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Kurzfassung
Ein allgemeines Subtraktionsschema zur störungstheoretischen Berechnung von Quantenkorrekturen zur
zweiten Ordnung in der Quantenchromodynamik
David Heymes

Die verlässliche Interpretation von Messergebnissen am Large Hadron Collider (LHC) is nur möglich,
wenn genaue Vorhersagen im Rahmen des Standardmodels der Teilchenphysik existieren. Ein
wichtiges theoretisches Werkzeug für diese Vorhersagen ist die störungstheoretische Behandlung der
Quantenchromodynamik (QCD). Dieses erlaubt präzise Abschätzungen von Wechselwirkungsquer-
schnitten von stark wechselwirkenden Teilchen.
Die Koeffizienten der störungstheoretischen Reihe nach der führenden Ordnung besitzen infrarote
Singularitäten in verschiedenen Beiträgen. Zwei Ursachen dieser Singularitäten können unterschieden
werden. Entweder gehen masselose, virtuelle Teilchen in Schleifenbeiträgen auf ihre Massenschale
oder zusätzliche, masselose Teilchen im Endzustand werden weich oder kollinear zu weiteren mas-
selosen Teilchen. In der Summe der einzelnen Beiträge heben sich die Singularitäten auf, wenn in
der Rechnung ein entsprechendes Regulierungsschema verwendet wird.
Für die erste Ordnung der störungstheoretischen Reihe existieren allgemeine Subtraktionsschemata,
die es erlauben den physikalischen Wechselwirkungsquerschnitt zu berechnen. Singularitäten, die
dimensional reguliert werden, heben sich vor der Phasenraumintegration analytisch auf. Die Integra-
tion kann schließlich mit Monte Carlo Methoden ausgeführt werden.
In der zweiten Ordnung der störungstheoretischen Reihe ist die Struktur der infraroten Singularitäten
weitaus komplizierter. Verschiedene Schemata wurden vorgeschlagen, um physikalische Vorhersagen
zu dieser Ordnung für einzelne Prozesse zu machen.
In der vorliegenden Dissertation wird die allgemeine Formulierung des Subtraktionsschemas Strip-
per (SecToR Improved Phase sPacE for Real radiation) im Detail behandelt. Dieses Schema basiert
auf einer numerischen Aufhebug der infraroten Divergenzen. Im Rahmen von Stripper ist eine
prozessunabhängige Berechnung der zweiten Ordnung möglich.
Im Weiteren wird die Implementierung des Schemas diskutiert, die es erlaubt Prozesse am LHC
zu der gegebenen Ordnung zu simulieren. Der Leitgedanke hinter der Implementierung ist die
prozessunabhängige Subtraktion von der Berechnung der prozessabhängigen Matrixelemente zu
trennen. Baumniveau Matrixelemente sind in der Software implementiert. Ein- und Zweischleifen
Matrixelemente können einfach hinzugefügt werden. Erste Tests der Implementierung werden
diskutiert.





Abstract
A general subtraction scheme for next-to-next-to-leading order computations in perturbative Quantum
Chromodynamics
David Heymes

Accurate and robust theoretical predictions are essential in order to perform a reliable inter-
pretation of measurements at the Large Hadron Collider with respect to the Standard Model of
Particle Physics. A major theoretical tool to provide precise predictions for scattering cross sections
of strongly interacting particles is perturbative Quantum Chromodynamics (QCD). Starting at
next-to-leading order in the perturbative series the calculation suffers from infrared singularities
in different parts of the calculation. There are two origins of these singularities. Either massless
virtual particles in loop contributions go on-shell or additional massless particles in the final state
become soft or collinear. Using an appropriate regularization method singularities cancel in the sum
of different contributions. At next-to-leading order subtraction methods are established, that allow
to calculate the physical cross section in dimensional regularization using Monte Carlo methods.
Singularities cancel analytically before the integration is performed.
At next-to-next-to-leading order in the perturbative series the infrared singular structure is more
involved and different schemes have been proposed to provide physical predictions for individual
processes.
In this thesis, the general formulation of the sector improved residue subtraction scheme is pre-
sented, a framework to compute next-to-next-to-leading order corrections in perturbative QCD.
This approach, named Stripper (SecToR Improved Phase sPacE for Real radiation), relies on
the numerical cancellation of regularized infrared singularities and provide a process independent
framework to calculate physical cross sections.
In a second step, the explicit implementation of the subtraction scheme in a Monte Carlo event
generator is outlined. The main idea of the implementation is to separate the process independent
subtraction scheme from the process dependent evaluation of matrix elements. While tree-level
matrix elements are already available, one- and two-loop matrix elements can be included easily.
Finally, first partial tests of the software for top-pair production in hadron collisions are presented.
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CHAPTER 1
Introduction

The main task of the particle physics community in the era of the Large Hadron Collider (LHC) is
the reliable interpretation of measurements with respect to the Standard Model of particle physics.
The LHC has been built as a discovery machine for the Higgs boson and new physics. The discovery
of the Higgs boson in 2012 [4, 5] has completed the list of Standard Model particles that are observed
in nature. However, no traces for physics beyond the Standard Model have been observed so far.
The main focus of the physics program for the LHC Run II, from 2015 to 2018, is therefore [6, 7]:

• Precision measurements of the properties of the Higgs boson
• Searches for physics beyond the Standard Model

For both programs, precision predictions within the Standard Model play an essential role, but not
in the traditional sense of precision particle physics.

Traditionally, precision physics is related to lepton colliders and precision measurements of elec-
troweak parameters. In contrast to hadron colliders, the center-of-mass energy at lepton colliders can
be fine tuned to study specific observables or processes. For example, the most precise measurement
of the 𝑍 boson mass, 𝑚𝑍 = (91.1875 ± 0.0021) GeV, has been obtained by the experiments at LEP1

and SLC2 [8]. It is improbable that a hadron collider like the LHC can compete in this context in the
near future. Due to the large pile-up of events at different energy scales in a hadronic environment,
precision studies of a single observable at a specific energy scale are challenging. In contrast, the
high number of possible events at different energy scales, free a lot of space for new discoveries. In
conclusion, Hadron colliders are built as discovery machines.

As already mentioned, no new particle has been observed during Run I, apart from the Higgs
boson. New phenomena will be possibly detected as small deviations from the Standard Model
predictions. This demands a new form of precision particle physics at hadron colliders, which
is complementary to the traditional form: Discovery precision particle physics. Models that try
to describe physics beyond the Standard Model can only be excluded, if the Standard Model
background is precisely known. (An example can be found in [9].) In this sense, a precise knowledge
of the Standard Model is essential to discriminate between Standard Model events and signals that
originate possibly from new physics.

1 Large Electron Positron Collider
2 Stanford Linear Collider
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2 1 Introduction

Precision physics at hadron colliders requires a considerable effort from the experimental col-
laborations as well as the theoretical community. In order to offer predictions for hadrons collisions,
perturbative Quantum Chromodynamics (QCD) is a reliable tool in order to estimate theoretical
uncertainties for a specific class of processes. QCD is the fundamental Quantum field theory that
describes the strong dynamics of colored particles, namely quarks and gluons. They build the
constituents of the proton. In the high energy regime, which will be quantified later in this work, the
strong coupling 𝛼𝑠 ≪ 1 and a perturbative treatment of the theory is possible. In this regime, the
hadronic cross section to produce a specific final state factorizes into parton distribution functions,
that describe the probability of finding a quark or a gluon inside the proton, and a partonic cross
section, that describes the hard scattering of quarks and gluons.
The theoretical uncertainty of a prediction for hadron colliders depends on several ingredients.
It depends on the error on the parameters that are needed for the process under consideration.
By parameters the free parameters of the Standard Model are meant, e.g. masses and coupling
constants. They are usually measured in separate experiments, like the mass of the 𝑍 boson in the
above example, or in the same experiment using different processes.
The second source of uncertainty are the parton distribution functions. They describe the dynamics
of quarks and gluons inside the proton at low energies. In this regime, a perturbative treatment
of QCD is not possible and a direct calculation of these functions is in general not viable. The
parton distribution functions are extracted from different experimental results using precise QCD
predictions. In this regard, two cases have to be distinguished: Either parton distribution functions
serve as an ingredient of the hadronic cross section in order to predict its theoretical value, or the
experimental measurement of a cross section and the calculation of the partonic cross section are
used in order to determine the parton distribution functions [10–13].
The remaining source of uncertainty is the perturbative expansion of the partonic cross section in
𝛼𝑠. The knowledge of the number of coefficients in the perturbative series determines the value and
the theoretical uncertainty of the prediction. This topic is addressed in the present work.
The computation of the leading-order contribution to processes relevant for the LHC is completely
automated and neither conceptual nor computational problems for the evaluation of high multiplicity
processes exist. Predictions are provided in form of general purpose event generators (see for example
[14, 15]).
Starting at next-to-leading order the calculation suffers from soft and collinear (infrared) divergences,
which appear in different parts of the calculation. They arise either in the one-loop matrix element
of the virtual contribution or in the real contribution as one additional final state parton becomes
unresolved. However, using an appropriate regularization, the singularities cancel in the final
result. An automation of this calculation is much more involved compared to the leading order
case, since one-loop matrix elements have to be evaluated and the singular structure has to be
handled in a general manner. A general framework to handle phase space singularities is provided by
subtraction methods [16, 17]. They provide a process independent recipe to evaluate cross sections
at next-to-leading order in the strong coupling 𝛼𝑠. Nowadays, all ingredients can be evaluated
automatically and multi-purpose computer programs have been used to calculate the next-to-leading
order cross sections for most of the processes that are relevant at the LHC (see for example [14, 18]).
The complexity of the next-to-next-to-leading order correction of the cross section increases tremen-
dously with respect to the next-to-leading order correction. On the one hand, two-loop matrix
elements have to be evaluated. While the general structure of arbitrary one-loop matrix elements is
known, two-loop matrix elements have to be evaluated on a case by case basis. Up to now, only
matrix elements for 2 → 2 processes have been evaluated. On the other hand, the complexity also
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increases due to the involved infrared singular structure. Singularities appear in all ingredients, that
have to be evaluated.
Initial state collinear singularities have to be treated by appropriated collinear renormalization
terms. In the double-virtual contribution explicit infrared singularities arise in the two-loop matrix
element. The real-virtual contribution contains a one-loop matrix element and an additional parton
in the final state, which can become soft or collinear. The one-loop corrections can be calculated
using tools that have been developed for next-to-leading order calculations. Singularities, due to the
additional final state parton, have to be regulated by an appropriate subtraction method.
The final ingredient is the double-real contribution, which contains tree-level matrix elements that
contain up to two unresolved partons in the final state. This contribution requires the development
of a subtraction scheme that regularizes up to two unresolved partons.
In this work, the whole structure of higher order QCD corrections up to next-to-next-to-leading
order will be addressed. In particular, the subtraction scheme Stripper1 is presented. It fulfills
all requirements necessary to calculate cross sections up to next-to-next-to-leading order in pertur-
bative QCD. It is implemented as a general framework to calculate fully differential cross sections
for arbitrary processes, if the matrix elements are provided. The implementation of the scheme
is an important step towards fully automated computations at next-to-next-to-leading order in
perturbative QCD.
The first idea has been developed in [19] and has been successfully applied for the first time to
the calculation of the total cross section of top quark pair production [20]. The four-dimensional
formulation of the scheme has been first outlined in [1] and will be presented in detail in this work.
The present work is organized as follows. In chapter 2 precision measurements at the LHC are
discussed. Three examples are given in which next-to-next-to-leading order corrections have been
necessary in order to interpret the data correctly. These examples provide a general motivation for
precision calculations beyond next-to-leading order.
In chapter 3 the foundations of fixed order calculations in perturbative QCD are reviewed. The
main focus lies on perturbative predictions at next-to-next-to-leading order. Techniques to evaluate
one- and two-loop matrix elements are summarized. Finally, an overview of subtraction and slicing
methods at next-to-next-to-leading order is given. Their limitations and differences are discussed in
the end of the chapter.
Chapter 4 contains the main part of the work. The four dimensional formulation of the subtraction
scheme Stripper is fully outlined. In this formulation the subtraction scheme can be used as a
general framework to calculate cross sections at next-to-next-to-leading order in the strong coupling.
The numerical verification of the scheme is presented at the end of the chapter.
In chapter 5, the realization of the subtraction scheme in a C++-program is discussed. The relation
between physical concepts and C++-classes is described. Topics related to the implementation of
the subtraction framework that go beyond its first theoretical description are discussed afterwards.
First partial contributions for differential cross sections in 𝑡𝑡-production in proton collisions at
next-to-next-to-leading order verify the functionality of the software at the end of the chapter. A
full phenomenological study of processes using the presented implementation is beyond the main
scope of this work and is left for the future.

