sum of energies of film surface and interface surface: 

sffs γγγ +< , 
a nucleation of subsequent layer starts before the completion of the preceding layer. Vollmer-
Weber growth mode corresponds to the case when film atoms more strongly bound to each 
other than to the substrate. An intermediate case when layer by layer growth is followed by 
3D islands growth is named as Stranski-Krastanov (SK) growth mode. The SK growth mode 
usually observed for mismatched materials for example such as Si and Ge.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2. 3. The three classical growth modes. 
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Stranski-Krastanov 

Vollmer-Weber 



15 
 

Frank-van der Merwe growth mode can be divided on two-dimensional island growth and 
step-flow growth.  

In two-dimensional island growth the formation of epitaxial layer starts with nucleation 
of 2D islands with the following lateral growth of the islands until coalescence. After 
complete coalescence of the islands the next layer starts growth with nucleation of 2D islands 
on top of the previous layer.  

In the presence of preexisting steps the layer-by-layer growth can be realized by step 
propagation Figure 2. 4. No nucleation of 2D islands is expected because the diffusing 
adatoms reach the step edges and are incorporated there before nucleation of 2D islands 
occurs. Due to the incorporation at step edges, the steps move and this growth mode is called 
step-flow growth or growth by step propagation. Depending on the growth conditions 
(temperature and growth rate) intermediate growth modes with partial growth at the step 
edges and simultaneous nucleation of islands on terraces are also possible [7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The step-flow growth is usually realized on vicinal surfaces and can be a useful method for 
nanowire fabrication on single digit nanometer scale. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. 4. Step-flow growth or growth by step propagation. Red arrows show a direction of the step 
propagation during growth. 

substrate 

adsorbate
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2.2.2 Nucleation and growth of islands 
 
• Nucleation and growth 
 
Elementary processes on the surface during growth of islands are shown on Figure 2. 5. 

Atoms arrive on the surface from vapor phase with rate of adsorption R and bond to the 
surface with energy Eads. Adsorbed adatoms diffuse on the surface until one of the reactions 
occurs: 

1. the atoms can re-evaporate in time of desorption ( )TkE Badsads exp1−=ντ , 
2. the atoms can be captured by existing islands or steps, 
3. the atom can meet another atom and form island. 
The small islands are not stable and can decay into single atoms. However, during 

growth, the islands become larger and more stable. If the island size of i after attachment of 
one atom becomes stable, then i is a critical size of the island. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Atomic processes can be quantitatively described in term of kinetic rate equations. 

The description is based on estimation of nucleation rate and decay rate of the islands. The 
fluxes defining concentration nj of metastable island size of j < i, where i is a size of critical 
island are shown on Figure 2. 6.  

 
 
 
 
 
 
 
 
 
 
 

Figure 2. 5. Schematic diagram showing atomic processes of nucleation and growth of islands on the 
surface. 
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Figure 2. 6. Schematic diagram showing fluxes which fix concentration of the cluster size of j. 

111 nDn jj −−σ  1nDn jjσ  

jj nδ  11 ++ jj nδ  

j-1 j j+1 



17 
 

Four processes give contribution into concentration nj of island size of j. 
 
• Capture of adatom by island size of j – 1 increases number of the island size of j with 

rate of 111 nDn jj −−σ . 
• Detachment of atom from island size of j + 1 gives а rate of 11 ++ jj nδ . 
• Capture of adatom by island size of j decreases number of the island size of j with a 

rate of 1nDn jjσ . 
• Detachment of atom from island size of j gives a rate of decay jjnδ . 
 

Here n1 is an adatom concentration, D is a diffusion coefficient, σ is referred to as a capture 
number, δj+1 ~ ( )TkE B

j
j

1exp +Δ−  is a rate of decay, where 1+Δ j
jE  is the energy difference 

between island size of (j + 1) and island size of j. Description and solution of kinetic 
equations were made by J. Venables [8,9,10]. In assumption of local equilibrium (steady-
state concentration) for 11 +<< ij , where i is a size of critical island, the solution of 
equations gives island density expression type of: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∝

Tk
ERN
B

p

exp
0ν

, 
(2. 21) 

 
where 0ν  is an attempt frequency, R is a rate of adsorption, the expressions for p and E 
depend on regime of condensation and can be found in [10].  

 
• Island size distribution 
 
The study of island size distribution can give quantitative information about a size of 

critical island and qualitative information about mechanisms of growth. A function of island 
size distribution SN  shows island concentration of size s (s – number of atoms in island). 
Thus, complete number of stable islands N  and coverage θ  can be written as: 

 
∑
>

=
iS

SNN  and ∑
≥

⋅=
iS

SNsθ . (2. 22) 

           
Then mean island size can be written as: 

 

N

Ns

N

Ns
s iS

S

iS
S

iS
S ∑

∑
∑

≤

>

>

⋅−
=

⋅
=

θ
. 

(2. 23) 

 
For small sizes of critical island, 1=i , 

 

NN
Ns θθ

≈
−

= 1 . 
(2. 24) 
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In these assumptions the scaling theory [11] gives relation: 
 

( )ssfsN iS
2−⋅= θ , (2. 25) 

 
where ( )ssf i  is a scaling function of island size distribution at critical island size of i. 
Comparison of calculated scaling function with experimental scaling function can be used for 
estimation of critical island size. Observation of deviation of the experimental function from 
the standard one also gives qualitative information about mechanisms of growth. 

 
• Shape of islands 
 
The observation of the island shape provides a direct access to step edge energetics and 

to the symmetry of the bulk lattice of the crystal. The shape of 2D islands can be classified by 
growth conditions into growth shape and equilibrium shape. The shape of islands observed 
during growth (noneguilibrium conditions) is called a growth shaped. The shape of islands 
being in equilibrium with vapour or liquid phase is called an equilibrium shape. The 2D 
equilibrium shape of an island is defined by the minimum of the total step free energy for an 
island of fixed particle number and area [12]: 

 
min)( =∫

L

dlφγ . (2. 26) 

 
Here )(φγ  is the step free energy per unit length, and the integral is taken over the entire edge 
length L .  

  The two dimensional compact island shape problem is the 2D analog to the (3D) 
crystal growth problem. In both cases the crystal grows by the transport of particles from the 
surrounding phase, which is driven by concentration gradient around the crystal. The crystal 
shapes reflect the symmetry of 2D or 3D crystal lattice and the resulting energetic at the 
phase boundaries (1D steps or 2D surfaces). 

For small islands and under conditions allowing sufficient material transport the 
equilibrium shape may be reached experimentally [13,14,15,16]. According to the 2D Wulff 

theorem the step free energy ratio 
A

B

γ
γ  for the specific directions (Figure 2. 7 (a)) is the ratio 

of the distances rA and rB measured from the symmetry centre “O” of the island to the step 
edges: 

 

A

B

A

B

r
r

γ
γ

= . 
(2. 27) 
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The chemical potential which is а free energy per atom is a useful concept, since it is the 

same everywhere at equilibrium. If the shape of the solid does not conform to the equilibrium 
form, it must be the case that a chemical potential gradient exists which (some form of Fick’s 
law) drives mass transport until a morphological equilibrium is attained. As example, let’s 
consider an island in the shape of a rectangle Figure 2. 8. An attachment of a particle of the 
volume Ω  to A or B sides changes the proportions of a rectangle as shown by dashed lines on 
Figure 2. 8. The change of the rectangle shape is resulting in a change of the system energy 
which includes bulk energy and step energy. For the geometry of Figure 2. 8 the resulting 
chemical potential can be written as: 
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(2. 28) 

where cμ  is the chemical potential of the bulk and Ω  is the volume of a particle. The 
gradient noted above exists because BA μμ ≠  unless the linear dimensions Al  and Bl  attain 
their equilibrium values Al

~  and Bl
~ . At the equilibrium BA μμ = : 
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the linear dimensions Al
~  and Bl

~ can be written as BA rl ~2~
=  and AB rl ~2~

=  Figure 2. 8, then (2. 
29) takes the form:           
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This is the 2D Wulff theorem (2. 27) followed from the equilibrium conditions BA μμ =  at 
the facets of a rectangle. 

Figure 2. 7. Schematic diagram showing the Wulff theorem for 2D compact islands. (a) equilibrium 
shape of the island. (b) growth shape of the island as a result of step speed propagation. 
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The same relations can be found for 3D case with a crystal in the shape of a 

parallelepiped [17].  
More general 2D case can be considered for a cyclic polygon which is the hexagon in 

Figure 2. 7. The corner of a cyclic polygon is shown on Figure 2. 9. An attachment of a 
particle of the volume Ω  to A or B sides changes the proportions of a polygon as shown by 
dashed line on Figure 2. 9. The corresponding change of the step energy can be written as: 
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where AEΔ  and BEΔ  are changes of the step energy of the system after attachment a particle 

to A and B sides, respectively, angle βαθ += , height 
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=  (Figure 2. 9), and Ω  is 

the volume of a particle. The relations for chemical potential can be written as: 
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Figure 2. 8. The island of a rectangular shape. 
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where cμ  is the chemical potential of the bulk, the lengths of facets Al  and Bl can be 
expressed as (Figure 2. 9): 
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At the equilibrium BA μμ = : 
 

⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ +

⇒⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −

θθ
γ

θθ
γ

θ
γ

θ
γ

θ
γ

θ
γ

tansintansin

tan
1

sin
1

tan
1

sin
1

BA
A

AB
B

BAAABB

llll

ll
, 

(2. 32) 

 
After substitution of (2. 31) into (2. 32) the relation of equilibrium takes the form: 
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Figure 2. 9. Corner of a cyclic polygon. 
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This relation of the 2D Wulff theorem (2. 27) is followed from the equilibrium conditions 
BA μμ =  at the neighbor facets of a corner of cyclic polygon. 

Originally the islands are nucleated and grown in substantially nonequilibrium 
conditions. The shape of the growth islands is named growth shape. In order to understand the 
growth shape of islands, it is useful to define the advancement speed v  of a step normal to 
itself. During growth the steps of the island propagate on distances d measured from the 
center of nucleation. The distances d are proportional to the step speeds v  Figure 2. 7 (b), 

i. e. ( )∫ ⋅=
t

BABA dttvd
0

//
,, . For a growth regime (isotropic growth conditions) in which the 

incorporation into the steps is limited by attachment and the adatom concentration n  on the 
surface is constant (due to large incorporation barrier) the expression for BAd ,  can be written 

as: ( ) ( )∫∫ ⋅⋅∝⋅=
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, expν  is a frequency of 

attachment of adatoms to the step edges (T = const), ( )/tn  is an adatom concentration, and t is 
a time of growth. The shape is evidently characterized by: 
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1  are average step speeds. At constant frequencies of attachment 

BAk ,  during growth the ratio (2. 33) can be written as: 
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This is the kinetic analog of the relation (2. 27) derived from the Wulff construction for 
equilibrium shapes.  

The growth shape of the islands can differ with different growth conditions and can be 
also classified by type of the shape into two big classes: 

 
• Ramified islands or fractal islands. 
• Compact islands. 
 
Ramified islands are usually formed at low temperatures when diffusion along step edges 

is negligible. In the limiting case called “hit-and stick”, adatoms incorporate into steps of the 
islands and are immobilized immediately. This case is described by the diffusion limited 
aggregation (DLA) model [18,12]. The model predicts a formation of fractal islands with an 
average branch thickness of about one atom independent on the geometry of the bulk lattice. 

The shape of compact islands, as considered above, can obey the symmetry of bulk 
lattice of substrate and contains quantitative data on step (facet) energies. 
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 2.3. Surfactant mediated epitaxy 
 
The presence of atoms of a foreign element on the surface, different from both the 

growing film and the substrate, introduces additional mechanisms into the behavior of the 
film growth. Such foreign elements are named surfactants if the atoms of the elements float 
on top of the surface during growth without incorporation into growing film. The presence of 
a surfactant on top of the film changes the surface properties such as surface diffusion and 
adsorption energy. Generally the surfactants passivate the surface, saturate the surface 
dandling bonds and decrease the surface energy [19,20,21,22,23].  

The standard surfactant mediated epitaxy (SME) starts by termination of the surface with 
some amount of the surfactant. The termination procedure includes covering the substrate 
surface by surfactant that is followed with change of the surface reconstruction. The change 
of the surface reconstruction on substrate usually induces a mass transport of the substrate 
atoms since different surface reconstructions have often a different density of surface atoms. 
During growth the surfactant can evaporate from the surface. Therefore a simultaneous 
codeposition of the surfactant during film growth is used to maintain the required amount of 
the surfactant on the surface. The deposited atoms of the growing film adsorb first on top of 
the surfactant layer and diffuse over the surface until they incorporate into a step edge or 
nucleate a new island Figure 2. 10. The atoms diffuse over the surfactant layer in a 
physisorbed precursor state. When the atoms reach the step edges thermal activation energy is 
needed to proceed into the chemisorbed state with higher energy. During growth the 
surfactants suppress Si-Ge intermixing. 

In the case of Si and Ge SME growth on Si substrate the surfactant elements of 3 and 5 
groups of the Periodic Table of the Elements are usually used: Sb, As, Bi, In, Ga [19]. The 
use of Bi as a surfactant effectively suppresses Si-Ge intermixing during growth on the 
Si(111) surface as well as other surfactants. Due to different electronic structure of the Bi 
terminated Si and Ge surfaces the apparent height difference between Ge and Si is observed 
in STM images. The Ge area appears in STM image about 0.1 nm higher than the apparent 
height of Si. The apparent height difference in comparison with pure Si(Ge) is proportional to 
the local Ge concentration in SiGe composition of the surface layer [24].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. 10. The schematic view of processes during SME growth. Adsorbed atoms on top of the 
surfactant layer can diffuse over the surface. To incorporate into step edge the adatoms need to 
proceed through the surfactant capping layer. 
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This allows to determine the SiGe composition on the nanoscale via the measured height 
contrast and introduces a powerful method for studying of the atomic diffusion processes at 
the surface and at the surface steps. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



25 
 

3. Step properties 
 
 3.1 Step classification and symmetry of the substrate  
  
In tendency to order our knowledge about matter we are looking for the laws which can 

arrange diversity of the states of the matter structures. The laws are beginning from 
fundamental feature of all structures we have described is symmetry invariance. A crystal is a 
self-assembled state of a matter with high symmetry of atomic structure. The transformations 
which a perfect crystal may undergo and remain unchanged are the symmetry group of 
transformations. The symmetry of a crystal is characterized by two symmetry groups: a 
translation group and a point group. The result of combination of translational symmetry and 
the point group symmetry is the space group. The space group contains all symmetry 
operations which takes crystal into itself. 

The translational symmetry means that there are a large number of translations which 
remain crystal unchanged. This, of course, moves the boundaries, but we are interested in the 
behavior in the interior of the crystal. 

Translation symmetry in 2D is characterized by two unit shift vectors a and b. Every 
equivalent point on the lattice can be reached by a lattice vector of the form 

bnanrn 21 +=  
where n1 and n2 are integers. 

   
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3. 1. The five fundamental two-dimensional Bravais lattices: 1 oblique, 2 rectangular, 3 

centered rectangular, 4 hexagonal, and 5 square. 
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Figure 3. 1 presents five fundamental two-dimensional Bravais lattices. The minimal shift 
vectors a and b are called the basis vectors of the lattice. 

The operations which have common (unmovable) points: rotations, reflections, 
inversions, rotary reflections are called point symmetry group operations. The possible 
different point groups which are allowed in a crystal are greatly reduced from those which 
might be allowed in a molecule because of the translational symmetry. Thus, only rotations of 
60°, 90°, or multiples to these are possible in a crystal. 

The principles of 2D lattice can be extended to lattice in 3D. In 3D lattice a translation 
symmetry is characterized by three shift vectors a,  b and c Figure 3. 2. 

cnbnanrn 321 ++=  
where n1, n2 and n3 are integers. Instead of five possible sets of basis vectors in plane, 3D 
case has seven possibilities Table 3. 1.  

 
  Table 3. 1. The seven different basis-vector systems or crystal systems. 

Basis vector/crystal 
axes 

Angles Crystal system 

cba ≠≠  
cba ≠≠  
cba ≠≠  
cba ≠=  
cba ≠=  
cba ==  
cba ==  

°≠≠≠ 90γβα
°≠°== 90;90 βγα  

°=== 90γβα  
°=== 90γβα  

°=°== 120;90 γβα  
°≠== 90γβα  
°=== 90γβα  

triclinic 
monoclinic 
orthorhombic 
tetragonal 
hexagonal 
rhombohedral 
cubic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Most elements crystallize in a cubic or hexagonal structure. For this reason and also because 
of their high symmetry, the cubic and hexagonal systems are particularly important. Different 
simple crystal structures and symmetry aspects of these structures can be found in [25]. In the 
following we will focus on principles of classification of the steps on surfaces. 

The unit shift vectors a, b, c Figure 3. 1. form the basis of the lattice. In that basis we 
can determine crystallographic directions. 

• The notation [l m n] denotes a direction in the basis of the direct lattice vectors, where 
three integers l, m and n are Miller indices. 

Figure 3. 2. Three basis vectors of primitive 3D lattice cell a, b and c with angles α, β and γ relative 
to each other. 
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• The notation <l m n> denotes all directions which are equivalent to [l m n] by 
symmetry of the crystal. 

• The notation (l m n) denotes planes orthogonal to a [l, m, n] direction in the basis of 
reciprocal lattice vectors. 

• The notation {l m n} denotes all planes which are equivalent to (l m n) by the 
symmetry of the crystal.  

To denote surfaces of a crystal the notation for a plane is used. Besides directions, the 
surfaces of a crystal can differ by reconstructions. To denote steps on a surface the [l m n] 
notation is used. That means a step perpendicular to the [l m n] direction. The notation <l m 
n> denotes all step directions which are equivalent to [l m n] by symmetry of the crystal. 

The step definition is more complicated since lateral phase shift between surface 
reconstructions on adjacent terraces at step edge influences on the step structure. The surface 
reconstruction decrease the translation symmetry, the surface reconstructed unit cell has a 
larger size relative to underlying bulk structure. Due to that steps can differ by mutual lateral 
shift of surface reconstruction on lower and upper terraces at the step edge. That shift is a 
multiple of the bulk unit cell. 

For instance we will describe the step classification on the Si(111) surface. To do that we 
will look into bulk structure of Si. Bulk of Si has a diamond structure. This structure can be 
presented as a sum of two face-centered cubic (fcc) structures, one of them is rotated on 90° 
and shifted on ¼ along its long diagonal relative to another Figure 3. 3. This combination 
decreases a C4 rotation symmetry for the (100) plane down to a C2 rotation symmetry. That 
representation of a diamond structure can be useful for analysis of different surface structures. 
In the (111) plane the diamond structure and unreconstructed Si(111) surface still have the 
C3v symmetry. At temperature lower than 870°C the Si(111) surface usually has the 7x7 
reconstruction. The 7x7 is a structure well studied by different authors. Takanagi et al. [26] 
propose the dimmer-adatom-staking-fault (DAS) model of this reconstruction. The 7x7 
structure is one of a family of DAS structures of the form (2n+1)(2n+1). The unit cell (UC) of 
the 7x7 reconstruction is shown in Figure 3. 4. by coloured area. The structure has two 
triangular half-unit cells (HUCs). The green HUC is stacked with a normal sequence, see 
cross-sectional view Figure 3. 4. b) left of the image, and is called unfaulted halves. The pink 
HUC is stacked with a faulted sequence - bonds of the upper layer rotated by 180°, cf. a 
cross-sectional view in Figure 3. 4. b) right of the image, and is called faulted halves. It may 
be also said that the upper layer of faulted halves is mirror reflected to upper layer of 
unfaulted halves. The 7x7 including two half have 3 mirror planes )101( , )101(  and )110(  
that corresponds to the initial C3v symmetry of underlying substrate in a (111) plane. This 
means that the step directions are symmetry equivalent on the Si(111)7x7 surface and can be 
found by C3v symmetry transformations applied to each direction. The Si(111)-7x7 surface 
reconstruction has 7ൈ7 = 49 times larger area than an unreconstructed 1x1. Thus, 49 different 
phase positions of 7x7 on lower and upper terraces relative to each other are possible. To 
denote [ ]211  and [ ]211 -type steps on the Si(111) surface a short notation can be used as U 
and F steps, respectively [13,27,28]. The U steps represent the ones terminated by unfaulted 
halves of 7x7 on the upper terrace at step edge, while the F steps are terminated by faulted 
halves on the upper terrace at step edge Figure 3. 5. U(0,0) step is a step terminated at the 
boundaries of 7x7 unit meshes on both upper and lower terraces with zero phase shift 
between 7x7 structures on upper and lower terraces. 

 

http://en.wikipedia.org/wiki/Basis_%28linear_algebra%29�
http://en.wikipedia.org/wiki/Reciprocal_lattice�
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Figure 3. 3. The diamond structure (b) consists of two inter-penetrating fcc lattices (a). This inter- 
embedding can be done as follows: 
1. one of fcc structures, with atom bonds orientation as shown in figure (a),  is rotated relative to 
another by 90° around C4 axes of the cube (a) 
2. a combination of two fcc structures which are displaced relative to one another by ¼ of the long 
diagonal of the cube (b). 
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To denote a step with shift of n position perpendicular to step edge and m position 

parallel to step edge, the notations U(n,m) and F(n,m) are used. Figure 3. 5. shows seven 
different positions in the direction perpendicular to step edge for both types of steps [ ]211  
and [ ]211 , (U and F, respectively). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 4. (a) Top view of the unit cell of the DAS structure on the Si(111)7x7 surface. (b) Cross-
sectional view along two arrows shown in (a). 

(a) 

(b) 

Figure 3. 5. Seven different positions of steps in the direction perpendicular to step edges are shown, 
the position of each step is indicated by n, where n is an integer of 60 ≤≤ n . U and F denote the 
unfaulted and faulted halves of the (7x7) DAS structure, respectively. 
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Figure 3. 6. (a) Basis vectors at the step; (b) – top view of the Si(111) surface at [ ]211  step edge, 
28 different phase positions of 7x7 unit cell on upper terrace relative to 7x7 unit cell on lower terrace 
shown by blue balls, (n,m) is a shift vector in the X-Y basis of the [ ]211 step direction (a).  

Y(m) 

X(n) 

(n,m) 

0 1   2   3

0 
1 
2 
3 
4 
5 
6 

(b) 

[ ]211

[ ]011  

X(n) 

Y(m) 
Z 

(a) 

[111] 

[ ]211

[ ]011

F 

F 
U 

U 

U 
F 



31 
 

The number of different atomic positions along the step edges is reduced from 7 to 4 due 
to a mirror )011(  plane symmetry of DAS structure Figure 3. 6. (b). Thus, we have 28 
different positions Figure 3. 6. (b). instead of 49 allowed.  

The notation of steps is generally like “surf. + surf. rec.” + [l, m, n] (i, k) for one step 
direction or “surf. + surf. rec.”+ <l, m, n> (i, k) for the steps equivalent by symmetry of a 
crystal, where all l, m, n are integers, i, k are numbers of 1x1 unit cells indicating the phase 
shift vector in the basis of the step direction Figure 3. 5. a, and “surf. + surf. rec.” is a 
notation of the surface with the surface reconstruction. For the steps on Si(111)7x7 mentioned 
above, U(n,m) and F(n,m) steps are Si(111)7x7 [ ]211 (n,m) and Si(111)7x7 [ ]211 (n,m) steps, 
respectively. The surfaces with different reconstructions have different families of the steps.  
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3.2. Growth properties of steps 
 
3.2.1 Energy of steps 
 
The thermodynamic properties of a single step are defined by the step free energy per 

unit length γ which, because of the underlying crystal structure, is generally a function γ(θ) of 
the in-plane step orientation angle θ (see Figure 3. 7) [29]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The free energy F of an arbitrary step configuration y(x) is obtained by integrating along 

the step, 
 

∫∫ +=⋅= ))(()/(1))(( 2 xdxdydxsdsF θγθγ , (3. 1) 

 
where s denotes the arc length along the step and θ(x) = arctan(dy/dx). From (3. 1) the step 
chemical potential, i.e. the free energy change upon adding an atom to the step, can be 
derived by functional differentiation [30]. This yields the expression 

 

k
y
F γ
δ
δμ ~Ω=Ω= , 

(3. 2) 

 
where  Ω denotes the area occupied by a surface atom, κ is the step curvature, and the 
quantity 22 /~ θγγγ dd+=  is known as the stiffness of the step. The step stiffness appears in 
a local version of the Wulff construction, which relates the step free energy to the equilibrium 
shape of two-dimensional islands [31,32]. In this formulation the equilibrium condition reads 
simply  

 

Figure 3. 7. The local step orientation is described by the angle θ between the step normal and the y-
axis. The step moves at speed vn in the normal direction. The adatom diffusion field n(x, y, t) is 
defined on both the upper and lower terrace. Step atoms contribute to the step edge current je, while 
terrace adatoms attaching to, detaching from, or crossing the step are included in the mass currents 

uj and lj  

uj  

lj  

nu(x,y,t) 

nl(x,y,t) 
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.~ constk =γ , (3. 3) 
i.e. the local curvature of the equilibrium shape is inversely proportional to the local step 
stiffness.  

 The equilibrium shape of the 2D islands can be also found as the shape at which (3.1) 
reach the minimum at fixed area of island. This is analog of equilibrium shape of 3d crystal. 
If the temperature is lower than temperature of roughening transition we can speak about 
energy of steps. From equilibrium shape of the islands the step energy can be found by 2d 
Wullf construction [33]. The geometric interpretation of the Wulff theorem is the Wulff 
construction, which is defined as follows: At each point of the polar plot of the free step 
energy γ(θ) Figure 3. 8, a straight line perpendicular to radius vector to that point is drown; 
the inner envelope of the resulting family of lines is then geometrically similar to the 
equilibrium shape [31]. The step energy minima “A” and “B” on the energy plot diagram 
Figure 3. 8 correspond to the preferred step orientations with front perpendicular to AO  and 

BO  vectors.  
Usually the steps with a high density of atom packing at the step edges are observed on 

the surface. The low index step directions: 211 , 211  and 011  are observed on the 
Si(111)-7x7 surface. Step directions which usually occur during growth or annealing will be 
called as preferred step directions. The 211  steps with front parallel to the 7x7 boundaries 

is the most stable steps on the Si(111)-7x7 surface. The 211  steps are found to occur 
during Si on Si(111) epitaxy [34]. The preferred step directions can be changed with a 
modification of the surface structure by adsorption of a foreign element. So, Bi terminated 
Si(111)√3x√3-R30° surface has a 30° rotated structure. The 011  steps with front parallel to 
the √3x√3-R30° cell boundaries were found as preferred steps on the Si(111)-Bi-√3x√3 
surface [35,36]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 8. Energy Wulff diagram of the steps on the surface. 
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The step energy and activation energy for attachment as well as preferred step directions 
are also depend on mutual shift of the surface reconstructions on upper and lower terraces at 
the step edges [36]. 

 
3.2.2 Kinetic processes at steps 
 
Kinetic processes at steps (Figure 3. 9 (b)) include: 
• Attachment and detachment Figure 3. 9 (b) – (1), (2). These processes actually 

consist of two stages: When attaching to the step, an adatom first attaches to a straight step 
segment and then moves along the segment (Figure 3. 9 (b) – (5)) until it reaches a kink, 
where it is incorporated (Figure 3. 9 (b) – (3), (4)); similarly a detachment event requires first 
that an atom detaches from a kink to the straight step and subsequently detaches from the step 
segment to the terrace.  

• Diffusion along the step edge Figure 3. 9 (b) – (5). 
• Step crossing Figure 3. 9 (b) – (7). An atom may also cross a step without attaching 

to a kink; this happens if the kink concentration is low and the binding to the straight step is 
weak, so the step atom detaches from the straight step before a kink is encountered.  

• One-dimensional nucleation Figure 3. 9 (b) – (8) [37]. If two step atoms are present 
simultaneously on a straight segment of the step, they can meet and form a step dimer, which 
is essentially a pair of kinks of opposite sign. This provides a nonequilibrium mechanism for 
the creation of kinks, in addition to the thermally excited kinks that are present in equilibrium. 
If step atoms cannot detach to the terrace, the typical distance between kinks created by one-
dimensional nucleation is 
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e expν  is the diffusion coefficient of a step atom along a straight step 

segment, and F1d is the one-dimensional flux impinging onto the step from the terrace 
[38,39]. Generalizations of (3. 4) to other conditions can be found in [40,37,41]. The typical 
distance between equilibrium kinks is [42] 
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where kE  is the kink formation energy, and a  is an interatomic distance. 

