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ABSTRACT

The present work describes an experimental investigation of the influence of the step
properties on the submonolayer growth at the Si(111) surface. In particular the influence of
step properties on the morphology, shape and structural stability of 2D Si/Ge nanostructures
was explored. Visualization, morphology and composition measurements of the 2D SiGe
nanostructures were carried out by scanning tunneling microscopy (STM).

The formation of Ge nanowire arrays on highly ordered kink-free Si stepped surfaces is
demonstrated. The crystalline nanowires with minimal kink densities were grown using Bi
surfactant mediated epitaxy. The nanowires extend over lengths larger than 1 pm have a
width of 4 nm. To achieve the desired growth conditions for the formation of such nanowire
arrays, a modified variant of surfactant mediated epitaxy was explored. It was shown that
controlling the surfactant coverage at the surface and/or at step edges modifies the growth
properties of surface steps in a decisive way. The surfactant coverage at step edges can be
associated with Bi passivation of the step edges. The analysis of island size distributions
showed that the step edge passivation can be tuned independently by substrate temperature
and by Bi rate deposition. The measurements of the island size distributions for Si and Ge in
surfactant mediated growth reveal different scaling functions for different Bi deposition rates
on Bi terminated Si(111) surface. The scaling function changes also with temperature. The
main mechanism, which results in the difference of the scaling functions can be revealed with
data of Kinetic Monte-Carlo simulations. According to the data of the Si island size
distributions at different growth temperatures and different Bi deposition rates the change of
SiGe island shape and preferred step directions were attributed to the change of the step edge
passivation. It was shown that the change of the step edge passivation is followed by a change
of the preferred steps direction resulting into different islands shapes.

The symmetry of the properties of the different step directions can determine the
symmetry of the 2D islands. The growth shape of reconstructed 2D islands (nanostructures)
on reconstructed surfaces can deviate from the internal symmetry of the substrate and the
island. An analysis of the symmetry of the combined system of reconstructed substrate and
island can deduce predictions for the island growth shape. It was found experimentally that
the shape of two-dimensional (2D) Si or Ge islands has a lower symmetry than the threefold
symmetry of the underlying Si(111) substrate if Bi is used as a surfactant during growth.
Arrow-shaped or rhomb-shaped 2D islands were observed by scanning tunneling microscopy.
This symmetry breaking was explained by a mutual shift between the surface reconstructions
present on the substrate and on the islands. The mutual shift results into different step
structure for initially symmetry related step directions. Using the kinematic Wulff
construction the growth velocities of the steps could be determined from the island shape if
the nucleation center had been located by a marker technique.

The structural stability of 2D SiGe nanostructures was studied by scanning tunneling
microscopy (STM). The formation of pits with a diameter of 2 — 30 nm in one atomic layer
thick Ge stripes was observed. The unanticipated pit formation occurs due to an energetically
driven motion of the Ge atoms out of the Ge stripe towards the Si terminated step edge
followed by an entropy driven GeSi intermixing at the step edge.

The pit formation can be also used for nanostructuring. Using conditions at which pit
formation is enhanced the fabrication of freestanding GeSi stipes with single digit nanometer



width is possible. Continuous ~ 8 nm wide freestanding GeSi wires have been fabricated by
pit coalescence.
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1 Introduction

The enormous interest in the development of the methods for fabrication of smaller and
higher density nanostructures is triggered by both: new demands for micro/nano-electronics
and also interests in the physics of these structures. One of the effective strategies in the
nanostructure synthesis is the bottom-up strategy, in comparison with the top-down the
bottom-up strategy is not limited by lithography. The bottom-up methods enable to create
structures in the single-digit nanometer range, such small structures can be also interesting for
subsequent investigations of their electronic properties. Bottom-up methods can follow two
different approaches: one is the direct atom manipulation by the tip of the scanning tunneling
microscope (STM) and other is self-assembly or self-organization. The first is ultimate in
terms of size of the nanostructures but a very slow and sophisticated method, the second is a
parallel method which enables to form billions of nanostructures in parallel. However, this
method is limited in the degree of uniformity and size control which can be achieved. Both
methods can be complementary to each other. The processes based on self-assembly have the
key advantage that they can be easily used for fabrication of electronic devices. One approach
for the self-assembly synthesis of nanostructures is epitaxial growth. In the last decades
several epitaxial growth techniques have been developed: chemical vapor deposition (CVD),
molecular beam epitaxy (MBE) and surfactant mediated epitaxy (SME). More advanced
methods like CVD and SME are more complicated but those offer the opportunity to fabricate
structures which can’t be created by standard MBE.

Surfactant Mediate Epitaxy (SME) is a powerful method with the following modification
of the standard Molecular Beam Epitaxy (MBE). Using a third element named surfactant in
SME allows to change (modify) kinetics and energetic of elementary processes on the surface
during epitaxy. A striking example is Si/Ge Bi-SME on the Si(111) surface. Using Bi as
surfactant suppresses Si/Ge exchange intermixing and allows to achieve layer-by-layer
growth of Ge on Si. Due to that Bi-SME allows to form different 1 ML high 2D Si/Ge
nanostructures. This beneficial growth behavior is explained by strong Bi passivation of the
Si(111) surface and surface steps resulting in suppression of Si/Ge exchange intermixing and
3D island formation during growth.

The 2D Si/Ge nanostructures, nanowires and nanorings, can be used as a template for the
following applications, for example: selective adsorption of foreign chemical elements,
organic molecules or fullerenes. Ge and Si are essential for the technology of semiconductor
devices. Besides the technological importance, the Ge/Si Bi-SME system can serve as a
model system for the study of elementary processes at the surface by means of Scanning
Tunneling Microscopy (STM). STM is usually a topographic method since it has no chemical
sensitivity. The use of Bi as surfactant gives an unique ability to control SiGe composition on
the surface. Due to different electronic structure of the Bi terminated Si and Ge surfaces an
apparent height difference between Ge and Si is observed in STM images. The Ge area
appears in STM images about 0.1 nm higher than the apparent height of Si. The apparent
height difference in comparison with pure Si(Ge) is proportional to the local Ge concentration
in SiGe composition of the surface layer. This allows to determine the SiGe composition on
the nanoscale via the measured height contrast and introduces a powerful method for studying
of the atomic diffusion processes at the surface and at the surface steps.

In the growth of 2D nanostructures the step properties are very important since the step is
the structural key element in 2D growth which determines the incorporation of growing



material into the crystal. Specifically the step properties influence the morphology, shape and
the structural stability of the 2D nanostructures. The influence of the step properties is
particularly important for the growth of 1 ML high 2D structures.

The present work describes an experimental investigation of the influence of the step
properties on submonolayer growth at the Si(111) surface. The results of investigations allow
to synthesize new nanostructures (free standing SiGe stripes, chapter 9) and find an optimized
procedure for the preparation of highly ordered Ge nanowire arrays on the Si(111) surface
(chapter 6). The thesis includes a description of the following phenomena:

o different preferable step directions during Ge Bi-SME on Si(111) surface at different
Bi vapor pressure (Modified surfactant mediated epitaxy, chapter 6, 8).

e symmetry breaking in the growth of 2D structures on Si(111) surface (chapter 7).

e pit formation at 2D Ge layer on Si (chapter 9).

The present phenomena were investigated theoretically and experimentally and were
explained as result of different processes at the step edges.



2 Fundamentals of epitaxial growth

2.1 Elementary processes at surface
2.1.1 Adsorption and desorption
e Adsorption

According to kinetic theory of gases the flux of atoms / coming from a vapor phase on
the surface is described by expression:

P 2. 1)

where p is a partial pressure of gas of adsorbate, m is a molecular (atomic) mass, k, is the

Boltzmann constant (8.617 343x107> eV/°K), T is a temperature.

However, only a fraction of atoms adsorbs on the surface. The ratio of adsorption rate
to the coming flux is a sticking coefficient or sticking probability s. Thereby the rate of
adsorption r, is:

r =sl. (2.2)

a

General formula for sticking coefficient reads:
s=of (0)exp(-E,, [k,T), (2.3)

where o is a condensing coefficient, takes orientation effects into account (steric factor) and
for energy transmission of adsorbed atoms (molecules); f (0) is a function depending on

coverage describes probability of atom to find an adsorption state; E_, is an energy

activation of adsorption. In simple case of Langmuir adsorption model [1,2] nondissociative
£(6) takes the form:

f)=1-0, Q. 4)
and kinetics of Langmuir adsorption is given by:

dg
dt

) @9

where s, is a sticking probability at zero coverage. For dissociative adsorption when a fallen
molecule dissociates on n atoms which occupy the adsorption sites:



fe)=0-0)". (2.6)

Usually chemisorption is going through intermediate state named as precursor state. In
the precursor state an atom can diffuse over the surface until it reaches a position with a
higher energy (chemisorbed state). The case with one potential well for simple chemisorption

is shown on Figure 2. 1 (a).
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Figure 2. 1. Potential curves of chemisorption as functions of distance z between an adsorbed atom
and the surface. (a) - presents the case of simple not activated adsorption. (b), (c) — potential curves
for precursor chemisorption; (b) — the case of activation chemisorption with energy activation

E, =¢,—¢&,;, (c) — not activated chemisorption when &, <¢&,, E_, - bonding energy of
chemisorbed state, £, - energy barrier for desorption from the chemisorbed state, &, and &, -

energy barriers for adsorption and desorption from the precursor state, respectively.



10

Precursor adsorption diagram consists of two wells: a small well for a physisorbed
precursor state and a deep well for the final chemisorbed state Figure 2. 1 (b), (c).

An atom in the precursor state can desorb into the gas phase or adsorb into the

chemisorbed state. The rate of desorption k, and adsorption &k, from the precursor state can

be written as:

k,=0,v,exp(-¢,/k,T), (2.7)
k,=0,v,exp(-¢, [k,T), 2.8)

where v, and v, are attempt frequencies, 6, is a coverage in the precursor state. The

sticking coefficient (from precursor to chemisorbed state) can be written correspondingly:

O\ 2.9)
S, = K, :{1+V—"exp[— a % ﬂ ,

1% k,T

a

e Desorption

The kinetics of desorption is described in terms of the rate of desorption 7, which is

equal to the number of particles desorbing from a unit area of the surface per unit time. In a
general form the rate of desorption is an expression of the form:

Vies = O-*f*(g)'eXp(_ Edes/kBT)’ (2.10)

where [~ (6?) describes dependence on coverage, and o is a steric coefficient of desorption.

In assumption that all adsorbed atoms or molecules occupy identical states and no
interaction between each another, the rate of desorption can be expressed as:

= _% = knen = k;(q)en eXp(_ Edes /kBT)’

2.11)

rdes

where E,_ is energy activation of desorption, # is the order of desorption kinetics, and %, is
an attempt frequency of desorption.

In first order kinetics (n = 1) the rate of desorption is proportional to the coveraged.
That corresponds to the most simple case when atoms desorb independently on
adsorption sites. In the case of desorption of molecules consisting of 7 atoms the kinetic
of desorption is proportional to 8" [2].
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2.1.2 Diffusion

On the atomic scale the surface can be considered as a periodic potential landscape with
adsorption places which correspond to energy minima Figure 2. 2. Because of thermal
excitation the atoms can jump from one neighbor adsorbed place to another. The change of
atom position on defect free surface can be described by a random walk model. It can be
shown that after » jumps of length a the atom will have moved, on average, a distance of:

(ar*) =avn =av-t, 2.12)

where a is a distance between adsorption places, and v is the jump or hopping rate. The
relation (2. 13) can be written as:

\/@:\/D—_t’ (2. 13)

where the diffusion coefficient D is given by relation:

D:M:ﬂ (2. 14)
zt z

where z is a number of neighbor states, z=2 for the 1D diffusion, z=4 for a diffusion on
square lattice and z = 6 for a diffusion on hexagon lattice. A jumping of adsorbed atom from
one state to another needs for thermal activation energy which must be higher than energy

activation for diffusion E; , then frequency of successful jumps can be present:

—E,, (2. 15)
k, T )

where v, is an attempt frequency. Energy activation of diffusion E

vV=yv, exp(
a4y 18 a difference of
potential energy in adsorbed state (position 1) and potential energy in transient state (position
2) Figure 2. 2. £, is much less than desorption energy £, , usually E,, is about 5 —20%

des >

from E, [2]. For chemisorbed particles E£,, >>k,T and we have a hopping diffusion

mechanism. If £, <k,T , then we have a mobile diffusion mechanism.

diff’
In the presence gradient of concentration of atoms we have an averaged migration flux
from area with higher concentration to area with lower concentration of atoms. The diffusion

flux J is proportional to gradient of concentration V¢ and described by Fick’s first law:
J=-D-Vc, (2.16)
For one dimensional diffusion:

S _ple 2. 17)
ox
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Figure 2. 2. The one dimensional schematic diagram representing, (a) — substrate (white balls) and an
adatom (dark ball). The adsorbed state of adatom is marked by “1” and transition state of atom is
marked by “2”. Z — is the distance from the surface, and x — is the lateral position on the surface. (b)
schematic diagram of potential energy of an adatom on the surface. E,; - activation energy for surface
diffusion.

Fick’s second law describes a nonstationary case when diffusion flux and concentration are
changing in time. For one dimension case it can be written as:

@_Q(D@j (2. 18)
or ox\ ox)

There are two types of diffusion:

e tracer diffusion is observed at low concentrations when particles have no interaction
between each other,

e and chemical diffusion observed at high concentrations when an interaction between
particles is significant.

At high coverage when an interaction between particles is significant, Fick’s first low
must be written in more general form:

020 _ (920 (2. 19)

J 2,
Oox

ox 00 ox
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where u is a chemical potential of diffusing particles, L is a transport coefficient, D, is a
chemical diffusion coefficient depending on coverage &.

2.1.2 Surface electromigration

An external force can have a strong influence on the diffusion process. Drift of atoms
along direct current on the surface is named as surface electromigration. The effective force
acting on migrating atom is proportional to the electric field £ and can be written as sum of
two components [2,3,4]:

F=F, +F, =elZ, +Z,)E = eZE, (2. 20)

where Z=Z7,+Z, is a sum of effective charges of an atom. F, presents a direct force
acting on an atom by electric field. F, is a force of electron wind induced by impulse pass
from the current electrons scattered on the atom.
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2.2 Thin film growth

2.2.1 Growth modes

The thin film growth can proceed by one of three essential types of growth modes [2,5,6]
Figure 2. 3:

e Layer-by-layer growth (2D) or Frank-van der Merwe growth mode.
e Island growth (3D) or Vollmer-Weber growth mode.
e Layer by layer plus island growth or Stranski-Krastanov growth mode.

In terms of wetting — not wetting the two first modes can be classified by relations between
surface energies of substrate y, film y ,, and the interface energy y,, . In the case of wetting

(Frank-van der Merwe) the surface energy of substrate is larger than a sum of energies of
film surface and interface surface:

ys >7/f+7/sf’
a nucleation and a growth of subsequent layer start after the completion of the preceding
layer. This kind of growth realizes when atoms of film are stronger bonded to substrate than

to each other. In the case of not wetting (Vollmer-Weber) the surface energy of substrate is
lower than a sum of energies of film surface and interface surface:

Vs <Vyt7Vy>
a nucleation of subsequent layer starts before the completion of the preceding layer. Vollmer-
Weber growth mode corresponds to the case when film atoms more strongly bound to each
other than to the substrate. An intermediate case when layer by layer growth is followed by

3D islands growth is named as Stranski-Krastanov (SK) growth mode. The SK growth mode
usually observed for mismatched materials for example such as Si and Ge.

Frank-van der Merwe

ey | G (Layer-by-layer)
——— Y e ————

H A nm A Vollmer-Weber

] Stranski-Krastanov

Figure 2. 3. The three classical growth modes.
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Frank-van der Merwe growth mode can be divided on two-dimensional island growth and
step-flow growth.

In two-dimensional island growth the formation of epitaxial layer starts with nucleation
of 2D islands with the following lateral growth of the islands until coalescence. After
complete coalescence of the islands the next layer starts growth with nucleation of 2D islands
on top of the previous layer.

In the presence of preexisting steps the layer-by-layer growth can be realized by step
propagation Figure 2. 4. No nucleation of 2D islands is expected because the diffusing
adatoms reach the step edges and are incorporated there before nucleation of 2D islands
occurs. Due to the incorporation at step edges, the steps move and this growth mode is called
step-flow growth or growth by step propagation. Depending on the growth conditions
(temperature and growth rate) intermediate growth modes with partial growth at the step
edges and simultaneous nucleation of islands on terraces are also possible [7].

adsorbate

' ' ' ’

substrate

Figure 2. 4. Step-flow growth or growth by step propagation. Red arrows show a direction of the step
propagation during growth.

The step-flow growth is usually realized on vicinal surfaces and can be a useful method for
nanowire fabrication on single digit nanometer scale.
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2.2.2 Nucleation and growth of islands
¢ Nucleation and growth

Elementary processes on the surface during growth of islands are shown on Figure 2. 5.
Atoms arrive on the surface from vapor phase with rate of adsorption R and bond to the
surface with energy E ;. Adsorbed adatoms diffuse on the surface until one of the reactions
occurs:

1. the atoms can re-evaporate in time of desorption 7, =v " exp(E,, /k,T),

2. the atoms can be captured by existing islands or steps,

3. the atom can meet another atom and form island.

The small islands are not stable and can decay into single atoms. However, during
growth, the islands become larger and more stable. If the island size of i after attachment of
one atom becomes stable, then i is a critical size of the island.

re-evaporation

N direct
deposition impingement
surface island critical island Capture of
diffusion nucleation of size i adatoms
Q_ QN0 ~ACOA ~A00A Q00000
Eads Eqitr E;

Figure 2. 5. Schematic diagram showing atomic processes of nucleation and growth of islands on the
surface.

Atomic processes can be quantitatively described in term of kinetic rate equations.
The description is based on estimation of nucleation rate and decay rate of the islands. The
fluxes defining concentration n; of metastable island size of j < i, where i is a size of critical
island are shown on Figure 2. 6.

5jl’lj 5j+1nj+l

Figure 2. 6. Schematic diagram showing fluxes which fix concentration of the cluster size of ;.
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Four processes give contribution into concentration #; of island size of ;.

e Capture of adatom by island size of j — 1 increases number of the island size of j with

rate of o, Dn; n,.

e Detachment of atom from island size of j + 1 gives arate of 0,,,n,,, .
e Capture of adatom by island size of j decreases number of the island size of j with a
rate of o, Dn n, .

¢ Detachment of atom from island size of j gives a rate of decay on, .

Here n; is an adatom concentration, D is a diffusion coefficient, o is referred to as a capture
number, 8+ ~ exp(— AE_-;'+1 /kBT ) is a rate of decay, where AE_‘}+1 is the energy difference

between island size of (j + 1) and island size of j. Description and solution of kinetic
equations were made by J. Venables [8,9,10]. In assumption of local equilibrium (steady-
state concentration) for 1< j<i+1, where i is a size of critical island, the solution of

equations gives island density expression type of:

P (2.21)
NO{EJ exl{i}
v, k,T

where v, is an attempt frequency, R is a rate of adsorption, the expressions for p and E
depend on regime of condensation and can be found in [10].

e Island size distribution

The study of island size distribution can give quantitative information about a size of
critical island and qualitative information about mechanisms of growth. A function of island
size distribution N, shows island concentration of size s (s — number of atoms in island).

Thus, complete number of stable islands N and coverage & can be written as:

N=) Ngand 6= s-N;. (2.22)

S>i S>i
Then mean island size can be written as:

ZS-NS H—ZS-NS (2.23)
<s>=s>’ZNS = SS}’V :

S>i

For small sizes of critical island, i =1,

O-N, 0 (2.24)
(s)= ~

N N
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In these assumptions the scaling theory [ 11] gives relation:
N, =06- <s>_2fi(s/<s>), (2. 25)

where fi(s/ <s>) is a scaling function of island size distribution at critical island size of i.

Comparison of calculated scaling function with experimental scaling function can be used for
estimation of critical island size. Observation of deviation of the experimental function from
the standard one also gives qualitative information about mechanisms of growth.

e Shape of islands

The observation of the island shape provides a direct access to step edge energetics and
to the symmetry of the bulk lattice of the crystal. The shape of 2D islands can be classified by
growth conditions into growth shape and equilibrium shape. The shape of islands observed
during growth (noneguilibrium conditions) is called a growth shaped. The shape of islands
being in equilibrium with vapour or liquid phase is called an equilibrium shape. The 2D
equilibrium shape of an island is defined by the minimum of the total step free energy for an
island of fixed particle number and area [12]:

[7(@)di = min. 2.26)

Here y(¢) is the step free energy per unit length, and the integral is taken over the entire edge

length L.

The two dimensional compact island shape problem is the 2D analog to the (3D)
crystal growth problem. In both cases the crystal grows by the transport of particles from the
surrounding phase, which is driven by concentration gradient around the crystal. The crystal
shapes reflect the symmetry of 2D or 3D crystal lattice and the resulting energetic at the
phase boundaries (1D steps or 2D surfaces).

For small islands and under conditions allowing sufficient material transport the
equilibrium shape may be reached experimentally [13,14,15,16]. According to the 2D Wulff

theorem the step free energy ratio 78 for the specific directions (Figure 2. 7 (a)) is the ratio
A

of the distances r4 and rg measured from the symmetry centre “O” of the island to the step
edges:

7 (2.27)

Fy Va4
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Figure 2. 7. Schematic diagram showing the Wulff theorem for 2D compact islands. (a) equilibrium
shape of the island. (b) growth shape of the island as a result of step speed propagation.

The chemical potential which is a free energy per atom is a useful concept, since it is the
same everywhere at equilibrium. If the shape of the solid does not conform to the equilibrium
form, it must be the case that a chemical potential gradient exists which (some form of Fick’s
law) drives mass transport until a morphological equilibrium is attained. As example, let’s
consider an island in the shape of a rectangle Figure 2. 8. An attachment of a particle of the
volume Q2 to A or B sides changes the proportions of a rectangle as shown by dashed lines on
Figure 2. 8. The change of the rectangle shape is resulting in a change of the system energy
which includes bulk energy and step energy. For the geometry of Figure 2. 8 the resulting
chemical potential can be written as:

Q (2.28)
My =p, +2y, T

A

Q
ILIB :ﬂc+27A T

lB

where g, is the chemical potential of the bulk and Q 1is the volume of a particle. The
gradient noted above exists because u, # u, unless the linear dimensions /, and [/, attain

their equilibrium values INA and INB. At the equilibrium g, = p,:

Ts _ T4 (2.29)
Loy
the linear dimensions INA and INB can be written as ZNA =27, and INB =27, Figure 2. 8, then (2.
29) takes the form:

T _7p

Feo Y

This is the 2D Wulff theorem (2. 27) followed from the equilibrium conditions x, = u, at
the facets of a rectangle.
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Figure 2. 8. The island of a rectangular shape.

The same relations can be found for 3D case with a crystal in the shape of a
parallelepiped [17].

More general 2D case can be considered for a cyclic polygon which is the hexagon in
Figure 2. 7. The corner of a cyclic polygon is shown on Figure 2. 9. An attachment of a
particle of the volume Q to A or B sides changes the proportions of a polygon as shown by
dashed line on Figure 2. 9. The corresponding change of the step energy can be written as:

1 1
AE, =h —
4 A(}/B sin @ Va tan Gj

1 1Y
AE, =h -
g B(}/A sin @ 7s tan Hj

where AE, and AE, are changes of the step energy of the system after attachment a particle

to A and B sides, respectively, angle 6 =a + f, height h, , = lﬁ (Figure 2. 9), and Q is

A,B
the volume of a particle. The relations for chemical potential can be written as:

B +2 1 1 (2. 30)
Ha = He l, 5 sin0 " ano

~ +g( 1 1]’
Ho = e l, T4 sing " tano
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cosd cosd
h, h AD = OD - 04, BF = OF — OB;
A= e = Sne AD BF
tan sin ac="2 pc=L".1 —2.4c,1,=2-BC.
tan @

tan &
Figure 2. 9. Corner of a cyclic polygon.

where u_ is the chemical potential of the bulk, the lengths of facets /, and /,can be
expressed as (Figure 2. 9):

zAzz( y —u] 1 (2.31)

cosé tan @

r 1

l, =2 ——-
g (cos@ rBjtanH
At the equilibrium g, = pu,:
l( 1 1)_1( 1 1}3 (2.32)
s\ 7 sin@ Va tan @ 4\ 74 sind 7s tan @

lB lA lA lB ’

—£ 4 — + 2
7B(sin¢9 tanej yA(sinH tan &

After substitution of (2. 31) into (2. 32) the relation of equilibrium takes the form:

1 r, —r+1 s )| 1 rB—r+1 RN | N
Vs sin@\ cosd ° tan&\ cosgd Va sin@\ cos® tan&\ cosd °

1 1 1 1
4 — = 14 - = >
7s A(cosﬂsin@ tan@j T B(cos@sin@ tan@j
s _ 78

ry V4
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This relation of the 2D Wulff theorem (2. 27) is followed from the equilibrium conditions
M, = u, at the neighbor facets of a corner of cyclic polygon.

Originally the islands are nucleated and grown in substantially nonequilibrium
conditions. The shape of the growth islands is named growth shape. In order to understand the
growth shape of islands, it is useful to define the advancement speed v of a step normal to
itself. During growth the steps of the island propagate on distances d measured from the
center of nucleation. The distances d are proportional to the step speeds v Figure 2. 7 (b),

Le d, ;= J.v 4B dt For a growth regime (isotropic growth conditions) in which the

incorporation into the steps is limited by attachment and the adatom concentration » on the
surface is constant (due to large incorporation barrier) the expression for d, , can be written
-E

j dt OCIkAB nlt )dt , where kA,Bzvexp(

0

22 | is a frequency of
v

attachment of adatoms to the step edges (7' = const), n(t/ ) 1s an adatom concentration, and ¢ is
a time of growth. The shape is evidently characterized by:

dB

dA

(2.33)

_ Y

=

_ 1 N g :

Here v, , =—Iv ) B(t )'dt are average step speeds. At constant frequencies of attachment
B =)

0

k ,  during growth the ratio (2. 33) can be written as:

dy vy(t) Ky (2. 34)
o

This is the kinetic analog of the relation (2.27) derived from the Wulff construction for
equilibrium shapes.

The growth shape of the islands can differ with different growth conditions and can be
also classified by type of the shape into two big classes:

e Ramified islands or fractal islands.
e Compact islands.

Ramified islands are usually formed at low temperatures when diffusion along step edges
is negligible. In the limiting case called “hit-and stick”, adatoms incorporate into steps of the
islands and are immobilized immediately. This case is described by the diffusion limited
aggregation (DLA) model [18,12]. The model predicts a formation of fractal islands with an
average branch thickness of about one atom independent on the geometry of the bulk lattice.

The shape of compact islands, as considered above, can obey the symmetry of bulk
lattice of substrate and contains quantitative data on step (facet) energies.
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2.3. Surfactant mediated epitaxy

The presence of atoms of a foreign element on the surface, different from both the
growing film and the substrate, introduces additional mechanisms into the behavior of the
film growth. Such foreign elements are named surfactants if the atoms of the elements float
on top of the surface during growth without incorporation into growing film. The presence of
a surfactant on top of the film changes the surface properties such as surface diffusion and
adsorption energy. Generally the surfactants passivate the surface, saturate the surface
dandling bonds and decrease the surface energy [19,20,21,22,23].

The standard surfactant mediated epitaxy (SME) starts by termination of the surface with
some amount of the surfactant. The termination procedure includes covering the substrate
surface by surfactant that is followed with change of the surface reconstruction. The change
of the surface reconstruction on substrate usually induces a mass transport of the substrate
atoms since different surface reconstructions have often a different density of surface atoms.
During growth the surfactant can evaporate from the surface. Therefore a simultaneous
codeposition of the surfactant during film growth is used to maintain the required amount of
the surfactant on the surface. The deposited atoms of the growing film adsorb first on top of
the surfactant layer and diffuse over the surface until they incorporate into a step edge or
nucleate a new island Figure 2. 10. The atoms diffuse over the surfactant layer in a
physisorbed precursor state. When the atoms reach the step edges thermal activation energy is
needed to proceed into the chemisorbed state with higher energy. During growth the
surfactants suppress Si-Ge intermixing.

In the case of Si and Ge SME growth on Si substrate the surfactant elements of 3 and 5
groups of the Periodic Table of the Elements are usually used: Sb, As, Bi, In, Ga [19]. The
use of Bi as a surfactant effectively suppresses Si-Ge intermixing during growth on the
Si(111) surface as well as other surfactants. Due to different electronic structure of the Bi
terminated Si and Ge surfaces the apparent height difference between Ge and Si is observed
in STM images. The Ge area appears in STM image about 0.1 nm higher than the apparent
height of Si. The apparent height difference in comparison with pure Si(Ge) is proportional to
the local Ge concentration in SiGe composition of the surface layer [24].

deposition O
¢ ¢ Surface
exchange island diffusion
yF Surfactant
=== Capping

- Substrate

Figure 2. 10. The schematic view of processes during SME growth. Adsorbed atoms on top of the
surfactant layer can diffuse over the surface. To incorporate into step edge the adatoms need to
proceed through the surfactant capping layer.
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This allows to determine the SiGe composition on the nanoscale via the measured height
contrast and introduces a powerful method for studying of the atomic diffusion processes at
the surface and at the surface steps.
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3.Step properties
3.1 Step classification and symmetry of the substrate

In tendency to order our knowledge about matter we are looking for the laws which can
arrange diversity of the states of the matter structures. The laws are beginning from
fundamental feature of all structures we have described is symmetry invariance. A crystal is a
self-assembled state of a matter with high symmetry of atomic structure. The transformations
which a perfect crystal may undergo and remain unchanged are the symmetry group of
transformations. The symmetry of a crystal is characterized by two symmetry groups: a
translation group and a point group. The result of combination of translational symmetry and
the point group symmetry is the space group. The space group contains all symmetry
operations which takes crystal into itself.

The translational symmetry means that there are a large number of translations which
remain crystal unchanged. This, of course, moves the boundaries, but we are interested in the
behavior in the interior of the crystal.

Translation symmetry in 2D is characterized by two unit shift vectors a and b. Every
equivalent point on the lattice can be reached by a lattice vector of the form

v, =n,a+n,b
where n; and n; are integers.

1©¢ ©¢ ©¢ ©¢ 20 © © o 3o ® ®
° ®
© o o L © o o L ® ®
a a ae (5]
> ® o > © o 5 ®
|| # |B|, @ # 90° |a| # |B|, @ = 90° |a| # |B|, @ = 90°
4 © ° ® 506 © ©
® ® e o
k—o k—o
b © b ©
la| = |p|, o =120° la| =|b|, 0 = 90°

Figure 3. 1. The five fundamental two-dimensional Bravais lattices: 1 oblique, 2 rectangular, 3
centered rectangular, 4 hexagonal, and 5 square.
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Figure 3. 1 presents five fundamental two-dimensional Bravais lattices. The minimal shift
vectors a and b are called the basis vectors of the lattice.