Several aspects of precision QCD are not covered in the present work. For example matching
parton showers to fixed order calculations or analytic resummation techniques provide additional

1 SecToR ImProved phase sPacE for Real-radiation



4 1 Introduction

important tools to understand LHC measurements. Nevertheless, they are beyond the scope of this
work and are not discussed.
It should be mentioned that at the discussed level of precision next-to-leading order electroweak
corrections can become as important as next-to-next-to-leading order QCD corrections. A recent
calculation and further references can be found in [21]. The discussion of electroweak corrections is
however not directly related to the main topic of this work.



CHAPTER 2
Precision measurements at the Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) has just started its Run 2 and collects data at a center-of-mass
energy of 13 TeV since April 2015. During Run I, which started in early 2010 and continued until end
of 2012, the two main experimental collaborations, ATLAS1 and CMS2, collected around 25 fb−1 of
proton-proton data for a center-of-mass energy

√
𝑠 = 8 TeV. The luminosity at the CMS experiment

was about [6]
L = 1

𝜎

d𝑁
d𝑡 ≃ 7 · 1033 cm−2𝑠−1 , (2.1)

and of similar order for the ATLAS experiment [7]. The integrated luminosity over the whole first
run at 7 and 8 TeV is depicted in the left plot of Fig. 2.1. The right plot shows the predicted total
cross sections for some Standard Model benchmark processes as well as the total cross section for
proton proton collisions. For a center-of-mass energy

√
𝑠 < 4 TeV, cross sections are also given for

proton antiproton collisions, in order to compare the number events at the Tevatron to the number
of events at the LHC. The number of events per second for different center-of-mass energies can be
extracted directly from the plot. For example, the number of events for the production of a top
quark pair is considered. At the Tevatron, with a peak luminosity of circa 1032cm−2𝑠−1, 10−3 top
pairs have been produced per second. Hence, in one year 104 events could be recorded. At the LHC
at 8 TeV, about 0.1 pairs have been produced per second. During the run in 2012, about 106 top
quark pairs have been produced. A upgrade to 14 TeV will produce one 𝑡𝑡-pair per second and in
one year 107 events could be produced.
Similarly for the production of a Higgs boson via gluon fusion 𝜎𝑔𝑔𝐻 . The cross section at 8 TeV is
about 19 pb [23]. Hence, more than half a million Higgs bosons have been produced in 2012 in this
channel, and led to its discovery. Since, the total cross section at 14 TeV is more than twice as big
as at 8 TeV [23], the number of events that will be counted during Run II will be more than one
million per year.
The given numbers exemplify that the LHC is also a precision experiment for testing the Standard
Model. Due to the large number of events, the experimental statistical error for benchmark processes
lies in the percent regime or even below.
In the following, examples of measurements from Run I at the LHC are considered. It will be shown
that in those cases predictions at next-to-next-to-leading order in perturbative QCD have been
necessary to match the experimental precision.

1 A Toroidal LHC ApparatuS
2 Compact Muon Solenoid

5
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Figure 2.1: Left [6]: The integrated luminosity of the LHC taken at the CMS experiment during the three
years 2010 (green), 2011(red) and 2012 (blue) of Run I. Right [22]: Total predicted cross sections for several
benchmark processes at proton-(anti)proton colliders as a functions of the center-of-mass energy

√
𝑠. The

discontinuity for some of the cross sections is due to the switch from a proton-antiproton cross section below 4
TeV to a proton-proton cross section above 4 TeV. The total cross sections for 𝑡𝑡 and 𝑏𝑏̄ are denoted by 𝜎𝑡 and 𝜎𝑏

respectively.

In particular the total cross sections for the productions of two vector bosons is a prime example.
The comparison with fixed order theory predictions is shown in the left plot of Fig. 2.2. Focusing
on the production of a 𝑊 -pair helps to understand specific features that can occur in higher order
predictions. The cross section for the production is measured to be [26]

𝜎exp
𝑊𝑊 (7TeV) = 52.4 ± 2.0(stat) ± 4.5(syst.) ± 1.2(lum.) pb , (2.2)

at 7 TeV using an integrated luminosity of 4.92 fb−1. The measured value at 8 TeV for a dataset of
integrated luminosity of 19.4 fb−1 is [27]

𝜎exp
𝑊𝑊 (8TeV) = 60.1 ± 0.9(stat) ± 3.2(syst.) ± 1.6(lum.) pb . (2.3)

The increase of luminosity lowers the statistical error by more than a factor of 2. The theoretical
prediction at 7 TeV at next-to-leading order slightly underestimates the experimental result, if only
the statistical error is considered. This behavior is understood if the theoretical prediction at different
perturbative orders is examined. The plot on the right hand side of Fig. 2.2 shows the prediction for
the total cross section at leading order, next-to-leading-order and next-to-next-to-leading order as a
function of the center-of-mass energy of the protons. The diagram is taken from [25], in which the
behavior of the perturbative expansion is explained. The leading order prediction completely fails to
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Figure 2.2: Left [24]: Summary plot of the CMS measurement of the total cross section for vector boson pair
production in comparison with (next-to-)next-to-leading order QCD predictions. The used data set is specified in
the last column. The theory uncertainty is depicted by the yellow band. An overall agreement is observed. Right
[25]: The theoretical prediction for the total 𝑊 +𝑊 − cross section as a function of the hadronic center-of-mass
energy. Results of the leading-order (blue), the next-to-leading order (red) and next-to-next-to-leading order
(green) calculation are shown. The error band is due to the variation of factorization and renormalization scale.

describe the data at both energies of the colliding protons. The next-to-leading order contribution
enlarges the cross section by 50% − 60% with respect to the leading order contribution, while the
theoretical uncertainty stays unchanged at the order of 2% − 5%. The next-to-next-to-leading order
introduces another correction of about 10% and a first slight decrease of the theoretical uncertainty
is observed. Owing to the fact that the higher order corrections do not lie within the error band of
the previous order, the scale uncertainties at leading and next-to-leading order do not represent the
correct theoretical error due to missing higher order contributions. This is a characteristic feature of
this process. New partonic channels emerge at next-to-leading order and at next-to-next-to-leading
order of the perturbative series. They contribute significantly to the total cross section and shift the
prediction towards the measured value. Beyond next-to-next-to-leading order no additional channels
arise and the given theoretical error estimate can be taken as the first reliable uncertainty of the
final prediction and is in good agreement with the measured value.

An observable, that has been measured with incredible precision at the CMS and ATLAS
experiments, is the total cross section for top quark pair production. The combined value measured
for leptonic decay channels of the top quark reads [30–33]

𝜎exp
𝑡𝑡

(8TeV) = 240.6 ± 1.4(stat) ± 5.7(syst.) ± 6.2(lum.) pb , (2.4)

where data sets of 5.3 − 20.3 fb−1 have been included. The statistical error is of the order 0.5%
and the uncertainty is dominated by the systematical error and the error on the luminosity. In
the left plot of Fig. 2.3, the recent measurement of the total cross section at the LHC and the
Tevatron are compared to the next-to-next-to-leading order prediction [34]. It can be observed
that the Standard Model prediction agrees very well with the measured value. For this observable,
a next-to-next-to-leading order prediction is required in order to keep up with the experimental
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Figure 2.3: Left [28]: The theoretical prediction for total production cross section of 𝑡𝑡 for proton-proton
collisions (green) and proton-antiproton collisions (blue) at next-to-next-to-leading order, including next-to-next-
to-leading logarithmic soft gluon effects. The prediction is compared to measurements at the LHC and Tevatron.
Right [29]: Factorization and renormalization scale dependence of the total cross section at leading order (blue),
next-to-leading order (red) and next-to-next-to-leading order (gray).

precision. This can be seen in the right plot of Fig. 2.3, which is taken from [29]. It shows the
theoretical uncertainty due to variation of the factorization and renormalization scale for each order
in perturbation theory. In contrast to the previous example, the scale uncertainty significantly
reduces, if higher orders of the perturbative series are included. Additionally, the central value
of the theory prediction lies within the error band of the previous order. This indicates a good
convergence of the series and a reliable estimation of the theoretical error. The scale uncertainty of
the final prediction has been estimated to be about 5%, an inclusion of soft gluon effects through
next-to-next-to-leading logarithmic resummation reduces this uncertainty to about 3%. Additional
theoretical uncertainties, due to the top quark mass, the strong coupling and the used parton
distribution functions are of the same order [29].
In addition to the inclusive observables discussed so far, higher order corrections can have an impact

on the shape of differential distributions. As an example, the differential cross section measurement
for the Drell-Yan process 𝑝𝑝 → 𝑍/𝛾* → 𝑙𝑙 is considered [35], where the final state leptons 𝑙 are either
electrons or muons. The measurement, which is differential in the invariant mass of the lepton pair
𝑚𝑙𝑙 below 66 GeV, is shown in Fig. 2.4. This measurement includes data from the early 2011 7 TeV
run of integrated luminosity of 1.6 fb−1 in the region 𝑚𝑙𝑙 = 26 − 66 GeV (left plot), the statistical
error is determined to lie below 1%. An even lower region could be probed using 2010 LHC data of
integrated luminosity of 35 pb−1 (right plot). The data is compared to three different theoretical
predictions, where all of them include higher order electroweak corrections (HOEW) and photon
induced contributions (PI). The next-to-leading order QCD prediction does not describe the measured
data in both cases in the low 𝑚𝑙𝑙 region. The inclusion of additional radiation to the next-to-leading
order prediction in terms of a parton shower matched to the next-to-leading order prediction [37,
38] describes the data already more accurately. Nevertheless, the theoretical error in this case is still
of the order 10% − 20% in the low 𝑚𝑙𝑙 region. The next-to-next-to-leading order prediction [39–42]
provides the first satisfactorily description of the data, while the theoretical uncertainty, which is of
the order 5% − 10% in the first bin, remains larger than the overall experimental error.
The three given examples show that higher order QCD prediction up to next-to-next-to-leading order
are required. Next-to-leading order predictions in perturbative QCD are nowadays standard. Highly
elaborated automated tools exist for a automated calculation (see also section 3.3.1), including
several massive particles and processes of high multiplicity.
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Figure 2.4: [35] Measured differential cross section d𝜎
d𝑚𝑙𝑙

in two regions below the 𝑍 mass peak: 26 GeV <

𝑚𝑙𝑙 < 66 GeV (left) and 12 GeV < 𝑚𝑙𝑙 < 66 GeV (right). The data is compared with theory predictions at
next-to-leading-order and next-to-next-to-leading order, which were obtained using the software Fewz [36], and a
next-to-leading order prediction matched to parton showers using Powheg[37]. Electroweak effects (𝛥HOEW)
and photon induced contributions (𝛥PI) are included.