• Diffusion along a rough step. Since steps always contain a finite concentration of 
kinks (of equilibrium or nonequilibrium origin), mass transport by step edge diffusion 
requires that step atoms are able to cross kinks and corners. The diffusion along a rough step 
is therefore considerably slower than the diffusion along a straight step segment. As indicated 
in Figure 3. 9 (b) (6), a step atom crossing a kink “from above” first has to round the kink 
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and then detach from it onto the step. Kink rounding is often associated with an additional 
energy barrier [43,44,45]. 

The attachment rates luk ,
+  for adatoms from upper and lower terraces into step edge were 

introduced by Schwoebel in his paper [46]. Schwoebel and Shipsey were the first who 
explored the consequences of attachment asymmetry ( lu kk ++ ≠ ) for the stability of growing 
stepped surfaces [46,47]. There are differ normal Ehrlich-Schwoebel (ES) effect lu kk ++ <  and 
inverse E-S effect lu kk ++ > . These attachment asymmetries can be also considered for the 
kinks Figure 3. 9 (b) (3), (4).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 9. The elementary processes at step edges (b): (1) – attachment-detachment from upper 
terrace uk+ , (2) – attachment-detachment from lower terrace lk+ , (3) – attachment –detachment into 
kink from left, (4) – attachment detachment into kink from right, (5) – atom diffusion along a step 
edge, (6) – kink crossing, (7) – step crossing, (8) – 1D island nucleation. Attachment-detachment 
from upper and lower terraces can differ by the activation energy EE-S ( lu kk ++ ≠ ), this difference is 
named Echrilich-Schwoebel barrier at a step edges (a). 
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3.2.3 Transparent steps 
 
The step crossing effect (Figure 3. 10) was first considered as so-called step permeability 

or transparency phenomenon in [48, 49]. At the atomic scale, this phenomenon results from 
the ability of an adatom to cross the step edge without visiting the kink sites at the edge [2] 
Figure 3. 10. The downward or upward net flux of adatoms crossing the edge of the 
permeable step will take place given the non-zero difference of the concentrations of adatoms 
on the adjacent terraces.  

Usually the step crossing flux crosj as well as the fluxes of adatoms incorporating into the 
step from the lower (upper) terraces )(ulj  are assumed to be proportional to the relevant 

driving forces: )( ulpcros nnj −= β  and )~( )(
)(

)( nnj ul
ul

incul −= β , where ln  and un  are the 
concentrations of adatoms on the lower and upper terraces, respectively, and n~  is the 
equilibrium adatom concentration on the terrace. The step permeability coefficient pβ  and 

the incorporation coefficients )(ul
incβ  are commonly treated as phenomenological parameters. 

Such a phenomenological approach provides a relatively easy way to describe growth with 
the permeable steps. The kinetics of the second layer nucleation in the 3D growth of the 
islands was described with the step permeability effect in [50].  

The balance equations for incorporation and climbing fluxes read: 
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In the symmetric case of the attachment barriers from lower and upper terraces the 
incorporation coefficients for attachment l

incβ  and u
incβ  have the same value: 

inc
u
inc

l
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Figure 3. 10. The step crossing process (1) consists of an adatom attachment (detachment) to the step 
from lower terrace and detachment (attachment) to the step from upper terrace. Before detachment 
the adatom can diffuse along the step (2) without visiting the kinks.  
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The ratio of the crossing and incorporation fluxes is proportional to the ratio of the 
permeability and incorporation coefficient: 
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, 
(3. 7) 

 

The step is permeable if the ratio 1>>=η
β
β

inc

p . And the step is impermeable if 1<<η , that 

means that the edge adatom much more probably reaches the kink than detaches from the 
step. 
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3.5. Exchange intermixing at step edges 
 
An adsorbed atom can have different positions on the surface with different activation 

energy for an exchange intermixing. Figure 3. 11 shows six different positions of an atom at 
the surface. Position (1) corresponds to a single adatom on the terrace, (2) corresponds to a 
single adatom at the step edge, (3) – atom in the kink, (4) – atom in the step, (5) – atom in the 
upper surface layer, and (6) – atom in the bulk of a crystal. The activation energy for an 
exchange can be estimated qualitatively on a simple cubic model Figure 3. 11 as a function 
of number of neighbors (neighbor atoms), ( ) ( ) ),(1, mnEmnmnfEexchange Δ⋅−+∝= . Where n 
is a number of neighbors for an adsorbed atom (purple cube), and m is a number of neighbors 
of an atom for exchange (can be any neighbor yellow cube), and (– 1) to exclude double 
counting of common bonds. An atom adsorbed at position (1) have a minimal number of 
neighbors: 1 neighbor Figure 3. 11. The following adsorbed atoms have correspondingly: (2) 
– 2, (3) – 3, (4) – 4, (5) – 5, and (6) – 6 neighbors.  

 
 
 
 
 
 
 
 
            

            
   

          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 11. Side cross section view (a) and upper view (b) of the different positions (1) - (6) of 
adsorbed atom (purple coloured cube) with different number of neighbors (black arrows – vertical, 
neighbors and red arrows – lateral neighbors) at the surface.  
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The neighbor atoms at (1) position have a minimal number of neighbors for vertical 
exchange, upper (purple) atom has one neighbor below, and underlying neighbor atom has 6 
neighbors in sum it will be ( ) 61 =−+ mn . The same ( ) 61 =−+ mn  number of neighbors can 
be found for lateral exchange perpendicular to the step edge for atom at position (2), and for 
lateral exchange along the step edge for atom at position (3). ( ) 71 =−+ mn  for vertical 
exchange at position (2), for lateral exchange perpendicular to the step edge at position (3) 
and for lateral exchange along step edge at position (4). ( ) 81 =−+ mn  for vertical exchange 
at position (3) and for lateral perpendicular to the step edge at position (4). ( ) 91 =−+ mn  for 
vertical exchange at position (4) and for lateral for position (5). ( ) 101 =−+ mn  for vertical 
exchange at position (5). And maximal ( ) 111 =−+ mn  can be found for the bulk diffusion, 
position (6). 

In Bi-SME Ge on Si(111) the vertical exchange intermixing Figure 3. 12 (position (1) 
Figure 3. 11) is suppressed by surfactant spacer between substrate and adatom adsorbed on 
the surface, ex

SiGe
ex

BiGe EE −− > . During growth Ge atoms attach to the step edges ( ex
BiGeE −  is 

lower at step edges than on terrace) and take positions (2), (3) Figure 3. 11. Therefore the 
easiest intermixing is observed at the step edges at positions (2) and (3) Figure 3. 11. The 
lateral exchange intermixing (red arrows Figure 3. 11) is easier than vertical intermixing 
(black arrows Figure 3. 11) since the surface atoms in lateral intermixing have a less number 
of neighbors (Figure 3. 11). The process of vertical intermixing at the terrace during 
annealing and at the step edges of Bi terminated Si(111)√3x√3-R30° surface during growth 
were studied in [24]. The effective activation energy for vertical exchange intermixing at the 
step edges (positions (2), (3), (4) Figure 3. 11) is about 1.9 eV [24], the activation energy for 
vertical exchange intermixing between two upper layers (position (5) Figure 3. 11) is 2.2 eV, 
the activation energy for a bulk diffusion (position (6) Figure 3. 11) is 3.2 eV [51]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 12. Schematic side view of the vertical exchange of Ge atom on a terrace of Bi terminated 
Si(111) surface.  
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4. Preparation of highly ordered Si(111) templates 
  
 4.1. Precise misscut angle of sample plus annealing procedure 
 
The standard way of the preparation of a template includes several stages. The first is an 

orientation of the wafer by X-ray diffraction. After appropriate orientation the wafer can be 
cut and polished in the desired direction. The polishing, which can be mechanical and 
chemical polishing, allows to achieve appropriate smoothness. The accuracy of the surface 
orientation in the standard procedure is not higher than 5 - 10 minutes. Such surface 
misorientation from the singular ((100), (111), (110)) orientations results in surfaces 
containing regular steps as shown on Fig. 4.1 (a), where θ is the misscut angle from a 
singular orientation n0.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1. a) Schematic 3D view of the stepped surface inclined from the singular (100) orientation on 
angle θ with azimuthal misorientation α; b), c) top view of stepped surface, the facetted steps (c) or 
steps with regular kinks (b) are result of arbitrary azimuthal misorientation of a misscut angle α from 
the preferred step direction. 
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The average distance between steps d and height of the steps h are expressed by the relation  
 

)tan(θhd = . (4. 1) 
 

Generally, the steps can contain kinks Fig. 4.1 (b) and facets Fig. 4.1 (c). The straight 
segments of facets and straight segments between kinks are present by the stable steps with 
preferred directions. The regular kink density kθ  can be written as: 

 
wk )tan(αθ = , (4. 2) 

 
where w – a height of the one kink, and ߙ - the azimuthal misorientation from the preferred 
step direction. The highly ordered template with straight surface steps can be prepared by 
tilting toward azimuth of the preferred step direction. The template must be cut and polished 
with high accuracy, because of azimuthal misorientation α from the preferable step direction 
produces regular kinks (4. 2), Fig. 4.1 (b). To have no more than one regular kink per one 
micrometer the accuracy for polar misscut angle α on the vicinal Si(111)7x7 surface must be 
< േ30 sec. After polishing procedure the surface can have defects and contaminations. To 
clean and arrange the surface on atomic level an annealing procedure in UHV is used. 
Annealing at suitable high temperature is followed with desorption of the surface atoms, 
annealing also enhances the mass transport and adatom diffusion on the surface. The 
annealing starts from higher temperature and slowly goes down to the room temperature. That 
allows to clean and arrange the surface and reduce the concentration of surface defects to the 
equilibrium concentration at RT.  

The periodicity of the surface structure has an influence on the step ordering on the 
surface. The preferred lateral positions of the steps are defined by the translation symmetry of 
the surface structure. The height w of the kinks Fig. 4.1 (a) is usually equal to the size of the 
surface unit cell. The kinks with a larger size have a higher formation energy due to larger 
length w of the kinked step segment. Thereby, the surface with larger surface unit cell has a 
lower equilibrium concentration of the kinks - this is stabilization effect of the surface 
structure. The most stable steps on the Si(111)7x7 surface are the 211  and 211  - steps. 
Because of the large size of the 7x7 unit cell and the high energy of kink formation the 
concentration of equilibrium kinks is low [52,53]. A similar stabilization effect of the surface 
structure has been observed for stepped metal surfaces with a large unit cell, such as Au(111) 
[54]. The stabilization effect of 7x7 structure can be observed at temperatures lower than 
870°C (temperature of phase transition from 1x1 to 7x7 on Si(111) surface), therefore the 
annealing at the temperature lower than 870°C is the most important stage of the annealing 
procedure. 

The method of preparation of highly ordered stepped Si(111)7x7 templates is described 
in [55,52,53]. Mainly, the preparation of a highly ordered stepped template faces the 
following problems: 1. problem of instability of the step arrangement induced by the current 
step bunching effect, 2. the tripling of the 211  steps [56] during phase transition from 1x1 
to 7x7 structure and 3. the problem with the kinks induced by 7x7 domain boundaries at the 
step edges; the lateral phase shift between neighbour domains of the surface structure induces 
a kink at the step edge [52].  
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The first problem was solved by the orientation of the heating current parallel to the step 
direction. The problem of the tripling steps was solved by rapid quenching of the sample near 
the temperature of the phase transition from (1x1) to (7x7) (880°C – 860°C). The problem 
with the step kinks at domain boundary was solved by long time (1/2 – 1 h) of annealing at 
850°C. The annealing at 850°C develops long-range 7x7 domains and reduces the density of 
domain boundaries and step kinks. The solution of the mentioned problems allows to form the 
straight steps without kinks over 8 μm length; actually, that distance was limited by accuracy 
of the surface orientation.  

 The requirement to a high accuracy of the surface orientation is not always achieved 
with standard procedure, in the following we consider an alternative method of preparation of 
highly ordered stepped template. 
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 4.2. Mesa structures 
 
Another way to produce an arranged stepped structure on the surface is step design on 

mesa structures. Mesa structures in micrometer range can be easy created on the surface in 
desired way. The mesas were used to fabricate large step-free regions on the surface [57]. The 
idea was to use the edges of the mesas to accumulate and localize atomic steps. In ideal case 
the steps are moving to the edges of the mesas during sublimation on bottom mesas or during 
deposition (step-flow growth) on top mesas, Fig. 4.2. New steps can be formed by nucleation 
of islands or vacancy islands at the center of flat mesa during adsorbate deposition or during 
sublimation, respectively. Therefore, the main requirement of the method consists in a 
preventing nucleation of islands at the center of flat mesas.  

The question is: can the mesas be used to accumulate and localize atomic kinks in an 
analogous way, Fig. 4.3. It can be expected that this is more difficult problem because new 
kinks can be generated at the step edges by 1D nucleation. The 1D nucleation at step edge is 
easier than the nucleation of islands on the terrace. The most interested case with mesas 
perpendicular to 211  and 211  steps on the Si(111) surface was studied in [6]. According 
to that work the ideal mechanism shown on Fig. 4.3. does not work so perfectly in case of 
Si(111) surface. But anyway, the authors found how the mesas can be used for the step 
arrangement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.2. Cross sectional view of stepped surface on top mesa (a) and bottom mesa (b); the steps 
moves in directions shown by red arrows from the center to the edge of mesas. The steps leave the 
mesas making them perfectly flat without steps (c), (d). 
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Fig. 4.3. The kinks are active place for attachment – detachment adatom process. Adsorption or 
desorption processes on the surface induce kinks movement. During deposition the kinks will move 
and accumulate at the edges on top mesa as shown by red arrows (a). During sublimation the kinks 
will move out on bottom mesa (b), the direction of kinks propagation also shown by red arrows. The 
straight steps can be formed when all kinks leave the steps and accumulate at the edges of mesas (c), 
(d). Curvature of the steps is opposite on top and bottom mesas according to geometry of these mesas 
(a), (b). 

(a) (c) deposition 

(b) (d) 

sublimation 

The steps with kinks Straight steps 
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An interesting behavior was found for 1-μm-wide mesas perpendicular to 211  steps 

[58]. During step flow growth the 211  steps were formed as shown on Fig. 4.4. It is 

known that the 211 -type step is energetically more stable than the 211 -type steps 
[59,60]. It can be said that the step flow growth on 1 μm-wide mesa top produces arrays of 
stable and straight steps. The macrokinks in the center on top the mesa were used in the next 
applications for positioning of nanostructures [61].  

To exclude regular kinks produced by deviation of the missorientation the mesas 
perpendicular to 211  steps was used in [62]. The straight steps were formed only in the 
central area of the mesa due to a strong influence of the surface curvature on the surface 
energy at the edges of the mesas.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.4. During step-flow growth the [11-2] steps (a) transfer into more energetically preferable 
steps, i.e. 211  – type steps (b). The kinks on the 211 -type steps moved out by similar way 

as was shown on Fig. 4.3. (a). 
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 4.3. Step ordering by kink bunching 
 
A new method of the step ordering was proposed in [63]. The method is based on the 

current induced kink bunching effect. To understand the current induced kink bunching effect 
we will start from the well known step bunching effect. The step bunching effect is well 
known as the result of step instability during growth or sublimation. Fig. 4.5. illustrates 
simple cases when stabilization and destabilization of the equidistant steps during growth and 
during sublimation are induced by normal Ehrlich-Schwoebel (E-S) effect. During growth an 
attachment process from the lower (leading) terrace stabilizes a configuration of equidistant, 
straight steps and attachment process from the upper (trailing) terrace destabilizes a 
configuration of equidistant, straight steps. In the symmetric case, when the kinetic conditions 
for attachment-detachment from upper and lower terraces are equal, the terrace width 
distribution stays unchanged.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

yj-1 yj yj+1 yj+2 yj+3 

yj-1 yj yj+1 yj+2 yj+3 

deposition

sublimation

(a) 

(b) 

Fig. 4.5. Attachment process from lower terrace for the normal E-S effect stabilizes a configuration of 
equidistant straight steps during growth (a), the broader terrace (yj+1 – yj ) adsorbs more atoms 
(proportional width of terrace) which incorporate into yj step, the yj step moves faster and due to that 
the distance between yj and yj+1 steps decreases. So, stabilization (destabilization) effect will be found 
as decreasing (increasing) of width of broad terraces and increasing (decreasing) of width of short 
terraces. Sublimation process on the surface at the same E-S effect will destabilize a configuration of 
equidistant straight steps (b). 
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An asymmetry in the rate of attachment-detachment from the upper and lower terraces 
will stabilize or destabilize an equidistant configuration of the steps. E-S effect introduces 
asymmetry into that system. Normal and inverse E-S effect will give opposite effect on the 
step stabilization. 

Another case of an asymmetry is electromigration of adatoms on the surface induced by 
direct current perpendicular to steps. Electromigration of adatoms on the surface 
perpendicular to step edges changes the symmetry of the attachment-detachment process from 
the lower and upper terraces. A current in step up and step down direction will give an 
opposite effect on the step instability [64,65]. The step bunching induced by current was 
reported for the first time by Latyshev [12]. The current induced step bunching can be used to 
form step free regions on the surface. The authors of ref. [11] used the electromigration effect 
to form straight [ ]211  steps without kinks on the Si(111)7x7 surface. They found that the 
kink-up direction current at 800°C-830°C accumulates the kinks into bunches and leaves kink 
free regions about 1 μm length, Fig. 4.6. 

 
 

 
 
 
 
 
 
The temperature was chosen lower than the phase transition from 1x1 → 7x7 (870°) due 

to the importance of stabilization effect of the 7x7 reconstruction on the step edges. The 
appropriate misorientation of the substrate was 1° towards the [ ]211  direction. In addition to 
the 1° polar misscut, an azimuthal misorientation of less than 3° from the [ ]211  was 
intentionally introduced.  

In the case of kinks at the steps the similar principles are working, the atoms attach to the 
step edge (2D – adsorb on the terrace) and diffuse along the step (2D - terrace) until reach the 
kink (2D – step). To describe the stabilization or destabilization of a configuration of the 
equidistant kinks we can interpret the Fig. 4.5 as a top view of the step edges on the surface 
and step are transferred to kinks. 

 

Kink bunching   →   atomically straight steps 

Fig. 4.6. The kink-up current forms the straight-step region which is 1 μm away in step length. 
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5 Experimental techniques 
 
 
The experiments were performed in a homemade ultra-high vacuum (UHV) apparatus 

with base pressure 3ൈ10-11 – 10-10 mbar. A schematic view of the system is shown in Figure 
5. 1. The machine consists of a load-lock chamber, tip preparation chamber, STM chamber, 
MBE chamber, and a set of vacuum pumps. The load-lock chamber is used to introduce the 
samples from air to the UHV part of the system. The tip preparation chamber contains a tip 
thermal cleaning system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. 1. Schematic top (a) and side (b) views of the experimental system. 
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The cleaning of the sample and deposition are carried out in the MBE chamber. The 
MBE chamber is equipped with Si and Ge electron beam evaporators, Bi and C60 evaporation 
cells, quartz-crystal monitor, infrared pyrometer, and sample transfer mechanism. 

 The design of the system allows to perform the subsequent and simultaneous 
deposition of materials and control a sample temperature and evaporation rates. After growth 
the sample can be transferred to the STM chamber for subsequent STM measurements. 

 
 
5.1 Molecular beam epitaxy system 
 
The MBE system consists of a UHV chamber equipped with four evaporators. A 

commercial W.A. Technology Ltd standard Knudsen cell with stabilized temperature 
controller (Figure 5. 2) was used for Bi and C60 evaporation.  

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
The schematic cross-sectional view of the Knudsen cell is shown in Figure 5. 3. The 

Knudsen cell consists of a W-heater fixed between two ceramic cylinders, water cooling 
system including water cooling jacket with water tubes, Ta heat shields between W-heater 
and water cooling jacket, thermocouple, and crucible. A pyrolytical boron nitride (PBN) 
crucible was used in the Bi evaporator and graphite crucible was used in the C60 evaporator. 
The rate of evaporation is determined by the temperature of the crucible. R(W)-type 
thermocouple was used to measure temperature of the crucible.  

 

Figure 5. 2. W.A. technology Ltd standard Knudsen cell with stabilized temperature controller. 

Standard K-cell 
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A homemade electron beam evaporator was used to vaporize Ge and Si. Its schematic 

view is shown in Figure 5. 4. The central rod of the evaporator is connected to a high voltage 
source (2.5ൊ3  kVሻ.  Electrons are emitted from a glowing filament and are accelerated 
towards the central rod/crucible of the evaporator. A current of 10ൊ50 mA will flow to heat 
the crucible with Ge or Si. A Ta crucible and a graphite crucible are used in the Si evaporator 
and the Ge evaporator, respectively. The rate of evaporation is determined by a temperature 
of crucible which can be adjusted by emission current and by acceleration voltage. 

 
 
 
 

Figure 5. 3. Cross-sectional view of the Knudsen cell comprises a shutter (1), PBN or graphite 
crucible (2), W heater (3), water cooling jacket (4), water channels (5), Ta heat shields (6), water inlet 
(7) and outlet (8) tubes, thermocouple (9), electrical and thermocouple feedthrough (10). 

10 
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 The rate of deposition was measured with the commercial thin film deposition 

controller “Inficon XTC”. The growth rate measurements are based on the effect of changing 
the resonance frequency of the quartz plate with a thickness of the film deposited on its 
surface.  

 
 
5.2 Sample preparation 
 
The samples were cut from Si(111) Sb-doped wafers with 1ൈ1019 atom/cm doping and 

had a size of ~ 8ൈ4ൈ0.5 mm. The highly ordered stepped Si(111)-7ൈ7 templates were 
prepared as described in [63]. The wafer was polished to 1° miscut (θm) toward the [ ]211  
direction with an intentional azimuthal misorientation (߮m = 4°) to orient all kinks at the 
surface steps in the same direction. Samples were cleaned in vacuum with flash heating to 

Figure 5. 4. Cross-sectional view of the electron beam evaporator used for Si and Ge evaporation. 
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1230°C and rapidly quenched. Then, samples were annealed at 800ൊ830°C for about 10 h 
with dc current flowing parallel to the steps in the “kink-up” direction [63] to extend the 
atomically straight step edges by surface electromigration of Si. 

 
 
5.3 Sample heating and temperature measurement 
 
All samples were heated by dc current. By changing the applied power the substrate 

temperature was varied from a room temperature (RT)  to 1230°C. The temperature of the 
substrate was measured using the non-contact, infrared radiation pyrometer “Ircon Modline 
Plus”. Its temperature range is 350ൊ1500°C. The pyrometer has an optic system with spot 
diameter about 6 mm, i.e. larger than a width of samples (~4 mm). An integral optic signal of 
the pyrometer from a 6 mm diameter spot consists of about 70% of sample irradiation and 
30% of background signal corresponding to the room temperature. The temperatures above 
500°C were calibrated with ~3 mm spot diameter pyrometer with temperature range of 
500ൊ1500°C. A temperature deviation TΔ  from the real temperature measured with “3 mm 
spot diameter” pyrometer was built up and extrapolated to RT Figure 5. 5. To control the 
substrate temperature below 350°C a power calibration was used. A temperature dependence 
on power was extrapolated from room temperature (RT) with zero power to temperatures 
higher than 350°C. The precision of temperature measurements was not worse than േ2%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. 5. The deviation TΔ of temperature measured with the “6 mm spot diameter” pyrometer 
from the real temperature of the sample. 
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6 Growth of Ge nanowires on a Bi-terminated Si(111) template 
 
6.1  Preparation of a Ge nanowire arrays by step flow growth 
 
In order to fabricate ever-smaller nanoscale device structures, there is an enormous 

interest in finding ways to build devices from the bottom up rather than fabricate from the top 
down. Using the bottom-up approach, the size of the structures is not limited by lithography; 
however, the uniformity and the ability for positioning of nanostructures are still a challenge. 
Specifically, nanowires are desirable as nanoscale interconnects [66]. One of the concepts 
followed in the bottom-up formation of nanowire arrays is to create a highly ordered atomic-
step template on a vicinal single-crystal surface and to form the wires along the step edges, 
decorating the step edges with a selected material [67,68,69,70,71]. A suitable template is the 
vicinal surface of a Si(111) single crystal, since the structure of the step train on this surface 
can be controlled to a large extent [52,55,58,72,63]. Steps on Si(111) vicinal surfaces have 
been decorated by metals [70,73], semiconductors [62,71,74,75], and organic molecules [76]. 
The challenge is to improve the homogeneity of the nanowire array and the crystallinity and 
the aspect ratio of the wires. 

The step flow growth mode is a useful method for fabrication of Si/Ge nanowires on 
stepped surfaces [71]. In the step flow growth mode adsorbed atoms diffuse over the surface 
until they reach a step edge Figure 6. 1 (a). After attachment to the step edge Ge/Si atoms 
take a stable position and become a part of the Ge/Si stripe. The method is also useful for 
nanostructuring of alternating Si/Ge nanowires [71]. The alternating Si/Ge nanowires can be 
easy formed by alternating deposition of Ge and Si as shown on Figure 6. 1 (b).  
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 Figure 6. 1. In step flow growth mode adsorbed atoms diffuse over the surface before incorporation into a 

step (a). The system of alternating Si/Ge nanowires fabricated by Ge and Si deposition (b). 
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(b) 



54 
 

The average width of alternating Ge/Si wires is controlled by the time of Ge/Si 
deposition on the substrate. The shape and size uniformity of the wires are challenges. Initial 
step ordering of the substrate is important for the growth of good ordered nanowires, irregular 
step edges produce an irregular shape and an irregular width of the wires Figure 6. 2 (a). 
Different preferable step direction on the clean substrate and on the substrate terminated by 
surfactant destroy the initial ordering of the steps. If the initial step direction of Si substrate is 
not equal to a preferable step direction of growing Ge layer, then the facetted Ge wires are 
formed as shown on Figure 6. 2 (b). The initial step ordering of the substrate can be provided 
on a clean Si(111)-7x7 surface since it allows to form a straight step array over micrometer 
range [63]. The standard SME includes a termination of the surface by a surfactant. The 
termination process can destroy the initial ordering of the Si steps due to mass transport of 
additional Si atoms on the substrate. The additional Si atoms are induced by change of 
surface reconstruction. The important point is to conserve the long-range order of the initial 
Si template, which is usually lost during the nanowire preparation process using standard 
surfactant mediated epitaxy (as in [71]). Figure 6. 2 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
The procedure of preparation of Ge nanowire array is divided into three stages: (1) 

preparation of the highly ordered Si(111) template, (2) termination of the template by 1 ML 
Bi, and (3) growth of Ge nanowires on the Bi-terminated template. 

 
 
 

Figure 6. 2. (a) The irregular wires at irregular step edges of a substrate, (b) facetting of Ge wires by 
step direction different from step direction of preexisting steps. 

(a) (b) 
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6.2  Preparation of a highly ordered Si(111)-7x7 template 
 
The highly ordered Si(111)-7x7 template was prepared by a method described in [63] 

and in Chapter 4.§4.3 of the thesis. A Si(111) wafer was polished to 1° miscut (θm) toward the 
[ ]211  direction with an intentional azimuthal misorientation φm = 4° to orient all kinks at the 
surface steps in the same direction. The samples were cleaned in vacuum with flash heating to 
1300 °C and rapidly quenched.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)

Figure 6. 3. (a) The initial surface contains kinks; a direct current heating in the kink-up direction extends a 
kink-free step region (b); (c) kink-free and kink bunch regions. 
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Afterward, the samples were annealed at 800–830 °C for about 10 h with dc current 
flowing parallel to the steps in the “kink-up” direction [63] to extend the atomically straight 
step edges by surface electromigration of Si Figure 6. 3. The resulting surface step structure 
is shown in Figure 6. 4, Figure 6. 3 (b).  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The surface Figure 6. 4 presents the system of atomically perfect 1 layer height steps. All 
steps have equal structure - U(2,0). The method described in [63] can be improved to achieve 
equidistant steps ordering. Due to azimuthal deviation of the current to the step orientation we 

Figure 6. 4. Regular array of straight kink-free steps on a micrometer scale 

1 μm×1 μm 

50 nm×50 nm 
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have two components of the current: parallel and perpendicular to the [ ]211  step direction 
Figure 6. 5. Parallel to the steps component induces kink bunching. The component 
perpendicular to the steps have an influence on the step ordering [65,77]. The orientation of 
the perpendicular component of the current in step up [ ]211  or step down [ ]211  direction 
usually induces opposite effects: step bunching or step debunching, respectively. An 
intentional misorientation of the current in desired way (step up or step down) can be used to 
achieve an equidistant step ordering.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IDC 

I׀׀ I┴

Figure 6. 5. Direct current is a vector sum of perpendicular to step and parallel to step direction 
projections I┴ and I׀׀, respectively. Step up or step down perpendicular projection of the current can 
be controlled by an intentional misorientation α. 