The operations which have common (unmovable) points: rotations, reflections,
inversions, rotary reflections are called point symmetry group operations. The possible
different point groups which are allowed in a crystal are greatly reduced from those which
might be allowed in a molecule because of the translational symmetry. Thus, only rotations of
60°, 90°, or multiples to these are possible in a crystal.

The principles of 2D lattice can be extended to lattice in 3D. In 3D lattice a translation
symmetry is characterized by three shift vectors a, b and ¢ Figure 3. 2.

r, =n,a+n,b+n,c
where n;, n; and n; are integers. Instead of five possible sets of basis vectors in plane, 3D
case has seven possibilities Table 3. 1.

Table 3. 1. The seven different basis-vector systems or crystal systems.

Basis vector/crystal Angles Crystal system
axes
atb#c a#f+#y+90° triclinic
a+zb#c a=y=90%p#90° monoclinic
a+b=c a=p=y=90° orthorhombic
a=b#c a=p=y=90° tetragonal
a=b=+c a=[=90°%y=120° hexagonal
a=b=c a=p=y=+90° rhombohedral
a=b=c a=p=y=90° cubic

VSEAY

b

Figure 3. 2. Three basis vectors of primitive 3D lattice cell a, b and ¢ with angles a, f and y relative
to each other.

Most elements crystallize in a cubic or hexagonal structure. For this reason and also because
of their high symmetry, the cubic and hexagonal systems are particularly important. Different
simple crystal structures and symmetry aspects of these structures can be found in [*°]. In the
following we will focus on principles of classification of the steps on surfaces.

The unit shift vectors a, b, ¢ Figure 3. 1. form the basis of the lattice. In that basis we
can determine crystallographic directions.

e The notation [/ m n] denotes a direction in the basis of the direct lattice vectors, where
three integers /, m and n are Miller indices.
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e The notation </ m n> denotes all directions which are equivalent to [/ m n] by
symmetry of the crystal.

e The notation (/ m n) denotes planes orthogonal to a [/, m, n] direction in the basis of
reciprocal lattice vectors.

e The notation {/ m n} denotes all planes which are equivalent to (/ m n) by the
symmetry of the crystal.

To denote surfaces of a crystal the notation for a plane is used. Besides directions, the
surfaces of a crystal can differ by reconstructions. To denote steps on a surface the [/ m n]
notation is used. That means a step perpendicular to the [/ m n] direction. The notation </ m
n> denotes all step directions which are equivalent to [/ m n] by symmetry of the crystal.

The step definition is more complicated since lateral phase shift between surface
reconstructions on adjacent terraces at step edge influences on the step structure. The surface
reconstruction decrease the translation symmetry, the surface reconstructed unit cell has a
larger size relative to underlying bulk structure. Due to that steps can differ by mutual lateral
shift of surface reconstruction on lower and upper terraces at the step edge. That shift is a
multiple of the bulk unit cell.

For instance we will describe the step classification on the Si(111) surface. To do that we
will look into bulk structure of Si. Bulk of Si has a diamond structure. This structure can be
presented as a sum of two face-centered cubic (fcc) structures, one of them is rotated on 90°
and shifted on % along its long diagonal relative to another Figure 3. 3. This combination
decreases a C4 rotation symmetry for the (100) plane down to a C, rotation symmetry. That
representation of a diamond structure can be useful for analysis of different surface structures.
In the (111) plane the diamond structure and unreconstructed Si(111) surface still have the
Csy symmetry. At temperature lower than 870°C the Si(111) surface usually has the 7x7
reconstruction. The 7x7 is a structure well studied by different authors. Takanagi et al. [26]
propose the dimmer-adatom-staking-fault (DAS) model of this reconstruction. The 7x7
structure is one of a family of DAS structures of the form (2n+1)(2n+1). The unit cell (UC) of
the 7x7 reconstruction is shown in Figure 3. 4. by coloured area. The structure has two
triangular half-unit cells (HUCs). The green HUC is stacked with a normal sequence, see
cross-sectional view Figure 3. 4. b) left of the image, and is called unfaulted halves. The pink
HUC is stacked with a faulted sequence - bonds of the upper layer rotated by 180°, cf. a
cross-sectional view in Figure 3. 4. b) right of the image, and is called faulted halves. It may
be also said that the upper layer of faulted halves is mirror reflected to upper layer of
unfaulted halves. The 7x7 including two half have 3 mirror planes (011), (110) and (101)
that corresponds to the initial Cs;, symmetry of underlying substrate in a (111) plane. This
means that the step directions are symmetry equivalent on the Si(111)7x7 surface and can be
found by Cs, symmetry transformations applied to each direction. The Si(111)-7x7 surface
reconstruction has 7X7 = 49 times larger area than an unreconstructed 1x1. Thus, 49 different
phase positions of 7x7 on lower and upper terraces relative to each other are possible. To

denote [T T2] and [l li]-type steps on the Si(111) surface a short notation can be used as U

and F steps, respectively [13,27,28]. The U steps represent the ones terminated by unfaulted
halves of 7x7 on the upper terrace at step edge, while the F steps are terminated by faulted
halves on the upper terrace at step edge Figure 3. 5. U(0,0) step is a step terminated at the
boundaries of 7x7 unit meshes on both upper and lower terraces with zero phase shift
between 7x7 structures on upper and lower terraces.


http://en.wikipedia.org/wiki/Basis_%28linear_algebra%29�
http://en.wikipedia.org/wiki/Reciprocal_lattice�
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Figure 3. 3. The diamond structure (b) consists of two inter-penetrating fcc lattices (a). This inter-
embedding can be done as follows:

1. one of fcc structures, with atom bonds orientation as shown in figure (a), is rotated relative to
another by 90° around C, axes of the cube (a)

2. a combination of two fcc structures which are displaced relative to one another by % of the long
diagonal of the cube (b).



Figure 3. 4. (a) Top view of the unit cell of the DAS structure on the Si(111)7x7 surface. (b) Cross-
sectional view along two arrows shown in (a).

To denote a step with shift of n position perpendicular to step edge and m position
parallel to step edge, the notations U(n,m) and F(n,m) are used. Figure 3. 5. shows seven

different positions in the direction perpendicular to step edge for both types of steps [T T2]
and [1 15], (U and F, respectively).

Figure 3. 5. Seven different positions of steps in the direction perpendicular to step edges are shown,
the position of each step is indicated by n, where n is an integer of 0 <7 < 6. U and F denote the
unfaulted and faulted halves of the (7x7) DAS structure, respectively.
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]

Figure 3. 6. (a) Basis vectors at the step; (b) — top view of the Si(111) surface at [T T2] step edge,
28 different phase positions of 7x7 unit cell on upper terrace relative to 7x7 unit cell on lower terrace
shown by blue balls, (n,m) is a shift vector in the X-Y basis of the [l 1 2] step direction (a).
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The number of different atomic positions along the step edges is reduced from 7 to 4 due
to a mirror (110) plane symmetry of DAS structure Figure 3. 6. (b). Thus, we have 28
different positions Figure 3. 6. (b). instead of 49 allowed.

The notation of steps is generally like “surf. + surf. rec.” + [I, m, n] (i, k) for one step
direction or “surf. + surf. rec.”+ <l, m, n> (i, k) for the steps equivalent by symmetry of a
crystal, where all [, m, n are integers, i, k are numbers of 1x1 unit cells indicating the phase
shift vector in the basis of the step direction Figure 3. 5. a, and “surf. + surf. rec.” is a
notation of the surface with the surface reconstruction. For the steps on Si(111)7x7 mentioned
above, U(n,m) and F(n,m) steps are Si(111)7x7 [T T2](n,m) and Si(111)7x7 [1 15](n,m) steps,
respectively. The surfaces with different reconstructions have different families of the steps.
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3.2. Growth properties of steps
3.2.1 Energy of steps
The thermodynamic properties of a single step are defined by the step free energy per

unit length y which, because of the underlying crystal structure, is generally a function p(@) of
the in-plane step orientation angle @ (see Figure 3. 7) [29].

Ay
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Figure 3. 7. The local step orientation is described by the angle 8 between the step normal and the y-
axis. The step moves at speed v, in the normal direction. The adatom diffusion field n(x, y, #) is
defined on both the upper and lower terrace. Step atoms contribute to the step edge current j,, while
terrace adatoms attaching to, detaching from, or crossing the step are included in the mass currents

ju and jl

The free energy F of an arbitrary step configuration y(x) is obtained by integrating along
the step,

F = [ds-y(0(s)) = [ dxyJ1+ (dy/ dx)* y(0(x)), (3.1

where s denotes the arc length along the step and #(x) = arctan(dy/dx). From (3. 1) the step
chemical potential, i.e. the free energy change upon adding an atom to the step, can be
derived by functional differentiation [30]. This yields the expression

OF (3.2)
ﬂ:Q_:Qf/k:
%

where € denotes the area occupied by a surface atom, x is the step curvature, and the
quantity 7 =y +d’y/d@” is known as the stiffness of the step. The step stiffness appears in

a local version of the Wulff construction, which relates the step free energy to the equilibrium
shape of two-dimensional islands [31,32]. In this formulation the equilibrium condition reads
simply
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vk = const., (3.3)
i.e. the local curvature of the equilibrium shape is inversely proportional to the local step
stiffness.

The equilibrium shape of the 2D islands can be also found as the shape at which (3.1)
reach the minimum at fixed area of island. This is analog of equilibrium shape of 3d crystal.
If the temperature is lower than temperature of roughening transition we can speak about
energy of steps. From equilibrium shape of the islands the step energy can be found by 2d
Wullf construction [33]. The geometric interpretation of the Wulff theorem is the Wulff
construction, which is defined as follows: At each point of the polar plot of the free step
energy p(0) Figure 3. 8, a straight line perpendicular to radius vector to that point is drown;
the inner envelope of the resulting family of lines is then geometrically similar to the
equilibrium shape [31]. The step energy minima “A” and “B” on the energy plot diagram
Figure 3. 8 correspond to the preferred step orientations with front perpendicular to OA and
OB vectors.

Usually the steps with a high density of atom packing at the step edges are observed on

the surface. The low index step directions: <T T2>, <1 1§> and <1TO> are observed on the
Si(111)-7x7 surface. Step directions which usually occur during growth or annealing will be
called as preferred step directions. The <T T2> steps with front parallel to the 7x7 boundaries
is the most stable steps on the Si(111)-7x7 surface. The <TT2> steps are found to occur

during Si on Si(111) epitaxy [34]. The preferred step directions can be changed with a
modification of the surface structure by adsorption of a foreign element. So, Bi terminated

Si(111)V3xV3-R30° surface has a 30° rotated structure. The <1 T0> steps with front parallel to

the V3xV3-R30° cell boundaries were found as preferred steps on the Si(111)-Bi-V3xV3
surface [35,36].

Ay
Y(8)

y X

Crystal shape

Figure 3. 8. Energy Wulff diagram of the steps on the surface.
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The step energy and activation energy for attachment as well as preferred step directions
are also depend on mutual shift of the surface reconstructions on upper and lower terraces at
the step edges [36].

3.2.2 Kinetic processes at steps

Kinetic processes at steps (Figure 3. 9 (b)) include:

e Attachment and detachment Figure 3. 9 (b) — (1), (2). These processes actually
consist of two stages: When attaching to the step, an adatom first attaches to a straight step
segment and then moves along the segment (Figure 3. 9 (b) — (5)) until it reaches a kink,
where it is incorporated (Figure 3. 9 (b) — (3), (4)); similarly a detachment event requires first
that an atom detaches from a kink to the straight step and subsequently detaches from the step
segment to the terrace.

e Diffusion along the step edge Figure 3.9 (b) — (5).

e Step crossing Figure 3. 9 (b) — (7). An atom may also cross a step without attaching
to a kink; this happens if the kink concentration is low and the binding to the straight step is
weak, so the step atom detaches from the straight step before a kink is encountered.

¢ One-dimensional nucleation Figure 3. 9 (b) — (8) [37]. If two step atoms are present
simultaneously on a straight segment of the step, they can meet and form a step dimer, which
is essentially a pair of kinks of opposite sign. This provides a nonequilibrium mechanism for
the creation of kinks, in addition to the thermally excited kinks that are present in equilibrium.
If step atoms cannot detach to the terrace, the typical distance between kinks created by one-
dimensional nucleation is

(_EdJ 1/4 (3.4)
exp

where D, = avexp[ P 4

j is the diffusion coefficient of a step atom along a straight step
B

segment, and Fj; is the one-dimensional flux impinging onto the step from the terrace
[38,39]. Generalizations of (3. 4) to other conditions can be found in [40,37,41]. The typical
distance between equilibrium kinks is [42]

- a E, (3.5
lld ~ _eXp s
2\ k,T

where E, is the kink formation energy, and a is an interatomic distance.

¢ Diffusion along a rough step. Since steps always contain a finite concentration of
kinks (of equilibrium or nonequilibrium origin), mass transport by step edge diffusion
requires that step atoms are able to cross kinks and corners. The diffusion along a rough step
is therefore considerably slower than the diffusion along a straight step segment. As indicated
in Figure 3. 9 (b) (6), a step atom crossing a kink “from above” first has to round the kink
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and then detach from it onto the step. Kink rounding is often associated with an additional
energy barrier [43,44,45].

The attachment rates k' for adatoms from upper and lower terraces into step edge were
introduced by Schwoebel in his paper [46]. Schwoebel and Shipsey were the first who
explored the consequences of attachment asymmetry (k" # k') for the stability of growing

stepped surfaces [46,47]. There are differ normal Ehrlich-Schwoebel (ES) effect k" < k' and

inverse E-S effect k" > k'. These attachment asymmetries can be also considered for the
kinks Figure 3.9 (b) (3), (4).

XY

Figure 3. 9. The elementary processes at step edges (b): (1) — attachment-detachment from upper
terrace k. , (2) — attachment-detachment from lower terrace ki, (3) — attachment —detachment into

kink from left, (4) — attachment detachment into kink from right, (5) — atom diffusion along a step
edge, (6) — kink crossing, (7) — step crossing, (8) — 1D island nucleation. Attachment-detachment

from upper and lower terraces can differ by the activation energy Eg.g (kf # ki ), this difference is
named Echrilich-Schwoebel barrier at a step edges (a).
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3.2.3 Transparent steps

The step crossing effect (Figure 3. 10) was first considered as so-called step permeability
or transparency phenomenon in [48, 49]. At the atomic scale, this phenomenon results from
the ability of an adatom to cross the step edge without visiting the kink sites at the edge [2]
Figure 3. 10. The downward or upward net flux of adatoms crossing the edge of the
permeable step will take place given the non-zero difference of the concentrations of adatoms
on the adjacent terraces.

Usually the step crossing flux j_  as well as the fluxes of adatoms incorporating into the

step from the lower (upper) terraces j,,, are assumed to be proportional to the relevant

driving forces: j,,, =f,(n,—n,) and j,, =p, (n,,, —n), where n; and n, are the
concentrations of adatoms on the lower and upper terraces, respectively, and # is the
equilibrium adatom concentration on the terrace. The step permeability coefficient S, and

the incorporation coefficients £/ are commonly treated as phenomenological parameters.

Such a phenomenological approach provides a relatively easy way to describe growth with
the permeable steps. The kinetics of the second layer nucleation in the 3D growth of the
islands was described with the step permeability effect in [50].

The balance equations for incorporation and climbing fluxes read:

jl :jilnc +jcl’ros :ﬁilnc(nl _ﬁ)+ﬂp(nl _nu)’

. . . ~ .1 .
]u :]t;c +]:r0s :ﬁiZc(nu _n)+ﬂp(nu _nl)9 here .]cros :_J:ros'

In the symmetric case of the attachment barriers from lower and upper terraces the
incorporation coefficients for attachment g, ~and B have the same value:

mc

B. =B = p. . Then sum of incorporation and crossing fluxes can be written as:

. . n,+n, - (3.6)
]inc:Jl+]u:2ﬁinc( [2 —7’1),

. Ji = Ju

Jcros :l—:ﬂp(nl_nu)' (1)

2

Figure 3. 10. The step crossing process (1) consists of an adatom attachment (detachment) to the step
from lower terrace and detachment (attachment) to the step from upper terrace. Before detachment
the adatom can diffuse along the step (2) without visiting the kinks.
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The ratio of the crossing and incorporation fluxes is proportional to the ratio of the
permeability and incorporation coefficient:

i 3.7
]'c;ﬂs oc & — 77 , ( )
.]im' ﬂinc

The step is permeable if the ratio —~

=7 >>1. And the step is impermeable if 7 <<1, that
means that the edge adatom much more probably reaches the kink than detaches from the
step.
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3.5. Exchange intermixing at step edges

An adsorbed atom can have different positions on the surface with different activation
energy for an exchange intermixing. Figure 3. 11 shows six different positions of an atom at
the surface. Position (1) corresponds to a single adatom on the terrace, (2) corresponds to a
single adatom at the step edge, (3) — atom in the kink, (4) — atom in the step, (5) — atom in the
upper surface layer, and (6) — atom in the bulk of a crystal. The activation energy for an
exchange can be estimated qualitatively on a simple cubic model Figure 3. 11 as a function
of number of neighbors (neighbor atoms), £ =f (n, m) oc (n +m— l) -AE(n,m). Where n

is a number of neighbors for an adsorbed atom (purple cube), and m is a number of neighbors
of an atom for exchange (can be any neighbor yellow cube), and (- 1) to exclude double
counting of common bonds. An atom adsorbed at position (1) have a minimal number of
neighbors: 1 neighbor Figure 3. 11. The following adsorbed atoms have correspondingly: (2)
-2,(3)-3,(4)—4, (5 -5, and (6) — 6 neighbors.

exchange

(@) ————(2)
( /
7 ,  /
z /
7 16) //i//
////,
41V%
(b)
(2)
3
(1) [(4) 1 1(5), (6)
. —> )

Figure 3. 11. Side cross section view (a) and upper view (b) of the different positions (1) - (6) of
adsorbed atom (purple coloured cube) with different number of neighbors (black arrows — vertical,
neighbors and red arrows — lateral neighbors) at the surface.
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The neighbor atoms at (1) position have a minimal number of neighbors for vertical
exchange, upper (purple) atom has one neighbor below, and underlying neighbor atom has 6
neighbors in sum it will be (n+m —1)= 6. The same (1 +m —1)=6 number of neighbors can
be found for lateral exchange perpendicular to the step edge for atom at position (2), and for
lateral exchange along the step edge for atom at position (3). (n+m—1): 7 for vertical
exchange at position (2), for lateral exchange perpendicular to the step edge at position (3)
and for lateral exchange along step edge at position (4). (n +m— 1) =8 for vertical exchange
at position (3) and for lateral perpendicular to the step edge at position (4). (n +m— 1) =9 for
vertical exchange at position (4) and for lateral for position (5). (n +m-— 1) =10 for vertical
exchange at position (5). And maximal (n +m— 1) =11 can be found for the bulk diffusion,
position (6).

In Bi-SME Ge on Si(111) the vertical exchange intermixing Figure 3. 12 (position (1)
Figure 3. 11) is suppressed by surfactant spacer between substrate and adatom adsorbed on

the surface, Eg, 5 > E(, g . During growth Ge atoms attach to the step edges (Eg, g 1s

lower at step edges than on terrace) and take positions (2), (3) Figure 3. 11. Therefore the
easiest intermixing is observed at the step edges at positions (2) and (3) Figure 3. 11. The
lateral exchange intermixing (red arrows Figure 3.11) is easier than vertical intermixing
(black arrows Figure 3. 11) since the surface atoms in lateral intermixing have a less number
of neighbors (Figure 3.11). The process of vertical intermixing at the terrace during
annealing and at the step edges of Bi terminated Si(111)V3xV3-R30° surface during growth
were studied in [24]. The effective activation energy for vertical exchange intermixing at the
step edges (positions (2), (3), (4) Figure 3. 11) is about 1.9 eV [24], the activation energy for
vertical exchange intermixing between two upper layers (position (5) Figure 3. 11) is 2.2 eV,
the activation energy for a bulk diffusion (position (6) Figure 3. 11) is 3.2 eV [51].

E EG, s Ec, s I -ce
I:> I:> Bl -6
-Si

ex ex
EGe—Bi > EGe—Si

Figure 3. 12. Schematic side view of the vertical exchange of Ge atom on a terrace of Bi terminated
Si(111) surface.
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4.Preparation of highly ordered Si(111) templates

4.1. Precise misscut angle of sample plus annealing procedure

The standard way of the preparation of a template includes several stages. The first is an
orientation of the wafer by X-ray diffraction. After appropriate orientation the wafer can be
cut and polished in the desired direction. The polishing, which can be mechanical and
chemical polishing, allows to achieve appropriate smoothness. The accuracy of the surface
orientation in the standard procedure is not higher than 5 - 10 minutes. Such surface
misorientation from the singular ((100), (111), (110)) orientations results in surfaces
containing regular steps as shown on Fig. 4.1 (a), where 0 is the misscut angle from a
singular orientation 7.

Fig. 4.1. a) Schematic 3D view of the stepped surface inclined from the singular (100) orientation on
angle 0 with azimuthal misorientation a; b), c) top view of stepped surface, the facetted steps (c) or
steps with regular kinks (b) are result of arbitrary azimuthal misorientation of a misscut angle o from
the preferred step direction.
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The average distance between steps d and height of the steps / are expressed by the relation
d = h/tan(0). 4. 1)

Generally, the steps can contain kinks Fig. 4.1 (b) and facets Fig. 4.1 (¢). The straight
segments of facets and straight segments between kinks are present by the stable steps with
preferred directions. The regular kink density €, can be written as:

0, = tan(a)/w, (4.2)

where w — a height of the one kink, and & - the azimuthal misorientation from the preferred
step direction. The highly ordered template with straight surface steps can be prepared by
tilting toward azimuth of the preferred step direction. The template must be cut and polished
with high accuracy, because of azimuthal misorientation a from the preferable step direction
produces regular kinks (4. 2), Fig. 4.1 (b). To have no more than one regular kink per one
micrometer the accuracy for polar misscut angle a on the vicinal Si(111)7x7 surface must be
< 130 sec. After polishing procedure the surface can have defects and contaminations. To
clean and arrange the surface on atomic level an annealing procedure in UHV is used.
Annealing at suitable high temperature is followed with desorption of the surface atoms,
annealing also enhances the mass transport and adatom diffusion on the surface. The
annealing starts from higher temperature and slowly goes down to the room temperature. That
allows to clean and arrange the surface and reduce the concentration of surface defects to the
equilibrium concentration at RT.

The periodicity of the surface structure has an influence on the step ordering on the
surface. The preferred lateral positions of the steps are defined by the translation symmetry of
the surface structure. The height w of the kinks Fig. 4.1 (a) is usually equal to the size of the
surface unit cell. The kinks with a larger size have a higher formation energy due to larger
length w of the kinked step segment. Thereby, the surface with larger surface unit cell has a
lower equilibrium concentration of the kinks - this is stabilization effect of the surface

structure. The most stable steps on the Si(111)7x7 surface are the <T T2> and <1 1§> - steps.

Because of the large size of the 7x7 unit cell and the high energy of kink formation the
concentration of equilibrium kinks is low [52,53]. A similar stabilization effect of the surface
structure has been observed for stepped metal surfaces with a large unit cell, such as Au(111)
[54]. The stabilization effect of 7x7 structure can be observed at temperatures lower than
870°C (temperature of phase transition from 1x1 to 7x7 on Si(111) surface), therefore the
annealing at the temperature lower than 870°C is the most important stage of the annealing
procedure.

The method of preparation of highly ordered stepped Si(111)7x7 templates is described
in [55,52,53]. Mainly, the preparation of a highly ordered stepped template faces the
following problems: 1. problem of instability of the step arrangement induced by the current

step bunching effect, 2. the tripling of the <T T2> steps [56] during phase transition from 1x1
to 7x7 structure and 3. the problem with the kinks induced by 7x7 domain boundaries at the

step edges; the lateral phase shift between neighbour domains of the surface structure induces
a kink at the step edge [52].
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The first problem was solved by the orientation of the heating current parallel to the step
direction. The problem of the tripling steps was solved by rapid quenching of the sample near
the temperature of the phase transition from (1x1) to (7x7) (880°C — 860°C). The problem
with the step kinks at domain boundary was solved by long time (1/2 — 1 h) of annealing at
850°C. The annealing at 850°C develops long-range 7x7 domains and reduces the density of
domain boundaries and step kinks. The solution of the mentioned problems allows to form the
straight steps without kinks over 8 um length; actually, that distance was limited by accuracy
of the surface orientation.

The requirement to a high accuracy of the surface orientation is not always achieved
with standard procedure, in the following we consider an alternative method of preparation of
highly ordered stepped template.
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4.2. Mesa structures

Another way to produce an arranged stepped structure on the surface is step design on
mesa structures. Mesa structures in micrometer range can be easy created on the surface in
desired way. The mesas were used to fabricate large step-free regions on the surface [57]. The
idea was to use the edges of the mesas to accumulate and localize atomic steps. In ideal case
the steps are moving to the edges of the mesas during sublimation on bottom mesas or during
deposition (step-flow growth) on top mesas, Fig. 4.2. New steps can be formed by nucleation
of islands or vacancy islands at the center of flat mesa during adsorbate deposition or during
sublimation, respectively. Therefore, the main requirement of the method consists in a
preventing nucleation of islands at the center of flat mesas.

The question is: can the mesas be used to accumulate and localize atomic kinks in an
analogous way, Fig. 4.3. It can be expected that this is more difficult problem because new
kinks can be generated at the step edges by 1D nucleation. The 1D nucleation at step edge is
easier than the nucleation of islands on the terrace. The most interested case with mesas

perpendicular to <T T2> and <1 1§> steps on the Si(111) surface was studied in [6]. According

to that work the ideal mechanism shown on Fig. 4.3. does not work so perfectly in case of
Si(111) surface. But anyway, the authors found how the mesas can be used for the step
arrangement.

(a) deposition (©)

VVV;

v

Stepped surface Flat surface

(b) A A A A A

(d)

sublimation

Fig. 4.2. Cross sectional view of stepped surface on top mesa (a) and bottom mesa (b); the steps
moves in directions shown by red arrows from the center to the edge of mesas. The steps leave the
mesas making them perfectly flat without steps (c), (d).
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Fig. 4.3. The kinks are active place for attachment — detachment adatom process. Adsorption or
desorption processes on the surface induce kinks movement. During deposition the kinks will move
and accumulate at the edges on top mesa as shown by red arrows (a). During sublimation the kinks
will move out on bottom mesa (b), the direction of kinks propagation also shown by red arrows. The
straight steps can be formed when all kinks leave the steps and accumulate at the edges of mesas (c),
(d). Curvature of the steps is opposite on top and bottom mesas according to geometry of these mesas

(@), (b).
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Fig. 4.4. During step-flow growth the [11-2] steps (a) transfer into more energetically preferable
steps, i.e. <1 1 2> — type steps (b). The kinks on the <1 1 2> -type steps moved out by similar way

as was shown on Fig. 4.3. (a).

An interesting behavior was found for 1-um-wide mesas perpendicular to <1 1§> steps
[58]. During step flow growth the <TT2> steps were formed as shown on Fig. 4.4. It is
known that the <T T2> -type step is energetically more stable than the <1 1§> -type steps

[59,60]. It can be said that the step flow growth on 1 pm-wide mesa top produces arrays of
stable and straight steps. The macrokinks in the center on top the mesa were used in the next
applications for positioning of nanostructures [61].

To exclude regular kinks produced by deviation of the missorientation the mesas

perpendicular to <T T2> steps was used in [62]. The straight steps were formed only in the

central area of the mesa due to a strong influence of the surface curvature on the surface
energy at the edges of the mesas.
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4.3. Step ordering by kink bunching

A new method of the step ordering was proposed in [63]. The method is based on the
current induced kink bunching effect. To understand the current induced kink bunching effect
we will start from the well known step bunching effect. The step bunching effect is well
known as the result of step instability during growth or sublimation. Fig. 4.5. illustrates
simple cases when stabilization and destabilization of the equidistant steps during growth and
during sublimation are induced by normal Ehrlich-Schwoebel (E-S) effect. During growth an
attachment process from the lower (leading) terrace stabilizes a configuration of equidistant,
straight steps and attachment process from the upper (trailing) terrace destabilizes a
configuration of equidistant, straight steps. In the symmetric case, when the kinetic conditions
for attachment-detachment from upper and lower terraces are equal, the terrace width
distribution stays unchanged.
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Fig. 4.5. Attachment process from lower terrace for the normal E-S effect stabilizes a configuration of
equidistant straight steps during growth (a), the broader terrace (yj:; — yj ) adsorbs more atoms
(proportional width of terrace) which incorporate into y; step, the y;j step moves faster and due to that
the distance between y; and y;j.; steps decreases. So, stabilization (destabilization) effect will be found
as decreasing (increasing) of width of broad terraces and increasing (decreasing) of width of short
terraces. Sublimation process on the surface at the same E-S effect will destabilize a configuration of
equidistant straight steps (b).

Y
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An asymmetry in the rate of attachment-detachment from the upper and lower terraces
will stabilize or destabilize an equidistant configuration of the steps. E-S effect introduces
asymmetry into that system. Normal and inverse E-S effect will give opposite effect on the
step stabilization.

Another case of an asymmetry is electromigration of adatoms on the surface induced by
direct current perpendicular to steps. Electromigration of adatoms on the surface
perpendicular to step edges changes the symmetry of the attachment-detachment process from
the lower and upper terraces. A current in step up and step down direction will give an
opposite effect on the step instability [64,65]. The step bunching induced by current was
reported for the first time by Latyshev [12]. The current induced step bunching can be used to
form step free regions on the surface. The authors of ref. [11] used the electromigration effect

to form straight [T T2] steps without kinks on the Si(111)7x7 surface. They found that the

kink-up direction current at 800°C-830°C accumulates the kinks into bunches and leaves kink
free regions about 1 um length, Fig. 4.6.

(111)

Kink bunching — atomically straight steps

Fig. 4.6. The kink-up current forms the straight-step region which is 1 pm away in step length.

The temperature was chosen lower than the phase transition from 1x1 — 7x7 (870°) due
to the importance of stabilization effect of the 7x7 reconstruction on the step edges. The

appropriate misorientation of the substrate was 1° towards the [T TZ] direction. In addition to

the 1° polar misscut, an azimuthal misorientation of less than 3° from the [TTZ] was

intentionally introduced.