The list of known corrections at next-to-next-to-leading order for hadron collisions is rather short.
The production of a Higgs boson can be calculated differentially and dedicated software exists [41,
43–46]. Recently the total cross sections for single Higgs production via gluon fusion has been
calculated at next-to-next-to-next-to-leading order accuracy [23]. The Drell-Yan cross section and
single vector boson production has been calculated and is available differentially [40, 41, 47]. The
first calculation of a next-to-next-to-leading order cross section including colored particles in the
final state, has been the total cross section for 𝑡𝑡-production [34]. The first differential distributions
have been presented in [48]. Partial results for dijet productions in hadron collisions have been
presented in [49, 50], where currently only the purely gluonic contributions have been fully computed.
The calculations of vector boson pairs at next-to-next-to-leading order accuracy can be found in
[25, 51–53]. All channels for the differential cross section of Higgs+jet and W+jet productions have
been presented [54–56].
The mentioned examples, represent only a tiny part of Standard Model physics that can be tested
at the LHC. Completely differential next-to-next-to-leading order calculations for several additional
processes are demanded. For example, calculating the cross section for dijet production at this order
of accuracy could be used to constrain the gluon parton distribution function. The list of known
next-to-next-to-leading order prediction includes only up to two particles in the final state. This
is due to the lack of two-loop amplitudes for 2 → 3 processes and efficient tools to compute real
corrections.
Another important issue is, how results can be made accessible for the experimental community.
The tools and theoretical frameworks that have been applied to most of the precision predictions
mentioned in this chapter will be summarized in the next chapter. Up to now no general tool exists
that allows to compute differential next-to-next-to-leading order corrections on a process independent
basis. In this work, the theoretical basis of the subtraction scheme Stripper is explained and
its implementation discussed. This implementation serves as a general framework to calculate
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differential cross sections, in principle, for arbitrary processes.



CHAPTER 3
Precision predictions in perturbative QCD

3.1 Foundations of perturbative QCD
3.1.1 The strong coupling
QCD is a renormalizable Yang-Mills quantum field theory with gauge group SU(𝑁𝑐), where 𝑁𝑐 = 3
is the number of quark color charges observed in nature. The corresponding Lagrangian is

LQCD = − 1
4𝐹

𝑎
𝜇𝜈𝐹

𝜇𝜈,𝑎 − 1
2𝜉0 (𝜕𝜇𝐴𝜇,𝑎)2 + (𝜕𝜇𝑐𝑎)

(︁
𝛿𝑎𝑐𝜕𝜇 + 𝑔0

𝑠𝑓
𝑎𝑏𝑐𝐴𝑏𝜇

)︁
𝑐𝑐

+
∑︁
𝑓

𝜓𝑓,𝑖
(︀
𝛿𝑖𝑗𝑖/𝜕 + 𝑔0

𝑠 /𝐴
𝑎
𝑡𝑎𝑖𝑗 − 𝛿𝑖𝑗𝑚

0
𝑓

)︀
𝜓𝑓,𝑗 , (3.1)

where the gauge is fixed covariantly. The last sum includes all quark flavors 𝑓 ∈ {𝑢,𝑑,𝑐,𝑠,𝑏,𝑡}, where
the number of quark flavors is 𝑛𝑓 = 6. The fields 𝑐𝑎 and 𝑐𝑎 are Faddev-Popov ghost and anti-ghost
fields respectively [57]. The indices {𝑎,𝑏,𝑐} are color charge indices in the adjoint representation,
running from 1 to 𝑁2

𝑐 − 1, and {𝑖,𝑗} the color charge indices in the fundamental representation,
running from 1 to 𝑁𝑐. The QCD field strength tensor is defined as

𝐹 𝑎𝜇𝜈 = 𝜕𝜇𝐴
𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 + 𝑔0

𝑠𝑓
𝑎𝑏𝑐𝐴𝑏𝜇𝐴

𝑐
𝜈 . (3.2)

The above Lagrangian is expressed through bare fields 𝐴𝑎, 𝜓𝑓,𝑖, bare mass parameters 𝑚0
𝑓 and

the bare strong coupling constant 𝑔0
𝑠 , which is conventionally replaced by the QCD fine structure

constant
𝛼0
𝑠 = (𝑔0

𝑠)2

4𝜋 . (3.3)

The theory needs to be renormalized, in order to be predictive. If physical quantities are calculated
in perturbation theory in the strong coupling 𝛼0

𝑠, integrals will be divergent as internal momenta
become large. They are ultraviolet(UV)-divergent. This is not a conceptual problem, since it reflects
the fact that the theory is an effective field theory which is applicable only up to an unknown energy
scale 𝛬. Introducing 𝛬 as a cutoff renders the theory finite and predictive. However, predictions
at some energy scale 𝐸 ≪ 𝛬 should not depend on the cutoff scale. In order to achieve this the
bare parameters of the theory have to depend on this energy scale 𝛬 and are infinite as 𝛬 → ∞.
Renormalizing the theory at an arbitrary scale 𝜇2

R ∼ 𝐸2, the renormalization scale, means to
replace these divergent parameters by the physical parameters at this scale, which are measured.
Consequently, the physical parameters depend on the energy scale 𝜇2

R, whereas a final prediction

11
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should be independent of the renormalization scale.
In practical applications of perturbative QCD, it is more convenient to use dimensional regular-
ization [58] rather than introducing a UV-cutoff 𝛬. In dimensional regularization the theory is
formulated in 𝑑 = 4 − 2𝜀 space time dimensions and UV-divergences appear as poles in the regulator
𝜀. The UV-limit, 𝛬 → ∞ corresponds to 𝜀 → 0.
The relation between renormalized and bare parameters can be formulated order by order in pertur-
bation theory and is given by multiplicative renormalization constants 𝑍(𝛼𝑠). For the coupling it
reads explicitly

𝛼0
𝑠 = 𝜇2𝜀

R 𝑍𝛼𝑠𝛼𝑠(𝜇2
R) , (3.4)

where the introduction of the renormalization scale 𝜇2
R ensures that 𝛼𝑠 is dimensionless in 𝑑 = 4 − 2𝜀.

The scheme that defines the particular form of 𝑍𝛼𝑠 beyond the singular term, is called renormalization
scheme. Different schemes define different renormalization scales. The modified minimal subtraction
scheme MS is widely used in applications and will be exclusively used in this thesis. At leading
order the renormalization constant for the strong coupling reads

𝑍𝛼𝑠 = 1 − 𝛼𝑠
4𝜋

𝛽0
𝜀

+ O(𝛼2
𝑠), (3.5)

where 𝛽0 = 11
3 𝐶𝐴 − 4

3𝑛𝑓𝑇𝐹 . We can use the renormalization group (RG) equation for the strong
coupling to obtain the dependence of the coupling constant on the scale. The RG equation is a
consequence of the fact that the bare coupling cannot depend on 𝜇2

R

0 = d
d log𝜇2

R
𝛼0
𝑠 ⇒ d

d log𝜇2
R
𝛼𝑠 = 𝛽(𝛼𝑠) = −𝛼𝑠

(︂(︁𝛼𝑠
4𝜋

)︁
𝛽0 +

(︁𝛼𝑠
4𝜋

)︁2
𝛽1 +

(︁𝛼𝑠
4𝜋

)︁3
𝛽2 + · · ·

)︂
,

(3.6)
where the QCD 𝛽-function can be calculated using 𝑍𝛼𝑠 and taking the limit 𝜀 → 0.
This function is negative which implies that the strong coupling strength decreases for high energies.
This effect is known as asymptotic freedom and was discovered by Gross, Wilczek and Politzer [59–61].
The coefficients up to 𝛽3 can be found in [62, 63]. If the coupling constant at some scale 𝜇0 is known
the RG equation is used to obtain the coupling at some arbitrary scale 𝜇. The first order solution is

𝛼𝑠(𝜇) = 𝛼𝑠(𝜇0)
1 + 𝛽0

2𝜋 log
(︁
𝜇
𝜇0

)︁ = 2𝜋
𝛽0

1
log
(︁

𝜇
𝛬QCD

)︁ . (3.7)

The energy scale parameter 𝛬QCD indicates the pole of the function, known as the Landau pole. A
perturbative treatment of QCD is only valid if 𝜇 > 𝛬QCD. Fig. 3.1 depicts the world average of
the value of 𝛼𝑠(𝑄), extracted from different measurements at different energy scales 𝑄. The line
depicts the theory prediction in Eq. (3.7) of the running. Using the RG equation, the different
values are combined at 𝑄 = 𝑚𝑍 = 91.1876 ± 0.0021 GeV, the mass of the 𝑍 boson. It is used to fix
𝛬QCD ≃ 213 MeV.
At low energies quarks and gluons are strongly coupled and only appear as colorless bound states,
the hadrons. In the following quarks and gluons are denoted as partons. Possible treatments of
QCD in the low energy regime are direct numerical computations on a space-time lattice or effective
field theory treatments of the bound states, e.g. chiral perturbation theory.
Only when the energy scale is large with respect to 𝛬QCD, partons can be treated as free asymptotic
states and a perturbative treatment of the theory in 𝛼𝑠 ≪ 1 is possible.
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Figure 3.1: The measured value of 𝛼𝑠 in comparison with the theoretical prediction of the running. The values
are extracted at different energies 𝑄 and subsequently evolved to the scale of the 𝑍 boson mass. The averaged
value at this scale includes all the measurements [64]

3.1.2 Massless QCD and decoupling of heavy quarks
The renormalized masses 𝑚𝑓 (𝜇) of quarks are scale dependant and can be defined in the MS
scheme. As they do not exist as asymptotic free states a direct measurement of light quark masses
is not possible. However, it is possible to estimate the renormalized mass parameter by comparing
experimental results to theoretical predictions. The quark masses are given in Tab. 3.1. The typical

𝑚𝑢 (2.3 ± 0.7) MeV MS

𝑚𝑑 (4.8 ± 0.5) MeV MS

𝑚𝑠 (95 ± 5) MeV MS

𝑚𝑐 (1.275 ± 0.025) GeV MS

𝑚𝑏 (4.18 ± 0.03) GeV MS

𝑚𝑡 (173.21 ± 0.51 ± 0.71) GeV measurement

Table 3.1: The light quarks masses {𝑢,𝑑,𝑐,𝑠,𝑏} are MS - mass estimates. The top-quark mass is directly
measurable [64].

energy scales of hard processes at hadron colliders are much larger than light quark masses, where
we denote the number of light quark flavors by 𝑛𝑙 and the number of heavy quark flavors by 𝑛ℎ.
For the LHC, typically 𝑛𝑙 = 5 quark masses are negligible and only the top quark is considered as
massive. The QCD Lagrangian is replaced, by an effective massless QCD Lagrangian, where the
number of active flavours is 𝑛𝑙. The top quark decouples from the theory, if the typical scales are
smaller than 𝑚𝑡. If the scales are comparable to 𝑚𝑡, the top quark is kept as a massive fermion.
Consequently, we eventually deal with two different Lagrangians, the first one contains 𝑛𝑙 active
massless quark flavours and the other contains 𝑛𝑙+1 active quark flavors. The renormalized coupling
𝛼

(𝑛𝑙)
𝑠 in the 𝑛𝑙 - flavor theory, can be related to the coupling of the theory containing one massive
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quark 𝛼(𝑛𝑙+1)
𝑠 . The relation reads [65]

𝛼(𝑛𝑙)
𝑠 (𝜇) = 𝜁𝛼𝑠(𝜇,𝛼(𝑛𝑙+1)

𝑠 ,𝑚𝑡)𝛼(𝑛𝑙+1)
𝑠 (𝛼𝑠) , (3.8)

where 𝜁𝛼𝑠 is the heavy quark decoupling constant and is known up to four loops [66, 67].