α
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6.3  Maintaining good step ordering during Bi termination 
 
 
The Bi deposition on the clean Si(111)-7x7 surface at 300°C – 500°C changes the 7x7 

surface structure to the Bi- 33 × . The Bi induced 33 ×  reconstruction has two phases: 
the α – phase and the β – phase. The α – phase consists of 1/3 ML and β – phase 1 ML of Bi 
coverage, respectively [78]. The structure of α – phase has one Bi atom (monomer) bonded to 
T4 site [78] Figure 6. 6, and the β – phase has three Bi atoms (trimer) bonded to T4 site as 

shown on Figure 6. 6 (b). The Bi monomer of the α – phase has 1.1 
o

A  of height over the 

underlying Si atoms and Bi trimer of the β – phase have 2.21 
o

A  of height over the underlying 
Si atoms [78]. The Figure 6. 6 (a) presents the height of α – phase Bi atoms over 
unreconstructed Si(111) surface and the height difference between Bi atoms of α and β 
phases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The additional deposition of Bi on the α – phase transforms the α – phase into β – phase. The 
adsorbed Bi atoms bond to the single Bi atoms on T4 – site (monomers) of the α – phase until 
the number of atoms increases up to three. The Figure 6. 7 (a) presents an STM image of the 
Si(111) surface partly covered by α – phase, β – phase and 7x7. The line profiles show an 

(7x7) 

α-phase β-phase 

[ ]211  

Figure 6. 6. Different phases of Bi on the Si(111) surface. (a) – side and (b) – top views of the α and β – 
phases. The height differences are defined according to ref. [78]. The Bi atoms are shown by red balls. 
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apparent height difference between different phases Figure 6. 7 (b). The β – phase is higher 

than the α – phase on ൎ 0.8 
o

A  Figure 6. 7 (b). The α – phase can be also identified as the 
phase containing more defects than the β – phase Figure 6. 7 (a). The defects are present by 
dark spots on the STM image and correspond to Si adatoms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. 7. Different phases of Bi on the Si(111) surface (a), filled state STM image, -2.07 V on the 
sample. (b) the apparent height difference between phases, the line scan 1 shows the apparent height 
difference between 7x7 and α-phase, the difference measured from the deep between adatoms is 0.9 
A. The line scan 2 shows the height difference between the α-phase and the β-phase about 0.8 A. The 
line profiles were averaged on the area of rectangles. 
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The standard Bi surfactant mediated epitaxy [71,79,80] on the Si(111)-7x7 surface starts 
by terminating the surface with 1 ML of Bi which forms a 33 ×  surface structure 
[78,81,82]. This is associated with a significant surface mass transport of Si, because 0.04 
ML of Si atoms are released as a result of the lifting of the 7x7 surface reconstruction [83] 
Figure 6. 8. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. 8. The standard Bi termination of 7x7 reconstructed surface. The 7x7 reconstruction contains 12 
adatoms (a). Bi replaces 12 Si adatoms of the 7x7 structure (b), 8 Si atoms fill the corner holes of the 7x7 (c). 
The remaining 4 Si extra atoms form 0.04 ML of Si coverage (d). 

(a) 

(b) 

(c) 

(d) 

Bi Bi 

(7x7) unit cell contains 12 Si adatoms 
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Bi replaces 12 Si adatoms of 7x7 structure Figure 6. 8 (b), 8 adatoms fill the corner hole of 
the 7x7 and the remaining four Si atoms (0.04ML) incorporate at the surface step edges. 
Performing the termination in a standard way at substrate temperature Ts = 500°C and 
terminating with a Bi flux FBi = 0.7 ML/min for ≈ 10 min results in a need to incorporate 0.04 
ML Si at the surface step edges in a relatively short time. In Figure 6. 9 (b) we show the 
result of such standard Bi termination performed on a highly ordered Si template Figure 6. 9 
(a). The steps become 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

wavy on a short length scale and the step ordering is lost Figure 6. 9 (b). To find a solution of 
the mass transport problem the Bi adsorption on the Si(111)-7x7 was studied at a different 
temperatures of the substrate. We studied adsorption of Bi on the Si(111)-7x7 surface at high 
temperatures in the range of 600°C – 700°C. At the temperatures higher than 650°C the 
surface has a 7x7 structure as shown on Figure 6. 10, no α, β – phases were observed on the 
surface. But Bi coverage was found different from zero. We identified bright atoms in the 7x7 
structure Figure 6. 10 as Bi monomers bonded on T4 site. To be sure we measured profiles 
through these atoms and compare with profiles at the phase boundary between 7x7 and 

33 ×  α and β – phases Figure 6. 7. We found that the height of bright atoms is lower than 
the height of the β – phase and close to the height of the α – phase.  

 

500 nm×500 nm 500 nm×500 nm 

Figure 6. 9. Bi termination of the highly ordered Si(111)-7x7 template. Initially straight steps (a) become 
wavy (b) due to the related Si mass transport. 

(a) (b)
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During the long time deposition of 5 – 10 min at fluxes 1 – 3 ML/min a steady state 

concentration of Bi on the surface was achieved. The measurements of the steady state 
concentration of Bi at different Bi rates deposition (F) show a linear dependence Figure 6. 11 
(a). The density of bright spots was converted into a coverage of Bi. To calculate the Bi 
coverage a one bright spot was considered as one Bi atom. The model with two and three 
particles per bright spot gives the concentration behavior different from a linear one. The 
probability of the meeting of two or three particles is proportional to second or third power of 
the flux, 2F and 3F respectively. The last point at F = 3.1 ML/min on the plot Figure 6. 11 
(a) does not belong to the linear approximation. This deviation can be explained by a change 
of the Bi bonding energy due to interaction between Bi atoms on the Si(111)-7x7 surface at 
higher coverages. The Bi bonded to T4 site modifies the 7x7 structure and decreases a 
desorption energy for neighbor Bi atoms. The measurements showed that deviation from 
linear dependence starts at ≈ 0.01ML of Bi coverage Figure 6. 11 (a).  

The temperature dependence of the Bi coverage is shown on Figure 6. 11 (b). The 
Arrhenius approximation of the plot gives the value energy desorption of 4.3 eV/atom. The 
theoretical energy calculations [84] predict for the α – phase the highest energy per Bi atom. 
Energy per atom for the β – phase is 6.01 eV and for the α – phase is 7.04 eV, respectively 
[84]. The desorption energy increases with bond energy per Bi atom, therefore the rate of Bi 
desorption for the α – phase must be lower than the rate of desorption for the β – phase. At Bi 
flux 3 ML/min and at temperatures lower than 650°C a Bi coverage achieves the critical value 
about 0.01 – 0.02 ML such that the α – phase starts nucleate at the step edges. 

Figure 6. 10. Bright spots correspond to Bi monomers on the Si(111)-7x7 after Bi deposition at Ts = 670°C 
(a) and Ts = 640°C (b) with a deposition rate of 1.1 ML/min for 5 – 10 min. 

50 nm×50 nm 50 nm×50 nm 

(a) (b)
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The Figure 6. 12 shows a nucleation of α – phase on the lower terrace at the [ ]211  - steps. 
The Bi- 33 ×  reconstruction presents the unreconstructed Si(111)-1x1 layer with the Si 
bonds saturated by Bi. To form the unreconstructed Si layer we need to rebond a faulted HUC 
of 7x7. The nucleation of the 33 ×  α – phase need for high activation energy to rotate 
bonds on 180° in the faulted halves of the 7x7 unit cell. The [ ]211  - steps reduce the 
activation burier for adjacent faulted HUC on the lower terrace and make easier 
transformation of the 7x7 to the 33 × . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Edes = 4.3 eV 

Figure 6. 11. Bi coverage in steady state regime as a function of Bi flux (a) was measured at Ts = 
650°C. (b). Bi coverage as a function of substrate temperature was measured at Bi flux 1.1 ML/min. 

Figure 6. 12. The Bi- √3×√3 α – phase starts to grow on lower terraces at the [ ]211  - steps. The 
steps are saved straight by a careful control of the Bi coverage at the terrace. 
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The mass transport problem was solved by a careful control of the Bi coverage at the 
terraces during Bi termination Figure 6. 12. The fact that Bi readily desorbs from the Si(111) 
surface at elevated temperatures was used. The rate of desorption is Fdes = 0.5 ML/min at 
Ts=550°C [85,86]. Thus, for a constant Bi flux the Bi coverage can be controlled in a steady-
state regime by adjusting the Ts.  

In the optimized Bi termination procedure, the substrate was heated to Ts=700 °C and Bi 
was deposited at FBi = 3 ML/min. At this high temperature the Bi coverage is virtually zero. 
Afterward, Ts was reduced to 650 °C over 10 min. This leads to a slow increase of the Bi 
coverage, allowing a gradual Si mass transport during the lifting of the Si(111)-7x7 
reconstruction. On Figure 6. 13. (b) the morphology of the surface after this preparation step 
is shown. The surface steps remained straight, indicating that the released Si atoms had 
enough time to evenly distribute along the step edges. The detailed view of the surface 
reveals an inhomogeneous 33 ×  surface structure Figure 6. 13. (c), indicative of a 1/3 
ML Bi coverage [81]. The protrusions observed in the STM image of the 1/3 ML Bi structure 
correspond to Bi monomers on the Si(111) substrate.  

Before Ge deposition, Bi coverage has to be increased to 1 ML because only 1 ML Bi 
termination prevents Ge-Si intermixing on the terraces during the growth of the Ge nanowires 
[71]. Thus, the Bi was deposited at FBi = 3 ML/min on the 1/3 ML Bi terminated surface at 
Ts=500 °C for 1 min. This causes a slight increase of the kink density. However, the step 
structure of the original highly ordered step train remains largely conserved, as we can see in 
Figure 6. 13. (d). The surface reveals a homogeneous 33 ×  surface structure indicative of 
1 ML Bi coverage (Figure 6. 13. (e)) [81]. The protrusions observed in the STM image of the 
1 ML Bi structure correspond to Bi trimers on the Si(111) substrate. No Si mass transport is 
involved in this part of the process. The underlying 1×1 Si(111) structure is preserved, only 
the Bi monomers are converted to Bi trimers. 
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Figure 6. 13. The Bi termination of the highly ordered Si(111)-7x7 template Figure 6. 9 (a). (a) 
Standard surfactant mediated epitaxy. The step structure of the template has been destroyed. (b) – (e) 
Modified surfactant mediate epitaxy. (b) The surface after a slow increase of Bi coverage from o to 
1/3 ML. The 1/3 ML Bi coverage is indicated by an inhomogeneous 33 ×  structure (c). The 
surface termination at high temperatures preserves the original straight step arrangement. (d) The 
surface after completing the Bi coverage to 1 ML. The 1 ML Bi coverage is indicated by a 
homogeneous 33 ×  structure (e). 
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6.4  Modified surfactant-mediated epitaxy 
 
 
In the last preparation stage the Ge nanowires were grown along the step edges of the 1 

ML Bi terminated template (Figure 6. 13. (d) and (e)) using surfactant mediated epitaxy 
[71,86,87,88,89,90]. Ge grows in a step flow growth mode and a thin stripe of Ge attaches to 
the step edge. In standard surfactant mediated epitaxy, materials are deposited under a 
constant supply of the surfactant to maintain the (saturated) 1 ML surfactant coverage 
[79,82]. However, performing the Ge deposition in the standard way at FGe = 0.08 ML/min, 
Ts =450 °C, and Bi flux FBi = 3 ML/min does not yield straight Ge nanowires of homogenous 
width. In Figure 6. 14 (a) we can observe that Ge nanowires grown by standard surfactant 
mediated epitaxy develop step edges in the [ ]011  directions which are 30° off the step 
direction of the template.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. 14. Deposition of Ge on the ordered Bi – terminated surface (Figure 6. 13. (d)). (a) Standard 
surfactant mediate epitaxy. Ge and Bi are deposited simultaneously. The Ge step develops facets in 011  

directions which are 30° off the original 211  step direction. (b) Modified surfactant mediated epitaxy. Ge 

is deposited without a Bi flux. The Ge step edges retain the original 211  step direction. 
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To obtain the desired regular growth of Ge nanowire arrays the reducing of Bi surfactant 
coverage is again considered. To minimize the Ge-Si intermixing the Bi flux was switched off 
only during Ge evaporation and Ge was deposited at Ts = 400 °C, FGe = 0.02 ML/min for 
10 min. Afterward, the sample was cooled rapidly to room temperature. The result of this 
preparation step is shown in Figure 6. 14 (b). The optimized growth of Ge at the template 
step edges, resulting in single-crystalline, high-aspect-ratio, low-kink density Ge nanowires 
with width of about 4 nm was obtained.  

The success of the last preparation step shows that switching off the Bi flux at Ts=400 °C 
is sufficient to change the Ge growth scenario. Any significant reduction of Bi concentration 
on the terraces was not observed after this growth step. The 33 ×  surface structure is 
homogeneous, indicating the saturation 1 ML Bi coverage Figure 6. 15 (b) [81]. Therefore, 
the change of growth scenario is attributed to a reduction of Bi coverage at the step edges.  

The optimized growth of a Ge nanowire array on a highly ordered Si(111) template has 
been achieved by modified surfactant mediated epitaxy where the surfactant coverage on the 
terraces (stage (2)) or at step edges (stage (3)) is lowered below the saturation coverage. In 
the following we argue that the observed modifications of the growth scenario with changing 
Bi coverage are due to the modified equilibrium properties of step edges in combination with 
kinetic limitations during growth.  

The 211  step direction of our highly ordered templates is the equilibrium step 
direction of the Si(111)-7x7 surface, [55,52] Figure 6. 15 (a). An experiment was performed 
that shows that, upon a complete 1 ML Bi termination and after prolonged annealing of the 
surface under Bi flux, the preferred step direction on the Si(111)- 33 × -Bi surface 
changes to 011 , i.e., it rotates by 30°. In Figure 6. 15 (b) it can be seen that at the 011 -

oriented equilibrium steps the trimers of the 33 ×  surface reconstruction are most densely 
packed. The fact that the 1 ML Bi termination of the Si(111) surface changes the equilibrium 
step direction explains the general difficulty in growing Ge nanowires on Si(111)-7x7 stepped 
templates.  

When the Si(111)-7x7 ordered template is terminated by 1/3 ML Bi (as in stage (2)), 
Figure 6. 13 (b) and Figure 6. 13 (c), the preferred low-energy step direction remains 

211 . The experiment shows that this step direction is stable in spite of the relatively open 
structure of the step edge that can be seen in Figure 6. 15 (c). This indicates that the 
equilibrium step direction is strongly influenced by the actual amount of Bi in the surface, 
and, in turn, at the step edges.  

Given the above arguments, it could be expected that, after increasing the 1/3 ML Bi 
coverage of the highly ordered stepped template to 1 ML in stage (2), the step direction 
changes. However, this does not happen due to a kinetic limitation. The expected 011  
facets do not form because the straight step edges of the template with 1/3 ML Bi do not emit 
enough Si adatoms at the temperature used in this preparation step (Ts=500 °C) to allow a 
surface equilibration within the given time (1 min). The step orientation remains 211 , 
Figure 6. 13 (d). Finally, in stage (3), Ge is deposited on the 1 ML Bi terminated template. In 
this case the Ge adatoms do not have to detach from existing step edges but are supplied from 
outside. This, together with the lower effective activation energy for the Ge surface diffusion 
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on the Bi-terminated Si(111) surface [91], leads to the formation of 011  equilibrium facets 
that destroys the ordered step train Figure 6. 14 (a). However, only a slight decrease of the Bi 
content on the surface during the Ge deposition is sufficient to preserve the original 211  
orientation of the steps Figure 6. 14 (b). In Figure 6. 15 (d) we show that the microscopic 
structure of the 211  step edge of the Ge nanowire formed during growth without Bi 
codeposition considerably differs from the structure of the equilibrium steps on the 1 ML and 
1/3 ML Bi-terminated surfaces Figure 6. 15 (b) and Figure 6. 15 (c). This observation 
confirms that during Ge growth  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the surfactant is removed from the step edges, which strongly influences the growth 
properties of the steps. We can directly observe the Bi depletion at the step edge in Figure 6. 
15 (d). The step edge has a periodic ringlike structure with a period corresponding to double 
the period of the Si(111)- 33× surface reconstruction. The Si(111)- 33×  is commensurate with 
the 33 × . It is a metastable structure [92] which was observed on disordered Si(111) 
surfaces [93]. We can identify the corner holes (dots in Figure 6. 15 (d)) and the adatoms 
(crosses in Figure 6. 15 (d)) of the 33×  structure located at the step edge. The adatoms have 
2 Å lower apparent height than the Bi trimers on the upper terrace. This height difference 
corresponds to that one we measure on samples, where larger areas of 1 ML terminated 

Figure 6. 15. Changing the Bi content in the surface changes the structure of the step edges and their growth 
and equilibrium properties. The equilibrium step directions are (a) 211  on the clean Si(111)-7x7 surface, 

(b) 011  on the Si(111)- 33 × -Bi with 1 ML Bi , (c) 211  on the Si(111)- 33 × -Bi surface with 

1/3 ML Bi, and (d) 211  on the Ge nanowires grown by modified surfactant mediated epitaxy. In (d) the 

crosses and dots indicate the positions of the adatoms and corner holes of a 3×3 surface reconstruction. 

(a) (b) (c) (d) 
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Si(111)- 33 × -Bi and clean Si(111)-7x7 coexist Figure 6. 7 (a). This confirms the 
assignment of the ringlike arranged adatoms as Si or Ge without Bi termination.  
 
 

Conclusions 
 

A technique of modified surfactant mediated epitaxy was introduced, where the 
surfactant concentration is reduced on the surface to influence the growth and equilibrium 
properties of the surface steps in a desired way. This modified surfactant mediated epitaxy is 
shown relevant to nanotechnology since it allows fabricating arrays of long equidistant 
epitaxial Ge nanowires with a width in the one-digit nanometer range. In future these 
nanowire arrays could serve as templates for selective attachment of molecules, decoration 
with metals, or attachment of clusters and other nanoscale building blocks such as fullerenes. 
The study of charge transport through such very small nanowires will be another challenge. 
The present work focuses on one specific material combination. However, the use of 
surfactant coverage as a variable parameter opens up an additional dimension in the growth 
parameter space that can be explored in bottom-up nanofabrication studies in general. 
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7 Symmetry breaking in the growth of two-dimensional islands 
on Si(111) 

 
 
The observation of faceted crystal shapes is a fascinating experience because it allows a 

direct look into the point group symmetry of the crystal. The equilibrium shape of a crystal 
has the same symmetry as the lattice of the atoms inside the crystal [94]. Also, for growth 
shapes of crystals, often a close relation between the crystal lattice symmetry and the 
morphology is found. The shape of the islands usually follows the symmetry of the 
underlying substrate. On the threefold symmetric Si(111) substrate epitaxially grown two-
dimensional Si and Ge islands have triangular shape [7]. Also the tetrahedron-shaped three-
dimensional Ge islands grown on Si(111) obey the threefold symmetry of the substrate [7]. At 
the C2v symmetric Si(001) surface two-dimensional Si or Ge islands and the three-
dimensional hut clusters have an elongated shape consistent with the C2v symmetry [95]. It is 
well known that surface reconstructions can lower the symmetry of the crystal. For instance, 
for surface reconstructions induced by atomic layer thick adlayers of In and Au, the formation 
of linear stripes breaks the threefold symmetry of the underlying Si(111) surface [96,97]. 
However, this symmetry lowering due to the reconstruction does not imply a pronounced 
impact on the island shapes on these surfaces [98]. 

An analysis of the symmetry of the combined system of the reconstructed substrate and 
the reconstructed nanostructure is required to predict the symmetry of the shape of the 
nanostructures. Here we show that a surface reconstruction can lead to the growth of 2D 
epitaxial islands with a lower symmetry than the substrate. It is known that a relation between 
the internal symmetry and symmetry of macroscopic parameters of a system exists. For the 
case of 2D epitaxial island growth one example is the symmetry of the thermodynamic 
properties of the different step directions resulting into a shape symmetry.  

Here we consider a model which describes a 2D island as combined system including the 
surface plane of the substrate and the surface plane of the 2D island Figure 7. 1. The 
combined system is based on the structure of the bulk lattice (basis vectors of the bulk lattice) 
and obeys the internal symmetry of the bulk lattice B without taking the reconstruction into 
account. In the model we consider the case when the surface planes of the island and substrate 
have the same reconstruction, i.e. the same symmetry (translation and point group symmetry). 
The surface reconstruction can reduce the 2D translation and/or point group symmetry of the 
surface. If the surface reconstruction has a lower point group symmetry R than the bulk the 
point group symmetry of the combined system is directly broken, since the point symmetry C 
of the combined system is the intersection of the individual symmetries for the surface and 
bulk C = RתB. If the surface reconstruction has a lower translation group symmetry Rt than 
the bulk the translation group symmetry of the combined system is directly broken, since the 
translation symmetry Ct of the combined system is the intersection of the of the surface and 
bulk symmetries Ct = RtתBt. In this case the surface reconstruction on the island can have 
different lateral phase positions to the reconstruction on the substrate. The phase positions 
differ by a shift vector which is equal to linear combinations of the basis lattice vectors for the 
unreconstructed 1ൈ1 surface: a·n + b·m, where a and b are basis vectors and n, m are integer 
numbers 1, 2, 3,…, N. The cases when the surface reconstruction directly breaks the 
translational symmetry of the surface will be considered here.  
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The 2D symmetry of the unreconstructed surface is a projection of the bulk symmetry to 

the surface plane. The symmetry of the unreconstructed surface obeys the symmetry group 
operations (point group operations and translation group operations) of the bulk lattice for this 
plane.  

In the following we discuss several case studies of the symmetry analysis of the 
combined system of reconstructed substrate and island and deduce predictions for the island 
growth shapes. In particular we will introduce a method which we call “analysis of common 
fixed points” which is a simple way to analyze if the symmetry of the combined system is 
lower than symmetry of each of the two subsystems (reconstructed island or reconstructed 
substrate). This case we term “symmetry breaking”. 

Figure 7. 2 shows the symmetry elements of the five fundamental 2D Bravais lattices. 
Any symmetry element has several fixed points. A fixed point is a point that does not change 
upon application of a (map) symmetry group operations: mirror reflections Cs rotations Cn, 
inversions. The oblique lattice has four C2 fixed points per unit cell, the rectangular lattice has 
four C2v, the centered rectangular lattice has two C2 and two C2v fixed points per unit cell, the 
hexagonal lattice has one C6v two C3v and three C2v and square lattice has two C2v and two C4v 
fixed points per unit cell.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. 1. The two level system, island surface plus substrate surface. Cross section through the combined a 
system of reconstructed substrate and reconstructed island (three times reconstruction on a simple cubic 
lattice). The subsystem of substrate and reconstruction has a Cs mirror symmetry as well as the subsystem of 
island and reconstruction. However, due to a shift between both reconstructions these mirror planes are not 
identical (shifted) and the complete system of substrate, island and the corresponding reconstructions obeys 
no mirror symmetry. We say that the mirror  symmetry is broken by the combined system. 

Figure 7. 2. Five basic symmetry elements for the five fundamental Bravais lattices: 1 oblique, 2 
rectangular, 3 centered rectangular, 4 hexagonal, and 5 square. Basis vectors a and b are shown by 
blue arrows. Symbols for the fixed points are defined as shown in the right of the image. 
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Where C2, C2v, C2v, C6v, and  C4v are symmetries of these five fundamental Bravais lattices 
respectively.  

Now we consider two Bravais lattices which can be identified with substrate 
reconstructed lattice and island reconstructed lattice. There exist only a limited number of 
combinations (shifts) between these lattices which fulfill the condition that the symmetry of 
the combined system is the same as the symmetry of the original lattices. Any lateral shift can 
be expressed in the lattice basis vectors a and b of the unreconstructed (1×1) surface unit cell: 

y
b
bx

a
ayx +=),( , 

(7.1) 

The oblique and the rectangular lattice symmetry element can be fixed in 4 different 
ways, the centered rectangular and square in two different ways and the hexagonal in one 
way. The combined system which is a combination of island plane plus substrate plane has a 
symmetry equal to the intersection of the symmetries of the common points with the same 
lateral position. The resulting symmetry is an intersection of the individual symmetries of 
these points Ci∩Cii. The symmetry of the combined system is the symmetry of the 
reconstructed surface if some symmetry elements of the reconstructed surface have the same 
lateral position as the symmetry elements of the substrate. Several special mutual shifts which 
leave the symmetry of combined system equal to the symmetry of the surface reconstruction 
are shown in Figure 7. 3. The symmetry of the combined system with oblique and 
rectangular lattices obeys the symmetry of the surface reconstruction for mutual lateral shifts 
which are half of the basis lattice vectors a, b and (a േ b) correspondingly Figure 7. 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. 3. The relative lateral positions for the five basic symmetry elements on the island surface 
and substrate surface which leave the original symmetry of the surface lattice structure for the 
combined system. According to (7. 1) the lateral position can be expressed as the following: 1- 
oblique: ½(a,0), ½(0,b), ½(a,b); 2-rectangular: ½(a,0), ½(0,b), ½(a,b); 3-centered rectangular: ½(a,0); 
4-hexagonal: (0,0); 5-square: ½(a,b). 
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For centered rectangular lattice the shifts are half of a and b; for hexagonal the shifts is on 
one third and two third of (a ൅ b); for square lattice the shifts are half of (a േ b) basis lattice 
vectors leave the symmetry of the combined system equal to the original symmetry of the 
surface reconstruction Figure 7. 3. 

Other sets of shifts of the lattices results in a lowered symmetry are shown in Figure 7. 
4. The symmetries C2 , C2v, C2v, C6v, and  C4v of the five fundamental lattices can be lowered 
to the symmetries of subgroups.  Subgroup of C2v point group are: C2, Cs; subgroup of C6v 
are: C6, C2v, C3, C2, Cs; subgroup of C4v are: C2v, C4, C2, Cs. The corresponding symmetries 
and shifts are placed in Table 7. 1, the shifts are expressed according to (7. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. 4. The relative lateral positions and shifts which reduce the symmetry of combined system 
to a subgroup symmetry of the original surface lattice symmetry. Arbitrary shifts along mirror planes 
are shown by black arrows reduce the symmetry of combined system to the symmetry of mirror plane 
Cs.  



74 
 

 
 

Table 7. 1 
Bravais lattices Symmetries of 

combined system 
shifts 

1 Oblique C2 
I 

(0,0); ½(a,0); ½(0,b); ½(a,b) 
(x,y) ∉  the shifts above 

2 Rectangular C2v 
Cs 
I 

(0,0); ½(a,0); ½(0,b); ½(a,b) 
α(a,0); α(0,b), where α ≠ ½, <1 
(x,y)∉  the shifts above 

3 Centered 
rectangular 

C2v 
C2 
Cs 
I 

(0,0); ½(a,0) = ½(0,b) 
¼(a,-b); ¼(a,b) 
α(a,0); α(0,b), where α ≠ ½, <1 
(x,y) ∉  the shifts above 

4 Hexagonal C6v 
C3v 
C2v 
Cs 
I 

(0,0) 
1/3(a,b); 2/3(a,b) 
½(a,0); ½(0,b); ½(a,b) 
α(a,0); α(0,b); α(a,b); α(-a,b); α(-a,2b); α(-2a,b) 
(x,y) ∉  the shifts above 

5 Square C4v 
C2v 
Cs 
I 

(0,0); ½(a,b) 
½(a,0); ½(0,b) 
α(a,0); α(0,b); α(a,b); α(-a,b), where α ≠ ½, <1 
(x,y) ∉  the shifts above 

 
 

The shifts along mirror planes on arbitrary distances, which are not equal to the special 
positions in Figure 7. 3 for rectangular, centered rectangular, hexagonal and square lattices 
reduces C2v, C6v, and C4v symmetries to Cs symmetry respectively. Combinations of common 
fixed points with different symmetries are resulting into symmetry of an intersection of these 
symmetries. Combination of C2v and C2v fixed points for centered rectangular lattice is 
C2v∩C2 = C2 symmetry Figure 7. 4. Combination of C6v and C3v fixed points for hexagonal 
lattice is C6vתC3v = C3v, C6v and C2v is C6vתC2v = C2v, respectively Figure 7. 4. Combination 
of C4v and C2v is C4v ∩C2v = C2v symmetry Figure 7. 4.  
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The mutual shift between surface reconstructions of the combined system can take a limited 
number of different lateral positions, the number of positions is equal to the relation of the 
area of the reconstructed unit cell area to the area of unreconstructed surface unit cell 

( ) ( )
)(

11

kmln
ba

blakbman

ba

ba

A
Arec ⋅−⋅=

×

+×+
=

×

′×′
=

×

, where n, m, k, l are integer numbers.  