In the case of kinks at the steps the similar principles are working, the atoms attach to the
step edge (2D — adsorb on the terrace) and diffuse along the step (2D - terrace) until reach the
kink (2D — step). To describe the stabilization or destabilization of a configuration of the
equidistant kinks we can interpret the Fig. 4.5 as a top view of the step edges on the surface
and step are transferred to kinks.
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5 Experimental techniques

The experiments were performed in a homemade ultra-high vacuum (UHV) apparatus
with base pressure 3x 10" — 10" mbar. A schematic view of the system is shown in Figure
5. 1. The machine consists of a load-lock chamber, tip preparation chamber, STM chamber,
MBE chamber, and a set of vacuum pumps. The load-lock chamber is used to introduce the
samples from air to the UHV part of the system. The tip preparation chamber contains a tip
thermal cleaning system.

(a)

Transfer system

lon pump  Sublimation

pump
- Load-lock

chamber

Tip
<= preparation
chamber

MBE chamber STM chamber

MBE sources =

Figure 5. 1. Schematic top (2) and side (b) views of the experimental system.
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The cleaning of the sample and deposition are carried out in the MBE chamber. The
MBE chamber is equipped with Si and Ge electron beam evaporators, Bi and Cgp evaporation
cells, quartz-crystal monitor, infrared pyrometer, and sample transfer mechanism.

The design of the system allows to perform the subsequent and simultaneous
deposition of materials and control a sample temperature and evaporation rates. After growth
the sample can be transferred to the STM chamber for subsequent STM measurements.

5.1 Molecular beam epitaxy system
The MBE system consists of a UHV chamber equipped with four evaporators. A

commercial W.A. Technology Ltd standard Knudsen cell with stabilized temperature
controller (Figure 5. 2) was used for Bi and Cgy evaporation.

Standard K-cell

Figure 5. 2. W.A. technology Ltd standard Knudsen cell with stabilized temperature controller.

The schematic cross-sectional view of the Knudsen cell is shown in Figure 5. 3. The
Knudsen cell consists of a W-heater fixed between two ceramic cylinders, water cooling
system including water cooling jacket with water tubes, Ta heat shields between W-heater
and water cooling jacket, thermocouple, and crucible. A pyrolytical boron nitride (PBN)
crucible was used in the Bi evaporator and graphite crucible was used in the Cg evaporator.
The rate of evaporation is determined by the temperature of the crucible. R(W)-type
thermocouple was used to measure temperature of the crucible.
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Figure 5. 3. Cross-sectional view of the Knudsen cell comprises a shutter (1), PBN or graphite
crucible (2), W heater (3), water cooling jacket (4), water channels (5), Ta heat shields (6), water inlet
(7) and outlet (8) tubes, thermocouple (9), electrical and thermocouple feedthrough (10).

A homemade electron beam evaporator was used to vaporize Ge and Si. Its schematic
view is shown in Figure 5. 4. The central rod of the evaporator is connected to a high voltage
source (2.5+3 kV). Electrons are emitted from a glowing filament and are accelerated
towards the central rod/crucible of the evaporator. A current of 10+50 mA will flow to heat
the crucible with Ge or Si. A Ta crucible and a graphite crucible are used in the Si evaporator
and the Ge evaporator, respectively. The rate of evaporation is determined by a temperature
of crucible which can be adjusted by emission current and by acceleration voltage.
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Figure 5. 4. Cross-sectional view of the electron beam evaporator used for Si and Ge evaporation.

The rate of deposition was measured with the commercial thin film deposition
controller “Inficon XTC”. The growth rate measurements are based on the effect of changing
the resonance frequency of the quartz plate with a thickness of the film deposited on its
surface.

5.2 Sample preparation

The samples were cut from Si(111) Sb-doped wafers with 1x10" atom/cm doping and
had a size of ~ 8X4Xx0.5 mm. The highly ordered stepped Si(111)-7X7 templates were

prepared as described in [63]. The wafer was polished to 1° miscut (6,) toward the [T TZ]

direction with an intentional azimuthal misorientation (¢, = 4°) to orient all kinks at the
surface steps in the same direction. Samples were cleaned in vacuum with flash heating to
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1230°C and rapidly quenched. Then, samples were annealed at 800+830°C for about 10 h
with dc current flowing parallel to the steps in the “kink-up” direction [63] to extend the
atomically straight step edges by surface electromigration of Si.

53 Sample heating and temperature measurement

All samples were heated by dc current. By changing the applied power the substrate
temperature was varied from a room temperature (RT) to 1230°C. The temperature of the
substrate was measured using the non-contact, infrared radiation pyrometer “Ircon Modline
Plus”. Its temperature range is 350--1500°C. The pyrometer has an optic system with spot
diameter about 6 mm, i.e. larger than a width of samples (~4 mm). An integral optic signal of
the pyrometer from a 6 mm diameter spot consists of about 70% of sample irradiation and
30% of background signal corresponding to the room temperature. The temperatures above
500°C were calibrated with ~3 mm spot diameter pyrometer with temperature range of
500-+-1500°C. A temperature deviation A7 from the real temperature measured with “3 mm
spot diameter” pyrometer was built up and extrapolated to RT Figure 5. 5. To control the
substrate temperature below 350°C a power calibration was used. A temperature dependence
on power was extrapolated from room temperature (RT) with zero power to temperatures
higher than 350°C. The precision of temperature measurements was not worse than +2%.

delta T (°C)
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Temperature of sample (°C)

Figure 5. 5. The deviation AT of temperature measured with the “6 mm spot diameter” pyrometer
from the real temperature of the sample.
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6 Growth of Ge nanowires on a Bi-terminated Si(111) template

6.1 Preparation of a Ge nanowire arrays by step flow growth

In order to fabricate ever-smaller nanoscale device structures, there is an enormous
interest in finding ways to build devices from the bottom up rather than fabricate from the top
down. Using the bottom-up approach, the size of the structures is not limited by lithography;
however, the uniformity and the ability for positioning of nanostructures are still a challenge.
Specifically, nanowires are desirable as nanoscale interconnects [66]. One of the concepts
followed in the bottom-up formation of nanowire arrays is to create a highly ordered atomic-
step template on a vicinal single-crystal surface and to form the wires along the step edges,
decorating the step edges with a selected material [67,68,69,70,71]. A suitable template is the
vicinal surface of a Si(111) single crystal, since the structure of the step train on this surface
can be controlled to a large extent [52,55,58,72,63]. Steps on Si(111) vicinal surfaces have
been decorated by metals [70,73], semiconductors [62,71,74,75], and organic molecules [ 76].
The challenge is to improve the homogeneity of the nanowire array and the crystallinity and
the aspect ratio of the wires.

The step flow growth mode is a useful method for fabrication of Si/Ge nanowires on
stepped surfaces [71]. In the step flow growth mode adsorbed atoms diffuse over the surface
until they reach a step edge Figure 6. 1 (a). After attachment to the step edge Ge/Si atoms
take a stable position and become a part of the Ge/Si stripe. The method is also useful for
nanostructuring of alternating Si/Ge nanowires [71]. The alternating Si/Ge nanowires can be
easy formed by alternating deposition of Ge and Si as shown on Figure 6. 1 (b).

g g g g g gy
-

g

Figure 6. 1. In step flow growth mode adsorbed atoms diffuse over the surface before incorporation into a
step (a). The system of alternating Si/Ge nanowires fabricated by Ge and Si deposition (b).
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The average width of alternating Ge/Si wires is controlled by the time of Ge/Si
deposition on the substrate. The shape and size uniformity of the wires are challenges. Initial
step ordering of the substrate is important for the growth of good ordered nanowires, irregular
step edges produce an irregular shape and an irregular width of the wires Figure 6. 2 (a).
Different preferable step direction on the clean substrate and on the substrate terminated by
surfactant destroy the initial ordering of the steps. If the initial step direction of Si substrate is
not equal to a preferable step direction of growing Ge layer, then the facetted Ge wires are
formed as shown on Figure 6. 2 (b). The initial step ordering of the substrate can be provided
on a clean Si(111)-7x7 surface since it allows to form a straight step array over micrometer
range [63]. The standard SME includes a termination of the surface by a surfactant. The
termination process can destroy the initial ordering of the Si steps due to mass transport of
additional Si atoms on the substrate. The additional Si atoms are induced by change of
surface reconstruction. The important point is to conserve the long-range order of the initial
Si template, which is usually lost during the nanowire preparation process using standard
surfactant mediated epitaxy (as in [71]). Figure 6. 2

Figure 6. 2. (a) The irregular wires at irregular step edges of a substrate, (b) facetting of Ge wires by
step direction different from step direction of preexisting steps.

The procedure of preparation of Ge nanowire array is divided into three stages: (1)
preparation of the highly ordered Si(111) template, (2) termination of the template by 1 ML
Bi, and (3) growth of Ge nanowires on the Bi-terminated template.
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6.2 Preparation of a highly ordered Si(111)-7x7 template

The highly ordered Si(111)-7x7 template was prepared by a method described in [63]
and in Chapter 4.§4.3 of the thesis. A Si(111) wafer was polished to 1° miscut (6,,) toward the

[T TZ] direction with an intentional azimuthal misorientation ¢,, = 4° to orient all kinks at the

surface steps in the same direction. The samples were cleaned in vacuum with flash heating to
1300 °C and rapidly quenched.

1000 nm

Figure 6. 3. (a) The initial surface contains kinks; a direct current heating in the kink-up direction extends a
kink-free step region (b); (c) kink-free and kink bunch regions.
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Afterward, the samples were annealed at 800-830 °C for about 10 h with dc current
flowing parallel to the steps in the “kink-up” direction [63] to extend the atomically straight
step edges by surface electromigration of Si Figure 6. 3. The resulting surface step structure
is shown in Figure 6. 4, Figure 6. 3 (b).

50 nmx50 nm

Figure 6. 4. Regular array of straight kink-free steps on a micrometer scale

The surface Figure 6. 4 presents the system of atomically perfect 1 layer height steps. All
steps have equal structure - U(2,0). The method described in [63] can be improved to achieve
equidistant steps ordering. Due to azimuthal deviation of the current to the step orientation we
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have two components of the current: parallel and perpendicular to the [T T2] step direction
Figure 6. 5. Parallel to the steps component induces kink bunching. The component
perpendicular to the steps have an influence on the step ordering [65,77]. The orientation of
the perpendicular component of the current in step up [1 15] or step down [T 12| direction
usually induces opposite effects: step bunching or step debunching, respectively. An
intentional misorientation of the current in desired way (step up or step down) can be used to
achieve an equidistant step ordering.

Figure 6. 5. Direct current is a vector sum of perpendicular to step and parallel to step direction
projections I and I,,, respectively. Step up or step down perpendicular projection of the current can
be controlled by an intentional misorientation a.
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6.3 Maintaining good step ordering during Bi termination

The Bi deposition on the clean Si(111)-7x7 surface at 300°C — 500°C changes the 7x7

surface structure to the Bi-~/3 x+/3 . The Bi induced ~/3 x+/3 reconstruction has two phases:
the a — phase and the f — phase. The a — phase consists of 1/3 ML and § — phase 1 ML of Bi
coverage, respectively [78]. The structure of @ — phase has one Bi atom (monomer) bonded to
T, site [78] Figure 6. 6, and the f# — phase has three Bi atoms (trimer) bonded to T4 site as

shown on Figure 6. 6 (b). The Bi monomer of the @ — phase has 1.1 A of height over the

underlying Si atoms and Bi trimer of the f — phase have 2.21 A of height over the underlying
Si atoms [78]. The Figure 6. 6 (a) presents the height of @ — phase Bi atoms over
unreconstructed Si(111) surface and the height difference between Bi atoms of a and f
phases.

114

B-phase

Figure 6. 6. Different phases of Bi on the Si(111) surface. (a) — side and (b) — top views of the o and B —
phases. The height differences are defined according to ref. [78]. The Bi atoms are shown by red balls.

The additional deposition of Bi on the @ — phase transforms the & — phase into # — phase. The
adsorbed Bi atoms bond to the single Bi atoms on T4 — site (monomers) of the & — phase until
the number of atoms increases up to three. The Figure 6. 7 (a) presents an STM image of the
Si(111) surface partly covered by a — phase, f — phase and 7x7. The line profiles show an
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apparent height difference between different phases Figure 6. 7 (b). The # — phase is higher

than the a — phase on = 0.8 A Figure 6. 7 (b). The a — phase can be also identified as the
phase containing more defects than the f — phase Figure 6. 7 (a). The defects are present by
dark spots on the STM image and correspond to Si adatoms.
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Figure 6. 7. Different phases of Bi on the Si(111) surface (a), filled state STM image, -2.07 V on the
sample. (b) the apparent height difference between phases, the line scan 1 shows the apparent height
difference between 7x7 and a-phase, the difference measured from the deep between adatoms is 0.9
A. The line scan 2 shows the height difference between the a-phase and the B-phase about 0.8 A. The
line profiles were averaged on the area of rectangles.
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The standard Bi surfactant mediated epitaxy [71,79,80] on the Si(111)-7x7 surface starts
by terminating the surface with 1 ML of Bi which forms a V3 x+/3 surface structure

[78,81,82]. This is associated with a significant surface mass transport of Si, because 0.04
ML of Si atoms are released as a result of the lifting of the 7x7 surface reconstruction [83]
Figure 6. 8.

(7x7) unit cell contains 12 Si adatoms

Figure 6. 8. The standard Bi termination of 7x7 reconstructed surface. The 7x7 reconstruction contains 12
adatoms (a). Bi replaces 12 Si adatoms of the 7x7 structure (b), 8 Si atoms fill the corner holes of the 7x7 (c).
The remaining 4 Si extra atoms form 0.04 ML of Si coverage (d).
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Bi replaces 12 Si adatoms of 7x7 structure Figure 6. 8 (b), 8 adatoms fill the corner hole of
the 7x7 and the remaining four Si atoms (0.04ML) incorporate at the surface step edges.
Performing the termination in a standard way at substrate temperature 7s = 500°C and
terminating with a Bi flux Fg; = 0.7 ML/min for = 10 min results in a need to incorporate 0.04
ML Si at the surface step edges in a relatively short time. In Figure 6. 9 (b) we show the
result of such standard Bi termination performed on a highly ordered Si template Figure 6. 9
(a). The steps become

500 nmx500 nm 500 nmx500 nm

Figure 6. 9. Bi termination of the highly ordered Si(111)-7x7 template. Initially straight steps (a) become
wavy (b) due to the related Si mass transport.

wavy on a short length scale and the step ordering is lost Figure 6. 9 (b). To find a solution of
the mass transport problem the Bi adsorption on the Si(111)-7x7 was studied at a different
temperatures of the substrate. We studied adsorption of Bi on the Si(111)-7x7 surface at high
temperatures in the range of 600°C — 700°C. At the temperatures higher than 650°C the
surface has a 7x7 structure as shown on Figure 6. 10, no a,  — phases were observed on the
surface. But Bi coverage was found different from zero. We identified bright atoms in the 7x7
structure Figure 6. 10 as Bi monomers bonded on 7 site. To be sure we measured profiles
through these atoms and compare with profiles at the phase boundary between 7x7 and

V3x+/3 @and S — phases Figure 6. 7. We found that the height of bright atoms is lower than
the height of the # — phase and close to the height of the & — phase.
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Figure 6. 10. Bright spots correspond to Bi monomers on the Si(111)-7x7 after Bi deposition at T, = 670°C
(a) and T, = 640°C (b) with a deposition rate of 1.1 ML/min for 5 — 10 min.

During the long time deposition of 5 — 10 min at fluxes 1 — 3 ML/min a steady state
concentration of Bi on the surface was achieved. The measurements of the steady state
concentration of Bi at different Bi rates deposition (F) show a linear dependence Figure 6. 11
(a). The density of bright spots was converted into a coverage of Bi. To calculate the Bi
coverage a one bright spot was considered as one Bi atom. The model with two and three
particles per bright spot gives the concentration behavior different from a linear one. The
probability of the meeting of two or three particles is proportional to second or third power of
the flux, F*and F’respectively. The last point at F = 3.1 ML/min on the plot Figure 6. 11
(a) does not belong to the linear approximation. This deviation can be explained by a change
of the Bi bonding energy due to interaction between Bi atoms on the Si(111)-7x7 surface at
higher coverages. The Bi bonded to T, site modifies the 7x7 structure and decreases a
desorption energy for neighbor Bi atoms. The measurements showed that deviation from
linear dependence starts at =~ 0.01ML of Bi coverage Figure 6. 11 (a).

The temperature dependence of the Bi coverage is shown on Figure 6. 11 (b). The
Arrhenius approximation of the plot gives the value energy desorption of 4.3 eV/atom. The
theoretical energy calculations [84] predict for the & — phase the highest energy per Bi atom.
Energy per atom for the # — phase is 6.01 eV and for the a — phase is 7.04 eV, respectively
[84]. The desorption energy increases with bond energy per Bi atom, therefore the rate of Bi
desorption for the & — phase must be lower than the rate of desorption for the # — phase. At Bi
flux 3 ML/min and at temperatures lower than 650°C a Bi coverage achieves the critical value
about 0.01 — 0.02 ML such that the & — phase starts nucleate at the step edges.
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Figure 6. 11. Bi coverage in steady state regime as a function of Bi flux (a) was measured at T, =
650°C. (b). Bi coverage as a function of substrate temperature was measured at Bi flux 1.1 ML/min.

The Figure 6. 12 shows a nucleation of @ — phase on the lower terrace at the [T TZ] - steps.
The Bi-+/3 x+/3 reconstruction presents the unreconstructed Si(111)-1x1 layer with the Si
bonds saturated by Bi. To form the unreconstructed Si layer we need to rebond a faulted HUC
of 7x7. The nucleation of the \/3x+/3 a — phase need for high activation energy to rotate
bonds on 180° in the faulted halves of the 7x7 unit cell. The [TTZ] - steps reduce the
activation burier for adjacent faulted HUC on the lower terrace and make easier
transformation of the 7x7 to the +/3 x+/3 .

25 nmx25 nm

[112]

Figure 6. 12. The Bi- V3x\3 o — phase starts to grow on lower terraces at the
steps are saved straight by a careful control of the Bi coverage at the terrace.

- steps. The
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The mass transport problem was solved by a careful control of the Bi coverage at the
terraces during Bi termination Figure 6. 12. The fact that Bi readily desorbs from the Si(111)
surface at elevated temperatures was used. The rate of desorption is Fgs = 0.5 ML/min at
Ts=550°C [85,86]. Thus, for a constant Bi flux the Bi coverage can be controlled in a steady-
state regime by adjusting the 7.

In the optimized Bi termination procedure, the substrate was heated to 75s=700 °C and Bi
was deposited at Fg; = 3 ML/min. At this high temperature the Bi coverage is virtually zero.
Afterward, Ts was reduced to 650 °C over 10 min. This leads to a slow increase of the Bi
coverage, allowing a gradual Si mass transport during the lifting of the Si(111)-7x7
reconstruction. On Figure 6. 13. (b) the morphology of the surface after this preparation step
is shown. The surface steps remained straight, indicating that the released Si atoms had
enough time to evenly distribute along the step edges. The detailed view of the surface

reveals an inhomogeneous V3 x+/3 surface structure Figure 6. 13. (c¢), indicative of a 1/3
ML Bi coverage [81]. The protrusions observed in the STM image of the 1/3 ML Bi structure
correspond to Bi monomers on the Si(111) substrate.

Before Ge deposition, Bi coverage has to be increased to 1 ML because only 1 ML Bi
termination prevents Ge-Si intermixing on the terraces during the growth of the Ge nanowires
[71]. Thus, the Bi was deposited at F; = 3 ML/min on the 1/3 ML Bi terminated surface at
Ts=500 °C for 1 min. This causes a slight increase of the kink density. However, the step
structure of the original highly ordered step train remains largely conserved, as we can see in
Figure 6. 13. (d). The surface reveals a homogeneous /3 x+/3 surface structure indicative of
1 ML Bi coverage (Figure 6. 13. (e)) [81]. The protrusions observed in the STM image of the
1 ML Bi structure correspond to Bi trimers on the Si(111) substrate. No Si mass transport is
involved in this part of the process. The underlying 1x1 Si(111) structure is preserved, only
the Bi monomers are converted to Bi trimers.
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100 nm  Bnm

Figure 6. 13. The Bi termination of the highly ordered Si(111)-7x7 template Figure 6. 9 (a). (a)
Standard surfactant mediated epitaxy. The step structure of the template has been destroyed. (b) — (e)
Modified surfactant mediate epitaxy. (b) The surface after a slow increase of Bi coverage from o to
1/3 ML. The 1/3 ML Bi coverage is indicated by an inhomogeneous \/5 x\/g structure (c). The
surface termination at high temperatures preserves the original straight step arrangement. (d) The
surface after completing the Bi coverage to 1 ML. The 1 ML Bi coverage is indicated by a

homogeneous ﬁ X \/5 structure (e).
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6.4 Modified surfactant-mediated epitaxy

In the last preparation stage the Ge nanowires were grown along the step edges of the 1
ML Bi terminated template (Figure 6. 13. (d) and (e)) using surfactant mediated epitaxy
[71,86,87,88,89,90]. Ge grows in a step flow growth mode and a thin stripe of Ge attaches to
the step edge. In standard surfactant mediated epitaxy, materials are deposited under a
constant supply of the surfactant to maintain the (saturated) 1 ML surfactant coverage
[79,82]. However, performing the Ge deposition in the standard way at Fg. = 0.08 ML/min,
Ts =450 °C, and Bi flux F; = 3 ML/min does not yield straight Ge nanowires of homogenous
width. In Figure 6. 14 (a) we can observe that Ge nanowires grown by standard surfactant
mediated epitaxy develop step edges in the [ITO] directions which are 30° off the step

direction of the template.

200 nm 50 nm

200 nm | 50 nm

Figure 6. 14. Deposition of Ge on the ordered Bi — terminated surface (Figure 6. 13. (d)). (a) Standard
surfactant mediate epitaxy. Ge and Bi are deposited simultaneously. The Ge step develops facets in <1 T0>

directions which are 30° off the original <T T2> step direction. (b) Modified surfactant mediated epitaxy. Ge

is deposited without a Bi flux. The Ge step edges retain the original <T T2> step direction.
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To obtain the desired regular growth of Ge nanowire arrays the reducing of Bi surfactant
coverage is again considered. To minimize the Ge-Si intermixing the Bi flux was switched off
only during Ge evaporation and Ge was deposited at 7s =400 °C, Fg.=0.02 ML/min for
10 min. Afterward, the sample was cooled rapidly to room temperature. The result of this
preparation step is shown in Figure 6. 14 (b). The optimized growth of Ge at the template
step edges, resulting in single-crystalline, high-aspect-ratio, low-kink density Ge nanowires
with width of about 4 nm was obtained.

The success of the last preparation step shows that switching off the Bi flux at 7s=400 °C
is sufficient to change the Ge growth scenario. Any significant reduction of Bi concentration

on the terraces was not observed after this growth step. The V3 x+/3 surface structure is
homogeneous, indicating the saturation 1 ML Bi coverage Figure 6. 15 (b) [81]. Therefore,
the change of growth scenario is attributed to a reduction of Bi coverage at the step edges.

The optimized growth of a Ge nanowire array on a highly ordered Si(111) template has
been achieved by modified surfactant mediated epitaxy where the surfactant coverage on the
terraces (stage (2)) or at step edges (stage (3)) is lowered below the saturation coverage. In
the following we argue that the observed modifications of the growth scenario with changing
Bi coverage are due to the modified equilibrium properties of step edges in combination with
kinetic limitations during growth.

The <T T2> step direction of our highly ordered templates is the equilibrium step

direction of the Si(111)-7x7 surface, [55,52] Figure 6. 15 (a). An experiment was performed
that shows that, upon a complete 1 ML Bi termination and after prolonged annealing of the

surface under Bi flux, the preferred step direction on the Si(111)- V3 x+/3 -Bi surface
changes to <1TO>, 1.e., it rotates by 30°. In Figure 6. 15 (b) it can be seen that at the <1T0> -

oriented equilibrium steps the trimers of the V3 x+/3 surface reconstruction are most densely
packed. The fact that the 1 ML Bi termination of the Si(111) surface changes the equilibrium
step direction explains the general difficulty in growing Ge nanowires on Si(111)-7x7 stepped
templates.

When the Si(111)-7x7 ordered template is terminated by 1/3 ML Bi (as in stage (2)),
Figure 6. 13 (b) and Figure 6. 13 (c), the preferred low-energy step direction remains

<T T2>. The experiment shows that this step direction is stable in spite of the relatively open

structure of the step edge that can be seen in Figure 6. 15 (¢). This indicates that the
equilibrium step direction is strongly influenced by the actual amount of Bi in the surface,
and, in turn, at the step edges.

Given the above arguments, it could be expected that, after increasing the 1/3 ML Bi
coverage of the highly ordered stepped template to 1 ML in stage (2), the step direction

changes. However, this does not happen due to a kinetic limitation. The expected <1T0>
facets do not form because the straight step edges of the template with 1/3 ML Bi do not emit
enough Si adatoms at the temperature used in this preparation step (75=500 °C) to allow a
surface equilibration within the given time (I min). The step orientation remains <T T2>,
Figure 6. 13 (d). Finally, in stage (3), Ge is deposited on the 1 ML Bi terminated template. In

this case the Ge adatoms do not have to detach from existing step edges but are supplied from
outside. This, together with the lower effective activation energy for the Ge surface diffusion
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on the Bi-terminated Si(111) surface [91], leads to the formation of <1 TO> equilibrium facets
that destroys the ordered step train Figure 6. 14 (a). However, only a slight decrease of the Bi
content on the surface during the Ge deposition is sufficient to preserve the original <T T2>
orientation of the steps Figure 6. 14 (b). In Figure 6. 15 (d) we show that the microscopic
structure of the <T T2> step edge of the Ge nanowire formed during growth without Bi

codeposition considerably differs from the structure of the equilibrium steps on the 1 ML and
1/3 ML Bi-terminated surfaces Figure 6. 15 (b) and Figure 6. 15 (¢). This observation
confirms that during Ge growth

H P
B3 A5 =

.~

'
.

<110>

7 nm 7 nm 7 nm

Figure 6. 15. Changing the Bi content in the surface changes the structure of the step edges and their growth
and equilibrium properties. The equilibrium step directions are (a) <T T2> on the clean Si(111)-7x7 surface,

(b) <1 T0> on the Si(111)-+/3 x /3 -Bi with I ML Bi , (c) <T Tz) on the Si(111)- /3 x /3 -Bi surface with
1/3 ML B4, and (d) <T T2> on the Ge nanowires grown by modified surfactant mediated epitaxy. In (d) the

crosses and dots indicate the positions of the adatoms and corner holes of a 3x3 surface reconstruction.

the surfactant is removed from the step edges, which strongly influences the growth
properties of the steps. We can directly observe the Bi depletion at the step edge in Figure 6.
15 (d). The step edge has a periodic ringlike structure with a period corresponding to double
the period of the Si(111)-3 x 3 surface reconstruction. The Si(111)-3x3 is commensurate with
the +/3x+/3. It is a metastable structure [92] which was observed on disordered Si(111)
surfaces [°]. We can identify the corner holes (dots in Figure 6. 15 (d)) and the adatoms
(crosses in Figure 6. 15 (d)) of the 3 x3 structure located at the step edge. The adatoms have
2 A lower apparent height than the Bi trimers on the upper terrace. This height difference
corresponds to that one we measure on samples, where larger areas of 1 ML terminated
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Si(111)- J3x+/3-Bi and clean Si(111)-7x7 coexist Figure 6. 7 (a). This confirms the
assignment of the ringlike arranged adatoms as Si or Ge without Bi termination.

Conclusions

A technique of modified surfactant mediated epitaxy was introduced, where the
surfactant concentration is reduced on the surface to influence the growth and equilibrium
properties of the surface steps in a desired way. This modified surfactant mediated epitaxy is
shown relevant to nanotechnology since it allows fabricating arrays of long equidistant
epitaxial Ge nanowires with a width in the one-digit nanometer range. In future these
nanowire arrays could serve as templates for selective attachment of molecules, decoration
with metals, or attachment of clusters and other nanoscale building blocks such as fullerenes.
The study of charge transport through such very small nanowires will be another challenge.
The present work focuses on one specific material combination. However, the use of
surfactant coverage as a variable parameter opens up an additional dimension in the growth
parameter space that can be explored in bottom-up nanofabrication studies in general.
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7 Symmetry breaking in the growth of two-dimensional islands
on Si(111)

The observation of faceted crystal shapes is a fascinating experience because it allows a
direct look into the point group symmetry of the crystal. The equilibrium shape of a crystal
has the same symmetry as the lattice of the atoms inside the crystal [94]. Also, for growth
shapes of crystals, often a close relation between the crystal lattice symmetry and the
morphology is found. The shape of the islands usually follows the symmetry of the
underlying substrate. On the threefold symmetric Si(111) substrate epitaxially grown two-
dimensional Si and Ge islands have triangular shape [7]. Also the tetrahedron-shaped three-
dimensional Ge islands grown on Si(111) obey the threefold symmetry of the substrate [7]. At
the C,, symmetric Si(001) surface two-dimensional Si or Ge islands and the three-
dimensional hut clusters have an elongated shape consistent with the C,, symmetry [95]. It is
well known that surface reconstructions can lower the symmetry of the crystal. For instance,
for surface reconstructions induced by atomic layer thick adlayers of In and Au, the formation
of linear stripes breaks the threefold symmetry of the underlying Si(111) surface [96,97].
However, this symmetry lowering due to the reconstruction does not imply a pronounced
impact on the island shapes on these surfaces [98].

An analysis of the symmetry of the combined system of the reconstructed substrate and
the reconstructed nanostructure is required to predict the symmetry of the shape of the
nanostructures. Here we show that a surface reconstruction can lead to the growth of 2D
epitaxial islands with a lower symmetry than the substrate. It is known that a relation between
the internal symmetry and symmetry of macroscopic parameters of a system exists. For the
case of 2D epitaxial island growth one example is the symmetry of the thermodynamic
properties of the different step directions resulting into a shape symmetry.

Here we consider a model which describes a 2D island as combined system including the
surface plane of the substrate and the surface plane of the 2D island Figure 7. 1. The
combined system is based on the structure of the bulk lattice (basis vectors of the bulk lattice)
and obeys the internal symmetry of the bulk lattice B without taking the reconstruction into
account. In the model we consider the case when the surface planes of the island and substrate
have the same reconstruction, i.e. the same symmetry (translation and point group symmetry).
The surface reconstruction can reduce the 2D translation and/or point group symmetry of the
surface. If the surface reconstruction has a lower point group symmetry R than the bulk the
point group symmetry of the combined system is directly broken, since the point symmetry C
of the combined system is the intersection of the individual symmetries for the surface and
bulk C = RNB. If the surface reconstruction has a lower translation group symmetry R’ than
the bulk the translation group symmetry of the combined system is directly broken, since the
translation symmetry C' of the combined system is the intersection of the of the surface and
bulk symmetries C' = R'/NB’. In this case the surface reconstruction on the island can have
different lateral phase positions to the reconstruction on the substrate. The phase positions
differ by a shift vector which is equal to linear combinations of the basis lattice vectors for the
unreconstructed 1X1 surface: a-n + b-m, where a and b are basis vectors and n, m are integer
numbers 1, 2, 3,..., N. The cases when the surface reconstruction directly breaks the
translational symmetry of the surface will be considered here.
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Figure 7. 1. The two level system, island surface plus substrate surface. Cross section through the combined a
system of reconstructed substrate and reconstructed island (three times reconstruction on a simple cubic
lattice). The subsystem of substrate and reconstruction has a Cs mirror symmetry as well as the subsystem of
island and reconstruction. However, due to a shift between both reconstructions these mirror planes are not
identical (shifted) and the complete system of substrate, island and the corresponding reconstructions obeys
no mirror symmetry. We say that the mirror symmetry is broken by the combined system.

