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Abstract

The three-dimensional structure of molecules determines if effects like steric hindrance or mul-
tiple contact points upon a molecular contact occur. These effects are especially important
for molecules with several strongly interacting functional groups, since contacts between such
groups have a strong influence on the behavior of liquid systems. The three-dimensional struc-
ture of molecules also needs to be considered if stereoisomers are to be distinguished. Bio-based
molecules often have several strongly interacting functional groups and show enantiomerism.
Because of the gradual shift towards greater use of renewable resources in the chemical industry,
the consideration of the molecular geometry in GE-models will become increasingly important.
However, for all state-of-the-art GE-models, assumptions are made that lead to the loss of infor-
mation about the three-dimensional molecular structure. Therefore, in this work a new model is
derived that does not need such assumptions.

The new model MOQUAC described in this thesis is based on a quasi-chemical approach. For
this model the orientation of molecules upon a molecular contact is considered, which enables
consideration of the three-dimensional structure of molecules. By comparison to results from
lattice simulations, it is shown that MOQUAC can describe systems with coupled interactions.
Additionally, a model to predictively describe the interaction energy between real molecules as
a function of their orientation is derived. It is shown that MOQUAC can be used together with
this interaction-energy model to predict the behavior of systems of real components.

In addition to a new expression for the residual contribution to the Gibbs energy, MOQUAC
consists of a physically-founded improvement of the UNIQUAC combinatorial term. For the
combinatorial contribution, a standard segment is used to determine the structural parameters r
and ¢. It is generally assumed that the choice of the standard segment and the influence of the
absolute value of g are negligible. The standard segment area, however, does not cancel out in the
model equation and is therefore a model parameter. The improvement of the combinatorial term
consists of a fit of the size of the standard segment to carefully selected experimental data. It is
shown that the new standard segment significantly improves the performance of the UNIQUAC
combinatorial term and that the physically founded improved model performs at least as well as
empirical modifications of the original term.
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Kurzfassung

Die dreidimensionale Molekiilstruktur bestimmt ob Effekte wie sterische Hinderungen oder
gekoppelte Wechselwirkungen bei einem Molekiilkontakt vorkommen. Diese Effekte sind ins-
besondere wichtig fiir Molekiile mit verschiedenen stark wechselwirkenden funktionellen Grup-
pen, weil Kontakte zwischen solchen Gruppen eine starke Auswirkung auf das Verhalten von
fliissigen Systemen haben. Die dreidimensionale Molekiilstruktur muss auch zur Unterscheidung
von Stereoisomeren beriicksichtigt werden. Biobasierte Molekiile haben hédufig verschiedene
stark wechselwirkende funktionelle Gruppen und kommen als Enantiomeren vor. Wegen des
zu erwartenden Rohstoffwandels hin zu nachwachsenden Rohstoffen in der chemischen Indus-
trie wird die Beriicksichtigung der Molekiilstruktur in GF-Modelle zunehmend an Bedeutung
gewinnen. Jedoch werden derzeit fiir alle GE-Modelle Annahmen gemacht, die zum Verlust der
Information iiber die dreidimensionale Molekiilstruktur fiihren. Deshalb wird in dieser Arbeit
ein Modell hergeleitet, welches ohne solche Annahmen auskommit.

Das neue Modell MOQUAC, welches in dieser Dissertation beschrieben wird, basiert auf
einem quasichemischen Ansatz. Fiir das Modell wird die Ausrichtung eines Molekiils beim
Molekiilkontakt beriicksichtigt, was es ermoglicht, die dreidimensionale Molekiilstruktur zu
beriicksichtigen. Durch einen Vergleich mit Ergebnissen aus einer Gittersimulation wird gezeigt,
dass MOQUAC Systeme mit gekoppelten Wechselwirkungen beschreiben kann. Zusitzlich
wird ein Modell hergeleitet, welches pradiktiv die Wechselwirkungsenergie zwischen realen
Molekiilen in Abhédngigkeit von ihrer Ausrichtung beschreiben kann. Es wird gezeigt, dass MO-
QUAC zusammen mit dem Wechselwirkungsenergiemodell zur Vorhersage des Verhaltens von
Stoffsystemen aus realen Komponenten angewendet werden kann.

Zusitzlich zu einem neuen Ausdruck fiir den residuellen Beitrag zur freien Enthalpie besteht
MOQUAC aus einer physikalisch fundierten Verbesserung des kombinatorischen Terms des
UNIQUAC-Modells. Fiir den kombinatorischen Beitrag wird ein Standardsegment zur Bestim-
mung der strukturellen Parameter » und g benutzt. Es wird allgemein angenommen, dass die
Wahl des Standardsegmentes und der Einfluss des absoluten Wertes von g vernachléssigbar sind.
Die Oberfliache des Standardsegmentes jedoch kiirzt sich nicht aus der Modellgleichung heraus
und ist deshalb ein Modellparameter. Die Verbesserung des kombinatorischen Terms besteht aus
einer Anpassung der GroBe des Standardsegmentes an sorgfiltig ausgewéhlte experimentelle
Daten. Es wird gezeigt, dass das neue Standardsegment die Leistung des UNIQUAC kombi-
natorischen Term signifikant verbessert und dass das physikalisch fundiert verbesserte Mod-
ell mindestens genauso leistungsfihig wie die empirischen Modifikationen des urspriinglichen
Terms ist.
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1 Introduction

For almost every product of the chemical industry, specifications concerning purity and maxi-
mal allowed concentrations of contaminants are defined. To reach these specifications, thermal
separation processes such as crystallization, absorption, distillation or liquid-liquid extraction
are normally applied in downstream processes. According to Gmehling [[1], these processes
can account for up to 80 % of the required investment costs of a chemical process. Distillation
processes in particular can be very energy intensive and often account for the majority of the pro-
cess’ energy demand. Klemm and Emig [2] estimate that energy costs make up for 15 % of the
total production cost of chemical products. Consequently, an exact design and the determination
of optimal operating conditions for thermal separation processes are of great importance.

Modeling of the excess Gibbs energy, G, allows description of the activity of components
in liquid mixtures. These activities are required in many fields of chemical engineering such
as description of vapor-liquid and liquid-liquid equilibria. Phase equilibria are needed for the
design and optimization of various thermal separation processes. Several GF-models are avail-
able nowadays, of which the most relevant models for the chemical industry are described in
chapter 2l Many of these models require experimental data to determine their parameters for the
description of a specific system. Only few models are capable of a purely predictive description
of systems. A predictive description is required if no adequate experimental data of the system
under consideration are available, as is often the case in the phase of conceptual process design.

All state-of-the-art GE-models have in common that they were designed to serve in a chem-
ical industry that is based upon crude oil. Many substances derived from crude oil only have
a small number of strongly interacting functional groups. A molecule with several strongly in-
teracting functional groups is challenging to model because the three-dimensional structure of
the molecule needs to be taken into account. It is the structure that determines, for example,
whether multiple contact points between strongly interacting groups upon a molecular contact
occur. Such contacts with multiple contact points typically have high interaction energies and
can therefore significantly influence the behavior of a system. For example, in non hydrogen-
bonding solvents and at low concentrations, acetic acid forms cyclic dimers that are characterized
by two simultaneously occurring hydrogen bonds [3l].

The three-dimensional molecular structure also needs to be taken into account to describe
effects like steric hindrance or to enable a model to distinguish between enantiomers. Typical
bio-based molecules in particular often shown enantiomerism and have several strongly inter-
acting functional groups, for example, lactic acid and phenylalanine, which are shown in Fig.
[[.1] Because of the limited availability of crude oil and an increasing awareness of the need
for sustainable production, it is to be expected that the chemical industry will face a shift to-
wards greater use of renewable resources. With this change in raw materials it will become more
important for GE-models to take molecular structure into account. However, as demonstrates
chapter no state-of-the-art GF-model is able to adequately account for the three-dimensional
molecular structure.

The objective of this work is to improve the predictive modeling of the excess Gibbs energy
by taking account of the full three-dimensional structure of molecules. To do this, an existing
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(a) r-lactic acid (b) r-phenylalanine

Figure 1.1: Examples of bio-based molecules.

model for the combinatorial contribution to GF will be improved and a new model for the residual
contribution to GF will be derived. The combinatorial contribution to G* describes size and shape
effects and the residual contribution to GF describes all energetic effects in liquid mixtures.

There are physically founded models that describe the combinatorial contribution to G¥, for
example, the Guggenheim-Staverman model. The combinatorial term in UNIQUAC is based on
the Guggenheim-Staverman model. However, in the application of the combinatorial term of
UNIQUAC to real mixtures, large deviations were found. Several authors have thus proposed
modifications to this combinatorial term. All of these modifications significantly improved the
performance of the term, but they are all empirical. In chapter [3| a physically-founded modi-
fication to the UNIQUAC combinatorial term is presented that improves the original term in a
similar or even better way than the empirical modifications.

In chapter df MOQUAC will be presented. This is the new model for the residual contribution
to GE. MOQUAC is based on an explicit consideration of the orientations of molecules upon
molecular contacts and therefore allows consideration of the full three-dimensional structure of
molecules. Because of this, the model is capable of describing effects like multiple contact points
and steric hindrance. MOQUAC also allows enantiomers to be distinguished. Thus, compared
to the state-of-the-art GE-models MOQUAC is better suited for the description of more complex
molecules that have several strongly interacting functional groups.

For MOQUAC, the interaction energy between two molecules as a function of the orientation
of both molecules is a model parameter. In chapter[5 a first simple, empirical interaction-energy
model that allows a-priori description of this interaction energy will be presented. To produce
this a-priori description, the model uses information from a quantum-chemical calculation and
can thus, in principle, be applied to any kind of molecule. The combination of the interaction-
energy model with MOQUAC allows for a predictive description of the excess Gibbs energy. The
few parameters in the interaction-energy model are first fitted to experimental data. Using these
parameters the combination of both models is then used to predict the behavior of real systems.
These results are then discussed and compared to results with the modified UNIFAC (Dortmund)
model and COSMO-RS, which are currently two of the most widely used, predictive GE-models
in the chemical industry.



2 State-of-the-art models to describe
the excess Gibbs energy

For the design and optimization of thermal-separation units, it is important to describe the vapor-
liquid and liquid-liquid equilibrium. For the modeling of strongly non-ideal systems, models
that describe the excess Gibbs energy, GF, are often applied. Frequently, a combinatorial and a
residual contribution for such models are distinguished:

Gt =Gt +GE, 2.1

The combinatorial contribution Glfomb describes size and sometimes shape effects of the compo-
nents in the mixture, whereas the residual contribution GE describes all energetic effects. The
denotation “residual” is misleading however, since it suggests that this term is of less importance.
This only applies for athermal or almost athermal mixtures. Most common mixtures in chemical
engineering can, however, not be treated as athermal mixtures.

This chapter has two main sections. First, some of the most common models for the combi-
natorial term alone are described. This is followed by a description of some of the most popular
state-of-the-art G¥-models that also include an expression for the residual term. Special atten-
tion is paid to the reason why none of these models can take the full three-dimensional molecular
structure into account. These models are therefore unable to describe effects like multiple contact
points, something which is important for the description of components with several strongly in-
teracting functional groups. In chapter the new GE-model MOQUALC is presented. MOQUAC
overcomes this shortcoming. In this work molar units are generally used for all quantities.

2.1 The combinatorial contribution

For a mixture of molecules of different size and shape, there are different ways of arranging the
molecules in space for the mixture and for the pure components. This results in a contribution
to the entropy of mixing that is independent of molecular interaction energies. This contribution
is called the combinatorial contribution and plays an important role in the modeling of athermal
solutions of molecules of very different size [4]. The combinatorial contribution to the excess

Gibbs energy is only determined by the combinatorial contribution to the excess entropy Sfomb:
G]czomb = _TS]chmb (2.2)

The vast majority of models for the combinatorial contribution are based on a lattice picture
of fluids. Here, a molecule i consists of r; segments that each occupies one lattice site. The first
model to be presented is the Flory-Huggins model. This model only takes molecular size into
account. Next the Staverman-Guggenheim model is presented. This model takes both molecular
size and shape into account. Finally, some empirical modifications of these physically founded
lattice models are discussed.
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2.1.1 The Flory-Huggins model

Flory [S] and Huggins [6] considered the number of possible ways of arranging N, different
components on a lattice, where each component consists of r; segments each occupying exactly
one lattice site. The lattice has a coordination number of z and it is assumed that there are
no empty lattice sites. Flory and Huggins assumed for their derivation that the probability of
finding an empty lattice site while placing a molecule on the lattice is determined by the ratio of
the number of free lattice sites to the total number of lattice sites. Their derivation leads to

Nc .
Geomp =RT Y xi ln% (2.3)
i=1 l

for the excess part of the combinatorial Gibbs energy. R is the universal gas constant, x; is the
mole fraction and ¢; is the volume fraction of component i in the mixture
Xilj

0= N (2.4)

N,
Y xjrj

A detailed derivation of Eq. [2.3]can, for example, be found in Pfennig [7]].

2.1.2 The Staverman-Guggenheim model

Flory and Huggins’ assumption concerning the probability of finding an empty lattice site is only
a crude approximation, since no notice is taken of the fact that the empty lattice sites are not dis-
tributed randomly. In fact, this distribution is structured in relation to the structured molecules.
This non-random distribution of empty lattice sites is due to the fact that the r; segments of a
molecule are connected, leading to larger coherent regions of empty lattice sites than considered
in the Flory-Huggins model. These regions increase the number of different possible positions
for the molecules. Staverman and Guggenheim distinguish between internal and external con-
tacts between the segments of molecules in order to account for this effect. They define zg; as
the total number of external segment contacts of molecule i, where g; < r; except in the trivial
case of r; = 1.

Guggenheim [8] derived an expression for the combinatorial entropy for linear and branched
molecules with the assumption that molecules show no ring formation. In this case, the number
of segments and the number of external contact sites are related by

gq,- = grl- —ri+1 (2.5)

Guggenheim’s equation for the combinatorial entropy reads

N, - _
Z 7
Scomb :szi <1npi+_%’1ng+ln_) (2.6)
= 2 3 Xi
where p; is the number of possible positions of a molecule of component i on an empty lattice
when the first segment of the component is kept fixed. According to Sanchez [9], for rigid
molecules p; is less or equal to z> — z. 7 and § are average structural parameters and are defined
as

r= Xiti 2.7)
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and
Ne
7= xiqi (2.8)
i=1

However, Staverman [10]] showed that inconsistencies arise when Guggenheim’s equation for
the combinatorial entropy is generalized to any value of ¢; different from Eq. 2.5 He removed
these inconsistencies, which resulted in a different equation for the combinatorial entropy

Ne
<
Scomb—Rlel (lnpl+ Qlln +1n_+1 rl+2rl 2(]1) (2.9

A comparison of Egs. [2.6] and [2.9) shows that both equations only yield identical results when

Eq. 2.5]applies.
The excess entropy of a mixture is defined by

N N,
Stomb = Scomb — Y XiSgomp,i + R Y, xiInx; (2.10)
i=1 i=1

where Scomp is the combinatorial entropy of the mixture and S° comb.i the combinatorial entropy of
the pure component i. The combinatorial entropy of the mixture and of the pure components can
both be determined either with Eq. [2.6] or with Eq. [2.9] For the excess part of the combinatorial
entropy, both equations yield the same result

c 1 c
SE = RZx, n———Rqu,x,lnIg 2.11)
4
where y; is the surface fraction
v = ;Clql (2.12)
Y Xjdj

of component 7 in the mixture. With Eq. [2.2] the combinatorial contribution to the excess Gibbs
energy equals

GE . =RT Zx, + RT Z 2qixIn ‘g 2.13)

i=1 l
and is referred to as the Staverman—Guggenhe1m equation. Since Staverman did not assume Eq.
[2.5] the Staverman-Guggenheim equation can also be applied to molecules with ring formation.

2.1.3 Empirical modifications of existing models

Abrams and Prausnitz proposed using the Staverman-Guggenheim model, Eq. to describe
the combinatorial term of UNIQUAC [11]]. To determine the structural parameters r; and g; from
the point of view of lattice models, a standard segment needs to be defined. With the surface
area Arer and volume V¢ of this standard segment, the structural parameters are then determined
from

A;
= (2.14)
7 Aref
and v
rp=—t (2.15)
l Vref
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where A; and V; are the molecular surface area and volume of component i.

For the molecular surface area and volume, Abrams and Prausnitz proposed using the values
determined with Bondi’s [[12]] group-increment method. They regard the standard segment as a
sphere with radius 7. so its surface area is calculated by

Avet = ANATTI ¢ (2.16)

and volume by

4
Viet = §NA7rrr3ef (2.17)

Ny is the Avogadro constant. Abrams and Prausnitz chose the standard segment for the UNI-
QUAC combinatorial term such that it satisfies Eq. [2.5] for a linear polymethylene molecule of
infinite length [11]. This choice was arbitrary and leads to

Feef = 1.818 x 1070 m (2.18)

Kikic et al. [13] investigated the UNIQUAC combinatorial term and found that the degree of
non-ideality predicted by the model is greatly exaggerated for some binary alkane mixtures. A
similar comparison to that of Kikic is shown in Fig. 2.1} where experimental data on the ac-
tivity coeffient of n-hexane at infinite dilution in other n-alkanes is compared to model results.
Mixtures of n-alkanes behave nearly athermally and are therefore adequate for such compari-
son. Kikic et al. proposed a modification of the UNIQUAC combinatorial term analogous to a
modification proposed by Donohue and Prausnitz [[14] for the Flory-Huggins model. This was:

Ne ¢K1k1c Nc v;
Gcomb =RT le In + =RT Z zqixiIn - (2.19)
i— Xi 2 i=1 ¢i
with
3
1 X
o = ——— (2.20)
Yy 1% r

The exponent 2/3 was determined by comparison with experimental data. This modification
greatly improves the performance of the model, which now only slightly overestimates the non-
idealities of shorter n-alkanes, as can be seen in Fig. 2.1]

Huyskens and Haulait-Pirson [16] state that many authors are aware that the Flory-Huggins
term with the reference segment of UNIQUAC does not describe reality quite correctly, as can
also be seen in Fig. Like the UNIQUAC combinatorial term, the Flory-Huggins term greatly
overestimates the non-idealities of the mixture. Huyskens and Haulait-Pirson realized that reality
lies almost exactly in the middle between the ideal solution and the Flory-Huggins equation and
thus write

comb =RT > sz 111— (221)

They show that this equation yields better results for solubilities of solid n-alkanes in liquid
alkanes than the ideal solution term or the Flory-Huggins term alone. Their equation is sim-
ple and yields clearly improved results, as shown in Fig. [2.1 although most non-idealities are
overestimated.

Weidlich and Gmehling proposed a modification similar to that of Kikic et al., but instead of
an exponent of 2/3, they used 3/4 for their modified UNIFAC (Dortmund) model [17]. This
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ideal

mod. UNIFAC
" (Dortmund)
< Kikic
2" — Huyskens
“*-.. mod. UNIFAC
(Lyngby)

R UNIQUAC
! s ! . ! - Flory-Huggins

10 20 30
number of carbon atoms in solvent

Figure 2.1: Comparison of the different combinatorial terms with experimental data on the ac-
tivity coefficient of n-hexane at infinite dilution in other n-alkanes. All experimental data were
taken from the DECHEMA data series [15]].

value resulted from a fit of the activity coefficient at infinite dilution to experimental data of
mixtures of alkane + alkane, alkane + alcohol, and alcohol + alcohol. The parameters g and r
which they use are determined from different group contributions. These group contributions
for the parameters g and r were also obtained from a fit to experimental data and are no longer
calculated from molecular parameters as in UNIQUAC. Thus, pure-component parameters have
in effect been fitted to mixture data, which may be causing inconsistencies. Fig. shows
that Weidlich and Gmehling’s model reproduces the experimental data very well. It should be
stressed, however, that for the modified UNIFAC (Dortmund) model, the modifications to the
structure of the model are merely empirical.

For their modified UNIFAC (Lyngby) model, Larsen et al. proposed using an altered Flory-
Huggins combinatorial term with modified volume fractions following Kikic et al. [[18]]

Ne P Kikic
Gromp = RT Y xiIn — (2.22)
i=1 t

instead of using the Staverman-Guggenheim combinatorial term. The volume parameters r are
calculated as in UNIQUAC [18]]. They argue that the Staverman-Guggenheim term represents
a corrected Flory-Huggins term, which they correct in an alternative way, as specified in Eq.
[2.22] The correcting contribution of the last term of Eq. [2.13]is said to frequently be quite small,
but it may, however, in some cases give large corrections, even leading to negative values of
the combinatorial excess entropy, which are not considered realistic. Fig. shows that the
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modified UNIFAC (Lyngby) model performs similarly to the Huyskens model, overestimating
almost all non-idealities. In chapter [3]it will be shown that this correction term is not negligible
when the standard segment is determined meaningfully.

2.2 The residual contribution

The combinatorial contribution only describes entropic effects due to differences in the size and
shape of the molecules, whereas the residual contribution considers all energetic effects in the
mixture. If the interaction energies between molecules are different in the mixture and in the
pure components, heat can be liberated or absorbed when the pure components are mixed. This
leads to a contribution to the residual part of the excess enthalpy HE. In addition, the interaction
energies can cause distribution of the molecules in the mixture and in the pure components that
differs from random distribution. This leads to a contribution to the residual part of the excess
entropy St . The residual Gibbs energy is defined as

res:

Gi, =Hy — TSk,

res — “-res res

(2.23)

As with modeling of the combinatorial term, a lattice view is often applied in modeling the
energetic effects in liquid mixtures. It is assumed that molecules linger on lattice positions,
around which they oscillate. Interchanges of positions are so rare in liquids that they can be
disregarded for thermodynamic equilibrium. Guggenheim [19] in particular but also Barker
[20} 21]] have significantly influenced the development of these lattice theories. Because their
perception of liquid mixtures is the basis for many known GE-models, the lattice-based model
of Guggenheim is presented first in the following section. The concept of local composition is
also introduced. This is followed by the presentation of some semi-empirical models that are
based on Guggenheim’s ideas and the concept of local compositions and that are still in use
today. After that, the most relevant group-contribution models and surface-segment models are
presented. Special attention is paid to the reason why all of these models cannot take the full
three-dimensional molecular structure into account correctly.

2.2.1 Guggenheim’s lattice-based model for liquids

For Guggenheim’s lattice-based model, a mixture of N, components is regarded. All molecules
are considered to be approximately of equal size, such that it can be assumed that each molecule
occupies exactly one lattice site. Exchanging the position of two different molecules does thus
not lead to a steric contribution. It is also assumed that no lattice site is empty, that the coordi-
nation number z of the lattice is constant and that the interaction energy between two molecules
does not depend on the orientation of the molecules in space. Further assumptions are that the
interaction energy between two molecules is not influenced by other molecules and that for the
system only the interaction energy between directly neighboring molecules needs to be consid-
ered.

Wilson introduced the concept of local compositions [22], where x; ; is the local composition
of component j in the direct vicinity of component i. x; ; is the normalized fraction of all contacts,
originating from component i with component j. Based on this definition,

Ne
Y xji=1 forall i=1,...N; (2.24)

J=1



2.2 The residual contribution

applies. Since the number of contacts originating from molecule i with molecule j must be equal
to the number of contacts originating from molecule j with molecule i, the symmetry condition

XiXji = XjXijj (225)
applies.
According to the assumptions made above, the system’s energy U equals
Ne Ne |
U= ) 526 (2.26)

11]1

where the factor 1/2 accounts for the fact that in the sum each contact is considered twice. u;
is the interaction energy between molecules i and j. The interaction energy is symmetrical, so

Wji = Uij (2.27)

applies. For lattice systems no volume dependence is assumed, so the system’s energy is equal
to the system’s enthalpy
H=U (2.28)

The excess enthalpy of a mixture is defined as

Ne
H*=H-Y xH} (2.29)
i=1

where H is the enthalpy of the mixture and Hl.o is the enthalpy of pure component i. Applying
this definition and Egs. and [2.26]yields

NC]

res ZC Zc ARXXj iU Z U (2.30)

i=1j=

for the excess enthalpy.
Hu et al. [23] give an expression for the molar excess entropy with use of the local composi-

tion:
N. N

SE. = RZ Zx,xj lln (2.31)
i=1j=
Eq. [2.31]is based on the assumptions of Guggenheim. The derivation of Eq. [2.31]is not given in
the paper of Hu et al., but is given, for example, by Lucas [24].
Unknown so far are the local compositions x;; that describe a representative system state
at equilibrium. Within his framework of the quasi-chemical theory, Guggenheim derived the

relation P ©
LT exp (——J) (2.32)
XiiXj j RT
where w; ; is defined as:
Wji=uji+ujj—Uu;—Uj; (2.33)

zw;j; is called the interchange energy and equals the energy difference of interchanging one
molecule of component i and of component j from their pure solutions respectively. The denom-
ination “quasi-chemical” has its origin in the fact that Eq. resembles the formulation of a
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chemical equilibrium reaction. The reaction in this case is that of one i — i and one j — j contact
reacting to one i — j and one j — i contact. This is illustrated in Fig. [2.2]

Eq. 2.32]is equivalent to the law of mass action. The term on the right-hand side gives the
equilibrium constant of the quasi-chemical reaction in the form of the Boltzmann factor. The
Boltzmann factor describes the temperature dependence of the equilibrium.

OG-+ 00 — OO0 +0-0

Figure 2.2: Quasi-chemical reaction of one i — i and one j — j contact reacting to one i — j and
one j — i contact.