3.1.3 Perturbative QCD at hadron colliders
The hadronic cross section in high energy collisions factorizes in a long distance contribution, the
parton distribution functions (PDFs), and a short distance contribution, the partonic cross section

𝜎ℎ1ℎ2(𝑃1, 𝑃2) =
∑︁
𝑎𝑏

¨ 1

0
d𝑥1d𝑥2 𝑓𝑎/ℎ1(𝑥1, 𝜇

2
F) 𝑓𝑏/ℎ2(𝑥2, 𝜇

2
F) 𝜎̂𝑎𝑏(𝑥1𝑃1, 𝑥2𝑃2; 𝛼𝑠(𝜇2

R), 𝜇2
R, 𝜇

2
F)

+ O(𝛬QCD
𝑄

) .
(3.9)

The PDFs 𝑓𝑎|ℎ, are non-perturbative objects. They describe the dynamics of the parton 𝑎 inside
a hadron ℎ. In a first approximation, they are the probability distribution of finding a parton of
flavor 𝑎 and momentum fraction 𝑝𝑖 = 𝑥𝑖𝑃𝑗 inside the hadron, where 𝑃𝑗 is the hadronic momentum.
These functions are extracted experimentally.
The partonic cross section 𝜎̂𝑎𝑏 describes the hard interaction of free gluons and quarks at a hard
scale 𝑄. The cross section is collinearly renormalized, such that initial state collinear singularities
are absorbed into the parton distribution functions.
It is worth to notice that the factorization formula (3.9) has not been demonstrated for general
hadronic cross sections. General proofs exist for Deep Inelastic Scattering (DIS) and Drell-Yan
processes. A summary can be found in [68]. As the formula suggests, factorization is only applicable
when 𝑄 > 𝛬QCD, in other words, when the soft and the hard scale describing the process are well
separated.
On a partonic level, we can calculate cross sections directly using QCD perturbatively. The partonic
cross section for a generic inclusive scattering process with 𝑛 partons in the final state 𝑎+ 𝑏 → 𝑛+𝑋
is defined through

𝜎̂𝑎𝑏 =
∑︁
𝑚=𝑛

1
2𝑠

1
𝑁𝑎𝑏

ˆ
d𝛷𝑚⟨M𝑚|M𝑚⟩𝐹𝑚 , (3.10)

where 𝑎 and 𝑏 are incoming massless partons, 𝑛 denotes the number of outgoing colored particles for
the specific observable and 𝑁𝑎𝑏 is the average factor for color and spin of the incoming partons. Even
though the work mainly focuses on 𝑛 partons in the final state, non-QCD particles can be included
into the final state without changing the content of this work. The partonic center-of-mass energy is
𝑠 = (𝑝1 + 𝑝2)2, where 𝑝1 and 𝑝2 are the momenta of the incoming partons. 𝐹𝑛 is a measurement
function that defines a specific observable under consideration and is a function of the final state
momenta. The only requirement on this function is that it has to describe an infrared safe observable,
i.e. it has to be insensitive to collinear and soft final state partons

𝐹𝑛 → 𝐹𝑛−1, if 𝑝𝑖 → 0 (3.11)
𝐹𝑛 → 𝐹𝑛−1, if 𝑝𝑖||𝑝𝑗 , (3.12)

where 𝑝𝑖 and 𝑝𝑗 are final state parton momenta. The precise definition of renormalized matrix
elements |M𝑚⟩ and the phase space measure d𝛷𝑚 is given in Appendix A.
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The expansion of the partonic cross section in 𝛼𝑠(𝜇2
R) reads

𝜎̂𝑎𝑏 = 𝜎̂
(0)
𝑎𝑏 + 𝜎̂

(1)
𝑎𝑏 + 𝜎̂

(2)
𝑎𝑏 + · · · . (3.13)

The partonic cross section, which is not directly accessible experimentally, can be used to calculate
the hadronic cross section using the factorization formula (3.9). Even though the PDFs are
non-perturbative objects, their dependence on the factorization scale 𝜇2

F can be extracted using
perturbative QCD

𝜇2
F

d
d𝜇2

F
𝑓𝑎|ℎ

(︀
𝑥,𝜇2

F
)︀

= 𝛼𝑠
𝜋

1ˆ

𝑥

d𝜉
𝜉
𝑓𝑏|ℎ(𝜉,𝜇2

F)𝑃𝑏𝑎
(︂
𝑥

𝜉

)︂
. (3.14)

This equation, so called DGLAP equation, allows to resum large logarithms in the PDFs.

3.2 Fixed order calculations
The partonic cross section can be written as an expansion in 𝛼𝑠 (3.13). Each contribution of this
expansion can be decomposed according to the multiplicity of the final state. At leading order in 𝛼𝑠
the cross section reads

𝜎̂
(0)
𝑎𝑏 = 𝜎̂B

𝑎𝑏 = 1
2𝑠

1
𝑁𝑎𝑏

ˆ
d𝛷𝑛 ⟨M(0)

𝑛 |M(0)
𝑛 ⟩ F𝑛 , (3.15)

where the tree-level contribution of the matrix element is |M(0)
𝑛 ⟩. The leading order contribution is

called the Born approximation. At this order the phase space integral is completely finite and can
be evaluated using Monte Carlo methods directly. The measurement function F𝑛 ensures that no
final state parton becomes soft and no final state parton becomes collinear to another parton.
At next-to-leading order (NLO) three ingredients contribute to the partonic cross section

𝜎̂
(1)
𝑎𝑏 = 𝜎̂R

𝑎𝑏 + 𝜎̂V
𝑎𝑏 + 𝜎̂C

𝑎𝑏 , (3.16)

where

𝜎̂R
𝑎𝑏 = 1

2𝑠
1
𝑁𝑎𝑏

ˆ
d𝛷𝑛+1 ⟨M(0)

𝑛+1|M(0)
𝑛+1⟩ F𝑛+1 , (3.17)

𝜎̂V
𝑎𝑏 = 1

2𝑠
1
𝑁𝑎𝑏

ˆ
d𝛷𝑛 2Re ⟨M(0)

𝑛 |M(1)
𝑛 ⟩ F𝑛 , (3.18)

𝜎̂C
𝑎𝑏(𝑝1,𝑝2) = 𝛼𝑠

2𝜋
1
𝜀

(︂
𝜇2

R
𝜇2

F

)︂𝜀∑︁
𝑐

ˆ 1

0
d𝑧
[︁
𝑃 (0)
𝑐𝑎 (𝑧) 𝜎̂B

𝑐𝑏(𝑧𝑝1,𝑝2) + 𝑃
(0)
𝑐𝑏 (𝑧) 𝜎̂B

𝑎𝑐(𝑝1,𝑧𝑝2)
]︁
. (3.19)

The real radiation contribution 𝜎̂R
𝑎𝑏 contains one additional particle in the final state. The measure-

ment function 𝐹𝑛+1 allows this massless particle to become unresolved, i.e. soft or collinear. This
results in a logarithmic singularity of the phase space integral. Using dimensional regularization,
the phase space integral can, in principle, be solved. The infrared-singularities appear as poles in
the dimensional regulator 𝜀 = (4 − 𝑑)/2.
The virtual contribution, 𝜎̂V

𝑎𝑏, consists of the 𝑛-particle phase space integration of the interference
term of the tree-level matrix element and the one-loop matrix element |M(1)

𝑛 ⟩. In dimensional
regularization the one-loop matrix element contains explicit poles in the dimensional regulator, the
infrared-singularities of the loop integral.
The collinear factorization contribution 𝜎̂C

𝑎𝑏 is the convolution of the Born cross section with the
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leading order splitting functions. It ensures that the partonic cross section 𝜎̂𝑎𝑏 is collinearly renormal-
ized at the factorization scale 𝜇2

F. It contains an explicit collinear infrared-pole in the dimensional
regulator 𝜀.
Each of the three contributions diverges separately as 𝜀 → 0, but the sum is finite. As stated by
the Kinoshita-Lee-Nauenberg (KLN) theorem [69, 70], virtual poles cancel the soft and final state
collinear poles of the real radiation. Initial state collinear singularities in the real contribution are
absorbed in the parton distribution functions by collinear renormalization.
At next-to-next-to-leading order (NNLO) the partonic cross section can be separated into five
contributions

𝜎̂
(2)
𝑎𝑏 = 𝜎̂RR

𝑎𝑏 + 𝜎̂RV
𝑎𝑏 + 𝜎̂VV

𝑎𝑏 + 𝜎̂C1
𝑎𝑏 + 𝜎̂C2

𝑎𝑏 . (3.20)

The first three terms read explicitly

𝜎̂RR
𝑎𝑏 = 1

2𝑠
1
𝑁𝑎𝑏

ˆ
d𝛷𝑛+2 ⟨M(0)

𝑛+2|M(0)
𝑛+2⟩ F𝑛+2 , (3.21)

𝜎̂RV
𝑎𝑏 = 1

2𝑠
1
𝑁𝑎𝑏

ˆ
d𝛷𝑛+1 2Re ⟨M(0)

𝑛+1|M(1)
𝑛+1⟩ F𝑛+1 , (3.22)

𝜎̂VV
𝑎𝑏 = 1

2𝑠
1
𝑁𝑎𝑏

ˆ
d𝛷𝑛

(︁
2Re ⟨M(0)

𝑛 |M(2)
𝑛 ⟩ + ⟨M(1)

𝑛 |M(1)
𝑛 ⟩
)︁

F𝑛 . (3.23)

The double-real radiation contribution, 𝜎̂RR
𝑎𝑏 , contains two additional partons in the final state, that

can generate soft and collinear poles in the dimensional regulator 𝜀 after integration over the phase
space. The real-virtual contribution, 𝜎̂RV

𝑎𝑏 , contains explicit poles of the one-loop matrix element
and additional real poles are obtained after integrating the phase space of the additional unresolved
parton in the final state.
The double-virtual contribution, 𝜎̂VV

𝑎𝑏 , contains the square of the one-loop matrix element and
the interference of the tree-level matrix element and the two-loop matrix element. Just explicit
infrared-poles of the loop integrals in dimensional regularization are present.
At this order, two contributions of the collinear renormalization of different final state multiplicity
are present. They read in terms of factorization 𝜇2

F and renormalization scale 𝜇2
R

𝜎̂C1
𝑎𝑏 (𝑝1,𝑝2) = 𝛼𝑠

2𝜋
1
𝜀

(︂
𝜇2

R
𝜇2

F

)︂𝜀∑︁
𝑐

ˆ 1

0
d𝑧
[︁
𝑃 (0)
𝑐𝑎 (𝑧) 𝜎̂R

𝑐𝑏(𝑧𝑝1,𝑝2) + 𝑃
(0)
𝑐𝑏 (𝑧) 𝜎̂R

𝑎𝑐(𝑝1,𝑧𝑝2)
]︁
, (3.24)