The 2D symmetry of the unreconstructed surface is a projection of the bulk symmetry to
the surface plane. The symmetry of the unreconstructed surface obeys the symmetry group
operations (point group operations and translation group operations) of the bulk lattice for this
plane.

In the following we discuss several case studies of the symmetry analysis of the
combined system of reconstructed substrate and island and deduce predictions for the island
growth shapes. In particular we will introduce a method which we call “analysis of common
fixed points” which is a simple way to analyze if the symmetry of the combined system is
lower than symmetry of each of the two subsystems (reconstructed island or reconstructed
substrate). This case we term “symmetry breaking”.

Figure 7. 2 shows the symmetry elements of the five fundamental 2D Bravais lattices.
Any symmetry element has several fixed points. A fixed point is a point that does not change
upon application of a (map) symmetry group operations: mirror reflections Cs rotations C,,
inversions. The oblique lattice has four C; fixed points per unit cell, the rectangular lattice has
four C,,, the centered rectangular lattice has two C, and two C,, fixed points per unit cell, the
hexagonal lattice has one Cs, two C3, and three C,, and square lattice has two C», and two Cy,
fixed points per unit cell.

Figure 7. 2. Five basic symmetry elements for the five fundamental Bravais lattices: 1 oblique, 2
rectangular, 3 centered rectangular, 4 hexagonal, and 5 square. Basis vectors @ and b are shown by
blue arrows. Symbols for the fixed points are defined as shown in the right of the image.
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Where C», C,,, Cs,, Cg,, and Cy, are symmetries of these five fundamental Bravais lattices
respectively.

Now we consider two Bravais lattices which can be identified with substrate
reconstructed lattice and island reconstructed lattice. There exist only a limited number of
combinations (shifts) between these lattices which fulfill the condition that the symmetry of
the combined system is the same as the symmetry of the original lattices. Any lateral shift can
be expressed in the lattice basis vectors @ and b of the unreconstructed (1x1) surface unit cell:

(r.3) = xt oy o
Tl el

The oblique and the rectangular lattice symmetry element can be fixed in 4 different
ways, the centered rectangular and square in two different ways and the hexagonal in one
way. The combined system which is a combination of island plane plus substrate plane has a
symmetry equal to the intersection of the symmetries of the common points with the same
lateral position. The resulting symmetry is an intersection of the individual symmetries of
these points C:/NC;. The symmetry of the combined system is the symmetry of the
reconstructed surface if some symmetry elements of the reconstructed surface have the same
lateral position as the symmetry elements of the substrate. Several special mutual shifts which
leave the symmetry of combined system equal to the symmetry of the surface reconstruction
are shown in Figure 7. 3. The symmetry of the combined system with oblique and
rectangular lattices obeys the symmetry of the surface reconstruction for mutual lateral shifts
which are half of the basis lattice vectors a, b and (a + b) correspondingly Figure 7. 3.

1 2 3
v. 4 A,
v 4 W
e i 3
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Figure 7. 3. The relative lateral positions for the five basic symmetry elements on the island surface
and substrate surface which leave the original symmetry of the surface lattice structure for the
combined system. According to (7. 1) the lateral position can be expressed as the following: 1-
oblique: '4(a,0), ¥2(0,b), 2(a,b); 2-rectangular: Y4(a,0), /2(0,b), Y4(a,b); 3-centered rectangular: '4(a,0);
4-hexagonal: (0,0); 5-square: }2(a,b).



73

For centered rectangular lattice the shifts are half of @ and b; for hexagonal the shifts is on
one third and two third of (a + b); for square lattice the shifts are half of (@ £ b) basis lattice
vectors leave the symmetry of the combined system equal to the original symmetry of the
surface reconstruction Figure 7. 3.

Other sets of shifts of the lattices results in a lowered symmetry are shown in Figure 7.
4. The symmetries C , Cay, C,, Cg,, and Cy, of the five fundamental lattices can be lowered
to the symmetries of subgroups. Subgroup of C,, point group are: C», C;; subgroup of Cg,
are: Cg, Cay, C3, C,, Cy; subgroup of Cy, are: Cs,, Cy, C,, Cs. The corresponding symmetries
and shifts are placed in Table 7. 1, the shifts are expressed according to (7. 1).

Q-G
0 -C.
< -C,
> -Cs,
[ -C.,
QO -G,

Figure 7. 4. The relative lateral positions and shifts which reduce the symmetry of combined system
to a subgroup symmetry of the original surface lattice symmetry. Arbitrary shifts along mirror planes
are shown by black arrows reduce the symmetry of combined system to the symmetry of mirror plane
C,.
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Table 7. 1

Bravais lattices | Symmetries of shifts
combined system

1 Oblique G (0,0); 2(a,0); ¥2(0,b); 2(a,b)
1 (x,y) ¢ the shifts above

2 Rectangular | Cy, (0,0); '2(a,0); ¥2(0,b); 2(a,b)
C a(a,0); a(0,b), where a # Y2, <1
1 (x,y)¢ the shifts above

3 Centered Cyy (0,0); 2(a,0) = 14(0,b)

rectangular C Ya(a,-b); Ya(a,b)
C a(a,0); a(0,b), where a # Y4, <I
1 (x,y) ¢ the shifts above

4 Hexagonal Cey (0,0)
Csy 1/3(a,b); 2/3(a,b)
Cyy 72(a,0); 72(0,b); Y2(a,b)
Cs a(a,0); a(0,b); a(a,b); a(-a,b); a(-a,2b); a(-2a,b)
1 (x,y) ¢ the shifts above

5 Square Cy (0,0); '2(a,b)
C2v 1/2(3,0); I/Z(Ovb)
C a(a,0); a(0,b); a(a,b); a(-a,b), where a # Y2, <1
1 (x,y) ¢ the shifts above

The shifts along mirror planes on arbitrary distances, which are not equal to the special
positions in Figure 7. 3 for rectangular, centered rectangular, hexagonal and square lattices
reduces C,, Cs,, and C,, symmetries to C; symmetry respectively. Combinations of common
fixed points with different symmetries are resulting into symmetry of an intersection of these
symmetries. Combination of C,, and C,, fixed points for centered rectangular lattice is
C»,NC, = C; symmetry Figure 7. 4. Combination of Cs, and Cj3, fixed points for hexagonal
lattice is Cs,NC3, = C3,, Cs, and Cy, 1s Cs,NC5, = Cyy, respectively Figure 7. 4. Combination
of Cy, and C5, is Cy, NCy, = Cs, symmetry Figure 7. 4.

—

A surface reconstruction basis vectors (5’} can be expressed with the unreconstructed

a
surface basis vectors (5} as:

o) TG

where integer n, m, k, [ are indexes of the surface reconstruction. For example basis vectors

. a' 7 0\ a — _
for Si(111)7x7 are | _ |= _|=a'=7a, b'=7b.
b’ 0 7)\b
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The mutual shift between surface reconstructions of the combined system can take a limited
number of different lateral positions, the number of positions is equal to the relation of the
area of the reconstructed unit cell area to the area of unreconstructed surface unit cell

A HE' xb' ~ H(m_l + ml?)x (ch + ll;}‘
TR T

3D crystal system sets the additional rules for the stacking of the island surface structure

=(n-l—m-k), where n, m, k, [ are integer numbers.

rec

. . . A
with substrate surface structure. The number of different lateral positions (—==) and structure
1x1

of 3D crystal system define possible symmetries of the combined system. The described
analysis can be used for prediction of 2D island shape. The 2D island presents combined
system (Figure 7. 1) with two surface planes: substrate surface plane and island surface
plane. The island steps connecting these two planes inherit the symmetry of the two level
combined system resulting into symmetry of equal step directions and shape. To find the
symmetry of the combined system we have to look into bulk lattice structure of the system.
The following analysis will be made for the diamond lattice structure.

The nearest (111) surface planes of Si diamond structure are spaced with the distance
equal to the one monolayer (ML) which is minimal height of 2D Si/Ge islands on the Si(111)

surface. This distance is 3 times lower than translation shift in <1 1 1> direction (3 ML). For

this reason the two nearest (111) surface planes have a natural mutual shift between two
neighboring layers of the (111) stacking which is equal to a, / NE) [T TZ], where a, is length

of 1x1 unit cell basis vector. Now we consider a surface reconstruction which obeys the Cj,
symmetry which is the intersection of the Bravais lattice symmetry Cg, and symmetry of a
diamond bulk basis: C;, = CsNCj3,. Figure 7. 5 shows relative lateral positions for two
symmetry elements: image (a) shows symmetry element of the surface structure of Si(111)
surface which have the same orientation with the symmetry elements of the unreconstructed
surface and image (b) shows the symmetry element 30° rotated to the substrate. The corner
fixed points of the element Figure 7. 5 (b) have C3,, symmetry while symmetry of inner fixed
points is lowered to C; symmetry because of these fixed points have no common mirror
planes with substrate.
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Figure 7. 5. The relative lateral positions and shifts for symmetry elements which reduce symmetry
of combined system to a subgroup symmetry of the reconstructed surface. Arbitrary shifts along
mirror planes are shown by black arrows reduce the symmetry of combined system to the symmetry
of mirror plane C,.

In general we consider a (NxN) reconstruction. First we consider unit cell Figure 7. 5
(a). The positions of the fixed points in the reconstruction unit cell are known from the
symmetry to be at the corners of the unit cell and at the center of the triangular half unit cells,
indicated by blue triangles in the unit cell shown in blue in Figure 7. 6 (a). There are only
three possible independent shifts between the reconstruction unit cells which maintain the
symmetry of the combined system, i.e. lead to a lattice of common fixed points. These three
independent shifts of the reconstruction unit cell are shown in Figure 7. 6 (a) as full, dashed,
and dotted lines. In a further the analysis the arrangement of the fixed points on the substrate
and island with respect to the fixed points in the reconstructed layer will be considered. In the
final analysis we study for which arrangement(s) of the reconstruction unit cells an
“anchoring” of the unit cells on island and substrate is possible with the same local geometry.
Before continuation of this analysis the arrangement of the fixed points with a certain local
geometry on the substrate and island without reconstruction will be studied. In the (1x1) unit
cell of the diamond structure (111) surface there are three types of fixed points, each with a
different local environment. The local environment of these fixed points also can’t be the
same for all three points since it automatically reduces size of unit cell — this is contradicted
with assumption that 1X1 is minimal unit cell. As shown in Figure 7. 6 (b) and (c¢) the fixed
point indicated by 1 is located at the atom in the lower part (lower half layer) of the first
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bilayer, the fixed point of type 2 is located at the atom in the upper part (upper half layer) of
the first (111) bi-layer, while the fixed point of type 3 is not located at any atom position of
the first bilayer. All of these fixed points lie along the [T TZ] direction each one shifted by
alN3 with respect to the others (a = surface lattice constant). The natural shift between two
neighboring layers determines the simple rule for the relationship of the fixed points Figure
7. 6 (c). The stacking of the fixed points between two layers is the following: 3 lies below 1, 1
lies below 2 and 2 lies below 3 Figure 7. 6 (¢).

Figure 7. 6. (a) A reconstruction unit cell with C3v symmetry is shown by blue lines. The three fixed
points are marked by triangles. There are only two shifts possible which maintain the original lattice
of common points, shown in (a). (b) top view to the (111) diamond surface (upper two bi-layers) the
unit cell is indicated by a dashed line. The unit cell contains three fixed points with different local
structure, named 1, 2, and 3. (c) perspective view to the first and second bi-layer of the diamond
lattice. There is a unique stacking of the type of fixed points in the first two bilayers: 3 below 1, 1
below 2 and 2 below 3. (d), (e) two different shifts leaving the original C;, symmetry for 2x2
reconstructed combined system. Identical lateral position (zero shift) is not shown since this position
is not possible due to stacking between neighboring layers (c). Due to this, the shift shown in (d) is
not possible also, therefore only one shift (¢) from 4 possible leaves the C;, symmetry.
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In total we have two constraints: one is given by the symmetry of the reconstruction unit
cell this alone leads to a limited number of possible pairs of lattices which have common
fixed points Figure 7. 6 (a). On the other hand the reconstructions on the island and on the
substrate have to be “anchored” at the same local position to the substrate in both cases. In the
course of the symmetry analysis it has to be found out if both conditions can be met
simultaneously.

Now the case of a (NxN) reconstruction will be considered. For any Cj;, (NXN)
reconstruction unit cell the number of fixed points is always still three. Therefore, the
distance between the fixed points of the (NxN) reconstruction cell is always N times larger
than on the spacing of the fixed points of the substrate ((1x1)). For a (3Nx3N) unit cell one
sees that always after 3N fixed points of the substrate the next fixed point of the
reconstruction has the same type (for instance 1) as the first one. This is the case since the
sequence of fixed points on the substrate along [T T2] mirror plane direction is always
(1),2,3,(1),2,3,(1),... , as shown before. Therefore, in this case all fixed points of the
reconstruction unit cell lie above the same type of fixed points of the substrate (for instance
type 1), as shown for the example of the (3%3) reconstruction in Figure 7. 7. According to the
stacking in the neighboring layers Figure 7. 6 (c) the same fixed points can’t be combined in
the 2D island of 1ML height. Therefore, the C;, symmetry of 1ML height islands is always
broken for a (3Nx3N) reconstruction. As was mentioned previously, the translational shift in

<1 1 1> direction is equal to 3ML height, therefore 3ML heigh islands (usually observed during

MBE growth Si/Ge on Si(111)(7%7) have no shift between the same type of fixed points of
substrate plane and island plane: 1 below 1, 2 below 2, 3 below 3. In this case three of (3N)?
(or one of 3N? ) shifts Figure 7. 6 (a) leave the original C;, symmetry of the surface
reconstruction in the combined 3ML heigh system.

For Cj3, (2%2) reconstruction we have the sequence of fixed points on the substrate along
[TT2] direction (Figure 7. 6 (d), (¢) and Figure 7. 7) (1),2,(3).1,2),3,(1).2...., here and
further the number of common fixed points for the Cjs, (2%2) reconstruction will be shown in
brackets. Natural shift of reconstruction on 1ML heigh 2D island plus shift on av3 in [T T2]

direction gives in result stacking of the fixed points between two neighboring layers: 3 lies
below 1, 1 lies below 2 and 2 lies below 3; as shown below:

natural shift natural shift + a3
island= (1),2,(3),1,(2),3,(1),2,..., - (1),2,(3),1,(2),3,(1),2,...,
substrate= (1),2,(3),1,(2),3,(1),2,..., = (1),2,(3),1,(2),3,(1).2,...,

Natural shift plus shift on 2a V3 breaks C 3, symmetry since no Cj3, fixed point of the substrate
reconstruction (number in brackets) below fixed point on the island reconstructed surface:

natural shift + 2213
island= (1),2,(3),1,(2),3,(1),2,...,
substrate= (1),2,(3),1,(2),3,(1),2,...,
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Figure 7. 7. Three C;, common fixed points in #xn unit cell are shown with blue triangles. The
reconstructions type of 3N%3N have only one type of common fixed points.

For the (3N+1x3N=1) reconstructions we have the sequences of fixed points on the
substrate along [I 12] direction like (1),....(3).....(2)s....(1)s.... of (1),..eo(2)s k@)D
for these sequences the Cj3, symmetry can be saved for one of the shifts. A bit loosely
explained the shift of the reconstruction unit cell between substrate and island in units of
3N%1 can be compensated by a corresponding shift in the stacking of the fixed points of
substrate and island due to the atomic step. In the general of the (3NXIx3N+1)
reconstruction on the island can be shifted relative to reconstruction of the substrate in
(3N+1)* different translational domains. Only for one of these shifts C; symmetry is
retained.

Another important type of structures on the C;, (111) surface are the structures with
mirror planes 30° rotated to the mirror planes of (111) substrate. The common fixed points in
the unit cell of the 30° rotated reconstruction are shifted by a/\3 along the [ITO] direction

Figure 7. 8. The 30° rotated unit cell has three fixed points: one Cj, in the corner and two C;
inside. In Figure 7. 8 two examples of a (V3 x V3)R30° reconstruction (pink shaded area at
the top) and a (2V3x2V3)R30° reconstruction (pink shaded area at the bottom) are shown
together with the underlying diamond lattice. It can be seen that in both cases (as also in all
other cases of V3 reconstructions) the fixed points of the reconstruction unit cell lie (due to
the symmetry of the unit cell) on identical positions (types of fixed points) of the substrate
lattice; here we have chosen the type 2 (yellow dashed line — type 1). Therefore, also all of
the possible shifts of the reconstruction layer will have their fixed points above a type 2 fixed
point on the diamond lattice, since all shifts are multiples of the reconstruction fixed point

distances. The fixed points of the reconstruction unit cell are shifted by a/\'3 along the [1 TO]
direction. As discussed before the atomic step induces a shift in the stacking of the underlying
substrate fixed points along the [T TZ] direction. As can be seen from Fig. 9 such a shift can

never shift a type 2 fixed point of the surface reconstruction to another type 2 point. This
implies that an anchoring of the reconstruction unit cell to the same type of fixed points on
the substrate and island diamond lattice is not possible. Therefore, for \'3 type reconstructions
the C3v symmetry is always broken to a Cs symmetry or /. As a result of this symmetry
breaking the island shapes can be different from the Cs, symmetry of the substrate and islands
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with one mirror plane (Cs symmetry) occur. This behavior was actually observed for the
system of 2D Si or Ge islands on Si(111) where islands and substrate are terminated by a Bi
(V3 x V3)R30° reconstruction. In this case islands with only one mirror plane were observed
despite of the fact that a threefold C;, symmetry was present for the substrate and both, the
island reconstruction and the substrate reconstruction.

Figure 7. 8. The 30° rotated Cs, surface structures. The reconstructed surface has 3 common points
which lie along [1 TO] direction. The two common points inside of unit cell have C; symmetry and

common point in the corner has C;, symmetry. Blue triangles mark the common points with type of
«“27, yellow triangles mark the common points with type of “1”.

Here an example of symmetry breaking in the Bi SME on Si(111) Bi (3 x V3)R30¢
surface will be considered in details. In surfactant-mediated Si and Ge epitaxy on the
threefold symmetric Si(111) substrate we observed the growth of arrow-shaped and rhomb-
shaped two-dimensional islands respectively. These islands break the threefold symmetry of

the substrate in spite of the fact that the (ﬁ x\/g)R30° Bi reconstruction present at the

surface has locally the same threefold symmetry (Cs,) as the Si(111) substrate. The reason for
the symmetry breaking is a mutual shift between the reconstruction on the substrate and on
the island, imposed by the diamond crystal structure of the Si substrate. The shape of the
islands can be related to the growth velocities of the step edges via the kinematic Wulff
construction resulting in a complete information on the growth kinetics of the islands shown
in a kinematic Wulff plot. In the experiments we use surfactant-mediated growth [87,99],
which means that an additional species floating at the growth front (Bi in our case) modifies
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epitaxial growth. Prior to growth a saturation coverage of one atomic layer of Bi is deposited
on the clean Si(111)-(7x7) at 740 K [100]. Subsequently, a submonolayer amount of Si or Ge
was deposited at growth rates of about 0.02 atomic layers per min and at a temperature of 670
K. A Bi flux of one atomic layer per min was maintained during Ge growth to keep a
complete Bi termination. After growth the surface was maged at room temperature by
scanning tunneling microscopy (STM).

Figure 7. 9 (a) shows two-dimensional Si islands grown on the Si(111) surface in Bi
mediated epitaxy. Clearly these arrow-shaped islands have a lower symmetry than the
threefold symmetry (Cs,) of the underlying Si(111) surface. The symmetry of an island is
reduced to Cs; symmetry with only one mirror plane as symmetry operation. The arrow-shaped
islands occur in three domains. The crystallographic directions of the steps terminating the
islands were determined from comparison to atomically resolved STM images of the clean
Si(111)-(7%7) surface taken before deposition of Bi.

Figure 7. 9. (a) STM images of arrow-shaped Si islands on the Bi terminated Si(111) substrate. The shape
of these islands breaks the threefold symmetry of the substrate surface. (b) Rhomb-shaped Ge islands on
the Bi terminated Si(111) substrate breaking the threefold symmetry as well. Image sizes (a) 200 nm, (b)
110 nm.

The (ﬁ x/3 )R30° Bi reconstruction is present on the substrate as well as on the islands. For
the growth of Ge on the Bi terminated Si(111) rhomb-shaped islands [terminated by the
(\/5 3 ) Bi reconstruction as well] were observed, also breaking the threefold symmetry of

the Si(111) substrate surface [Figure 7. 9 (b)]. As will be shown later, the symmetry of the
rhomb-shaped island is also C;.

The observed symmetry breaking is a striking result because the Bi (ﬁ x\/g)
reconstructions on both, the island and the substrate, obey the same symmetry as the
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substrate. The reason for the observed symmetry breaking is a mutual lateral shift between the
reconstructions on the substrate and on the islands. Figure 7. 10 (a) shows two adjacent
diamond structure (111) bilayers: the substrate bilayer and a hexagonal island residing on the
substrate. The shape of the island was chosen such that all six experimentally observed step

edges of the <1 TO> type (Figure 7. 9) are included. Without taking the Bi reconstruction into

account, the combined system of island plus the substrate obeys the C3, symmetry with three
mirror planes (the combined system without reconstruction is still part of the bulk crystal).
This means also that the step edges marked as 1, 2, and 3 in Figure 7. 10 (a) have the same
structure. Now we include
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Figure 7. 10. (a) Schematic of the two level system of the substrate and a two-dimensional sland. While a
threefold symmetric (\/5 X \/5 ) Bi reconstruction is present on each individual level, the C;, symmetry is

broken for the combined system and is reduced to a C; symmetry. (b) and (c) STM images of an arrow- and
a rhomb-shaped shaped island, respectively.
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the Bi reconstruction which is indicated by colored circles in Figure 7. 10 (a) (one circle
corresponds to a Bi trimer). Because of the reconstruction two of the mirror planes of the
substrate reconstruction (blue lines) are not coincident with the mirror planes of the island
reconstruction (red lines). While the two sets of substrate and island mirror planes run along
the same directions the common point of the C; point symmetry operations is shifted between

substrate and island by the vector a, / V3 [T TZ]. Therefore, the symmetry of the combined

system of island and substrate is lowered. Only the mirror plane running along [1 15] is a

symmetry element of the combined system. Because of the shift of the common point of the
other two mirror planes between island and substrate reconstruction these symmetry
operations are no longer point symmetry operations of the combined system.

The lateral shift between the reconstructions on the island and the substrate is induced by
a lateral shift between two adjacent (111) bilayers of the diamond lattice of the same value

a,/ NE) [T T2] [compare Figure 7. 10 (a)]. However, for the unreconstructed system this shift
(which is a property of the bulk crystal structure) does not break the C3, symmetry. This
mutual lateral shift between both bilayers also propagates to the Bi (ﬁ /3 )R30°

reconstruction layers in both levels. However, on the reconstructed surface the threefold
symmetry of the underlying substrate is broken for the combined system because the common
points of the point symmetry operations of both subsystems are shifted relative to each other
due to the larger unit cell of the reconstructed surface. Generally, for two systems and the
corresponding two sets of point group operations 4 and B the set of point group operations of
the combined system D is the intersection D = ANB [101]. This means that the only

symmetry plane of the combined system is the [1 15] mirror plane and the resulting symmetry

group of the combined system is Cs [102]. The reduced symmetry of the combined system of
reconstructed surface and island has important consequences for the shape of the islands. The
neighboring steps 1, 2, and 3, respectively, are not connected by a symmetry operation as the
(5, symmetry is broken for the combined system. Thus, these steps are all different. These
differences in the structure of the step edges lead to different step speeds. The different step
speeds in turn determine the island shapes, as we will show. While we do not know the
detailed atomic step structure, the difference between the steps can also be inferred from the
mutual shift of the reconstructions of the substrate and the island [Figure 7. 10 (a)]. For
instance, at step 2 the Bi trimers on the substrate and the island (blue and red circles,
respectively) have a much smaller mutual distance than for the step 1. These differences have
important consequences on the Bi termination of the step edges. For instance, one might
speculate that at step 2 a Bi termination of the step edge is not possible because the Bi on the
lower terrace blocks the possible bonding sites, while for step 1 Bi passivation is easily
possible. These different structures of the step edges (imposed by the symmetry) have
important consequences on the growth properties of the islands. A Bi passivated step edge is
expected to have a completely different incorporation kinetics than an unpassivated step edge
[91]. For an initially arbitrary shape of an island, easy incorporation of material leads to a
high step velocity (rate of advancement of the step edge perpendicular to the step edge).
These step edges with a higher incorporation rate grow faster in the direction perpendicular to
the step edge and can in some cases even finally disappear being overgrown by the nearest
steps with lower growth rate. The formation of the observed rhomb-shaped islands is
explained by a slow growth velocity of steps 1 and 3 which leads to a disappearance of the
fast growing step 2. This is a consequence of the more general kinematic Wulff construction
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[33]. The original Wulff construction (2D version) relates the equilibrium crystal shape to the
step energy; the kinematicWulff construction relates the crystal growth shape to the step
velocities. The kinematic Wulff theorem (2D version) states that the shortest distances from
the nucleation center to the step edge, 4; [inset in Figure 7. 11 (a)] are related to the step
velocities v; by

N_o% B 2 const (7.2)

hl hZ h3

A prerequisite in the model underlying the kinematic Wulff construction is that the
velocity of growth depends only on the surface orientation. This is true for a growth regime in
which the incorporation into the steps is attachment limited and the adatom concentration on
the surface is approximately constant due to a large incorporation barrier. Since strong step
edge passivation was found in Bi surfactant-mediated epitaxy of
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Figure 7. 11. (color online). (a) Using a marker technique the nucleation centers of the arrow-shaped
islands are marked by holes. From the measured distances to the step edges the step velocities can be
determined. Image size 400 nm. (b) Minimal kinematic Wulff Plot of arrow-shaped islands. (c) Step
velocities for Si and Ge islands.
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Ge [91], our experiments are performed under conditions in which this prerequisite for the
kinematic Wulff theorem is fulfilled. Another requirement for the validity of the kinematic
Wulff theorem is that the island shape is a growth shape and not influenced by the
equilibrium shape due to the low growth rate used. STM experiments performed during
epitaxial growth [2] of Si showed that the growth shape develops already for much lower
growth rates than used here. In order to obtain the step velocities from Eq. (1) the nucleation
point of the island has to be known, from which the distances /i are measured. Without this
information often only a limited number of relations among the step velocities can be
obtained. If the nucleation point of the island is known, the complete knowledge of the
velocities of the observed steps results from the shape of the island. Therefore, we used a
marker technique to determine the position of the nucleation center inside the arrow-shaped
Si islands. Initially we deposited small Ge islands which served as markers of the nucleation
centers. Subsequently, larger Si islands were grown around the marked nucleation centers.
Actually, due to an effect induced by strain (which will not be discussed here in detail) the Ge
diffuses away from its initial position (leading to a small < 5% Ge alloying of the Si islands)
and the nucleation center of the island is marked by a small hole of one atomic layer height.
With the nucleation point known, the distances /i to the island edges can be easily measured
[inset in Figure 7. 11 (a)] and the relative step velocities can be determined from Eq. (1).
Choosing v, =1 results in: v, =2.0+0.1 and v, =0.7+0.1. These measured step velocities

can be plotted in a kinematic Wulff plot [polar diagram of the step velocities v(&)] for the

arrow-shaped islands. The measured values correspond to the five black dots in Figure 7. 11
(b). If the growth shape would be smooth without straight step segments, the inverse Wulff
construction could be used to obtain the complete polar diagram of the step velocities from
the measured island shape [33]. Because of the presence of the straight step edges (facets) in
the island shape the inverse Wulff construction is not possible. However, one can learn more
than just the determination of the five measured points on the kinematicWulff plot. In the
following it will be shown that the step velocities have to lie outside the red contour in Figure
7. 11 (b) which we call the ‘‘minimal’’ kinematic Wulff plot. According to the kinematic
Wulff construction a line perpendicular to the radius vector is constructed at each point where
the radius vector crosses the polar plot of the step velocity. The crystal shape is formed from
the inner envelope of these perpendicular lines for all radius vectors. The inverse Wulff
construction which constructs the step velocities from the crystal shape is impossible for step
velocities inside the minimal kinematic Wulff plot. Therefore, the step velocities have to lie
outside the minimal kinematic Wulff plot. The geometric construction rule for the border of
the minimal kinematic Wulff plot is given in the following. For a certain polar angle & the
closest point for which the perpendicular line does not cut the crystal is point 4 in Figure 7.
11 (b). This perpendicular line just reaches the island corner in B. If we now consider the
rectangular triangle OAB, the converse Thales’ theorem states that a right triangle’s
hypotenuse is a diameter of its circumcircle. This means that all points B lie on a circle
around point C. With C lying in the middle between the nucleation center and the respective
island corner.

The measured step velocities for Si islands can also be displayed as a ‘‘spectrum’’ shown
in Figure 7. 11 (¢). The (relative) velocities for steps 1, 2, and 4 have a defined value, while
for step 3 the step velocity has to be larger than the value given from the minimal kinematic
Wulff plot. An interesting result from the determination of the step velocities is that the
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velocities of the different kinds of <1 TO> type steps [marked in red in Figure 7. 11 (¢)] differ

by more than a factor of 2. This is the case in spite of the fact that the local step structure,
without taking the reconstruction into account, is the same for all <1 TO> type steps (i.e. steps

1, 2, and 3). The difference between these steps is their shift with respect to the substrate
reconstruction and the related differences of the Bi termination. These results show that these

effects have a stronger influence on the step velocities than the difference between <1 T0> and

the <T T2> - type steps (step 4 is a <T T2> - type step marked in blue) which have a genuine

different structure even without taking the substrate reconstruction into account. Coming back
to the rhomb-shaped islands, also here a marker technique can be used to learn more about the
kinematic properties of growth expressed by the step velocities. The STM images in Figure
7. 10 (¢) and Figure 7. 12 show an islands for which an initial small Si island marks the
nucleation position. Si and Ge can be distinguished in Bi mediated epitaxy by an apparent
height in

Figure 7. 12. (a) STM images of rhomb-shaped Ge islands on the Bi terminated Si(111) substrate. Image
sizes 200 nm. The nucleation centers of the rhomb - shaped islands are marked by Si core.

the STM images. Ge areas are imaged ~ 1 A higher than Si areas [71]. It is clearly visible that
the nucleation center is not located in the center of the rhomb [Figure 7. 10 (c)]. This proves
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experimentally that the growth velocities of steps 1 and 3 are different which was already
concluded from symmetry considerations. A detailed analysis shows that the average step
velocity of step 3 is 1.4+0:1 times larger than that of step 1. While the apparent growth shape
of the island is rhomb-shaped, the true shape has Cs symmetry. Symmetry considerations and
the marker technique prove that steps 1 and 3 are different on the atomic scale leading to
different growth velocities. Because of geometric constraints the length of both steps is the
same leading to a rhomb shape of the islands.