Guggenheim’s model was of great significance for advances in the modeling of liquids and
the basic idea of this model is still part of state-of-the-art GE-models. However, since the model
was derived for spherical molecules whose interaction energy with other molecules does not de-
pend on their molecular orientation, only higher order upon mixing can be predicted. Higher
order means a negative excess entropy. For many nonpolar mixtures, however, positive excess
entropies have been observed experimentally [4]. These positive excess entropies cannot be de-
scribed by the model. Guggenheim [19] recognized this shortcoming and proposed considering
u;j; as a free energy instead of only an energy parameter. For u;; Guggenheim always assumed
a linear dependence of temperature

uj,i = hj,,' — TSj,i (2.34)

where 4 ; and s ; are considered constant in a certain temperature range. With this modification,
positive excess entropies can also be described. Guggenheim did not give an interpretation for
this approach, but according to Prausnitz [4]], positive excess entropies are a result of other effects
(neglected by the lattice theory), such as changes in volume and changes in excitation of internal
degrees of freedom (rotation, vibration) resulting from the mixing process [25].

The necessary transfer from an energy to a Gibbs energy can also be caused by the fact that for-
mally the direction dependent molecular potentials of real molecules were replaced by direction
independent molecular potentials [24]. It is clear that direction dependent molecular potentials
have to be considered in order to take the full three-dimensional molecular structure into account.

2.2.2 Semi-empirical models for the excess Gibbs energy on the
basis of local compositions

Numerous models have been developed based on Guggenheim’s idea that because of an energetic

preference, some contacts between molecules are more frequent than others. Models that have

been established in industrial applications are the Wilson model [22], the NRTL model [26] and

the UNIQUAC model [[11].
To describe the preference of certain contacts, the Wilson model uses

GE N N
ﬁ = — le' In Z waj (235)
i=1 j=1
with

yL RT

1

45 Uij— Ui
Aij=—exp (—f) (2.36)
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2.2 The residual contribution

For each binary component combination, the model shows the two parameters u;; — u; ; and
uj j—uj;. u;;is the interaction energy between components i and j.

Wilson recognized that size differences between molecules have to be accounted for. To do
this, he used the quotient of the molar volume of the pure liquid Vl-L. These volumes can be found
for many substances in the DIPPR database [27], for example. Eq. is a complete GE-model
that in the case when all parameters u; ; — u; ; equal zero reduces to the Flory-Huggins equation
Eq.23

The NRTL (Non-Random Two Liquid) model by Renon and Prausnitz [26] is also based on
the concept of local compositions as well as on the two-liquid theory proposed by Scott [28]. The
two-liquid theory states that a binary mixture can be described as a combination of two liquids.
While one liquid consists of cells that contain a molecule of type 1 as the central molecule that is
surrounded by molecules of type 1 and 2, the other liquid consists of cells that contain a molecule
of type 2 as the central molecule that is also surrounded by molecules of type 1 and 2. The NRTL
model describes the excess Gibbs energy as

GE N YN 7Gx
RT =Y XN (2.37)
=1 Lp Grixk

with
Ujii— Uij
g = Mt (238)
ij,' = exXp (—(Xj,ifjji) (2.39)
Wi =t (2.40)

Here too u;; is the interaction energy between the components i and j. In contrast to the Wilson
model, the NRTL model possesses a further parameter «; ;. Typically

=0 (2.41)

is applied, so three parameters are needed to describe a binary mixture. Since, however, two
parameters often already offer the model sufficient flexibility, usually all «;; are set to a fixed
value, e.g. 0.2 or 0.3 [7I].

The UNIQUAC (UNIversal QUAsi-Chemical theory) model by Abrams and Prausnitz [[11]]
and Maurer and Prausnitz [29] distinguishes a combinatorial and a residual contribution to the
excess Gibbs energy using Eq. [2.1f The UNIQUAC combinatorial term was described in section
[2.1.3]and the residual term is calculated by

Ne
GE:S = —RT Z qiXi In (
i=1

Ne
) wjrj7i> (2.42)
=1

]:
with

Tji = exp (——”f';_T”*") (2.43)

The temperature dependence of the interaction parameters 7;; is described with the Boltzmann
factor, where u; ; is the interaction energy between molecule i and ;.

In application of the Wilson, NRTL and UNIQUAC model to multi-component mixtures, only
the parameters of all binary subsystems need to be known. These parameters for all three models

11



2 State-of-the-art models to describe the excess Gibbs energy

can be determined by fitting to experimental data of binary systems. Thus, these models can be
applied predictively to multi-component mixtures when experimental data of all binary subsys-
tems are available. However, this also limits the predictive applicability of the models, since they
require a certain amount of experimental data related to the system of interest.

Since only one interaction energy between molecules of components i and j is distinguished,
no orientation-dependent molecular potentials can be considered. Like the Guggenheim lattice
model, the Wilson, NRTL and UNIQUAC models also cannot take the full three-dimensional
molecular structure into account. In addition, and in contrast to the Guggenheim model, the other
3 models determine the local compositions x;; independently, although they should fulfill both
Eq. and Eq. This inconsistency has been criticized by different authors, for example,
McDermott and Ashton [30] and means that a reliable prediction of multi-component mixtures
cannot be guaranteed [31]. Because of this inconsistency, however, these semi-empirical models
are very flexible, which is the reason for their broad application in chemical industries.

2.2.3 Group-contribution models for the excess Gibbs energy

The model parameters of all semi-empirical models described in section must be deter-
mined by a fit to experimental data. This, of course, is very time-consuming and also does not
allow for the description of systems for which no experimental data are available. The idea of
group-contribution models is to reduce the innumerable number of different molecules to a man-
ageable number of different functional groups. The thermodynamic behavior of molecules is
then traced back to the properties of these functional groups.

With this concept almost all practical relevant substances can be considered an agglomerate
of relatively few, adequately chosen functional groups. Based on this basic concept, different
models have been developed. All popular models such as UNIFAC, ASOG, DISQUAC and
GTASQUAC have in common that a combinatorial and a residual contribution are distinguished
according to Eq. The description of the residual contribution is normally based on the quasi-
chemical approach that is now formulated for interactions between functional groups. For this,
all group-contribution methods assume that the functional groups are independent of each other,
as illustrated in Fig. [2.3] This assumption means that information about the three-dimensional
molecular structure is lost. Group-contribution methods are therefore unable to account for the
full three-dimensional structure of molecules.

Figure 2.3: Assumption of independent groups in group-contribution models.

In this section, the popular UNIFAC model and two of its modifications are presented. This
model shows the same inconsistencies concerning the local composition as the semi-empirical
models presented in section [2.2.2] Furthermore, the GTASQUAC and DISQUAC models are
briefly discussed. These are both physical consistent models. First, however, the definition of
functional groups is discussed.

12



2.2 The residual contribution

Definition of functional groups

The first step in developing a group-contribution model is the definition of functional groups. Ac-
cording to investigations by Wu and Sandler 33]], the definition of functional groups plays
a major role in the performance of group-contribution models. They claim that the geometry
of a functional group should be independent of the molecule in which the group occurs, each
atom in a functional group should have approximately the same charge in all molecules in which
the group occurs and the group should be approximately electroneutral. The charge of a func-
tional group is determined by the sum of the partial atomic charges that are created due to the
asymmetric distribution of electrons in chemical bonds. In addition, Wu and Sandler claim that
each functional group should be the smallest entity such that a molecule can be divided into a
collection of electroneutral groups. None of the above mentioned GE-models define groups in a
way which fulfills all these requirements [25].

Fig. [2.4] shows the surface-charge density of two molecules that both contain an OH-group.
It can be clearly seen that the surface-charge density on the oxygen atom is different for both
molecules. The OH-groups in both molecules are thus to be treated differently, since the charge
of the O-atom is different in both groups. In models such as UNIFAC a distinction is therefore
made between (a) an OH-group connected to an aliphatic and (b) an aromatic structure [34]].

(a) cyclohexanol (b) phenol

Figure 2.4: Proximity effect on OH-group.

In the example in Fig. 2.4] the different charge on the O-atom is caused by the proximity
of other groups. The phenyl group causes the charge of the oxygen atom to become delocal-
ized, leading to a smaller charge of the O-atom in comparison to the O-atom in cyclohexanol.
Fig. [2.5] shows another example of this so-called proximity effect [35]. Here, the amino-group
in 4-aminonitrobenzene causes a slightly stronger polarization of the nitro-group in the same
molecule in comparison to the nitro-group in nitrobenzene. In UNIFAC, a nitro-, an amino-
and several aromatic CH-groups are distinguished for these molecules. However, to consider
the effect of polarization of the nitro-group properly, a new group would have to be introduced
containing both the nitro- and the amino-group as well as at least part of the phenyl-ring. The
introduction of such large groups to account for all proximity effects in all molecules would,
however, result in a dramatic increase in the number of groups and thus in the number of group-

13



2 State-of-the-art models to describe the excess Gibbs energy

interaction parameters. The advantage of the low number of parameters in the group-contribution
method would therefore be lost. What is more, the interaction potential of such large groups
might become so complex that it could no longer be adequately described [35].

(a) 4-aminonitrobenzene (b) nitrobenzene

Figure 2.5: Example of the proximity effect on a nitro-group.

Wu and Sandler’s [32] requirement for the definition of groups, that the group should be ap-
proximately electroneutral, means that positively and negatively charged surface areas need to
be summarized in one group. Nonetheless, this is a crude approximation of the true physical
features of a group. The thermodynamic behavior of a system significantly depends on the in-
teractions between the differently charged surface segments. This definition of groups therefore
means that certain effects cannot be described adequately. An example of such effects are hy-
drogen bonds, since, e.g., the OH group is rather large. The surface area of a hydrogen atom in
the OH group is significantly smaller and shows a high surface-charge density. It is this small
part of the surface of the OH group that needs to be in contact with the part of the surface of a
hydrogen-bond acceptor that also shows a high surface-charge density but of the opposite sign.
Thus, for the formation of a hydrogen bond, a high order of molecular orientation is required.
However, because of the relatively large OH group, this high order of orientation upon a hy-
drogen bond cannot be modeled by group-contribution methods. Surface-segment models that
divide the molecular surface into segments according to the surface-charge density, as described
in section [2.2.4] overcome this deficiency of group-contribution models.

The UNIFAC model

The UNIFAC model, first proposed by Fredenslund et al. [34]], is the group-contribution equiv-
alent of UNIQUAC that was described in section The combinatorial term of UNIFAC is
identical to the combinatorial term of UNIQUAC that was discussed in section[2.1.3] Formulated
in terms of activity coefficients, it reads

oz Y O &
1 =In—+-g;,In—+1; — — E i 2.44
N Ycomb,i nx,‘ + 2% n o + X j:lx] j ( )
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with Z
l,-:i(ri—qi)—(ri—l) (2.45)

Parameters r; and g; are calculated as the sum of the group volume and surface-area parameters
Rk and Qk

N i .

ri=Y vi'R, (2.46)
k=1
Ny i .

g=Y v’ (2.47)
k=1

where Ng;; is the number of different groups in component i. v,Ei) is the number of groups of
type k in component i. R; and Qy are obtained from the group volume and surface area V; and

Ay given by Bondi [12]

Vi

R, = —~ (2.48)
k Vref
Ay

Or = (2.49)
k Aref

Vet and A ¢ are determined from Egs. and [2.17 with Eq. z is assumed to equal 10.

For the residual contribution, instead of considering interactions between molecules as in
UNIQUAC, interactions between functional groups are considered. The residual contribution
in terms of activity coefficients is calculated by

Ner .
s = Y v (mrk - 1nr,(j)> (2.50)
k=1

where I is the group-activity coefficient, and F,(ci) is the activity coefficient of group k in a
reference solution containing only molecules of type i.
The group-activity coefficient I'y is calculated by

] o Ner N leTk,m
nl =0 | 1-In( Y Wntus | — ), T —— (2.51)

m=1 m=1 n—1 lPn"‘v-n,m

where W), is the surface-area fraction of group m

X,
¥, = —Ng’” - (2.52)
with X, as the mole fraction of group m
Z]'\il V,Sj)xi
X, = m i N ) (2.53)
YitiXnsi Va Xi

Ng; is the number of different groups in the mixture. The group-interaction parameter Ty, , is
calculated by

Tyn = €Xp (—””}’”) (2.54)
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2 State-of-the-art models to describe the excess Gibbs energy

The group-interaction energy parameters a,,, are not symmetrical. Thus, per binary mix-
ture of groups, the model has two parameters. On the webpage of the UNIFAC consortium, an
overview of the group-interaction parameters determined so far is given [36]]. Since many group-
interaction parameters have not yet been determined, the applicability of UNIFAC as a universal
predictive GE-model is limited. The UNIFAC model also shows the same physical inconsisten-
cies regarding the local composition as UNIQUAC, as discussed in section[2.2.2] Because of this
inconsistency, the predictive quality of UNIFAC is limited.

Two modifications of UNIFAC that try to improve the predictive quality of UNIFAC have
become popular. The modified UNIFAC (Dortmund) model by Weidlich et al. [17] and the
modified UNIFAC (Lyngby) model by Larsen et al. [[18]] were proposed approximately simulta-
neously. Both the combinatorial as well as the residual contribution were modified empirically
in both modifications. The modifications to the combinatorial contribution were discussed in
section 2.1.3l The more relevant modifications are those made to the residual contribution. The
group-interaction parameter a,, , is considered to be temperature dependent. In the modification
by the Dortmund group, a polynomial approach is applied

amn = Amn+BunT +CpnT? (2.55)

whereas in the modification by the Lyngby group the parameter is described by
T
Amp = A;M +B;n7n (T—-Th) + C,’n,n (Tln T +T— T0> (2.56)
0

with Tp as reference temperature. Larsen et al. [18] chose Ty =298.15 K. Because of this temper-
ature dependence, both modifications show six parameters per binary mixture of groups. This
large number of parameters increases the effort required for parameterization, but also makes
both modifications extremely flexible for the description of thermophysical properties. Many of
the parameters of the modified UNIFAC (Dortmund) model in particular have been determined
by fitting to experimental data, resulting in this modification frequently being used in industrial
applications. The webpage of the UNIFAC consortium gives an overview of the determined
group-interaction parameters of the modified UNIFAC (Dortmund) model [36].

The GTASQUAC and DISQUAC model

UNIFAC and its modifications show the same physical inconsistency regarding the local com-
position as UNIQUAC. This inconsistency, however, allows the local composition to be solved
analytically. This in turn results in shorter computation times and is therefore advantageous.
Lacmann et al. [37] propose using a Taylor-series approximation for the quasi-chemical ap-
proach. For the resulting GTASQUAC model (Group contribution TAylor Series approximation
for QUAsi-Chemical equilibria), the local compositions can also be determined analytically, and
the model does not have the same inconsistency as the UNIFAC model. Because of the Taylor-
series approximation, however, the model only gives an approximation of the quasi-chemical
equations.

GTASQUAC distinguishes a combinatorial and a residual contribution to GF using Eq. [2.1
The combinatorial term is identical to that of the modified UNIFAC (Lyngby) model, Eq. [2.22]
For the residual term, first the excess enthalpy is defined. The local composition is defined by the
quasi-chemical approach and is approximated with a Taylor series. Then the Gibbs-Helmholtz
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e (95
HE = T (2.57)
PXi

T

equation

is integrated to obtain a rather long expression for the excess Gibbs energy [37]. The advantage
of GTASQUAC is its physical consistency and the fact that it needs fewer parameters per group
pair than the modified UNIFAC models.

A special contribution to the development of physical-consistent group-contribution methods
was achieved by the work of Kehiaian and his co-workers in the scope of the TOM project
(Thermodynamics of Organic Mixtures [38]]) [35, 39-41]. They presented the DISQUAC model
[39]] that is based on Barker’s theory [20], according to which interactions between molecules
take place between contact points on the surface of molecules. Barker’s theory can be considered
as an early version of a group-contribution method that is physically consistent. Whereas Barker
assumes specific contact points on the molecular surface, Kehiaian assigns these contact points
to a contact area that basically corresponds to a functional group.

Apart from the combinatorial contribution, two more contributions to G* are distinguished in
the DISQUAC model:

GE = GEomb + Ggisp + GEH (258)

E

Gt describes dispersive interactions and Gy

disp
teractions. G{it is based on the quasi-chemical approach.

Although Gonzales et al. [42-44] showed that DISQUAC can describe polar as well as asso-
ciating mixtures, the primary use of the model is not the comprehensive description of different
phase equilibria. Instead, DISQUAC allows an intensive analysis of thermophysical properties of
mixtures of components of a homologous series, since functional groups are mainly defined ac-
cording to their functionality. These functional groups are different from the groups in UNIFAC.
Kehiaian and Marongui [45]] showed that DISQUAC, in contrast to UNIFAC, allows a detailed
investigation of interaction parameters in dependence of molecular structure and can thus take
proximity effects better into account. This is why DISQUAC is especially suited to describing
effects of the molecular structure, since the proximity of other functional groups is accounted
for in the interaction-energy parameters. Although the proximity of other groups is taken into
account for the interaction-energy parameters, to describe the excess properties DISQUAC also
assumes that the functional groups are independent. For this reason, DISQUAC also cannot take
all the information on the three-dimensional molecular structure into account and can therefore
not describe effects like multiple contact points. What is more, the model is very complex and
only a small number of interaction parameters have been determined so far, which is why the
model does not allow for a broad range of application.

describes stronger interactions such as polar in-

2.2.4 Surface-segment models for the excess Gibbs energy

Section showed that the definition of universal functional groups is problematic. Proximity
effects require that more and sometimes bigger functional groups are defined. This, however,
makes the group-contribution method less efficient and leads to difficulties in the description of
the group-interaction potential. Furthermore, the requirement for functional groups to be approx-
imately electroneutral requires positively and negatively charged surface areas to be summarized
in one functional group [32]. This causes difficulties for the description of hydrogen bonds,
among other things.
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2 State-of-the-art models to describe the excess Gibbs energy

Surface-segment models overcome these difficulties by distinguishing only surface segments
with different surface-charge densities. This way a functional group can be resolved in more
detail. Molecular contacts are modeled as contacts between surface segments. This approach
is very similar to Barker’s idea of distinguishing contact points on the molecular surface [20].
Surface-segment models relate a surface area to these contact points, where the surface area
determines the contact probability of the segment.

The most popular surface-segment model with a wide range of application in chemical indus-
tries is the COSMO-RS model by Klamt [46]]. This model shows only universal parameters and
requires information from an a-priori quantum-chemical calculation with the COSMO model
[47]. Because of this, the model is predictive and applicable to almost any kind of substance.
The thermodynamic part of COSMO-RS is identical to GEQUAC [46]]. The formulation of
GEQUAC, however, is more similar to the formulation of the quasi-chemical equations of sec-
tion 2.2.1] and will therefore be discussed first. It will be shown that when the set of non-linear
equations of GEQUAC is reformulated according to a solution algorithm by Larsen and Ras-
mussen [48], the typical COSMO-RS formulation results. Since the quasi-chemical theory is
applied to the surface segments, the surface segments are considered to be independent. In the
case of the surface-segment models this approximation is referred to as the free-segment approx-
imation. Because of this free-segment approximation, surface-segment models also cannot take
the full three-dimensional structure of molecules into account.

The GEQUAC model

GEQUAC (Group-surface Explicit QUAsi-Chemical theory) was developed to enable a physi-
cally founded description of both non-associating and associating liquid mixtures. In doing this,
the weak preference of certain contacts according to the quasi-chemical theory was strengthened,
in such a way that not only polar interactions but also the behavior of associating mixtures could
be described [49-H51]].

For GEQUAC also a combinatorial and a residual contribution to the excess Gibbs energy
according to Eq. are distinguished. The combinatorial term is identical to the combinatorial
term of UNIQUAC that was discussed in section[2.1.3] For the residual term, N different surface-
segment types are distinguished. The residual Gibbs energy is calculated by

l Ns  Ns

m=1n= n

and needs to be evaluated both for the mixture and the pure components. The residual excess
Gibbs energy is then given by

res Gres le res,i (2.60)

Equation [2.60| does not contain the contribution by the ideal mixture to the Gibbs energy, since
this contribution is already included in the combinatorial term Gfomb. ot 1s calculated by

Jtot = sz% (2.61)

and v, is the surface-area fraction of surface-segment type n in the mixture that is defined anal-
ogous to the surface-area fraction of groups in the UNIFAC model, Eq. @} Wy.m 18 the normal-
ized fraction of contacts originating from surface segments of type m with surface segments of
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type n. ng.m is the interchange enthalpy and z®, ,, the interchange entropy of an m-n contact.
The @ parameters are defined as

O = Mg+ Pusn — B n — (2.62)
and
w}i,m = Spm + Smpn = Smum — Sn,n (2.63)

with Ay, , and s,, , as the interaction enthalpy and entropy of the m-n contact. Symmetry applies,
thus
om = P p (2.64)

and
Snm = Smn (2.65)

Equations and from the quasi-chemical approach are adapted to a formulation with
surface-area fractions to

Ns
Y Vum=1 forall m=1,...N; (2.66)
n=1
and
YinWnm = YaWnn (267)
respectively. The contact fractions y, ,, are determined by minimizing the Gibbs energy. This
leads to the condition that 96
( 5 ) =0 (2.68)
ll/m’” T7p7xi7w0,p¢lllm.n

Equations and need to be considered for the derivative in Eq. This results in an
equation similar to Eq. 2.32%}

=T (2.69)

YiumWYmn . (_ w}tl,m - Twr?,m)
A detailed derivation of the GEQUAC equations is given by Egner [49]. Equations [2.66]
and [2.69 form a non-linear set of equations, for which Larsen and Rasmussen proposed
a modified Newton-Raphson solution algorithm [48]]. Details on how to solve the GEQUAC-
equation system with this algorithm are given in appendix
In the case of GEQUAC, the parameter b,, that was introduced by Larsen and Rasmussen
can be considered the activity coefficient of surface-segment type m. The chemical potential of
surface-segment type m is then given by

W, = RT Inb,, (2.70)

The reformulation of the quasi-chemical equations according to the Newton-Raphson method
which was modified by Larsen and Rasmussen results in

N, s__1_.5h 1 S
i s U, — 50, + 5T 0,
u,;:_RTln<Z Y, exp ——2 "}’;T 2 "’") (2.71)

n=1

which is an implicit equation for u;,. This segment-based formulation of the quasi-chemical
equations is applied in COSMO-RS, which will be described in the following section.

19



2 State-of-the-art models to describe the excess Gibbs energy

The COSMO and COSMO-RS model

In 1995, Klamt presented the COnductor-like Screening MOdel for Real Solvents (COSMO-RS)
[52] as an improvement on his COSMO model [47]. COSMO belongs to the class of so-called
continuum solvation models that neglect the atomic structure of the solvent and treat it as a
dielectric continuum with the permittivity €. Such models allow investigation of the influence
of the solvent on the charge distribution of a molecule due to electrostatics, but are not able to
describe all effects of real solvents.

In COSMO), a solute molecule is considered to be situated inside a cavity in an ideal conductor.
For the cavity construction, each atom type is assigned a radius and the union of the correspond-
ing atom-centered spheres is considered as the interior of the cavity. Since this means the cavity
can have defects at the intersection between two atoms, a smoothing algorithm is applied. Details
about cavity construction for COSMO are given by Klamt [46].

The surface of the cavity is considered to be the solvent accessible surface. The electric field
arising from the nuclei as well as from the electrons of the solute molecule is screened by the
polarization of the continuum. The effect of this polarization can be represented by the surface-
charge density distribution it produces on the inner surface of the cavity. To do this, the area of
the solvent-accessible surface is divided into segments and for each segment a screening charge
is determined. The choice of an ideal conductor for the continuum leads to a remarkably simple
expression for the screening charges and the screening energy, because the resulting electrostatic
potential ® must equal zero for every point 7 on the surface of the cavity:

D(7) =0 (2.72)

The charge distribution on the surface of the cavity influences the charge distribution of the
molecule. Quantum mechanics is applied to determine the structure of the molecule as well as
its charge distribution inside the cavity. These are both consistent with the charge distribution on
the surface of the cavity. For this quantum-mechanical calculation, there are different levels that
can be applied. A very popular method is to apply density functional theory (DFT) [S3, 54]].

COSMO thus provides the molecular structure, the molecular volume (cavity volume), and a
segmented molecular surface with its charge-density distribution and surface area. Klamt derived
a model to describe the Gibbs energy based on this information [52]. A crucial assumption of
COSMO-RS is that the surface segments that are used for the calculation can be considered to
be independent and to have a constant charge density. To determine the charge density of the
surface segments for the COSMO-RS calculation from the COSMO surface-charge densities G,
an averaging according to

= 2.2 2
Z G#rurav eXp o d,u.v
B T
Gv -

(2.73)

is performed [S5]]. This averaging also helps to get rid off artifacts from the COSMO calculation
due to the cavity surface not always being completely closed [S6]. r,y is an averaging radius that
is fitted to experimental data and that characterizes the size of an effective surface segment. ry; is
the radius of a circle with the same surface area as the surface segment p and dy, y is the distance
between surface segments 1 and v.