3D crystal system sets the additional rules for the stacking of the island surface structure 

with substrate surface structure. The number of different lateral positions (
11×A

Arec ) and structure 

of 3D crystal system define possible symmetries of the combined system. The described 
analysis can be used for prediction of 2D island shape. The 2D island presents combined 
system (Figure 7. 1) with two surface planes: substrate surface plane and island surface 
plane. The island steps connecting these two planes inherit the symmetry of the two level 
combined system resulting into symmetry of equal step directions and shape. To find the 
symmetry of the combined system we have to look into bulk lattice structure of the system. 
The following analysis will be made for the diamond lattice structure.  

The nearest (111) surface planes of Si diamond structure are spaced with the distance 
equal to the one monolayer (ML) which is minimal height of 2D Si/Ge islands on the Si(111) 
surface. This distance is 3 times lower than translation shift in 111  direction (3 ML). For 
this reason the two nearest (111) surface planes have a natural mutual shift between two 
neighboring layers of the (111) stacking which is equal to [ ]2113/0a , where 0a  is length 
of 1×1 unit cell basis vector. Now we consider a surface reconstruction which obeys the C3v 
symmetry which is the intersection of the Bravais lattice symmetry C6v and symmetry of a 
diamond bulk basis: C3v = C6vתC3v. Figure 7. 5 shows relative lateral positions for two 
symmetry elements: image (a) shows symmetry element of the surface structure of Si(111) 
surface which have the same orientation with the symmetry elements of the unreconstructed 
surface and image (b) shows the symmetry element 30° rotated to the substrate. The corner 
fixed points of the element Figure 7. 5 (b) have C3v, symmetry while symmetry of inner fixed 
points is lowered to C3 symmetry because of these fixed points have no common mirror 
planes with substrate.  
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In general we consider a (N×N) reconstruction. First we consider unit cell Figure 7. 5 

(a). The positions of the fixed points in the reconstruction unit cell are known from the 
symmetry to be at the corners of the unit cell and at the center of the triangular half unit cells, 
indicated by blue triangles in the unit cell shown in blue in Figure 7. 6 (a). There are only 
three possible independent shifts between the reconstruction unit cells which maintain the 
symmetry of the combined system, i.e. lead to a lattice of common fixed points. These three 
independent shifts of the reconstruction unit cell are shown in Figure 7. 6 (a) as full, dashed, 
and dotted lines. In a further the analysis the arrangement of the fixed points on the substrate 
and island with respect to the fixed points in the reconstructed layer will be considered. In the 
final analysis we study for which arrangement(s) of the reconstruction unit cells an 
“anchoring” of the unit cells on island and substrate is possible with the same local geometry. 
Before continuation of this analysis the arrangement of the fixed points with a certain local 
geometry on the substrate and island without reconstruction will be studied. In the (1×1) unit 
cell of the diamond structure (111) surface there are three types of fixed points, each with a 
different local environment. The local environment of these fixed points also can’t be the 
same for all three points since it automatically reduces size of unit cell – this is contradicted 
with assumption that 1ൈ1 is minimal unit cell. As shown in Figure 7. 6 (b) and (c) the fixed 
point indicated by 1 is located at the atom in the lower part (lower half layer) of the first 

Figure 7. 5. The relative lateral positions and shifts for symmetry elements which reduce symmetry 
of combined system to a subgroup symmetry of the reconstructed surface. Arbitrary shifts along 
mirror planes are shown by black arrows reduce the symmetry of combined system to the symmetry 
of mirror plane Cs.  

(a) (b) 
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bilayer, the fixed point of type 2 is located at the atom in the upper part (upper half layer) of 
the first (111) bi-layer, while the fixed point of type 3 is not located at any atom position of 
the first bilayer. All of these fixed points lie along the [ ]211  direction each one shifted by 
a/√3 with respect to the others (a = surface lattice constant). The natural shift between two 
neighboring layers determines the simple rule for the relationship of the fixed points Figure 
7. 6 (c). The stacking of the fixed points between two layers is the following: 3 lies below 1, 1 
lies below 2 and 2 lies below 3 Figure 7. 6 (c).  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. 6. (a) A reconstruction unit cell with C3v symmetry is shown by blue lines. The three fixed 
points are marked by triangles. There are only two shifts possible which maintain the original lattice 
of common points, shown in (a). (b) top view to the (111) diamond surface (upper two bi-layers) the 
unit cell is indicated by a dashed line. The unit cell contains three fixed points with different local 
structure, named 1, 2, and 3. (c) perspective view to the first and second bi-layer of the diamond 
lattice. There is a unique stacking of the type of fixed points in the first two bilayers: 3 below 1, 1 
below 2 and 2 below 3. (d), (e) two different shifts leaving the original C3v symmetry for 2ൈ2 
reconstructed combined system. Identical lateral position (zero shift) is not shown since this position 
is not possible due to stacking between neighboring layers (c). Due to this, the shift shown in (d) is 
not possible also, therefore only one shift (e) from 4 possible leaves the C3v symmetry. 
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In total we have two constraints: one is given by the symmetry of the reconstruction unit 
cell this alone leads to a limited number of possible pairs of lattices which have common 
fixed points Figure 7. 6 (a). On the other hand the reconstructions on the island and on the 
substrate have to be “anchored” at the same local position to the substrate in both cases. In the 
course of the symmetry analysis it has to be found out if both conditions can be met 
simultaneously. 

Now the case of a (N×N) reconstruction will be considered. For any C3v (N×N) 
reconstruction unit cell the number of fixed points is always still three. Therefore, the 
distance between the fixed points of the (N×N) reconstruction cell is always N times larger 
than on the spacing of the fixed points of the substrate ((1×1)). For a (3N×3N) unit cell one 
sees that always after 3N fixed points of the substrate the next fixed point of the 
reconstruction has the same type (for instance 1) as the first one. This is the case since the 
sequence of fixed points on the substrate along [ ]211  mirror plane direction is always 
(1),2,3,(1),2,3,(1),... , as shown before. Therefore, in this case all fixed points of the 
reconstruction unit cell lie above the same type of fixed points of the substrate (for instance 
type 1), as shown for the example of the (3×3) reconstruction in Figure 7. 7. According to the 
stacking in the neighboring layers Figure 7. 6 (c) the same fixed points can’t be combined in 
the 2D island of 1ML height. Therefore, the C3v symmetry of 1ML height islands is always 
broken for a (3N×3N) reconstruction. As was mentioned previously, the translational shift in 
111  direction is equal to 3ML height, therefore 3ML heigh islands (usually observed during 

MBE growth Si/Ge on Si(111)(7ൈ7) have no shift between the same type of fixed points of 
substrate plane and island plane: 1 below 1, 2 below 2, 3 below 3. In this case three of (3N)2 
(or one of 3N2 ) shifts Figure 7. 6 (a) leave the original C3v symmetry of the surface 
reconstruction in the combined 3ML heigh system. 

For C3v (2×2) reconstruction we have the sequence of fixed points on the substrate along 
[ ]211  direction (Figure 7. 6 (d), (e) and Figure 7. 7) (1),2,(3),1,(2),3,(1),2,…, here and 
further the number of common fixed points for the C3v (2×2) reconstruction will be shown in 
brackets. Natural shift of reconstruction on 1ML heigh 2D island plus shift on a√3 in [ ]211  
direction gives in result stacking of the fixed points between two neighboring layers: 3 lies 
below 1, 1 lies below 2 and 2 lies below 3; as shown below: 

 
  natural shift     natural shift + a√3 
island=  (1),2,(3),1,(2),3,(1),2,…,  ՜    (1),2,(3),1,(2),3,(1),2,…, 
substrate=     (1),2,(3),1,(2),3,(1),2,…, ՜    (1),2,(3),1,(2),3,(1),2,…, 
   

Natural shift plus shift on 2a√3 breaks C3v symmetry since no C3v fixed point of the substrate 
reconstruction (number in brackets) below fixed point on the island reconstructed surface: 

 
natural shift + 2a√3 

island=                     (1),2,(3),1,(2),3,(1),2,…, 
substrate=  (1),2,(3),1,(2),3,(1),2,…, 
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For the (3Nേ1×3Nേ1) reconstructions we have the sequences of fixed points on the 

substrate along [ ]211  direction like (1),…,(3),…,(2),…,(1),…, or (1),…,(2),…,(3),…,(1),…, 
for these sequences the C3v symmetry can be saved for one of the shifts. A bit loosely 
explained the shift of the reconstruction unit cell between substrate and island in units of 
3Nേ1 can be compensated by a corresponding shift in the stacking of the fixed points of 
substrate and island due to the atomic step. In the general of the (3Nേ1×3Nേ1) 
reconstruction on the island can be shifted relative to reconstruction of the substrate in 
(3Nേ1)2 different translational domains. Only for one of these shifts C3v symmetry is 
retained.  

Another important type of structures on the C3v (111) surface are the structures with 
mirror planes 30° rotated to the mirror planes of (111) substrate. The common fixed points in 
the unit cell of the 30° rotated reconstruction are shifted by a/√3 along the [ ]011  direction 
Figure 7. 8. The 30° rotated unit cell has three fixed points: one C3v in the corner and two C3 
inside. In Figure 7. 8 two examples of a (√3 × √3)R30° reconstruction (pink shaded area at 
the top) and a (2√3×2√3)R30° reconstruction (pink shaded area at the bottom) are shown 
together with the underlying diamond lattice. It can be seen that in both cases (as also in all 
other cases of √3 reconstructions) the fixed points of the reconstruction unit cell lie (due to 
the symmetry of the unit cell) on identical positions (types of fixed points) of the substrate 
lattice; here we have chosen the type 2 (yellow dashed line – type 1). Therefore, also all of 
the possible shifts of the reconstruction layer will have their fixed points above a type 2 fixed 
point on the diamond lattice, since all shifts are multiples of the reconstruction fixed point 
distances. The fixed points of the reconstruction unit cell are shifted by a/√3 along the [ ]011  
direction. As discussed before the atomic step induces a shift in the stacking of the underlying 
substrate fixed points along the [ ]211  direction. As can be seen from Fig. 9 such a shift can 
never shift a type 2 fixed point of the surface reconstruction to another type 2 point. This 
implies that an anchoring of the reconstruction unit cell to the same type of fixed points on 
the substrate and island diamond lattice is not possible. Therefore, for √3 type reconstructions 
the C3v symmetry is always broken to a Cs symmetry or I. As a result of this symmetry 
breaking the island shapes can be different from the C3v symmetry of the substrate and islands 

Figure 7. 7. Three C3v common fixed points in n×n unit cell are shown with blue triangles. The 
reconstructions type of 3N×3N have only one type of common fixed points. 
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with one mirror plane (Cs symmetry) occur. This behavior was actually observed for the 
system of 2D Si or Ge islands on Si(111) where islands and substrate are terminated by a Bi 
(√3 × √3)R30◦ reconstruction. In this case islands with only one mirror plane were observed 
despite of the fact that a threefold C3v symmetry was present for the substrate and both, the 
island reconstruction and the substrate reconstruction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here an example of symmetry breaking in the Bi SME on Si(111) Bi (√3 × √3)R30◦ 

surface will be considered in details. In surfactant-mediated Si and Ge epitaxy on the 
threefold symmetric Si(111) substrate we observed the growth of arrow-shaped and rhomb-
shaped two-dimensional islands respectively. These islands break the threefold symmetry of 
the substrate in spite of the fact that the ( ) o3033 R×  Bi reconstruction present at the 
surface has locally the same threefold symmetry (C3v) as the Si(111) substrate. The reason for 
the symmetry breaking is a mutual shift between the reconstruction on the substrate and on 
the island, imposed by the diamond crystal structure of the Si substrate. The shape of the 
islands can be related to the growth velocities of the step edges via the kinematic Wulff 
construction resulting in a complete information on the growth kinetics of the islands shown 
in a kinematic Wulff plot. In the experiments we use surfactant-mediated growth [87,99], 
which means that an additional species floating at the growth front (Bi in our case) modifies 

Figure 7. 8. The 30° rotated C3v surface structures. The reconstructed surface has 3 common points 
which lie along [ ]011  direction. The two common points inside of unit cell have C3 symmetry and 
common point in the corner has C3v symmetry. Blue triangles mark the common points with type of 
“2”, yellow triangles mark the common points with type of “1”.  
 

[ ]011  

3/0a  
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epitaxial growth. Prior to growth a saturation coverage of one atomic layer of Bi is deposited 
on the clean Si(111)-(7×7) at 740 K [100]. Subsequently, a submonolayer amount of Si or Ge 
was deposited at growth rates of about 0.02 atomic layers per min and at a temperature of 670 
K. A Bi flux of one atomic layer per min was maintained during Ge growth to keep a 
complete Bi termination. After growth the surface was  maged at room temperature by 
scanning tunneling microscopy (STM).  

Figure 7. 9 (a) shows two-dimensional Si islands grown on the Si(111) surface in Bi 
mediated epitaxy. Clearly these arrow-shaped islands have a lower symmetry than the 
threefold symmetry (C3v) of the underlying Si(111) surface. The symmetry of an island is 
reduced to Cs symmetry with only one mirror plane as symmetry operation. The arrow-shaped 
islands occur in three domains. The crystallographic directions of the steps terminating the 
islands were determined from comparison to atomically resolved STM images of the clean 
Si(111)-(7×7) surface taken before deposition of Bi. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The ( ) o3033 R×  Bi reconstruction is present on the substrate as well as on the islands. For 
the growth of Ge on the Bi terminated Si(111) rhomb-shaped islands [terminated by the 
( )33 ×  Bi reconstruction as well] were observed, also breaking the threefold symmetry of 
the Si(111) substrate surface [Figure 7. 9 (b)]. As will be shown later, the symmetry of the 
rhomb-shaped island is also Cs.  

The observed symmetry breaking is a striking result because the Bi ( )33 ×  
reconstructions on both, the island and the substrate, obey the same symmetry as the 

Figure 7. 9. (a) STM images of arrow-shaped Si islands on the Bi terminated Si(111) substrate. The shape 
of these islands breaks the threefold symmetry of the substrate surface. (b) Rhomb-shaped Ge islands on 
the Bi terminated Si(111) substrate breaking the threefold symmetry as well. Image sizes (a) 200 nm, (b) 
110 nm. 
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substrate. The reason for the observed symmetry breaking is a mutual lateral shift between the 
reconstructions on the substrate and on the islands. Figure 7. 10 (a) shows two adjacent 
diamond structure (111) bilayers: the substrate bilayer and a hexagonal island residing on the 
substrate. The shape of the island was chosen such that all six experimentally observed step 
edges of the 011  type (Figure 7. 9) are included. Without taking the Bi reconstruction into 
account, the combined system of island plus the substrate obeys the C3v symmetry with three 
mirror planes (the combined system without reconstruction is still part of the bulk crystal). 
This means also that the step edges marked as 1, 2, and 3 in Figure 7. 10 (a) have the same 
structure. Now we include  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. 10. (a) Schematic of the two level system of the substrate and a two-dimensional sland. While a 
threefold symmetric ( )33 ×  Bi reconstruction is present on each individual level, the C3v symmetry is 
broken for the combined system and is reduced to a Cs symmetry. (b) and (c) STM images of an arrow- and 
a rhomb-shaped shaped island, respectively. 
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the Bi reconstruction which is indicated by colored circles in Figure 7. 10 (a) (one circle 
corresponds to a Bi trimer). Because of the reconstruction two of the mirror planes of the 
substrate reconstruction (blue lines) are not coincident with the mirror planes of the island 
reconstruction (red lines). While the two sets of substrate and island mirror planes run along 
the same directions the common point of the C3 point symmetry operations is shifted between 
substrate and island by the vector [ ]2113/0a . Therefore, the symmetry of the combined 
system of island and substrate is lowered. Only the mirror plane running along [ ]211  is a 
symmetry element of the combined system. Because of the shift of the common point of the 
other two mirror planes between island and substrate reconstruction these symmetry 
operations are no longer point symmetry operations of the combined system.  

The lateral shift between the reconstructions on the island and the substrate is induced by 
a lateral shift between two adjacent (111) bilayers of the diamond lattice of the same value 

[ ]2113/0a  [compare Figure 7. 10 (a)]. However, for the unreconstructed system this shift 
(which is a property of the bulk crystal structure) does not break the C3v symmetry. This 
mutual lateral shift between both bilayers also propagates to the Bi ( ) o3033 R×  
reconstruction layers in both levels. However, on the reconstructed surface the threefold 
symmetry of the underlying substrate is broken for the combined system because the common 
points of the point symmetry operations of both subsystems are shifted relative to each other 
due to the larger unit cell of the reconstructed surface. Generally, for two systems and the 
corresponding two sets of point group operations A and B the set of point group operations of 
the combined system D is the intersection D = A∩B [101]. This means that the only 
symmetry plane of the combined system is the [ ]211  mirror plane and the resulting symmetry 
group of the combined system is Cs [102]. The reduced symmetry of the combined system of 
reconstructed surface and island has important consequences for the shape of the islands. The 
neighboring steps 1, 2, and 3, respectively, are not connected by a symmetry operation as the 
C3v symmetry is broken for the combined system. Thus, these steps are all different. These 
differences in the structure of the step edges lead to different step speeds. The different step 
speeds in turn determine the island shapes, as we will show. While we do not know the 
detailed atomic step structure, the difference between the steps can also be inferred from the 
mutual shift of the reconstructions of the substrate and the island [Figure 7. 10 (a)]. For 
instance, at step 2 the Bi trimers on the substrate and the island (blue and red circles, 
respectively) have a much smaller mutual distance than for the step 1. These differences have 
important consequences on the Bi termination of the step edges. For instance, one might 
speculate that at step 2 a Bi termination of the step edge is not possible because the Bi on the 
lower terrace blocks the possible bonding sites, while for step 1 Bi passivation is easily 
possible. These different structures of the step edges (imposed by the symmetry) have 
important consequences on the growth properties of the islands. A Bi passivated step edge is 
expected to have a completely different incorporation kinetics than an unpassivated step edge 
[91]. For an initially arbitrary shape of an island, easy incorporation of material leads to a 
high step velocity (rate of advancement of the step edge perpendicular to the step edge). 
These step edges with a higher incorporation rate grow faster in the direction perpendicular to 
the step edge and can in some cases even finally disappear being overgrown by the nearest 
steps with lower growth rate. The formation of the observed rhomb-shaped islands is 
explained by a slow growth velocity of steps 1 and 3 which leads to a disappearance of the 
fast growing step 2. This is a consequence of the more general kinematic Wulff construction 



84 
 

[33]. The original Wulff construction (2D version) relates the equilibrium crystal shape to the 
step energy; the kinematicWulff construction relates the crystal growth shape to the step 
velocities. The kinematic Wulff theorem (2D version) states that the shortest distances from 
the nucleation center to the step edge, hi [inset in Figure 7. 11 (a)] are related to the step 
velocities vi by 
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A prerequisite in the model underlying the kinematic Wulff construction is that the 
velocity of growth depends only on the surface orientation. This is true for a growth regime in 
which the incorporation into the steps is attachment limited and the adatom concentration on 
the surface is approximately constant due to a large incorporation barrier. Since strong step 
edge passivation was found in Bi surfactant-mediated epitaxy of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. 11. (color online). (a) Using a marker technique the nucleation centers of the arrow-shaped 
islands are marked by holes. From the measured distances to the step edges the step velocities can be 
determined. Image size 400 nm. (b) Minimal kinematic Wulff Plot of arrow-shaped islands. (c) Step 
velocities for Si and Ge islands. 
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Ge [91], our experiments are performed under conditions in which this prerequisite for the 
kinematic Wulff theorem is fulfilled. Another requirement for the validity of the kinematic 
Wulff theorem is that the island shape is a growth shape and not influenced by the 
equilibrium shape due to the low growth rate used. STM experiments performed during 
epitaxial growth [2] of Si showed that the growth shape develops already for much lower 
growth rates than used here. In order to obtain the step velocities from Eq. (1) the nucleation 
point of the island has to be known, from which the distances hi are measured. Without this 
information often only a limited number of relations among the step velocities can be 
obtained. If the nucleation point of the island is known, the complete knowledge of the 
velocities of the observed steps results from the shape of the island. Therefore, we used a 
marker technique to determine the position of the nucleation center inside the arrow-shaped 
Si islands. Initially we deposited small Ge islands which served as markers of the nucleation 
centers. Subsequently, larger Si islands were grown around the marked nucleation centers. 
Actually, due to an effect induced by strain (which will not be discussed here in detail) the Ge 
diffuses away from its initial position (leading to a small < 5% Ge alloying of the Si islands) 
and the nucleation center of the island is marked by a small hole of one atomic layer height. 
With the nucleation point known, the distances hi to the island edges can be easily measured 
[inset in Figure 7. 11 (a)] and the relative step velocities can be determined from Eq. (1). 
Choosing 11 =v  results in: 1.00.22 ±=v  and 1.07.03 ±=v . These measured step velocities 
can be plotted in a kinematic Wulff plot [polar diagram of the step velocities ( )θv ] for the 
arrow-shaped islands. The measured values correspond to the five black dots in Figure 7. 11 
(b). If the growth shape would be smooth without straight step segments, the inverse Wulff 
construction could be used to obtain the complete polar diagram of the step velocities from 
the measured island shape [33]. Because of the presence of the straight step edges (facets) in 
the island shape the inverse Wulff construction is not possible. However, one can learn more 
than just the determination of the five measured points on the kinematicWulff plot. In the 
following it will be shown that the step velocities have to lie outside the red contour in Figure 
7. 11 (b) which we call the ‘‘minimal’’ kinematic Wulff plot. According to the kinematic 
Wulff construction a line perpendicular to the radius vector is constructed at each point where 
the radius vector crosses the polar plot of the step velocity. The crystal shape is formed from 
the inner envelope of these perpendicular lines for all radius vectors. The inverse Wulff 
construction which constructs the step velocities from the crystal shape is impossible for step 
velocities inside the minimal kinematic Wulff plot. Therefore, the step velocities have to lie 
outside the minimal kinematic Wulff plot. The geometric construction rule for the border of 
the minimal kinematic Wulff plot is given in the following. For a certain polar angle θ the 
closest point for which the perpendicular line does not cut the crystal is point A in Figure 7. 
11 (b). This perpendicular line just reaches the island corner in B. If we now consider the 
rectangular triangle OAB, the converse Thales’ theorem states that a right triangle’s 
hypotenuse is a diameter of its circumcircle. This means that all points B lie on a circle 
around point C. With C lying in the middle between the nucleation center and the respective 
island corner.  

The measured step velocities for Si islands can also be displayed as a ‘‘spectrum’’ shown 
in Figure 7. 11 (c). The (relative) velocities for steps 1, 2, and 4 have a defined value, while 
for step 3 the step velocity has to be larger than the value given from the minimal kinematic 
Wulff plot. An interesting result from the determination of the step velocities is that the 
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velocities of the different kinds of 011  type steps [marked in red in Figure 7. 11 (c)] differ 
by more than a factor of 2. This is the case in spite of the fact that the local step structure, 
without taking the reconstruction into account, is the same for all 011  type steps (i.e. steps 
1, 2, and 3). The difference between these steps is their shift with respect to the substrate 
reconstruction and the related differences of the Bi termination. These results show that these 
effects have a stronger influence on the step velocities than the difference between 011  and 

the 211 - type steps (step 4 is a 211 - type step marked in blue) which have a genuine 
different structure even without taking the substrate reconstruction into account. Coming back 
to the rhomb-shaped islands, also here a marker technique can be used to learn more about the 
kinematic properties of growth expressed by the step velocities. The STM images in Figure 
7. 10 (c) and Figure 7. 12 show an islands for which an initial small Si island marks the 
nucleation position. Si and Ge can be distinguished in Bi mediated epitaxy by an apparent 
height in  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the STM images. Ge areas are imaged ~ 1
o

A  higher than Si areas [71]. It is clearly visible that 
the nucleation center is not located in the center of the rhomb [Figure 7. 10 (c)]. This proves 

Figure 7. 12. (a) STM images of rhomb-shaped Ge islands on the Bi terminated Si(111) substrate. Image 
sizes 200 nm. The nucleation centers of the rhomb - shaped islands are marked by Si core. 

Si
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experimentally that the growth velocities of steps 1 and 3 are different which was already 
concluded from symmetry considerations. A detailed analysis shows that the average step 
velocity of step 3 is 1.4±0:1 times larger than that of step 1. While the apparent growth shape 
of the island is rhomb-shaped, the true shape has Cs symmetry. Symmetry considerations and 
the marker technique prove that steps 1 and 3 are different on the atomic scale leading to 
different growth velocities. Because of geometric constraints the length of both steps is the 
same leading to a rhomb shape of the islands.  

It is an intriguing fact that in spite of the similarity of Si and Ge the epitaxial islands 
have so different shapes. These different shapes are related, via the step velocities, to different 
step structures. Since Si and Ge have the same crystal structure one would not expect much 
different step structures. However, the Bi termination at the step edges can be very different 
for Si and Ge. For instance in an earlier experiment we found that Si step edges are less Bi 
passivated than Ge step edges [91]. Because of the different bonding of Bi and strain effects 
at Si and Ge steps a different Bi passivation, or (partial) depassivation may occur at some step 
edges. We speculate that a largely different step structure due to different Bi passivation of 
the steps can lead to substantially modified step velocities for Si and Ge and can explain the 
observed different Si and Ge island shapes.  

 
 
Conclusions 
 
These findings are not limited to a specific system. Generally one can conclude that on 

reconstructed surfaces the symmetry of the combined system of epitaxially grown islands and 
substrate can break the symmetry of the original surface. This broken symmetry has 
consequences on the step structure which in turn influences the growth rates and in turn also 
the island shapes. This effect could be used to fabricate 2D nanostructures directed along one 
specific direction on a substrate of higher symmetry. If one of the step velocities would be 
much larger than the others the island shape would develop a pronounced oblong shape. In 
order to grow elongated nanostructures (surfactant induced) reconstructions which generate a 
large anisotropy in step velocities have to be found.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



88 
 

8. Step edge passivation during SiGe epitaxy 
 
 

The preferred step orientation and shape of the 2D nanostructures are result of the step 
kinetics and/or energy minimization of the step configuration [12,33,35,36]. The preferred 
step directions observed during growth of two dimensional nanostructures have a minimal 
step energy and/or minimal step propagation speed. Different contributions, for example 
surface reconstructions, have an influence on the preferred step directions [35, 36]. The 30° 
rotated Bi induced 33 ×  reconstruction on the Si(111) surface changes the preferred 

211  step directions for the clean Si(111)-7x7 surface to 011  step directions [35]. The 
influence of the Bi vapor pressure on the preferred step direction during growth of Ge 
nanostructures on the Si(111)- 33 × -Bi surface was found in [35]. At zero rate of Bi 
deposition 211  step directions were present on the Si(111) surface, at high Bi rate 

deposition 011  step directions were present on the surface [35]. Bi saturates the dangling 
bonds at step edges, reduces the step energy and increases barriers for attachment [91]. The 
change of kinetic and energy properties of 211  and 011  steps can be also attributed to 
the change of the Bi amount at the step edges [35]. The change of the amount of Bi at step 
edges can be associated with a change of the Bi passivation effect at the step edges. No Bi at 
step edges means no passivation of the steps. A method based on the investigation of island 
size distributions [91] will be used here to study the influence of the Bi deposition rate on the 
step edge passivation effect.  