It is an intriguing fact that in spite of the similarity of Si and Ge the epitaxial islands
have so different shapes. These different shapes are related, via the step velocities, to different
step structures. Since Si and Ge have the same crystal structure one would not expect much
different step structures. However, the Bi termination at the step edges can be very different
for Si and Ge. For instance in an earlier experiment we found that Si step edges are less Bi
passivated than Ge step edges [91]. Because of the different bonding of Bi and strain effects
at Si and Ge steps a different Bi passivation, or (partial) depassivation may occur at some step
edges. We speculate that a largely different step structure due to different Bi passivation of
the steps can lead to substantially modified step velocities for Si and Ge and can explain the
observed different Si and Ge island shapes.

Conclusions

These findings are not limited to a specific system. Generally one can conclude that on
reconstructed surfaces the symmetry of the combined system of epitaxially grown islands and
substrate can break the symmetry of the original surface. This broken symmetry has
consequences on the step structure which in turn influences the growth rates and in turn also
the island shapes. This effect could be used to fabricate 2D nanostructures directed along one
specific direction on a substrate of higher symmetry. If one of the step velocities would be
much larger than the others the island shape would develop a pronounced oblong shape. In
order to grow elongated nanostructures (surfactant induced) reconstructions which generate a
large anisotropy in step velocities have to be found.



88
8. Step edge passivation during SiGe epitaxy

The preferred step orientation and shape of the 2D nanostructures are result of the step
kinetics and/or energy minimization of the step configuration [12,33,35,36]. The preferred
step directions observed during growth of two dimensional nanostructures have a minimal
step energy and/or minimal step propagation speed. Different contributions, for example
surface reconstructions, have an influence on the preferred step directions [35, 36]. The 30°

rotated Bi induced /3 x+/3 reconstruction on the Si(111) surface changes the preferred
<T T2> step directions for the clean Si(111)-7x7 surface to <1T0> step directions [35]. The

influence of the Bi vapor pressure on the preferred step direction during growth of Ge
nanostructures on the Si(lll)-\/g x+/3 -Bi surface was found in [35]. At zero rate of Bi
deposition <T T2> step directions were present on the Si(111) surface, at high Bi rate

deposition <1T0> step directions were present on the surface [35]. Bi saturates the dangling

bonds at step edges, reduces the step energy and increases barriers for attachment [91]. The
change of kinetic and energy properties of <T T2> and <1T0> steps can be also attributed to

the change of the Bi amount at the step edges [35]. The change of the amount of Bi at step
edges can be associated with a change of the Bi passivation effect at the step edges. No Bi at
step edges means no passivation of the steps. A method based on the investigation of island
size distributions [91] will be used here to study the influence of the Bi deposition rate on the
step edge passivation effect.

Experimental investigations of the density and size distribution of submonolayer island
populations yield qualitative and in certain cases even quantitative information regarding
microscopic mechanisms that determine the growth mechanism of this system. In the standard
growth model [33], atoms arrive at a substrate with a flux F and diffuse on the substrate with
a temperature dependent diffusion rate D. No desorption of atoms from the surface is
allowed. When two or more diffusing atoms meet, a two-dimensional (2D) one monolayer
(ML) thick island nucleates and grows further by adatom capture limited diffusion. In this
way a population of 2D islands covering a fraction 8 of the surface develops. In the
precoalescence regime of growth the island population is characterized by the island size
distribution N,. For various amounts of deposited material expressed in terms of the surface
coverage 6, N scales onto a single function f (x):

Ny =0/(s) fls/(s)), 8. 1)

where <s> denotes the mean island size [103]. In the standard growth model f (x) is a peak

function with a peak at x = 1 [103,104,105,106]. In addition, the total island density N is a
power law of F and D [33]:

p (8.2)
N oc E) ,lS;(<l.
D 3
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When the above conditions are met, predictions of the standard growth model can be used to
measure D and other model parameters [107,108]. On the other hand, the experimentally
observed deviations from the behavior predicted by Egs. (8. 1) and (8. 2) can be used to
identify important growth mechanisms beyond the standard model. Examples include
observations of growth with y =0 in systems with post-deposition [109] or displacive

[110,111] nucleation, occurrence of a decreasing scaling function f (x) caused by these

mechanisms [109,110,111] or by a strong anisotropy of the surface structure [112], growth
with y >1 in systems with hindered incorporation of atoms into the islands [113,114], and

the observation of a multipeak island size distribution when stable islands of “magic” sizes
exist [115]. Additionally, transition from a peaked scaling function to a decreasing one with
the increasing growth temperature was predicted theoretically for systems with prominent
desorption of deposited particles [116,117]. In surfactant mediated epitaxy (SME)
[87,118,90,119,19] particles of the deposited material arrive at a surface, where a monolayer
of another species, so called surfactant, is adsorbed. This modifies the growth scenario
compared to the growth without surfactant, allowing, e.g., layer-by-layer growth of relaxed
layers in highly strained Ge/Si heteroepitaxy [118,90]. SME systems are good candidates to
have a behavior different from that predicted by the standard growth model. Indeed, y >1

was measured in submonolayer growth of Ge on the Pb-covered Si(111) surface [120].
The size distribution of 2D Ge and Si islands at SME on the Si(111) surface was studied
in [91]. For Ge, a scaling function with a peak strongly shifted towards small island sizes was

found. The peak of scaling function f (s / <s>) was shifted from the position of standard model

s/<s> =1 toward smaller island sizes s/<s> <1. This nonstandard scaling is temperature

dependent: for higher temperatures the scaling function approaches the standard one. The
observed scaling phenomena was explained considering exchange and deexchange processes
of deposited atoms with surfactant and the passivation of step edges in the presence of
surfactant [22]. The kinetic Monte Carlo (KMC) simulations of a generalized diffusion—de-
exchange—passivation (DDP) model of surfactant mediated epitaxy were performed [23]. The
DDP model assumes three basic processes that happen during the SME growth (Figure 8. 1):
diffusion of deposited atoms on top of the surfactant, exchange of material atoms with
surfactant to incorporate below the surfactant layer, and de-exchange of material atoms with
surfactant atoms to get back on top of the surfactant. The processes are considered to be

thermally activated with rates v, having an Arrhenius form v, =v, exp[k—i] where v, is

B
the common prefactor of the order 10" sﬁl, kg 1s the Boltzmann’s constant, 7 is a temperature,
and E; is the activation energy of the ith process with Ep, Ee, Eq4ex standing for diffusion,
exchange and de-exchange processes, respectively. Generally, Egex > Eex, to account for the
increase of the binding energy of single material atoms upon incorporation. Important is a
definition of the behavior of material atoms at step edges. In the DDP model, not only
terraces but also step edges are passivated, i.e., incorporation of atoms into step edges does
not happen automatically. Upon incorporation of an atom at the step edge, its binding energy
increases more than that of an atom on the terrace. In terms of the DDP model, stronger
passivation of the step edges for Ge atoms than for Si atoms was required to obtain the
experimentally observed difference of the submonolayer scaling in Ge and Si Bi-MBE on the
Si(111) surface [91].
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Deviation of the peak from the standard position of s/ <s> =1 can be used as a qualitative

estimate of the Bi step edge passivation effect. A larger shift toward smaller island sizes
means stronger passivation of the step edges or/and larger energy activation for exchange at
the step edges E, [91].

(ref. 91)
diffusion exchange de-exchange
E, E_ E,

Pany,

[] material [_] surfactant

Figure 8. 1. Growth processes considered in the DDP model of SME (Refs. 22 and 23).
Related activation energies of these processes Ep, E.y, Eqex generally differ for material atoms
in plane and material atoms at step edges.

The influence of the Bi deposition rate on the step edge passivation effect was studied for
two cases: 1 — a standard SME with high Bi deposition rate of * 3 ML/min during growth,
and ii — a modified SME (chapter 6 and ref. [35]) with zero Bi deposition rate during growth.
In both cases the surface was completely passivated with the Bi before Ge/Si growth. The 2D
Ge islands grown by standard SME Figure 8. 2 (a) and by modified SME Figure 8. 2 (b)
have different shapes and different size distributions. The corresponding scaling functions are
shown on Figure 8. 2 (c), (d). 0.2 ML of Ge was deposited at temperature of substrate
T; =440°C and at rate of 0.2 ML/min. In a standard SME the Bi and the Ge were deposited
simultaneously. The Bi deposition rate was 3 ML/min. The rhombic shape of the Ge islands
was observed Figure 8. 2 (a). The peak of the scaling function was found strongly shifted

toward smaller island sizes s /<s> < 0.2 Figure 8. 2 (¢). Upon modified SME [35] the Bi flux

was switched off during Ge deposition. Round or triangular shapes of the islands were
observed Figure 8. 2 (b), Figure 8. 6. The peak of the scaling function was found at

s/<s> =0.75 Figure 8. 2 (d). A smaller shift of the peak of the scaling function Figure 8.

2 (d) means weaker passivation or/and lower activation energy for exchange E, [91] at the

step edges. The lower passivation of the step edges in modified SME can be attributed to the
reduction of the Bi coverage at the step edges [35]. Therefore, the different deviations of the
scaling functions Figure 8. 2 (c), (d) from the standard and the different island shape Figure
8. 2 (a), (b) are a result of a change of the step edge passivation. Stronger passivated steps in

standard SME have preferred steps with <1T0> orientation which is different from the

preftered <T T2> direction initially present on the clean Si(111) surface.
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Figure 8. 2. Morphology of Ge islands (a) grown by standard SME with high Bi deposition
rate of 3ML/min during growth, and (b) Ge islands grown by modified SME with zero Bi
deposition rate during growth. Island size distribution for standard SME (c), and island size
distribution for modified SME (d). 0.2ML of Ge was deposited at Ty = 440°C at rate of 0.2
ML/min. Image sizes 500 nm.

Another contribution to the change of step kinetics may come from the different
chemical compositions (Ge and Si) at the step edges. The depassivated step edges on
modified SME have a lower energy activation for the growth front induced intermixing
process since Ge atoms at depassivated step edges are not bound by Bi atoms. Indeed, the

apparent height difference between Si and Ge grown by modified SME is ~ 0.5 A Figure 8.
3 (d). Therefore, the Ge islands grown by modified SME consist of > 50% of Si, while the

apparent height difference between Si and Ge grown by standard SME is ~ 1 4 Figure 8.
3 (¢). The growth conditions (except Bi flux): temperature of substrate, Ge coverage and Ge
rate of deposition were the same for standard and modified SME. 0.2 ML of Ge was
deposited at Ts =440°C at rate of 0.2 ML/min. Therefore, a different composition of SiGe
islands Figure 8. 3 (Figure 8. 2) is a result of a different activation energy for growth front
induced intermixing in modified and standard SME.
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Figure 8. 3. The height differences between Si and Ge. (a) STM image of Ge grown by standard SME
at a Si step edge, (c) apparent height difference between Ge and Si is 1 4 . (b) STM image of SiGe

grown by modified SME at step edges of a Si island. (d) apparent height difference of 0.5 A
corresponds to ~ 50% of Si in the SiGe composition. 0.2ML of Ge was deposited at T, = 440°C at
rate of 0.02 ML/min. Image sizes 200 nm.

A different preferred step direction and different passivation of the steps Figure 8. 2 can be
explained by a different SiGe composition at the steps:
e The change of SiGe composition at the steps can change the preferred step direction
since the step directions of the Si and Ge islands are different (chapter 7) [36].
e The passivation of the steps in modified SME can be also decreased due to an increase
of the Si content at the step edges since the Ge steps are stronger passivated than Si
steps [91].

To separate the influence of the Bi content at step edges on the step edge passivation
from the composition effect the size distributions of Si islands were measured Figure 8. 4.
The Si islands were grown by deposition of 0.2 ML of Si by standard and modified SME
Figure 8. 4 (a), (b), the temperature of substrate and the rate of Si deposition were 440°C and
0.02 ML/min, respectively. The shapes of Si islands grown by modified SME and by standard
SME are different.
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Figure 8. 4. Si islands (a) grown by standard SME with high Bi deposition rate of 3ML/min,
and (b) Si islands grown by modified SME with zero Bi deposition rate during Si growth.
Island size distribution for standard SME (c), and islands size distribution for modified SME
(d). 0.2ML of Si was deposited at T = 440°C at rate of 0.02 ML/min. Image sizes 400 nm.

The shapes of islands grown by modified SME are more uniform Figure 8. 4 (b), the arrow
shaped islands are bounded by straight steps with definite orientation [36]. The islands grown
by standard SME have various shapes and the straight step segments are too short, which
makes the identification of the preferred step directions difficult. The island size distribution
for the standard and modified SME is clearly different Figure 8. 4 (c), (d). The scaling
function of islands grown by modified SME Figure 8. 4 (d) is close to the standard peaked

function [91] with a peak position of s/ <s> =0.9. In contrast to the case of modified SME the

scaling function for the standard SME Figure 8. 4 (c) is asymmetric with the peak strongly
shifted toward smaller island sizes. (Our previous measurements in [91] showed a symmetric

island size distribution with the peak position of s/ <s> ~1 (at T, = 440°C), it can be explained

by using of 1 ML/min, lower than 3.5 ML/min, Bi rate deposition). A case with Si islands is
more clear since only Si is present at the step edges. Different shapes and different scaling
functions of the Si islands at a different Bi rate deposition can be directly attributed to the
different content of Bi at the step edges resulting into different passivation of the steps.
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The transition from the standard model of growth to the model with a strong step edge
passivation is the transition from a growth limited by the surface diffusion to a growth limited
by the attachment kinetics [121]. In the growth limited by the attachment kinetics the 2D
islands nucleate continuously during deposition. The fractal growth of 2D islands Figure 8. 5
(b), (¢) is a result of the continuous nucleation of the kinks (1D islands) at step edges in Ait-
and stick regime described by diffusion limited aggregation (DLA) model [12,122]. Upon the
Bi-SME of Si/Ge on the Si(111) we have two subsystems of adatoms:

e The high mobile adatoms (mobile diffusion mechanism) in precursor state (on top of
Bi layer), can also attach to the steps and diffuse along the step edges in precursor
state until reach the kink and exchange with Bi atom.

e And the chemisorbed adatoms (the adatoms bonded to the substrate) which are
immobilized (hopping diffusion mechanism) since for diffusion into neighbour
position the adatoms need to broke chemical bonds.

In 2D (on terrace) and 1D (at step edge) cases the chemisorbed atoms are immobilized, i.e.
we have hit-and stick regime with the chemisorbed atoms. If the mobile adatoms are not
isolated form the chemisorbed adatoms by high activation energy for exchange E, and can

be easy transferred into chemisorbed adatoms, then the growth described by standard model
is observed Figure 8. 4 (b), (d). We assume that activation energy for exchange E, 1is
different for exchange at terrace, step and kink, E"*“ > ES¥ > E*™ The exchange energy
E, of Ge/Si atoms with Bi is related to the bond energy of Bi £, to the substrate, therefore
we can assume that the bond energies for Bi at terrace, step and kink have the same relations:
Eg > Ey® > Ep' . These relations are in agreement with experimental data. The fractal

growth of Si islands Figure 8. 5 (b), (¢) observed at low temperatures is a result of 1D growth
at step edges limited by the attachment kinetics to the kinks (1D growth with strong
passivation of the kinks).

(@)

Figure 8. 5. Evolution of the shape of Si islands grown by standard (Bi deposition rate 3.5 ML/min)
SME at different temperatures of the substrate. (a) Ty = 440°C, (b) T, = 400°C, (c) T = 380°C. The
fractal shape of the islands grown at lower temperatures (b), (c) is a result of the strong passivation of
steps and step kinks. 0.2ML of Si was deposited at rate of 0.02 ML/min. Image sizes 200 nm.
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At a high temperature of the substrate T, > 440°C the step kinks are depassivated and no
fractal growth was observed Figure 8. 5 (a), Figure 8. 4 (a). But the scaling of Figure 8. 4
(c) shows that the step edges are still strongly passivated. It can be concluded that
depassivation of the step kinks is easier than depassivation of the straight step edges. At
temperatures higher than 480°C [91] or at zero Bi rate deposition during growth the step
edges are depassivated and the island size distribution described by the standard model of
growth was observed Figure 8. 4 (d), Figure 8. 2 (d).

The shape of Ge islands can be varied from triangular Figure 8. 6 to rhombic shape
Figure 8. 7 [Figure 8. 2 (a), Figure 8. 3 (a)] by a change of the step edge passivation. The
step edge passivation can be tuned by the Bi deposition rate and by the temperature of the
substrate independently. The islands shown on Figure 8. 7 (a), (b) were grown at zero Bi rate
deposition, but islands Figure 8. 7 (a) were grown at higher temperature, therefore the islands
on Figure 8. 7 (a) have a lowest Bi step edge passivation. The islands (Figure 8. 7 (b), (¢))
were grown at the same temperature of substrate, but the islands Figure 8. 7 (c) were grown
with a high Bi rate deposition, therefore the islands (Figure 8. 7 (¢)) have the highest Bi step
edge passivation. From the island shapes we can identify the preferred step directions which
are present by step directions with minimal step speed propagation (kinematic Wulff

construction). Rhombic islands (Figure 8. 7 (c)) are bounded by <1TO> steps and triangular
islands (Figure 8. 7 (a)) by <T T2> steps. The triangular shape islands (<T T2> steps) are
observed in the regime of the lowest step edge passivation (zero Bi flux, high temperatures),
the thombic shape islands (<1 T0> steps) are observed at a strong step edge passivation (high

Bi flux, low temperatures). In the intermediate regime, the round shaped islands were
observed Figure 8. 7 (b).

Figure 8. 6. Triangular islands grown on Si(11 1)—\/5 X J§ -Bi surface in modified SME. The
islands are bounded by <T T2> steps. 0.2ML of Ge deposited at T, =450°C at a rate of 0.02

ML/min. Image size 200 nm.
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Figure 8. 7. Different shapes of SiGe islands (a) — (c) at different passivation of step edges. The (a)
and (b) islands were grown by modified SME and (c) in standard SME with a Bi deposition rate of 3.5
ML/min. (a) 0.2ML of Ge was deposited at T, = 450°C at a rate of 0.02 ML/min. (b) and (c) 0.2ML of
Ge was deposited at T = 440°C at a rate of 0.2 ML/min. Image sizes 500 nm. (d) Schematic diagram
which shows the shape variation of SiGe islands and activation energy for attachment into steps at
different Bi step edge passivations. The activation energy for attachment and passivation of step edges

are shown qualitatively. The activation energy for attachment into <1 TO> steps — blue curve and into
<T T2> steps — green curve, respectively. The triangular islands are bounded by <T T2> steps,

hexagonal and rhombic islands are bounded by <1 T0> steps.
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The preferred step direction depends on the Bi step edge passivation. The schematic diagram
Figure 8. 7 shows a shape evolution and change of the activation energy for attachment for

the <1TO> and <TT2> steps with the step edge passivation. The activation energy for

attachment and passivation of the step edges Figure 8. 7 (d) are shown qualitatively. The step
direction with the highest activation energy for attachment is the preferred step direction
which determines the observed shape of the islands (Figure 8. 7). The growth shape of
islands is bounded by the steps with a minimal step speed propagation (kinematic Wulff

construction [33]). The step speed propagation is proportional to the rate of attachment £ of
adatoms into step edge. The rate of attachment is decreased with activation energy for

+

attachment E as k| = vexp( k ]: j The steps with the highest activation energy have a
B

minimal step speed propagation, therefore, the steps of the islands have the highest activation
energy for attachment.

Conclusions

The step edge passivation can be tuned independently by substrate temperature and by Bi
rate deposition.

The change of the Bi content at the step edges changes simultaneously the step edge
passivation ( £, ) with the activation energy for growth front induced intermixing.

According to the data of the Si island size distributions at different growth temperatures
and different Bi deposition rates (the SiGe composition effect can be excluded) the change of
SiGe island shape and preferred step directions [35,36] can be attributed to the change of the
step edge passivation.

The observed evolution of the Si island shapes and island size distributions let establish
the sequence of depassivation as a function of temperature: Firstly, the easiest depassivation
of the step kinks occurs at low temperatures (T = 400°C, standard SME); Secondly, the
depassivation of the straight step edges occurs at T > 440°C in standard SME; And at last the

depassivation of terraces occurs at high temperatures (T > 500°C) , E“" > EX% > EX*

This is associated with different Bi bonding energies: the lowest bonding energy for Bi atoms
at the kinks, higher bonding energy at the straight step edges and the highest bonding energy
at the terrace.

The observed change of the step edge passivation is followed by a change of the
preferred steps direction resulting into different islands shapes.
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9 Influence of entropy and energy on pit formation in 2D Ge
layer

The structural instability of nanostructures during annealing is an important issue which,
along with the compositional instability, can be a serious thread for the functionality of
nanodevices. Since the diffusion energies and intermixing barriers are particularly low at
surfaces, the stability of surface nanostructures is most delicate. In the GeSi heteroepitaxial
system there is a strong thermodynamic driving force for intermixing, since intermixing
reduces strain and increases entropy [123,124,125]. The evolution of hetero-epitaxial
nanostructures is complicated, since both morphology and composition determine the system
energy [126]. Moreover, the system is often far from equilibrium due to kinetic barriers.
From the experimental point of view the challenge is to supply a most complete data basis in
order to be able to understand the evolution of the hetero-epitaxial nanostructures, specifically
simultaneous measurements of morphology and composition are desirable [127,24]. In the
present letter it will be shown that the driving force for intermixing occurs to be so strong that
it provokes drastic morphological changes during equilibration. These structural changes are
a way to bypasses the kinetic barriers for direct intermixing. In particular, we show that one
monolayer (ML) high Ge stripes grown at Si(111) step edges are unstable towards pit
formation during annealing. The Ge leaving the stripe during pit formation attaches at the (Si
covered) Ge stripe and intermixes with the subjacent Si (Figure 9. 1).

- B
s—0 Nnm

Figure 9. 1. (a) STM image of a one atomic layer high Ge stripe grown at a Si step edge. After Ge deposition a
thin outer Si rim was grown. The apparent height contrast between Si and Ge is induced by the Bi termination of
the whole surface. (b) After annealing at 733K unanticipated formation of pits and motion of the Ge originating
from the pits to the outer Si rim is observed.
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The pit formation arises by a concerted action of processes driven by an energy gain of
the system and processes driven by an increase of the entropy of the system due to
intermixing. The question arises why this rather complicated mechanism of pit formation is
followed instead of the much simpler direct vertical intermixing of Ge with the subjacent Si.
We will show that while the direct intermixing process results in a final state of even lower
energy as the final state after pit formation, the kinetic barrier involved is much smaller than
the barrier for direct vertical intermixing which favors the pit formation.

In our experiments first a Bi terminated Si(111) surface was prepared by deposition of
one atomic layer of Bi on the clean Si(111)-(7X7) at 875 K. Then a submonolayer amount of
Ge was deposited at 655-675K at a rate of 0.015 ML/min (IML corresponds to 1.56x10"
atoms/cm”). During Ge growth the Bi floats up at the surface as usual in surfactant mediated
growth [87,99]. In the following we will not mention that the complete surface is always
terminated by one atomic layer of Bi. After submonolayer deposition of Ge atoms attach to

the step edges and form Ge stripes (Figure 9. 1 (a)). Atomic layer high (~ 3.2 :4) stripes with
a width of more than 10 nm can be formed without any pit formation. More distant from the
step edges also Ge islands grow. It was found that the apparent height measured in STM is ~

1 A higher on Bi terminated Ge areas compared to Bi terminated Si areas, allowing a
distinction between Si and Ge on the nano scale [71]. For a GeSi mixture the apparent height
is a measure of the Ge concentration in the surface layer [24]. While attempting to grow
alternating two-dimensional GeSi superlattices [35], we observed the formation of pits inside
of Ge stripes for certain growth conditions. The formation of one atomic layer deep pits is
pronounced if the growth of a sufficiently wide (= 5 nm) Ge stripe deposition is followed by
the deposition of a Si stripe and subsequent annealing. Pit formation was observed for
example after the following growth sequence: 0.23 ML Ge was grown at T= 675 K, followed
by 0.045 ML Si at 675 K before annealing for 10 min at 735 K. The STM image in Figure 9.
1 (b) shows the resulting structure including 10-20 nm wide pits formed in the Ge stripe. The
pit formation occurs by the same mechanism also at isolated Ge/Si islands (Ge core
surrounded by a Si rim) on terraces far from the step edge, as indicated by the arrow heads in
(Figure 9. 1 (b)). The material in the outer GeSi step edge is less than the missing material in
the pits since some Ge attaches at Si islands also present at the surface. In the following a
model is described which explains the observed pit formation. In the first part of the pit
formation process an initial amount of Ge is moving from the Ge stripe (pits) to the outer Si
rim (Figure 9. 2 (b)). For simplicity we leave out the actual nucleation event. The driving
force for the first part of the pit formation process is bond energy gain. Ge-Ge bonds present
in the Ge area are replaced by stronger Si-Ge bonds [128,129] when Ge atoms attach to the Si
terminated step edges. This process decreases the system energy and supplies a driving force
for Ge to form pits and to diffuse to the Si terminated step edge.

While the above reasoning can explain the initial pit formation, the pit formation should
stop quickly if all Si step edges are terminated by Ge atoms (Figure 9. 2 (b)). Subsequent Ge
attachment at the step edges would not result in any bond energy gain. A further growth of
pits, as observed in the experiment, would not be expected because it would only increase the
step energy. In a second step of pit formation the entropy driven GeSi intermixing acts at then
outer step edge. The amount of GeSi intermixing can be close to 50% under usual conditions
as obtained from the measured apparent height differences [24]. Due to the entropy driven
intermixing at the step edge fresh Si is present at the outer step edge again. This Si starts the
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energy gain driven Ge diffusion from the pits towards the Si containing step edge again
(Figure 9. 2 (b)). The atomic processes shown in Figure 9. 2 (b) and (c) can be considered as
the subsequent energy driven and entropy driven parts of an energy—entropy cycle.

While we have shown that the above outlined pathway of pit formation describes the
experimental data we will now turn to an analysis of the free energy and kinetic barriers
during pit formation. This will elucidate why an unanticipated, complicated process of pit
formation is favored over the much simpler process of direct intermixing with the underlying
Si (Figure 9. 2 (d)) which has an even lower free energy than the final state of pit formation.
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Figure 9. 2. In (a) and (c) the initial and final states before and after pit formation are shown. In the first part of
the energy—entropy cycle (b) the energy is reduced by replacing Ge-Ge bonds (at the Ge stripe) through stronger
Ge-Si bonds at the Si terminated step edge. The subsequent GeSi intermixing is driven by a gain in mixing
entropy (c). Due to the intermixing the Si at the step edge is (partly) restored activating the energy driven part of
the cycle again. An alternative simpler intermixing process without pit formation is direct intermixing with the
Si form the lower layer (d).
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Since the pit formation occurs after annealing, we assume that the final state (Figure 9. 2
(¢)) with pits formed is a state close to local equilibrium. Since the system is a quite
complicated heteroepitaxial strained partially intermixedsystem there are several
contributions to the free energy. As the initial state we consider a Ge one monolayer thick
stripe at a Si step edge and a thin Si rim at the Ge stripe (Figure 9. 2 (a)). The final state is
the Ge stripe with one monolayer deep pits, the thin Si stripe, and an outer GeSi stripe
consisting of the Ge originally filling the pits intermixed with the underlying Si layer (Figure
9. 2 (¢)). For the amount of GeSi intermixing (x) in the outer GeSi stripe we assume x = 0:5
which corresponds roughly to the experimentally observed range of intermixing. We consider
here only intermixing at the surface since bulk diffusion does not operate at the temperatures
and timescales used here due to the high activation barrier of 4 - 5 eV [130]. The free energy
contributions for going from the initial to the final state were estimated (see the Appendix A)
and are shown in Table 9. 1. As calculated from elasticity theory the elastic energy decreases
by 14 meV/Ge-atom in the final state due to Table 9. 1: Free energy contributions for pit
formation.

Table 9. 1
Eelasiic -17 meV/Ge atom
E,. +13 meV/Ge atom
Mixing entropy -88 meV/Ge atom
Estep,rel + Estep,form -2 -2 meV/Ge atom
Eint,bound (Ewet) -3 meV/Ge atom

the reduced strain in the outer intermixed GeSi-stripe [131]. Energy per Ge-atom means per
Ge-atom moved away from the pits to the outside stripe. The mixing enthalpy of GeSi is
known to be positive [132,133], resulting in a mixing energy of 10 meV/Ge-atom, favoring
the initial state without pits. The mixing entropy term gives a large negative contribution of -
63 meV/Ge-atom favoring the final intermixed state. A further contribution to the elastic
relaxation energy is the step edge relaxation energy evaluated according to [134]. When this
contribution is combined with the step edge formation energy which increases during pit
formation a net step related energy gain is estimated and converted to of -5 — 1 meV/Geatom
(assuming an average pit diameter of 15 nm). This range is estimated from the extreme cases:
zero step edge formation energy and the step energy of clean Si(111) [13]. The actual step
formation energy on Bi terminated surface is expected to lie between this extreme cases. The
last contribution to the free energy (Ein.rouna) arises as follows: when the first Ge-atoms move
from the pits to the Si rim weaker Ge-Ge bonds are replaced (partly due to intermixing) by
stronger Si-Ge bonds. We estimated this line energy and convert it again to an equivalent
energy per (moved) Ge atom of about -3 meV/Ge atom. Taking all the contributions to the
free energy together the final state with pits formed has clearly lower free energy than the
initial state. This seems to be a convincing energetic argument for the pit formation.
However, let us now consider a much simpler final state namely the direct vertical
intermixing of the Ge stripe with the underlying Si (Figure 9. 2 (d)). Most of the energy
terms considered before apply to the vertical intermixed state as well. Only the step energies
are not present because no steps are formed during direct vertical intermixing. Since this is a
small contribution, the free energy of the direct vertically intermixed state is also lower than
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the initial state. Even more, the free energy of the directly intermixed state is lower than the
final energy of pit formation since the intermixing would act at the whole Ge stripe, while the
pits only form on a fraction of the stripe (usually less than one half). The question arises why
the system takes the complicated pathway like the pit formation instead of the much simpler
and lower free energy process of direct vertical intermixing with the underlying Si? During
vertical intermixing high energy barriers have to be overcome in order to reach the low free
energy configuration. The relevant barrier for direct vertical intermixing is the barrier for
intermixing between the first and second layer which was recently measured for the
Bi/Ge/Si(111) system as U7 .= 2.2 eV [24]. The corresponding barrier at the step edge is
lower (U"? .= 1.9 eV) because the atoms are less confined by neighboring atoms at the step
edges [24]. The pits are formed because pit formation allows a path towards the minimum
free energy configuration which involves a lower barrier than the direct exchange path. Due
to the decreased energy barrier for GeSi exchange at the step edge, entropy can act more
easily at the step edge while on the terrace the lower entropy intermixed state is not realized
due to the large energy barrier involved with the GeSi exchange at the terrace. Now we turn
to the question why in the above described pit formation process the intermixing occurs only
at the outer Ge stripe while it does not occur at the pit step edge? There is a kinetic reason for
this. At the beginning of the pit formation the step length at the pits is much smaller than the
length of the outer step. Therefore, the step speed at the pits is much larger than the step
speed at the outer step. It is known that the GeSi exchange at the step edges depends critically
on the step speed, being lowest at the largest step speeds [24] due to the shorter time a
specific atom is located at the step edge. Therefore, the GeSi intermixing effect at the pits is
initially much smaller than the intermixing at the outer GeSi step edges. When the pits grow
larger their step speed reduces and GeSi intermixing starts to occur at the pit step edges as
well. This is also the reason why the pits stop to grow at some point. The energetic driving
force for pit formation disappears when the Si content at the pit step edge becomes close to
the Si content at the GeSi stripe.