𝜎̂C2
𝑎𝑏 (𝑝1,𝑝2) = 𝛼𝑠

2𝜋
1
𝜀

(︂
𝜇2

R
𝜇2

F

)︂𝜀∑︁
𝑐

ˆ 1

0
d𝑧
[︁
𝑃 (0)
𝑐𝑎 (𝑧) 𝜎̂V

𝑐𝑏(𝑧𝑝1,𝑝2) + 𝑃
(0)
𝑐𝑏 (𝑧) 𝜎̂V

𝑎𝑐(𝑝1,𝑧𝑝2)
]︁

+
(︁𝛼𝑠

2𝜋

)︁2 1
2𝜀

(︂
𝜇2

R
𝜇2

F

)︂2𝜀∑︁
𝑐

ˆ 1

0
d𝑧
[︁
𝑃 (1)
𝑐𝑎 (𝑧) 𝜎̂B

𝑐𝑏(𝑧𝑝1,𝑝2) + 𝑃
(1)
𝑐𝑏 (𝑧) 𝜎̂B

𝑎𝑐(𝑝1,𝑧𝑝2)
]︁

+
(︁𝛼𝑠

2𝜋

)︁2 𝛽0
4𝜀2

[︃(︂
𝜇2

R
𝜇2

F

)︂2𝜀
− 2

(︂
𝜇2

R
𝜇2

F

)︂𝜀]︃∑︁
𝑐

ˆ 1

0
d𝑧
[︁
𝑃 (0)
𝑐𝑎 (𝑧) 𝜎̂B

𝑐𝑏(𝑧𝑝1,𝑝2) + 𝑃
(0)
𝑐𝑏 (𝑧) 𝜎̂B

𝑎𝑐(𝑝1,𝑧𝑝2)
]︁

+
(︁𝛼𝑠

2𝜋

)︁2 1
2𝜀2

(︂
𝜇2

R
𝜇2

F

)︂2𝜀∑︁
𝑐𝑑

ˆ 1

0
d𝑧
[︁(︁
𝑃

(0)
𝑐𝑑 ⊗ 𝑃

(0)
𝑑𝑎

)︁
(𝑧) 𝜎̂B

𝑐𝑏(𝑧𝑝1,𝑝2) +
(︁
𝑃

(0)
𝑐𝑑 ⊗ 𝑃

(0)
𝑑𝑏

)︁
(𝑧) 𝜎̂B

𝑎𝑐(𝑝1,𝑧𝑝2)
]︁

+
(︁𝛼𝑠

2𝜋

)︁2 1
𝜀2

(︂
𝜇2

R
𝜇2

F

)︂2𝜀∑︁
𝑐𝑑

¨ 1

0
d𝑧 d𝑧

[︁
𝑃 (0)
𝑐𝑎 (𝑧)𝑃 (0)

𝑑𝑏 (𝑧) 𝜎̂B
𝑐𝑑(𝑧𝑝1,𝑧𝑝2)

]︁
, (3.25)
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where
(𝑓 ⊗ 𝑔) (𝑥) =

¨ 1

0
d𝑦 d𝑧 𝑓(𝑦)𝑔(𝑧) 𝛿(𝑥− 𝑦𝑧) . (3.26)

The explicit form of the splitting functions is given in [71]. The finiteness of the sum of the five
contributions is ensured by the KLN theorem.
As the discussion above suggests, the complexity of fixed order calculations raises significantly at
each order of perturbation theory. On the one hand, this is due to the increasing number of loops in
the matrix elements of the virtual contributions. On the other hand, phase space integrals for high
multiplicities can only be performed using Monte Carlo integration techniques. Increasing the number
of unresolved partons in the final state, the number of singular phase space configurations increases
as well. Hence, methods to extract phase space singularities before any numerical integration is
performed are required.
In the following section, techniques to calculate one-loop and two-loop matrix elements are summa-
rized.
Section 3.4 discusses methods to regulate the real radiation contributions at next-to-leading and
next-to-next-to-leading order. These subtraction and slicing methods allow a numerical integration
over the phase space. Subsequently, a summary of the properties of the discussed methods is
presented.

3.3 Virtual contribution
In this section, techniques to calculate virtual contributions to the cross section are discussed. First
the evaluation of one-loop integrals is summarized, as they appear in the virtual contribution of
the next-to-leading order cross section, as well as in the real-virtual and double-virtual part of
the next-to-next-to-leading order cross section. While the general problem of evaluating arbitrary
one-loop integrals is solved theoretically for arbitrary numbers of final state particles, a numerical
stable and efficient implementation of one-loop matrix elements is challenging for high multiplicities.
A more detailed review on this topic can be found in [72].
Afterwards, the calculation of two-loop amplitudes is discussed. In contrast to the one-loop case,
no general solution has been found yet to calculate two-loop integrals for arbitrary processes. In
the past years a lot of effort has been devoted to develop new ideas. Some virtual contributions for
processes that are phenomenologically relevant for the LHC can be calculated.

3.3.1 One-loop matrix elements
A general one-loop integral contributing to |M(1)

𝑛 ⟩ in a renormalizable Quantum field theory has the
following form

𝐼𝑁 =
ˆ d𝑑𝑙

(4𝜋)𝑑
N(𝑙)

𝐷0𝐷1 · · ·𝐷𝑁−1
, (3.27)

where 𝑁 denotes the number of external particles attached to the loop. The integral is said to be
the 𝑁 -point integral. The number of propagator denominators 𝐷𝑖 is equal to the number of external
legs attached to the loop. The denominators are defined as

𝐷𝑖 = ((𝑙 + 𝑞𝑖)2 −𝑚2
𝑖 + 𝑖𝜖) , (3.28)
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where 𝑚𝑖 is the mass of the corresponding particle in the loop, where for massless quarks and gluons

𝑚𝑖 = 0. External momenta 𝑝𝑘 are ordered and fulfill momentum conservation,
𝑁∑︀
𝑖=1

𝑝𝑖 = 0. Hence,

the momenta in the denominators are 𝑞𝑖 =
𝑖∑︀

𝑗=1
𝑝𝑘,.

The numerator N(𝑙) is in general a function of the loop-momentum contracted with external vectors.
Therefore, the integral is in general a tensor integral of rank 𝑟. The integral of rank 𝑟 = 0 is said to
be a scalar integral. For an arbitrary process the highest rank of a contributing integral, comes from
a diagram, where all external momenta 𝑝𝑖 are the actual external momenta of the particles in the
process. Such a diagram is called ring diagram.
Given the Feynman rules for a non-abelian gauge theory, the highest rank of such an integral can
be determined. If it is assumed that the diagram contains only gluons, each three-gluon vertex
contributes at most one power of the loop momentum to the integral. Hence, the highest rank of
such an integral is 𝑟max = 𝑁 . Allowing fermions as well, the result is the same, since each fermion
propagator will contribute one power of the loop momentum, while the fermion-vector boson vertex
does not. Scalars in the theory do not change this counting likewise.
A loop integral is ultraviolet-divergent, if 𝑟 ≥ 2𝑁 − 4. Hence, integrals with 𝑁 ≥ 5 are ultraviolet
finite.
In theories with massless particles one-loop integrals are infrared-divergent, when internal massless
propagator go on shell. Both forms of singularities are logarithmic and generate poles in the 𝜀, when
the integral in 𝑑 = 4 − 2𝜀 dimensions is evaluated.
It was proven that any tensor integral 𝐼𝑁 can be written in a minimal basis of scalar integrals as [73]

𝐼𝑁 = 𝑐4;𝑖𝐼4;𝑖 + 𝑐3;𝑖𝐼3;𝑖 + 𝑐2;𝑖𝐼2;𝑖 + 𝑐1;𝑖𝐼1;𝑖 + R + O(𝜀) , (3.29)

where 𝐼𝑁 ;𝑖 are scalar 𝑁 -point functions of some configuration 𝑖 of external momenta, where the
scalar integrals are normally referred to as tadpoles (𝑁 = 1), bubbles (𝑁 = 2), triangles (𝑁 = 3)
and boxes (𝑁 = 4).
The reduction of tensor integrals of any order 𝑁 to scalar integrals of 𝑁 ≤ 4 is possible because of
the dimensionality of space-time 𝑑 = 4. Four external linear independent vectors build up a basis in
four dimensions. Because of energy momentum conservation, at least five external momenta are
needed to obtain such a basis. All remaining vectors and the loop momentum can be expressed in
such a basis. It has been shown that scalar 𝑁 point integrals, with 𝑁 ≥ 5, can be reduced to the
mentioned minimal basis of scalar integrals [73–75].
If no singularities are present and regularization is not needed, the expansion is true with R = 0.
But since the calculation is performed 𝑑 = 4 − 2𝜀 dimensions, a so called rational term R remains.
Hence, the problem of calculating one-loop matrix elements or integrals is reduced to the problem
of reducing the tensor integrals to the above basis of master integrals and subsequently finding the
coefficients 𝑐𝑁 ;𝑖 and the rational part R.
Traditionally, the reduction of integrals can be performed by the Passarino-Veltman method [76].
The key idea is to expand the tensor integral into form factors of all possible tensor structures of
external momenta that are allowed by Lorentz covariance. Contracting this expansion with the
different tensor structures results in a system of linear equations for the form factors. In each step of
the reduction the form factors corresponding to a rank 𝑟 tensor integral are related to form factors
corresponding to lower rank tensors and eventually lower number of external legs. Inverting the
system of linear equations leads therefore ultimately to the result for the integral.
However, numerical instabilities, due to vanishing Gram determinants arise, when using this method
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naively. Improved techniques for tensor reduction have been developed and have proven their
applicability to multiparticle processes [77, 78]. Even though these techniques lead to fast and stable
numerical codes [79, 80], large algebraic expressions have to be handled and limits the applicability
of these techniques.
A different approach to reduce one-loop integrals and to get the coefficients and the rational part in
Eq. (3.29) is the OPP (Ossola-Papadopoulos-Pittau) method [81]:
The integrand numerator of any 𝑁 -point one-loop amplitude (3.27) can be parameterized as

N(𝑙) =
𝑁−1∑︁

𝑖0<𝑖1<𝑖2<𝑖3

[︀
𝑑(𝑖0,𝑖1,𝑖2,𝑖3) + 𝑑(𝑙; 𝑖0,𝑖1,𝑖2,𝑖3)

]︀ 𝑁−1∏︁
𝑖 ̸=𝑖0,𝑖1,𝑖2,𝑖3

𝐷𝑖

+
𝑁−1∑︁

𝑖0<𝑖1<𝑖2

[𝑐(𝑖0,𝑖1,𝑖2) + 𝑐(𝑙; 𝑖0,𝑖1,𝑖2)]
𝑁−1∏︁

𝑖 ̸=𝑖0,𝑖1,𝑖2

𝐷𝑖

+
𝑁−1∑︁
𝑖0<𝑖1

[︀
𝑏(𝑖0,𝑖1) + 𝑏̃(𝑙; 𝑖0,𝑖1)

]︀ 𝑁−1∏︁
𝑖 ̸=𝑖0,𝑖1

𝐷𝑖

+
𝑁−1∑︁
𝑖0

[𝑎(𝑖0) + 𝑎̃(𝑙; 𝑖0)]
𝑁−1∏︁
𝑖 ̸=𝑖0

𝐷𝑖

+ 𝑃 (𝑙)
𝑁−1∏︁
𝑖

𝐷𝑖 .