Because of the so-called free segment approximation, surface segments with an equal surface-
charge density can now be merged. A distribution function p(o) is introduced that describes
the amount of surface in a system with a surface-charge density between ¢ and ¢ +do. This
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2.2 The residual contribution

distribution function is called the o-profile. The o-profile of a mixture can be determined from
the o-profiles of the pure components p;(o)

Nc
p(o) =} xipi(o) (2.74)

For COSMO-RS, a combinatorial and a residual contribution to G® are distinguished using
Eq. For the chemical potential of a component i, this results in

Hi = Hcomb, i + Hres,i (2~75)

As for GEQUAC, the combinatorial contribution to the chemical potential is determined using
a Staverman-Guggenheim equation

- Veos ; Veos ;
HMcomb,i = —RT <7L InAcosmo +1— N +1In . +
Veosmo Veosmo
Zcosmo Acosmo,i (1 . ‘_/cosmo,iAcosmo +1n ‘_/cosmo,iAcosmo ) ) (276)
2 Acosmo,ref VcosmoAcosmo,i VcosmoAcosmo,i

where Acosmoref 15 a reference surface area. Klamt defined it as the partial surface area of an
ethylene unit [57]. Instead of using the molecular surface area and volume as in UNIQUAC
and the group-contribution methods, the volume and surface area of the cavity of the COSMO
calculation are used for the molecular surface area and volume Acosmo,; and Veosmo,i 0f component
i. A and zcosmo are considered parameters that were determined from a fit to experimental data
[S7]. The average molecular surface area and volume in the mixture are defined as

Ne
Acosmo = inAcosmo,i (2.77)
i=1
and
— NC
Veosmo = inVcosmo,i (2.78)
i=1

For the residual term, Klamt derived an equation without knowing about the quasi-chemical
approach [46]. His original notation therefore deviates from typical quasi-chemical notation.
For the residual part of the chemical potential of a surface-segment type with the surface-charge
density o, he writes

18(c) = —RTIn < / do’p(c”) exp (“ (@) _;;ffe<6’ Gl))) (2.79)

and with the chemical potential of all segment-types, the residual chemical potential of compo-
nent i is calculated by

Ures i = /pi(a)us(c)dc (2.80)

The formulation of Eq. is similar to the formulation of GEQUAC in Eq. The differ-
ences between both equations are the approximation of the integral by a sum and the interaction
term. COSMO-RS with e(o,6’) only considers an energy contribution, whereas GEQUAC ad-
ditionally considers an entropic contribution. Since the entropy parameter @, ,, of GEQUAC,
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2 State-of-the-art models to describe the excess Gibbs energy

however, cannot be determined a-priori, it is often set to zero [25]. Because of the w term, Eq.
includes the interaction energies between surface segments of the same type that are not
included in Eq. This difference is caused by the reference state of pure surface segments
that was introduced for GEQUAC [50]. However, this reference state is irrelevant for the excess
properties and the solution of the quasi-chemical equations. The thermodynamics of COSMO-
RS are thus identical to that of GEQUAC, as was also shown by Klamt [46].

aefr in Eq. is defined as the average molecular contact area and is a model parameter
that was fitted to experimental data. One would expect that a.¢ is related to the radius r,, of an
effective surface segment of Eq. However, for reasons that have not yet been identified,
much better results for COSMO-RS are obtained when both parameters are considered to be
independent [46].

The interaction energy of a molecular contact e¢(o,0’) depends on the charge density ¢ and
o’ of the two surface segments involved and consists of two terms

e(0,0") = enisic(0,6") + ey (0, 07) (2.81)

The reference state of COSMO-RS is that of the ideally screened system (COSMO). A system
is ideally screened even if around each molecule only a very thin layer of ideal conductor is
present [S7]. To describe the difference between such an ideally screened system and a real
system, the conductor has to be removed from the system completely. For a surface segment
contact, the amount of energy required to remove the piece of ideal conductor between the two
surface segments is therefore calculated. This energy is called the misfit energy [57] and is

calculated by
!/

o
emisi(0,0) = = (0 + ')’ (2.82)

Since the system’s energy is minimal in the ideally screened state, the misfit term is always
positive. &’ is a model parameter and is fitted to experimental data.

If the surface-charge densities of the two surface segments are sufficiently large and have an
opposite sign, a hydrogen bond can occur. The interaction energy of such a contact exceeds the
normal polar interaction energy. In COSMO-RS, this excess interaction energy is accounted for
by an additional hydrogen bonding term

ehb(G, Gl) = CppMin (0, min (0, Odon + Ghb) max (0, Oacc — Ghb)) (2.83)
with
Ogon = min(o,0”) (2.84)
and
Oace = max(o,0”) (2.85)

chp and oy, are both universal parameters that are fitted to experimental data. oy, is a threshold
for hydrogen bonding. Eq. [2.83] thus does not contribute to the interaction energy, unless the
more negative of the two screening charge densities is less than the threshold - oy, and unless
the more positive exceeds Opp.

Due to the popularity of the COSMO-RS model in chemical engineering, a number of reim-
plementations have been developed [58-61]. Although these reimplementations differ slightly
with respect to parameterization and the details of the implementation, most of them are referred
to as COSMO-RS in the literature. All reimplementations developed so far are less complete and
less detailed than COSMOtherm [62]]. All available comparisons indicate that COSMOtherm is
more accurate than these reimplementations [63]].
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3 Improvement of the combinatorial
contribution

The combinatorial contribution to the excess Gibbs energy describes mixing effects that are
only caused by differences in size and shape and not by interaction energies. This contribution
therefore only accounts for entropic effects and not for enthalpic effects. It needs to be considered
for all mixtures with components that significantly differ in size and shape.

In UNIQUAC [11], the combinatorial contribution is described with the physically founded
Staverman-Guggenheim equation, Eq. The UNIQUAC combinatorial term, however, can-
not always adequately describe combinatorial effects in real mixtures. Because of this, various
empirical modifications for the combinatorial term have been proposed. These were discussed
in section Since such empirical modifications are not satisfactory, here a physically well-
founded modification of the UNIQUAC combinatorial term is derived.

3.1 Modification of the UNIQUAC combinatorial term

Pfennig [64]] investigated the Guggenheim combinatorial entropy term by comparing results from
this model with results from lattice-based computer simulations. He showed that the model per-
forms perfectly well for inflexible chain molecules. This was not surprising, since the Guggen-
heim model was derived exactly for such a lattice system and molecules that do not fold back
on themselves. This agreement between lattice simulation and the Guggenheim model shows
that the model equation is in principle well suited to describe the combinatorial contribution of
chain molecules in a mixture. Thus, one would not necessarily expect that changing the model
structure in an empirical fashion would improve performance.

The question thus arises why good results are obtained when the Staverman-Guggenheim
model is compared to results from computer simulations and why the UNIQUAC combinatorial
term compares badly with experimental results? A closer look at Eqs. [2.4] and reveals
that the reference volume and area cancel out in these equations, while the reference area does
not in Eq. Therefore, the second term in Eq. depends on the choice of the standard
segment. zis usually set to 10, which is not problematic, since it is zg; that needs to be determined
meaningfully. As a consequence of these considerations, Aygw ref sShould actually be regarded as
a model parameter that cannot be set arbitrarily, as was done by Abrams and Prausnitz [11].
Therefore, here Ayqw e 1S considered a model parameter and it is replaced in the equation by
a general reference surface area A* of a new standard segment. This modification allows an
improvement in the application of the Staverman-Guggenheim model to real mixtures, while
maintaining the physically founded form of the model structure.

To keep the change to the model equation minimal, Eq. can be reformulated to

Vi
0;

dW,ref
GE o = RTZx,ln— —RTZ A o diiln
l

(3.1)
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3 Improvement of the combinatorial contribution

where ¢;, ¢; and y; are determined as in UNIQUAC.

The new reference surface now needs to be determined by fitting Eq. to experimental data
of molecules that differ in size. It is then assumed that the value of the new reference surface
does not depend any further on the system that is considered and that A* is thus a general constant
in the equation. Since the combinatorial term does not take any energetic effects of mixtures and
pure components into account, data of mixtures that behave nearly athermally should be used for
the fit, because for such systems the influence of A* is maximal.

3.2 Experimental data

No real binary mixture behaves completely athermally. Mixtures of n-alkanes, however, behave
nearly athermally. Fig. [3.1]shows the heat of mixing of a binary mixture consisting of n-hexane
and n-dodecane at various temperatures. Note that the heat of mixing is small, as it should be
for an almost athermal mixture. The behavior of systems of n-alkanes that differ in size is thus
dominated by effects that are described with the combinatorial term and so these mixtures were
used to determine the reference surface of the new standard segment. For the fit, experimental
HE and 7 data of binary n-alkane mixtures were used. All data were taken from the DECHEMA
Chemistry Data Series [[15}65]].
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Figure 3.1: Experimental heat of mixing data for the binary n-hexane (1) + n-dodecane (2) mix-
ture. All experimental data were taken from the DECHEMA data series [63].

As chain length increases for n-alkanes, the molecular flexibility can lead to a back bending
of the chain to form intramolecular contacts. This changes the number of external contacts zg;
of a molecule, as discussed in Pfennig [64]. This effect of the flexibility of molecules is not

24



3.2 Experimental data

accounted for in the Staverman-Guggenheim combinatorial term as it is used here, so to obtain
accurate results, data of long n-alkanes were omitted from the fit. Analyzing the tendency for
backbending simulated with a geometric molecular model showed that the effect on zg; may
still be acceptable for n-hexadecane [64] and since many data for systems with n-hexadecane
are available, n-hexadecane was still included in the data set for fitting. Thus, n-butane was the
shortest and n-hexadecane the longest n-alkane considered.

All data used for the fit were carefully selected. The procedure for selecting the ¥ data
involved performing a preliminary fit of Eq. to all the data for one solute and comparing
the model results with the experimental values. First, the model was checked for systematic
deviations. For example, the model should not underestimate the experimental values for short
solvents and overestimate them for long solvents. Such behavior was not detected, so next the
data points for individual solvents were considered. If a data point clearly differed from the
others, it was excluded from the data set. If several data points from the same reference were
found to deviate from the rest, all of the data points of that reference were excluded from the fit,
since in this case systematical errors in the remaining data points could not be excluded.

Since a considerable amount of data is required to determine whether the model shows sys-
tematic deviations or a data point differs from the rest, this selection procedure could only be
performed for the solutes n-pentane up to n-octane. For the other solutes, the model was fitted
to the data for n-pentane to n-octane and then extrapolated. Since the model is extrapolated, the
selection criteria for these solutes were relaxed slightly. In total, about 23% of the original data
were excluded by the selection procedure.

The HF data cannot be easily depicted graphically, since in addition to the temperature and
the type of components, the composition of the mixture varies. Instead of evaluating all the data
for mixtures with one common component simultaneously, all binary systems were evaluated
individually. To do so, all data points of a binary system were plotted in a single diagram. If
enough data points were available to unambiguously identify data points that differed from the
rest, these data points were excluded from the data set.

Tab. shows the number of data points of activity coefficients at infinite dilution that were
used for the fit after the selection procedure. The temperature of the data points varies between
280.15 K and 453.15 K. Tab. shows the number of selected experimental data points for the
heat of mixing of binary n-alkane mixtures. The temperature of these data points varies between
283.15 K and 349.15 K. In appendix two tables that contain all data sets that were used for
the fit can be found.

Table 3.1: Number of selected experimental data points of activity coefficients at infinite dilution
of binary n-alkane mixtures. Temperature range between 280.15 K and 453.15 K.

solvent solute
C4 C5 C6 C7 C8 (C9 Cl10

C5 O 0 0 O 1 0 0
Co6 0 1 0 O 0 0 0
C7 0o 2 6 0 1 0 0
C8 0 6 3 0 0 0 0
c9 0 1 1 0 0 0 0
C10 0O 0 5 0 0 0 0
Cl12 0 8 0 O 0 0 0
Cl6 4 14 60 35 13 9 2
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3 Improvement of the combinatorial contribution

Table 3.2: Number of selected experimental data points of heat of mixing of binary n-alkane
mixtures. Temperature range between 283.15 K and 349.15 K.

component 1 component 2

C7 C8 Cl10 Cl12 Cl6
G5 0O o0 3 0 0
Co 22 13 88 142 172
C7 0O 0 O 19 16
C8 0O 0 O 30 3
C10 0O 0 O 19 4

3.3 Residual term

Although the heat of mixing of n-alkane mixtures is low, it still has to be accounted for if the
reference surface of the new standard segment is to be determined accurately. Certain entropic
excess contributions due to the small but strongly direction-dependent molecular potentials also
have to be considered, as discussed by Patterson et al. [66,167]]. Therefore, the new combinatoric
term in Eq. [3.1]is supplemented with a residual term intended to cover these effects. The residual
term is developed empirically and only to reproduce well the selected experimental data for the
fit. The resulting model is then fitted to the selected experimental data to obtain the value for the
reference surface of the new standard segment.

The residual term was developed on the basis of a simple regular solution model, in which
CH, and CH; segments of n-alkanes are differentiated energetically. For a binary mixture, this

model reads 1
~ X1X2
HE = -70q1@p————
2 X191 +x292

where 63 is the surface fraction of the CH; groups in the molecule i. z® characterizes the
interchange energy. @ is defined similarly to Eq. by

(613 — 623)° (3.2)

0 = 2&3 — &) — €33 (3.3)

where €3 is the interaction energy between a CH, and a CH; group. & and &33 are the interac-
tion energies between two CH, and two CH; groups respectively.

It was shown by [de Matos Alves| [68] that Eq. [3.2] shows systematic errors when describing
the heat of mixing of the selected n-alkane mixtures. These systematic errors result from the
fact that Eq. produces asymmetric curves when plotted over x; whereas most of the excess
enthalpy data are symmetric. For example, in Fig. [3.1]it can be seen that there is only slight
deviation from a symmetric course for the heat of mixing of the system n-hexane + n-dodecane.

Analysis showed that the overestimated asymmetry is the result of the denominator in Eq. [3.2]
Thus, to avoid overestimated asymmetry of the model, the denominator of Eq. was omitted,
which can be regarded as skipping the ¢; in the denominator. Then, with the available experi-
mental HE data, a correlation for @ was developed as a function of 7" and ¢;. To do so, several
plots of the experimental data over different variables were studied and several correlations were
derived from these plots. These correlations were all investigated further. The best result was
obtained with

1 c
HE = F1024192 (613 — 623)* <a+b(fh —q2)qi+ 7) (3.4)
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3.4 Results and discussion

where a, b, and ¢ are parameters. Eq. was integrated using the Gibbs-Helmholtz equation,
Eq. to obtain a term for the residual excess Gibbs energy. The integration constant was
determined by using the fact that for

C
a+b(q1—q)q3

T=-— (3.5)

HE (x1,T) equals zero for all x;. This means that at 7 = T the mixture behaves ideally, since it
shows no heat of mixing. Because of the lack of energetic effects in the mixture at this tempera-
ture, no energy related entropy effects can occur. This leads to the condition that SE_(x1,T) and,
therefore, GE (x|, T) must equal zero at T = 7. For GE(x1,T)

1
Ghy = 2ZX1Q1X2(]2(913—923)
2
¢ ¢ (a+b(g1—q2)q?)
b(q1—q2) g+ —T — 3.6
<a+ (q1 qz)q1+T <2T2 e (3.6)
resulted.

Fitting the parameters a, b, and c to the selected experimental H® data results in an average
absolute deviation of 3.51 J/mol per data point. Fig. shows a comparison of experimental
heat of mixing data with results from Eq. [3.4] for the binary n-hexane + n-dodecane system.
The correlation describes the experimental data well. In particular, the temperature dependence
is properly depicted. Only at the lowest temperature are the experimental data slightly over-
estimated, and at the highest temperature the correlation shows a slight deviation due to the
asymmetry of the experimental data that cannot be represented by the model.

A comparison of the result with Eq. [3.2] which is also included in Fig. [3.2] shows that Eq.
[3.4] is a considerable improvement, since Eq. [3.2] overestimates the asymmetry dramatically
and cannot describe temperature dependence. However, it should be stressed again that the aim
here was only to find a suitable expression that represents the excess over the combinatorial
contribution as accurately as possible in order to gain deeper insight into the behavior of the
available combinatorial models. Thus, Eq. [3.4] can only be regarded as an auxiliary function
with little molecular-thermodynamic meaning, but with the ability to represent reasonably the
selected data for the fit with a minimal number of parameters.

3.4 Results and discussion

Substituting Egs. [3.1]and [3.6]into Eq. 2.]results in:

1
GE = 2191292 (613 — 1923)2

2
c ¢ (a+b(g1—q2)qi)
b(@1—a) it = —T | oz —
<“+ (@1 —o)ai+ 7 (2T2 2c
+RTZx,1n¢’+ RTZ AWt lx,ln% 37
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Figure 3.2: Comparison of experimental heat of mixing data with results from Eq. (solid
lines) and Eq. (dashed line) for the binary n-hexane (1) + n-dodecane (2) mixture. All
experimental data were taken from the DECHEMA data series [65]].

The reference surface of the new standard segment A* and the correlation parameters a, b, and ¢
were fitted to the selected H® and 7 data simultaneously. The Levenberg-Marquardt algorithm
(LMDIF) [69] and the objective function

1

2
1 Y, -—}/°°1 .
A= HE . HE .2 2 exp,J calc, j 18

AHEZil( o Calw) +A'}'°° J ( Yexp.j (3:8)

were used.

The HE data were fitted on the basis of absolute deviations, because when relative deviations
are used, the fit tends to reproduce systems with small HE values much better than systems with
higher HE values. The 7 data were fitted on the basis of relative deviations. The contributions
of HF to the objective function were weighted with a factor

2
Age =Y (ng,i —Hle) (3.9)

1

which equals the sum of squared residuals resulting from fitting Eq. only to the experimental
HE data. The contributions of 7*° to the objective function were weighted with

2
M) (3.10)

Ao =
" ;< %D;p,j
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3.4 Results and discussion

which equals the sum of squared residuals resulting from fitting Eq. only to the experimental
Y~ data. In this way, the different number of data for the different properties as well as their
considerably different magnitudes of deviation are accounted for.

Table [3.3] shows the mean squared residuals for the different combinatorial terms. Tab. [3.3|
also shows the mean squared residuals for Eq. after the fit as well as the mean squared
residual of only the combinatorial part of Eq. after the fit. The new model describes the
selected 7 and HE data very well. The fit is better than any other model for the combinatorial
contribution. Evaluation of only the combinatorial part of Eq. shows a slightly smaller mean
squared residual for the ¥ data compared to the complete model. This small difference confirms
that the non-combinatorial contribution to Yy for n-alkane mixtures is small, which is why these
mixtures were chosen for the fit. Because of the good description of HE including its temperature
dependence, the small residual part of the ¥ data is also described well. As a consequence, it
can be assumed that the new reference segment for the combinatorial contribution is determined
significantly from the data.

Table 3.3: Mean squared residuals for the different combinatorial terms and for the new model.

model Ay Aye

% J/mol
UNIQUAC [IL1] 1522 -
Huyskens [[16]] 512 -
Kikic [[13] 3.88 -
modified UNIFAC (Dortmund) [[17]] 252 -
modified UNIFAC (Lyngby) [18]] 4.87

Eq. 226  3.59

only the combinatorial part of Eq. 2.15 -

Equation and its combinatorial part, Eq. [3.1] are added to Fig. 2.1 and plotted in Fig.
3.3l Comparison of the full model with only the combinatorial part of Eq. shows that the
contribution by the residual part of Eq. is small. Since the residual part of Eq. is
temperature dependent, the model was only plotted for 300 K, whereas the experimental data
vary between 293.15 K and 453.15 K. Eq. was fitted to experimental data of n-alkanes with
up to 16 carbon atoms. The full Eq. has therefore only been extrapolated for up to 25 carbon
atoms in the solvent, since it cannot be expected that the empirically formulated residual part of
Eq. can be extensively extrapolated.

The other models only consider the combinatorial contribution. To allow a fair comparison,
the combinatorial part of Eq. was plotted over the whole range with the reference surface, as
determined from the fit of Eq. It is obvious that the combinatorial part of Eq. describes
the data well, although it was not fitted directly to the data and only data from mixtures with
n-alkanes with up to 16 carbon atoms were considered for the fit. It should be stressed that
the characteristic general slope as a function of carbon number is better described by the new
model compared to the other models. While, compared to the other models, the experimental
data typically lie above the models for low carbon numbers and tend to lie below the models
for higher carbon number — at least if the data for low carbon number are better described — the
overall behavior is depicted better by the combinatorial part of Eq. with the new reference
segment.

The difference between the combinatorial part of Eq. and the Flory-Huggins model is
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3 Improvement of the combinatorial contribution
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Figure 3.3: Comparison of the different combinatorial terms and Eq. with experimental data
of the activity coefficient of n-hexane at infinite dilution in other n-alkanes. All experimental
data were taken from the DECHEMA data series [[15]].

due to the second term of Eq. This term of the Staverman-Guggenheim equation is often
considered a higher order correction term that is usually assumed to be small. However, it is
shown here that this term is not negligible if applied properly. The result shows that a meaning-
fully determined reference segment for the UNIQUAC combinatorial term, while maintaining
the physically founded form of the equation, leads to a result which is at least as good as that
obtained using the purely empirical modifications of the original models.

Table shows the parameters of Eq. that resulted from the fit. The new reference
surface area is 1.932 x 10%* m?/mol, corresponding to a radius of 0.05053 nm. These values
are significantly smaller than those of the reference segment originally defined for UNIQUAC
by Abrams and Prausnitz, which was characterized by a radius of 0.1818 nm and a surface area
of 2.5 x 10°> m?/mol.

Table 3.4: Resulting values for the parameters of Eq.
parameter value

a —303.1 J/mol

b —0.3413 J/mol

c 9.355 x 10* JK /mol
A* 1.932 x 10* m? /mol

Abrams and Prausnitz defined the size of the standard segment according to the idea that the
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3.4 Results and discussion

reference segment should correspond to a real chemical unit. However, the model is based on
a lattice picture of a fluid. This means that it is assumed that all molecules can be divided into
standard segments of equal size. It is also assumed that molecules can only occupy discrete
positions in space that are determined by the structure of the lattice and the size of the standard
segment. An additional assumption is that all molecules can be arranged on the lattice in such
a way that no lattice site remains empty. These assumptions obviously differ significantly from
reality. Molecules can have sizes that do not differ by exactly one standard segment and space can
be regarded as being continuous. Molecules can therefore in principle occupy an infinite number
of positions in space. Thus, a discrepancy between the model and reality must be expected at
some point. The result shows that the model can describe reality with a much smaller standard
segment than that proposed by Abrams and Prausnitz. The new standard segment thus no longer
corresponds to a real chemical unit.

It has to be pointed out that the smaller standard segment does not contradict the assumptions
in the Staverman model. As was discussed in section[2.1.2] Staverman derived his model without
an equation that relates g to r. Therefore, in Staverman’s model there is no limitation to the
number of internal contact sites a segment can have. Segments with no external contact segments
may occur, which makes possible to build up molecules with a large number of small segments.

According to Bondi, the van der Waals radius of a hydrogen atom equals 0.120 nm [70].
The new standard segment is thus a little smaller than half the size of a hydrogen atom. Since
the combinatorial term describes size and shape effects, a new physical interpretation of the
standard segment is that its size can be regarded as the order of the geometrical dimension at
which molecules “feel” their geometric details. With this new interpretation, the size of the new
standard segment appears to be reasonable, since on the surface of a molecule at the intersection
between two covalently bonded atoms, radii smaller than the van der Waals radii of atoms can
occur.
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4 The MOQUAC model

In this chapter, a new model for the excess Gibbs energy of liquid mixtures of uncharged compo-
nents is derived. The model is based on molecular orientations and considers molecular contacts
explicitly. Since for the derivation of the model the quasi-chemical theory is applied, the new
model is called MOQUAC, which stands for “Molecular Orientation based QUAsi-Chemical
theory”. MOQUAC can account for the full three-dimensional molecular structure because, con-
trary to state-of-the-art GF-models, with MOQUAC no assumptions are necessary that lead to
the loss of all information on molecular geometry. Therefore, this model can describe effects
like multiple contact points, which is important for the description of components with several
strongly interacting functional groups, such as bio-based components.

4.1 Derivation of MOQUAC

Liquids are densely-packed systems of molecules and the behavior of such systems is generally
very complex. A model is a simplified abstract view of this complex reality and serves to de-
scribe the behavior of liquids approximately. In order to produce the simplifications in a model,
assumptions need to be made. One widely accepted assumption is that liquids can be treated
as 1if their molecules were arranged on a lattice [19]. Here the structure of liquids is considered
to be quasi-crystalline. Whereas in a crystal each molecule is surrounded by a definite invari-
able number of nearest neighbors, this number is not definite in a liquid. Nevertheless, it can
be assumed that the number of nearest neighbors has a fairly well-defined average value. For
MOQUAC it is assumed that component i has z; nearest neighbors, where z; generally depends
on the local composition, which again depends on the size and shape of the components, their
global concentration, the temperature and the interaction energies in the system. For example, a
large molecule will generally have more nearest neighbors at infinite dilution in a solvent with
small molecules than it will have in a pure state, as is illustrated in Fig. 4.1 However, here
it is assumed that z; is constant and independent of size, shape, composition, temperature and
interaction energies. For most investigations in this work, the z; were set to 10.

A molecule generally interacts with all other molecules in its vicinity. The interaction potential
of uncharged molecules is usually of short range so the interaction energy with a direct neighbor
is significant for the behavior of a system, but the interaction energy soon loses significance as
the distance to the neighboring molecule increases. For MOQUAC it is thus assumed that only
the interactions of a molecule with its z; nearest neighbors need to be considered. The nearest
neighbors form the first solvation shell of a molecule. If charged molecules, i.e. ions, had to be
modeled, interactions beyond the first solvation shell would also have to be considered.

In addition, for MOQUAC it is assumed that an interaction between two directly neighboring
molecules is unaffected by other interactions in the system. Nonetheless, this is generally not
true since a molecule can, for example, become more polarized by the interaction with one of its
neighboring molecules, which causes the interaction energy with its other neighboring molecules
to change. This is illustrated in Fig. The central molecule in Fig. is a neutral molecule
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@

(a) pure component 1 (b) infinite dilution of 1 in 2

Figure 4.1: Number of nearest neighbors of a central molecule in a pure state and at infinite
dilution for molecules differing in size.

that is surrounded by three neutral molecules and a molecule with a permanent dipole. Areas of
a molecule with no charge are green and areas with a positive or a negative charge are red or blue
respectively. In the configuration that is shown in Fig. .24 the molecule with the permanent
dipole induces a small dipole on the central molecule. This is indicated by the small charged
areas on the central molecule. In Fig. [.2b| the neutral molecule on the right is replaced by a
molecule with a permanent dipole. Both molecules with a permanent dipole in this configuration
induce a stronger dipole on the central molecule than is the case in Fig. [4.2a] Because of the
stronger induced dipole, the interaction energy of the central molecule with its left neighbor is
affected. Thus, the interactions do interfere with one another here, but this effect is neglected for
MOQUAC.