A measurement of the average pit area as function of annealing time shows that the pit
formation stops after about 90 sec (inset in Figure 9. 3). For simplicity, we fit the
experimental points (inset in Figure 9. 3) with exponential decay. From a fit to this time
dependence the average step speeds of the pits are calculated by differentiation. Furthermore,
using the data on the Ge concentration at step edges as function of step speed [24] we obtain
the average Ge concentration at step edges plotted in Figure 9. 3 as function of annealing
time. Initially the difference in Ge concentration at both kinds of step edges, which is the
driving force for pit formation, is large. For longer annealing times this driving force reduces
and leads finally to a stop in further pit growth.An additional effect, not considered here, is
that Si accumulates at the pit step edges due to the out diffusion of Ge which is another
mechanism for the decrease of the Ge concentration with time.
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Figure 9. 3. Average Ge concentration at the pit step edge and at the outer GeSi step edge as function of
annealing time. The pit size measurements are shown in the inset.

Effective pit formation occurs only in a certain temperature range. For too low
temperatures the GeSi exchange is not activated and the pit formation stops quickly after all
Si steps have been terminated by Ge. For too high temperatures the difference in Ge
concentration be tween both types of step edges, vanishes due to strong intermixing and the
corresponding chemical potentials become the same. The pit formation can be also used for
nanostructuring. Using conditions at which pit formation is enhanced the fabrication of
freestanding GeSi stipes with single digit nanometer width is possible. The sinks for the Ge
during pit formation are Si step edges. In order to enhance pit formation we guided epitaxial
growth in a way that a lot of Si islands were nucleated on the surface (0.08ML Ge was grown
at T= 693K for 6 min, followed by 0.22 ML Si grown at 653 K for 14 min before annealing
for 10 min at 753-773 K.). These Si islands provide a high density of sinks in order to drag
the Ge out of the pits and finally leading to pit coalescence. Figure 9. 4 shows an example of
nanostructuring by pit coalescence. A continuous ~ 8 nm wide freestanding GeSi wire has
been fabricated by pit coalescence. This wire is separated about ~ 8 - 10 nm from the step
edge. Here the complete initial Ge stripe was removed. The Ge moved to the step edges of the
Si islands and the GeSi stripe. Such nanostructured templates can be used for next stage
nanostructuring as for instance anchoring molecular nanostructures selectively at the wire or
in the groove between the step and the freestanding nanowire.
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Figure 9. 4. Fabrication of a freestanding 8nm GeSi wire on the Si(111) substrate obtained by pit coalescence.

Conclusions

Nanoscale pit formation in 2D Ge stripes was observed due to a concerted action of
energy and entropy. The energy driven motion of the Ge atoms out of the Ge stripe towards
stronger binding sites at the Si terminated step edge is followed by an entropy driven GeSi
intermixing which restores a Si content at the outer step edge and fuels the energy driven
process again. This unanticipated complicated pathway of pit formation as a way to reach the
final state of GeSi intermixing is followed instead of the much simpler direct vertical
intermixing due to the high kinetic barriers present for the latter process. Finally we have
shown that the pit formation effect can also been used for nanostructuring ~ 8nm wide
freestanding GeSi nanowires on the Si substrate.
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10 Summary

A technique of modified surfactant mediated epitaxy was introduced, where the
surfactant concentration on the surface was reduced to influence the growth and equilibrium
properties of the surface steps in a desired way. It was shown that this modified surfactant
mediated epitaxy is relevant to nanotechnology since it allows fabricating arrays of long
equidistant epitaxial Ge nanowires with a width in the one-digit nanometer range. In future
these nanowire arrays could serve as templates for selective attachment of molecules,
decoration with metals, or attachment of clusters and other nanoscale building blocks such as
fullerenes. The use of surfactant coverage as a variable parameter opens up an additional
dimension in the growth parameter space that can be explored in bottom-up nanofabrication
studies in general.

The analysis of island size distributions showed that the step edge passivation in
modified SME can be tuned independently by substrate temperature and by Bi rate
deposition. The measurement of the island size distributions for Si and Ge in surfactant
mediated growth reveal different scaling functions for different Bi deposition rates and
different substrate temperatures on the Bi terminated Si(111) surface. According to the data
of the Si island size distributions at different growth temperatures and different Bi deposition
rates the change of SiGe island shape and preferred step directions were attributed to the
change of the step edge passivation. It was shown that the change of the step edge passivation
is followed by a change of the preferred step direction resulting into different islands shapes.

A method to analyze the symmetry of the combined system of reconstructed island plus
reconstructed substrate from the symmetries of the bulk substrate lattice, and reconstruction
on the substrate, and reconstruction on the island was developed. The symmetry analysis is
based on the analysis of common fixed points. The method was used to analyze the symmetry
of the shape of reconstructed 2D islands on diamond lattice of Si (111) surfaces. The
symmetry breaking in the Bi SME growth of 2D Si/Ge islands on Si(111) was explained with
the symmetry analysis method. The broken symmetry has consequences on the step structure
which in turn influences the growth rates and finally also the island shapes. This effect could
be used to fabricate 2D nanostructures directed along one specific direction on a substrate of
higher symmetry.

Nanoscale pit formation in 2D Ge stripes was observed due to a concerted action of
energy and entropy. The energy driven motion of the Ge atoms out of the Ge stripe towards
stronger binding sites at the Si terminated step edge is followed by an entropy driven GeSi
intermixing which restores a Si content at the outer step edge and fuels the energy driven
process again. This unanticipated complicated pathway of pit formation as a way to reach the
final state of GeSi intermixing is followed instead of the much simpler direct vertical
intermixing due to the high kinetic barriers present for the latter process. It has shown that the
pit formation effect can also been used for nanostructuring ~ 8nm wide freestanding GeSi
nanowires on the Si substrate.
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11 Appendix

Appendix A: Evaluation of energies relevant for pit formation
Formation of the pits was observed at different growth conditions:

1 during Si deposition
2 during annealing after Si deposition

An analysis of the mechanisms of the pit formation for every condition will be given in the
following.

1 Pit formation during Si deposition
After submonolayer deposition of Ge in the step flow growth mode Ge atoms attach to
the step edges and Ge stripes of a certain width form. The width of the stripes is determined

by the coverage and the step distance. Atomic layer (~3,2 ;1) high stripes with a width of
more than 10nm can be formed without any pit formation as shown in the STM image of
Figure 9. 5 (a).

(@)

Figure 9. 5. Ge stripes with width more than 10 nm. was formed at Si steps without pits (a); During the
following deposition of 0.22 ML of Si for 2.5 min at 450°C the pits were formed in Ge stripes (b), [This
experimental result was obtained by Dr. Jacek Brona].
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The following deposition of Si can induce the pit formation in the Ge layer Figure 9. 5 (b).
Pit formation was observed for example after the following growth conditions: temperature of
substrate Tgypse = 450°C, Ge deposition of 0.15 ML for 2 min, after Ge deposition 0.22 ML of
Si was deposited for 2.5 min.; during Ge/Si deposition Bi rate was maintained at 3.4 ML/min.
The observed pit formation associates with mass transport of Ge from the pits into outer step
edges since no significant sublimation is expected at temperatures below 850°C [135] (rate of
Si(Ge) sublimation lower than 10~ ML/sec at 850°C). The high resolution image Figure 9. 6
(a) shows that the outer step edges adsorb Ge together with Si resulting into SiGe stripe
Figure 9. 6. It assumes that Si deposition induces mass transport of Ge from the pits to the
outer step edges and the GeSi alloy is formed as result of simultaneous incorporation of Ge
and Si atoms into outer step edges. The observed mass transport of Ge assumes the force or

difference of the chemical potentials Ay = 44, 0, = H i sy <O Which moves Ge atoms

from the pits to the outer step edges.

(a) (b) Distance (nm)
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Si Ge Si-Ge 0.4 — y y v

4
w

Height (nm)
=)
o

e
-
|

[=]
(=]
—

Apparent height

preexisting final
step edge step edge

Figure 9. 6. The pit was formed in Ge layer during Si deposition for 20 min with rate of adsorption 0.01
BL/min at temperature of substrate 460°C — 490°C (a), high resolution image (a) and line profile (b) show
that Si-Ge alloy was formed at outer of pit step edges. The apparent height difference between Si layer and
the Si-Ge layer (b) at outer of pit step edge marked by A = 0.3A (b). [This experimental result was obtained
by Dr. Jacek Bronal].

The behavior of the system can be described by kinetic or/and energy model. The energy
model assumes that equilibrium or quasi-equilibrium state is achieved in the system. The
kinetic model is more complete since it takes into account evolution of the system toward
equilibrium. Equilibrium state of the thermodynamic system is described by a minimum of
thermodynamic potential which consists of internal energy and entropy parts
(G=E—-TS > min). The driven force (energy) for kinetic model can be determined from
energy of the system, therefore, the energy analysis in frame of the energy model will be
given first.
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e Energies relevant for pit formation

To calculate the energy of the system a simple model which takes into consideration only
initial and final state will be used. Figure 9. 7 presents the schematic model of the pit
formation during Si deposition.

Ace Ace-Apit  AsitApit
Ge Ge Gexsi1_x
Initial Final
Ei Ef

Figure 9. 7. The model considers initial and final states with full energies E; and E correspondingly. The
initial state presents Si and Ge layers of volume A, and Ag, without pits. The final state presents Ge layer
of volume (A¢, — A,i) with pit of area A4, and GeSi layer with homogenous composition of Ge of volume
A, and Si of volume A;.

The initial state (Figure 9. 7 — left image) presents the case without pits and consists of
strained Ge layer of volume Ag, and Si layer of volume Ag;. The final state (Figure 9. 5 (b),
Figure 9. 7 — right image) consists of Ge layer of volume (4¢. - As;) with pit of area 4,; and
GeSi composition layer of volume (A4pi + Asi). The approximation of the pits with round
shape and GeSi layers with homogenous composition are used in the model to simplify the
calculations of the energies of the system.
According to the model, the internal energy of the system can include four different
energy contributions:
E .1u5ic — €lastic energy of strained Ge and GeSi layers on Si(111) substrate;
E,ix — energy of mixing of disordered GeSi alloy;
E ., — energy of step formation;

Full internal energy of the system can be written as: E = Ejgic + Emix + Estep.

To define mechanisms of the pit formation all energies will be studied and numerical
estimations will be given. The numbers and estimations of these energies will be used as a
basis data for the following analysis of the different experiments and possible mechanisms of
the pit formation.
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e FElastic energy

The elastic energy of thin layers of 1 ML height at the surface can differ from those in
the bulk. But in some cases it is possible to neglect by the surface and use approaching with
the bulk model, for the described here system it will be supported in the following with
experimental data. For calculation of elastic energy of Ge layer of 1ML height the theory for
a bulk crystalline solid will be used.

The state of strain in a solid is described by the dependence of a displacement vector u on
the position denoted by r. The second rank tensor of infinitesimal strain &, is defined by

1 aul. au/
== —+—¢.
T2\ ox; o
Stresses and strains are related by Hooke's law. In its most general form Hooke's law reads

[131,25]

Tu = chnj% ,
i

in which ¢, are the components of the forth rank tensor of the elastic modules. Because of

the symmetry of the stress and strain tensors z,, and &, one has the relation ¢, = ¢, =cy;.

The number of independent components of the elastic tensor is further reduced by the
requirement that the elastic energy be a unique function of the state of strain. The energy
density U, ,1s

1
Uetast = Z.[ Tydey = _chh‘/ €iu >
Kl 2 P
¢;and g, are the functions ¢,(r) ande, (r)of position r=(r,,r,,r.). In general case, full

x2lyo

elastic energy of a crystalline solid £ over volume of

the solid
E s = [[[V s itz =[[[ 3 cue (P ()i
14 14 ijkl

Here the integration region V corresponds to the volume of solid. Geometry of the system is
shown on Figure 9. 8. The volume of the solid ¥ consists of volume of Si substrate ¥, and
volume of Ge layer V;. The following relations assume some approaches for elastic energy of
the system:

1. The Si crystalline solid have a close elasticity with Ge crystalline solid, and Si is more hard
material than Ge;

2. Lateral size of Ge layer is much larger than thickness (height) of Ge layer, L/ hg. > 10;

3. The thickness of substrate is much larger than thickness of 1 BL of Ge, hsy/ hge > 10° .

Strain &, (r) has a maximal value at the place of localization (Si/Ge interface) of the force

is an integral of energy density U

elast elast

applied to the solid. The equivalence of the forces at the interface Fs; = — F¢, can be written:

hg
_ ~ _ Si
kohg.e6, = kghgég, kg, kg — €, =——¢&, where k;, and kg are the force constants
Ge
for Ge and Si respectively.
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Figure 9. 8. The strained Ge layer on Si substrate. Ge have a 4% lager lattice constant. The maximal strain
of 4% is applied at Si/Ge interface. Ge layer takes larger part of 4% strain due to geometry of the system:
L/ hge> 10, hs/ hg, > 10° .

Because of geometry of the system hsy/ hg, > 10° (Figure 9. 8) Ge layer takes more strain
than Si substrate takes strain near Si/Ge interface: ¢, >> ¢, hereg,, — strain in the Ge
layer, &g — strain in the Si substrate at Si/Ge interface. The elastic energies of Ge layer and Si
substrate associated with the force at Si/Ge interface Fs; = — Fg, = F are proportional to the
strain U,,, =F¢ . &, >> &y = Feg, >> Feg,, therefore, the energy of Ge layer is the
largest part of elastic energy of the system. Then, in the first approach we can neglect by
elastic energy in volume V¥ of the Si substrate:

v = || JU s (r)xdydz =[[[U 1, (r)xdydz + [[[U ., (r)lxdydz =
Vi V2

V=r1+vV2

% [ [U e () ixclydz
28!

The energy of the displacement field # induced in the Si substrate by the force applied at
the step edges of Ge (GeSi) layer will be considered in the next paragraph as the energy of
relaxation at the step edges of the Ge or/and GeSi layer.

The energy density of thin isotropic strained layer can be found from inverse form of
Hooke's law:

Eu =D SuiTy

Isotropic strain has no distortion forces (7,, =75 =7, =0), then the lateral strain & of
Si/Ge layer can be expressed as (x—1, y—2, z—3):

El =8 Ty T 8,7y + 83753

9
Ey =8y1Ty T80T + 85375
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here and further a short notation by the Voigt indices is used: 11—1; 22—2; 33—3; 23—4;

13—55; 12—6. s,, =s,, and s,, =s,, by the symmetry of the Ge (Si) crystal. A hexagonal

crystal is elastically isotropic in its basal plane (111), therefore,s,, =¢,, =¢,7,, =7y, =7,

the Si/Ge layer is free in z (3) direction Figure 9. 8, therefore,7,, =0, then the strain takes

the form:

g=(s, +s,)r,— T=L,
(511 + 512)

the differential of energy density dU ,,,, can be written as:

elast

U, =27-dg =595
Sy T8
) . : 1 1 Y
for isotropic solid ¥ =— and v = e [131], then — = .
St St Sy ts,  1-v

The energy density per area y,,,, :

(1.1)

Y
}/elast = tgz 1 = kgz’
-V

Where the force constant k£ =¢ , t is the film thickness, € — is a strain, v is Poisson-

1-v

number and Y'is Young’s modulus. Elastic energy of the layer of area 4 ca be written as:

E, = Ake’, (1.2)

elast

Young’s modulus Y1) = 13.8><1010N/m2, Poisson-number v77 = 0.252 for (111) plane of
Ge crystal [131]and Y77 = 16.9x10'"N/m?, v15 = 0.262 for Si can be found in reff. [131].
The force constant kg for one layer (3.14 A) of Siis 71.9 N/m, and k;, of Ge one layer is

57.9 N/m. kg is 25% larger than k., . The force constant for Ge,Si.x composition layer k

can be estimated as proportions of kg and k,:
k=kex+kg(1-x)=kg(1.24-0.24x), (1.3)

According to Vegard’s law the lattice parameter of the bulk of GeSi;« can be varied linear
with composition from the natural lattice constant of Si to the natural constant of Ge.
Therefore, the strain of compound Ge,Si;.x layer on the Si surface is proportional to the ratio
of Ge in alloy:

& = &pX, (1.4)

where &9 = 4% — is the strain of Ge layer on Si substrate. According to the model Figure 9. 7,
the ratio x of Ge in compound layer is:

X = Apit/( Apir + Asi). (1.5)
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Let’s take k =k, and let’s take into account only strained epitaxial Ge and Ge,Si - layers,

then elastic energy can be found by combining (1.2), (1.4) and (1.5). The elastic energy of
initial state can be written as:

i 2 2
E.lusiic = Age kge €9 + Agi ksi &si
the expression Ag; ks; &si” — is the strain energy of Si on Si which is identical 0, then:

Eelastici =AGe kGe 802- (16)
The elastic energy of final state (Figure 9. 7):

Eotusid = (AGe — Api) ke £6° + ( Apis + Asi) ke £6° (Apid( Apis + A))°, (L.7)

Energy gain Euid” = Eotastic - Eeassid after simplifications takes the form:

Eelasticf-i = - kGe 302 Asi X, (18)

The increase of x decreases the elastic energy. From (1.8) and (1.5) it follows that system will
decrease elastic energy with increase size of pits A,; at fixed A,.The Bi layer on the top of
Ge/GeSi layer (Figure 9. 9) reduces the energy gain (1.8).

To calculate elastic energy of Ge,Si;« layer covered with Bi the following denotes will
be used:

the strain of Ge,Si; layer on Si(111) substrate &ox, (89=0.04),
the strain of Bi layer on Si(111) substrate EBi

the strain of Bi layer on Ge,Si; layer (i - €0X) ,

the strain of Bi + Ge,Si;« layer on Si(111) substrate (epx +0) ,

The Ge,Sii layer terminated with Bi is under additional stress of Bi layer. The strain of Bi
terminated Ge,Si;x layer is differ on  from original one. é can be found from equivalence of
the forces Fp; = Fges; for free layer Figure 9. 9 (right image). As well as in the previous cases
the approaching k =k, is used, then the expressions for the forces Fsig. and Fp; (Figure 9.
9) yield:

Fsige = ke((€ox + 0) — &9x),

Fg; = kpi((epx + J) — &),

=]

B| GexS|1_x

o. o. o. o. o. o. D GexSi1-x

Substrate Substrate

Figure 9. 9. The underlying Ge,Si;, layer is squeezed by Bi.
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from equivalence of the forces Fsige = — Fpiy — kpi ((€Bi - €9x) — 3) = kg. 0 , we obtain:

O = (epi - £0x) kpi / k', (1.9)
where k' = k¢, + kg; , in the case of pure Ge layer, x = I we have ¢y = (ep; - &9) kp; / k', then
the elastic energy of initial and final states can be written:

Eoasic: = Age k' (0 + 09)* + A k' (0 +6) , , with (1.9) it gives:

Eelasttc =Ace k' (g0 + 00)° + Ai kpi* e5i/ W, _

Eelasttc (A Ge — ptt) kl (80 + 50)2 + (ASi + Apit) kl (gﬂx + 6)2 5 Combinil’lg Eelasticl and Eelasticf
we obtain express1on for energy gain:

Eelasttc . = _Aplt k (80 + 60) + (ASl +Aplt) k (gﬂx + 5) - Ast kBt 8312/ k s

Eelastchl =- ASt X k 80 + Aplt kl 280(6 - 60) + ((ASI + Aplt) kl 52 Aplt kl 50) Asz kBl
83,'2/ k' , combining with (6 — 50 ) = &o(1-x) kp; 2/ k' and after combinations (see appendix B)
the energy gain can be simplified:

Eelastzc T= (kGe 80 Ast x) kGe / kl - kGe /( kGe + kBt) 80 si X, (110)
it can be also represent as:

Eelasttc =- (kGe kGe kBi /( kGe + kBl)) 802 Asi X, (1 1 1)

The elastic energy of Bi terminated GeSi layer depends on additional parameter which is the
force constant kg;. The energy gain Ee,,,s,,c decreases with increase of kg;. At kg; = 0 elastic
energy takes the maxima value which is equivalent to the energy of one GeSi bulk layer (1.8).
Generally, surface reconstruction changes the surface stress and modulus of the surface layer.
In the case of Bi-SME Bi saturates dandling bonds, decreases surface stress and changes
modulus of the surface layer. In the following estimations the data of Sb and Ge deposition on
Si(111) surface [136] will be used. The authors found that the stress caused by 1ML of Sb is
equivalent to the stress caused by 2ML of Ge. Actually, the Sb decreases the surface stress of
the (7x7) from original value 2.98 N/m [137] down to 1 N/m. The surface stress of Ge on Sb
terminated Si(111) surface is linear proportional to the Ge coverage Figure 9. 10 and
corresponds to 2.0 (N/m)/ML in the range of coverages of Ge from 0 to 4 ML. I. e. first
deposited layer produces the same stress as second, third, ... , until S-K growth mode or
dislocations start generate. The surface stress (Figure 9. 10) is dropped linear with Ge
coverage in range of from 0 to 4 ML. The same slope of the dependence on Ge coverage in
the ranges of 0 <@ <1 and 1< @ < 2 is result of the same stress induced by Si(111)V3xV3-Sb
surface phase and by Ge(111)V3xV3-Sb surface phase. Therefore the stress caused by Sb
surface phase can be taken into account separately from the underling Si and Ge layers. This
linear dependence also shows that we can neglect by the surface and use bulk crystalline solid
elasticity theory.

Unreconstructed Si(111)1x1 surface have a negative surface tension (— 0.7 N/m) [138]
which become positive and corresponds to 1 N/m after Sb termination. Let’s consider the
stress caused by V3xV3-Sb-IML surface phase separately from the underlying
unreconstructed Si(111)I1x1 surface, then, the stress caused by Sb can be found as a
difference of the surface tensions for Si(111)1x1 and Si(111) V3xV3-Sb-1ML surfaces. The
difference is 1.7 N/m Table 1. The surface tensions used here are placed in Table 1. The last
surface tension 1.7 N/m in the table is used in the following as a stress caused by Sb trimers.
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(@) P.zahl, P. Kury, M. Horn von Hoegen, Appl. Phys. A 69 (1999) 481.
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Figure 9. 10. The calculated surface stress during Sb deposition and Ge growth on Si(111) at 600°C is
shown (a) by data of P. Zahl, P. Kury, M. Horn von Hoegen [136]. Sb adsorption (regime A) causes strong
change in stress of = 2 N/m. During the coherent stage of growth (regime B) Ge deposition results in an
initially linear increase of compressive film stress. The slope of 2.0 (N/m)/ML Ge compares well with the
behavior expected from bulk elasticity constants. (b) The first(upper) deposited Ge layer produces double
change: 1. it produces own 4% strain relative to Si substrate and 2. it changes the surface stress because of
Si and Ge surfaces have a different surface energies and surface tensions. Actually, the pure Ge surface
have lower values of the energies and surface tensions than Si surface. Apart from the first layer the second
and the next layers produce equivalent changes in the bulk structure of the system by additional strained

Ge layer.

Table 1

Substrate Surface Change of reference
tension surface tension

(i) Si(111)1x1 — 0.7 N/m [138]

(ii) Si(111)7x7 2.98 N/m [137]

(iii) -2 N/m [136]

Si(111)7x7 = Si(111) V3xv3-Sb-1ML

(iv) + 1.7 N/m Calculated from (i),

Si(111)1x1 = Si(111) V3xv3-Sb-1ML (ii) and (iii):

1.7=2.98 - 2+0.7
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Bi have a less bond energies and is more soft material than Sb [139,140,141]. Bi has a
less elastic constants than Sb and can cause less surface tension:
el =63.7,¢) =24.6,ck =7.2,c% =38.1,cl =11.26,c) =19.4;
e =101.4,¢2 =29.4,c =209, =45.0,c =39.2,¢ =33.4,x10" dyn/cm.

The “stress” data with Sb (Figure 9. 10) can be used to estimate upper limit of Bi effect on
the elastic energy (1.10), (1.11). For estimation of the force constant kp; the stress data of Sb
and geometry of Bi trimers will be used. The character of the chemical bonding of Bi trimers
on Si(111) surface is close to p> [142], that induces the right angles [143]. The length of Bi-
Bi bonds in trimer (B-phase) is 3.1 A [144,145,146], the distance between underlying Si
atoms is 3.84 A, and £ Bi-Bi-Si is near the right angle (98°) Figure 9. 11.

(a) (b) | 31A_ (c)

A

90°

90°

' - Bi atoms
O - Si atoms

Figure 9. 11. Bi trimer on Si(111) surface. p’ character of the chemical bonding of Bi trimers on Si(111)
surface induces the right angles (a), these angels are transformed by geometry of structure of underlying
substrate into values which is different from 90° and that difference induces the strain; Bi atoms of trimer
form equilateral triangle with base of 3.1 A, that is 24% less than base of underlying Si(111)1x1 unit sell
3.84A (b); the 24% of the lateral difference is compensated by lager (than 90°) angle 98° (c). That 24%
strain of trimer structure induces surface tension about 1.7 N/m.

The strain of Bi trimers can be estimated from geometry. Deformation of the bond angle from
90° to 98° corresponds to 24% of deformation of base of Bi trimer. Approximation by
Hooke's law also gives upper estimation of Bi effect on the strain energy (1.10), (1.11). The
strain of Bi trimers is 24% - that is six times larger than the strain of single Ge layer (4%),
and stress of Bi trimer no more than 0.85 times larger than stress of single Ge layer, then:

4% 0.85 (1.12)
ky, =kg,0.85 o ke, - 0.14k,, ,
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Combining (1.12) with (1.11) gives:

— 1.0 kge 86" Asix < Eorasid™ < = 0.88 ke 29 A X,

we will use upper limit — 0.88 kg, &5 1;1si x. To represent the energy per atom we multiply this
atom

2

expression by constant — 0.157x10%

m
atom
' 1.13
Eutasid == 015731072 - 0.88kge &5 Ayi X, (1.13)
Bl =337 N,
atom

where N is number of particles, N =N, + N;.

Recently, evolution of the surface stress during Bi deposition and Ge growth on Bi
terminated Si(111) surface was studied by H. Asaoka (Figure 9. 12). The results are
surprisingly similar and have qualitative and numerical data which are mostly the same with
data obtained for Sb by P. Zahl, P. Kury, M. Horn von Hoegen [136] (Figure 9. 10). As it
was assumed above, the stress caused by 1ML of Bi 1.8 N/m is slightly lower than stress
caused by 1ML of Sb 2 N/m (Figure 9. 10, Figure 9. 12). Therefore, calculations above can
be well attributed to the surface terminated with Bi.

)
o Z
o
o
=
©

(N/m)

ABC

\ stress gradient -2.30 (N/m)/ML
4L Y (regime B)

10!l Si(111)/Ge/Bi 500°C

R . .

0 3 10 15 20
Ge coverage (ML)

Internal stress x thickness

Figure 9. 12. The calculated surface stress during Bi deposition (regime A) and Ge growth on Bi
terminated Si(111) at 500°C obtained by Hidehito Asaoka. Bi adsorption (regime A) causes change in
stress of = 1.8 N/m. During the coherent stage of growth (regime B) Ge deposition results in an initially
linear increase of compressive film stress. The slope of 2.3 (N/m)/BL Ge compares well with the behavior
expected from bulk elasticity constants.
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e Energy of mixing

The cohesive energy is energy required to form separated neutral atoms in their ground
electronic state from the solid at 0 K and at 1 atm. The cohesive energy of Si is 15% higher
than Ge [129,128, 147,148,149], (Figure 9. 13).

Ecoh A
(meV/atom)
4640+ 1] 2E
385
7 meV
‘][“ (Eee cet ESi-Si)___' .
14| 4========mccep- perfectly random 50% GeSi alloy
;1 OW 2E,, |
371

3870 ¥ m 2EGe-Ge

Figure 9. 13. The energy diagram shows cohesive energies per atom for Ge, Si [147] and perfectly random
50% GeSi alloy. The mixing energy of perfectly random 50% GeSi alloy is = 7 meV/atom
[132,133,150,151]. Cohesive energy per atom is equal double energy per bond since two bonds per atom
are present. Then the bond energies have the next relations:

ESi-Si — ESi—Ge =200 meV/bond and ESi—Ge — EGe_Gg =185 meV/bond, (EGe—Ge + ES,-_S,-)/Z — ESi—Ge =7 meV.

The cohesive energy of 50% GeSi alloy is approximately in the middle between Si-Si
and Ge-Ge cohesive energies. Investigations [132,133,150,151] showed that cohesive energy
of GeSi alloy is lower than average of Si and Ge cohesive energies per atom, i.e.:

h h h
EsiG™”" < (Esisi™™ + Ege.ce™)/2 ,

The difference ((Esi.si”" + Ege-g""")/2 - Esi.ce™™) in the case of perfectly random 50% Si-Ge
alloy is about 7 meV/atom [132,133,150,151]. The energy gain is so small that segregation of
Ge and Si can occur only at temperatures lower than 170K [132].