(3.30)

This is only a rewriting of Eq. (3.29), where the coefficients 𝑑, 𝑐, 𝑏 and 𝑎 correspond to the coefficients
of the box, triangle, bubble and tadpole diagrams respectively. The rational term R contains all
coefficients that still depend explicitly on the loop momentum, which are 𝑑, 𝑐, 𝑏̃, 𝑎̃ and 𝑃 . The
dependence on the loop momentum of the rational terms can be explicitly determined [81, 82].
The above formula can be applied to the full one-loop matrix element, rather than to individual
Feynman diagrams. Then, the values of the constant coefficients can be determined by evaluating
the amplitude integrand, i.e. both sides of Eq. (3.30), at specific values of 𝑙. This leads to a system
of linear equations for the coefficients. The OPP procedure selects the loop momenta in such a way
that 4, 3 , 2 or 1 of the possible denominators 𝐷𝑖 vanish. In this way the linear system is triangular
and can be solved recursively.
At this point it becomes clear that the OPP procedure is related to unitarity. The vanishing of a
propagator effectively sets the virtual particle on-shell. In the language of diagrammatic unitarity
the specific propagator is cut and Cutkosky rules are applied for the cut propagator [83]

𝑖

𝑝2 −𝑚2 + 𝑖𝜖
→ 2𝜋𝛿(+) (︀𝑝2 −𝑚2)︀ . (3.31)

Applying this procedure to both sides of the one-loop matrix element of the form (3.27) in the
OPP expansion Eq. (3.30). The l.h.s. can be calculated by just tree level diagrams, since at least
one propagator is cut. Selecting the cuts in such a way that on the r.h.s. only one of the master
integrals in Eq. (3.29) survives, it is possible to determine the coefficients. This is particularly easy
for the box-integral coefficients: Correspondingly four propagators are cut, that results in a product
of tree-level amplitudes on the l.h.s. and the box coefficient 𝑑(𝑖0,𝑖1,𝑖2,𝑖3). The loop momentum is
completely fixed by four 𝛿-functions. Recursively, the coefficients 𝑑, 𝑐, 𝑏 and 𝑎 can be determined
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using four-dimensional loop momenta. This part of the amplitude is therefore called cut-constructible.
The whole procedure is called generalized unitarity.
Using unitarity to reconstruct one-loop amplitudes from tree-level amplitudes was first considered
in [84]. For numerical programs an efficient way to calculate tree-level amplitudes for on-shell
complex momenta in d-dimensions is needed. This is widely done using recursion relations between
amplitudes of different number of external legs based on [85].
Different automated tools exist to compute one-loop amplitudes, the virtual contribution to a NLO
cross section, using either traditional tensor reduction methods [86–89] or generalized unitarity in
combination with the OPP method [18, 89–94] or a complete numerical approach[95].

3.3.2 Two-loop matrix elements
Two-loop matrix elements are notoriously more difficult to calculate than one-loop matrix elements.
New and different methods have to be applied. This section focuses on techniques that have been
employed to calculate two-loop four-point matrix elements contributing to cross sections in hadron
collisions at next-to-next-to-leading order QCD.
A general two-loop integral contributing to |M(2)

𝑛 ⟩ can be written as

𝐼 =
ˆ d𝑑𝑘

(2𝜋)𝑑
d𝑑𝑙

(2𝜋)𝑑
N(𝑘,𝑙)

𝐷1𝐷2 · · ·𝐷𝑁
, (3.32)

where the propagator denominators 𝐷𝑖 and the numerator N(𝑙,𝑘) depend in general on the loop
momenta 𝑙 and 𝑘, the external momenta 𝑝𝑖 and the masses 𝑚𝑖, with 𝑖 = 1...𝑁 . As in the one-loop
case, 𝐼 is in principle a complicated tensor integral of the loop momenta.
A software for the numerical evaluation of dimensional regularized multi-loop integrals based on
sector decomposition exists [96]. There are attempts to find a common basis for arbitrary two-loop
integrands by applying generalized unitarity in multi-loop calculations [97, 98], but finding such a
𝑑-dimensional representation as in the one-loop case is not yet in sight.
The approach is therefore on a case by case basis. First the tensor integral is converted into scalar
integrals of the form

𝐼 ∝
ˆ d𝑑𝑘

(2𝜋)𝑑
d𝑑𝑙

(2𝜋)𝑑
S(𝑘,𝑙)

𝐷𝑎1
1 𝐷𝑎2

2 · · ·𝐷𝑎𝑡
𝑡

, (3.33)

where in this case scalar means that the numerator S in Eq. (3.33) only depends on scalar products
of external momenta and loop momenta.
One method to achieve this, is to project directly on the tree-level matrix element and sum over
spin and color degrees of freedom ⟨M(0)

𝑛 |M(2)
𝑛 ⟩ of the external particles, e.g. [99–104] or expand the

integrand in all possible Lorentz covariant structures, that respect the symmetries of the considered
process. Corresponding projection operators return the coefficients of the expansions containing the
scalar integrals, e.g. [105]. A different method is to insert specific helicity states for the external
particles to obtain scalar integrals [106, 107].
The set of denominators {𝐷1 · · ·𝐷𝑡} defines a topology of an integral. Relations among integrals of
the form (3.33) can be found using integration-by-parts (IBP) [108]:

ˆ d𝑑𝑘
(2𝜋)𝑑

d𝑑𝑙
(2𝜋)𝑑

𝜕

𝜕𝑘𝜇
𝑣𝜇𝑓(𝑘,𝑙,{𝑝𝑖}) = 0 , (3.34)

ˆ d𝑑𝑘
(2𝜋)𝑑

d𝑑𝑙
(2𝜋)𝑑

𝜕

𝜕𝑙𝜇
𝑣𝜇𝑓(𝑘,𝑙,{𝑝𝑖}) = 0 , (3.35)
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where the vector 𝑣𝜇 can be any of the vectors in the integral and 𝑓(𝑙,𝑘,{𝑝𝑖}) is a generic integrand
of the form (3.33). Equations (3.34) and (3.35) represent non-trivial linear relations among different
scalar integrals. The IBP relations are just the consequence of the vanishing of the integral of a
total derivative with respect to a loop momentum. On top on the IBP relations additional relations
among different types of integrals can be obtained using Lorentz invariance (LI) [109]

𝐼(𝑝1 + 𝛿𝑝1, . . . ,𝑝𝑁 + 𝛿𝑝𝑁 ) = 𝐼(𝑝1, . . . ,𝑝𝑁 ) , (3.36)

where 𝛿 defines an infinitesimal Lorentz-transformation for the external momenta

𝑝1 → 𝑝1 + 𝛿𝑝1 = 𝑝𝜇1 + 𝛿𝜇𝜈 𝑝
𝜈
1 , with 𝛿𝜇𝜈 = −𝛿𝜈𝜇 . (3.37)

After performing a Taylor-expansion in the infinitesimal parameter 𝛿, the antisymmetric form of the
relation between different integrals reads(︂

𝑝𝜈1
𝜕

𝜕𝑝1𝜇
− 𝑝𝜇1

𝜕

𝜕𝑝1𝜈
+ · · · + 𝑝𝜈1

𝜕

𝜕𝑝1𝜇
− 𝑝𝜇1

𝜕

𝜕𝑝1𝜈

)︂
𝐼(𝑝1 + 𝛿𝑝1, . . . ,𝑝𝑁 + 𝛿𝑝𝑁 ) = 0 . (3.38)

This results in non-trivial relations only when the derivatives act on the integrand rather then
the full integral itself. The IBP and LI relations do not yet provide any information about the
integrals themselves, but can be used as a starting point to reduce the set of integrals to a limited
number of master integrals. This reduction can be automated in terms of the Laporta algorithm
[110]. Automated tools that perform this reduction are publicly available, e.g. [111, 112]. However,
depending on the number of integrals and the number of parameters, which are independent
kinematic invariants and particle masses, the reduction demands high computational resources.
Besides, the set of master integrals is not unique and not are priory known.
In the following, the set of 𝑁 master integrals is denoted by the 𝑁 -dimensional vector 𝐼 for
convenience. After the reduction has been performed, the main task is to solve the master integrals.
Since all remaining integrals are linearly related to the master integrals, the full two-loop amplitude
is known, if the master integrals are known.
Different approaches exist to get analytic results for loop integrals and a summary of methods can
be found in [113]. The mathematical structure of multi-loop integrals is summarized in [114]. Here,
one method is outlined that led to results for some benchmark processes at the LHC. The method
of differential equations has been first discussed in [115–117] and extended to 2 → 2 processes in
[109]. In contrast to other methods, the Feynman integral is not calculated directly, but differential
equations in the available independent parameters are derived. The parameters are particle masses
and invariants, which are built from the external momenta. The set of these momenta and masses is
denoted by {𝑥𝑖}. The derivative of a master integral, with respect to one of the parameter results
again in a scalar Feynman integral that can be related to the set of master integrals using the IBP
and LI relations. The result is a system of coupled first order differential equations in each variable

𝜕𝐼(𝜀,{𝑥𝑖})
𝜕𝑥𝑗

= 𝐴𝑗(𝜀,{𝑥𝑖}) 𝐼(𝜀,{𝑥𝑖}) , (3.39)

where 𝐴𝑗 is a 𝑁 × 𝑁 matrix. In order find a solution to the differential equation, a boundary
condition has to be provided. Usually this condition is obtained in a kinematic regime of the
invariants, where the integral can be solved exactly. The result is required as a Laurent expansion
in 𝜀. Hence, the differential equations are expanded in 𝜀 and coupled differential equations order by
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order in 𝜀 are obtained.
In [103, 104] the differential equations for the two-loop master integrals to top quark pair production
were solved using a numerical approach. In this case, two parameters are independent, the Mandel-
stam invariant 𝑥1 = 𝑡 and the top quark mass 𝑥2 = 𝑚𝑡. The center-of-mass energy has been set to
one and could be recovered in the final result. This amounts to a general rescaling of the integrals.
First, boundary conditions in the high energy limit were derived in a semi-numerical approach. The
boundary conditions serve as starting points to integrate numerically the differential equation along
a chosen path in the plane of parameters (𝑚2

𝑡 ,𝑡) to obtain the result for a given master integral for
each point on a grid representing the domain of the function.
In order to solve the differential equation analytically, the basis of special function needs to be
determined, in which the result can be represented. For 2 → 2 processes with one mass scale, like
top pair production and vector boson pair production with only massless propagators a major
progress has been made in the past few years and analytic results for master integrals have become
available. It has been shown [118], that an appropriate choice of the basis integrals, directly returns
the solution of the integrals in terms of an appropriate representation of the special functions. This
basis of master integrals, called the canonical basis, is defined such that the differential Eq. (3.39)
has the following form

𝜕𝐼(𝜀,{𝑥𝑖})
𝜕𝑥𝑗

= 𝜀𝐴𝑗({𝑥𝑖}) 𝐼(𝜀,{𝑥𝑖}) . (3.40)

Its solution can be written formally as

𝐼(𝜀,{𝑥𝑖}) =
[︁
𝑃𝑒𝜀

´ 𝑥𝑗
0 d𝑥𝑗 𝐴𝑗({𝑥𝑖})

]︁
𝐼(𝜀,{𝑥𝑖}|𝑥𝑗=0) , (3.41)

where 𝑃 denotes the path ordering and a boundary condition at 𝑥𝑗 = 0 has been assumed. If
additionally the differential of matrix is logarithmic

d𝐴𝑗({𝑥𝑖}) =
∑︁
𝑘

𝐴𝑗𝑘d log(𝑟𝑘) , (3.42)

where 𝑟 is a rational function of the invariants {𝑥𝑖} and 𝐴𝑗𝑘 is a constant matrix, the result contains
only generalized polylogarithms. This can be immediately seen by expanding the general result in 𝜀
and comparing it to the definition of generalized polylogarithms [119]