Experimental investigations of the density and size distribution of submonolayer island 
populations yield qualitative and in certain cases even quantitative information regarding 
microscopic mechanisms that determine the growth mechanism of this system. In the standard 
growth model [33], atoms arrive at a substrate with a flux F and diffuse on the substrate with 
a temperature dependent diffusion rate D. No desorption of atoms from the surface is 
allowed. When two or more diffusing atoms meet, a two-dimensional (2D) one monolayer 
(ML) thick island nucleates and grows further by adatom capture limited diffusion. In this 
way a population of 2D islands covering a fraction θ of the surface develops. In the 
precoalescence regime of growth the island population is characterized by the island size 
distribution Ns. For various amounts of deposited material expressed in terms of the surface 
coverage θ, Ns scales onto a single function ( )xf :  

 
( )ssfsN S // 2θ= , (8. 1) 

 
where s  denotes the mean island size [103]. In the standard growth model ( )xf  is a peak 
function with a peak at x = 1 [103,104,105,106]. In addition, the total island density N is a 
power law of F and D [33]:  
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When the above conditions are met, predictions of the standard growth model can be used to 
measure D and other model parameters [107,108]. On the other hand, the experimentally 
observed deviations from the behavior predicted by Eqs. (8. 1) and (8. 2) can be used to 
identify important growth mechanisms beyond the standard model. Examples include 
observations of growth with 0=χ  in systems with post-deposition [109] or displacive 
[110,111] nucleation, occurrence of a decreasing scaling function ( )xf  caused by these 
mechanisms [109,110,111] or by a strong anisotropy of the surface structure [112], growth 
with 1>χ  in systems with hindered incorporation of atoms into the islands [113,114], and 
the observation of a multipeak island size distribution when stable islands of “magic” sizes 
exist [115]. Additionally, transition from a peaked scaling function to a decreasing one with 
the increasing growth temperature was predicted theoretically for systems with prominent 
desorption of deposited particles [116,117]. In surfactant mediated epitaxy (SME) 
[87,118,90,119,19] particles of the deposited material arrive at a surface, where a monolayer 
of another species, so called surfactant, is adsorbed. This modifies the growth scenario 
compared to the growth without surfactant, allowing, e.g., layer-by-layer growth of relaxed 
layers in highly strained Ge/Si heteroepitaxy [118,90]. SME systems are good candidates to 
have a behavior different from that predicted by the standard growth model. Indeed, 1>χ  
was measured in submonolayer growth of Ge on the Pb-covered Si(111) surface [120].  

The size distribution of 2D Ge and Si islands at SME on the Si(111) surface was studied 
in [91]. For Ge, a scaling function with a peak strongly shifted towards small island sizes was 
found. The peak of scaling function ( )ssf /  was shifted from the position of standard model 

1/ =ss  toward smaller island sizes 1/ <ss . This nonstandard scaling is temperature 
dependent: for higher temperatures the scaling function approaches the standard one. The 
observed scaling phenomena was explained considering exchange and deexchange processes 
of deposited atoms with surfactant and the passivation of step edges in the presence of 
surfactant [22]. The kinetic Monte Carlo (KMC) simulations of a generalized diffusion–de-
exchange–passivation (DDP) model of surfactant mediated epitaxy were performed [23]. The 
DDP model assumes three basic processes that happen during the SME growth (Figure 8. 1): 
diffusion of deposited atoms on top of the surfactant, exchange of material atoms with 
surfactant to incorporate below the surfactant layer, and de-exchange of material atoms with 
surfactant atoms to get back on top of the surfactant. The processes are considered to be 

thermally activated with rates iν  having an Arrhenius form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

Tk
E

B

i
i exp0νν  where 0ν  is 

the common prefactor of the order 1013 s−1, kB is the Boltzmann’s constant, T is a temperature, 
and Ei is the activation energy of the ith process with ED, Eex, Edex standing for diffusion, 
exchange and de-exchange processes, respectively. Generally, Edex > Eex, to account for the 
increase of the binding energy of single material atoms upon incorporation. Important is a 
definition of the behavior of material atoms at step edges. In the DDP model, not only 
terraces but also step edges are passivated, i.e., incorporation of atoms into step edges does 
not happen automatically. Upon incorporation of an atom at the step edge, its binding energy 
increases more than that of an atom on the terrace. In terms of the DDP model, stronger 
passivation of the step edges for Ge atoms than for Si atoms was required to obtain the 
experimentally observed difference of the submonolayer scaling in Ge and Si Bi-MBE on the 
Si(111) surface [91].  
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Deviation of the peak from the standard position of ss /  = 1 can be used as a qualitative 
estimate of the Bi step edge passivation effect. A larger shift toward smaller island sizes 
means stronger passivation of the step edges or/and larger energy activation for exchange at 
the step edges exE  [91].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The influence of the Bi deposition rate on the step edge passivation effect was studied for 

two cases: i – a standard SME with high Bi deposition rate of ൎ 3 ML/min during growth, 
and ii – a modified SME (chapter 6 and ref. [35]) with zero Bi deposition rate during growth. 
In both cases the surface was completely passivated with the Bi before Ge/Si growth. The 2D 
Ge islands grown by standard SME Figure 8. 2 (a) and by modified SME Figure 8. 2 (b) 
have different shapes and different size distributions. The corresponding scaling functions are 
shown on Figure 8. 2 (c), (d). 0.2 ML of Ge was deposited at temperature of substrate 
Ts = 440°C and at rate of 0.2 ML/min. In a standard SME the Bi and the Ge were deposited 
simultaneously. The Bi deposition rate was 3 ML/min. The rhombic shape of the Ge islands 
was observed Figure 8. 2 (a). The peak of the scaling function was found strongly shifted 
toward smaller island sizes 2.0/ <ss  Figure 8. 2 (c). Upon modified SME [35] the Bi flux 
was switched off during Ge deposition. Round or triangular shapes of the islands were 
observed Figure 8. 2 (b), Figure 8. 6. The peak of the scaling function was found at 

75.0/ =ss  Figure 8. 2 (d). A smaller shift of the peak of the scaling function Figure 8. 
2 (d) means weaker passivation or/and lower activation energy for exchange exE  [91] at the 
step edges. The lower passivation of the step edges in modified SME can be attributed to the 
reduction of the Bi coverage at the step edges [35]. Therefore, the different deviations of the 
scaling functions Figure 8. 2 (c), (d) from the standard and the different island shape Figure 
8. 2 (a), (b) are a result of a change of the step edge passivation. Stronger passivated steps in 
standard SME have preferred steps with 011  orientation which is different from the 

preffered 211  direction initially present on the clean Si(111) surface.  

Figure 8. 1. Growth processes considered in the DDP model of SME (Refs. 22 and 23). 
Related activation energies of these processes ED, Eex, Edex generally differ for material atoms 
in plane and material atoms at step edges. 

(ref. 91) 
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Another contribution to the change of step kinetics may come from the different 

chemical compositions (Ge and Si) at the step edges. The depassivated step edges on 
modified SME have a lower energy activation for the growth front induced intermixing 
process since Ge atoms at depassivated step edges are not bound by Bi atoms. Indeed, the 

apparent height difference between Si and Ge grown by modified SME is ~ 0.5
o

A  Figure 8. 
3 (d). Therefore, the Ge islands grown by modified SME consist of > 50% of Si, while the 

apparent height difference between Si and Ge grown by standard SME is ~ 1
o

A  Figure 8. 
3 (c). The growth conditions (except Bi flux): temperature of substrate, Ge coverage and Ge 
rate of deposition were the same for standard and modified SME. 0.2 ML of Ge was 
deposited at Ts = 440°C at rate of 0.2 ML/min. Therefore, a different composition of SiGe 
islands Figure 8. 3 (Figure 8. 2) is a result of a different activation energy for growth front 
induced intermixing in modified and standard SME. 

Figure 8. 2. Morphology of Ge islands (a) grown by standard SME with high Bi deposition 
rate of 3ML/min during growth, and (b) Ge islands grown by modified SME with zero Bi 
deposition rate during growth. Island size distribution for standard SME (c), and island size 
distribution for modified SME (d). 0.2ML of Ge was deposited at Ts = 440°C at rate of  0.2 
ML/min. Image sizes 500 nm. 

 (b) (a) 

(d) 

Bi Flux = 0 

 (c) 

Bi Flux = 3 ML/min 
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A different preferred step direction and different passivation of the steps Figure 8. 2 can be 
explained by a different SiGe composition at the steps:  

• The change of SiGe composition at the steps can change the preferred step direction 
since the step directions of the Si and Ge islands are different (chapter 7) [36].  

• The passivation of the steps in modified SME can be also decreased due to an increase 
of the Si content at the step edges since the Ge steps are stronger passivated than Si 
steps [91].  

To separate the influence of the Bi content at step edges on the step edge passivation 
from the composition effect the size distributions of Si islands were measured Figure 8. 4. 
The Si islands were grown by deposition of 0.2 ML of Si by standard and modified SME 
Figure 8. 4 (a), (b), the temperature of substrate and the rate of Si deposition were 440°C and 
0.02 ML/min, respectively. The shapes of Si islands grown by modified SME and by standard 
SME are different.  

 
 

Figure 8. 3. The height differences between Si and Ge. (a) STM image of Ge grown by standard SME 

at a Si step edge, (c) apparent height difference between Ge and Si is 1
o

A . (b) STM image of SiGe 

grown by modified SME at step edges of a Si island. (d) apparent height difference of 0.5
o

A  
corresponds to ~ 50% of Si in the SiGe composition. 0.2ML of Ge was deposited at Ts = 440°C at 
rate of 0.02 ML/min. Image sizes 200 nm. 
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The shapes of islands grown by modified SME are more uniform Figure 8. 4 (b), the arrow 
shaped islands are bounded by straight steps with definite orientation [36]. The islands grown 
by standard SME have various shapes and the straight step segments are too short, which 
makes the identification of the preferred step directions difficult. The island size distribution 
for the standard and modified SME is clearly different Figure 8. 4 (c), (d). The scaling 
function of islands grown by modified SME Figure 8. 4 (d) is close to the standard peaked 
function [91] with a peak position of 9.0/ =ss . In contrast to the case of modified SME the 
scaling function for the standard SME Figure 8. 4 (c) is asymmetric with the peak strongly 
shifted toward smaller island sizes. (Our previous measurements in [91] showed a symmetric 
island size distribution with the peak position of 1/ ≈ss  (at Ts = 440°C), it can be explained 
by using of 1 ML/min, lower than 3.5 ML/min, Bi rate deposition). A case with Si islands is 
more clear since only Si is present at the step edges. Different shapes and different scaling 
functions of the Si islands at a different Bi rate deposition can be directly attributed to the 
different content of Bi at the step edges resulting into different passivation of the steps. 

Figure 8. 4. Si islands (a) grown by standard SME with high Bi deposition rate of 3ML/min, 
and (b) Si islands grown by modified SME with zero Bi deposition rate during Si growth. 
Island size distribution for standard SME (c), and islands size distribution for modified SME 
(d). 0.2ML of Si was deposited at Ts = 440°C at rate of 0.02 ML/min. Image sizes 400 nm. 

 (a)  (b)

 (d)

Bi Flux = 0 

 (c) 

Bi Flux = 3.5 ML/min 
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The transition from the standard model of growth to the model with a strong step edge 
passivation is the transition from a growth limited by the surface diffusion to a growth limited 
by the attachment kinetics [121]. In the growth limited by the attachment kinetics the 2D 
islands nucleate continuously during deposition. The fractal growth of 2D islands Figure 8. 5 
(b), (c) is a result of the continuous nucleation of the kinks (1D islands) at step edges in hit-
and stick regime described by diffusion limited aggregation (DLA) model [12,122]. Upon the 
Bi-SME of Si/Ge on the Si(111) we have two subsystems of adatoms:  

• The high mobile adatoms (mobile diffusion mechanism) in precursor state (on top of 
Bi layer), can also attach to the steps and diffuse along the step edges in precursor 
state until reach the kink and exchange with Bi atom.  

• And the chemisorbed adatoms (the adatoms bonded to the substrate) which are 
immobilized (hopping diffusion mechanism) since for diffusion into neighbour 
position the adatoms need to broke chemical bonds.  

In 2D (on terrace) and 1D (at step edge) cases the chemisorbed atoms are immobilized, i.e. 
we have hit-and stick regime with the chemisorbed atoms. If the mobile adatoms are not 
isolated form the chemisorbed adatoms by high activation energy for exchange exE  and can 
be easy transferred into chemisorbed adatoms, then the growth described by standard model 
is observed Figure 8. 4 (b), (d). We assume that activation energy for exchange exE  is 
different for exchange at terrace, step and kink, kink

ex
step
ex

terrace
ex EEE >> . The exchange energy 

exE  of Ge/Si atoms with Bi is related to the bond energy of Bi BiE  to the substrate, therefore 
we can assume that the bond energies for Bi at terrace, step and kink have the same relations: 

kink
Bi

step
Bi

terrace
Bi EEE >> . These relations are in agreement with experimental data. The fractal 

growth of Si islands Figure 8. 5 (b), (c) observed at low temperatures is a result of 1D growth 
at step edges limited by the attachment kinetics to the kinks (1D growth with strong 
passivation of the kinks). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. 5. Evolution of the shape of Si islands grown by standard (Bi deposition rate 3.5 ML/min) 
SME at different temperatures of the substrate. (a) Ts = 440°C, (b) Ts = 400°C, (c) Ts = 380°C. The 
fractal shape of the islands grown at lower temperatures (b), (c) is a result of the strong passivation of 
steps and step kinks. 0.2ML of Si was deposited at rate of 0.02 ML/min. Image sizes 200 nm. 
 

 (b) (c) (a) 
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At a high temperature of the substrate Ts ൒ 440°C the step kinks are depassivated and no 
fractal growth was observed Figure 8. 5 (a), Figure 8. 4 (a). But the scaling of Figure 8. 4 
(c) shows that the step edges are still strongly passivated. It can be concluded that 
depassivation of the step kinks is easier than depassivation of the straight step edges. At 
temperatures higher than 480°C [91] or at zero Bi rate deposition during growth the step 
edges are depassivated and the island size distribution described by the standard model of 
growth was observed Figure 8. 4 (d), Figure 8. 2 (d). 

The shape of Ge islands can be varied from triangular Figure 8. 6 to rhombic shape 
Figure 8. 7 [Figure 8. 2 (a), Figure 8. 3 (a)] by a change of the step edge passivation. The 
step edge passivation can be tuned by the Bi deposition rate and by the temperature of the 
substrate independently. The islands shown on Figure 8. 7 (a), (b) were grown at zero Bi rate 
deposition, but islands Figure 8. 7 (a) were grown at higher temperature, therefore the islands 
on Figure 8. 7 (a) have a lowest Bi step edge passivation. The islands (Figure 8. 7 (b), (c)) 
were grown at the same temperature of substrate, but the islands Figure 8. 7 (c) were grown 
with a high Bi rate deposition, therefore the islands (Figure 8. 7 (c)) have the highest Bi step 
edge passivation. From the island shapes we can identify the preferred step directions which 
are present by step directions with minimal step speed propagation (kinematic Wulff 
construction). Rhombic islands (Figure 8. 7 (c)) are bounded by 011  steps and triangular 

islands (Figure 8. 7 (a)) by 211  steps. The triangular shape islands ( 211  steps) are 
observed in the regime of the lowest step edge passivation (zero Bi flux, high temperatures), 
the rhombic shape islands ( 011  steps) are observed at a strong step edge passivation (high 
Bi flux, low temperatures). In the intermediate regime, the round shaped islands were 
observed Figure 8. 7 (b).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. 6. Triangular islands grown on Si(111)- 33 × -Bi surface in modified SME. The 
islands are bounded by 211  steps. 0.2ML of Ge deposited at Ts = 450°C at a rate of 0.02 

ML/min. Image size 200 nm. 

]211[
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Figure 8. 7. Different shapes of SiGe islands (a) – (c) at different passivation of step edges. The (a) 
and (b) islands were grown by modified SME and (c) in standard SME with a Bi deposition rate of 3.5 
ML/min. (a) 0.2ML of Ge was deposited at Ts = 450°C at a rate of 0.02 ML/min. (b) and (c) 0.2ML of 
Ge was deposited at Ts = 440°C at a rate of 0.2 ML/min. Image sizes 500 nm. (d) Schematic diagram 
which shows the shape variation of SiGe islands and activation energy for attachment into steps at 
different Bi step edge passivations. The activation energy for attachment and passivation of step edges 
are shown qualitatively. The activation energy for attachment into 011  steps – blue curve and into 

211  steps – green curve, respectively. The triangular islands are bounded by 211  steps, 

hexagonal and rhombic islands are bounded by 011  steps.  
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The preferred step direction depends on the Bi step edge passivation. The schematic diagram 
Figure 8. 7 shows a shape evolution and change of the activation energy for attachment for 
the 011  and 211  steps with the step edge passivation. The activation energy for 
attachment and passivation of the step edges Figure 8. 7 (d) are shown qualitatively. The step 
direction with the highest activation energy for attachment is the preferred step direction 
which determines the observed shape of the islands (Figure 8. 7). The growth shape of 
islands is bounded by the steps with a minimal step speed propagation (kinematic Wulff 
construction [33]). The step speed propagation is proportional to the rate of attachment +

sk  of 
adatoms into step edge. The rate of attachment is decreased with activation energy for 

attachment +
sE  as ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

+
+

Tk
E

k
B

s
s expν . The steps with the highest activation energy have a 

minimal step speed propagation, therefore, the steps of the islands have the highest activation 
energy for attachment. 

 
 
Conclusions 
  
The step edge passivation can be tuned independently by substrate temperature and by Bi 

rate deposition.  
The change of the Bi content at the step edges changes simultaneously the step edge 

passivation ( exE ) with the activation energy for growth front induced intermixing.  
According to the data of the Si island size distributions at different growth temperatures 

and different Bi deposition rates (the SiGe composition effect can be excluded) the change of 
SiGe island shape and preferred step directions [35,36] can be attributed to the change of the 
step edge passivation.  

The observed evolution of the Si island shapes and island size distributions let establish 
the sequence of depassivation as a function of temperature: Firstly, the easiest depassivation 
of the step kinks occurs at low temperatures (T ൒ 400°C, standard SME); Secondly, the 
depassivation of the straight step edges occurs at T ൒ 440°C in standard SME; And at last the 
depassivation of terraces occurs at high temperatures (T ≥ 500°C) , kink

ex
step
ex

terrace
ex EEE >> . 

This is associated with different Bi bonding energies: the lowest bonding energy for Bi atoms 
at the kinks, higher bonding energy at the straight step edges and the highest bonding energy 
at the terrace.  

 The observed change of the step edge passivation is followed by a change of the 
preferred steps direction resulting into different islands shapes. 
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9 Influence of entropy and energy on pit formation in 2D Ge 
layer 

 
The structural instability of nanostructures during annealing is an important issue which, 

along with the compositional instability, can be a serious thread for the functionality of 
nanodevices. Since the diffusion energies and intermixing barriers are particularly low at 
surfaces, the stability of surface nanostructures is most delicate. In the GeSi heteroepitaxial 
system there is a strong thermodynamic driving force for intermixing, since intermixing 
reduces strain and increases entropy [123,124,125]. The evolution of hetero-epitaxial 
nanostructures is complicated, since both morphology and composition determine the system 
energy [126]. Moreover, the system is often far from equilibrium due to kinetic barriers. 
From the experimental point of view the challenge is to supply a most complete data basis in 
order to be able to understand the evolution of the hetero-epitaxial nanostructures, specifically 
simultaneous measurements of morphology and composition are desirable [127,24]. In the 
present letter it will be shown that the driving force for intermixing occurs to be so strong that 
it provokes drastic morphological changes during equilibration. These structural changes are 
a way to bypasses the kinetic barriers for direct intermixing. In particular, we show that one 
monolayer (ML) high Ge stripes grown at Si(111) step edges are unstable towards pit 
formation during annealing. The Ge leaving the stripe during pit formation attaches at the (Si 
covered) Ge stripe and intermixes with the subjacent Si (Figure 9. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. 1. (a) STM image of a one atomic layer high Ge stripe grown at a Si step edge. After Ge deposition a 
thin outer Si rim was grown. The apparent height contrast between Si and Ge is induced by the Bi termination of 
the whole surface. (b) After annealing at 733K unanticipated formation of pits and motion of the Ge originating 
from the pits to the outer Si rim is observed. 
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The pit formation arises by a concerted action of processes driven by an energy gain of 
the system and processes driven by an increase of the entropy of the system due to 
intermixing. The question arises why this rather complicated mechanism of pit formation is 
followed instead of the much simpler direct vertical intermixing of Ge with the subjacent Si. 
We will show that while the direct intermixing process results in a final state of even lower 
energy as the final state after pit formation, the kinetic barrier involved is much smaller than 
the barrier for direct vertical intermixing which favors the pit formation.  

In our experiments first a Bi terminated Si(111) surface was prepared by deposition of 
one atomic layer of Bi on the clean Si(111)-(7ൈ7) at 875 K. Then a submonolayer amount of 
Ge was deposited at 655–675K at a rate of 0.015 ML/min (1ML corresponds to 1.56ൈ1015 
atoms/cm2). During Ge growth the Bi floats up at the surface as usual in surfactant mediated 
growth [87,99]. In the following we will not mention that the complete surface is always 
terminated by one atomic layer of Bi. After submonolayer deposition of Ge atoms attach to 

the step edges and form Ge stripes (Figure 9. 1 (a)). Atomic layer high (~ 3.2
o

A ) stripes with 
a width of more than 10 nm can be formed without any pit formation. More distant from the 
step edges also Ge islands grow. It was found that the apparent height measured in STM is ~ 

1
o

A  higher on Bi terminated Ge areas compared to Bi terminated Si areas, allowing a 
distinction between Si and Ge on the nano scale [71]. For a GeSi mixture the apparent height 
is a measure of the Ge concentration in the surface layer [24]. While attempting to grow 
alternating two-dimensional GeSi superlattices [35], we observed the formation of pits inside 
of Ge stripes for certain growth conditions. The formation of one atomic layer deep pits is 
pronounced if the growth of a sufficiently wide (൒ 5 nm) Ge stripe deposition is followed by 
the deposition of a Si stripe and subsequent annealing. Pit formation was observed for 
example after the following growth sequence: 0.23 ML Ge was grown at T= 675 K, followed 
by 0.045 ML Si at 675 K before annealing for 10 min at 735 K. The STM image in Figure 9. 
1 (b) shows the resulting structure including 10–20 nm wide pits formed in the Ge stripe. The 
pit formation occurs by the same mechanism also at isolated Ge/Si islands (Ge core 
surrounded by a Si rim) on terraces far from the step edge, as indicated by the arrow heads in 
(Figure 9. 1 (b)). The material in the outer GeSi step edge is less than the missing material in 
the pits since some Ge attaches at Si islands also present at the surface. In the following a 
model is described which explains the observed pit formation. In the first part of the pit 
formation process an initial amount of Ge is moving from the Ge stripe (pits) to the outer Si 
rim (Figure 9. 2 (b)). For simplicity we leave out the actual nucleation event. The driving 
force for the first part of the pit formation process is bond energy gain. Ge-Ge bonds present 
in the Ge area are replaced by stronger Si-Ge bonds [128,129] when Ge atoms attach to the Si 
terminated step edges. This process decreases the system energy and supplies a driving force 
for Ge to form pits and to diffuse to the Si terminated step edge.  

While the above reasoning can explain the initial pit formation, the pit formation should 
stop quickly if all Si step edges are terminated by Ge atoms (Figure 9. 2 (b)). Subsequent Ge 
attachment at the step edges would not result in any bond energy gain. A further growth of 
pits, as observed in the experiment, would not be expected because it would only increase the 
step energy. In a second step of pit formation the entropy driven GeSi intermixing acts at then 
outer step edge. The amount of GeSi intermixing can be close to 50% under usual conditions 
as obtained from the measured apparent height differences [24]. Due to the entropy driven 
intermixing at the step edge fresh Si is present at the outer step edge again. This Si starts the 
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energy gain driven Ge diffusion from the pits towards the Si containing step edge again 
(Figure 9. 2 (b)). The atomic processes shown in Figure 9. 2 (b) and (c) can be considered as 
the subsequent energy driven and entropy driven parts of an energy–entropy cycle.  

While we have shown that the above outlined pathway of pit formation describes the 
experimental data we will now turn to an analysis of the free energy and kinetic barriers 
during pit formation. This will elucidate why an unanticipated, complicated process of pit 
formation is favored over the much simpler process of direct intermixing with the underlying 
Si (Figure 9. 2 (d)) which has an even lower free energy than the final state of pit formation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. 2. In (a) and (c) the initial and final states before and after pit formation are shown. In the first part of 
the energy–entropy cycle (b) the energy is reduced by replacing Ge-Ge bonds (at the Ge stripe) through stronger 
Ge-Si bonds at the Si terminated step edge. The subsequent GeSi intermixing is driven by a gain in mixing 
entropy (c). Due to the intermixing the Si at the step edge is (partly) restored activating the energy driven part of 
the cycle again. An alternative simpler intermixing process without pit formation is direct intermixing with the 
Si form the lower layer (d). 
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Since the pit formation occurs after annealing, we assume that the final state (Figure 9. 2 
(c)) with pits formed is a state close to local equilibrium. Since the system is a quite 
complicated heteroepitaxial strained partially intermixedsystem there are several 
contributions to the free energy. As the initial state we consider a Ge one monolayer thick 
stripe at a Si step edge and a thin Si rim at the Ge stripe (Figure 9. 2 (a)). The final state is 
the Ge stripe with one monolayer deep pits, the thin Si stripe, and an outer GeSi stripe 
consisting of the Ge originally filling the pits intermixed with the underlying Si layer (Figure 
9. 2 (c)). For the amount of GeSi intermixing (x) in the outer GeSi stripe we assume x = 0:5 
which corresponds roughly to the experimentally observed range of intermixing. We consider 
here only intermixing at the surface since bulk diffusion does not operate at the temperatures 
and timescales used here due to the high activation barrier of 4 - 5 eV [130]. The free energy 
contributions for going from the initial to the final state were estimated (see the Appendix A) 
and are shown in Table 9. 1. As calculated from elasticity theory the elastic energy decreases 
by 14 meV/Ge-atom in the final state due to Table 9. 1: Free energy contributions for pit 
formation. 

 
Table 9. 1 
Eelastic -17 meV/Ge atom 
Emix +13 meV/Ge atom 
Mixing entropy -88 meV/Ge atom 
Estep,rel + Estep,form -2 – 2 meV/Ge atom 
Eint,bound (Ewet) -3 meV/Ge atom 

 
 

the reduced strain in the outer intermixed GeSi-stripe [131]. Energy per Ge-atom means per 
Ge-atom moved away from the pits to the outside stripe. The mixing enthalpy of GeSi is 
known to be positive [132,133], resulting in a mixing energy of 10 meV/Ge-atom, favoring 
the initial state without pits. The mixing entropy term gives a large negative contribution of -
63 meV/Ge-atom favoring the final intermixed state. A further contribution to the elastic 
relaxation energy is the step edge relaxation energy evaluated according to [134]. When this 
contribution is combined with the step edge formation energy which increases during pit 
formation a net step related energy gain is estimated and converted to of -5 – 1 meV/Geatom 
(assuming an average pit diameter of 15 nm). This range is estimated from the extreme cases: 
zero step edge formation energy and the step energy of clean Si(111) [13]. The actual step 
formation energy on Bi terminated surface is expected to lie between this extreme cases. The 
last contribution to the free energy (Eint,bound) arises as follows: when the first Ge-atoms move 
from the pits to the Si rim weaker Ge-Ge bonds are replaced (partly due to intermixing) by 
stronger Si-Ge bonds. We estimated this line energy and convert it again to an equivalent 
energy per (moved) Ge atom of about -3 meV/Ge atom. Taking all the contributions to the 
free energy together the final state with pits formed has clearly lower free energy than the 
initial state. This seems to be a convincing energetic argument for the pit formation. 
However, let us now consider a much simpler final state namely the direct vertical 
intermixing of the Ge stripe with the underlying Si (Figure 9. 2 (d)). Most of the energy 
terms considered before apply to the vertical intermixed state as well. Only the step energies 
are not present because no steps are formed during direct vertical intermixing. Since this is a 
small contribution, the free energy of the direct vertically intermixed state is also lower than 
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the initial state. Even more, the free energy of the directly intermixed state is lower than the 
final energy of pit formation since the intermixing would act at the whole Ge stripe, while the 
pits only form on a fraction of the stripe (usually less than one half). The question arises why 
the system takes the complicated pathway like the pit formation instead of the much simpler 
and lower free energy process of direct vertical intermixing with the underlying Si? During 
vertical intermixing high energy barriers have to be overcome in order to reach the low free 
energy configuration. The relevant barrier for direct vertical intermixing is the barrier for 
intermixing between the first and second layer which was recently measured for the 
Bi/Ge/Si(111) system as Uterrace

 ex = 2.2 eV [24]. The corresponding barrier at the step edge is 
lower (Ustep

 ex = 1.9 eV) because the atoms are less confined by neighboring atoms at the step 
edges [24]. The pits are formed because pit formation allows a path towards the minimum 
free energy configuration which involves a lower barrier than the direct exchange path. Due 
to the decreased energy barrier for GeSi exchange at the step edge, entropy can act more 
easily at the step edge while on the terrace the lower entropy intermixed state is not realized 
due to the large energy barrier involved with the GeSi exchange at the terrace. Now we turn 
to the question why in the above described pit formation process the intermixing occurs only 
at the outer Ge stripe while it does not occur at the pit step edge? There is a kinetic reason for 
this. At the beginning of the pit formation the step length at the pits is much smaller than the 
length of the outer step. Therefore, the step speed at the pits is much larger than the step 
speed at the outer step. It is known that the GeSi exchange at the step edges depends critically 
on the step speed, being lowest at the largest step speeds [24] due to the shorter time a 
specific atom is located at the step edge. Therefore, the GeSi intermixing effect at the pits is 
initially much smaller than the intermixing at the outer GeSi step edges. When the pits grow 
larger their step speed reduces and GeSi intermixing starts to occur at the pit step edges as 
well. This is also the reason why the pits stop to grow at some point. The energetic driving 
force for pit formation disappears when the Si content at the pit step edge becomes close to 
the Si content at the GeSi stripe.  