The energy of mixing can be found from probability relations as a function of Ge
concentration x. The probability to have a Ge neighbor atom at one bond is equal to
P(Ge) = x, the probability to have a Si neighbor atom at one bond is equal to P(S7) =(1—x).
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Let’s take Ge crystal with N -x Ge atoms and Si crystal with N -(1—-x) Si atoms. The sum
cohesive energy of the Ge and Si crystals (non intermixing state) is

Elyg = Eg+Eg =-N(xEZ;, +(1-0)EL",), (1. 14)

where N is the full number of particles, N = N, + N;. The mixture of Ge N -x atoms with
Si N-(1-x) atoms gives Ge,Si; alloy. Every atom has 4 neighbors = 4 bonds. To exclude
double accounting of the bonds we have to take only half, i.e. 2 bonds per atom. Therefore,
Ge,Sijx random alloy includes 2N - P(Ge)+ 2N, - P(Si) =4x(1-x) of Si-Ge bonds,
N, - P(Ge) = 2x” of Ge-Ge bonds and N, - P(Si) =2(1—x)" of Si-Si bonds per atom. The
cohesive energy of Ge,Si|x alloy (intermixed state) can be written in term of bond energies

EéeSi = _2N(2x(1 -X)Eg 5 +(1- x)z Eg g+ szGefGe )a (1. 15)

E coh coh

_ Ge—Ge _ Si—Si : :
where E, ., = s Eg s Eg g = — are bond energies between Ge-Ge, Si-Ge and

Si-Si atoms respectively. Then, the sum cohesive energy of Ge and Si crystals (1. 14) in term
of bond energies is

E;‘HGe = _2N(‘XEG6—G6 +(I-x)Eg g ): (1.16)
The energy difference between final (1. 15) and initial (1. 16) states is

Esle;e = —2N(2x(1 -X)Eg g +(1- x)2 Eg g+ szGefGe —xEg, g —(1—X)Eg_g ):
=—2Nx(1- x)(zESi—Ge - (ESi—Si +EG, G ))

b

fei
Mixture energy of random alloy can be expressed in energy per atom —2% =

(Esisi + Egece) (1.17)

2

Emix = _4[ESi—Ge - jx(l - x) s

Emix = m(l_x)’
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E, . +F
where Q=—4(E G Go _Eses 5 GEG@)J is called the interaction parameter. The mixing

Si—Si + EGe—Ge )
2

energy of 50% SiGe random alloy is E,, = —LE SiGe — (E J = TmeV / atom , then
0 =28 meV/atom.

Bond energy between two atoms depends on their neighbors (Ge or Si) Figure 9. 14. The
significant dependence can be expected for elements with ionic type of bonds. Si and Ge are
similar elements with covalent type of bonds. In the following, to estimate Si-Ge, Ge-Ge, Si-
Si bond energies in the bulk only two interacting atoms (without neighbors) will be taken into

S : . : : EZ
account (this simplification was also used in previous computations): E, ., =—<%
Ge—Ge 2
coh
_ ESi—Si _ (ESi—Si + EGe—Ge) _ 7 V
Si-si T BsiGe T 5 mevy .

—A31 — A32— A=Ge,Si

A= SHA2 T Ey g = Ey o (4], A} AL 47, 42, 47)

— Al — AP—

Figure 9. 14. The bonding energy is a function of the nearest neighbors. The variable parameter 4 can be
either Si or Ge atoms.

The interaction parameter of thin monolayer film will be different from the interaction
parameter of the bulk crystal due to influence of the surface interfaces. For estimation of
effective interaction parameter the initial not intermixed state and final intermixed state will
be considered Figure 9. 15 with random distribution of Si and Ge atoms in the height of GeSi
layer Figure 9. 15 (a). The monolayer films have two interface surfaces: vacuum/Gey, Si;
layers, Geyx, Sijx layers/Si substrate for initial state, and vacuum/Ge,Sij layer, GexSijx
layer/Si substrate for final state Figure 9. 15. Ge,Sij« layer spend 1/8 number of bonds to
connect with Si substrate and 1/8 number of bonds are saturated with Bi. The 1/8 part of the
bonds which are saturated with Bi has no energy difference in the initial and final state with
random alloy Figure 9. 15. Number of Si-Si and Si-Ge bonds between Ge/Si layers and Si
substrate are the same for initial and final state with GeSij.x random alloy because of the
number of Si and Ge atoms are conserved at the interface. Both considered above 1/8 parts of
the bonds can be neglected. The resulting intermixing energy £, of one Ge,Sijx monolayer
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on the Si substrate is 3/4 times less than intermixing energy in the bulk of the crystal, i.e. 2.4
= 21 meV/atom or 5.2 meV/atom for 50% GeSi random alloy. The mixing energy for the
layers with areas A4p; and A,; in the model shown in Figure 9. 7 is:

E} =NQ,, (1-x)x, where N = (Ns; +Ng) = (Apir + A)*0.312x10%" atom/m’ ,

using (1.5) we can write (1-x) = Ai(Apis + As) and put it into equation for £ /1 then

mix 2

o atom

E}=0.157Tx10" ——Q , Agx,
m
. 1.18
E =217 Na— (1.18)
atom

The mixing energy increases with x. From (1.18) and (1.5) it follows that mixing energy of
the system increases with increase of pit size Ap;. This result is based on the model with
random distribution of Si and Ge atoms in the height of GeSi layer Figure 9. 15 (a). The
segregation of Ge atoms on top of the layer Figure 9. 15 (b) will decrease the mixing energy.
The Bi termination reduces the surface energy and can reduce segregation energy.
Experimental measurements in [24] show that Ge does not segregate at Bi terminated Si(111)
surface. Therefore, in the following we use the model with random distribution of Si and Ge
atoms in the height of GeSi layer Figure 9. 15 (a).

| Ge J i

Substrate

D Initial D
(b) Ge segregates on top

=]]
Layer o ol oL ol ol 0 Ge,Sii.,

Layer .
Substrate Substrate Si

Final

Figure 9. 15. The energy of compound Ge,Si; layer depend on interior combination of bonds, due to that
we lose some part of the intermixing energy in the interface regions. There are presented two cases: a)
randomly distributed Ge atoms in vertical direction and b) complete segregation of the Ge atoms on top of
the layer.
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e Energy of step formation

The step free energy of the pits can be calculated from the step free energy per unit
length y which is generally a function p(@) of the in plane step orientation angle . In the
following under step energy the step free energy will be assumed. The energy U of an
arbitrary step configuration y(x) can be obtained by integrating along the step,

U = [ds-7(0(s)),

where s denotes the length along the step. In the case of round pits Figure 9. 16 the step
energy can be expressed as:
U =2mRy, (1.19)

§7/(s)ds ~ §7/(S)ds
§ds B 27R

where y = is average step energy per unit length.

Ge

n

Figure 9. 16. The pit of round shape.

The step energy is associated with increase of the surface area induced by shift a part of a
crystal on an atomic distance perpendicular to the surface. That shift produces additional
surface area proportional to the height of step. The step energy is related to the surface energy
as daydf, where o — is the surface energy as a function of angle of the surface orientation 6.
Reconstructed surface has a lower surface energy and usually lower step energy formation.
The energy values for different step orientations on the Si(111) surface are given in table
Table 2.

Table 2
Structure Step free energy reference
(1x1) terrace [ 1 12] Step 0.240 e/ 4. (T = 0K) [152,153]
(1x1) terrace [112] Step 0.202 eV /4. (T = 0K) [152,153]
(1x1) terrace [ 101] Step 0324 e/ 4, (T = 0K) [152, 153]

(7x7) terrace [ 1 12] and [112 ] Steps [13,154,153]

0.0356 + 0.0052 eV / A
0.14 eV/atom (T=700°C)
0.0935 eV / A (T =2?)

0.1104 eV / A (T =2?)

[155]
[155]

(1x1)-As terrace [112 ] Step, Si replaced by As

(1x1)-As terrace [ 1 12] Step, Si replaced by
As
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The highest step energies was observed for unreconstructed - 1x1 Si(111) surfaces. The
lowest energy of step formation in Table 2 corresponds to the reconstructed surface (0.0356

eV / 4 ). For Bi passivated Si(111) surface the step energy formation can be even lower than
for Si(111)-7x7 - 0.0356 eV/;l due to lower Si(111)V3xV3-Bi surface energy. The step

energy for As passivated surface is 0.0935 eV / 4. Let’s take the value of 0.0356 eV / A for
the Si(111)-7x7 reconstructed surface to estimate upper limit of average energy of step
formation in Ge layer on Si(111)V3xV3-Bi surface.

The average step energy 7 depends on curvature of the step and also includes energy of

relaxation near step edges of strained Ge layer. Elastic relaxation energy at step edges will be
considered in the following.

e Elastic relaxation energy at step edges

The strained Ge layer can relax at step edges as shown on Figure 9. 17.

(@) A~

Figure 9. 17. Geometry for computing the elastic relaxation step energy (a); Displacement field of the
force 4 achieve maximum value u at the step edge (b). The two cases are shown, (b) - relaxation at open
step edge and (c) - relaxation at interface boundary between Ge and Si layers.
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This elastic relaxation energy at step edge can be found with expression:

3 1.20
E(F) == [ A3,2) w20 (1.20)

where u is the displacement field associated with force 4. The force 4 is produced by one
Si/Ge monolayer with composition of x = Ags/(Asi + Ag,) and can be written as:

A=kggyx, (1.21)

Displacement field of localized force F = Fyd(x)d(y)d(z) has been given by Landau and
Lifshitz ['°°], at z =0 in plane (x,y) of the surface that is:

I 1.22

u (ry) =L (1—v>Fx+ﬁ2(xFr+yFy)}, (1-22)
’ 7y r| r ’

1+v 1] v
u,(x,y)=——1-v)F, +—=(xF_+yF )|,
,(x,) g r_( ), r2( . yy)}

l+v 1[1-2v
u (x,y)=——-— xF +yF )],
(%) | 2r( . yy)}

where v is Poisson’s ratio, ¥ is Young’s modulus and r is the distance from the force location.
The arbitrary force of magnitude f{x,y,z), can be presented as the linear combination of the
forces F = Fpd(x1)d(y1)d(z1) with amplitudes Fy = f(x1,y1,21), i.€:

S 2,2) = [ £ 0,2)8(x=x)3(y = y)8(z = 2, dy,dz,

The u;i(x,y) is solution of a linear differential equation for the force F = Fyd(x)o(y)d(z), then
solution for arbitrary force f{x,y,z) can be found as linear combinations of solutions of the
force F = Fyd(x1)0(y1)o(z1), 1.¢.:

(1.23)

u;(x,y,z) = I_[Gik(x_xlvy_ylﬂz_Zl)fk(xlﬂyl’zl)dxldyldzl ) (1.24)

Equations (1.22) present sums: ui(x,y,z) = Gix + Gj, + Gj;. A(x) force of magnitude 4 in Figure
9. 17 (b) is directed normal to the boundary (or step edge) which is parallel to y direction, the
force has only x component and can be expressed as A(x, y,z) = 10(x)d(z). According to
(1.24) displacement field u,(x,y) can be found as:

(1.25)

u (x,3,z) = _””x(x_xlay_ynz —2))A6(x,)8(z, )dx,dy,dz, = jux(x7y_ylaz)Myl .

Solution of(1.25) at x = 0, z = 0 for a straight step edge segment of length L, which coincides

with y axis, can be done as the following:
1-v?

L
1
1, (0,7.0) =~ z£|y_yl|dyl,

(1.26)

According to (1.20) the energy of relaxation per unit length is:
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1 (1.27)

o == .5, DA sz = 2, 0,900,

Solution of (1.27) with force A(x,y,z)=A0(x)d(z) was found in [134] (see Appendix E).
The singularity problem at » = (0, y,0) was resolved in [134] by taking lower limit of the

integration equal to the interatomic distance a . Another way to solve the singularity problem
is the following. The singularity problem at » = (0, y,0) does not exist for dispersed forces.

The force homogeneously distributed in cylinder around r = (0, y,0) Figure 9. 18 (a) is one

of the possible approximation of a dispersed force. While the integration of the dispersed
force Figure 9. 18 (a) is complicated, the displacement field at » = (x, y,0), for x=0 and

x>>a will be calculated with the force located along y axis on cylinder radius of

a=+z. +x; Figure9.18 (b), F.(x,y,z) :%5(«/22 +x° —a), J.J.Fx(x,z)dxdz =A . The
ma

subsequent integration of the displacement field in (1.20) will be taken, for simplicity, with
the force (1.27) localized at » = (0, »,0), A(x,y,z)=A10(x)d(z).

a) 7 b) A 7
X /T X;
U/
A A F
F Ad(x*a)
2ma
NTIR?
X |:> X
B - B

Figure 9. 18. The force distributions. Distribution of the force can be approximated with homogeneous
distribution in the cylinder a). Next approximation is a delta function on cylinder radius of a b).

The original solution for u;(x,y,z) in [134] still can be simplified with relations (1.22) because
the force F (x,y,z) is distributed on cylinder with small size: 0 <z <a, 0 <x <a , where
size a is too small in comparison with length of the steps L, a/L — 0. With x component of
the force F_(x,y,z) equations (1.22) takes the form:
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1 1]
U, (%,9,2) = ——=| (1= V)F, + 2 (xF, +yFy)},
’ 7y r| r
1+v 1] vy
uy(xiy’Z):F;_(l_V)Fy+r_2(XFx+yFy)}>
l+v1[1-2v
u (x,y,z)=——-— xF. +yF
(%, 3,2) ”Yr_zr( yy)}

4

1 il
ur(x,y,z)zi— (l—v)Fx+ﬁszx},
’ 7y r| r
u Gy = AW g
y Y v rlrr

1+v 1[1-2v
u (x,y,z)=——-— xF,
:(%:.2) 7y r| 2r }

The force with only x component is present, then for calculation of the energy (1.20) only x
component of the displacement field is needed. After integration of u_(x,y,z) (1.22) with the

force F (x,y) = %5(\/ 2% +x* —a) we obtain:
byt

4

1-v? 6t A 1
u ey )= ][5 80z 47 -a) ey +
2y 3 2m Ja=x) +(z-z) +(r-y)’

1+v e A v(x—x,)>
+7“‘J‘%5(w/zf +x; —a) (xr=x) - dx,dz,dy,
0 (x_x1)2+(Z_Zl)2+(y_y1)2)5

To calculate the energy (1.27) the displacement field at the surface, i.e. at z = 0 is required.
After transition to the integration in polar coordinates x; = acosa, z; = asina the displacement
field takes the form:

a



126

N 2 L2x
u, (e, 0,0) = = [ [ 1 a-da-dy, +
Y g 2m \/(x—acosoc)2 +asin’a+(y-y,)’°

ca-do-dy, =

3

vj-zf A v(x—acosa)’
002 ((x—acosa)2+asin2a+(y—y1)2)5

-da-dy, +

=l :
27[\/x +a’—2xacosa+(y— yl)

1+v °F A v(x—acosa
+—=[ [+ ( ) ~da-dy,

x*+a’ —2xacosa+(y—y1)2)5

4 1.28
! -do-dy, + ( )

l_ 2 L
u,(x,,0) =
I!. \/x +a’ —2xacosa+(y—y,)’

L2x 4

1+v A v(x—acosa
” ( ) -da-dy,

*+a’-2xacosa+(y-y,)’ )7

For the force applied at x = 0 the integral (1. 28) will be simplified to:

1 V2 L2rx
1, (0,) = Jj —-da-dy, +
Y 0027 \Jak + (y-,)
1+v i f A v-a’cosia
i 7Y o'([g 2 2 i.da.dyl: ,
(a +(y=») )2
2 L L 2
:1 ;ZI : 1 2'dy1+1+Yv§ vV-a 3-dy1
EA G T TR
Finally at x = 0 we have:
2L L 2 (1.29)
u(O,y)zl 1% P 1 -dy+l+vi v-a dy..
x Y 5 5 1 Y 3 1
a 04 a +(y_J/1) g (a +(y—y1) )7
“ NG /
~ ~
I I

The second part I of the relation is less than the first 7; . The maximal value of I /I; relation
can be estimated:
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1
1
L 2 .[ 3.dt1
1+v A4 v-a 0/ 2 5
Y 2 s Sl
A AR R ) ) S A A L o)
I, 1-v? ¢ 1 2(1-v) I? 1

dt,

R

~
S C—y
QI\)

+
—_
<

|
=~
~

&}

.

S S———

2
a
1/F+(t—t1)2

1
1 1-2¢
-dt -
__ A ﬁ.!(f—tlb __ v & ra-n?
o . 201 - . 2 _
20-v) L J L 20-vy > f1-

Teh
o(t_t1) t
1-2¢
I v a’ t*(1-1)° B
I_2=2(1—v)?. - , where t = y/L
! In——
t

. 2
The upper relation z—t)z
t"(1—1¢

relation lnl;t the same limit points are present — 0,7 — 1 and £=0.5.
t
1-2¢
t*(1-1)° 1 1
Lim,_,, a0 el 20
1 -t t© (-1
t
1-2t
2 1_ 2
Limt—>05 ! ( t)
‘ -t
In—
t

Then we can estimate the relation I, /I; at limit points £ =y/L — 0 and £ = 0.5:

] 2 2 2
Limt—>0_2= i a_zL—2=018a—2,

I, 2(1-v)L vy y

] 2 2 2
Lim, 22— v a L a

= = —=0.18——,
1 2(-v) L” (L-y) (L-Y)

— oo att — 0, at# — 1 and equal to 0 at = 0.5, for the lower
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2 2 2

1
2 vy 4 8=1.4a—2—>0,becauseofcz—2—>0.

Ho.srz 2(1_‘/)7'

Lim

At (L-2a) >y > 2a we can neglect by I, which has the value less than 5% of the value I;, then
u_(a,y) can be simplified to:

1—p2 k& 1 (1.30)
1, (0,9)=——A[——= —dy,
Y Ga? + (v -p)

The displacement field (1. 38) at big distances x >> a can be approached with:

2L L 2 (1.31)
ux(x’y)zl . /,I’J. 5 1 2 dy1+1+v/1J. - 3 'dyla
o) O )
N\ NG _
~ ~
I I,

Relation (1. 41) for u_(x,y) atx =a is equal to relation (1. 29). Atx/L — 0, and at (L-2x) >y

> 2x integral I, has the value less than 5% of the value I; and can be neglected. The relations
for u,(x,y)and u_(x, y) can be simplified at x/L — O:

l+v ¢ viyv=y)x
u)’(xay): ﬂj (y yl) 3 dyl :|:t1 :h’t:%:|:

(e (-
:1+Vﬂij v(t—t)
7Y L

—dt; >0
0 2 2

X
(LZ +(t—t1)2j

L
uz(x’y)zl—i_v/lj- 2(1—21/))(? Z.dy1=|:1‘1=&,t=lj|=
27¥ o x"+(y—») L

L
_1+V/1£J' (1-2v)

oy LYy
0? +(t-t,)’

-dt, >0

Finally relation (1. 31) for u_(a,y) can be written as:

L2 L : N (1.32)
=y

u (x,y)=
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where x > a. Solution of (1.30) is (see Appendix C):

u, (%, ) v /11n|*/xz+(y—‘L)2+(y—L)| (1.33)
o G ‘ NI ‘

This relation works at x > a. At x <a equation (1.30) can be used. Solution of (1.30) is
relation (1.33) at x =a:

12 Ja+(y-L) +(y-L)| (1.34)
u, (0,y)=-2 Aln ;
2 ‘ Jai+y  +y

Figure 9. 19 shows an example of distribution of displacement field for x component induced
by the force with radius localization of a along the step segment length of L at x = 0. The
dependence was calculated for relation L/a = 100.

u,(0,y)

0 20 40 &0 &0 100 y

Figure 9. 19. The displacement field u (0, y) as a function of distance y along the step segment has a

maximum at the middle of the straight step segment y = L/2 . The size of localization of the force was
taken @ = 1 and length of step segment L = 100.
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To calculate relaxation energy we take displacement field (induced by the force

F (x,y)= %5(\/ z> +x* —a)) (1. 34) and integrate this displacement field with the force
a
of the same power A, A(x,y,z) = A5(x)d(z), then (1.27) takes the form:

=11—V ;szl Wa' + (1) + (- L)| (1.35)
T e

Integration of (1.35) by parts gives the next relation:

E

el

yf (y) (1.36)
Sy )

dy, where function f(y) is f(y)=+/1+»> + y, can be computed

[In(f Ny = yin(f () - [Z—=d

Integral type of '[y j: ((); )
y

as the following:

4dy [y =tana]=

f(y) y+ 1+y J1+y?
j sma 1+
cos’a  cosa

After transformation of integral (1.35) into appropriate form and after calculations (see
Appendix D) we obtain:

Ey=s L-v? 7‘2]1 [ar -1 + (- L)| (1.38)
e’ e [

2
a
1+ IJ{J :
2 2
- 21 L ( 1+(ﬁj ﬁ}

7Y a
L

This expression can be simplified at < 7 — 0, then the relaxation energy per unit length is:

E - 1.39
el _ ﬁ_)() :_,121 v (IHZ_L_I) ( )
L L 7Y a

This equation is valid for the situation of a single step, as shown in Figure 9. 17 (b). The
same solution for relaxation energy E, was found in [134], also see Appendix E.
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Figure 9. 20. Ge stripe width of w and length of L, L >>w.

In the case of a Ge stripe Figure 9. 20 the interaction of displacement fields between
parallel steps (Figure 9. 20) will be taken into account. Superposition method allows to sum
the displacement fields from both sides of the Ge stripe. To calculate energy of the stripe the

displacement fields at steps 1 and 2 will be calculated. The displacement field u (x) at step 1
(x = 0) is sum of the displacement fields of (1.33), displacement field induced with step 1 !
plus field induced with step 2 u:

u,(0) = u! (0,)+u>(0,). (1. 40)
The same algorithm for the displacement field u _(w) at step 2:

u (W) =u (w,y)+ui(w,y), (1. 41)
where ul?(—x,y)=ul?(x,y) and ul(x,y)=-u’(x+w,y)=u_(x,y). We assume that

amplitude of the 4 force does not depend on width of the stripe. Then substitution of (1. 40)
and (1. 41) into (1.27) gives the energies for steps 1 and 2 which depend on stripe width w:

B0 = =2 (] el @)+ @ )iy,

1
£ (00 =~ A ) () + o)l
The energy of stripe is sum E., + E’:

E3™ (w) :%4 | (ui(a,y)+u§(a,y))dy—§z [ el ) + 02 w3
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after transposition we obtain:

B () == 2 (o) + @ )My = 22 @)= 0m ) v -

= Afu, (v, y)dy =2 [u, (a,y)dy

E.
here the first integral ﬂju (x,y)dy - is an interaction energy L( *) . Width of the stripe is
much less than length %<< 1 (Figure 9. 20), therefore the relation (1.39) can be used. Then

interaction energy takes the form:

: 1.42
E(w) 2/121 2 (1 __1) (1.42)
E Es‘[rlpe
To write relation for %W) we put a =w in (1.39). Then the energy of relaxation ———— (w)
at edges of free standing Ge stripe width of w is:
Estripe 4,2 (143)
Ea70) o2V n 2L o ls v’ (ln——l)—
L 7Y w

— 2 ’
Y

7Y a

The relaxation energy per unit length does not depend on length of stripe at L >> w. Similar
logarithmic dependence on width for the striped structure was found in [157].

To calculate elastic energy of round pits of radius R the approximation with rectangular
shape (61) in [134] will be used. After replacement of s and ¢ in the (61) by 2R the elastic
energy takes the form:

1+v 1-v? /12[\/5 i 2_11 \/5+1]~ (1.44)

=8R—— A* -8R
7Y 7Y a 2 \/5—1

5

~8R1+—V/12(1 (1- v)(O 533+1n2—RD
Yy

a

Non symmetric case with Ge stripe attached to the Si step is shown in Figure 9. 21 (a).
The relaxation energy of the stripe with open Ge step edge at one side and with Si/Ge
interface at another side Figure 9. 21 (a) will be different from (1.43). An additional force
induced by one Si layer (from left) reduces displacement field at Si/Ge interface Figure 9. 21

(a). The same value of the force is induced by %a of the Si layer Figure 9. 21 (b). To take

into account the additional force radius of the force Figure 9. 18 (b) equal to 1+% = %a will

be used.
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Figure 9. 21. Ge stripe width of w and length of L >> w (a). Ge stripe borders with Si from left and has
open step edge at right side (a), the additional force induced by Si layer from left side can be approximated
with the force induced by % of the surface layer (b).

Interaction energy for Ge stripe with Si/Ge interface at both sides can be written as:

E. —y?
E_,p 1—-v (In 2L
L Yy 1

resulting relaxation energy at the edges for the Ge stripe with Si/Ge interfaces is:

Estripe 2 1,2 1.45
Ba _oplZ g2t o2V 28yl (1.43)
L 7Yy 1 Yy 3
w+—a —d
2 2
w+1a ’
i 1
Y S A
7Y 3
—a
2

These calculations were made with the same algorithm as for relation (1.43). Relaxation
energy for non symmetry case (Figure 9. 21 (a)) is average of the energies for free standing
Ge stripe (1.43) and for Ge stripe with Si/Ge interfaces (1. 45):
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(1.46)

1
. W w+—a
Estrtpe 4,2 ( ] 4,2
oo _ _ploviy, 2 o2y \EK .
L Y 3 22 7Y 3a
2

Relation (1.46) will be used for Ge stripes and relation (1.44) will be used for round pits in
Ge layer.Equations and numbers for the step energy 7 are placed in Table 3:

Table 3

i‘fll;)lznzergy formation on Si(111) surface from y=0.0356, eV / A

Young’s modulus for Si ((111) — plane) from [25] | ¥ = 16.9x10", N/m?

Poisson’s ratio for Si ((111) — plane) from [25] v=0.262
The force per unit length along the boundary of | 2= xx2.32, N/m
magnitude 4 from (1.21)

Energy of relaxation per unit length of pits radius | g2%& o
Rfrogni(l 44) P s P L’:O.0048—0.006lln2—R, eV/A
) 8R a
Energy of relaxation per unit length of Si/Ge EIre W .
stripe width of w from (1.46) [T = [_ 0.0121n 0-8;}62 ,eV/A

The expression for the step energy of round pit (1.19) can be written as sum of the step
energy formation and relaxation energy at the step edges (Table 3):

U =2k 7y + o | - - 2R (147
=27R| 7, +- 5 | = 27K 0.0356+0.0048 -0.00611n =" | =
,eV
= 0.0061(6.62 - 1n2—Rj2;zR
a

Pit formation is followed with formation of Ge (GeSi) stripe at outer Si steps. The sum energy
of the pit’s steps (1.44) plus relaxation energy in Ge stripe (1.46) at outer step edges can be
written as:

2R 1.48
U= 0.0061[6.62—1n—j27zR—[0.012ln0.82jx2L, eV (1.48)
- a A a J
F— A — E— Y ..
! pit’s step energy | ! relax. energy at outer steps
___________________________________ |

The sum energy gain (1.48) can achieve a negative value by means of relaxation energy at
pit’s steps and outer step edges. Formation of the pit’s steps can be energetically favorable
because the relaxation energy at the step edges can be larger than step formation energy (yy =

0.0356, eV / A). Figure 9. 22 shows energies for the pit’s step and for the relaxation energy
at outer steps. Relaxation energy per Ge atom at outer step edge (1.46) was divided by
number of Ge atoms per unit length of Ge stripe width of w, the energy dependence is shown
as a function of width w in Figure 9. 22 (a). The relaxation energy achieves a maximal value
about -7 meV/atom at width of Ge outer stripe about 1 nm Figure 9. 22 (a). The maximal
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value of pit’s step energy gain (yy=0.0356, eV / A) is about -0.025 meV/atom at pit radius of
300 nm Figure 9. 22 (b). Negative value of the pit’s step energy is achieved at pits radius of
100 nm. Experimentally observed pits have a radius about 1+15 nm. The sum energy gain
with relaxation at outer steps can provide pit radius much lower than 100 nm. The Si/GeSi
outer stripe Figure 9. 23 is very important since it gives the space for reduction of
displacement field from original Ge stripe. The space between original Ge stripe and outer Ge
stripe reduces interaction energy and increases negative energy gain.

(@ AE
eV/Ge atom
0.006
0.0047
0.0021
0 6 8 10 12 14 156 15 20
w, A
-0.002

2e-05

Se-05

Te-05-

Se-06

o 2000 3000 4000 000 E000

-5e-06 R y A

-1e-054

Figure 9. 22. (a) relaxation energy in Ge stripe per Ge atom moved away from the pits to the outside Ge
stripe width of w, (b) pit step energy per Ge atom moved away from the pits radius of R .
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Relaxation energy at outer sink steps (right part of the expression (1.48)) is proportional to
the length L of the outer steps. Length L can be increased with Si/Ge coverage, density of
Si/Ge islands and adatom diffusion length on the surface. Si/Ge deposition at low temperature
gives high density of Si/Ge islands. The following pit formation can be enhanced with
increase of temperature. High density of Ge islands and larger diffusion length at higher
temperature should enhance the pit formation and decrease the minimal radius of the pits. The
pits should also form more effectively in broad Ge layers since broad layer is less relaxed
(1.46).

To calculate the relaxation energy for the system shown in Figure 9. 23 the
displacement fields from every border must be taken into account. The important alternative
case is shown on Figure 9. 24. Final state Figure 9. 24 (b) is created by removing Ge stripe
width of w from the centre of the preexisting Ge layer width of wg, Figure 9. 24 (a). Minimal
radius of the pits can be taken equal to the minimal size w for geometry in Figure 9. 24 (b).
Energy gain between final Figure 9. 24 (b) and initial Figure 9. 24 (a) states can be written
as:

. w w w w. +w +w (149)
Eej;a—sztic 5 l _ V2 ln Gel + ln Ge2 + x2 ln Ge3 11'1 Gel Ge2 Ge3
— 22 a a a-x a ;

+ ln(f (Wy Wi s W1 s Wea s Woes ))

where function f'(w, wg,, W, , Ws.,,Wg,;3) contains result of combinations of the displacement
fields from every border (Figure 9. 24 (b))

S OV, Wi, Waets Weer s Woea) = (1.50)

w- W Wée (Wger + Weey + Wez T WHWg YW+ Wy, + Wi YWy, + Wiy + Weo3) ’

W+ W YW+ Waor Wy, + Wi JWey + Weo3 ) Wer + Woen + WF We ) Wey + Weez + W+ W)

Ge layer GeSi stripe
Si stripe

Figure 9. 23. Geometry of the system with pits.
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Ge layer
(a) Si stripe

Figure 9. 24. The initial (a) and final (b) state for geometry with free standing Si/Ge stripe.