@00 000

(a) weak induced dipole (b) strong induced dipole

Figure 4.2: Interference of interactions.
The example in Fig. [4.2b| also makes clear that the interaction energy between two directly

neighboring molecules generally depends on the orientation of both molecules. If the right
molecule with the permanent dipole in Fig. [4.2b] is rotated by 180°, then the interaction en-
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4 The MOQUAC model

ergy of this molecule with the central molecule is affected. Molecular orientation is considered
in MOQUAC. Thus, no averaging of the interaction energy over the orientations of a molecule is
performed, in contrast to models like NRTL, Wilson or UNIQUAC. Only by considering the ori-
entation can the three-dimensional molecular structure be accounted for and effects like multiple
contact points be considered.

In reality, a molecule can assume an infinite number of different orientations. For MOQUAC
this infinite number of orientations is discretized to a finite number of orientations N per com-
ponent i. Here, an orientation k is defined by a direction of orientation and an angle of rotation
around this direction of orientation. As an example for the definition of orientations, in Fig.
an idealized molecule with the shape of a cube is shown. The six faces of the cube are all
subdivided into four equal-sized surface segments and all segments are numbered. The infinite
number of different orientations of this cubic molecule can be discretized to, for example, 24 ori-
entations, where for each orientation when looking at a face of the cube the quadrant indicated
by the arrow is occupied by one of the 24 surface segments. In this case there are six direc-
tions of orientation, one for each face of the cube facing the front, and around each direction of
orientation four rotations can occur. In Fig. the first two orientations of the cube are shown.

375521

/)
21224
3|4 P>

et

Figure 4.3: Cubic molecule with each face subdivided into 4 equal-sized surface segments.

14| 42 1
2|3 3|4

(a) orientation 1 (b) orientation 2

X

Figure 4.4: Orientation 1 and 2 of the cubic molecule of Fig.

In a system of molecules, each orientation i,k occurs with a certain probability. This prob-
ability generally depends on the interactions in the system, since certain orientations allow for
energetic more favorable contacts than other orientations. pfk is the frequency of occurrence of
orientation k of a molecule of type i in a system at infinite temperature, i.e. when interaction
energies are irrelevant. In the case of the cubic molecule in the example above, the random fre-
quency of occurrence of each orientation equals 1/24. The orientations for the molecule in Fig.
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4.1 Derivation of MOQUAC

can also be defined in a different way. For example, the first two orientations can be united to
one single orientation. The number of different orientations is then reduced to 23 instead of 24
and the random frequency of occurrence of this larger orientation would be twice as high as the
random frequency of occurrence of the other 22 orientations. In general, the random frequency
of occurrence of an orientation i,k thus depends on the definition of the orientations that are
distinguished for a molecule of type i. For MOQUAC it is assumed that the frequency of occur-
rence of orientation k of a molecule of type i does not change as a result of the interactions in a
system, i.e. at a finite temperature. Additionally, the frequencies of occurrence of orientation are

normalized, such that
NoT

Y ph=1 4.1)
k=1

applies.

To characterize a contact between two neighboring molecules as a function of their orientation,
contact types are defined in MOQUAC. To realize this for each contact, an individual reference
system is introduced and the orientation of both molecules relative to this reference system is
determined. The reference system itself is determined by the connection line between the cen-
ters of mass of both molecules. The direction of orientation of a molecule coincides with this
connection line and points towards the neighboring molecule. A direction perpendicular to the
connection line between the centers of mass is also required to evaluate the rotational orienta-
tion. The choice of this direction is arbitrary but should be constant for the contact. Although a
molecule has only one global orientation in space, since for every contact an individual reference
system is introduced, one orientation per contact thus z; relative orientations are distinguished
for each molecule of component i. The frequency of occurrence Psz of an orientation i,k is inde-
pendent of the choice of the reference system and is therefore indépendent of the contact under
consideration. By this specification it is not the absolute orientation of each molecule in space
that is characterized but rather the relative orientation between two molecules in contact with
each other.

A molecular contact is considered completely characterized by the type i and j of both
molecules involved in the contact and their orientation k and / relative to the reference system
of the contact. A contact of type j,l,i,k is a contact that originates from the orientation k of a
central molecule of type i with the orientation / of a surrounding molecule of type j. Of course,
this contact is identical to a contact of type i,k, j,/. The only difference is the molecule that is
chosen as reference for the contact.

For example, in Fig. [4.5] three different orientations of an ethanol molecule are given. The
arrows next to each molecule in Fig. [.5]indicate the reference system. The horizontal arrows
show the direction of orientation and the vertical arrows allow assignment of a rotational orien-
tation to each molecule. Orientation 2 differs from orientation 1 by rotation and orientation 3
shows a different direction. In Fig. 1.6 two contacts between ethanol molecules are shown. Be-
tween both molecules of each pair of contacting molecules, a part of the connection line through
the centers of mass is shown. In addition, for each contact, a direction perpendicular to the con-
nection line is given. Together with the connection line this defines the reference system. The
direction of orientation of a molecule should coincide with the connection line through the cen-
ters of mass of both contacting molecules and point towards the other molecule. The directions
of orientation are also shown in the figure. With the definition of both reference systems, the
relative orientation of the central molecule equals orientation 1 of Fig. .5 when considering the
horizontal contact and equals orientation 3 of Fig. when considering the vertical contact. The
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4 The MOQUAC model

orientation of the molecule on the right equals orientation 2 and the orientation of the molecule
on the top equals orientation 3 of Fig. #.5] Thus a 2-1 and a 3-3 contact are shown.

(a) orientation 1 (b) orientation 2 (c) orientation 3

Figure 4.5: Example of three orientations of an ethanol molecule.

Figure 4.6: An example of a 2-1 and a 3-3 contact between ethanol molecules. The orientations
are defined in Fig.

The relative orientations k and / relative to the reference system of the contact and the type
of molecules i and j defines the interaction energy of the two neighboring molecules u;;; k.,
which, generally speaking, also depends on other quantities such as the distance between both
molecules and the temperature. For the derivation of the MOQUAC model in a first approxima-
tion it is assumed that the interaction energy for given relative orientations can be represented by
one average value. Basically the same assumption is made for the original UNIFAC model [34],
whereas in the UNIFAC modifications, the average interaction energy is considered temperature
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4.1 Derivation of MOQUAC

dependent [[17,18]. In COSMO-RS, the misfit part of the interaction energy is considered tem-
perature independent, whereas the hydrogen bonding part of the interaction energy is considered
temperature dependent [46]].

Because a contact of type j,/,i,k is equal to a contact of type i, k, j, [, the interaction energy is
symmetrical for the MOQUAC model:

Ujlik = Uik,jl 4.2)

COSMO-RS also uses symmetric interaction energies, whereas for UNIFAC and its modifica-
tions, asymmetric interaction energies are assumed. For MOQUAC, the interaction energies be-
tween two molecules are parameters that for real components can be described by an additional
model that describes the interaction energy, for example, as a general function of the charge
densities of the interacting surfaces. Such a model is described in chapter [5
To determine the energy of a liquid system of molecules, the frequency of occurrence of

contacts of type j,/,i,k in the system needs to be known. For this, y;;; is defined as the
fraction of molecular contacts originating from the orientation k of a molecule of type i with the
orientation / of a molecule of type j. The y;;; are normalized such that for all i € [1,...,N¢]
and k € [1,... N/

Ne Ny

Z Z Yinik=1 4.3)

j=1i=1
applies. If N is the number of molecules in the system, then Nx;z; is the number of contacts
that originate from the molecules of component i. Nx;z; p?k is then the number of times the rela-
tive orientation k of component i can be identified in the system when considering all contacts.
Nx,-zipfkl//j,lj’k is the number of molecular contacts that originate from the orientation k of a
molecule of type i with the orientation / of a molecule of type j. Of course, the number of con-
tacts originating from the orientation k of a molecule of type i with the orientation / of a molecule
of type j is equal to the number of contacts originating from the orientation / of a molecule of
type j with the orientation k of a molecule of type i. Therefore, the symmetry conditions

R R
ZiXiPi Vi lik = ZjXjPj 1 Vik,jl 4.4)

can be defined for all i,j € [1,...,N°], k€ [1,...,N?] and [ € [l,...,N}’r]. This symmetry con-
dition is equivalent to Eq. of the lattice model by Guggenheim.

Since for the derivation of MOQUAC it is assumed that to describe a system of molecules
only contacts between two directly neighboring molecules need to be considered, the energy
of a liquid system U is calculated by summing the interaction energies of all contacts between
directly neighboring molecules:

R
U= SZiXiPi W Li kU Lik (4.5)

The factor 1/2 in Eq. follows from the fact that Egs. and [4.4] apply and that due to the
four sums each contact is actually counted twice.
The goal of the derivation here is not only to describe the energy of a liquid system but describe
its excess Gibbs energy GE. GF is defined by:
N, N,
G*=G—RTY xilnx;— Y xG} (4.6)
=1 =1

l l
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4 The MOQUAC model

The second term on the right hand side of Eq. is the ideal mixture contribution to the Gibbs
energy. G? is the Gibbs energy of pure component i. Thus, with an expression for the Gibbs
energy G that can be applied to pure components and to mixtures, the excess Gibbs energy can
be determined with Eq. 4.6l For the Gibbs energy, a contribution by the enthalpy H and the
entropy S can be distinguished:

G=H-TS 4.7)

A common assumption for the derivation of GE-models is that liquid systems are considered
to be independent of pressure. With this assumption, the enthalpy H of a liquid system equals its
energy U, as was specified in Eq. With Egq.

N¢ NO N¢ Nor

H= 2: 2: 2: 2: ZM&pku@llk JiLik (4.8)

i=lk=1j=1I=

results from Eq. Since the enthalpy and energy are equal, the Gibbs energy G of a liquid
system is also equal to its free energy A:

G=A 4.9)
The free energy can be determined from the canonical partition function Q with
nA = —kgTInQ (4.10)

where 7 is the amount of substance of the liquid system in mole. The canonical partition function
is arrived at by summing the Boltzmann factor of every microstate & of the liquid system:

U
0= Zexp( Z;) @.11)

Ug is the energy of the system at the microstate &. Because of the lattice view of a liquid, a
microstate is determined by the arrangement of all molecules on the lattice. Every configuration
of molecules on the lattice results in a distribution of the different contact types. This distribution
can be characterized by the vector ¥ that contains the contact fraction of each contact type
j,Li,k,Le.VGij.

According to Eq. U only depends on . Two different microstates that have identical §
thus have identical U. Microstates with identical ¥ can be summarized and instead of summing
over all microstates, Q can be determined by summing over all different :

0 =Y e(¥)exp (—”U(‘T’)) (4.12)
v

kgT

g() is the degeneracy of U (), i.e. the number of microstates with the same . Due to the fact
that energy and enthalpy are equal, Eq. can also be written as

) nH (y)
% g(V)ex p< Tl ) (4.13)

where H () is determined with Eq.
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4.1 Derivation of MOQUAC

The sum of Eq. has a very large number of summands. In statistical thermodynamics it
is common practice to approximate such a sum with its leading summand [71] if the number of
possible states is large. This applies here, so ¥* has to be determined where the summand of Eq.
M.13]is maximal. With this assumption

0 = g(§")exp (—”i}i‘ﬁ )) (4.14)

can be written for Eq. #.13] Eqs. 4.9]and 4.10]are applied, with
L. ks .
G=H(y")——~Tln(g(y")) (4.15)

as the result. A comparison of Eq. f.15|and Eq. 4.7 shows that S is calculated by:

k o
S="In(g(y")) (4.16)

Now g() can be described by a similar approach to Guggenheim’s [19], where the number
of different ways to allocate all contacts on the lattice is considered. The result of this approach
is

N°¢ N N€ ]VOr ]ZJpRl
S = Scomp + R Z Z Z Z ~XiZiD; klllj,l,l kIn ( Z J ) 4.17)
],l,z k

i=1k=1j=11= =1XmZm

For Scomp, different models can be used. In this work, Staverman’s equation, Eq. 2.9 is used
with the new reference segment of chapter [3|to determine the structural parameters r and g. The
coordination number z of the combinatorial term in this work was always set to 10. A detailed
derivation of Eq. is given in appendix

The residual part of the entropy S is defined as

Sres =5— Scomb (4~18)

Ne NPT ve NPT xjzjpP}y
res—RZZ Z Z xlzlplkllljllk NE : (4.19)

i=1k=1j=1/= Vi Lidk Xpe1 XmZm
Appendix [7.5]shows that Eqs. 4.8 and 4.17] fulfill the Gibbs-Helmholtz equation

H-TS
H= (M) (4.20)
7)),

and that thus the enthalpy and entropy terms of MOQUAC are consistent. Substituting Eqs. {.§]
and into Eq. . 7| results in

N N NC Nor 1
G:ZZ ZZ lelplkllljllkujllk T'Scomb—
i=lk=1j= 117]

N€ NOl’ N¢ Nor szjpljl
TRY. Z ) Z ~XZipRe Wik In ] @.21)

i=1k=1j=1I= V) Lik Xom—1XmZm
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4 The MOQUAC model

The condition for §* that the summand of Eq. is maximal is equivalent to the condition
that Q of Eq. [4.14]is maximal and thus G of Eq. {.15] or Eq. [4.21] respectively is minimal. A
necessary condition for this minimum is that

( 9G ) —0 (4.22)
aWn,p,m,o T,X,'

applies. The y* that fulfill Eq. and simultaneously fulfill Egs. and describe a
representative system state which has an internal equilibrium of contacts for given macroscopic
variables 7 and x;. Under consideration of Eqs. 4.3|and 4.4} Eq. results in:

VilikWik,jl Lik T Wik jl —UWjlj1— Uikik
J7 )by L a.]v :exp _ ,]7 715 ! 7.] .], 7.]7 LKL, (4.23)

VikikVjljl RT

A detailed derivation of Eq. is given in appendix Since Y is a measure for the concen-
tration of a contact type, Eq. f.23]is very similar to the law of mass action of chemical reactions.
Because of this, the approach is referred to as quasi-chemical.

Eqgs. {4.3] #.4)and 4.23| form a set of non-linear equations that has to be solved to determine
the representative contact fractions of the different contact types, l//j7l’l.7k, in the liquid system.
The structure of the set of non-linear equations is typical for the quasi-chemical theory and the
same modified Newton-Rapson method by Larsen and Rasmussen [48] can be applied to solve
the set of equations as was used for GEQUAC (see appendix [7.1). With §¥* the Gibbs energy of
the liquid system can be determined with Eq. 4.21] This method can be used to determine the
Gibbs energy of mixtures as well as of pure components.

To arrive at the excess Gibbs energy, a combinatorial and a residual contribution to the Gibbs
energy

G = Geomb + Gres (4.24)

are distinguished. G.omp 1S defined as
Gcomb - _TScomb (425)

such that for the residual contribution

NO]‘

N N' Ne©
- Z Z Z Z lelpsz],l,l KU 1ik
i=1k=1j=1[=1

N NPT e N szjpizl
_TRZ Z Z Z xlzlplkll/jllk (4.26)

i=lk=1j=11= llf/ukZ —1Xmim

results. The excess Gibbs energy is then determined by Eq. [2.T] with Egs. 2.13]and [2.60]

The derivation of the new G¥-model MOQUAC is thus complete. Because of the consideration
of different contact types, MOQUAC allows consideration of the effect of the three-dimensional
molecular structure on the interaction energies. The interaction energies are, however, param-
eters for MOQUAC that have to be determined by an additional model. If these interaction
energies can be described predictively then MOQUAC can also be applied predictively to de-
scribe the behavior of liquid systems. However, before an attempt is made to apply MOQUAC to
mixtures of real components, MOQUAC will be verified by a comparison to simulation results
of lattice systems.
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4.2 Verification of MOQUAC by comparison to simulation results

4.2 Verification of MOQUAC by comparison to
simulation results

A simple system fulfilling the assumptions made for deriving MOQUAC is a lattice system with
molecules allowing for different interactions. If the model was derived correctly it should thus
be able to describe simulation results of such a lattice system. In particular, MOQUAC should
be able to describe systems whose behavior is determined by the three-dimensional molecular
structure. To evaluate the performance of MOQUAC, results using MOQUAC were compared
to (a) results from lattice simulations and (b) results from GEQUAC. GEQUAC serves as a
benchmark since it is equal to the thermodynamic part of COSMO-RS, as was discussed in
section2.2.41

The simulation results of the work by Pielen [25] were used for the evaluation of MOQUAC.
Pielen considered a system consisting of cubes each with 6 faces that could differ in their in-
teractions. These cubes were placed on a cubic lattice with 10 lattice positions in each spatial
direction. In the simulations, periodic boundary conditions were applied and only contacts be-
tween direct neighbors were accounted for.

The faces of each cube are all subdivided into 4 segments of equal size. Figure shows
a three-dimensional image and Fig. shows a flat projection of the molecular model Pielen
applied for his simulations. In the lattice, the faces of two neighboring cubes always completely
overlap, so no offset occurs. Thus, a surface segment always interacts with one other surface
segment and cannot interact with more than one surface segment simultaneously.

6|5
78
1413|109 | 2 | 1 |22 |21
15/16 |11|12| 3 | 4 |23 |24
18 (17
19|20

Figure 4.7: Flat projection of the general form of a molecule used in the Monte-Carlo simulation.

Pielen applied a Monte-Carlo algorithm for his simulations, where a Monte-Carlo step con-
sisted of (a) interchanging two randomly chosen molecules (translation step) and (b) the 90°
rotation of one randomly chosen molecule in one of six possible directions of rotation (rotation
step). The direction of rotation was also randomly chosen. After both a translation step and a
rotation step, the total energy U of the system was evaluated. If the new energy U(2) was less
than the energy before the step U(1), the new state was accepted. If the new energy was higher,

the Boltzmann factor
UR)-U(1
RT

was determined. The new state was accepted if the Boltzmann factor B was higher than a random
number between 0 and 1. Otherwise the step was reversed.
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4 The MOQUAC model

At the beginning of a simulation, the molecules were distributed randomly on the lattice ac-
cording to the given global composition. Then, 5 x 107 Monte-Carlo steps were conducted to
equilibrate the system. After the equilibration phase, the system’s energy was determined af-
ter each accepted step, in order to determine the average system energy. This evaluation phase
also consisted of 5 x 107 Monte-Carlo steps. By conducting simulations at different tempera-
tures, the temperature dependence of the energy of the system was determined. Since the lattice
experiences no pressure dependence, the system’s energy equals the system’s enthalpy. Pielen
determined the Gibbs energy from the enthalpy by integrating the Gibbs-Helmholtz equation
[25]].

Two different systems were simulated, one system with and one without coupled interactions.
The system without coupled interactions allows a fair comparison with GEQUAC, because this
model is not capable of describing coupled interactions, as discussed in chapter[2] By comparing
MOQUAC’s results with the simulation results for the system with coupled interactions, the
improvement in the description of such systems by MOQUAC can be evaluated.

4.2.1 Simulation of a system without coupled interactions

The system without coupled interactions consists of two components. Component 1 has a posi-
tively charged face, a negatively charged face and four uncharged faces. A flat projection of this
component is shown in Fig. .8al The positively charged surface segments have the index 1, the
negatively charged surface segments have the index 2 and the neutral surface segments the index
3 to 6. Component 2 is completely neutral. A flat projection of this component is shown in Fig.
All surface segments of component 2 have the index 0.
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(a) (b)

Figure 4.8: Flat projection of (a) component 1 and (b) component 2 in the system without cou-
pled interactions. The blue sites are negatively charged, the red sites are positively charged and
the colorless sites are neutral. Component 2 is also used in the system with coupled interactions.

Table shows the interaction energies for the different surface-segment contacts used for
the simulation. Equally charged surface segments experience a repulsive force and thus show
positive interaction energy. Unequally charged surface segments experience an attractive force
and thus show negative interaction energy. All interactions with a neutral surface segment show
no interaction energy.

For MOQUAC it is assumed that 6 directions need to be considered for each component. The
random probability of occurrence of each orientation pfk is 1/6. z1 = zp = 6, since each molecule
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4.2 Verification of MOQUAC by comparison to simulation results

Table 4.1: Segment-segment interaction energy for both the system with and without coupled
interactions.

u12/R:u21/R -1200 K
ull/Rzuzz/R 1200 K
all other u;;/R 0K

has 6 nearest neighbors. For a molecular contact, four equally charged surface segments are
always interacting simultaneously. The interaction energy divided by R is thus equal to —4800 K,
4800 K or 0 K. For GEQUAC the 4 segments of 1 face are united, leading to identical interaction
energies. For GEQUAC z is also set equal to 6.

Figures [4.9] and .10 show a comparison of the excess properties between the model results
and the results from the lattice simulation at 1600 K and 3200 K for the system without cou-
pled interactions. MOQUAC and GEQUAC give identical results for this system and at both
temperatures both models describe the data from the simulation very well.

3000 T = 1600 K

2500

2000

excess property in J/mol
=
a1
o
o
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.9: Comparison of results from simulation (symbols) [25] with results from MOQUAC
and GEQUAC (lines) for the system without coupled interactions. The MOQUAC and GEQUAC
result are identical. The GEQUAC results are identical to those obtained with the thermodynamic
part of COSMO-RS.

The high temperatures for the simulation were chosen because u#/RT needs to have an appro-
priate value, since this term determines the Boltzmann factor. To determine whether the choice
of the interaction energies was appropriate, the resulting excess properties were evaluated. Since
here the excess properties show realistic values, it was concluded that the choice of the interac-
tion energies was adequate [25]].
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Figure 4.10: Comparison of results from simulation (symbols) [25] with results from MOQUAC
and GEQUAC (lines) for the system without coupled interactions. The MOQUAC and GEQUAC
result are identical. The GEQUAC results are identical to those obtained with the thermodynamic
part of COSMO-RS.

4.2.2 Simulation of a system with coupled interactions

The system with coupled interactions also consists of two components. Component 1 has one
positively charged and one negatively charged surface segment on the same face, as shown in
Fig. The positively charged site has the index 1 and is red, the negatively charged site has
the index 2 and is blue. The remaining sites with the indices 3 to 24 are neutrally charged and
are colorless. For two interacting molecules of component 1, a favorable configuration exists,
where simultaneously two pairs of attracting surface-segment contacts exist. This configuration
is shown in Fig.

Component 2 is the same component as before again being completely neutral. Table
shows the interaction energies of the different surface-segment pairs.

For MOQUAC, 6 directions of orientation are distinguished. Per direction of orientation,
a molecule can now have 4 different orientations, due to rotations. Thus, 24 orientations are
considered for each component, N{* = N3* = 24. For example, orientation 1 of component 1
occurs when surface segment 1 is in the upper left position when looking at the face of the cube
that contains surface segment 1. Orientation 2 of component 1 occurs when surface segment 2
is in the upper left position when looking at the face of the cube that contains surface segment
2, etc.. This was already illustrated in Fig. [4.3] The random probability of occurrence of each
orientation, p?k, is 1/24. Again, z; = zp = 6, since each molecule has 6 nearest neighbors. Table
shows the interaction energies for the system with coupled interactions.

For GEQUAC, 24 surface segments are distinguished per component. The surface fraction
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Figure 4.11: Flat projection of component 1 in the system with coupled interactions. The blue
site (index 1) is negatively charged, the red site (index 2) is positively charged and all other sites
are neutral.

Figure 4.12: Most favorable configuration of component 1 in the system with coupled
interactions.

of each surface segment is 1/24. The coordination number is again set to 6 and the interaction
energies for the segment-segment contacts are as given in Tab.

Figures [4.13] and [4.14] show a comparison of the excess properties between the model results
and the results from the lattice simulation at 1600 K and 1920 K. In addition to successfully
describing the data from a simulation of a system without coupled interactions, MOQUAC is
also able to describe the data from the simulation for the system with coupled interactions very
well. GEQUAC and thus the thermodynamic part of COSMO-RS, on the other hand, give a
very poor description of the simulation results. In contrast to MOQUAC, GEQUAC and the
thermodynamic part of COSMO-RS are not capable of describing the coupled interaction of
surface segments 1 and 2 of component 1. The coupled interaction in this case leads to a very
attracting molecular contact. The high temperatures for the simulation were again chosen such
that u/RT has an adequate value.

Table 4.2: MOQUAC contact-interaction energy for the system with coupled interactions.
ui1,1,1/R 2400 K
uri14/R=uia11/R 1200K
win11/R=ui112/R 1200K
uip13/R=u1312/R  1200K
ui214/R=u1412/R -2400K

u13,13/R 2400 K
u17371,4/R:u1747173/R 1200 K
all other u;;; /R 0K
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Figure 4.13: Comparison of results from simulation (symbols) [25] with results from MOQUAC
(solid line) and GEQUAC (dashed line) for the system with coupled interactions. The GEQUAC
results are identical to those obtained with the thermodynamic part of COSMO-RS.

By comparing MOQUAC with results from lattice simulations, it has thus been shown that
MOQUAC can take the three-dimensional structure of molecules into account and that MO-
QUAC is therefore able to describe coupled interactions correctly. When there are no coupled
interactions, MOQUAC yields identical results to GEQUAC and the thermodynamic part of
COSMO-RS.