A measurement of the average pit area as function of annealing time shows that the pit 
formation stops after about 90 sec (inset in Figure 9. 3). For simplicity, we fit the 
experimental points (inset in Figure 9. 3) with exponential decay. From a fit to this time 
dependence the average step speeds of the pits are calculated by differentiation. Furthermore, 
using the data on the Ge concentration at step edges as function of step speed [24] we obtain 
the average Ge concentration at step edges plotted in Figure 9. 3 as function of annealing 
time. Initially the difference in Ge concentration at both kinds of step edges, which is the 
driving force for pit formation, is large. For longer annealing times this driving force reduces 
and leads finally to a stop in further pit growth.An additional effect, not considered here, is 
that Si accumulates at the pit step edges due to the out diffusion of Ge which is another 
mechanism for the decrease of the Ge concentration with time.  
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Figure 9. 3. Average Ge concentration at the pit step edge and at the outer GeSi step edge as function of 
annealing time. The pit size measurements are shown in the inset. 

 
 
Effective pit formation occurs only in a certain temperature range. For too low 

temperatures the GeSi exchange is not activated and the pit formation stops quickly after all 
Si steps have been terminated by Ge. For too high temperatures the difference in Ge 
concentration be tween both types of step edges, vanishes due to strong intermixing and the 
corresponding chemical potentials become the same. The pit formation can be also used for 
nanostructuring. Using conditions at which pit formation is enhanced the fabrication of 
freestanding GeSi stipes with single digit nanometer width is possible. The sinks for the Ge 
during pit formation are Si step edges. In order to enhance pit formation we guided epitaxial 
growth in a way that a lot of Si islands were nucleated on the surface (0.08ML Ge was grown 
at T= 693K for 6 min, followed by 0.22 ML Si grown at 653 K for 14 min before annealing 
for 10 min at 753–773 K.). These Si islands provide a high density of sinks in order to drag 
the Ge out of the pits and finally leading to pit coalescence. Figure 9. 4 shows an example of 
nanostructuring by pit coalescence. A continuous ~ 8 nm wide freestanding GeSi wire has 
been fabricated by pit coalescence. This wire is separated about ~ 8 - 10 nm from the step 
edge. Here the complete initial Ge stripe was removed. The Ge moved to the step edges of the 
Si islands and the GeSi stripe. Such nanostructured templates can be used for next stage 
nanostructuring as for instance anchoring molecular nanostructures selectively at the wire or 
in the groove between the step and the freestanding nanowire.  
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Figure 9. 4. Fabrication of a freestanding 8nm GeSi wire on the Si(111) substrate obtained by pit coalescence. 
 
 
 
Conclusions 
 
Nanoscale pit formation in 2D Ge stripes was observed due to a concerted action of 

energy and entropy. The energy driven motion of the Ge atoms out of the Ge stripe towards 
stronger binding sites at the Si terminated step edge is followed by an entropy driven GeSi 
intermixing which restores a Si content at the outer step edge and fuels the energy driven 
process again. This unanticipated complicated pathway of pit formation as a way to reach the 
final state of GeSi intermixing is followed instead of the much simpler direct vertical 
intermixing due to the high kinetic barriers present for the latter process. Finally we have 
shown that the pit formation effect can also been used for nanostructuring ~ 8nm wide 
freestanding GeSi nanowires on the Si substrate. 
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10 Summary 
 
 
A technique of modified surfactant mediated epitaxy was introduced, where the 

surfactant concentration on the surface was reduced to influence the growth and equilibrium 
properties of the surface steps in a desired way. It was shown that this modified surfactant 
mediated epitaxy is relevant to nanotechnology since it allows fabricating arrays of long 
equidistant epitaxial Ge nanowires with a width in the one-digit nanometer range. In future 
these nanowire arrays could serve as templates for selective attachment of molecules, 
decoration with metals, or attachment of clusters and other nanoscale building blocks such as 
fullerenes. The use of surfactant coverage as a variable parameter opens up an additional 
dimension in the growth parameter space that can be explored in bottom-up nanofabrication 
studies in general. 

The analysis of island size distributions showed that the step edge passivation in 
modified SME can be tuned independently by substrate temperature and by Bi rate 
deposition. The measurement of the island size distributions for Si and Ge in surfactant 
mediated growth reveal different scaling functions for different Bi deposition rates and 
different substrate temperatures on the Bi terminated Si(111) surface. According to the data 
of the Si island size distributions at different growth temperatures and different Bi deposition 
rates the change of SiGe island shape and preferred step directions were attributed to the 
change of the step edge passivation. It was shown that the change of the step edge passivation 
is followed by a change of the preferred step direction resulting into different islands shapes. 

A method to analyze the symmetry of the combined system of reconstructed island plus 
reconstructed substrate from the symmetries of the bulk substrate lattice, and reconstruction 
on the substrate, and reconstruction on the island was developed. The symmetry analysis is 
based on the analysis of common fixed points. The method was used to analyze the symmetry 
of the shape of reconstructed 2D islands on diamond lattice of Si (111) surfaces. The 
symmetry breaking in the Bi SME growth of 2D Si/Ge islands on Si(111) was explained with 
the symmetry analysis method. The broken symmetry has consequences on the step structure 
which in turn influences the growth rates and finally also the island shapes. This effect could 
be used to fabricate 2D nanostructures directed along one specific direction on a substrate of 
higher symmetry.  

Nanoscale pit formation in 2D Ge stripes was observed due to a concerted action of 
energy and entropy. The energy driven motion of the Ge atoms out of the Ge stripe towards 
stronger binding sites at the Si terminated step edge is followed by an entropy driven GeSi 
intermixing which restores a Si content at the outer step edge and fuels the energy driven 
process again. This unanticipated complicated pathway of pit formation as a way to reach the 
final state of GeSi intermixing is followed instead of the much simpler direct vertical 
intermixing due to the high kinetic barriers present for the latter process. It has shown that the 
pit formation effect can also been used for nanostructuring ~ 8nm wide freestanding GeSi 
nanowires on the Si substrate. 
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11 Appendix 
 
 

Appendix A: Evaluation of energies relevant for pit formation 
 
Formation of the pits was observed at different growth conditions: 

 
1 during Si deposition 
2 during annealing after Si deposition 
 

An analysis of the mechanisms of the pit formation for every condition will be given in the 
following. 
 
 

1 Pit formation during Si deposition 
 
After submonolayer deposition of Ge in the step flow growth mode Ge atoms attach to 

the step edges and Ge stripes of a certain width form. The width of the stripes is determined 

by the coverage and the step distance. Atomic layer (~3,2 
o

A ) high stripes with a width of 
more than 10nm can be formed without any pit formation as shown in the STM image of 
Figure 9. 5 (a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. 5. Ge stripes with width more than 10 nm. was formed at Si steps without pits (a); During the 
following deposition of 0.22 ML of Si for 2.5 min at 450°C the pits were formed in Ge stripes (b), [This 
experimental result was obtained by Dr. Jacek Brona]. 
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The following deposition of Si can induce the pit formation in the Ge layer Figure 9. 5 (b). 
Pit formation was observed for example after the following growth conditions: temperature of 
substrate Tsubst = 450°C, Ge deposition of 0.15 ML for 2 min, after Ge deposition 0.22 ML of 
Si was deposited for 2.5 min.; during Ge/Si deposition Bi rate was maintained at 3.4 ML/min. 
The observed pit formation associates with mass transport of Ge from the pits into outer step 
edges since no significant sublimation is expected at temperatures below 850°C [135] (rate of 
Si(Ge) sublimation lower than 510− ML/sec at 850°C). The high resolution image Figure 9. 6 
(a) shows that the outer step edges adsorb Ge together with Si resulting into SiGe stripe 
Figure 9. 6. It assumes that Si deposition induces mass transport of Ge from the pits to the 
outer step edges and the GeSi alloy is formed as result of simultaneous incorporation of Ge 
and Si atoms into outer step edges. The observed mass transport of Ge assumes the force or 
difference of the chemical potentials 0<−=Δ −− steppitstepouter μμμ  which moves Ge atoms 
from the pits to the outer step edges.  
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The behavior of the system can be described by kinetic or/and energy model. The energy 
model assumes that equilibrium or quasi-equilibrium state is achieved in the system. The 
kinetic model is more complete since it takes into account evolution of the system toward 
equilibrium. Equilibrium state of the thermodynamic system is described by a minimum of 
thermodynamic potential which consists of internal energy and entropy parts 
( min→−= TSEG ). The driven force (energy) for kinetic model can be determined from 
energy of the system, therefore, the energy analysis in frame of the energy model will be 
given first.  

Figure 9. 6. The pit was formed in Ge layer during Si deposition for 20 min with rate of adsorption 0.01 
BL/min at temperature of substrate 460°C – 490°C (a), high resolution image (a) and line profile (b) show 
that Si-Ge alloy was formed at outer of pit step edges. The apparent height difference between Si layer and 
the Si-Ge layer (b) at outer of pit step edge marked by ∆ = 0.3A (b). [This experimental result was obtained 
by Dr. Jacek Brona]. 
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• Energies relevant for pit formation 
 
 

To calculate the energy of the system a simple model which takes into consideration only 
initial and final state will be used. Figure 9. 7 presents the schematic model of the pit 
formation during Si deposition.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The initial state (Figure 9. 7 – left image) presents the case without pits and consists of 
strained Ge layer of volume AGe and Si layer of volume ASi. The final state (Figure 9. 5 (b), 
Figure 9. 7 – right image) consists of Ge layer of volume (AGe - ASi) with pit of area Apit and 
GeSi composition layer of volume (Apit + ASi). The approximation of the pits with round 
shape and GeSi layers with homogenous composition are used in the model to simplify the 
calculations of the energies of the system. 

According to the model, the internal energy of the system can include four different 
energy contributions: 

Eelastic – elastic energy of strained Ge and GeSi layers on Si(111) substrate; 
Emix – energy of mixing of disordered GeSi alloy;  
Estep – energy of step formation; 

Full internal energy of the system can be written as: E = Eelastic +  Emix + Estep. 
To define mechanisms of the pit formation all energies will be studied and numerical 

estimations will be given. The numbers and estimations of these energies will be used as a 
basis data for the following analysis of the different experiments and possible mechanisms of 
the pit formation. 

 
 

Figure 9. 7. The model considers initial and final states with full energies Ei and Ef correspondingly. The 
initial state presents Si and Ge layers of volume  Asi and AGe without pits. The final state presents Ge layer 
of volume (AGe – Apit) with pit of area Apit and GeSi layer with homogenous composition of Ge of volume 
Apit and Si of volume Asi. 
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• Elastic energy 
 

The elastic energy of thin layers of 1 ML height at the surface can differ from those in 
the bulk. But in some cases it is possible to neglect by the surface and use approaching with 
the bulk model, for the described here system it will be supported in the following with 
experimental data. For calculation of elastic energy of Ge layer of 1ML height the theory for 
a bulk crystalline solid will be used. 

The state of strain in a solid is described by the dependence of a displacement vector u on 
the position denoted by r. The second rank tensor of infinitesimal strain ijε is defined by 
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Stresses and strains are related by Hooke's law. In its most general form Hooke's law reads 
[131,25] 

ij
ij

klijkl c ετ ∑= , 

in which klijc are the components of the forth rank tensor of the elastic modules. Because of 
the symmetry of the stress and strain tensors klτ  and ijε  one has the relation kljilkijklij ccc == . 
The number of independent components of the elastic tensor is further reduced by the 
requirement that the elastic energy be a unique function of the state of strain. The energy 
density elastU is 

∑∑∫ ==
ijkl

klijklij
kl

klklelast cdU εεετ
2
1 , 

ijε and klε are the functions )(rijε  and )(rklε of position ),,( zyx rrrr = . In general case, full 
elastic energy of a crystalline solid elastE  is an integral of energy density elastU over volume of 
the solid 

∫∫∫ ∑∫∫∫ ==
V ijkl

klijklij
V

elastelast dxdydzrrcdxdydzrUE )()(
2
1)( εε . 

Here the integration region V corresponds to the volume of solid. Geometry of the system is 
shown on Figure 9. 8. The volume of the solid V consists of volume of Si substrate V2 and 
volume of Ge layer V1. The following relations assume some approaches for elastic energy of 
the system: 
1. The Si crystalline solid have a close elasticity with Ge crystalline solid, and Si is more hard 
material than Ge;  
2. Lateral size of Ge layer is much larger than thickness (height) of Ge layer, L/ hGe > 10;  
3. The thickness of substrate is much larger than thickness of 1 BL of Ge, hSi/ hGe > 106 .  
Strain )(rijε  has a maximal value at the place of localization (Si/Ge interface) of the force 
applied to the solid. The equivalence of the forces at the interface FSi = – FGe can be written:  

SiSiSiGeGeGe hkhk εε = , SiGe kk ≈ → Si
Ge

Si
Ge h

h
εε = , where Gek  and Sik  are the force constants 

for Ge and Si respectively.  
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Because of geometry of the system hSi/ hGe > 106 (Figure 9. 8) Ge layer takes more strain 
than Si substrate takes strain near Si/Ge interface: SiGe εε >> , here Geε  – strain in the Ge 
layer, Siε  – strain in the Si substrate at Si/Ge interface. The elastic energies of Ge layer and Si 
substrate associated with the force at Si/Ge interface FSi = – FGe = F are proportional to the 
strain εFU elast = . SiGeSiGe FF εεεε >>→>> , therefore, the energy of Ge layer is the 
largest part of elastic energy of the system. Then, in the first approach we can neglect by 
elastic energy in volume V2 of the Si substrate: 
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The energy of the displacement field u induced in the Si substrate by the force applied at 

the step edges of Ge (GeSi) layer will be considered in the next paragraph as the energy of 
relaxation at the step edges of the Ge or/and GeSi layer. 

The energy density of thin isotropic strained layer can be found from inverse form of 
Hooke's law: 

 
∑=

ij
ijklijkl s τε , 

Isotropic strain has no distortion forces ( 0665544 === τττ ), then the lateral strain ε  of 
Si/Ge layer can be expressed as (x→1, y→2, z→3): 
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Figure 9. 8. The strained Ge layer on Si substrate. Ge have a 4% lager lattice constant. The maximal strain 
of 4% is applied at Si/Ge interface. Ge layer takes larger part of 4% strain due to geometry of the system: 
L/ hGe > 10 , hSi/ hGe > 106 . 
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here and further a short notation by the Voigt indices is used: 11→1; 22→2; 33→3; 23→4; 
13→5; 12→6. 2211 ss =  and 2112 ss =  by the symmetry of the Ge (Si) crystal. A hexagonal 
crystal is elastically isotropic in its basal plane (111), therefore, εεε == 2211 , τττ == 2211 , 
the Si/Ge layer is free in z (3) direction Figure 9. 8, therefore, 033 =τ , then the strain takes 
the form: 

( )τε 1211 ss += , → ( )1211 ss +
=

ετ ,  

the differential of energy density elastdU  can be written as: 

1211

22
ss
dddU elast +
⋅

=⋅=
εεετ ,  

for isotropic solid 
11

1
s

Y =  and 
11

12

s
s

−=ν  [131], then → 
ν−

=
+ 1
1

1211

Y
ss

. 

The energy density per area elastγ : 
 

22

1
ε

ν
εγ kYtelast =

−
= , 

(1.1) 

Where the force constant 
ν−

=
1

Ytk , t is the film thickness, ε – is a strain, ν is Poisson-

number and Y is Young’s modulus. Elastic energy of the layer of area A ca be written as: 
 

2εAkEelast = , (1.2) 
   

Young’s modulus Y(111) = 13.8×1010N/m2, Poisson-number ν(111) = 0.252 for (111) plane of 
Ge crystal  [131] and Y(111) = 16.9×1010N/m2, ν(111) = 0.262  for Si  can be found in reff. [131]. 
The force constant Sik  for one layer (3.14 A) of Si is 71.9 N/m , and Gek  of Ge one layer is 
57.9 N/m. Sik  is 25% larger than Gek . The force constant for GexSi1-x composition layer k  
can be estimated as proportions of Sik  and Gek :  
 

)24.024.1()1( xkxkxkk GeSiGe −=−+= , (1.3)  
 
According to Vegard’s law the lattice parameter of the bulk of GexSi1-x can be varied linear 
with composition from the natural lattice constant of Si to the natural constant of Ge. 
Therefore, the strain of compound GexSi1-x layer on the Si surface is proportional to the ratio 
of Ge in alloy: 
 
ε = ε0x, (1.4)  
  
where ε0 = 4% – is the strain of Ge layer on Si substrate. According to the model Figure 9. 7, 
the ratio x of Ge in compound layer is: 
 
x = Apit/( Apit + Asi). (1.5)  
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Let’s take Gekk =  and let’s take into account only strained epitaxial Ge and GexSi1-x layers, 
then elastic energy can be found by combining (1.2), (1.4) and (1.5). The elastic energy of 
initial state can be written as: 
 
Eelastic

i = AGe kGe ε0
2 + ASi kSi εSi

2 ,        
the expression ASi kSi εSi

2 – is the strain energy of Si on Si which is identical 0, then: 
 
Eelastic

i = AGe kGe ε0
2. (1.6)  

 
The elastic energy of final state (Figure 9. 7): 
 
Eelastic

f = (AGe – Apit) kGe ε0
2 + ( Apit + Asi) kGe ε0

2(Apit/( Apit + Asi))2, (1.7) 
 
Energy gain Eelastic

f-i = Eelastic
i - Eelastic

f after simplifications takes the form: 
 
Eelastic

f-i = - kGe ε0
2 Asi x , (1.8) 

 
The increase of x decreases the elastic energy. From (1.8) and (1.5) it follows that system will 
decrease elastic energy with increase size of pits Apit at fixed Asi.The Bi layer on the top of 
Ge/GeSi layer (Figure 9. 9) reduces the energy gain (1.8).  

To calculate elastic energy of GexSi1-x layer covered with Bi the following denotes will 
be used: 
the strain of GexSi1-x layer on Si(111) substrate  ε0x, (ε0 = 0.04), 
the strain of Bi layer on Si(111) substrate    εBi , 
the strain of Bi layer on GexSi1-x layer   (εBi - ε0x) , 
the strain of Bi + GexSi1-x layer on Si(111) substrate  (ε0x + δ) , 
The GexSi1-x layer terminated with Bi is under additional stress of Bi layer. The strain of Bi 
terminated GexSi1-x layer is differ on δ from original one. δ can be found from equivalence of 
the forces FBi = FGeSi for free layer Figure 9. 9 (right image). As well as in the previous cases 
the approaching Gekk =  is used, then the expressions for the forces FSiGe and FBi (Figure 9. 
9) yield: 
      FSiGe = kGe((ε0x + δ) – ε0x), 
      FBi = kBi((ε0x + δ) – εBi), 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 9. 9. The underlying GexSi1-x layer is squeezed by Bi. 
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from equivalence of the forces FSiGe = – FBi, → kBi ((εBi - ε0x) – δ) = kGe δ , we obtain: 
 
δ = (εBi - ε0x) kBi / k(1.9) , ׀ 
where k׀ = kGe + kBi , in the case of pure Ge layer, x = 1 we have δ0 = (εBi - ε0) kBi / k׀, then 
the elastic energy of initial and final states can be written: 

Eelastic
i = AGe k׀ (ε0 + δ0)2 + Asi k׀ (0 +δ) , , with (1.9) it gives: 

Eelastic
i = AGe k׀ (ε0 + δ0)2 + Asi kBi 2 εBi

2/ ϰl ,  
Eelastic

f = (AGe – Apit) k׀ (ε0 + δ0)2 + (ASi + Apit) k׀ (ε0x + δ)2 , combining Eelastic
i and Eelastic

f 
we obtain expression for energy gain: 

Eelastic
f-i = – Apit k׀ (ε0 + δ0)2 + (ASi + Apit) k׀ (ε0x + δ)2 –  Asi kBi

 2εBi
2/ k׀ , → 

Eelastic
f-i = – ASi x k׀ ε0

2 + Apit k2 ׀ε0(δ –  δ0
2) + ((ASi + Apit) k׀ δ2 – Apit k׀ δ0

2) – Asi kBi
 2 

εBi
2/ k׀ , combining with (δ –  δ0

2) = ε0(1-x) kBi
 2/ k׀ and after combinations (see appendix B) 

the energy gain can be simplified: 
 

Eelastic
f-i = – (kGe ε0

2 Asi x) kGe / k׀ = – kGe
2/( kGe + kBi) ε0

2 Asi x, (1.10) 
it can be also represent as: 
 
Eelastic

f-i = – (kGe – kGe kBi /( kGe + kBi))  ε0
2 Asi x, (1.11) 

 
The elastic energy of Bi terminated GeSi layer depends on additional parameter which is the 
force constant kBi. The energy gain Eelastic

f-i decreases with increase of kBi. At kBi = 0 elastic 
energy takes the maxima value which is equivalent to the energy of one GeSi bulk layer (1.8). 
Generally, surface reconstruction changes the surface stress and modulus of the surface layer. 
In the case of Bi-SME Bi saturates dandling bonds, decreases surface stress and changes 
modulus of the surface layer. In the following estimations the data of Sb and Ge deposition on 
Si(111) surface [136] will be used. The authors found that the stress caused by 1ML of Sb is 
equivalent to the stress caused by 2ML of Ge. Actually, the Sb decreases the surface stress of 
the (7x7) from original value 2.98 N/m [137] down to 1 N/m. The surface stress of Ge on Sb 
terminated Si(111) surface is linear proportional to the Ge coverage Figure 9. 10 and 
corresponds to 2.0 (N/m)/ML in the range of coverages of Ge from 0 to 4 ML. I. e. first 
deposited layer produces the same stress as second, third, … , until S-K growth mode or 
dislocations start generate. The surface stress (Figure 9. 10) is dropped linear with Ge 
coverage in range of from 0 to 4 ML. The same slope of the dependence on Ge coverage in 
the ranges of 10 << θ  and 21 << θ  is result of the same stress induced by Si(111)√3x√3-Sb 
surface phase and by Ge(111)√3x√3-Sb surface phase. Therefore the stress caused by Sb 
surface phase can be taken into account separately from the underling Si and Ge layers. This 
linear dependence also shows that we can neglect by the surface and use bulk crystalline solid 
elasticity theory. 

Unreconstructed Si(111)1x1 surface have a negative surface tension (– 0.7 N/m) [138] 
which become positive and corresponds to 1 N/m after Sb termination. Let’s consider the 
stress caused by √3x√3-Sb-1ML surface phase separately from the underlying 
unreconstructed Si(111)1x1 surface, then, the stress caused by Sb can be found as a 
difference of the surface tensions for Si(111)1x1 and Si(111) √3x√3-Sb-1ML surfaces. The 
difference is 1.7 N/m Table 1. The surface tensions used here are placed in Table 1. The last 
surface tension 1.7 N/m in the table is used in the following as a stress caused by Sb trimers. 
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Table 1 
Substrate Surface 

tension 
Change of 
surface tension 

reference 

(i) Si(111)1x1 – 0.7 N/m  [138] 
(ii) Si(111)7x7 2.98 N/m  [137] 
(iii) 
Si(111)7x7 ՜ Si(111) √3x√3-Sb-1ML

 – 2 N/m [136] 

(iv) 
Si(111)1x1 ՜ Si(111) √3x√3-Sb-1ML

 + 1.7 N/m Calculated from (i), 
(ii) and (iii): 
1.7ൎ2.98 - 2+0.7 

Figure 9. 10. The calculated surface stress during Sb deposition and Ge growth on Si(111) at 600°C is 
shown (a) by data of P. Zahl, P. Kury, M. Horn von Hoegen [136]. Sb adsorption (regime A) causes strong 
change in stress of ≈ 2 N/m. During the coherent stage of growth (regime B) Ge deposition results in an 
initially linear increase of compressive film stress. The slope of 2.0 (N/m)/ML Ge compares well with the 
behavior expected from bulk elasticity constants. (b) The first(upper) deposited Ge layer produces double 
change: 1. it produces own 4% strain relative to Si substrate and 2. it changes the surface stress because of 
Si and Ge surfaces have a different surface energies and surface tensions. Actually, the pure Ge surface 
have lower values of the energies and surface tensions than Si surface. Apart from the first layer the second 
and the next layers produce equivalent changes in the bulk structure of the system by additional strained 
Ge layer. 

(a) P. Zahl, P. Kury, M. Horn von Hoegen, Appl. Phys. A 69 (1999) 481. 
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Bi have a less bond energies and is more soft material than Sb [139,140,141]. Bi has a 
less elastic constants than Sb and can cause less surface tension: 

4.19,26.11,1.38,2.7,6.24,7.63 664433141211 ====== BiBiBiBiBiBi cccccc ; 
4.33,2.39,0.45,9.20,4.29,4.101 664433141211 ====== SbSbSbSbSbSb cccccc ,×1010 dyn/cm.  

 
The “stress” data with Sb (Figure 9. 10) can be used to estimate upper limit of Bi effect on 
the elastic energy (1.10), (1.11). For estimation of the force constant kBi the stress data of Sb 
and geometry of Bi trimers will be used. The character of the chemical bonding of Bi trimers 
on Si(111) surface is close to p3 [142], that induces the right angles [143]. The length of Bi-
Bi bonds in trimer (β-phase) is 3.1 A [144,145,146], the distance between underlying Si 
atoms is 3.84 A, and ∠Bi-Bi-Si is near the right angle (98°) Figure 9. 11.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The strain of Bi trimers can be estimated from geometry. Deformation of the bond angle from 
90° to 98° corresponds to 24% of deformation of base of Bi trimer. Approximation by 
Hooke's law also gives upper estimation of Bi effect on the strain energy (1.10), (1.11). The 
strain of Bi trimers is 24% - that is six times larger than the strain of single Ge layer (4%), 
and stress of Bi trimer no more than 0.85 times larger than stress of single Ge layer, then:  
 

GeGeGeBi kkkk 14.0
6
85.0

%24
%485.0 === , 

(1.12) 

   
 

90° 

90° 

60° 

98° 

Figure 9. 11. Bi trimer on Si(111) surface. p3 character of the chemical bonding of Bi trimers on Si(111) 
surface induces the right angles (a), these angels are transformed by geometry of structure of underlying 
substrate into values which is different from 90° and that difference induces the strain; Bi atoms of trimer 
form equilateral triangle with base of 3.1 A, that is 24% less than base of underlying Si(111)1x1 unit sell 
3.84A (b); the 24% of the lateral difference is compensated by lager (than 90°) angle 98° (c). That 24% 
strain of trimer structure induces surface tension about 1.7 N/m. 