Maximal energy gain per unit length is achieved at w — o, wy, — ©. If wge/a = wger/a =

f—i 2 i
Wees/a are big numbers (>>10), then —44% ~ 2 7 I-v (2 In Yee J This approximation
L M a
shows that relaxation energy gain per unit length increases with width of preexisting Ge
stripes and increase of Si stripe (spacer) between outer Ge stripe and preexisting Ge stripe.
3D dependence for the energy gain per atom of (1.49) is built in Figure 9. 25 with the
following approximations: wg.; = Wge2 = Wge3 = W = y; ws; = t. The relaxation energy achieves
a maximum -8.4 meV/Ge atom at width of y ~ 2 nm.
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-E,
eV/Ge atom
107

Figure 9. 25. The relaxation energy gain dependence (x = 1) per Ge atom for geometry shown in Figure 9.
24 with the following parameters: wWg,; = Wgez = Wge; = w =y and wg; = t.

The total step energy gain of the model Figure 9. 24 is shown in Figure 9. 26, the step

energy formation was taken 0.036 eV / A (Table 2). The maximal value of total energy gain
is about -0.5 meV/Ge atom (Figure 9. 26) at Ge concentration x = 1. This energy gain is
achieved at width y larger than 20 nm. The energy gain becomes positive at ymin > 15 nm. It
is smaller than 100 nm but still much higher than 1 nm. According to the data in Figure 9. 26
the minimal width of the Ge stripe will be about 3Xymyin = 45 nm. The model with relaxation
at outer step edges gives better agreement with experimental data, but the minimal size for the
pit formation is still larger than minimal pit size observed in the experiments ~1 nm. Better

agreement can be provided with the step energy formation lower than 0.036 e}/ A At step
free energy of 0.005 eV/;l (T =450°C) the maximal energy gain is equal -5.6 meV/Ge atom

(Figure 9. 25) and minimal size of Ge stripe is ~3 nm. The step free energy of 0.005 eV / 4
(~0.02eV/atom) at T = 450°C is so small (0.02eV/atom << k,T = 0.063e}") that temperature

0f' 450°C can be considered as a temperature near of step roughening transition temperature.
At x = 0.5 the total step energy gain is lower than elastic energy gain (1.13).

Eotusid™ = —(1-x)x -29 meV/Ge atom, where xs; = Asi/(Asi + Apit )
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eV/Ge atom
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Figure 9. 26. Total step energy gain dependence (x = 1) per atom for geometry shown in Figure 9. 24 with
fixed parameters wg.; = Wgez = Wge; = w =y and with wg; = t. Energy of the step formation was taken 36

meV/A.

Maximal value of Eggsid” (at x = 0.5) is 14.5 meV/Ge atom, this is much higher than the

maximal total step energy gain (atx = 0.5, yp=0.005 eV / 4) which is < 2 meV/Ge atom.

The mixing energies give the largest contribution for energy gain at x = 0.5. Atx =1 the
mixing energy is zero while the step edge relaxation energy (1.48) gives the largest
contribution which can achieve the value of 5 meV/atom.
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e Gibbs free energy — collecting all energy terms

Irreversible processes are followed by a change of quantity of heat AQ which is lower
than that change in equivalent of the entropy TAS. That can be written as:

Q _pd5
e~ di

dt dt dt

where E — internal energy, P — pressure, V' — volume, T — temperature, and ¢ - time. From
(1.51) at T = const and P = const —

d(E+PV-TS) _dG _,
dt dt ’

(1.52)

I.e. during irreversible process at fixed T and P the Gibbs free energy is decreased, G — min.
This general thermodynamics law for irreversible processes can be found in [ 158]. The Gibbs
free energy can be found as

G=E-TS (1.53)

where E is complete internal energy and S, is entropy of mixing. Entropy of mixing of two

components corresponds to the number of possibilities for an exchange of atoms A with
atoms B is [25]:

|
Smix = kB ln L
(N,IN,!

With Stirling’s approximation for large numbers /V>>1 one obtains

S, = =Nk, TxIn(x) + (1-x)In(l - x)], (1.54)
A
where N = (As,- + Ap,-t)' 0.312-10% Cll‘LG’l’ and x=—72"—_ With the following
m Apit + A,
approximation In(1-x) = —x, Inx = —(1-x), we obtain:
TS, =2Nk,T-x(1-x), (1.55)

or

TS,. =2k,T-A,x-0312-10%

atom

2
m
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Ace Ace-Apit AgitApit
Ge Ge Ge,Siyx
Initial Final
Ei Ef

Figure 9. 27. The model considers initial and final states with energies E; and Ey correspondingly. The
initial state presents Si and Ge layers of volume Ay and Ag, without pits. The final state presents Ge layer
of volume (A4g. — Api) With pit of area A4,; and Si-Ge layer which is homogenous composition of Ge of
volume A, and Si of volume Aj;.

The number of atoms of A4 and A4, involved into intermixing process defines entropy of

the system Figure 9. 27. Final and initial state of the system is considered as shown on
Figure 9. 27.

Complete internal energy of the system consist of three parts, E
and E

step+steprelax > E elastic

then the Gibbs free energy of the system can be present as:

mixing >

G/ =E ~TS (1.56)

step+steprelax + E elastic + mixing mix 2

Complete internal energy is sum of three parts of the internal energies (1.13), (1.18) and
(1.48) with entropy (1.55) this gives the Gibbs free energy of the system:

i Step energy: X

| energy formation + relaxation at the edges |

e o e e e e e e e e e e e e o e e o e e e e, e, —m—— 1

A
pit steps outer steps
- A ~ A ~
. 1.57
G’ =0.0061i 6.62—ln§ 27R — 0.01211r10.8K x’L ( )
A a A a ,

+ N(-0.78k 4,62 +Q,, —k,TX1-x)x
(g J
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2

where L — length of sink outer steps per one pit L = (6.4— -N)/w (A), where w — width
atom

2 2
of Si/Ge stripe (w > 3.14A), and — = N > 2R =264 L N=N, 4N, —is
A’ R atom
6.4
atom

sum number of Si (Ag; ) and Ge (A,;) atoms. After calculations, the Gibbs free energy (1. 57)
can be written as:

Estep < —0.5+5.6 meV/atom (Figure 9. 26), at x = 1

_A
r Y
A . 1.58
G/ :—[(38.4/1 meVan.SKjlx—;7(R)£}xN+ (1.58)
atom a)w R
(— 33meV 5y meV o3 meV)a —x)xN
atom atom atom
— _J/
'
Gmix

The numbers are given at temperature of the system 450°C, step energy formation 5 + 36

meV | A, pits radius < 5 nm, Ge concentration x,, = 0.5. The entropy part in (1. 58) gives
the largest contribution at x,, = 0.5. Together with elastic and segregation energy it can be a

driving force for the pits formation.

The expression (1. 58) contains two different parts: the step edge relaxation part E,, and
mixing energy part G,,;. At x = 1 the mixing energy part is equal zero and only the step edge
relaxation energy can be a driving force. At x = (0.5 the mixing energy part is essential part of
the Gibbs free energy. Experiments show that Ge concentration x is usually about 0.5 Figure
9. 6 (b). Without the smallest energy part which is the step relaxation energy (£ step relax < 8.4
meV/atom Figure 9. 25) we obtain:

G/ ) (1. 59)
—=;/(R)—x64 A (33 e 103 =
atom atom atom atom

N
( (R) 64t IR PLLURTE: meV)(l—x)Jx

T atom Tatom T atom

Estep Eelast +mix  TSmix

The step energy part in (1. 59) is significant with the step energy formation 0.036 eV / A at
small radiuses R when relaxation at pits step edges is negligible. Then, with the step energy

formation 0.036 eV/;l (Table 2) one takes the form:
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G/l _ 460 A-meV N

A
(-12 meV_123 meV s
Ng, R atom

i

(1. 60)
atom” 7R* + A .

atom

For the following analysis a short notation of (1. 60) will be used:

4

i

R + A,

(1. 61)

mix T mix)

G’ (4, R) , . . .

— function of two system parameters (A4, R) is qualitatively shown on Figure
Ge

277R* + (E

9. 28. According to (1.52) the pits can form if the Gibbs free energy (1. 61) is negative, then:
mix TSmix )ASI'R + 2]7AS1' < 0 b

(1. 62)
'l Gf—i

1
}
1
1
|
|
1
\
\
\
1
\

ASimin
\ e
\
\ T T — T T~ — L
\\ ,// /\ _________
O ~ /’ )
Rmin\/

Figure 9. 28. Gibbs free energy of the system at different Ag; as a function of the pit’s radius R
(1. 61), qualitative behavior.

The equation can be solved if (E,, — TS, )" A —16z7° A >0, then
—2
> Lz = AT

(E - Smix)

mix

Si

(1. 63)

It means that the pits can form when amount of deposited Si per “diffusion area” is larger
than 40", Ag > A2™ The minimal radius of the pits can be found from (1. 62):
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R __(Emix _TSm[x)ASi 1_ 1_ 1672772
min 4xy (E, —TS, ) A |

mix

at A; = A2" the minimal radius of the pits is:

® — 4y (1. 64)
i (E - TSmix) .

mix

This is a minimal size of the pits which can be estimated with the step energy formation of
0.036 eV/A (Table 2) as:

—47 4240 (1. 65)

-78,.) 135

74.

min ( E

mix

The minimal size of the pits can be 50% decreased with increase of A, (Figure 9. 29).

— 47

X
(E - TSmix)

mix

0.91

0.81

0.61

S

1677°
_TSmi)c)2

0.4 15 p) 25 3 35 X
(E

mix

Figure 9. 29. Critical pit size R,;, as a function of Si coverage Ag; per area per one pit.

The Si deposition is required to induce the pit formation since the Gibbs free energy (1. 61)
can achieve a negative value when amount of deposited Si per pit is larger than 43" (1. 63).
Another important condition for the pit formation is minimal size of the pits which is ranged
from 0.35 to 0.7 nm. (1. 65), (Figure 9. 29).

More detailed description can be done in term of chemical potential with continuum
model in Figure 9. 30 which considers behavior of the system during Si deposition.
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Ace Asi Age-AAi AAsi+AA
Ge Ge
4 t l P
Apit Apit"'A Apit
ARpit
E E+AE

Figure 9. 30. The continuum model considers change of the system energy AE corresponding to the
change of pit area Ad,; (ANg,) with Si area Adg; (ANs;).

Now composition x at step edge is a function of time, then change of the Gibbs free energy
for the model shown in Figure 9. 30 can be written as:

Ad,
~TS, )———5  27RAR =

AG =y47AR + (E
27RAR + A4

b

AN, y
mix _TSmix) 2 A]\/vGe = 21+(Emix _TSmlx)L A]\/vGe
AN, + AN, R n+1

AA .
pir _ 27RAR X , (x= L). Change of the Gibbs free energy per Ge atom
AAq A4 I-x 1+7

AN, is change of chemical Ay, potential when Ge atom moves from the pit to the outer

AN
=2y "G L (E
— (

here 7 =

step edge:

7 1 (1. 66)
A =2=+(E_—-TS )—,
luGe R ( mix mu)n+1

The pits can grow if the difference of chemical potential is lower zero, Au < 0:

) )L<O_)R>_M
" 77+1 (E _TSmix)

The minimal or critical size of the pits R, can be determined at Ay =0:

2L (B, -TS
R mix

___2y(n+)

. (E _TSmix).

mix
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Critical size of the pits R, depends on the ratio 5 = 27RAR , at =0 the critical pit size is
Si
minimal:
R _35h (1.6
(Emix - TSmix)

At =0 the chemical potential (1. 66) takes the simple form which is qualitatively the same
for the 2D islands:

(1. 68)

1._
AﬂGe:E2y+(E _Tsz'x)'

mix

This is interesting result since thermodynamics of the pits growth (nucleation) at 7 = 0 can be
the same like for growth and nucleation of 2D islands. Probably the pits could coalescence
and form big trenches along Si step edges. The meaning of the critical pit size (1. 67) can be
also the same like for critical 2D island size. The pits were not observed in Ge stripes with
width lower than =2--4 nm, this can be explained by critical pit size. The pits can grow
further if those have a size larger than critical pit size, at lower size the pits are not stable and
will disappear.

Behavior of the system can be described as reaction of the system on addition particle
which is Si atom in our case, therefore, to study behavior of our system we rewrite the
chemical potential for Ge atoms (1. 66) into chemical potential for Si atoms:

27 1. 69
luSi(lD)z 777 + (Emix _TSmix) 77 2 ( )
R n+1

We assume that chemical potential of the system Figure 9. 30 is capable to reach the
minimum, i.e., in frame of our model, every small portion of Si atoms can intermix with Ge
atoms with optimal ratio 7 giving local energy minimum (1. 69) of the system. Absolute

energy minimum of the system is not achieved due to kinetic limitations, Si and Ge atoms are
able to intermix in desired proportion until those don’t blocked at the step edges with the next
atoms incorporating into the step edges. The chemical potential u(77) as a function of ratio

_ 27RAR Opts;

reaches the minimum, when — =(, then:
Adg op
aIuSi :z+(Emix_TSmix)_(Emix_TSmix)nzo N (170)
o R n+1 (7 +1)° ’

2—7/772 +47’_"7+ 2—7/+(E,m.x -7S,.)|=0
R R R
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(E,. —TS, )R

2y

mix

Solution of equation (1. 70) is: p=-1+ \/— . Since 7 is positive during pit

growth (AR >0, A4, >0), then:

R | (1.71)
n= R_c_ >

OR
27 . 27RAR 2R~
where R, =—————— . The ratio n = can be expressed as 57 = —9L | where
’ (EmLx - TSmix) AASi aASi
ot
Ay . : 0Aj, . . .
—2L is proportional to the Si flux: 5 L = A,F, here A, - is area per one pit. Then equation
t
(1. 71) takes the form:
27R OR _ £_1 (1.72)
AF ot R,
Solution of differential equation (1. 72) (see Appendix F) is:
A t—t, R 47R’ (1.73)
ln|z—1|+—+—+z=—,where z=_[—,C= -~
32 C R, A F
14 —
xR = # =0.35nm
‘ (Emix - TSmix)
-4
-3
€
£
-2 D:“
-1
-0.35

t, (sec)

Figure 9. 31. Pit radius as a function of time during Si deposition was calculated for critical pit

47R’

size of R,=0.35nmand C = =2.5.

0
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The radius dependence on time is shown in Figure 9. 31. The dependence was built up at

the following conditions: R(t=0)=1.01-R,, C=2.5, R (y = 0.036eV/;1) =035nm, T =
450°C. The pits grown at substrate temperature of 7' = 450°C, Si deposition rate of Fg; =
0.0015 ML/sec, and deposition time of 150 sec (2.5 min) are shown in Figure 9. 32. Average
pit radius is about 5 nm (maximal ~10 nm), pit density is about np; = 2.6x10” nm™. Average

area per pit is equal 4% :L:38OO nm’ (from the experimental data of Figure 9. 32).
pit

4R’

From condition C = =25 (Figure 9. 31) average area per pit is equal

0

Y 47R, 12.6-0.35-0.35
LY 2.5.0.0015

4nR’

= 412nm°, this is 9 times lower than A =3800nm’. From

relation C = =2.5 and A4;" =3800 nm’ the critical pit size and step energy formation

0

can be estimated as R, (y = 0.108eV/;1) =1.05nm and y = 0.108¢V / 4 correspondingly. The

step energy formation of 7 =0.108eV /A is ~3 times higher than 0.036e}/ 4. The step
energy about 0.0935-+-0.1104 eV/A was calculated Ab - initio for As-covered Si(111)-1x1
surface in [155] (also see Table 2). Step energy formation can be also high for the pits radius
of ~1 nm due to increase of the step energy with decrease of radius of step curvature.

Figure 9. 32. The pits were formed during deposition of 0.22 ML of Si for 2.5 min at 450°C.
Image size 400 nm [This experimental result was obtained by Dr. Jacek Brona].
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Temperature and flux dependence of the pit radius can be complicated since A4, = L
npit
(n,, =n,(T,Fg))in (1. 73)is also function of the temperature and Si flux.

The energy model gives qualitative description of the behavior of the system and gives

quantitative estimations for the step energy formation y =0.108¢V / A and for critical pit size

R.(7=0.108¢V / A)=1.05mm, (R.(7 =0.036eV/ A)=0.35nm). Predicted critical pit size
R, =1 nm is comparable with experimental data in Figure 9. 32, the minimal pit size was

experimentally observed (Figure 9. 32) about 12 nm.

The entropy has the largest contribution in Gibbs free energy (1. 59), 10 times larger than
sum of internal energies.

The mechanism of the pit formation in term of attachment — detachment events can be
explained as the following: Ge atoms detach from Ge step (pit step) and attach to the GeSi
outer steps due to stronger of Si type bonds than Ge type [128,129], Si also prefers to
incorporate into GeSi outer steps due to stronger Si type bonds than Ge type bonds. The pit
growth continues if the pit steps and outer step edges have a different GeSi composition and
as consequence different chemical potentials. To study kinetics of the pit formation several
experiments were made with the pits formed during annealing without Si deposition.
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e Pits formation during annealing after Si deposition

In the previous analysis it was shown that internal energy of the system is small in
comparison with entropy (1. 59). It is still not clear how the entropy can drive the pits growth.
To understand the kinetics and mechanisms of the pit formation a series of the experiments
without Si deposition were performed.

The pits shown in Figure 9. 33 were grown during annealing without Si deposition. The
first part of the experiment is preparation of the system of Ge and Si stripes which is shown in
left image of Figure 9. 33. The system was prepared by standard SME procedure, Ge was
deposited at 400°C during 15 min, then Si was deposited during 3 min., rate of Ge and Si
deposition was about 0.015 BL/min. At low temperature (400°C) kinetic processes are slow
while no pits were formed during Si deposition. Broad Ge stripe and thin outer Si rim was
formed as shown in left image Figure 9. 33. During annealing at 460°C, the pits (right image
of Figure 9. 33) were formed even more effectively than during Si deposition at 460°C.

Figure 9. 33. Left image - the system of broad Ge and thin Si stripe grown at 400°C without any pits. The right
image — the pits formed during annealing for 10 min at 460°C.

The observed pit formation is unexpected since the negative energy gain (1. 62) in the system
can be provided by Si deposition as it was shown in previous paragraph. During annealing at
high temperatures (460°C) Ge also goes from the pits to the outer Si step edges. Line profile
measurements in Figure 9. 34 showed that Si can be taken from the Si substrate: Ge
incorporation into outer step edges is followed with growth front intermixing! Line profile in
Figure 9. 34 shows that apparent height of Si/Ge stripe is 0.5 A lower than height of pure Ge
stripe Figure 9. 34. Si/Ge outer stripe has more than 50% of Si. After incorporation of Ge
into Si steps the Si step edges become Si/Ge step edges.
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Figure 9. 34. Cross sectional profile A-B at step edge. A - height difference between Ge and Si/Ge layer is about
0.5 A, that correspond more than 50% of Si. The pits were formed during annealing at 450°C for 10 min plus
500°C for 5 min.

The atoms at open step edges have a less neighbors than the atoms at the terrace, therefore the
atoms at open step edges have a lower activation energy for intermixing with underlying Si
atoms Figure 9. 35. Line profile of Figure 9. 34 shows that concentration of Si provided by
vertical intermixing in Ge layer is too small in comparison with concentration of Si provided
by growth front induced intermixing at the outer step edges.

The mass transport of Ge from the pits to the outer steps induces the step propagation for
the pit steps and for the outer steps. The step propagation speed v is different due to different
length of the pit’s steps [, and outer sink steps / , Figure 9. 36. Relation for the steps
propagation speed can be found from balance equation:

v .l =vl, (1.74)

pit” pit

where v,;; is the pit’s step propagation speed.



152
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Figure 9. 35. Experimental observed height difference of two type of intermixing process for three different
temperatures; (a) — vertical Ge intermixing with Si, height difference as function of annealing time; (b) — growth
front induced intermixing acting at step edges, height difference as function of step speed. According to reff.
[24].

At the nucleation stage the pits have much lower step length: / >/, — v, >v. Due to

difference of the steps propagation speeds (v, >v) the growth front induced intermixing

pit
induces different rates of the intermixing at the steps resulting into different compositions of
Si/Ge at the step edges of the pit’s steps and outer steps. Nucleation and growth of the pits is
driven by net effect, weak Ge-Ge bond is replaced by a stronger Si-Ge bond. During pit
formation the growth front induced intermixing generates more Si at sink steps and less Si at

pit’s steps due to different step speed propagation, v . >v.

pit
Since the pit formation occurs after annealing, we assume that the final state with pits
formed is a state close to local equilibrium.

Figure 9. 36. The length of the pit’s step shown by red colour and length of the sink steps are shown by light red
colour. The mass transport of Ge is schematically shown by blue arrows. The volume of Ge detached from the
pit is equal to the volume of Ge attached to the sink steps. The step speed propagation of pit v, is larger than
step speed propagation of sink steps due to sink step length lager than pit’s step length.
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+F +F

according with (1. 57) and with the model shown in Figure 9. 37. The step relaxation energy
I o . 2R

for the pits is the same like in (1. 57), i.e. equal to 0.0061%(6.62—ln—)2sz; the step
a

The energy gain of the system G/~ =E —T8S,,. can be written

step+steprelax elastic mixing

relaxation at outer step edges is the same like in (1. 57) , ie. equal to

—(0.012iln O.8K]x2L at x = 1 since the sum ratio of Ge per unit area in two upper layers
a

of outer GeSi stripe is: x + (1 - x) = 1 (Figure 9. 37). Width of outer GeSi stripe w can be
2
, where L — is length of outer steps per one pit, then relaxation energy at

written as w =

2
outer step edge takes the form: — [0.012%111 0.8 ”RL JL . Then step energy is:
a
2 (1.75)
E o iorrolar = 0.0061ﬂ 6.62—lnE 27R — 0.0IZian.S R L.
e A a A al

Ace-Apit AgitApit

Ge

NN S 1
S é
initial final
Ei Ef

Figure 9. 37. The model considers initial and final states with energies E; and Ey correspondingly. The initial
state presents Ge layers of volume A4g, without pits. The final state presents Ge layer of volume (4, — A4pi)) With
pit of area A4, and GeSi layer which is homogenous composition of Ge of volume xA,; with Si of volume A; =
(1 - x) A, in the first layer and Ge of volume (1 —x)A,; with Si of volume A,; = x A,; in the second layer.
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Elastic energy gain can be written as sum of elastic energy gains for the first and second
layers of outer GeSi stripe:

E e =(0.88k 62 (1= x)x + kg, 62 x(1 - x))% =188k, 2(1- x)x% ,

where N =N, + N =2N,,, because N, = N, Figure 9. 37. Then elastic energy can be
written as:

E

elastic

= 1.88k,,e2(1— x)xN,, . (1.76)

the interaction parameter in the layers can be lower than interaction parameter in the bulk

because of interfaces, Q,, ~ %Q ~ 25 meV/atom.
Complete internal energy is sum of three parts of the internal energies (1. 75), (1. 76) and
(1.18) at Q,, =25 meV/atom with entropy (1.55) this gives the Gibbs free energy of the

system. At temperature of the system 450°C, step energy formation 5 + 36 melV /A, pits
radius < 5 nm, Ge concentration x,, = 0.5 the Gibbs free energy of the system can be written

as:
Estep <=2 + +2 meV/atom
A —
~~  outer steps pit steps >
A
Ve N N
N . 2 (1.77)
G/ = —[(9.6 A-meV o.sﬁji R 2644 }NGE +
atom a)w R atom
(-17 meV 13 meV _ 63 meV)NGe
atom atom atom

[

Eelastic Emixing NS

Without the smallest energy part which is the step relaxation energy (Estep relax < 8.4
meV/atom Figure 9. 25) (1. 77) takes the form:

| 5 1.78
Gr :(;7(R)£6.4 A )NGG_4meV_63 meV)NGe, ( )
T R atom Tatom T atom
Estep ES”m TSmix

here the step energy formation y(R) = 0.036eV/;l, Eg.m — is sum of elastic and mixing

energy. E,, is mainly positive and can’t be a driving force for the pit formation, now only
entropy part can drive the pit formation by means of “Energy — Entropy cycle” process.
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The free energy contributions for going from the initial to the final state were estimated
and are shown in Table 4.

Table 4: Free energy contributions for pit formation

Eelastic -17 meV/Ge atom
Enix +13 meV/Ge atom
Mixing entropy -88 meV/Ge atom
Esiep.ret T Estep form -2 —2 meV/Ge atom
Eintbound (Ever) -3 meV/Ge atom

S, =[x =0.5]= 2N k,T[xIn(x) + (1 -x)In(l-x)]=

mix

meV meV

=-2N,, -63-
atom

[xIn(x) + (1 x)In(1 - x)] = ~88 Ne,

Geatom
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Appendix B:

Definitions:

the strain of Ge layer on Si(111) substrate &9 =0.04,
the strain of Bi layer on Si(111) substrate &Bi ,

the strain of Bi layer on Ge,Si;« layer (egi - £9X) ,
the strain of Bi + Ge,Si;x layer on Si(111) substrate (epx +90) ,

the strain of Ge,Si.x layer is modified by Bi layer by the value of 4, where

0 = (epi- &px) kpi / k',

0o = (cgi- €9) kpi/ k' , Oy correspond to 4 in the case of pure Ge layer whenx =1,
where k' = kg, + kg; and x = Api/( Api + As);

The combmmg parts in the next expressmns are colored
2
Eelastzc U= _Aplt k (80 + 60) + (ASt +Ap1t) k (£0x + 5) - Ast kBt ERi /k -

Eotasid™ =— Apic k' (60° + 28000 + 0¢°) + (Asi + Api) k' (e0°X° + 2e40x + 0°) — Ay kg €5/ k',

= Api K (s(f — &%) = K &’ (x— 1) Apie =K &/’ (~Asi/(Asi + Apid) Apis = — Asi X K &/, —
Eelasttc ASt X kl 80 + Aptt k 280(5 50) + ((ASl + Amt)x 52 Amt k 50 ) As1 kBt 8312/ kl

then:

Eousiid =— Asi X k' 5" + Apis K'264” (1-x) X5’/ k' + Apir k' (6°/x — 00°) — Asi kpi” e/ k',
plt(l-x) ASlx - .
Eousid™ == Asix k' &5° + 2&5” kpi” Asix + Api ' (5°/x = 00) — A ki’ egi’/ k', (1))

Api K' (6°/x — 50) A,,,, K (kgi/ k )2((83, — 2 ggi ggx + 80 P)/x — (e’ — 2 egi g0 + &6°) ,
Apit K (0°/x = 07) = (e (Ix = D) + &/°(x-1)) Apit ki”/ K,
put it 1nto expressmn for energy gam (1 ) then:
Eelastzc ( ASlx k80 +2£0 kBl ASlx)+ (831 (I/x 1)+ &0 (x'l))Aptt kBl /k ASI kBt 8312/ kl
N

Eelastzc T=_ (kGe kBt)80 AStx +Apzt kBt EBi / kl - 802As,x kBt /k Asz sz &Bi / kl

Eelasttc - (kBl Z/kl + (kGe kBl))80 ASlx [uSIHg kl = kGe + kBi] = (kGe 2/ k) 80 As,‘x 5 and
ﬁnally elastic energy modified by Bi is:

| Eousid” =— (ke €5 Asi X) ke | K
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Appendix C:

i 1 Y= dt 1
/]1= = = —= = = — /l =
'o[\/x2 +(y=»)’ g H x j t} I 1+1° = tana] '[ L

da 1 ) ) dz 1 1
:_J.cosa :_Il—sinz ad(sma): [siner = Z]:_J.l—z2 :_J(E-'_EJJZ:

BN DO O N (2 K S L O I e SR
I Y Py i R PO ooy s o R Y Foey

=D+ + -0 | oy |
(y-L)Y -x*+(-D"? |y -(x*+y?)’

B N (e e 2 O N SRR C O A SR et 3]
ey Sy

+1In
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Appendix D:

jm|a+o»L)+w L)

L
dy=|1
I rw— i
=aj1nc{ 1+(y—Lj +yL}
a a

-L
:{tl =2 3t zg} :a.[[lna+ln‘1/1+t12 +1,

a

L
q/az Jr(y—L)2 +(y—L)‘dy—J.lnq/a2 +y2 +y‘dy =
0

(5t 2 240

jdt1 — aj(lna + ln‘dl +1 +t,

)i -

=[from (1.46) and (1.47)]—

—»Umuomw=ymuum [ O - ymwuwﬂ+ﬂ—w+yﬂ=

:tlalna+tlaln(1/1+t12 +zl)—¢11/1+z1 —(tzalna+t2aln(1/1+t22 +12)—a1/1+t22)=

2 2 2
a 1+(y—L) +ay_L‘—a 1+(y—Lj — yInja 1+[lj +a1
a a ‘ a

a a
2
+a 1+(1} =
a
L

‘(y—L)ln[q/az +(y—L)2 +(y—L))—\/a2 +(y—L)2 —yln(\/a2 +y° +y)+w/a2 +y° )

=(y-L)In +

2 2 2
I At +2(\/a2+L2 —a):2L In———— |+ 1+(£] NE
Va> + L +L Na> + L +L L) L

4 :
=2 In L +[ 1+[£) -
a 2 L
1+ 1+(j
L

] - E - o} - —2L(ln2—L—1)

N~
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Appendix E:
The solution for the energy with localized force F = 10(x)d(y)d(z) was presented in [134]:
(el)
By == Ju, (60, DAS )iz =~ 2, 0. 1)y
The change of elastic energy as function of L is:
(e2)
dE, d | 1§ L
— & =—|-=1 0,y)d /1 d d
1. 1-v? 1- V d 1
=——1 j A j —dy, ||dy =
27y |- y| A A A
— 2 L
__Lploy j ! dy+j dy |=-2 1= v’ jldyz
20 A =17 i -y Ly
4,2
L
7Y a
Equation (e2) can be integrated directly by (d1) to give £, :
4,2
E,=-1 1—"L(ln£ - 1] +e,(a),
7Y a
Then the elastic energy per unit length is:
(e3)

E _ 2
_61:_/121 v (ln£_1j+8"l—(a)’
L Yy a L

The constant of integration, &,(a), depends on the value of @ and on how cutoff is

implemented [134].

The lower limit a of the integral in (e2) defined by interatomic distance. The energy of
relaxation per unit length for infinite step length at L— oo have unlimited results, this is
correct for the layer with unlimited width.
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Appendix F:
Equation 2R OR _ IR _ 1 can be written as:
A F ot R.
C~z3%=z—1, (f1)
ot
R 47R’ . : . :
where z = = C= y ¢, Solution of equation (f1) can be found by integration:
c 0
C| 2z _ [ar. (2)
~_
z"dz .
Integral type of I " can be found as the following:
7

J‘anz =J'ZH (z-D(z+1)dz +J'Z"_2d2 _ z"! +J~Z"_4(Z—1)(Z+ )dz +J-z"‘4dz B

z—1 z—1 z—1 n n-—1 z—1 -1

n Zn—l n—k Z2

+...+ +..+—+2z+
n n-—1 n—=k

0, if n—even number

ln|z -1

, if n—odd number
After integration (f2) takes the form:

3 2
C[ln|z—1|+%+%+z}=t—to. (f3)
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