4.3 Accounting for conformers

For MOQUAC, isomers, especially stereoisomers, are easy to distinguish because of their dif-
ferent ways of interacting with other types of molecules. The three-dimensional structure of a
molecule is accounted for by MOQUAC by the way a molecule interacts with other molecules.
MOQUAC considers the structure of molecules to be rigid. While this is a good approximation
for many simple chemical compounds, e.g. ethane, methanol, dimethylether, etc., most more
complex molecules are flexible and thus have more than one relevant conformer, i.e. they have
relevant metastable energy minima in addition to the total energy minimum. For molecules with
a large number of rotatable bonds, the number of conformers can easily increase exponentially
[46].

Pfennig [64] showed that the flexibility of a polymer chain can be modeled by distinguishing
different polymer conformations. A similar approach is applied here to account for the flexibility
of molecules. To do this, in MOQUAC a set of NiConf rigid conformers of a component i is con-
sidered. This set of conformers needs to be selected adequately to represent the most frequently
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Figure 4.14: Comparison of results from simulation (symbols) [25] with results from MOQUAC
(solid line) and GEQUAC (dashed line) for the system with coupled interactions. The GEQUAC
results are identical to those obtained with the thermodynamic part of COSMO-RS.

occurring conformers of the component in the real system. Buggert et al. discuss different tools
to identify conformers for the use with COSMO-RS [72]. Similar approaches can also be used
to find the set of conformers for use with MOQUAC.

As in Pfennig [64]], the probability of occurrence of a conformer is determined from the con-
dition that all conformers of a component are in chemical equilibrium. Thus, for all » and
g€l,...,Nfon

Mir = Uig (4.28)
applies, where U; , is the chemical potential of conformer r of component i. This chemical
potential is given by

Hir = (gZG) + i, (429)
> 1,1 gr i

where n; , is the amount of substance of conformer r of component i found in the mixture in
equilibrium. G considers the contribution of the interactions and form and shape effects to the
chemical potential and is given by Eq. To find the chemical potential of a component,
the contribution of the formation of the component u{  from some reference state also needs to
be considered. The choice of this reference state is arbitrary, but the same reference state must
be used for all types of molecules. In the contribution by formation no interactions between
molecules should be considered, since these are already considered in the MOQUAC expression
for G. For uif . an enthalpic and an entropic contribution are distinguished

uf,=Hf, —TS;, (4.30)
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4 The MOQUAC model

where Hlf . 1s the enthalpy of formation and S{r the entropy of formation of conformer r of com-
ponent i. The enthalpy and entropy of formation of each conformer can be determined from a
quantum-chemical calculation, e.g. with the HyperChem program [73]. To a first approxima-
tion, Hif’ . can also be set equal to the molecular energy without the dielectric energy, El-CrOSMO
determined from a COSMO calculation 7

9

Hf, ~ ESPSMO (4.31)

ir

and Sf’r can be set equal to
S, ~Rlnm, (4.32)

where m; - is the multiplicity of a molecule of conformer r of component i, i.e. the number of
different ways to build the same structure [72]. These approximations are equivalent to those
chosen for COSMO-RS [46].

In addition, for the chemical equilibrium between all conformers as described by Eq.
the sum of all mole fractions x; , of the conformers of component i must equal the global mole
fraction x; of component i:

Y xir=xi (4.33)

4.4 Selection of molecular orientations

The quality of description of real systems using MOQUAC greatly depends on the appropriate-
ness of the molecular orientations used. If, for example, a molecular orientation that can lead
to a hydrogen bond is not accounted for, then the model will not describe the effect of this hy-
drogen bond on the behavior of the system. If, on the other hand, only very few orientations are
accounted for and the orientation that can lead to a hydrogen bond is among them, the random
frequency of occurrence pfk of this orientation will probably be assumed too high and as a result
MOQUAC will determine an occurrence of the hydrogen bond too frequently.

All contact fractions Y ; x are unknowns for the set of non-linear equations of MOQUAC.
By applying the Newton-Rapson method which was modified by Larsen and Rasmussen [48] for
this solution, the number of unknowns is reduced to one unknown per orientation. Thus, for a
system of N¢ different components, a total of

NC
N =Y N (4.34)
i=1

unknowns result. The set of equations has to be solved iteratively, as described in appendix
7.1, where in each step of the iteration, the inverse matrix of an N°'-by-N°" matrix needs to be
determined. This is the most time-consuming step of the calculation and scales with a factor
N3, Thus, to keep the required computation time for solving the set of non-linear equations
low, the number of orientations that are distinguished for a system should be kept low.

From these considerations it can be concluded that careful selection of the orientations that
are considered for a system is of great importance. All relevant orientations that determine the
behavior of a system need to be accounted for, but at the same time the number of different
orientations that are considered should be kept as low as possible. It is also clear that the orien-
tations that have to be considered per component depend on the system. Acetone, for example,
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4.4 Selection of molecular orientations

is able to form hydrogen bonds with chloroform, which strongly determines the behavior of this
system. With n-heptane, on the other hand, acetone cannot form hydrogen bonds. For the system
acetone + chloroform it is thus important to consider exactly those orientations of acetone that
can lead to a hydrogen bond with chloroform. For the system acetone + n-heptane the choice of
orientations for acetone will probably be less critical.

MOQUAC assumes independent molecular contacts. Because of this, two orientations of one
molecule can be merged if they show identical interaction energies with all other orientations in
the system. Proof of this, together with an example, is given in appendix This feature is
used for the definition of orientations of each component in a system.

The procedure is to first consider a fine grid of orientations per component and determine all
interaction energies in the system based on that grid. Then, for each component it is evaluated
if there are orientations that have similar energies with all other orientations in the system. Such
orientations are then merged. In this way, the number of orientations per component is reduced,
in order to reduce the computation time required for solving the MOQUAC equations. This
procedure only needs to be done once per system. For the merging of two orientations, it is not
necessary that they show absolutely identical interaction energies with all other orientations in
the system. As a general rule, orientations which behave similarly can be merged.

An orientation of a component is given by a direction of orientation and a rotation. When Nidir
directions and Nl-rOt rotations are considered, then

NP = NN (4.35)

different orientations per component result. For example for the molecules in Fig. that
were used in the Monte-Carlo simulations in section 24 orientations with 6 directions of
orientation and 4 rotations per direction of orientation were considered.

Generally, in this work an attempt was made to define the directions of orientation for a
molecule in such a way that a fairly homogeneous distribution of the directions of orientation re-
sults. With the definition that was applied, if the center of mass of the molecule were positioned
in the center of a cube, lines originating from the center of mass and pointing in each direction
of orientation would penetrate the surface of the cube at Nidir different sites. These sites are ho-
mogeneously distributed on the surface of the cube. Figure [.15|shows these sites for 26, 56 and
98 directions of orientation. To achieve such a homogeneous distribution of the directions of
orientation, only 4, 6, or 652 —125+8 (fors > 2) directions of orientation can be considered. In
addition, N} equally distributed rotations are distinguished around each direction of orientation.

Starting from the fine distribution of orientations, it is determined which orientations can be
merged for each component. For the merging or clustering of similar orientations to clusters,
different clustering techniques can be used. Clustering is a method of unsupervised learning,
and a common technique for statistical data analysis used in many fields [74]. For the clustering
of similar orientations in this work an agglomerative algorithm was used, i.e. to begin with, each
orientation is considered a cluster that consists of one element and progressively similar clusters
are merged. The similarity dy g of two clusters A and B was determined with

dap =mind(y) (y) forVxeA,yeB (4.36)
where x and y are elements of the cluster A and B respectively. The application of Eq. #.36]

results in single-linkage clustering [74]. This means that for every element in a cluster, at least
one other element is less than or exactly a threshold value dp,a.x away. There are also other criteria
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4 The MOQUAC model

(a) 26 directions (b) 56 directions (c) 98 directions

Figure 4.15: Cubes used for the definition of directions of orientation.

for similarity between two clusters that can be applied, but as a preliminary step in this paper
only single-linkage clustering was considered.

To measure the distance between two elements d; x) (; ), 1. between two orientations i,k and
i,m, different definitions can be applied. A general equation for such a distance measure is given
by Bacher [[74]]. In the MOQUAC notation it reads

ne N9 lw

digyim = | X Y |jrik— Witim|" (4.37)
i=1i=1

where v and w are metric parameters. The parameter v weights the differences in individual
variables. A larger value for v results in larger differences in few variables being more strongly
weighted than small differences in many variables. The parameter w has the function of scaling
the sum term of Eq. .37 back to the original scale. According to Bacher, as a general rule w is

set to v [74]].

Another definition for the distance between two orientations that was also used in this paper is
d(i ), (im) = MAX U 1 — U 1 im] forVjel,...,N,I€[l,...,NY] (4.38)

In Eq. the interaction energies of the orientations i,k and i,m with all other orientations in
the system are compared and d; z) ;) s set to the largest deviation. Eq. @' was mainly used
in this work because it allows for a very fast algorithm. To show that the orientations i,k and i,m
are not similar and can thus not be merged, it is sufficient to show that for at least one orientation
in the system, the distance between the orientations i,k and i,m exceeds dmax.
An example can help illustrate the algorithm of clustering as follows. Tab. [{.3] gives the
interaction energies of a binary system with two orientations per component. Evaluating Eq.
results in d(q 1) (12) = 50 and d(5 1) (2.2) = 125. When the threshold value dmax 18 chosen
to equal 50, then the two orientations of component 1 can be merged but the two orientations of
component 2 cannot. Only when dp,, 1s at least 125 can both the two orientations of component
1 and of component 2 be merged.
After determining which orientations can be merged into a cluster, the different clusters are
considered the new orientations. The frequency of occurrence of a cluster is determined by
summing the frequency of occurrence pEk of all orientations that were merged into the cluster.
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4.4 Selection of molecular orientations

Table 4.3: Interaction energies of a binary system with two orientations per component.
orientation | 1,1 1,2 2,1 2,2
1,1 | 100 150 210 320
1,2 | 150 150 225 325
2,1 210 225 100 200
2,2 1320 325 200 325

The interaction energies of the new orientations are determined by averaging over all relevant
interaction energies. To calculate these averages each interaction energy should be weighted with
the corresponding p?k. However, since in this work the interaction energies and also the random
probability of occurrence of each orientation are very similar, the arithmetic mean interaction
energy was used throughout this work. Tab. [4.4] shows the averaged interaction energies for the
example in Tab. when dax 18 set to 50 and the two orientations of component 1 are merged.

Table 4.4: Interaction energies of the binary system after merging the orientations of component

1 from Tab.

orientation 1,1 2.1 2,2
1,1 | 137.5 217.5 3225
2,1 217.5 100 200
2,2 | 3225 200 325

The interaction energy is used for the evaluation of similarity between two orientations. There-
fore, the model that is used to describe the interaction energy influences the clustering result. It
is important that this interaction-energy model gives a smooth dependence of the interaction en-
ergy of the orientation. This is because it is only in this way that it can be guaranteed that for
very similar orientations, similar interaction energies result. In the following chapter, a simple
empirical interaction-energy model is presented. The clustering of orientations is investigated
with this model.
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5 Predictive description of orientation
dependent interaction energies

For the application of MOQUAC, all interaction energies u need to be known. For a mixture that
consists of N° components, MOQUAC requires a total of

N¢ N¢

NI, = Z Z N{™NY" (5.1)
i=1 j=1

different interaction energies. In Eq. [5.1] all different combinations of orientations of all com-
ponents are considered. With the symmetry condition for the interaction energies, Eq. 4.2} the
number of unknown interaction energies can be reduced to

N¢ N¢ N°¢
1
N'=) 3 <(N;’f)2+N;’f) +Y ) NN (5.2)
i=1 i=1 j=i+1

Eq. [5.2]is thus the number of different interaction energies that need to be specified for applying
MOQUAC. If all N?' equaled one, only one interaction energy per pair of components would
be needed. In this case, MOQUAC would be simplified to Guggenheim’s lattice-based model
[19] described in section and would have as many parameters as, for example, the semi-
empirical Wilson, NRTL and UNIQUAC models. Since what makes MOQUAC advantageous is
the fact that it enables consideration of the orientation dependence of the interaction energy, the
number of parameters N“ for describing a real system will typically be significantly larger than
the number of parameters of these semi-empirical models. [f MOQUAC’s model parameters had
to be adjusted to experimental data, MOQUAC would be of no practical use. Therefore, the
interaction energies must be determined with a separate model that contains only a small number
of parameters. If this interaction-energy model can also be applied predictively, the combination
of both the interaction-energy model and MOQUAC allows to truly predict GF.

In the following, contributions to the interaction energy between two molecules are discussed.
Some models that describe this interaction energy are also discussed and a simple empirical,
predictive interaction-energy model is presented. This model is used to show the applicability of
MOQUAC to real mixtures. The combination of MOQUAC with this simple interaction-energy
model is compared to some existing predictive GF-models.

5.1 Considerations about the molecular interaction
energy

The interaction energy between two molecules is the result of various factors [4]. Molecules
generally show a permanent charge distribution so if two molecules are in contact, there are
Coulomb interactions between the charge distributions of both molecules. Molecules are also
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5.1 Considerations about the molecular interaction energy

generally polarizable, which means that their charge distribution is not fixed but can be influ-
enced by the charge distribution of other molecules. This can lead to induced Coulomb interac-
tions where induced charges interact with permanent charge distributions or with other induced
charges.

Apart from Coulomb interactions, dispersion interactions also contribute to the interaction
energy between two molecules. Dispersion forces are weak intermolecular forces that arise from
the interactive forces between instantaneous charge distributions. Dispersion interactions are a
result of the polarizability of molecules. Generally, the polarizability and thus the dispersion
interactions increase with increasing molar mass. Since the dispersion interactions help to keep
molecules together in a liquid state, e.g., the boiling point generally increases with increasing
molar mass. This trend is exemplified by the halogens (from smallest to largest: F,, Cl,, Br,,
I,). At room temperature fluorine and chlorine are gases, bromine is a liquid, and iodine is a
solid. In contrast to dispersion forces, the Pauli exclusion principle always causes a repulsive
force between two molecules. This force prevents a molecule from collapsing and also prevents
two molecules from coming too close to one another.

Specific forces or chemical forces also contribute to the interaction energy between two
molecules [4]. In contrast to the other, physical, contributions, chemical forces can be satis-
fied. One well known example of a chemical force is a hydrogen bond. For the formation of a
hydrogen bond, a hydrogen atom that is covalently bonded to a highly electronegative atom is
required as donor for the bond. Such a hydrogen atom always shows a high partial charge and
can therefore cause strong Coulomb interactions. However, when it interacts with an adequate
hydrogen-bond acceptor, a hydrogen bond is formed which generally shows a higher interac-
tion energy than the Coulomb interaction alone. After the formation of a hydrogen bond, the
hydrogen atom is saturated and will not form another hydrogen bond simultaneously.

There are several models that allow a predictive description of interaction energies. A common
approach for molecular dynamics is, for example, to describe dispersion and repulsive forces
with a Lennard-Jones potential and describe Coulomb interactions with partial charges on the
molecule. Siepmann [75H83]], for example, developed the united-atom approach, which is a
method for a general description of interaction energies of different kinds of molecules by di-
viding the molecules into functional groups. Each functional group has a Lennard-Jones center
and can additionally have a point charge. Because of the group approach, this approach can be
applied predictively if all group parameters are determined. The parameters of each group have
to be determined from a fit to experimental data.

For the predictive description of interaction energies for state-of-the-art GF-models, two ap-
proaches can be distinguished. One approach that is applied in UNIFAC type models is, like
the united-atom approach, based on group contributions and describes the interaction energy be-
tween two functional groups. But instead of introducing parameters for each group, for each
combination of functional groups, parameters are introduced. For each combination of func-
tional groups, the original UNIFAC model uses two parameters and in the case of the modified
UNIFAC models by the Lyngby and Dortmund group, a total of up to six parameters can be
used to describe the interaction energy. With their higher number of parameters, the modified
UNIFAC models include a temperature dependence in the description of the group-interaction
energy. To describe a broad range of different types of molecules, many different functional
groups need to be defined and since each different combination of functional groups contributes
to the total number of parameters, a rather large number of parameters are required for this ap-
proach to be universally applicable in predicting the behavior of systems. Since all parameters
need to be determined from a fit to experimental data, a large data basis is required for this fit.
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Another approach to the predictive description of interaction energies for GE-models is based
on surface-charge densities. In COSMO-RS, the interaction energy between two charged surface
segments is determined. For the interaction energy between two surface segments, a misfit and a
hydrogen-bond contribution are distinguished, as was discussed in section[2.2.4] The misfit con-
tribution results from considering the energy required to remove a thin layer of ideal conductor
from the system that screened the charge distribution of each molecule [S7]. The hydrogen-bond
contribution is an empirical term that accounts for the additional energy of a hydrogen bond to
the Coulomb interaction. The advantage of the COSMO-RS approach is that its energy func-
tion is universal meaning the model can be applied to any type of surface segment and therefore
molecule.

The relatively few parameters of the COSMO-RS energy function are determined from a fit
to experimental data. Apart from these parameters, a quantum-chemical COSMO calculation
of each component is also required in order to determine its surface-charge distribution. This
COSMO calculation can be rather time consuming, but only needs to be performed once per
component. The COSMO-RS approach is therefore a very efficient predictive approach for de-
scribing the interaction energy between two surface segments.

However, the UNIFAC approach and the COSMO-RS approach only describe the interaction
energy between either functional groups or surface segments. Without additional assumptions,
these approaches cannot be applied directly to determine the interaction energy between two
molecules. To do this, a criterion needs to be introduced to determine which functional groups
or which surface segments interact simultaneously upon a molecular contact.

The interaction energy between two molecules can be determined ab initio by a quantum-
chemical calculation. Hellmann et al. [84], for example, describe the interaction energy between
two methane molecules as a function of the relative orientation of both molecules. These cal-
culations are, however, very time-consuming and this means that universal application of this
method is limited to very small molecules for now.

In order to apply MOQUAC to real components, the decision was taken to develop an ap-
proach to describe the interaction energy between two molecules based upon surface-charge
distributions from COSMO calculations. Contrary to group-contribution methods and similar
to the COSMO-RS approach, this approach promises a predictive description of the interaction
energies between two molecules for a broad range of different types of molecules and with only
a small number of universal parameters.

5.2 Interaction-energy model

To show that MOQUAC can be applied predictively to mixtures of real components, a simple
empirical model to describe the interaction energies between real components was derived. To
enable the model to be used for many applications it uses, as COSMO-RS does, results from
quantum chemical COSMO calculations [47]. COSMO calculations provide the surface-charge
distribution and geometry of molecules, i.e. the position of each atom in the molecule. Since
dispersion interactions are very similar in mixtures and pure components, they were disregarded
for the description of GF and related quantities. For the interaction-energy model, only Coulomb
interactions are taken into account.

COSMO considers each molecule to be situated within a cavity inside an ideal conductor. The
charge distribution of the molecule induces a charge distribution on the surface of the cavity, as
described in section To describe this charge distribution, the cavity surface is divided into
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several surface segments. The charge distribution of the cavity surface is given by the charges of
the surface segments. The fact that the conductor is ideal ensures that the charge distribution of
the molecules is screened ideally. The result of a COSMO calculation gives no information on
the charge distribution of the molecule itself. Only the charge distribution on the surface of the
cavity is given.

From the charge, the surface-charge density o of a surface segment is determined through
division by the surface area of the segment. However, the cavity surface is not always perfectly
closed, so the surface areas and thus the charge densities of the surface segments can be erro-
neous. To eliminate such artifacts from the COSMO result, the surface-charge densities G as
determined from a COSMO calculation are averaged with Eq. 2.73] Eq. [2.73|and the value for
ray of 0.050 nm were taken from Klamt [55]. In the following, an expression to describe the
Coulomb interactions based on the averaged surface-charge densities o is derived.

To describe the interaction energy between two molecules, it is assumed that the charge dis-
tribution of a molecule can be approximated by a set of point charges that are positioned at the
center of mass of each atom. In Fig. one single point charge ¢ is considered inside a spheri-
cally shaped cavity with the radius R in an ideal conductor. The total charge on the cavity surface
due to the ideal screening equals —¢g and this charge is distributed homogeneously if the point
charge is positioned at the center of the cavity. The surface-charge density ¢ on the surface of
the cavity thus equals

o — _4;;;2 (5.3)

(a) A point charge ¢g inside a cavity in an ideal conductor. (b) System of two point charges g.

Figure 5.1: Model concept for the derivation of a model to describe the interaction energy based
on surface-charge densities.

Now, a system of two point charges g and ¢’ at a distance r is considered. Figure shows
this system. According to Coulomb’s law, the interaction energy u of these two point charges
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equals
/
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(5.4)

where &) is the vacuum permittivity. To describe this interaction energy with the surface-charge
densities, Eq. can be rewritten as

—q _q/ 167T2R2R/2

= 5.5
" AnR? 47R™ 4megr (5-5)
Eq. [5.3]is substituted into Eq. [5.5] which results in
4TR*R"
u=——00’ (5.6)
Eyr
Introducing the variable cP
4TR*R"
P=— 5.7
Eyr

that only depends on some constants and on the distance between the two point charges as well
as on the COSMO-radii R and R’ allows Eq. [5.6]to be rewritten as

u=cPoo’ (5.8)

Fig. shows two molecular contacts of two simple molecules. The charge distribution
of each molecule in Fig. [5.2] can be represented by two point charges. The total Coulomb
interaction energy of such a molecular contact is then determined by summing the Coulomb
interaction energies of all pairs of point charges with the condition that each point charge of a
pair belongs to a different molecule.

Eq. gives the Coulomb interaction energy of a pair of point charges. It can be seen
from this equation that the Coulomb interaction energy scales with 1/r. Thus, the smaller the
distance between a pair of point charges, the larger the Coulomb interaction energy. Generally,
the closer two point charges are, the more they will contribute to the interaction energy of a
molecular contact. For the interaction-energy model as an approximation for the determination
of the interaction energy between two molecules, only those pairs of point charges are accounted
for whose point charges are close enough to each other.

To introduce a criterion for two point charges to be close enough in order to be considered for
the interaction energy, first the distance between two interacting molecules needs to be defined.
For the interaction-energy model, it is arbitrarily assumed that when two molecules are in con-
tact, they touch at their respective van der Waals surface. The van der Waals surface encloses
the van der Waals volume of a molecule that cannot be occupied by other molecules. Here it is
assumed that the molecules interact with their van der Waals surfaces defined by the molecular
structure and the van der Waals radii as given by Bondi [12]. This is illustrated in Fig. [5.2] which
shows that there is no free space assumed between two contacting molecules and that thus the
free volume of the system is reduced to a minimum. Tab. shows the van der Waals radius of
the three atom types relevant for this work.

For two point charges to contribute to the interaction energy of a molecular contact, the dis-
tance between both point charges must be less than or equal to a threshold value df: I}. The distance

df I;. is defined as

di? = prdW (AW r}{dW) (5.9)
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() (b)

Figure 5.2: Molecular contact of two simple molecules.

Table 5.1: Van der Waals radius according to Bondi [12]] and COSMO radii.
atom type van der Waals radius COSMO radius

A A
H 1.20 1.30
C 1.70 2.00
O 1.52 1.72
where rinW and r}dw are the van der Waals radii of the atoms of type i and j respectively. fY4W

is the scaling factor of the van der Waals radius for the contact condition.

Fig. [5.3]shows the two molecular contacts together with the van der Waals radius that is scaled
with a factor deW (solid lines) and the COSMO radius (dashed lines). The COSMO radii are
used for the construction of the cavity surface for which the result of a COSMO calculation gives
the charge distribution. In Tab. [5.1] the COSMO radii of hydrogen, carbon and oxygen atoms are
shown. According to the above definition for a contact between two point charges, only atoms
for which the scaled van der Waals volumes overlap or touch have to be considered in order to
calculate the interaction energy. Thus, in Fig. there is one and in Fig. [5.3b] there are two
relevant pairs of atoms or point charges. To keep the number of parameters for the interaction-
energy model as low as possible, only one scaling factor for the van der Waals radius for the
contact condition is used. According to the picture of the interaction energy, this scaling factor
could also be made a function of the strength of the point charge, because according to Eq. [5.4]
the contribution of a pair of point charges does not only depend on the distance between the point
charges but also on the charges of the point charges that are involved. The strength of a point
charge could in a first approximation, e.g., be accounted for by distinguishing the type of atom
it originates from.

Each pair of atoms that is relevant for the interaction energy of the molecular contact forms
a contact point. There can be more than one contact point upon a molecular contact. N;};’ ik is
defined as the number of contact points of the molecular contact j,/,i,k. Since the condition for
a contact point assures that the distance r between two point charges of all relevant contact points
is similar and also the COSMO radii of the three atom types relevant for this work are not very
different in size, it is assumed that ¢P of Eq. can be considered a constant model parameter.
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Figure 5.3: Molecular contact of two simple molecules. The dashed circle indicates the COSMO
radius and the additional solid circle the scaled van der Waals radius of an atom.

This is a rather rough simplification which yields a very simple interaction-energy model with a
minimal number of adjustable parameters.

Eq. [5.8] describes the interaction energy between two point charges based on surface charge
densities. The interaction energy of a molecular contact is then determined by summing the
contribution of each contact point:

cp
Nitik

m=1

For Eq. the o,, and o), are representative surface-charge densities of the contact points. To
determine the representative surface-charge densities, the connection line between the center of
mass of the two contacting atoms is considered. This connection line is indicated for the contact
points in Fig. [5.3al The representative surface-charge densities are determined by determining
the representative COSMO surface segments. This is done by separating both molecules along
the connection line through the centers of mass of both contacting atoms until the molecules
touch at their COSMO volume. This condition is illustrated in Fig. [5.4 The COSMO sur-
face segments that are closest to the point on the COSMO surface where the connection line
between the center of mass of the two contacting atoms penetrates the COSMO surface are the
representative COSMO surface segments. These are marked dark yellow in Fig. [5.4]

To determine which COSMO surface segment is closest to the point were the connection line
penetrates the COSMO surface, the dot product of the vector pointing from the center of mass
of the atom to the center of mass of the other atom of the atom pair with the vector pointing
from the center of mass of the atom to the center of its representative COSMO surface segment
is used. This dot product is largest of all similar dot products with all other COSMO surface
segments.