(a) (c) 

- Bi atoms 

- Si atoms 

(b) 

60° 
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A B C 

(ML)

Si(111)/Ge/Bi   500°C

H. Asaoka 

Combining (1.12) with (1.11) gives: 
 
– 1.0 kGe ε0

2 Asi x ≤  Eelastic
f-i ≤  – 0.88 kGe ε0

2 Asi x,   
 
we will use upper limit – 0.88 kGe ε0

2 Asi x. To represent the energy per atom we multiply this 

expression by constant – 0.157×1020 2m
atom

: 

Eelastic
f-i = – 0.157×1020 2m

atom
· 0.88kGe ε0

2 Asi x, 

xxN
atom
meVE if

elastic )1(33 −−=− , 

(1.13) 

 
where N  is number of particles, SiGe NNN += . 

Recently, evolution of the surface stress during Bi deposition and Ge growth on Bi 
terminated Si(111) surface was studied by H. Asaoka (Figure 9. 12). The results are 
surprisingly similar and have qualitative and numerical data which are mostly the same with 
data obtained for Sb by P. Zahl, P. Kury, M. Horn von Hoegen [136] (Figure 9. 10). As it 
was assumed above, the stress caused by 1ML of Bi 1.8 N/m is slightly lower than stress 
caused by 1ML of Sb 2 N/m (Figure 9. 10, Figure 9. 12). Therefore, calculations above can 
be well attributed to the surface terminated with Bi. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. 12. The calculated surface stress during Bi deposition (regime A) and Ge growth on Bi 
terminated Si(111) at 500°C obtained by Hidehito Asaoka. Bi adsorption (regime A) causes change in 
stress of ≈ 1.8 N/m.  During the coherent stage of growth (regime B) Ge deposition results in an initially 
linear increase of compressive film stress. The slope of 2.3 (N/m)/BL Ge compares well with the behavior 
expected from bulk elasticity constants.  

stress gradient -2.30 (N/m)/ML 
(regime B) 
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• Energy of mixing 
 
 

The cohesive energy is energy required to form separated neutral atoms in their ground 
electronic state from the solid at 0 K and at 1 atm. The cohesive energy of Si is 15% higher 
than Ge [129,128, 147,148,149], (Figure 9. 13).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
The cohesive energy of 50% GeSi alloy is approximately in the middle between Si-Si 

and Ge-Ge cohesive energies. Investigations [132,133,150,151] showed that cohesive energy 
of GeSi alloy is lower than average of Si and Ge cohesive energies per atom, i.e.: 

 
ESi-Ge

coh < (ESi-Si
coh + EGe-Ge

coh)/2 ,  
 

The difference ((ESi-Si
coh + EGe-Ge

coh)/2 - ESi-Ge
coh)  in the case of perfectly random 50% Si-Ge 

alloy is about 7 meV/atom [132,133,150,151]. The energy gain is so small that segregation of 
Ge and Si can occur only at temperatures lower than 170K [132].  

The energy of mixing can be found from probability relations as a function of Ge 
concentration x. The probability to have a Ge neighbor atom at one bond is equal to 

xGeP =)( , the probability to have a Si neighbor atom at one bond is equal to )1()( xSiP −= . 

Figure 9. 13. The energy diagram shows cohesive energies per atom for Ge, Si [147] and perfectly random 
50% GeSi alloy. The mixing energy of perfectly random 50% GeSi alloy is = 7 meV/atom 
[132,133,150,151]. Cohesive energy per atom is equal double energy per bond since two bonds per atom 
are present. Then the bond energies have the next relations:  
ESi-Si – ESi-Ge = 200 meV/bond and ESi-Ge – EGe-Ge = 185 meV/bond, (EGe-Ge + ESi-Si)/2 – ESi-Ge = 7 meV. 

perfectly random 50% GeSi alloy 
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Let’s take Ge crystal with xN ⋅  Ge atoms and Si crystal with )1( xN −⋅  Si atoms. The sum 
cohesive energy of the Ge and Si crystals (non intermixing state) is 

 
( )coh

SiSi
coh

GeGeGeSi
i

GeSi ExxENEEE −−+ −+−=+= )1( , (1. 14) 
 
where N  is the full number of particles, SiGe NNN += . The mixture of Ge xN ⋅  atoms with 
Si )1( xN −⋅  atoms gives GexSi1-x alloy. Every atom has 4 neighbors = 4 bonds. To exclude 
double accounting of the bonds we have to take only half, i.e. 2 bonds per atom. Therefore, 
GexSi1-x random alloy includes )1(4)(2)(2 xxSiPNGePN GeSi −=⋅+⋅  of Si-Ge bonds, 

22)( xGePNGe =⋅  of Ge-Ge bonds and 2)1(2)( xSiPN Si −=⋅  of Si-Si bonds per atom. The 
cohesive energy of GexSi1-x alloy (intermixed state) can be written in term of bond energies 
 

( )GeGeSiSiGeSi
f

GeSi ExExExxNE −−− +−+−−= 22)1()1(22 , (1. 15) 
 

where 
2

coh
GeGe

GeGe
E

E −
− = , GeSiE − , 

2

coh
SiSi

SiSi
E

E −
− = are bond energies between Ge-Ge, Si-Ge and 

Si-Si atoms respectively. Then, the sum cohesive energy of Ge and Si crystals (1. 14) in term 
of bond energies is 
 

( )SiSiGeGe
i

GeSi ExxENE −−+ −+−= )1(2 , (1. 16) 
 
The energy difference between final (1. 15) and initial (1. 16) states is 
 

( )
( ))(2)1(2

)1()1()1(22 22

GeGeSiSiGeSi

SiSiGeGeGeGeSiSiGeSi
if
GeSi

EEExNx

ExxEExExExxNE

−−−

−−−−−
−
+

+−−−=

=−−−+−+−−=
, 

 

Mixture energy of random alloy can be expressed in energy per atom mix

if
GeSi E

N
E

=
−
+ : 

 

)1(
2

)(
4 xx

EE
EE GeGeSiSi

GeSimix −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−−= −−

− , 
(1.17) 

 
)1( xxEmix −Ω= ,  
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where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−−=Ω −−

− 2
)(

4 GeGeSiSi
GeSi

EE
E  is called the interaction parameter. The mixing 

energy of 50% SiGe random alloy is atommeV
EE

EE GeGeSiSi
GeSimix /7

2
)(

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−−= −−

− , then 

Ω = 28 meV/atom.  
Bond energy between two atoms depends on their neighbors (Ge or Si) Figure 9. 14. The 

significant dependence can be expected for elements with ionic type of bonds. Si and Ge are 
similar elements with covalent type of bonds. In the following, to estimate Si-Ge, Ge-Ge, Si-
Si bond energies in the bulk only two interacting atoms (without neighbors) will be taken into 

account (this simplification was also used in previous computations): 
2

coh
GeGe

GeGe
E

E −
− = , 

2

coh
SiSi

SiSi
E

E −
− = , meV

EE
E GeGeSiSi

GeSi 7
2

)(
−

+
= −−

− . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The interaction parameter of thin monolayer film will be different from the interaction 
parameter of the bulk crystal due to influence of the surface interfaces. For estimation of 
effective interaction parameter the initial not intermixed state and final intermixed state will 
be considered Figure 9. 15 with random distribution of Si and Ge atoms in the height of GeSi 
layer Figure 9. 15 (a). The monolayer films have two interface surfaces: vacuum/Gex, Si1-x 
layers, Gex, Si1-x layers/Si substrate for initial state, and vacuum/GexSi1-x layer, GexSi1-x 
layer/Si substrate for final state Figure 9. 15. GexSi1-x layer spend 1/8 number of bonds to 
connect with Si substrate and 1/8 number of bonds are saturated with Bi. The 1/8 part of the 
bonds which are saturated with Bi has no energy difference in the initial and final state with 
random alloy Figure 9. 15. Number of Si-Si and Si-Ge bonds between Ge/Si layers and Si 
substrate are the same for initial and final state with GexSi1-x random alloy because of the 
number of Si and Ge atoms are conserved at the interface. Both considered above 1/8 parts of 
the bonds can be neglected. The resulting intermixing energy Ωeff of one GexSi1-x monolayer 
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2
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2
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2

1
1 AAAAAAEE SiSiSiSi −− =  

Figure 9. 14. The bonding energy is a function of the nearest neighbors. The variable parameter A can be 
either Si or Ge atoms. 
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on the Si substrate is 3/4 times less than intermixing energy in the bulk of the crystal, i.e. Ωeff 
= 21 meV/atom or 5.2 meV/atom for 50% GeSi random alloy. The mixing energy for the 
layers with areas Apit and Asi in the model shown in Figure 9. 7 is: 

 
xxNE eff

if
mix )1( −Ω=− , where N = (NSi +NGe) = (Apit + Asi)×0.312×1020 atom/m2 ,  

 
using (1.5) we can write (1-x) = Asi(Apit + Asi) and put it into equation for if

mixE − , then 
 

xA
m

atomE Sieff
if

mix Ω×=−
2

2010157.0 , 

xxN
atom
meVE if

mix )1(21 −=− . 
(1.18) 

 
The mixing energy increases with x. From (1.18) and (1.5) it follows that mixing energy of 
the system increases with increase of pit size Apit. This result is based on the model with 
random distribution of Si and Ge atoms in the height of GeSi layer Figure 9. 15 (a). The 
segregation of Ge atoms on top of the layer Figure 9. 15 (b) will decrease the mixing energy. 
The Bi termination reduces the surface energy and can reduce segregation energy. 
Experimental measurements in [24] show that Ge does not segregate at Bi terminated Si(111) 
surface. Therefore, in the following we use the model with random distribution of Si and Ge 
atoms in the height of GeSi layer Figure 9. 15 (a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. 15. The energy of compound GexSi1-x layer depend on interior combination of bonds, due to that 
we lose some part of the intermixing energy in the interface regions. There are presented two cases: a) 
randomly distributed Ge atoms in vertical direction and b) complete segregation of the Ge atoms on top of 
the layer. 
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• Energy of step formation 
 

The step free energy of the pits can be calculated from the step free energy per unit 
length γ which is generally a function γ(θ) of the in plane step orientation angle θ. In the 
following under step energy the step free energy will be assumed. The energy U of an 
arbitrary step configuration y(x) can be obtained by integrating along the step, 

∫ ⋅= ))(( sdsU θγ ,  
where s denotes the length along the step. In the case of round pits Figure 9. 16 the step 
energy can be expressed as: 

γπRU 2= , (1.19) 

where 
R

dss

ds

dss

π

γγ
γ

2

)()( ∫
∫

∫ ==  is average step energy per unit length.  

 
 
 
 
 
 
 
 
 
 
 
 
The step energy is associated with increase of the surface area induced by shift a part of a 
crystal on an atomic distance perpendicular to the surface. That shift produces additional 
surface area proportional to the height of step. The step energy is related to the surface energy 
as d࣌/dθ, where ߪ – is the surface energy as a function of angle of the surface orientation θ. 
Reconstructed surface has a lower surface energy and usually lower step energy formation. 
The energy values for different step orientations on the Si(111) surface are given in table 
Table 2. 
Table 2 

Structure Step free energy reference 
(1x1) terrace [ 211 ] Step 0.240 

o

AeV / , (T = 0K) 
[152,153] 

(1x1) terrace [ 211 ] Step 0.202 
o

AeV / , (T = 0K) 
[152,153] 

(1x1) terrace [ 011 ] Step 0.324 
o

AeV / , (T = 0K) 
[152, 153] 

(7x7) terrace [ 211 ] and [ 211 ] Steps 0.0356 േ 0.0052 
o

AeV /  
0.14 eV/atom (T=700°C) 

[13,154,153]

(1x1)-As terrace [ 211 ] Step, Si replaced by As 0.0935 
o

AeV /  (T = ??) 
[155] 

(1x1)-As terrace [ 211 ] Step, Si replaced by 
As 0.1104 

o

AeV /  (T = ??) 
[155] 

Figure 9. 16. The pit of round shape. 
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The highest step energies was observed for unreconstructed - 1x1 Si(111) surfaces. The 
lowest energy of step formation in Table 2 corresponds to the reconstructed surface (0.0356 

o

AeV / ). For Bi passivated Si(111) surface the step energy formation can be even lower than 

for Si(111)-7x7 - 0.0356 
o

AeV /  due to lower Si(111)√3x√3-Bi surface energy. The step 

energy for As passivated surface is 0.0935 
o

AeV / . Let’s take the value of 0.0356 
o

AeV /  for 
the Si(111)-7x7 reconstructed surface to estimate upper limit of average energy of step 
formation in Ge layer on Si(111)√3x√3-Bi surface.  

The average step energy γ  depends on curvature of the step and also includes energy of 
relaxation near step edges of strained Ge layer. Elastic relaxation energy at step edges will be 
considered in the following.  

 
• Elastic relaxation energy at step edges 

 
The strained Ge layer can relax at step edges as shown on Figure 9. 17.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. 17. Geometry for computing the elastic relaxation step energy (a); Displacement field of the 
force λ achieve maximum value u at the step edge (b). The two cases are shown, (b) - relaxation at open 
step edge and (c) - relaxation at interface boundary between Ge and Si layers. 
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This elastic relaxation energy at step edge can be found with expression: 
 

∫ ⋅−= rdzyxuzyxFEel
3),,(),,(

2
1)( λ , 

(1.20) 

where u is the displacement field associated with force λ. The force λ is produced by one 
Si/Ge monolayer with composition of x = AGe/(ASi + AGe) and can be written as: 
 

xkGe 0ελ = , (1.21) 
          
Displacement field of localized force F = F0δ(x)δ(y)δ(z) has been given by Landau and 
Lifshitz [156], at z = 0 in plane (x,y) of the surface that is: 
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(1.22) 

 
where ν is Poisson’s ratio, Y is Young’s modulus and r is the distance from the force location. 
The arbitrary force of magnitude f(x,y,z), can be presented as the linear combination of the 
forces F = F0δ(x1)δ(y1)δ(z1) with amplitudes F0 = f(x1,y1,z1), i.e:  

111111 )()()(),,(),,( dzdydxzzyyxxzyxfzyxf −−−= ∫
∞

∞−

δδδ , 
(1.23) 

The ui(x,y) is solution of a linear differential equation for the force F = F0δ(x)δ(y)δ(z), then 
solution for arbitrary force f(x,y,z) can be found as linear combinations of solutions of the 
force F = F0δ(x1)δ(y1)δ(z1), i.e.:  
 

∫∫ −−−= 111111111 ),,(),,(),,( dzdydxzyxfzzyyxxGzyxu kiki , (1.24) 

Equations (1.22) present sums: ui(x,y,z) = Gix + Giy + Giz. λ(x) force of magnitude λ in Figure 
9. 17 (b) is directed normal to the boundary (or step edge) which is parallel to y direction, the 
force has only x component and can be expressed as )()(),,( zxzyx δλδλ = . According to 
(1.24) displacement field ux(x,y) can be found as: 

1111111111 ),,()()(),,(),,( dyzyyxudzdydxzxzzyyxxuzyxu xxx ∫∫∫ −=−−−= λδλδ .
(1.25) 

Solution of(1.25) at x = 0, z = 0 for a straight step edge segment of length L, which coincides 
with y axis, can be done as the following: 

1
0 1

2 11)0,,0( dy
yyY

yu
L

x ∫ −
−

= λ
π
ν , 

(1.26) 

 
According to (1.20) the energy of relaxation per unit length is:  
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∫∫ −=−= dyyudzdxdyzxzyxuE xxel )0,,0(
2
1)()(),,(

2
1 λδλδ , 

(1.27) 

 
Solution of (1.27) with force )()(),,( zxzyx δλδλ =  was found in [134] (see Appendix E). 
The singularity problem at )0,,0( yr =  was resolved in [134] by taking lower limit of the 
integration equal to the interatomic distance a . Another way to solve the singularity problem 
is the following. The singularity problem at )0,,0( yr =  does not exist for dispersed forces. 
The force homogeneously distributed in cylinder around )0,,0( yr =  Figure 9. 18 (a) is one 
of the possible approximation of a dispersed force. While the integration of the dispersed 
force Figure 9. 18 (a) is complicated, the displacement field at )0,,( yxr = , for 0=x  and 

ax >>  will be calculated with the force located along y axis on cylinder radius of 
2
1

2
1 xza +=  Figure 9. 18 (b), )(

2
),,( 22 axz

a
zyxFx −+= δ

π
λ , λ=∫∫ dxdzzxFx ),(  .  The 

subsequent integration of the displacement field in (1.20) will be taken, for simplicity, with 
the force (1.27) localized at )0,,0( yr = ,  )()(),,( zxzyx δλδλ = .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The original solution for ui(x,y,z) in [134] still can be simplified with relations (1.22) because 
the force ),,( zyxFx  is distributed on cylinder with small size: 0 < z < a, 0 < x < a , where 
size a is too small in comparison with length of the steps L,  a/L → 0. With x component of 
the force ),,( zyxFx  equations (1.22) takes the form: 

Figure 9. 18. The force distributions. Distribution of the force can be approximated with homogeneous 
distribution in the cylinder a). Next approximation is a delta function on cylinder radius of a b). 
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The force with only x component is present, then for calculation of the energy (1.20) only x 
component of the displacement field is needed. After integration of ),,( zyxux  (1.22) with the 

force )(
2

),( 22 axz
a

yxFx −+= δ
π
λ we obtain: 
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To calculate the energy (1.27) the displacement field at the surface, i.e. at z = 0 is required. 
After transition to the integration in polar coordinates x1 = acosα, z1 = asinα the displacement 
field takes the form: 
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(1. 28) 

 
For the force applied at x = 0 the integral (1. 28) will be simplified to: 
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Finally at x = 0 we have: 
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The second part I2 of the relation is less than the first I1 . The maximal value of I2 /I1 relation 
can be estimated: 
 

I1 I2 
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Then we can estimate the relation I2 /I1 at limit points t = y/L → 0 and t = 0.5:  
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At (L-2a) > y > 2a we can neglect by I2 which has the value less than 5% of the value I1, then 

),( yaux  can be simplified to: 
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(1.30) 

 
The displacement field (1. 38) at big distances x >> a can be approached with: 
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Relation (1. 41) for ),( yxux  at x = a is equal to relation (1. 29). At x/L → 0, and at (L-2x) > y 
> 2x integral I2 has the value less than 5% of the value I1 and can be neglected. The relations 
for ),( yxu y and ),( yxuz can be simplified at x/L → 0:  
 

( )
0

)(

)(1

,
)(

)(1),(

1

1

0 2
3

2
1

2

2

1

1
11

0 2
3

2
1

2

1

→⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−+
=

=⎥⎦
⎤

⎢⎣
⎡ ===⋅

−+

−+
=

∫

∫

dt

tt
L
x

tt
L
x

Y

L
yt

L
y

tdy
yyx

xyy
Y

yxu
L

y

ν
λ

π
ν

ν
λ

π
ν

, 

 

0
)(

)21(
2
1

,
)(

)21(
2
1),(

1
0 2

1

2

2

1
11

0
2

1
2

→⋅
−+

−+
=

=⎥⎦
⎤

⎢⎣
⎡ ===⋅

−+
−+

=

∫

∫

dt
tt

L
xL

x
Y

L
yt

L
ytdy

yyx
x

Y
yxu

L

L

z

νλ
π
ν

νλ
π
ν

. 

 Finally relation (1. 31) for ),( yaux  can be written as: 
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where x ≥ a. Solution of (1.30) is (see Appendix C): 
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This relation works at x ≥ a. At x < a  equation (1.30) can be used. Solution of (1.30) is 
relation (1.33) at x = a: 
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(1. 34) 

 
Figure 9. 19 shows an example of distribution of displacement field for x component induced 
by the force with radius localization of a along the step segment length of L at x = 0. The 
dependence was calculated for relation L/a = 100. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. 19. The displacement field ),0( yux as a function of distance y along the step segment has a 
maximum at the middle of the straight step segment y = L/2 . The size of localization of the force was 
taken a = 1 and length of step segment L = 100. 
 

),0( yux  
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To calculate relaxation energy we take displacement field (induced by the force 
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λ ) (1. 34) and integrate this displacement field with the force 

of the same power λ , )()(),,( zxzyx δλδλ = , then (1.27) takes the form: 
 

∫
++

−+−+−
=

L

el dy
yya

LyLya
Y

E
0

22

22
2

2 )()(
ln1

2
1 λ

π
ν . 

(1.35) 

 
Integration of (1.35) by parts gives the next relation:  
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After transformation of integral (1.35) into appropriate form and after calculations (see 
Appendix D) we obtain: 
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(1.38) 

This expression can be simplified at 0→
L
a , then the relaxation energy per unit length is: 

)12(ln10
2

2 −
−

−=⎥⎦
⎤

⎢⎣
⎡ →=

a
L

YL
a

L
Eel

π
νλ . 

(1.39) 

 
This equation is valid for the situation of a single step, as shown in Figure 9. 17 (b). The 
same solution for relaxation energy elE  was found in [134], also see Appendix E.  
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In the case of a Ge stripe Figure 9. 20 the interaction of displacement fields between 
parallel steps (Figure 9. 20) will be taken into account. Superposition method allows to sum 
the displacement fields from both sides of the Ge stripe. To calculate energy of the stripe the 
displacement fields at steps 1 and 2 will be calculated. The displacement field )(xux  at step 1 
(x = 0) is sum of the displacement fields of (1.33), displacement field induced with step 1 1

xu  
plus field induced with step 2 2

xu : 
 

),0(),0()0( 21 yuyuu xxx += . (1. 40) 
 
The same algorithm for the displacement field )(wux  at step 2: 
 

),(),()( 21 ywuywuwu xxx += , (1. 41) 
 
where ),(),( 2,12,1 yxuyxu xx =−  and ),(),(),( 21 yxuywxuyxu xxx =+−= . We assume that 
amplitude of the λ  force does not depend on width of the stripe. Then substitution of (1. 40) 
and (1. 41) into (1.27) gives the energies for steps 1 and 2 which depend on stripe width w: 
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Figure 9. 20. Ge stripe width of w and length of L, L >> w. 
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after transposition we obtain: 
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here the first integral ∫ dyyxux ),(λ  - is an interaction energy 
L

xEi )(
. Width of the stripe is 

much less than length 1<<
L
w  (Figure 9. 20), therefore the relation (1.39) can be used. Then 

interaction energy takes the form: 
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To write relation for 
L
wEi )(

 we put wa =  in (1.39). Then the energy of relaxation 
L

wE stripe
el )(

 

at edges of free standing Ge stripe width of w is: 
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(1.43) 

The relaxation energy per unit length does not depend on length of stripe at L >> w. Similar 
logarithmic dependence on width for the striped structure was found in [157]. 

To calculate elastic energy of round pits of radius R the approximation with rectangular 
shape (61) in [134] will be used. After replacement of s and t in the (61) by 2R the elastic 
energy takes the form: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−−

+
≈

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

−+
−

−
+

=

a
R

Y
R

a
R

Y
R

Y
RE sq

el

2ln533.0)1(118

12
12ln

2
12ln21818

2

2
2

2

νλ
π
ν

λ
π
νλ

π
ν

, 

(1.44) 

Non symmetric case with Ge stripe attached to the Si step is shown in Figure 9. 21 (a). 
The relaxation energy of the stripe with open Ge step edge at one side and with Si/Ge 
interface at another side Figure 9. 21 (a) will be different from (1.43). An additional force 
induced by one Si layer (from left) reduces displacement field at Si/Ge interface Figure 9. 21 

(a). The same value of the force is induced by a
2
1 of the Si layer Figure 9. 21 (b). To take 

into account the additional force radius of the force Figure 9. 18 (b) equal to a
2
3

2
11 =+  will 

be used. 
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Interaction energy for Ge stripe with Si/Ge interface at both sides can be written as:  
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resulting relaxation energy at the edges for the Ge stripe with Si/Ge interfaces is: 
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(1. 45) 

These calculations were made with the same algorithm as for relation (1.43). Relaxation 
energy for non symmetry case (Figure 9. 21 (a)) is average of the energies for free standing 
Ge stripe (1.43) and for Ge stripe with Si/Ge interfaces (1. 45): 

Figure 9. 21. Ge stripe width of  w and length of L >> w (a). Ge stripe borders with Si from left and has 
open step edge at right side (a), the additional force induced by Si layer from left side can be approximated 
with the force induced by ½ of the surface layer (b).  
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(1.46) 

Relation (1.46) will be used for Ge stripes and relation (1.44) will be used for round pits in 
Ge layer.Equations and numbers for the step energy γ  are placed in Table 3: 
Table 3 

Step energy formation on Si(111) surface from 
Table 2 γ0 = 0.0356, 

o

AeV /  

Young’s modulus for Si ((111) – plane) from [25] Y = 10109.16 × , N/m2 
Poisson’s ratio for Si ((111) – plane) from [25] ν = 0.262 
The force per unit length along the boundary of 
magnitude λ from (1.21) 

λ = 32.2×x , N/m 

Energy of relaxation per unit length of pits radius 
R from (1.44) a

R
R

E R
el 2ln0061.00048.0

8

2

−= ,  
o
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Energy of relaxation per unit length of Si/Ge 
stripe width of w from (1.46) 
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o
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The expression for the step energy of round pit (1.19) can be written as sum of the step 
energy formation and relaxation energy at the step edges (Table 3): 
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(1.47) 

Pit formation is followed with formation of Ge (GeSi) stripe at outer Si steps. The sum energy 
of the pit’s steps (1.44) plus relaxation energy in Ge stripe (1.46) at outer step edges can be 
written as: 

Lx
a
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RU 28.0ln012.022ln62.60061.0 ⎟
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⎝
⎛ −= π , eV 

(1.48) 

 
 
 
 
The sum energy gain (1.48) can achieve a negative value by means of relaxation energy at 
pit’s steps and outer step edges. Formation of the pit’s steps can be energetically favorable 
because the relaxation energy at the step edges can be larger than step formation energy (γ0 = 

0.0356, 
o

AeV / ). Figure 9. 22 shows energies for the pit’s step and for the relaxation energy 
at outer steps. Relaxation energy per Ge atom at outer step edge (1.46) was divided by 
number of Ge atoms per unit length of Ge stripe width of w, the energy dependence is shown 
as a function of width w in Figure 9. 22 (a). The relaxation energy achieves a maximal value 
about -7 meV/atom at width of Ge outer stripe about 1 nm Figure 9. 22 (a). The maximal 

pit’s step energy relax. energy at outer steps 
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value of pit’s step energy gain (γ0 = 0.0356, 
o

AeV / ) is about -0.025 meV/atom at pit radius of 
300 nm Figure 9. 22 (b). Negative value of the pit’s step energy is achieved at pits radius of 
100 nm. Experimentally observed pits have a radius about 1ൊ15 nm. The sum energy gain 
with relaxation at outer steps can provide pit radius much lower than 100 nm. The Si/GeSi 
outer stripe Figure 9. 23 is very important since it gives the space for reduction of 
displacement field from original Ge stripe. The space between original Ge stripe and outer Ge 
stripe reduces interaction energy and increases negative energy gain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 9. 22. (a) relaxation energy in Ge stripe per Ge atom moved away from the pits to the outside Ge 
stripe width of w, (b) pit step energy per Ge atom moved away from the pits radius of R . 
 

R , A 

w , A 

(a) 

(b) 

-E, 
eV/Ge atom 



136 
 

Relaxation energy at outer sink steps (right part of the expression (1.48)) is proportional to 
the length L of  the outer steps. Length L can be increased with Si/Ge coverage, density of 
Si/Ge islands and adatom diffusion length on the surface. Si/Ge deposition at low temperature 
gives high density of Si/Ge islands. The following pit formation can be enhanced with 
increase of temperature. High density of Ge islands and larger diffusion length at higher 
temperature should enhance the pit formation and decrease the minimal radius of the pits. The 
pits should also form more effectively in broad Ge layers since broad layer is less relaxed 
(1.46).  