𝐺(𝑎1, . . . ,𝑎𝑛;𝑥) =
ˆ 𝑥

0

d𝑡
𝑡− 𝑎1

𝐺(𝑎2, . . . ,𝑎𝑛; 𝑡) , (3.43)

where 𝐺(𝑥) = 1 and 𝐺(0) = 0, and 𝐺(𝑎1,𝑥) = log(1 − 𝑥
𝑎1

). Each next order in the 𝜀 expansion,
generates an additional integral over the logarithm. The solution is a sum of contributions of uniform
degree of transcendentality [118]. The result is particularly compact and reduces the complexity of
the final result in contrast to solving the differential equation in a different basis.
Even though, the result is notably easy in the canonical basis, a recipe how to find the canonical
basis of master integrals, if it exists, is an open question. In general, heuristic methods to find the
canonical basis on a case by case basis have been used (see e.g. [120]).
Analytic results for master integrals for 2 → 2 processes using differential equations have been
presented in the last years. The two-loop integrals for 𝑞𝑞 → 𝑉 𝑉 , where 𝑉 𝑉 represent two vector
bosons of equal masses, have been calculated in [119, 120]. The contributions to 𝑞𝑞 → 𝑉1𝑉2,
𝑞𝑞′ → 𝑉1𝑉2 and 𝑔𝑔 → 𝑉1𝑉2, where 𝑉1 and 𝑉2 are two off-shell vector bosons of different masses, are
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given in [105, 121–125]. These amplitudes are necessary, if the decay of the final state electroweak
bosons is taken into account at next-to-next-to-leading order.
As already mentioned the full two-loop corrections to 𝑝𝑝 → 𝑡𝑡 are available numerically. The bulk of
the analytic two-loop contribution has become available in the meantime [126–129].
The complexity of these calculations is due to multiple scales appearing in the two-loop master
integrals: the independent invariants, external masses and massive propagators.
Two-loop integrals, for purely massless 2 → 2 processes have been calculated already several years
before. For dijet production in hadron collisions all necessary two-loop amplitudes are available
[99–102, 106, 107, 130].

3.4 Subtraction methods and phase space slicing
In section 3.3 methods to evaluate virtual contributions of the cross section have been discussed.
For the purpose of calculating the full cross section beyond leading order the evaluation of phase
space integrals, that contain one or two unresolved partons, is necessary. At next-to-leading order
the real contribution in Eq. (3.17) contains one unresolved parton. A direct numerical integration is
not possible. There are two possible solutions to this problem.
The first method is phase space slicing [131–134]. The main idea is to split the phase space into two
regions. The first region contains the singular limits of the matrix elements. The second region is
finite and can therefore be integrated numerically. In the singular region the matrix element can be
approximated and the integration is carried out analytically.
The second solution to this problem is subtraction. A subtraction term, that mimics the behavior
of the matrix element in all singular limits, is added to the real radiation contribution in order to
render the integral finite. A widely used method has been introduced by Catani and Seymour in [16]
and its massive extension can be found in [135]. To clarify this method a short description is given
in the following. The next-to-leading order contribution of the partonic cross section is written as

𝜎̂(1) =
ˆ
𝑛+1

[︁
d𝜎̂R − d𝜎̂S

]︁
+
ˆ
𝑛+1

d𝜎̂S +
ˆ
𝑛

d𝜎̂V , (3.44)

where the collinear factorization contribution has been omitted for simplicity. The subtraction term
d𝜎̂S fulfills the requirement that it has the same pointwise singular behavior as the real contribution
itself, if calculated in 𝑑 dimensions. This allows to set 𝜀 → 0 for the term in the square brackets
and the phase space integral over 𝑛 + 1 final state partons can be evaluated using Monte-Carlo
integration methods. All singularities are gathered in the last two terms. The subtraction term
should be such that the singular behavior due to one unresolved parton can be integrated explicitly
over the unresolved one particle phase space. In this integration explicit poles in 𝜀 appear that cancel
the explicit poles of the virtual contribution. Finally, a generic next-to-leading order calculation can
be evaluated as follows

𝜎̂(1) =
ˆ
𝑛+1

[︁
d𝜎̂R − d𝜎̂S

]︁
𝜀=0

+
ˆ
𝑛

[︂
d𝜎̂V +

ˆ
1

d𝜎̂S
]︂
𝜀=0

. (3.45)

The method is universal, which means it does not depend on the specific hard process. This follows
from the fact, that QCD matrix elements factorize in the soft and collinear limits into a universal
function that contains the traces of the unresolved parton and a reduced matrix element, that
contains only the remaining hard particles. The specific factorization formulas are outlined in section
3.4.1. Using these limits a process independent form of the subtraction term as a sum of dipole
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contributions can be constructed

d𝜎̂S =
∑︁

dipoles
d𝜎̂B ⊗ d𝑉dipole , (3.46)

where each dipole mimics the singular behavior of a pair of two partons out of the 𝑛+ 1 partons. In
order to obtain the factorized form in Eq. (3.46) a factorization of the 𝑛+ 1 parton phase into a 𝑛
parton phase space and a one parton phase space is needed. This allows for an explicit integration
of the dipole term

ˆ
𝑛+1

d𝜎̂S =
∑︁

dipoles

ˆ
𝑛

d𝜎̂B ⊗
ˆ

1
d𝑉dipole =

ˆ
𝑛

d𝜎̂B ⊗ 𝐼(1) . (3.47)

The 𝐼(1)-operator has the same pole structure as the virtual contribution, which is given by Z(1),
as will outlined in in Eq. (4.108) and appendix B.1. Explicit expressions for the dipole and the
integrated dipole terms as well as the phase space factorizations have been worked out explicitly in
[16, 135]. This next-to-leading order subtraction scheme can be implemented directly in next-to-
leading order event generators.
Another subtraction scheme for next-to-leading order calculations has been introduced for the
calculation of 𝑒+𝑒− → 3 jets in [17] and named after the authors Frixione-Kunszt-Signer (FKS)
scheme. The general idea, in contrast to the dipole subtraction scheme, is that the 𝑛+ 1 parton
phase space is separated into regions that allow only one specific pair of partons to become collinear.
A parametrization in angles and energies allows to obtain subtraction terms for each region and a
numerical evaluation in 𝑑 = 4 dimensions is possible. The form of the subtraction terms is such that
they can be analytically integrated over the unresolved particle’s phase space, after a remapping to
the reduced kinematics is applied. As in the dipole formalism poles cancel analytically, before any
numerical integration is performed.
Several comparisons between phase space slicing and Dipole subtraction methods can be found
in [136, 137]. The general conclusion that has been drawn from these comparisons is that the
subtraction method is superior to phase space slicing in efficiency and accuracy of the numerical
evaluation by an order of magnitude [136].
The infrared singular phase space structure of a next-to-next-to-leading order cross section is much
more involved than that of the next-to-leading order cross section. First, 𝑛+ 1 parton phase space
integrations over the one-loop matrix element in d𝜎̂RV are present. A construction of subtraction
terms requires factorization formulas of one-loop matrix elements in soft and collinear limits.
Following the next-to-leading order approach an analytic integration of splitting and soft functions
over the one particle phase space has to be still possible. Second, the double-real contribution d𝜎̂RR

contains up to two unresolved partons in the allowed phase space region. A multitude of subtraction
terms has to be constructed, that ensure the convergence of the integration as one or two partons
become unresolved. The general factorization properties of the matrix elements can be used to obtain
a process independent scheme. However, if a analytic cancellation between real and virtual poles
is demanded, the subtraction terms should be analytically integrable over the one or two particle
phase space. Since, the splitting and soft functions are more complicated, this task is non-trivial
and has been the main drawback for analytic subtraction schemes at next-to-next-to-leading order.
In the first part of this section, soft and collinear limits of matrix elements are discussed, that are, in
general, needed to construct local subtraction terms at next-to-next-to-leading order. Subsequently,
different proposals for next-to-next-to-leading order subtraction schemes and slicing methods are
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discussed and their applications are summarized. Finally, the different approaches are compared.
In chapter 4, the construction of the subtraction scheme Stripper is outlined in great detail. In
contrast to analytic subtraction schemes, the requirement of an analytic cancellation of poles is
dropped and, apart from trivial integrals, only numerical integrations have to be performed.

3.4.1 Soft and collinear limits of matrix elements
The basis of each local subtraction scheme is the behavior of matrix elements in the infrared limit of
external partons. The matrix element factorizes into a reduced matrix element, which contains all
information about the hard process, and a process independent function that encodes all traces of
unresolved partons. To setup a next-to-next-to-leading order subtraction scheme several limits of
matrix elements need to be known, as up to two final state partons are unresolved. They are listed
in the following.

Single-collinear limit of tree-level amplitudes
The collinear limit of two final state partons of momentum 𝑝1 and 𝑝2 is defined as the limit
𝑘𝜇⊥ → 0 in the Sudakov parameterization

𝑝𝜇1 = 𝑧𝑝𝜇 + 𝑘𝜇⊥ −
𝑘2

⊥
𝑧

𝑛𝜇

2𝑝 · 𝑛
, 𝑝𝜇2 = (1 − 𝑧)𝑝𝜇 − 𝑘𝜇⊥ −

𝑘2
⊥

1 − 𝑧

𝑛𝜇

2𝑝 · 𝑛
,

𝑠12 = 2𝑝1 · 𝑝2 = −
𝑘2

⊥
𝑧(1 − 𝑧) , 𝑝2 = 𝑛2 = 𝑝 · 𝑘⊥ = 𝑛 · 𝑘⊥ = 0 .

(3.48)

The matrix element factorizes into a spin-correlated reduced matrix element and a splitting
function [138]

|M(0)
𝑎1,𝑎2,...(𝑝1,𝑝2, . . .)|2 ≃ 4𝜋𝛼𝑠

2
𝑠12

⟨M(0)
𝑎,...(𝑝, . . .)|P̂

(0)
𝑎1𝑎2(𝑧,𝑘⊥; 𝜀)|M(0)

𝑎,...(𝑝, . . .)⟩ . (3.49)

The splitting function P̂(0)
𝑎1𝑎2(𝑧,𝑘⊥; 𝜀) describes the splitting of a parton of flavor 𝑎 into two

partons of flavor 𝑎1 and 𝑎2. The splitting functions are given in appendix B.2.1.
Single-soft limit of tree-level amplitudes

The singular limit of one gluon with momentum 𝑞 → 0 leads to the factorization formula [138]

|M(0)
𝑔,𝑎1,...(𝑞,𝑝1, . . .)|2 ≃ −4𝜋𝛼𝑠

∑︁
(𝑖,𝑗)

(︁
S𝑖𝑗(𝑞) − S𝑖𝑖(𝑞)

)︁
⟨M(0)

𝑎1,...(𝑝1, . . .)|T𝑖 · T𝑗 |M(0)
𝑎1,...(𝑝1, . . .)⟩ ,

(3.50)
where the soft function, governing the leading singular behavior, is

S𝑖𝑗(𝑞) = 𝑝𝑖 · 𝑝𝑗
(𝑝𝑖 · 𝑞) (𝑝𝑗 · 𝑞) . (3.51)

In the soft limit, the matrix element reduces to the sum of double color correlated matrix
elements, without the soft parton.