For the interaction-energy model presented, several rather rough assumptions were made.
These assumptions cause that the interaction-energy model only has two universal parameters
cP and Y9V, These parameters now have to be determined by a fit to carefully selected experi-
mental data. Then, in principle, the combination of the interaction-energy model with MOQUAC
can be applied predictively to any kind of liquid mixture.
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Figure 5.4: Representative surface segments of a contact point.

5.3 Selection of experimental data

In order to fit the parameters of the interaction-energy model and to show the predictive applica-
bility of the combination of the interaction-energy model with MOQUAC, experimental data on
the excess enthalpy and the isothermal vapor-liquid equilibrium of alkane + ketone and alkane +
alcohol systems were selected. Alkane + ketone systems are highly non-ideal, but do not show
association. Alkane + alcohol systems are also highly non-ideal, but are associating, i.e. aggre-
gates are formed in the system. The simultaneous description of highly non-ideal associating and
non-associating systems can be considered a challenge for models based on the quasi-chemical
approximation [31]. Since the behavior of these systems is predominantly determined by polar
interactions, disregarding the dispersion interactions in the interaction-energy model is justified.

All experimental data were taken from the Dechema Data Series [|85,86]]. For the selection of
the data sets used for the fit and to show the predictive applicability of MOQUAC used together
with the interaction-energy model, binary systems were selected for which consistent data on
the excess enthalpy and on the isothermal vapor-liquid equilibrium at a similar temperature are
available. Binary systems of n-pentane up to n-decane combined with either ethanol up to 1-
heptanol or 2-propanone up to 2-octanone or 3-pentanone up to 3-octanone were considered.
By plotting all available data, data sets with equally distributed data points and with no obvious
errors were identified. A data set obviously has errors if its data points show a strong scatter or
include immediately identifiable outliers. For the vapor-liquid equilibrium data, it was necessary
for both pure-component vapor pressures to be part of the data set and both consistency tests of
the Dechema Data Series had to have been passed. A further condition for the data sets was that
both the pressure p as well as the gas-phase composition y were measured. The pure-component
vapor pressures of the evaluated data sets were plotted and compared to experimental data from
the DIPPR database [27]. The pure-component vapor pressures of the selected data sets were
not allowed to deviate significantly from the data of the DIPPR database. Following these steps
enabled three binary alkane + ketone systems and three alkane + alcohol systems to be selected.
The selected data sets for the fit of the parameters of the interaction-energy model and to show
the predictive applicability of the combination of the interaction-energy model and MOQUAC
are listed in Tab.
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5 Predictive description of orientation dependent interaction energies

Table 5.2: Selected data sets for the fit of the parameters of the interaction-energy model and
to show the predictive applicability of the combination of the interaction-energy model with
MOQUAC.

system datatype 7 in K original source
n-heptane + acetone HE 298.15 [87]
VLE 313.15 [88]
n-heptane + 2-butanone  H E 298.15 [89]
VLE 318.15 [90]
n-heptane + 3-pentanone HE 298.15 [89]
VLE 353.15 [91]
n-hexane + ethanol HE 298.15 [92]
VLE 318.15 [92]
n-hexane + 1-butanol HE 288.15 [93]
VLE 332.53 [94]
n-hexane + 1-pentanol ~ HF 303.15 [95]
VLE 298.15 [96]

5.4 Fitting the interaction-energy model parameters

The fitting of the parameters of the interaction-energy model was done with the help of the “gefit”
program package that was developed at the Chair of Thermal Process Engineering at RWTH
Aachen University. The program package was augmented with MOQUAC and the interaction-
energy model. In appendix a flowchart of the expanded gefit program is discussed. For the
fit, the Levenberg-Marquardt algorithm (LMDIF) [69] is used. The objective function is:

2
AHE Z exp i calc z)

1

2
2 Pexp,j — Pcalc,j
— — Yeale. gexp.)  Tewe) 5.11
+AVLE [(yexp,j ycalc,]) ‘|‘( Pexo. ) ] ( )

The HE and y data were fitted based on absolute deviations because when relative deviations
are used, the fit tends to reproduce smaller values better than higher values. For the vapor pres-
sure, relative deviations were used because the range of the vapor pressure differs for different
systems. The contributions of HF to the objective function were weighted with a factor

E E 2
AH Z(H — Hle) (5.12)

exp,i c
i

which results from evaluating the model only with the experimental HE data. The contributions
of y and p to the objective function were weighted with a factor

2
2 Pexp,j = Pcalc,j
AVLE =Y [(yexp,,-—ycalc,j) + (M) ] (5.13)
7 Pexp,j

resulting from evaluating the model only with the experimental vapor-liquid equilibrium data.
In this way the considerably different magnitudes of contributions by the two different types of
data were accounted for.
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5.4 Fitting the interaction-energy model parameters

No conformers were considered for the fit and hence the conformer with the lowest energy
state was selected for the calculation. The COSMO files required for the calculation at BP-TZVP
level were taken, if available, from the COSMObase database, which was supplied with the COS-
MOtherm program package (Version C 2.1, COSMOlIlogic, Leverkusen, Germany). Otherwise
they were determined with the TURBOMOLE program (Version 6.0, COSMOlIlogic, Leverkusen,
Germany) using the software GaussView [97] to assemble the molecule. The DFT/COSMO cal-
culation was performed with the BP86 density functional and a TZVP basis set combination.

98 directions of orientation were considered for each component. These 98 directions of
orientation were distributed rather homogeneously to try to account for all relevant orientations
of a molecule. For the definition of the directions of orientation, the cube from Fig. was
used. The center of mass of the molecule is positioned in the origin of co-ordinates and the
initial orientation of each component was taken as given in the COSMO result. If one imagines
a cube around the molecule which also has its center in the origin of co-ordinates, then the
directions of orientation would penetrate the cube in the points shown in Fig. The random
probabilities of occurrence of all directions of orientation are not equal since this distribution of
directions is not exactly homogeneous. To determine the probability of occurrence of a direction
of orientation, a Monte-Carlo method was applied where for 10,000,000 randomly determined
directions, it was evaluated which of the 98 directions of orientation is most similar. Around
each direction of orientation, 8 different equally distributed rotations are distinguished, which
leads to a total of 784 different orientations per component. The frequency of occurrence of
each orientation, p?k, was determined by dividing the related probability of occurrence of the
direction of orientation by 8.

The evaluation of one data point took approximately 10 minutes (Intel® Xeon® cpu x5570,
2.93 GHz) when 784 directions per component were considered. In order to reduce the compu-
tation time, similarly behaving orientations were clustered. For the clustering, the single-linkage
method described in section 4.4| was applied. This means that Eq. was applied to deter-
mine the similarity of two clusters. For the measure of distance, Eq. was used because the
application of this equation allows for the fastest algorithm, as was discussed in section 4.4

After the clustering, the orientations in one cluster were merged and the average interaction
energies of the cluster were determined. To do this, each interaction energy should have been
weighted with the random probability of occurrence of its related orientation. However, since
both the interaction energies and the random probability of occurrence of each orientation were
similar, the arithmetic mean interaction energy was used instead.

The orientations in one cluster are only similarly behaving, not identically, which leads to a
deviation between the MOQUAC result with and without clustering. As the maximum allowed
distance between two clusters increases, the deviation between the result with and without clus-
tering also increases. The maximum distance allowed between two orientations, dmax, Was set to
1 kJ/mol, a setting which a number of preinvestigations had suggested to be appropriate. Section
[5.6] shows that for this value there is a significant decrease in computation time with a negligible
deviation to the result without clustering.

To further reduce the required computation time for the fit, only 3 data points per data set
were considered. These were the data points for a liquid composition in mole fraction x; of
approximately 0.25, 0.50 and 0.75. The exact composition of each data point is given in Tab.
[5.3] The pure-component vapor pressures were set equal to the experimental values given in
the data set. The coordination number z; of each component was set to 10, which is a common
value for liquids. The coordination number z of the combinatorial contribution also equals 10,
since with this value the new and optimized standard segment was determined. The structural
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5 Predictive description of orientation dependent interaction energies

parameters r and g were taken from the table in the Dechema Data Series and corrected for the
new reference segment of chapter 3] Their values are given in Tab. [5.4]

Table 5.3: Liquid composition x; of the data points that were actually considered for the param-
eter fitting.
system HF data VLE data
n-heptane (1) + acetone (2) 0.2500; 0.5000; 0.7500 0.2571; 0.4920; 0.7386
n-heptane (1) + 2-butanone (2)  0.2500; 0.5000; 0.7500 0.2470; 0.5038; 0.7236
n-heptane (1) + 3-pentanone (2) 0.2500; 0.5000; 0.7500 0.2510; 0.4170; 0.7980

Table 5.4: Structural parameters r and g for the selected components for the fit with the new
reference segment.

component  r q
n-heptane 240.85 56.884
acetone 119.79 30.228

2-butanone  151.18 37.215
3-pentanone 182.57 44.203

5.4.1 Results of the fit and discussion

The parameters YW and cP of the interaction-energy model were adjusted to the experimental
data of the alkane + ketone mixtures. The objective function, Eq. is not continuous and
thus has a discontinuous derivative with respect to fY4W. The reason for this behavior is that
each contact point contributes to the interaction energy of a molecular contact as specified in Eq.
A small increase in YW can cause that for a molecular contact an additional contact point
results. This inclusion of an additional contact point leads to a jump in the interaction energy of
the molecular contact. To nevertheless use a derivative-based optimization procedure, f'V was
varied in the range from 1.00 to 1.50 and kept fixed while cP was fitted to the experimental data.
It was found that for higher values of ¥V the fit has convergence problems and good results are
not obtained.

First, cP was fitted only to the HE data and only to the VLE data separately. AH® and AVLE
were then determined using Eqgs. and at f'9W = 1.00 and the cP that resulted from the
respective fit. For these values, AHE equals 1.6531 x 10 and AVLE equals 4.7580 x 10~2. AHE
and AVLE were used to normalize the sums of squared residuals of the fits to the individual data
types and were also used for the simultaneous fit to both the HF and VLE data. Figure|5.5|shows
the normalized minimal sum of squared residuals for all different fits as a function of ¥4V, The
result in Fig. [5.5]shows that A of the fit to only the VLE data varies only minimal in the range
from 1.00 to 1.30 with a minimum of around 1.2 and then starts to increase. The sum of squared
residuals of the fit to only the HE data and, because of that, also of the fit to both the HE and
VLE data simultaneously significantly increases from about f¥4% = 1.05.

In Fig. [5.6] a detailed view of Fig. [5.5]is shown. In this detailed view it can be seen that A
of the fit to only the HF data has a local maximum at f'¥% ~ 1.0125 and a local minimum at
YW ~ 1.03. For higher values of fY4W the sum of squared residuals steadily increases. The
sum of squared residuals of the fit to both data types has a global minimum at 9%V = 1.040.
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Figure 5.5: Normalized minimal sum of squared residuals as a function of ¥4V for the fit only
to H® data, only to VLE data and to both HE and VLE data simultaneously.
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Figure 5.6: Detailed view of Fig. Normalized minimal sum of squared residuals as a
function of YW for the fit only to H® data, only to VLE data and to both HF and VLE data

simultaneously.
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5 Predictive description of orientation dependent interaction energies

The course of the sum of squared residuals of the fit only to VLE data scatters somewhat but
shows a relatively constant value in this region. The course of the sum of squared residuals of
the fit to HE and VLE data simultaneously shows a corresponding scatter.

To see how strong the influence of YW is on the number of contact points of a molecular
contact, the average number of contact points of all relevant molecular contacts of the three
alkane + ketone systems as a function of YW was also evaluated. Figs. and shows the
result of this investigation. The average number of contact points appears to have a continuous
course. What is particularly noteworthy is the fact that, contrary to the sum of squared residuals
of the fit only to VLE data, the average number of contact points here does not show local
extrema. Because each alkane + ketone system has 2,458,624 different molecular contacts, the
discontinuities in the average number of contact points are probably evened out.

The result of this investigation additionally shows that at the optimal value of f¥9% = 1.040,
the average number of contact points equals approximately 1.5. On average, each molecular
contact is thus characterized by more than one contact point. Contact points can thus not be
considered to be independent of one another and therefore single-contact models are based on
erroneous assumptions.
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Figure 5.7: Average number of contact points of all relevant molecular contacts of the three
alkane + ketone systems in dependence of fY4W.

Figure shows the parameter ¢ as a function of £V for the fit to the three objective func-
tions. The value of the parameter P decreases with an increasing Y4V, which is caused by the
strong increase in the number of contact points with an increasing ¥V, which is compensated
for by a decrease in cP. The results in the figure show that for smaller values of Y4V, the optimal
value of the parameter cP is different for a fit only to HF data as compared to a fit only to VLE
data. The optimal value of the parameter cP for a simultaneous fit to H* and VLE data lies almost
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Figure 5.8: Detailed view of Fig. Average number of contact points of all relevant molecular
contacts of the three alkane + ketone systems in dependence of fY4V.

exactly between the values of the fits to the individual data types. This suggests that the choice
of the relative weights of the individual objective functions was appropriate.

With Figs. [5.5|and [5.9] the optimal set of parameters for the description of the experimental
data can be determined as shown in Tab. [5.5] In the following, the last values simultaneously
optimized for H® and VLE are chosen.

Table 5.5: Resulting sets of parameters from the three different fits to the selected experimental
data of the alkane + ketone systems.

data FYawep
- JA* /mole?
only HF 1.000 7.6289 x 107

only VLE 1.250 2.4039 x 107
HE and VLE 1.040 5.4086 x 10’

The mean squared residuals for the different data types are given by the following definitions:

2
NHE E,exp E,calc
Zk:] (Hk o Hk >

Eye = T (5.14)
NVLE - N¢ exp calc 2

_ Yio1 Li-i (yi,k ik )

& = NVLENC (5.15)
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Figure 5.9: The parameter cP as a function of fYW for the fit to only the H® data, only the VLE
data and both the HF and VLE data simultaneously.
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In Tab. [5.6] the mean squared residuals for the data points that were selected for the parameter
fit are given. This table also shows the mean squared residuals of the COSMO-RS model and
the modified UNIFAC (Dortmund) model with the same data. The result shows that the combi-
nation of the interaction-energy model with the MOQUAC model and the parameters that were
determined from the fit simultaneous to H® and VLE data describes the HF data significantly
better and the VLE data somewhat worse than the COSMO-RS model. The modified UNIFAC
(Dortmund) model gives the best description of all data and is better than both other models.

Table 5.6: Mean squared residuals for the data points that were selected for the parameter fit.

model EyE & gy
inJ/mol - -
MOQUAC (fit both to H® and VLE data) 200.26  0.09765 0.02237
MOQUAC (fit only to H® data) 13553 - -
MOQUAC (fit only to VLE data) - 0.05084 0.02698
COSMO-RS 360.60  0.06480 0.01935
modified UNIFAC (Dortmund) 46.09 0.02340 0.01133

In Fig. [5.10, a comparison of experimental HF data with the model results for the system 2-
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butanone + n-heptane is given. Modified UNIFAC (Dortmund) describes the experimental data
very well compared to the other two models, while MOQUAC is slightly better than COSMO-
RS. The slight asymmetry in the experimental data is described well by the modified UNIFAC
(Dortmund) and COSMO-RS model, but somewhat overestimated by MOQUAC. For the other
two systems, a similar result for the HF data was obtained. These results are shown in appendix

[7.8]in Figs. [7.3|to
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Figure 5.10: Comparison of experimental data with the model results for the system 2-butanone
(1) + n-heptane (2) at T = 298.15K.

Fig. [5.I1] for the system acetone + n-heptane and Fig. [5.12] for the system n-heptane + 3-
pentanone show a comparison of experimental data on the vapor pressure with the model results.
The system acetone + n-heptane is the system for which VLE data are worst described with MO-
QUAC, since with MOQUAC demixing for this system at 313.15 K is predicted. The modified
UNIFAC (Dortmund) model gives a very good description of both systems and is better than the
other two models for both systems. COSMO-RS underestimates the experimental data of both
systems and gives the worst description of the system n-heptane + 3-pentanone. In appendix[7.§]
all remaining plots for the VLE data are shown in Figs. [7.3|to

It has to be pointed out that the parameters of the interaction-energy model were fitted to the
selected experimental data, and that the parameters of COSMO-RS and the modified UNIFAC
(Dortmund) model were not. Despite this, MOQUAC does not describe the systems considerably
better. However, for the application of MOQUAC only two parameters have been fitted. So
although MOQUAC does not give a perfect description of the three selected alkane + ketone
systems, the result is nonetheless considered satisfactory and is considered to demonstrate the
applicability of MOQUAC to real mixtures.
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Figure 5.11: Comparison of experimental data with the model results for the system acetone (1)
+ n-heptane (2) at 7 = 313.15K.
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Figure 5.12: Comparison of experimental data with the model results for the system n-heptane
(1) + 3-pentanone (2) at 7 = 353.15K.
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5.5 Predictive application of MOQUAC

To evaluate the predictive applicability of the combination of the interaction-energy model with
MOQUAC, the combination of both models was applied to alkane + alcohol systems. Alcohols
are strongly associating, which makes alkane + alcohol systems very challenging to model, espe-
cially for models based on the quasi-chemical approach [98]]. Alcohols can form hydrogen bonds,
which are very strong interactions that require a specific orientation of the contacting molecules.
The COSMO-RS model accounts for hydrogen bonding by an additional term that takes the ex-
cess of the interaction energy over the polar interactions into account. The interaction-energy
model that is used in this work does not have such an additional term for hydrogen bonding,
however.

The combination of the interaction-energy model with MOQUAC was applied to predict HE
and VLE data of the three selected alkane + alcohol systems with the parameters that resulted
from the fit. The calculation was performed with the same assumptions as for the parameter
fitting. Since no conformers were considered, again the conformer with the lowest energy was
selected for the calculation.

Tab. shows the structural parameters of the relevant components. These parameters were
determined with the new reference segment described in chapter 3|

Table 5.7: Structural parameters r and g for the selected components with the new reference
segment.

component r q

n-hexane 209.46 49.897
ethanol 98.006 25.518
1-butanol 160.79 39.493
I-pentanol  192.18 46.481

As for the parameter fitting, only three data points per system were considered in the evaluation
of the different model results. The compositions x; of the selected data points are given in Tab.

5.8

Table 5.8: Liquid composition x; of the data points that were considered for the evaluation of the
models.
system HF data VLE data
n-hexane (1) + ethanol (2) 0.2577; 0.5077; 0.7672  0.2625; 0.4975; 0.7380
n-hexane (1) + 1-butanol (2)  0.2500; 0.5500; 0.7500 0.2190; 0.4886; 0.7849
n-hexane (1) + 1-pentanol (2) 0.2029; 0.5140; 0.8044 0.2000; 0.5000; 0.8000

Tab. shows the mean squared residuals for the data points that were selected for the predic-
tion. The result shows that MOQUAC predicts the H® data slightly worse than COSMO-RS but
also that it predicts the VLE data very well. MOQUAC even describes the vapor-pressure data
slightly better than COSMO-RS. The best prediction is given by the modified UNIFAC (Dort-
mund) model, although in the case of the modified UNIFAC (Dortmund) model it is probably
not a pure prediction. It is very likely that the experimental data of the three systems were used
for the fitting of the model parameters.
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Table 5.9: Mean squared residuals for the data points that were selected for the prediction.

model EyE & £y
inJ/mol - -

MOQUAC 650.83  0.05448 0.01583

COSMO-RS 451.02  0.06654 0.00625

modified UNIFAC (Dortmund) 46.38 0.01400 0.00773

Fig. shows a comparison of experimental H® data with the model results for the system
n-hexane + 1-pentanol. Both MOQUAC and COSMO-RS greatly overestimate the experimental
data, whereas the modified UNIFAC (Dortmund) model gives a rather good description of the
data. The experimental data shows a strong asymmetry that is overestimated by modified UNI-
FAC (Dortmund) and slightly underestimated by the MOQUAC and COSMO-RS models. For
the other two systems, a similar result for the H E data was obtained. These results are shown in

appendix [7.9]in Figs. and
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Figure 5.13: Comparison of experimental data with the model results for the system n-hexane
(1) + 1-pentanol (2) at T = 303.15K.

Figs. and show the comparison for the VLE data of the system n-hexane + 1-
pentanol. MOQUAC’s description of the VLE data of this system is remarkably good and only
slightly overestimates the vapor pressure for most of the data points. Except for the data point
at a high 1-pentanol concentration, the y data is very well predicted by the MOQUAC model.
The modified UNIFAC (Dortmund) model gives the best description of the VLE data and the
performance of the COSMO-RS model is similar to that of MOQUAC. In appendix |/.9|in Figs.
to the plots of the comparisons of the experimental data with the different model results
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for the other alkane + alcohol systems are given.
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Figure 5.14: Comparison of experimental data with the model results for the system n-hexane
(1) + 1-pentanol (2) at T =298.15K.

The combination of the interaction-energy model with MOQUAC enabled a surprisingly good
prediction of experimental data of alkane + alcohol systems. The interaction-energy model is
rather simple and contrary to COSMO-RS does not contain an additional term for hydrogen
bonds. In addition, the model was only fitted to polar systems that show neither association nor
hydrogen bonds. Despite this, MOQUAC is able to describe hydrogen bonding and association.
This result shows that MOQUAC accounts for structural information appropriately.

Because of the simplicity of the interaction-energy model, the results of the predictive applica-
tion of MOQUAC to real systems must be considered very promising. Both interaction-energy
model and MOQUAC can still be improved in a variety of ways, however. For example for
the interaction-energy model a more realistic distance dependence of the average interatomic-
interaction energy as well as an additional term for dispersion interactions need to be considered.
For the MOQUAC model, the choice of the orientations that are considered for each component
can be further optimized. Furthermore, conformers of each component can be considered for the
calculations. There is thus great potential for improving the predictive description of thermo-
physical data with MOQUAC. What is more, since MOQUAC can be used to determine the
enthalpy and Gibbs energy of pure components, the application of the model is not limited to
excess properties. The model can, in principle, also be used for the prediction of pure-component
properties such as vapor pressures and enthalpies of vaporization.
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Figure 5.15: Comparison of experimental data with the model results for the system n-hexane
(1) + I-pentanol (2) at T = 298.15K.

5.6 Clustering of orientations

To reduce the computation time for the parameter fitting, similarly behaving orientations were
clustered. Similarity in the behavior of orientations is defined based on the values for the inter-
action energies. The parameters of the interaction-energy model therefore influence the number
of clusters that are formed. Since the maximum distance allowed between two orientations dpax
was kept fixed during a fit, the deviation of the model result with and without clustering varies, as
the parameters of the interaction-energy model vary. To prevent this effect negatively influencing
the result of the parameter fitting, the maximum allowed distance between two clusters was set to
a rather small value of 1 kJ/mol. This value was determined from a number of preinvestigations
which are discussed in this section.

For the fit, the distance between two orientations was determined with Eq. [4.38] Alternatively
Eq. with, for example,
v=w=2 (5.17)

could have been used to determine the similarity in behavior between two orientations. To eval-
uate the difference between the two definitions of distance, a system of two components is con-
sidered. The first component is acetone and the second component is an imaginary component
with a charge density of each surface segment equal to zero. With this definition of component
2, only the interaction of acetone with itself determines which orientations of acetone can be
merged. The error that is induced by summarizing similarly behaving orientations in clusters is
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defined as

H?,with clustering H?,without clustering 00 i
€H = HO,without clustering X 0 (5.18)
1

where H? is the enthalpy of pure component 1, i.e., acetone.

Section showed that the computation time that is required to solve MOQUAC scales with
N°"3. For component 2, only 1 orientation needs to be distinguished, since all interaction energies
between two molecules that involves a component 2 equal zero. For acetone, 784 orientations
are distinguished, as was also the case for the parameter fitting. The number of orientations for
acetone after the clustering is therefore a measure for the computation time that is required to
solve the MOQUAC equation system for this binary system.

In Fig. the error &y is plotted versus the number of orientations N{* of acetone after
the clustering for the two different definitions of distance between two orientations. Figure [5.16]
was generated by varying dmax. As can be seen, both definitions yield similar results. With the
maximum allowed distance of 1 kJ/mol for Eq. the number of clusters of acetone equals
652 with a negligible error £y smaller that 1.0 x 10™* %.
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Figure 5.16: The difference between the model result with and without clustering as a function
of the number of orientations after the clustering.

If the three data points for both the HF and VLE data of all three alkane + ketone systems
selected are evaluated with the optimal values for the parameters of the interaction-energy model,
a total computation time of 181 minutes is required (Intel® Xeon® cpu x5570, 2.93 GHz). With
clustering with dmax = 1 kJ/mol, this computation time is reduced to only 61 minutes. The
difference in the sum of squared residuals using Eq. with the same values for AHE and
AVLE that were also applied for the fit is less than 2.0 x 1072 %. Thus, with a negligible error
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5 Predictive description of orientation dependent interaction energies

clustering enabled the computation time for the parameter fitting to be reduced by a factor of
approximately three.
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6 Summary

Modeling of the excess Gibbs energy enables description of the thermodynamic behavior of
molecules in liquid mixtures. This is required for many applications in chemical engineering,
such as the description of phase equilibria for, for example, the design and optimization of ther-
mal separation processes. The three-dimensional molecular structure influences the behavior
of molecules, since it determines if effects like steric hindrance or multiple contact points can
occur. These effects are especially important for molecules with several strongly interacting
functional groups. The three-dimensional molecular structure also needs to be accounted for
if enantiomers have to be distinguished. Bio-based components often have several strongly in-
teracting functional groups and show enantiomerism so consideration of the three-dimensional
molecular structure is of special significance for such molecules.