 To calculate the relaxation energy for the system shown in Figure 9. 23 the 
displacement fields from every border must be taken into account. The important alternative 
case is shown on Figure 9. 24. Final state Figure 9. 24 (b) is created by removing Ge stripe 
width of w from the centre of the preexisting Ge layer width of wGe Figure 9. 24 (a). Minimal 
radius of the pits can be taken equal to the minimal size w for geometry in Figure 9. 24 (b). 
Energy gain between final Figure 9. 24 (b) and initial Figure 9. 24 (a) states can be written 
as: 
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(1.49) 

 
where function ),,,,( 321 GeGeGeSi wwwwwf  contains result of combinations of the displacement 
fields from every border (Figure 9. 24 (b)) 
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(1.50) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 9. 23. Geometry of the system with pits.  
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Maximal energy gain per unit length is achieved at ∞→w , ∞→Siw . If wGe1/a ≈ wGe2/a ≈ 

wGe3/a  are big numbers (>>10), then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
−≈

−

a
w

ML
E i

Ge
if

elastic ln212
2

2

π
νλ . This approximation 

shows that relaxation energy gain per unit length increases with width of preexisting Ge 
stripes and increase of Si stripe (spacer) between outer Ge stripe and preexisting Ge stripe.  

3D dependence for the energy gain per atom of (1.49) is built in Figure 9. 25 with the 
following approximations: wGe1 = wGe2 = wGe3 = w = y; wSi = t. The relaxation energy achieves 
a maximum -8.4 meV/Ge atom at width of  y ~ 2 nm.  
 
 
 

Figure 9. 24. The initial (a) and final (b) state for geometry with free standing Si/Ge stripe. 
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The total step energy gain of the model Figure 9. 24 is shown in Figure 9. 26, the step 

energy formation was taken 0.036 
o

AeV /  (Table 2). The maximal value of total energy gain 
is about -0.5 meV/Ge atom (Figure 9. 26) at Ge concentration x = 1. This energy gain is 
achieved at width y larger than 20 nm. The energy gain becomes positive at ymin > 15 nm. It 
is smaller than 100 nm but still much higher than 1 nm. According to the data in Figure 9. 26 
the minimal width of the Ge stripe will be about 3×ymin = 45 nm. The model with relaxation 
at outer step edges gives better agreement with experimental data, but the minimal size for the 
pit formation is still larger than minimal pit size observed in the experiments ~1 nm. Better 

agreement can be provided with the step energy formation lower than 0.036 
o

AeV / . At step 

free energy of 0.005 
o

AeV /  (T = 450°C) the maximal energy gain is equal -5.6 meV/Ge atom 

(Figure 9. 25) and minimal size of Ge stripe is ~3 nm. The step free energy of 0.005 
o

AeV /  
(~0.02eV/atom) at T = 450°C is so small (0.02eV/atom << eVTkB 063.0= ) that temperature 
of 450°C can be considered as a temperature near of step roughening transition temperature. 

At x ؆ 0.5 the total step energy gain is lower than elastic energy gain (1.13).  
 

Eelastic
f-i = –(1-x)x ·29 meV/Ge atom, where xSi = ASi/(ASi + Apit ).    

  
 
 

Figure 9. 25. The relaxation energy gain dependence (x = 1) per Ge atom for geometry shown in Figure 9. 
24 with the following parameters: wGe1 = wGe2 = wGe3 = w = y and wSi = t. 
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Maximal value of Eelastic

f-i (at x ൌ 0.5) is 14.5 meV/Ge atom, this is much higher than the 

maximal total step energy gain (at x ൌ 0.5, γ0 = 0.005 
o

AeV / ) which is ൏ 2 meV/Ge atom.  
The mixing energies give the largest contribution for energy gain at x = 0.5. At x = 1 the 

mixing energy is zero while the step edge relaxation energy (1.48) gives the largest 
contribution which can achieve the value of 5 meV/atom.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. 26. Total step energy gain dependence (x = 1) per atom for geometry shown in Figure 9. 24 with 
fixed parameters wGe1 = wGe2 = wGe3 = w = y and with wSi = t. Energy of the step formation was taken 36 
meV/A. 
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• Gibbs free energy – collecting all energy terms 
 

Irreversible processes are followed by a change of quantity of heat ∆Q which is lower 
than that change in equivalent of the entropy T∆S. That can be written as: 

 

dt
dST

dt
dQ

≤ ,       

 

dt
dST

dt
dVP

dt
dE

<+ , 
(1.51) 

   
where E – internal energy, P – pressure, V – volume, T – temperature, and t - time. From 
(1.51) at T = const and P = const → 
 

0)(
<=

−+
dt
dG

dt
TSPVEd , 

(1.52) 

 
I.e. during irreversible process at fixed T and P the Gibbs free energy is decreased, G → min. 
This general thermodynamics law for irreversible processes can be found in [158]. The Gibbs 
free energy can be found as 
 

mixTSEG −= , (1.53) 
 
where E is complete internal energy and Smix is entropy of mixing. Entropy of mixing of two 
components corresponds to the number of possibilities for an exchange of atoms A with 
atoms B is [25]: 
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With Stirling’s approximation for large numbers N>>1 one obtains 
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approximation xx −≈− )1ln( , )1(ln xx −−≈ , we obtain: 
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The number of atoms of SiA  and pitA  involved into intermixing process defines entropy of 
the system Figure 9. 27. Final and initial state of the system is considered as shown on 
Figure 9. 27.  

Complete internal energy of the system consist of three parts, steprelaxstepE + , elasticE  
and mixingE , then the Gibbs free energy of the system can be present as: 
 

mixmixingelasticsteprelaxstep
if TSEEEG −++= +

− , (1.56) 
 
Complete internal energy is sum of three parts of the internal energies (1.13), (1.18) and 
(1.48) with entropy (1.55) this gives the Gibbs free energy of the system: 
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(1. 57) 

 
 
 

Figure 9. 27. The model considers initial and final states with energies Ei and Ef correspondingly. The 
initial state presents Si and Ge layers of volume  Asi and AGe without pits. The final state presents Ge layer 
of volume (AGe – Apit) with pit of area Apit and Si-Ge layer which is homogenous composition of Ge of 
volume Apit and Si of volume Asi. 
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where L – length of sink outer steps per one pit wN
atom
A

L /)4.6(
2

⋅=  (A), where w – width 

of Si/Ge stripe (w > 3.14A), and 
atom

A
R
NxRNx

atom
A

R 2

2

2

4.622
4.6

=→= ππ . SiGe NNN +=  – is 

sum number of Si (ASi ) and Ge (Apit) atoms. After calculations, the Gibbs free energy (1. 57) 
can be written as:  

 
 
 

 
 
 
 
The numbers are given at temperature of the system 450°C, step energy formation 5 ൊ 36 

o

AmeV / , pits radius ൑ 5 nm, Ge concentration 5.0=Gex . The entropy part in (1. 58) gives 
the largest contribution at 5.0=Gex . Together with elastic and segregation energy it can be a 
driving force for the pits formation.  

The expression (1. 58) contains two different parts: the step edge relaxation part Estep and 
mixing energy part Gmix. At x = 1 the mixing energy part is equal zero and only the step edge 
relaxation energy can be a driving force. At x ؆ 0.5 the mixing energy part is essential part of 
the Gibbs free energy. Experiments show that Ge concentration x is usually about 0.5 Figure 
9. 6 (b). Without the smallest energy part which is the step relaxation energy (Estep relax ൑ 8.4 
meV/atom Figure 9. 25) we obtain: 
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(1. 59) 

 
 
 

The step energy part in (1. 59) is significant with the step energy formation 0.036 
o

AeV /  at 
small radiuses R when relaxation at pits step edges is negligible. Then, with the step energy 

formation 0.036 
o

AeV /  (Table 2) one takes the form: 
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(1. 58) 

Estep ൑ െ0.5ൊ5.6 meV/atom (Figure 9. 26), at x = 1 

Eelast +mix TSmix Estep 

Gmix 
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For the following analysis a short notation of (1. 60) will be used: 
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 - function of two system parameters ),( RASi  is qualitatively shown on Figure 

9. 28. According to (1.52)  the pits can form if the Gibbs free energy (1. 61) is negative, then: 
 

02)(2 2 <+−+ SiSimixmix ARATSER γγπ , (1. 62) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The equation can be solved if 016)( 222 >−− SiSimixmix AATSE γπ , then 
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γπ . 

(1. 63) 

It means that the pits can form when amount of deposited Si per “diffusion area” is larger 
than min

SiA , min
SiSi AA > .The minimal radius of the pits can be found from (1. 62): 

 

Figure 9. 28. Gibbs free energy of the system at different ASi as a function of the pit’s radius R 
(1. 61), qualitative behavior.  
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SiSi AA =  the minimal radius of the pits is: 
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This is a minimal size of the pits which can be estimated with the step energy formation of 
0.036 eV/A (Table 2) as: 
 

o

A
TSE

R
mixmix

7
135

2404
)(

4
min =

⋅
=

−
−

=
γ . (1. 65) 

 
The minimal size of the pits can be 50% decreased with increase of SiA  (Figure 9. 29). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Si deposition is required to induce the pit formation since the Gibbs free energy (1. 61) 
can achieve a negative value when amount of deposited Si per pit is larger than min

SiA  (1. 63). 
Another important condition for the pit formation is minimal size of the pits which is ranged 
from 0.35  to 0.7 nm. (1. 65), (Figure 9. 29). 

More detailed description can be done in term of chemical potential with continuum 
model in Figure 9. 30 which considers behavior of the system during Si deposition. 

Figure 9. 29. Critical pit size Rmin as a function of Si coverage ASi per area per one pit.  
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Now composition x at step edge is a function of time, then change of the Gibbs free energy 
for the model shown in Figure 9. 30 can be written as: 
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x ). Change of the Gibbs free energy per Ge atom 

GeNΔ  is change of chemical GeμΔ  potential when Ge atom moves from the pit to the outer 
step edge: 
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The pits can grow if the difference of chemical potential is lower zero, 0<Δμ : 
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The minimal or critical size of the pits cR  can be determined at 0=Δμ :  
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Figure 9. 30. The continuum model considers change of the system energy ∆E corresponding to the 
change of pit area ∆Apit (∆NGe) with Si area ∆ASi (∆NSi). 
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Critical size of the pits cR  depends on the ratio 
SiA
RR

Δ
Δ

=
πη 2 , at 0≅η  the critical pit size is 

minimal: 
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γ . (1. 67) 

 
At 0≅η  the chemical potential (1. 66) takes the simple form which is qualitatively the same 
for the 2D islands: 
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−+=Δ γμ . (1. 68) 

 
This is interesting result since thermodynamics of the pits growth (nucleation) at 0≅η  can be 
the same like for growth and nucleation of 2D islands. Probably the pits could coalescence 
and form big trenches along Si step edges. The meaning of the critical pit size (1. 67) can be 
also the same like for critical 2D island size. The pits were not observed in Ge stripes with 
width lower than ؆2ൊ4 nm, this can be explained by critical pit size. The pits can grow 
further if those have a size larger than critical pit size, at lower size the pits are not stable and 
will disappear. 

Behavior of the system can be described as reaction of the system on addition particle 
which is Si atom in our case, therefore, to study behavior of our system we rewrite the 
chemical potential for Ge atoms (1. 66) into chemical potential for Si atoms: 
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We assume that chemical potential of the system Figure 9. 30 is capable to reach the 
minimum, i.e., in frame of our model, every small portion of Si atoms can intermix with Ge 
atoms with optimal ratio η  giving local energy minimum (1. 69) of the system. Absolute 
energy minimum of the system is not achieved due to kinetic limitations, Si and Ge atoms are 
able to intermix in desired proportion until those don’t blocked at the step edges with the next 
atoms incorporating into the step edges. The chemical potential )(ημ Si  as a function of ratio 
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Solution of equation (1. 70) is: 
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η
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RTSE mixmix −−±−= . Since η  is positive during pit 

growth ( 0,0 >Δ>Δ SiAR ), then:  

1−=
cR

Rη , 
(1. 71) 

where 
)(

2

mixmix
c TSE

R
−

−=
γ . The ratio 

SiA
RR

Δ
Δ

=
πη 2  can be expressed as 

t
A

t
RR

Si

∂
∂

∂
∂

=
π

η
2

, where 

t
ASi

∂
∂  is proportional to the Si flux: FA

t
ASi

0=
∂
∂ , here 0A  - is area per one pit. Then equation 

(1. 71) takes the form: 

12

0

−=
∂
∂

cR
R

t
R

FA
Rπ . 

(1. 72) 

 
Solution of differential equation (1. 72) (see Appendix F) is: 
 

C
tt

zzzz 0
23

23
1ln

−
=+++− , where 

cR
Rz = , 

FA
R

C c

0

24π
= . 

 

(1. 73) 
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The radius dependence on time is shown in Figure 9. 31. The dependence was built up at 

the following conditions: cRtR ⋅== 01.1)0( , 5.2=C , 35.0)/036.0( ==
o

AeVRc γ nm, T = 
450°C. The pits grown at substrate temperature of T = 450°C, Si deposition rate of FSi = 
0.0015 ML/sec, and deposition time of 150 sec (2.5 min) are shown in Figure 9. 32. Average 
pit radius is about 5 nm (maximal ~10 nm), pit density is about npit = 2.6ൈ10-5 nm-2. Average 

area per pit is equal 38001exp
0 ==

pitn
A nm2 (from the experimental data of Figure 9. 32). 

From condition 5.2
4

0

2

==
FA

R
C cπ  (Figure 9. 31) average area per pit is equal 

412
0015.05.2

35.035.06.12
2

4
0 =

⋅
⋅⋅

==
F
R

A cπ nm2, this is 9 times lower than 3800exp
0 =A nm2. From 

relation 5.2
4

0

2

==
FA

R
C cπ  and 3800exp

0 =A nm2 the critical pit size and step energy formation 

can be estimated as 05.1)/108.0( ==
o

AeVRc γ nm and 
o

AeV /108.0=γ  correspondingly. The 

step energy formation of 
o

AeV /108.0=γ  is ~3 times higher than 
o

AeV /036.0 . The step 
energy about 0.0935ൊ0.1104 eV/A was calculated Ab - initio for As-covered Si(111)-1x1 
surface in [155] (also see Table 2). Step energy formation can be also high for the pits radius 
of ~1 nm due to increase of the step energy with decrease of radius of step curvature.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 9. 32. The pits were formed during deposition of 0.22 ML of Si for 2.5 min at 450°C. 
Image size 400 nm [This experimental result was obtained by Dr. Jacek Brona]. 



149 
 

Temperature and flux dependence of the pit radius can be complicated since 
pitn

A 1
0 =  

( ),( Sipitpit FTnn = ) in (1. 73) is also function of the temperature and Si flux. 
The energy model gives qualitative description of the behavior of the system and gives 

quantitative estimations for the step energy formation 
o

AeV /108.0=γ  and for critical pit size 

05.1)/108.0( ==
o

AeVRc γ nm, ( 35.0)/036.0( ==
o

AeVRc γ nm). Predicted critical pit size 
1=cR  nm is comparable with experimental data in Figure 9. 32, the minimal pit size was 

experimentally observed (Figure 9. 32) about 1ൊ2 nm. 
The entropy has the largest contribution in Gibbs free energy (1. 59), 10 times larger than 

sum of internal energies.  
The mechanism of the pit formation in term of attachment – detachment events can be 

explained as the following: Ge atoms detach from Ge step (pit step) and attach to the GeSi 
outer steps due to stronger of Si type bonds than Ge type [128,129], Si also prefers to 
incorporate into GeSi outer steps due to stronger Si type bonds than Ge type bonds. The pit 
growth continues if the pit steps and outer step edges have a different GeSi composition and 
as consequence different chemical potentials. To study kinetics of the pit formation several 
experiments were made with the pits formed during annealing without Si deposition. 
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• Pits  formation during annealing after Si deposition 
 

In the previous analysis it was shown that internal energy of the system is small in 
comparison with entropy (1. 59). It is still not clear how the entropy can drive the pits growth. 
To understand the kinetics and mechanisms of the pit formation a series of the experiments 
without Si deposition were performed.  

The pits shown in Figure 9. 33 were grown during annealing without Si deposition. The 
first part of the experiment is preparation of the system of Ge and Si stripes which is shown in 
left image of Figure 9. 33. The system was prepared by standard SME procedure, Ge was 
deposited at 400°C during 15 min, then Si was deposited during 3 min., rate of Ge and Si 
deposition was about 0.015 BL/min. At low temperature (400°C) kinetic processes are slow 
while no pits were formed during Si deposition. Broad Ge stripe and thin outer Si rim was 
formed as shown in left image Figure 9. 33. During annealing at 460°C, the pits (right image 
of Figure 9. 33) were formed even more effectively than during Si deposition at 460°C. 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
Figure 9. 33. Left image - the system of broad Ge and thin Si stripe grown at 400°C without any pits. The right 
image – the pits formed during annealing for 10 min at 460°C. 
 
 
The observed pit formation is unexpected since the negative energy gain (1. 62) in the system 
can be provided by Si deposition as it was shown in previous paragraph. During annealing at 
high temperatures (460°C) Ge also goes from the pits to the outer Si step edges. Line profile 
measurements in Figure 9. 34 showed that Si can be taken from the Si substrate: Ge 
incorporation into outer step edges is followed with growth front intermixing! Line profile in 
Figure 9. 34 shows that apparent height of Si/Ge stripe is 0.5 A lower than height of pure Ge 
stripe Figure 9. 34. Si/Ge outer stripe has more than 50% of Si. After incorporation of Ge 
into Si steps the Si step edges become Si/Ge step edges.  
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Figure 9. 34. Cross sectional profile A-B at step edge. ∆ - height difference between Ge and Si/Ge layer is about 
0.5 A, that correspond more than 50% of Si. The pits were formed during annealing at 450°C for 10 min plus 
500°C for 5 min. 
 
The atoms at open step edges have a less neighbors than the atoms at the terrace, therefore the 
atoms at open step edges have a lower activation energy for intermixing with underlying Si 
atoms Figure 9. 35. Line profile of Figure 9. 34 shows that concentration of Si provided by 
vertical intermixing in Ge layer is too small in comparison with concentration of Si provided 
by growth front induced intermixing at the outer step edges.  

The mass transport of Ge from the pits to the outer steps induces the step propagation for 
the pit steps and for the outer steps. The step propagation speed v is different due to different 
length of the pit’s steps lpit and outer sink steps l , Figure 9. 36. Relation for the steps 
propagation speed can be found from balance equation: 

 
vllv pitpit = , (1. 74) 

 
where vpit is the pit’s step propagation speed.  
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Figure 9. 35. Experimental observed height difference of two type of intermixing process for three different 
temperatures; (a) – vertical Ge intermixing with Si, height difference as function of annealing time; (b) – growth 
front induced intermixing acting at step edges, height difference as function of step speed. According to reff. 
[24]. 
 
At the nucleation stage the pits have much lower step length: pitll >  → vv pit > . Due to 
difference of the steps propagation speeds ( vv pit > ) the growth front induced intermixing 
induces different rates of the intermixing at the steps resulting into different compositions of 
Si/Ge at the step edges of the pit’s steps and outer steps. Nucleation and growth of the pits is 
driven by net effect, weak Ge-Ge bond is replaced by a stronger Si-Ge bond. During pit 
formation the growth front induced intermixing generates more Si at sink steps and less Si at 
pit’s steps due to different step speed propagation, vv pit > .  

Since the pit formation occurs after annealing, we assume that the final state with pits 
formed is a state close to local equilibrium.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. 36. The length of the pit’s step shown by red colour and length of the sink steps are shown by light red 
colour. The mass transport of Ge is schematically shown by blue arrows. The volume of Ge detached from the 
pit is equal to the volume of Ge attached to the sink steps.  The step speed propagation of pit vpit is larger than 
step speed propagation of sink steps due to sink step length lager than pit’s step length. 

Vpit 

V 

N. Paul, S. Filimonov,V. Cherepanov, et al. Phys. Rev. Lett. 98, 

(A
) 

(b) (a) 
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The energy gain of the system mixmixingelasticsteprelaxstep
if TSEEEG −++= +

−  can be written 
according with (1. 57) and with the model shown in Figure 9. 37. The step relaxation energy 

for the pits is the same like in (1. 57), i.e. equal to R
a
R

A
eV π22ln62.60061.0 ⎟

⎠
⎞

⎜
⎝
⎛ − ; the step 

relaxation at outer step edges is the same like in (1. 57) , i.e. equal to 

Lx
a
w

A
eV 28.0ln012.0 ⎟

⎠
⎞

⎜
⎝
⎛−  at x = 1 since the sum ratio of Ge per unit area in two upper layers 

of outer GeSi stripe is: x + (1 - x) = 1 (Figure 9. 37). Width of outer GeSi stripe w can be 

written as 
L
Rw

2π
= , where L – is length of outer steps per one pit, then relaxation energy at 

outer step edge takes the form: L
aL
R

A
eV

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

2

8.0ln012.0 π . Then step energy is: 

 

L
aL
R

A
eVR

a
R

A
eVE steprelaxstep ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ −=+

2

8.0ln012.022ln62.60061.0 ππ . 
(1. 75) 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. 37. The model considers initial and final states with energies Ei and Ef correspondingly. The initial 
state presents Ge layers of volume  AGe without pits. The final state presents Ge layer of volume (AGe – Apit) with 
pit of area Apit and GeSi layer which is homogenous composition of Ge of volume xApit with Si of volume Asi = 
(1 - x) Apit in the first layer and Ge of volume (1 – x)Apit with Si of volume Asi = x Apit in the second layer. 
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Elastic energy gain can be written as sum of elastic energy gains for the first and second 
layers of outer GeSi stripe: 

( )
2

)1(88.1
2

)1()1(88.0 2
0

2
0

2
0

NxxkNxxkxxkE GeGeGeelastic −=−+−= εεε ,  

where GeSiGe NNNN 2=+= , because SiGe NN =  Figure 9. 37. Then elastic energy can be 
written as: 
 

GeGeelastic xNxkE )1(88.1 2
0 −= ε . (1. 76) 

 
the interaction parameter in the layers can be lower than interaction parameter in the bulk 

because of interfaces, 25
8
7

≈Ω≈Ωeff  meV/atom.  

 
Complete internal energy is sum of three parts of the internal energies (1. 75), (1. 76) and 
(1.18) at 25=Ωeff  meV/atom with entropy (1.55) this gives the Gibbs free energy of the 

system. At temperature of the system 450°C, step energy formation 5 ൊ 36 
o

AmeV / , pits 
radius ൑ 5 nm, Ge concentration 5.0=Gex  the Gibbs free energy of the system can be written 
as:  
 
 
 
 

 
 
 
 
Without the smallest energy part which is the step relaxation energy (Estep relax ൑ 8.4 
meV/atom Figure 9. 25) (1. 77) takes the form:  

   

  
  

 

here the step energy formation 
o

AeVR /036.0)( ≈γ , Esum – is sum of elastic and mixing 
energy. Esum is mainly positive and can’t be a driving force for the pit formation, now only 
entropy part can drive the pit formation by means of “Energy – Entropy cycle” process.  

Ge

Ge
if

N
atom
meV

atom
meV

atom
meV

N
atom
A

R
R

w
x

a
w

atom
meVAG

)631317(

4.62)(8.0ln6.9
2

−+−

+⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ ⋅

−=− γ
. 

(1. 77) 

GeGe
if N

atom
meV

atom
meVN

atom
A

R
RG )634)4.62)((

2

−−=− γ , 
(1. 78) 

Estep ൑െ2 ൊ +2 meV/atom 
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Eelastic Emixing TSmix 
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The free energy contributions for going from the initial to the final state were estimated 
and are shown in Table 4.  

 
Table 4: Free energy contributions for pit formation 

Eelastic -17 meV/Ge atom 
Emix +13 meV/Ge atom 
Mixing entropy -88 meV/Ge atom 
Estep,rel + Estep,form -2 – 2 meV/Ge atom 
Eint,bound (Ewet) -3 meV/Ge atom 

 
 
[ ] [ ]

[ ] GeGe

BGeGemix

N
Geatom

meVxxxx
atom
meVN

xxxxTkNxS

88)1ln()1()ln(632

)1ln()1()ln(25.0

−=−−+⋅⋅−=

=−−+−===
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



156 
 

Appendix B: 
 
Definitions: 
the strain of Ge layer on Si(111) substrate   ε0 = 0.04, 
the strain of Bi layer on Si(111) substrate    εBi , 
the strain of Bi layer on GexSi1-x layer   (εBi - ε0x) , 
the strain of Bi + GexSi1-x layer on Si(111) substrate  (ε0x + δ) , 
the strain of GexSi1-x layer is modified by Bi layer by the value of δ, where 
δ = (εBi - ε0x) kBi / k׀ , 
δ0 = (εBi - ε0) kBi / k׀ , δ0 correspond to δ in the case of pure Ge layer when x = 1 , 
where k׀ = kGe + kBi and x = Apit/( Apit + Asi); 
……………………………………………………………………… 
The combining parts in the next expressions are colored.  
Eelastic

f-i = – Apit k׀ (ε0 + δ0)2 + (ASi + Apit) k׀ (ε0x + δ)2 –  Asi kBi
 2εBi

2/ k׀ , → 
 

Eelastic
f-i = – Apit k׀ (ε0

2 + 2ε0δ0 + δ0
2) + (ASi + Apit) k׀ (ε0

2x2 + 2ε0δx + δ2) – Asi kBi
 2 εBi

2/ k׀ , 
 
– Apit k׀ (ε0

2 –  ε0
2x) =  k׀ ε0

2(x – 1 ) Apit = k׀ ε0
2(–ASi/(ASi + Apit)) Apit =  – ASi x k׀ ε0

2, → 
Eelastic

f-i = – ASi x k׀ ε0
2 + Apit k2׀ε0(δ –  δ0) + ((ASi + Apit)ϰlδ2 – Apit k׀δ0

2) – Asi kBi
 2εBi

2/ k׀ 
 

 
 

then: 
Eelastic

f-i = – ASi x k׀ ε0
2 + Apit k2׀ε0

2(1-x) ϰBi
2/ k׀ + Apit k׀ (δ2/x –  δ0

2) – Asi kBi
 2 εBi

2/ k׀ , 
Apit(1-x) = ASix , → 
Eelastic

f-i = – ASi x k׀ ε0
2 + 2ε0

2 kBi
 2 ASix + Apit k׀ (δ2/x –  δ0

2) – Asi kBi
 2 εBi

2/ k(*1) , ׀ 
 
Apit k׀ (δ2/x –  δ0

2) = Apit k׀(kBi / k׀)2((εBi
2 – 2 εBi ε0x + ε0

2x2)/x – (εBi
2 – 2 εBi ε0 + ε0

2)) , 
Apit k׀ (δ2/x –  δ0

2) = (εBi
2(1/x – 1) + ε0

2(x-1))  Apit kBi
 2/ k׀,  

put it into expression for energy gain (1*), then: 
Eelastic

f-i = (– ASi x k׀ε0
2 +2ε0

2 kBi
 2 ASix)+ (εBi

2(1/x – 1)+ ε0
2(x-1))Apit kBi

 2/ k׀ – Asi kBi
 2 εBi

2/ k׀, 
→ 
Eelastic

f-i = – (kGe – kBi)ε0
2 ASix + Apit kBi

 2 εBi
2/ k׀ – ε0

2ASix kBi
 2/ k׀ – Asi kBi

 2 εBi
2/ k׀, → 

Eelastic
f-i = – (kBi

 2/ k׀ + (kGe – kBi))ε0
2 ASix = [using k׀ = kGe + kBi] = (kGe 2/ k׀) ε0

2 ASix ,  and 
finally elastic energy modified by Bi is: 
 
. 

 
 

 
 
 
 

(δ –  δ0) = ε0(1-x) kBi
2/ k׀ Apit k׀ (δ2/x –  δ0

2)

Eelastic
f-i = – (kGe ε0

2 Asi x) kGe / k׀ 
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Appendix C: 
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Appendix D: 
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Appendix E: 
 
The solution for the energy with localized force F = λδ(x)δ(y)δ(z) was presented in [134]: 
          (e1) 

∫∫ −=−= dyyudzdxdyzxzyxuE xxel ),0(
2
1)()(),,(

2
1 λδλδ ,    

The change of elastic energy as function of L is: 
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Equation (e2) can be integrated directly by (d1) to give elE : 
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Then the elastic energy per unit length is: 

(e3) 

L
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1ln1 2
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π
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⎞

⎜
⎝
⎛ −

−
−= ,       

 
The constant of integration, )(aelε , depends on the value of a and on how cutoff is 
implemented [134]. 

The lower limit a of the integral in (e2) defined by interatomic distance. The energy of 
relaxation per unit length for infinite step length at L→ ∞ have unlimited results, this is 
correct for the layer with unlimited width.  
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Appendix F: 
 
Equation 12
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24π
= . Solution of equation (f1) can be found by integration: 
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After integration (f2) takes the form: 
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