In this work it has, however, been shown that state-of-the-art GE-models are not able to take
this three-dimensional molecular structure into account. It can thus not be expected that state-
of-the-art GE-models perform well for mixtures of components with several strongly interacting
functional groups. This explains why these models need further development, especially due to
the fact that a shift towards greater use of renewable resources in the chemical industry is likely.

GF-models often distinguish between a combinatorial and a residual contribution where, with
the combinatorial contribution, only effects of size and shape are described. All energetic effects,
on the other hand, are accounted for by the residual contribution. This work has presented an
improved model for the combinatorial contribution and a new model for the residual contribution.

The combinatorial term of UNIQUAC is based on the physically founded Staverman-
Guggenheim model. When applied to real mixtures, the UNIQUAC combinatorial term per-
forms badly, which is why several empirical modifications of the combinatorial contribution
have previously been proposed. In this work, a physically founded improvement of the UNI-
QUAC combinatorial term is presented. This improvement performs similarly to or better than
the empirical modifications.

The improvement of the combinatorial term consists of adjusting the size of the standard
segment. While Abrams and Prausnitz chose the size of the spherical standard segment of UNI-
QUALC rather arbitrarily [11], the size of the new standard segment is determined by a fit to care-
fully selected experimental data of n-alkane mixtures. The new standard segment is, however,
still considered to be spherical. Since n-alkane mixtures show a slight deviation from athermal
behavior, a term to describe the residual contribution is also considered for the fit. In this way,
the size of the standard segment is determined with high significance from the data. The residual
contribution is described with an empirical model that describes the influence of temperature and
size on the behavior of n-alkane mixtures. The parameters of this model and the size of the stan-
dard segment are determined by a fit to experimental HE-data and data on activity coefficients at
infinite dilution.

The new standard segment has a radius which is 3.6 times smaller than that proposed by
Abrams and Prausnitz. The size of the new standard segment is regarded as a scale on which
molecules “feel” their geometric details. The new radius is a little less than that of a hydrogen
atom so this new interpretation seems plausible.

75



6 Summary

For the residual contribution, a new model called MOQUAC was derived. MOQUAC is based
on the quasi-chemical approach and explicitly takes the orientation of molecules upon a molec-
ular contact into account. By doing this, the full three-dimensional molecular structure can be
accounted for. MOQUAC can be considered a systematic, physically founded further develop-
ment of today’s GE-models. A comparison of MOQUAC with results from lattice simulations has
shown that, contrary to state-of-the-art GF-models, MOQUAC can accurately describe molecules
that have complex interactions, for example, interactions with more than one contact point.

For MOQUAC to be able to be applied to real components, a model is required that describes
the interaction energy between two components as a function of their orientation. A model that
is capable of describing this interaction energy predictively is derived. This model uses infor-
mation from a quantum-chemical calculation with COSMO. Since COSMO calculations can be
performed for many different molecules, the interaction-energy model and thus MOQUAC can
be applied to a broad range of molecules.

The interaction-energy model only has two parameters that are fitted to experimental data of
n-alkane + ketone systems. After the fit, the combination of the interaction-energy model with
MOQUAC describes these systems satisfactorily with a similar degree of accuracy to COSMO-
RS. The results are also compared to results using the modified UNIFAC (Dortmund) model,
which gives the best description of the selected n-alkane + ketone mixtures.

With the combination of the interaction-energy model and MOQUAC, a surprisingly good
prediction of some experimental data of n-alkane + alcohol systems was achieved. This result
is remarkable since, contrary to the systems that were used for the parameter fit, in alkane +
alcohol systems, hydrogen bonding and association occur. MOQUAC in combination with the
rather simple interaction-energy model again predicts the data of these systems with a similar
degree of accuracy to COSMO-RS, although COSMO-RS has an additional specific term for
hydrogen bonding something the interaction-energy model does not.

Because of the current simplicity of the interaction-energy model, the results of the predictive
application of MOQUAC to real systems are very promising. Nonetheless, both the interaction-
energy model and MOQUAC can still be improved in a variety of ways. For example, for the
interaction-energy model, a more realistic dependence of distance of the average interatomic
interaction energy as well as an additional term for dispersion interactions can be considered.
For MOQUAC, the choice of the orientations that are taken into account for each component
can be further optimized. In addition, conformers of each component can be considered for the
calculations. There is thus a great potential for further improving the predictive description of
thermo-physical data with MOQUAC.
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7 Appendix

7.1 Solving the quasi-chemical equations for GEQUAC

In this section, a means of solving the quasi-chemical equations for GEQUAC is presented.
Equations [2.66}, [2.67|and [2.69] form the non-linear set of quasi-chemical equations of GEQUAC,
for which Larsen and Rasmussen proposed a modified Newton-Raphson solution algorithm [48]].

A non-random coefficient I';, ,, is defined by

Ynm = lI/nl—‘n,m
and Eq. [7.1]is substituted into Eq.

1—‘m,n = Llnm

6Orlzl,m - Ta)rb;,m
T = oXP | ==

Introducing 7, , as

and substituting both Eqgs. [7.1]and [7.3]into Eq. [2.69|results in

1—‘n,ml—‘m,n )

n,m
1—‘m,ml—‘n,n

Larsen and Rasmussen introduced a parameter b,, as

by = V 1—‘m,m
With Egs. [7.2]and [7.5] Eq. [7.4|can be written as

I_‘n,m - bmbn Tn,m

Substituting Eq. [7.6]into Eq. [7.1and applying this to Eq. [2.66] results in

Ns
Z lI/nbmbrﬂ-n,m =1

n=1

S

1 N,
b_ = Z ll/nblfl:rz7m

m n=1

In the solution algorithm, a vector f is introduced that needs to be minimized

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)
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Ny
s 1
fm = Z lI/nbnTn,m - (7.9)
n=1 bm
In the k-th iteration cycle
Ji =Bb =i (7.10)
J=B+D (7.11)
and
b1 =b =3 fi (7.12)

need to be calculated. It are:
. f the solution vector that needs to be minimized (fi, f>,.- -, fi,)"

b the vector containing the parameters (b, bs, ..., by, )"

y a vector with the inverse b parameters (1/b1,1/bs,...,1/by,)T

J the Jacobian matrix

e D a diagonal matrix with the elements D (m,m) = 1/b?,

e B a matrix with the elements B(m,n) = y,, 7

Since only the diagonal elements of the Jacobian matrix depend on the variables b,,, the Jaco-
bian matrix can be determined very efficiently. Larsen and Rasmussen’s solution algorithm also
reduces the number of variables in the equation system consisting of Eqs. [2.66] [2.67| and [2.69|
from N2 to Nj.

The number of iterations that are required to solve the equation system depends on the initial
guess of the unknown variables. Larsen and Rasmussen [48] describe two initial guesses. For
GEQUAC, the supposedly simpler initial guess is applied [25], where the b; ¢ are set to

1
N
Zj;l YnTnm

This is in fact the exact solution for infinite dilution of solutes in a pure solvent.

bio= (7.13)
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7.2 Experimental data sets for the fit of the new standard segment

7.2 Experimental data sets for the fit of the new
standard segment

Tables|/.1]and [/.2| contain the data sets used for the fit of the new standard segment.

DSET ori. source solute solvent T in K

10001  [99]] n-hexane n-hexadecane 304.85,315.35

10002 [99] n-heptane n-hexadecane 304.85, 315.35, 324.45

10009 [100] n-hexane n-hexadecane 293.15,298.15, 303.15, 313.15,
323.15, 333.15

10010 [100] n-heptane n-hexadecane 293.15, 298.15, 303.15, 313.15,
323.15, 333.15

10015 [101] n-hexane n-hexadecane 293.15, 303.15, 313.15

10016 [101] n-heptane n-hexadecane 293.15,303.15,313.15

10019 [102] n-butane  n-hexadecane 303.15,313.15,323.15

10020 [103]] n-pentane n-dodecane 298.15, 298.15, 298.15, 280.15,
280.15, 280.15

10034 [104] n-hexane n-hexadecane 298.15

10035 [104] n-heptane n-hexadecane 298.15

10041 [105]] n-pentane n-hexadecane 313.15, 343.15, 363.15

10042 [105]] n-hexane n-hexadecane 313.15, 343.15,363.15

10043 [105]] n-heptane n-hexadecane 313.15, 343.15, 363.15

10044 [105] n-octane  n-hexadecane 313.15, 343.15, 363.15

10045 [105] n-nonane n-hexadecane 313.15, 343.15, 363.15

10046 [1035] n-decane n-hexadecane 343.15,363.15

10059 [106] n-pentane n-hexane 293.15

10060 [106] n-hexane n-heptane 293.15

10061 [106] n-pentane n-octane 293.15

10065 [102] n-butane  n-hexadecane 303.15

10066 [102] n-pentane n-hexadecane 303.15

10067 [102] n-hexane n-hexadecane 303.15

10068 [102] n-heptane n-hexadecane 303.15

10087 [102] n-hexane n-hexadecane 293.15,313.15,333.15

10094 [106] n-pentane n-heptane 293.15

10095 [106] n-hexane n-heptane 293.15

10096 [107] n-pentane n-octane 293.15

10097 [106] n-pentane n-octane 293.15

10102 [108] n-pentane n-dodecane 293.15, 303.15

10104 [109] n-pentane n-hexadecane 298.15

10105 [110] n-pentane n-hexadecane 323.15

10106  [LLL] n-hexane n-hexadecane 293.15

10107 [112] n-hexane n-hexadecane 293.15, 303.15, 333.15

10108 [113]] n-hexane n-hexadecane 313.15,323.15,333.15

10110 [114] n-hexane n-hexadecane 293.15, 303.15, 313.15, 323.15,
333.15, 343.15

10112 [L15]] n-octane  n-pentane 298.15

10115 [116] n-pentane n-heptane 304.15
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10116 [LL17] n-hexane n-heptane 298.15

10118 [LL&]] n-hexane n-heptane 298.15, 333.15, 373.15
10119 [117] n-octane  n-heptane 298.15

10121 [119] n-pentane n-octane 303.15

10122 [120] n-pentane n-octane 333.15

10123 [121]] n-pentane n-octane 313.15

10124 [119]] n-hexane n-octane 303.15

10125 [120] n-hexane n-octane 333.15

10126 [122] n-hexane n-octane 303.15

10129 [120] n-pentane n-nonane 333.15

10130 [120] n-hexane n-nonane 333.15

10135 [123]] n-hexane n-hexadecane 298.15

10136 [124] n-hexane n-hexadecane 308.15

10137 [110] n-hexane n-hexadecane 323.15

10138 [125] n-hexane n-hexadecane 333.15, 393.15, 453.15
10139 [126] n-hexane n-hexadecane 363.15,393.15,423.15
10140 [L1O] n-heptane n-hexadecane 323.15

10141 [109]] n-heptane n-hexadecane 298.15

10142 [126] n-heptane n-hexadecane 363.15,393.15,423.15
10143 [125] n-heptane n-hexadecane 393.15,453.15

10144 [110] n-octane  n-hexadecane 323.15

10145 [126] n-octane  n-hexadecane 363.15,393.15,423.15
10146 [125]] n-octane  n-hexadecane 453.15

10147 [126] n-nonane n-hexadecane 363.15,393.15,423.15
10149 [124] n-pentane n-hexadecane 308.15

10150 [127] n-pentane n-hexadecane 308.15

10152  [127]] n-hexane n-hexadecane 308.15

10153 [124]] n-hexane n-hexadecane 308.15,323.15

10155 [109] n-heptane n-hexadecane 298.15

10156 [110] n-heptane n-hexadecane 323.15

10157 [128] n-heptane n-hexadecane 333.15,363.15, 393.15, 423.15
10158 [126] n-heptane n-hexadecane 393.15, 453.15

10159 [L10] n-octane  n-hexadecane 323.15

10160 [126] n-octane  n-hexadecane 363.15,393.15,423.15
10161 [125] n-octane  n-hexadecane 453.15

10162 [126] n-nonane n-hexadecane 363.15, 393.15, 423.15
10191 [119]] n-hexane n-decane 303.15, 333.15

10192 [122]] n-hexane n-decane 303.15

10194 [120] n-hexane n-decane 333.15, 343.15

10201 [129] n-pentane n-hexadecane 293.15

10202 [119] n-pentane n-hexadecane 298.15, 303.15, 313.15, 333.15
10203 [130] n-pentane n-hexadecane 323.15

10204 [131] n-hexane n-hexadecane 293.15, 303.15, 333.15
10205 [129]] n-hexane n-hexadecane 293.15

10207 [132] n-hexane n-hexadecane 298.15

10208 [133] n-hexane n-hexadecane 303.15

10209 [119]] n-hexane n-hexadecane 303.15,333.15
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10210 [134] n-hexane n-hexadecane 303.15
10211 [116] n-hexane n-hexadecane 312.85
10212 [135]] n-hexane n-hexadecane 315.35
10213 [130] n-hexane n-hexadecane 323.15
10214 [136] n-hexane n-hexadecane 333.15,393.15
10215 [136] n-hexane n-hexadecane 333.45
10216 [135]] n-heptane n-hexadecane 305.35
10217 [130] n-heptane n-hexadecane 323.15
10218 [119] n-heptane n-hexadecane 333.15

Table 7.1: Selected experimental Y data. All data was taken from the DECHEMA Chemistry
Data Series [15]. DSET is the data set number used for the fitting program.

DSET ori. source component 1 component2 7 in K (number of data points)

10023 [137]] n-hexane n-decane 298.15 (26), 308.15 (31)
10093 [138]] n-hexane n-dodecane 298.15 (37), 308.15 (37)
10281 [139]] n-pentane n-decane 293.15 (3)
10284 [140] n-hexane n-heptane 298.15 (22)
10286 [141]] n-hexane n-octane 298.15 (4)
10287 [142] n-hexane n-octane 298.15 (9)
10288 [143]] n-hexane n-decane 298.15 (7)
10290 [139]] n-hexane n-decane 293.15 (5)
10291 [144] n-hexane n-decane 298.15 (19)
10294 [145]] n-hexane n-dodecane 283.15 (14)
10295 [145]] n-hexane n-dodecane 293.15 (15)
10296 [145]] n-hexane n-dodecane 303.15 (15)
10297 [141]] n-hexane n-dodecane 298.15 (5)
10298 [146] n-hexane n-dodecane 298.15 (19)
10299 [147]] n-hexane n-hexadecane 293.15 (4)
10300 [148] n-hexane n-hexadecane 313.15 (10)
10301 [148]] n-hexane n-hexadecane 324.15 (5)
10302 [148]] n-hexane n-hexadecane 333.15(5)
10303 [148]] n-hexane n-hexadecane 349.15 (5)
10304 [149] n-hexane n-hexadecane 298.15 (10)
10305 [130] n-hexane n-hexadecane 293.15 (13)
10306  [150] n-hexane n-hexadecane 303.15 (4)
10307 [150] n-hexane n-hexadecane 313.15 (15)
10308 [1150] n-hexane n-hexadecane 323.15 (4)
10309 [151]] n-hexane n-hexadecane 313.15 (43)
10310 [152]] n-hexane n-hexadecane 298.15 (28)
10311 [152]] n-hexane n-hexadecane 303.15 (26)
10316 [153] n-heptane n-dodecane 298.15 (19)
10317 [154] n-heptane n-hexadecane 298.15 (4)
10318 [1154] n-heptane n-hexadecane 323.15 (8)
10319 [139]] n-heptane n-hexadecane 293.15 (4)
10321 [155] n-octane n-dodecane 298.15 (11)
10322 [1153] n-octane n-dodecane 298.15 (19)
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10323 [139] n-octane n-hexadecane 293.15 (3)
10326 [1153] n-decane n-dodecane 298.15 (19)
10327 [1139] n-decane n-hexadecane 293.15 (4)

Table 7.2: Selected experimental HE data. All data was taken from the DECHEMA Chemistry
Data Series [[86]. DSET is the data set number used for the fitting program.

7.3 Derivation of the MOQUAC entropy term

In this section, the derivation of Eq. 4.17|from Eq. [4.16]using a similar approach to Guggenheim
[19] is shown. ¥* characterizes the distribution of contacts for which the summand of Eq.
is maximal and g(y¥*) is the number of microstates with the same y*. As with Guggenheim’s
quasi-chemical theory [19]], for MOQUAC the number of distinguishable microstates of a liquid
system that consists of N molecules is assumed to equal the number of distinguishable arrange-
ments of molecules on the lattice. g(y) is thus determined by the number of distinguishable
ways N molecules can be arranged on a lattice such that the given distribution of y results.

Following Guggenheim, the number of distinguishable arrangements of molecules on the lat-
tice is described by the number of distinguishable ways the molecular contacts can be arranged
on the lattice g(y). To determine g(y), it is additionally assumed that all molecular contacts can
be placed independently on the lattice. Thus, the number of different ways to arrange all contacts
on the lattice has to be determined, where two contacts j, [, i,k cannot be distinguished from one
another. This problem can be represented by a mental exercise where, for example, three white
balls and seven black balls are drawn from an urn. When the balls may not be returned to the urn
once drawn, then 10!/(3!7!) different ways of drawing these ten balls exist. In a similar manner,
&(y) is calculated by

(% i Nxﬂi) !

NE Nior NE N;)r 1 R '
im1 [l T= TL 2 ( aNxizipsp Wik ) !

The factor % appears in both the numerator and the denominator, because otherwise each contact
is counted twice. The orientation of a contact is also distinguished, so for the placement on the
lattice, the contact j,/,i, k is distinguished from the contact i,k, j, /.

g(y) cannot be set equal to (), because to do this, Eq. [7.14]has two shortcomings. First the
assumption that all molecular contacts can be placed independently on the lattice is mistaken.
The contacts are related to molecules and it is the molecules rather than the contacts that can
be placed independently on the lattice. Certain configurations of molecular contacts will not be
consistent with any of the configurations of molecules on the lattice. This is illustrated by Fig.
The four colored molecules in Fig. can only be arranged in four different ways on the
lattice. Fig. shows one of these configurations. For all four configurations, there are two
blue-blue and two blue-red contacts and according to Eq. [7.14]there are 4!/(1!1!2!) = 12 different
ways of arranging the four contacts on the lattice. Thus, 8 of the arrangements of the contacts
must give a configuration that is not consistent with any of the arrangements of the molecules
on the lattice. One example of such an inconsistent configuration is shown in Fig. The
cross represents the four contacts and the colors indicate the type of contact. The contact on the
left as well as the contact on the right are blue-red contacts and the upper as well as the lower
contact are blue-blue contacts. In the configuration of contacts, the upper left molecule should

g(y) = (7.14)
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7.3 Derivation of the MOQUAC entropy term

be red according to the right contact and should be blue according to the upper contact. As
this is a contradiction, the configuration of contacts shown in Fig. @ 1s inconsistent with all
configurations of molecules on the lattice.

(a) one red and three blue molecules distributed on(b) a configuration of only the molecular contacts that
four lattice sites is not consistent with any configuration of the four
molecules on the lattice

Figure 7.1: Example of an inconsistent configuration of molecular contacts on a lattice.

To exclude configurations of molecular contacts on the lattice that are not consistent with any
configuration of molecules on the lattice, higher approximations can be made. Guggenheim, for
example, considered triangular triplets of molecular contacts or tetrahedral quadruplets instead of
pairs [19]. For the derivation of MOQUAC, the assumption of independently placeable contacts
is maintained. The first shortcoming is thus not corrected for.

The second shortcoming of Eq. [7.14] that does not allow g(y) to be set directly equal to g(y)
is that if the g(y) for all distributions of y are summed, then the number of all distinguishable
ways of arranging the molecules on the lattice W should result:

w=Y gy (7.15)
ally

Summing over all g(y) would overestimate W

W<y &y (7.16)
ally
as is indicated in the example in Fig. To correct for the second shortcoming, a scaling factor

h for g(y) is introduced and

g(y) =hi(y) (7.17)
is written. Introducing Eq. into Eq. then results in:
W=y h3(v) (7.18)
ally

83



7 Appendix

To determine the scaling factor, 7, W must be defined. For the modeling of GY, it is typical to
describe W with the equation for combinatorial entropy. For example, with his equation for the
combinatorial entropy (Eq. [2.9)), Staverman describes the number of different ways of arranging
molecules on a lattice, considering their size and shape. Boltzmann’s equation relates the molar
entropy S to the number of microstates corresponding to a macrostate by

nS =kglnW (7.19)
W can thus be formulated with Eq. 2.9]and Eq.

S,
W = exp (” °°mb) (7.20)
kg
Eq. is set equal to Eq. to determine the scaling factor h:
S
Y hg(y) =exp (u) (7.21)
ally ks
&
exp <”Sc0mb>
he N / (7.22)
Yany &(W)
Introducing Eq. into Eq. results in
exp <nScomb>
h= o (7.23)
Yally G Z’ INXiZi)!
NC NOI’

I T TS T, 1( Naizipliik)!

The sum in the denominator of Eq. [7.23] can be approximated by its leading term, which ac-
cording to Hala and Boublik [71] is the most likely distribution, i.e. random distribution, of all
contacts. For a random distribution of contacts

R
XjZjPj
Viass= Al i 024
SRR VM e
SO
exp (nScomb>
B
L e (7.25)
HNCIHk 1H ]Hl 1<2Nx,zlp?k):NcZﬂ’jl )!
1)(mZm
-
nScomb M !
exp H 1Hk 1H lnl 1 lez’plkx 1 XmZm )
L (7.26)

(32X Nxizg)!

can be written for the scaling factor.

Substituting Eqs. [7.14] [7.17] and [7.26] into Eq. .16 results in
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S=
xXjzipy
B n A (7.27)
" (%Z Nx,z,) T IHk 1 7=1H1:11 (%inZiPEk‘/’jJ,i,k)!
=
ex nScomb H H H H Nx szp// !
ke P 1 k=111j=111—4 lZlek):m e
S=—In or T (7.28)
" o T ij:1H1:]1 (%inzipgk‘l’j.,l,i,k)!
54
xjzipy
m 1 m<m
S= Scomb+ ah HH H (7.29)
i=1k=1j=1I= (EinZipi,ijJ,#k)!
When Stirling’s approximation
Inn!=nlnn—n (7.30)
for large factorials is applied, Eq. can be written as:
S = Scombt
Nc N N¢ Nnr X‘Z’pR 1 XiZip
Z Z Y Z leZzplk]\]Jc]—JJl 2lezzpf{k#>
i—1 k= 1J 1i= Yon—1XmZm 1 XmZm
1 szjp l 1 1 1
Nszzkac—J__inzip?k‘//j,l,i,kln _inzip,[‘{k‘l/j,l,i,k +—NXiZiP$ij,l,i,k (7.31)
2 N ’ B )
N i 2 2 2
Applying Eqs. @.1]and 4.3] and separating summands results in
NC Nor 1
S = Scomb + Z Z ( lezlpl kT 2lezlpz k) +
i=1k=1
p N xjz;p}, 1 xjzip%
Z Z Z Z NXzZzPlch]—J’llﬂ EinZiPEkNJcJ—J’l -
i=1k=1j=11= Z‘4m:1 m<m Zmzlxmzm
1 1
EinZiPEij,l,i,k In <§inZiP§kll/j,l,i,k>) (7.32)
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e e VY Y, 1 v XiziPN
S=3S —l— Nxz ———In | =Nxizip; —c— | —
comb Z Z Z Z i lplkz%zlmem 5 Vi lpl’kzln\izlxmziﬂ

N i Zli=1j=1i=

1 1
zNXiZiPEk%,l,l,kln (EinZipEij,l,i,k)> (7.33)
=
S:Scomb+
Ne NPT e NY' R
Xjzjp% XjZjPji 1 R
~Nxizip}y kAT In T — Nxizip Wik In (Wiik) | +
zzlkzljzllz( o Zn\; 1XmZm E%zlmem 2 LR ( / ll)

¢ NO ae NYT R
By [ ] X3P 1 1
w Z Z Z Z ENXiZiPEkZNC—x']’Z — EinZipglej,hi,k In QinZiPEk (7.34)
j j = m=1-"m<m

Again applying Eqgs. 4.1]and .3| results in

g N Xj2ip}
S = Scomb+ Z Z ( Nxjz;p%;In (ZN—]» _

j=li= m=1XmZm

Nc N N¢ N;)r
Z Z Z Z ( leleszJltkln (letk)) +
k=1 =1

n i3 j=l1
NY*

kg N9 1 1 1
= ) <<_inZip§k_ —NXiZiP§k> In (_inzipsk)> (7.35)
n = &=\\2 2 2

=1k=

B & N ijjp?l

j=li= m=1Xm<m
N¢ N NE¢ N

0 Y Y Y (Swmarfiv (i) 030

i=1k=1j=1I[=1

The second term on the right-hand side of Eq. is expanded with Eq. 4.3

o N N e N Xjzipy
S = Scomb—f— Z Z Y Z ( Nxjzjp% Wik i 1n (ZN—])> _

i=lk=1j=11= m=1Xm<m
N NCN

NC
9 Y Y Y (v wi)) @30

N iZk=1j=1i=1
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7.4 Derivation of the MOQUAC model equation

and the symmetry condition, Eq. is applied so Eq. results in

B & N e N szjp?l
S= Scomb+ Z Z Z Z lezlplkllljllkln NS . -

i=1k=1j=11= m=1Xm<m
NC NC'r N¢ N

Z yyy ( lez,p,kw,,zﬂ,kln(w,l,k)) (7.38)

llkl]lll

Nc N Ne Nor ijijl
S = Scomb + Z Z Z Z —NszzP, kll/],l,z,k ch’ (7.39)

Using the fact that n and N

N
= 7.40
" Na ( )

as well as kg and R are related by the Avogadro constant

R
kg = — 7.41
B= . (7.41)

Eq. can be written as

Ne N' ne NV szijl
S = Scomb + R Z Z Z Z szlpl le] L, kln ch7 (7.42)

Eq. is equal to Eq.

7.4 Derivation of the MOQUAC model equation

In this section Eq. #.23]is derived. To simplify the derivation, the reference state

Gref = Href (743)
with
NC NOr
Hper = Z Z ZzXzP, KUikik (7.44)
i=1k=

is introduced, which is subtracted from Eq.

G* =G — Gyt (7.45)
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c N c NOr
N N W]vlalvk Zq 1 xqzq
ZZ Z szzplk%zzk ujrik+TRIn -
i=1k=1j=11= PJIXJZJ
NC NUr 1
T'Scomb — Z Z _szzpl kUi k,ik (7.46)
i=lk=

Note that introducing this reference state neither influences the result for the excess Gibbs energy
nor for the local composition, since the reference state is independent of W, , . o-
Expanding the last term in Eq. with Eq. [4.3]allows to rewrite Eq. to

N¢© NO]‘ N¢ Nor

ZZZZ lelpzk‘l’jllk Ujlik — Uikik +

i=1k=1j=1I=
N¢ [\/0r N¢ NOI‘

Wik XN X2
Z Z Z Z _RTlelpl KVl ikIn - R . —TScomp (7.47)
=lk=1j=11= D Xjzj

With Eqs. #.4|and #.2] Eq. can be written as

G* =

N¢ N N¢ N;r

Z Z Z Z Zl lplkWJllk Wjlik+ Wik jl—UWjljl— Uikik |+

i=lk= j>ll

1f] 71
c N Ne© NOr N¢
u l Vi Lik Xg=1%q%q
DY Z L RT 2Ry g In AL g (48)
i=1k=1j=11= PjiXjzj
Substituting

W) 1ik = UjLik Uikl —Wjlj1— Uikik (7.49)

into Eq. results in:

N¢© N()l' N¢ Nor

Z Z Z Z zxiPEklI/j,l,i,k @ikt

i=lk=1j>i I=
l>k
1f]z

N€¢ Nor N¢ NO]‘

NC
Vi Lik Xg—1%q%q
Z Z Z RTszlpl KWl k R 1 —TScomb (7.50)
=lk=1j=11= P iXizj

Splitting Eq. [7.50]up in an enthalpic and an entropic contribution according to Eq. {.7]results in
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N¢ Nor N¢ ]VOr

Z Z Z Z lelpzk‘/’]llk 'j ik (7.51)
i=lk= 1]>lll

if j=i

and

N¢ NC'r N¢ Nor

Wik Ey 1X Zq
ZZ ZZ—RTz,x,p,kw,z,kl e i e (7.52)
i=1k=1j=11= pjzxﬂ/

Now Eq. is partially derived with respect to W, .o

a l//n,p,m,o T7xi7ll/j,l,i,k¢ll/n p,m,0

N¢ NO N¢ N

R OVjlLik
ZZZZ Zt szka Wj1ik~+
i—lk=1j>i = Yn,pmo
l>k
1fj=i

~\~
a

’ ' Vi Wik LN Xz
ZZ Z ZERTzixipEkalz/j,l,z,k <ln J zR q=1"9 q+1 (7.53)

n,p,,0 PjiXjzj

The partial derivation of Eq. 4.4]results in

0 OV: 1 -
ZiX tpzk# _ijjpﬁlallllﬂ (7.54)

7p7m?0 n7l)7m70

Substituting Eq. into Eq. [7.53|results in

allfmp,mp T»xhlllj,l,i,killln.p,m,u

2
Ne NPT e NP llfzkllfk1<2 xZ)
a—l—ZZZ Z _RTle1p$kaalelk In i Lik Wik, q%q
=1k=15Zi =] Yn,p.m.o p] XjZiPy JXiZi
1f]:71
b
NC NOI . ) NC
ZZ Zl-xlpzka n RX‘ ] +
i=lk= ll/ n,p,m,o pl7k lZl
N€ ]\JIOr N¢ NJ 1 a
R ll/j7l7l7k
Y SRTzxipij (7.55)
i=1k=1j=1I=1 Y, p,m,o

The partial derivation of Eq. {.3|results in
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NC NOr

ZZ aWJllk

j=1i=1 al,Un,p,m,o
With Eq. ¢ equals zero and Eq. can be written as

=0 (7.56)

JdG*
<a— =atb-
Wn,p.,m,o Tvxivll/j,l,i,kqtll/n,p,m,o

C Nor C NC
N¢ N N R OVjLik . WikikXy—1%42q
Z Z Z Z RTlelpl k& In R (7.57)
i=1k=1j= Yin,p.m.o Pitici
lik
if j=i
Splitting up the terms of the sum results in
JG*
(a S =a+b—
l//n,P-,mﬂ T xi, W 1i kF Wan,pm,o
C N C N NC
N N alV]J,l k ll/i7k7i7k ZqZIXqu
LYY Y sRranlig -
oy, R xizi
i=1k=1j>i |= WYn.p.m.o Pigtiti
l>k
if j=i
d
NE Nor N© NOr
i LA | R al/’j,l,i,k Wlklqu 1%9%q
Z Z ERTZixipi,ka In (7.58)
i=1k=1j<i I=1 Vin.p,m.o pi, i
1<k,
if j=i

JdG*
Wn,pmﬁ T,xi,lllj,z,i,k?tllfn‘p,mvﬂ

c NOr ¢ NO N©
. LA aWj Lik Yik,ik Zq:1 Xq%q
Z ) Z RTz,x,p, x5 In - (7.59)
i=lk=1j<i I= Yn,pm.o Dj i XiZi
l<k
if j=i

With Eq. Eq. can be written as

dG*
<a— —atb—d—
Wn,p,m,o Tvxiallfj,l.i,k;twn,p,m,o

NC Nor NC N ) ) NC
OVjrik . ViljlLe=1%q
YY) Z RTszlplk 5 In R (7.60)
i=1k=1j>i I= lIfn,p,m,o pj’liZJ
l>k
if j=i
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Substituting again a, b and d and uniting terms results in

aw”’p’m") Txi W1 kF WYn,p,mo

2
or
Nc N Nc N R IIJjJ,lk ll/]7lvlakllll 7]1 <Zq ]quq>
) Z ) Z letpzk 3 @j ik +RT In R -
=1k=1721 =] Yo,p.m.o P} ixjzipRizi
if j 7l
N°¢ N©
w’7k7.7k2 = Xgl ll/.J: 712 = Xgl
RT In 21220 ppg AP0 ) 7,61y
Piici PR
=
all/n’p’m’() Tvxhllljlik;élllnpmo
N¢ Nor N¢ Nj
R OVjLik ViLikWik,jl
Yy Y X Sl s (g 4 RTIn (7.62)
i=1k= 1]>l = Wn,pmo ll’l’,k,l‘,kll/j,l,j,l
l>k
if j=i
Substituting Eq. into Eq. #.22] results in
N¢ N N¢ NOI‘
R OVjLik VilikWik,jl
YY) Z Lo Pk | O+ RTIn 22 80 ) = 0 (7.63)
i=lk=1j>i I= Yo, p,m.o VikikWjl jl
l> )
if j=i

Since the partial derivatives in Eq. are independent of each other, each bracketed term needs
to be equal to zero, thus

Wj7lalvkllllakvjal — GX (_ J7lvlak> (7.64)
VikikWjijl RT
must be fulfilled. Substituting ®;;; x in Eq. leads to
VitidVikid _ g (_ Wlik + Ui jl — Wikik = Ujl, j,l) (7.65)
VikikWjl.jl RT

which is equal to Eq.

7.5 Proof of the consistency of MOQUAC with the
Gibbs-Helmholtz equation

In this section the consistency of the enthalpy term, Eq. [4.8] and the entropy term, Eq. of
MOQUAC with the Gibbs-Helmholtz equation is shown. Since the reference state of Egs.
and obviously fulfills the Gibbs-Helmholtz equation, it is sufficient to show that H* and S*
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are consistent with the Gibbs-Helmholtz equation. For this Egs. and are substituted
into the Gibbs-Helmholtz equation as given by Eq. 4.20}

N(,N N¢ IVr

all/blvlak Wi 1ik
ZZZZ szlplk R TR TS
i=1k= 1]>zll

)

if j=i

N¢ NO NCN a
Vjsik Lg1 %2
2
k=1 I= T

i=1 j=1 p_,'71ij]

H* =

N¢ Nor N¢ ]Vr

10
LYY Y ek OVidid gy, | g P ¥ohme
T

zk&
i=lk=1j>i I= Yn,p.m.o
l>k,
if j=i

NYr N
RT al//j,l,z k Vjilik Zqzl XgZq | 1 a‘//mp,m,o
Z Z Z,x,plk(9 In R — i +
Yn,p.m.o PjXj%j r Jdr

\

1 R OVWisik | 10V pmo
LY LY RTasvig, =2 o oL

7p7m7()

N¢ N N¢ 1\]0r

ZZZZ lelPlijllk j,1,ik (767)

i=1k=1j>i |=
l>k,
if j=i
Itis
dG*
e rre= (527

) (7.68)
Vn.p.m.o T xi,W;1,i kFVn,pm,o

which according to Eq. and as discussed in appendix [7.4]is equal to zero:
et f+g=0 (7.69)
Eq. can thus be simplified to

N¢ NO N¢ ]\]0r

ZZZ Z lelpzkl//jltk j ik (7.70)

i=lk=1j>i I=
l>k
1f]z
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7.6 Proof that in MOQUAC equally behaving orientations can be merged

which is identical to H* as given in Eq. The consistency of MOQUAC with the Gibbs-
Helmbholtz equation is thus shown.

7.6 Proof that in MOQUAC equally behaving
orientations can be merged
In this section it is shown that in MOQUAC two equally behaving orientations of one component

can be merged. Two orientations i,k and i,m of one component are considered to be equally
behaving if forall j € [1,...,N°Jand [ € [1,...,N{']

Wjlik=UWjlim (7.71)

and

Uik ik = Uimim (7.72)

applies.
To prove that two equally behaving orientations i,k and i,m can be merged, the ratio
Vj1ik/Wj1im is determined. For this first with Eq. Eq. is written as

R
XiZiD; Vi ik Wi lLik Wjlik T Wik ji — Uikik —Ujl,j
[ lé( .] i .] l — eXp (_ ]7lal7k 17k7],l lvk7l3k ]317]71) (7-73)
XjZjP; Vikik Vil jl RT
~
. R oy o
| XEP G Viki kYl Wilik T Wik jl—Wikik—Ujljl
Vilik= a exp | — BT (7.74)
XiZiPj k
which, when substituting Eq. 4.2} results in
.nR .. Lo
XjZjP i Vik,ikWil,jl 2 ik — Uikik—Ujl]]
XiZiPj k
With Eq. for the ratio
R
Vitik _ | YikikPim <_2uj,l7i,k —2Uj 1 im — Uikik + szmJ,m) (7.76)
Vilim lI/i,m,i,mp;'?k 2RT
results.
With Egs. [7.71]and [7.72] Eq. [7.76| simplifies to
R
ll/j7l,i,k _ ll/l7k7l7kpi,m 7 77
v Ay R (7.77)
Vilim ll’l,m,l,mp[7k

Now equation [7.74]is substituted into Eq. 4.3]to yield
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Ne N3 R v
Lo | ZXP G Vikik Wil 2uj ik —Uj 0 — Wikik
Y = exp  — SRT =1 (7.78)
j=11=1 LXiPj g
&
Ne N3 R s
y Vikik [Zi%iPj Vil exp (_ Uik —Ujljl— ul}kﬂ}k) _q (7.79)
R . = :
j=ti=1\ Pik LiXi 2RT
&
ki k 1
Vikik _ (7.80)
R or R
Pik N X Yil.jl

N¢ J
j=1 Zl:l

With Eqgs. and from Eq.

‘I/i,ll;,i,k _ W,ﬁ7i7m (7.81)
Dik Pim

can be derived. With Eq. Eq. can be simplified to

2 ik Wik k
p

ZiXj 2RT

Yilik = Wjlim (7.82)

All contact fractions of the orientation i,k and i,m are thus equal. With this result, Eq. {.21]is
evaluated. It can be seen that, because Eqs. [7.71] and[7.82] apply, the orientations i,k and i,m can
be merged to a new orientation i,k’. The random frequency of occurrence of this new orientation
pfk, is given by

PRe = PRt PR (7.83)

7.6.1 Example of merging of orientations

A binary system of cubic molecules is considered. Each face of a molecule has 4 surface seg-
ments of equal size. Figure shows a flat projection of the general form of these component
types. Several surface segments of component 1 have a surface charge that is specified in Fig.
The surface segments of component 2 are all equal 0. It is assumed that the interaction
energy between two contacting surface segments is given by the product of the charges of both
surface segments.

For each component, 24 orientations are distinguished: 6 directions of orientation, given by the
normal of each face, and 4 rotations around each direction of orientation. When two molecules
are in contact, always the two faces of the molecules completely overlap. Upon a contact the
four surface segments of the contacting face always interact with one other surface segment.
Since a binary mixture is considered, in total there are 48 times 48 different contact types, where
the interaction energies of all contact types that involve at least one component 2 are equal to
zero. Before the merging of equally behaving orientations, the random frequency of occurrence
of each orientation equals 1/24.

Table shows the interaction energy of all contact types that involve two components 1. For
the remaining contact types it is indicated that the interaction energy is equal 0. It is obvious that
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7.6 Proof that in MOQUAC equally behaving orientations can be merged

Figure 7.2: Flat projection of component 1 for the example of merging of orientations.

0

0,00 0

-1

0

0

Tab. [7.4]is symmetric, because Eq. {.2] applies. Having a closer look at Tab. [7.4] reveals that
also all 4-by-4 sub-matrices show a characteristic structure. In each diagonal from top right to

bottom left the interaction energies are identical.

According to Egs. and two orientations are equally behaving, if the two lines that
belong to the orientations are identical. Because of symmetry also the two columns that belong
to the orientations are identical. If this is the case, the orientations can be merged. This is

equivalent to merging the equal lines and columns in the interaction-energy matrix. Tab. [7.4]

shows that orientation 1 is equal to orientations 5 and 9, 2 is equal to 6 and 10, 3 is equal to 7
and 11, 4 1s equal to 8 and 12, 13 is equal to 17, 14 is equal to 18, 15 is equal to 19 and 20 is

equal to 24. After merging the related lines and columns, the new interaction matrix of Tab. [7.3]
results. The random frequencies of occurrence of the new orientations are given in Tab. [7.5]

Table 7.3: Interaction-energy matrix after the merging of similar orientation

S.

i 1 1 1 1 1 1 1 r (1 1 1 1|2

k 1 2 3 4 5 6 7 8 19 10 11 121
I 1 |-18 9 0 9 |-12 6 0 6 |-6 3 0 3]0
1 2 9 0 9 -18| 6 0 6 -12,3 0 3 610
1 3 0 9 -18 9 0 6 -12 6 |0 3 -6 3|0
1 4 9 -18 9 0 6 -12 6 013 6 3 010
I 13]-12 6 0 6 | -8 4 0 4 14 2 0 210
1 141 6 0 6 -12| 4 0 4 812 0 2 4]0
I 15] O 6 -12 6 0 4 8 4,0 2 4 210
1 16| 6 -12 6 0 4 -8 4 02 4 2 010
1 21| 6 3 0 3 14 2 0 2 /-2 1 0 110
I 22 3 0 3 -6 2 0 2 4,1 0 1 210
1 23] O 3 -6 3 0 2 4 210 1 -2 110
1 24 3 -6 3 0 2 4 2 o1 -2 1 010
2 1 0 0 0 0 0 0 0 O[O0 O O 010
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7.7 Flowchart of the expanded gefit program

Table 7.5: The random frequencies of occurrence of the orientations of component 1 after the
merging of similar orientations.

orientation k pli X

1,2,3 and 4 3/24
5,6,7 and 8 2/24
9,10, 11and 12 1/24

7.7 Flowchart of the expanded gefit program

The gefit program package is a collection of different fortran subroutines that were originally
implemented by Pfennig [[156]. The gefit program serves to simultaneously fit parameters of a
GE-model to different kinds of experimental data. Three input files are required for the program:
a “run”, a “mix” and a “pur” file. In the run file details about the parameter fitting such as the
data sets that are used for the fit or the starting values of the model parameters are specified.
The mix file contains experimental data of mixtures and the pur file contains pure-component
informations. A run of the gefit program shows the following general course of action:

e start gefit

read input

start minimization

— evaluate objective function
x call gex

— check convergence: iterate or stop minimization

write output

stop gefit

For the evaluation of the objective function, different thermo-physical properties of the mixture
such as the heat of mixing or the vapor-liquid equilibrium need to be determined. Generally,
all thermo-physical properties are determined with a GF-model. Thus, it is necessary to call the
subroutine gex, which contains an implementation of the selected GE-model. MOQUAC was

added to the gex subroutine. In the following, the course of action of the gex subroutine for
MOQUAC is shown:

e define orientations

upon first call — call morp

determine u if required — call mobce

cluster similar orientations

call moquac
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First, the subroutine gex defines the orientations that are distinguished for each component. Upon
the first call of the subroutine, the subroutine morp is called. This subroutine calculates the
random frequency of occurrence of each orientation for every component Psz with a Monte-
Carlo method. This Monte-Carlo method was described in section[5.4] 7

The interaction energy for each combination of orientations depends on the parameters of
the interaction-energy model. If these parameters were changed during the course of the min-
imization, the interaction energies need to be determined anew. The interaction energies are
determined in the subroutine mobce. In the following, the course of action of this subroutine is
described:

e read COSMO files
e average surface-charge densities

e determine u of all contact types

First, the COSMO files are read. These files contain information on molecular geometry and
charge distribution. Then, the COSMO charge densities are averaged to eliminate artifacts of the
COSMO calculation.

After all interaction energies have been determined, similarly behaving orientations are clus-
tered in the gex subroutine. For each cluster, average interaction energies are determined. With
the reduced number of orientations and with the average interaction energies, the moquac sub-
routine is called. In this subroutine, the MOQUAC equations are solved and all excess properties
as well as the activity coefficient of every component are determined. For the determination of
the activity coefficients and the excess enthalpy, analytical equations are used. These results are
returned to gefit for the determination of thermo-physical properties for the parameter fit.

7.8 Comparison of experimental data with different
model results for the system alkane + ketone

Figures|7.3|to show all plots of the comparison of the combination of the interaction-energy
model with MOQUAC to all the experimental data points of the selected data sets of the alkane
+ ketone systems. The interaction-energy model is evaluated with the parameters that were
determined from the simultaneous fit to H® and VLE data of alkane + ketone systems. Also the
results of COSMO-RS and the modified UNIFAC (Dortmund) model are shown.
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7.8 Comparison of experimental data with different model results for the system alkane +
ketone
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Figure 7.3: Comparison of experimental data with the model results for the system acetone (1) +
n-heptane (2) at 7 = 298.15K.

1400_-I exp. data /’-:;;:\ T=298.15K ]
1200 & "MOQUAC™ &'\ ]
_ y N _
_ 1000} P, " ]
o) ‘ < TS
g 800 B /‘ /< A N\ .\ |
= '/, COSMO-RS N\ R
£ 600} /-( y N\ A
" I /
, R
T 400!l // mod. UNIFAC (Do) N\ %\ 1
N\ Y
7 L)
200}/ \ |
R T e ——
0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.4: Comparison of experimental data with the model results for the system 2-butanone
(1) + n-heptane (2) at T = 298.15K.
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Figure 7.5: Comparison of experimental data with the model results for the system 3-pentanone
(1) + n-heptane (2) at T = 298.15K.
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Figure 7.6: Comparison of experimental data with the model results for the system acetone (1) +
n-heptane (2) at 7 = 313.15K.
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Figure 7.7: Comparison of experimental data with the model results for the system 2-butanone
(1) + n-heptane (2) at T = 318.15K.
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Figure 7.8: Comparison of experimental data with the model results for the system n-heptane (1)
+ 3-pentanone (2) at T = 353.15K.
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Figure 7.9: Comparison of experimental data with the model results for the system acetone (1) +

n-heptane (2) at 7 = 313.15K.
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Figure 7.10: Comparison of experimental data with the model results for the system 2-butanone

(1) + n-heptane (2) at T = 318.15K.
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Figure 7.11: Comparison of experimental data with the model results for the system n-heptane

(1) + 3-pentanone (2) at 7 = 353.15K.
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7.9 Comparison of experimental data with different
model results for the system alkane + alcohol

Figures to show all plots of the comparison of the combination of the interaction-
energy model with MOQUAC to all the experimental data points of the selected data sets of the
alkane + alcohol systems. The interaction-energy model is evaluated with the parameters that

were determined from the simultaneous fit to HE and VLE data of alkane + ketone systems. Also
the results of COSMO-RS and the modified UNIFAC (Dortmund) model are shown.
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Figure 7.12: Comparison of experimental data with the model results for the system n-hexane
(1) + ethanol (2) at T = 298.15K.
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7.9 Comparison of experimental data with different model results for the system alkane +
alcohol
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Figure 7.13: Comparison of experimental data with the model results for the system n-hexane
(1) + 1-butanol (2) at T = 288.15K.
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Figure 7.14: Comparison of experimental data with the model results for the system n-hexane
(1) + I-pentanol (2) at T = 303.15K.
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Figure 7.15: Comparison of experimental data with the model results for the system n-hexane
(1) + ethanol (2) at T = 318.15K.
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Figure 7.16: Comparison of experimental data with the model results for the system n-hexane
(1) + 1-butanol (2) at T = 332.53K.
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alcohol
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Figure 7.17: Comparison of experimental data with the model results for the system n-hexane
(1) + 1-pentanol (2) at T =298.15K.
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Figure 7.18: Comparison of experimental data with the model results for the system n-hexane
(1) + ethanol (2) at T = 318.15K.
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Figure 7.19: Comparison of experimental data with the model results for the system n-hexane
(1) + 1-butanol (2) at T = 332.53K.
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Figure 7.20: Comparison of experimental data with the model results for the system n-hexane
(1) + I-pentanol (2) at T = 298.15K.
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Nomenclature

Symbols
a K UNIFAC model parameter
a m? COSMO-RS model parameter
a ﬁ correlation parameter
A mL%I free energy
A m molecular surface area (1 index)
A K modified UNIFAC model parameter (2 indices)
A* m? surface area of the new standard segment
b - auxiliary variable
b ﬁ correlation parameter
B - modified UNIFAC model parameter (2 indices), Boltzmann factor
B - auxiliary matrix
c 1}&2]112%2 COSMO-RS parameter
c ol correlation parameter
c o ;1?:2@ interaction-energy model parameter
C - modified UNIFAC model parameter (2 indices)
d m distance
d ﬁ similarity
D - auxiliary matrix
e ﬁ energy of a surface-segment contact
f - scaling factor, objective function
g - degeneracy
G ﬁ Gibbs energy
G - NRTL model parameter (2 indices)
h miol enthalpy of a molecular contact or surface-segment contact
h - scaling factor of the degeneracy
H miol enthalpy
J - Jacobian matrix
kg - JIK Boltzmann constant
) - UNIFAC parameter
m - multiplicity
n mol amount of substance
N - number
Na - Avogadro constant
N* - number of interaction energies
p Pa pressure
p - frequency of occurrence, o-profile
q - structural area parameter
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Nomenclature

q As charge
) - structural surface area parameter of a functional group (1 index)
) - canonical partition function
r - structural volume parameter
r m radius, distance
7 m position vector
R mglK universal gas constant
R - structural volume parameter of a functional group (1 index)
R m radius
s m%lK entropy of a molecular contact or surface-segment contact
S oI entropy
t K temperature
T K temperature
u $ interaction energy of a molecular contact
U i energy
v - metric parameter
Vv m—; molecular volume
w - metric parameter
W - number of distinguishable ways of arranging molecules on a lattice
X - liquid mole fraction (1 index), local composition (2 indices)
X - group fraction
y - auxiliary vector
Z - coordination number, number of nearest neighbors
Greek symbols

SHEECEHOSAIADACES>D2DL ® D> IR Q
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parameter of the NRTL and COSMO-RS model

activity coefficient

activity coefficient of a group (1 index), non-random coefficient (2 indices)
sum of squared residuals

error, permittivity

vacuum permittivity

surface-area fraction

parameter of COSMO-RS

parameter of the Wilson model

chemical potential

parameter of the UNIFAC model

mathematical constant pi

parameter of the combinatorial contribution

surface-charge density

model parameter of the NRTL and UNIFAC model, energy parameter
volume fraction

electrostatic potential

surface-area fraction (1 index), local composition, contact fraction
group surface-area fraction

interaction parameter



Nomenclature

Indices
i mainly used to index components
Jj mainly used to index components
k mainly used to index orientations or groups
) mainly used to index orientations
m
n used to index components, groups or surface segments
0 used to index surface segments or orientations
P used to index surface segments or orientations
r used to index components
u used to index surface segments
\Y used to index surface segments
é used to index a microstate
Superscripts
0 pure component
oo infinity
ap atom pair
arr arrangement
C component
conf conformer
cp contact point
ct contact type
dir direction
E excess
f formation
h enthalpy
L liquid
or orientation
p polar
rot rotation
R random
S entropy, surface segment
- average value
- vector
Subscripts
0 reference value
acc acceptor
av average
c component
calc calculated
comb  combinatorial
disp dispersion
don donor

used to index components, groups, surface segments or contact points
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Nomenclature

eff effective

exp experimental

ar group

hb hydrogen bond

int polar interactions

max maximum

ref reference

res residual

S surface segment

tot total

vdW van der Waals
Abbreviations

DFT density functional theory

Do. Dortmund

exp. experimental

mod. modified

TOM  thermodynamics of organic mixtures

VLE vapor-liquid equilibrium
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