Triple-collinear limit of tree-level amplitudes
The collinear limit of three partons of momentum 𝑝1, 𝑝2 and 𝑝3 in the Sudakov parameterization

𝑝𝜇𝑖 = 𝑧𝑖𝑝
𝜇 + 𝑘𝜇⊥𝑖 −

𝑘2
⊥𝑖
𝑧𝑖

𝑛𝜇

2𝑝 · 𝑛
, 𝑖 = 1,2,3 , (3.52)
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as 𝑘⊥𝑖 → 0 results in a factorization of the matrix element [138]

|M(0)
𝑎1,𝑎2,𝑎3,...(𝑝1,𝑝2,𝑝3, . . .)|2 ≃

(︂
8𝜋𝛼𝑠
𝑠123

)︂2
⟨M(0)

𝑎,...(𝑝, . . .)|P̂
(0)
𝑎1𝑎2𝑎3(𝑧𝑖,𝑘⊥𝑖; 𝜀)|M(0)

𝑎,...(𝑝, . . .)⟩ .

(3.53)
The reduced matrix elements can contain up to two spin correlations, if the splitting parton
is a gluon. The leading collinear behavior is governed by the invariant 𝑠2

123 in the prefactor.
The splitting function describes the correct behavior also in the iterated collinear limit, where
first parton 𝑎1 and 𝑎2 become collinear and subsequently the parton 𝑎12 becomes collinear
to parton 𝑎3. Apart from that, if up to two of the three collinear partons become soft, the
behavior of the matrix element is correctly mimicked by the very same factorization formula.

Double-soft limit of tree-level amplitudes
There are two cases to distinguish for the double-soft limit. Either two gluons of momentum
𝑞1 and 𝑞2 become soft or a massless quark-antiquark pair of momentum 𝑞1 and 𝑞2 radiated by
a single gluon becomes soft. The factorization formula for the former case reads [20, 138]

|M(0)
𝑔,𝑔,𝑎1,...(𝑞1,𝑞2,𝑝1, . . .)|2 ≃

(4𝜋𝛼𝑠)2
[︃

1
2
∑︁
𝑖𝑗𝑘𝑙

S𝑖𝑗(𝑞1)S𝑘𝑙(𝑞2) ⟨M(0)
𝑎1,...(𝑝1, . . .)| {T𝑖 · T𝑗 ,T𝑘 · T𝑙} |M(0)

𝑎1,...(𝑝1, . . .)⟩

− 𝐶𝐴
∑︁
𝑖𝑗

S𝑖𝑗(𝑞1,𝑞2) ⟨M(0)
𝑎1,...(𝑝1, . . .)|T𝑖 · T𝑗 |M(0)

𝑎1,...(𝑝1, . . .)⟩
]︃
,

(3.54)

while for the latter case it is

|M(0)
𝑞,𝑞,𝑎1,...(𝑞1,𝑞2,𝑝1, . . .)|2 ≃ (4𝜋𝛼𝑠)2 𝑇𝐹

∑︁
𝑖𝑗

I𝑖𝑗(𝑞1,𝑞2) ⟨M(0)
𝑎1,...(𝑝1, . . .)|T𝑖 · T𝑗 |M(0)

𝑎1,...(𝑝1, . . .)⟩ .

(3.55)
In this limit, quadruple color correlators for the reduced matrix element appear. The leading
soft behavior is factorized in the soft functions S𝑖𝑗(𝑞), S𝑖𝑗(𝑞1,𝑞2) and I𝑖𝑗(𝑞1,𝑞2), given in
appendix B.2.2.

Soft-collinear limit of tree level amplitudes
Soft-collinear limits of the same parton pair are directly obtained by taking the soft limit of
the splitting function describing the collinear limit. However, there is one case which needs a
bit more investigation and is not completely covered by the above formulas. The limit where
two partons of momentum 𝑞1 and 𝑞2 become collinear and both of them soft. This limit can
be described by first taking the collinear limit of the two partons and subsequently taking the
soft limit of a gluon, that is the product of the collinear partons. The factorization formula is

|M(0)
𝑎1,𝑎2,𝑎3...(𝑞1,𝑞2, . . .)|2 ≃(︀
4𝜋𝛼𝑠

)︀2 2
𝑠12

𝑃 (0)𝜇𝜈
𝑎1𝑎2 (𝑧12,𝑘⊥; 𝜀) ⟨M(0)

𝑎3,...(𝑝, . . .)|J𝜇(𝑢1 + 𝑢2)J𝜈(𝑢1 + 𝑢2)|M(0)
𝑎3,...(𝑝, . . .)⟩ ,

(3.56)
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where the soft current is defined as

J𝜇(𝑞) =
∑︁
𝑖

T𝑖
𝑝𝜇𝑖
𝑝𝑖 · 𝑞

. (3.57)

Single-collinear limit of one-loop amplitudes
To derive soft and collinear subtraction terms for the 𝜎̂𝑅𝑉 contribution of the next-to-next-to-
leading order cross section, infrared limits of one-loop matrix elements need to be known. The
collinear limit, as defined in Eq. (3.48), lead to the following factorization [139–144]

2Re ⟨M(0)
𝑎1,𝑎2,...(𝑝1,𝑝2, . . .)|M(1)

𝑎1,𝑎2,...(𝑝1,𝑝2, . . .)⟩ ≃

4𝜋𝛼𝑠
2
𝑠12

[︃
2Re ⟨M(0)

𝑎,...(𝑝, . . .)|P̂
(0)
𝑎1𝑎2(𝑧,𝑘⊥; 𝜀)|M(1)

𝑎,...(𝑝, . . .)⟩

+ 𝛼𝑠
4𝜋 ⟨M(0)

𝑎,...(𝑝, . . .)|P̂
(1)
𝑎1𝑎2(𝑧,𝑘⊥; 𝜀)|M(0)

𝑎,...(𝑝, . . .)⟩
]︃
. (3.58)

At this order the one-loop splitting function P̂(1)
𝑎1𝑎2 is needed as well as the spin-correlated

one-loop matrix element with one parton less.
Single-soft limit of one-loop amplitudes

The last limit to study is the single soft gluon limit of the one-loop matrix element. In this
limit the matrix element behaves as [145, 146]

2Re ⟨M(0)
𝑔,𝑎1,...(𝑞,𝑝1, . . .)|M(1)

𝑔,𝑎1,...(𝑞,𝑝1, . . .)⟩ ≃

−4𝜋𝛼𝑠

⎧⎨⎩∑︁
(𝑖,𝑗)

(︁
S𝑖𝑗(𝑞) − S𝑖𝑖(𝑞)

)︁
2Re ⟨M(0)

𝑎1,...(𝑝1, . . .)|T𝑖 · T𝑗 |M(1)
𝑎1,...(𝑝1, . . .)⟩

+𝛼𝑠
4𝜋

⎡⎣∑︁
(𝑖,𝑗)

(S𝑖𝑗(𝑞) − S𝑖𝑖(𝑞)) 𝑅𝑖𝑗 ⟨M(0)
𝑎1,...(𝑝1, . . .)|T𝑖 · T𝑗 |M(0)

𝑎1,...(𝑝1, . . .)⟩

−4𝜋
∑︁

(𝑖,𝑗,𝑘)

S𝑖𝑘(𝑞) 𝐼𝑖𝑗 ⟨M(0)
𝑎1,...(𝑝1, . . .)|𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |M(0)

𝑎1,...(𝑝1, . . .)⟩

⎤⎦⎫⎬⎭ .

(3.59)

The explicit form of splitting and soft functions that appear in this section are partially collected in
appendix B. The full set of functions can be found in [1].

In the following several subtraction and slicing methods are discussed. Some of them use the
explicit factorization formulas outlined in the present section, while others use variations of this
formulas. The subtraction scheme Stripper, that will be discussed afterwards, uses the full
information of the factorization formulas.

3.4.2 Antenna subtraction
The antenna subtraction scheme has been introduced for next-to-leading order calculations in [147,
148]. The main difference to the dipole formalism is that color-ordered amplitudes are considered
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(see appendix A.1). The soft and collinear limits of color-ordered amplitudes are especially easy
and QED like, since color is treated separately. It is instructive to understand the next-to-leading
order subtraction first and afterwards the generalization to next-to-next-to-leading order. The
detailed description of the subtraction scheme is given in [149] and this discussion provides a short
summary. Here only leading color contributions are discussed. A generalization to subleading color
contributions is in general possible, but non-trivial. It has been presented in the purely gluonic case
in [150].
The real radiation contribution to the cross section in the leading color approximation is written as

𝜎̂R = N
∑︁
𝐼𝑛+1

ˆ
d𝛷𝑛+1 |M(0)

𝐼𝑛+1
(𝑝1, . . . ,𝑝𝑛+1)|2 F𝑛+1 , (3.60)

where for simplicity only final state colored partons are considered and all partons are massless.
The factor N contains all remaining factors that are irrelevant for the further discussion. |M(0)

𝐼𝑛+1
|2

denotes the color-ordered, squared and spin summed matrix element, where the leading color factors
are included in contrast to Eq. A.24. The color ordering is such that particle 1 is color connected
to particle 2 and particle 2 is color connected to particle 3 and so on. The sum runs over all color
ordered matrix elements 𝐼𝑛+1 for 𝑛+ 1 particles. The subtraction term in Eq. (3.45) is constructed
in terms of antennae and reads

d𝜎̂S = N
∑︁
𝐼𝑛+1

d𝛷𝑛+1
∑︁
𝑗

𝑋0
𝑖𝑗𝑘|M

(0)
𝐼𝑛

(𝑝1, . . . ,𝑝𝐼 ,𝑝𝐾 , . . . ,𝑝𝑛+1)|2 F𝑛 . (3.61)

This term contains a reduced matrix element of 𝑛 partons that depends on new momenta 𝑝𝐼 and
𝑝𝑘 which are linear combinations of the three momenta 𝑝𝑖, 𝑝𝑗 and 𝑝𝑘. The leading order antenna
function 𝑋0

𝑖𝑗𝑘 depends only on the three momenta 𝑝𝑖, 𝑝𝑗 and 𝑝𝑘 and mimics the singular behavior of
the matrix element as parton 𝑗 becomes unresolved. For example in the soft limit the color ordered
amplitude factorizes as follows

|M(0)
𝐼𝑛+1

(𝑝1, . . . ,𝑝𝑖,𝑝𝑗 ,𝑝𝑘, . . . ,𝑝𝑛+1)|2 ≃ 2𝑠𝑖𝑗
𝑠𝑖𝑗𝑠𝑗𝑘

|M(0)
𝐼𝑛+1

(𝑝1, . . . ,𝑝𝐼 ,𝑝𝐾 , . . . ,𝑝𝑛+1)|2 , (3.62)

where in this case 𝑝𝐼 = 𝑝𝑖 and 𝑝𝑘 = 𝑝𝑘. The singular limit of the color ordered amplitude only affects
partons that are color connected to the unresolved parton. Therefore, the factorization formula is
considerably easier than the soft factorization of the full matrix element, which is given in Eq. (3.50).
To be able to integrate the antennae explicitly over the unresolved phase space, the phase space has
to be factorized into a 𝑛 particle phase space and an antenna phase space

d𝛷𝑛+1(𝑝1, . . . ,𝑝𝑛+1) = d𝛷𝑛(𝑝1, . . . ,𝑝𝐼 ,𝑝𝐾 , . . . ,𝑝𝑛+1) · d𝛷𝑋𝑖𝑗𝑘
(𝑝𝑖,𝑝𝑗 ,𝑝𝑘; 𝑝𝐼 + 𝑝𝐾) . (3.63)

The antenna function is analytically integrated over the antenna phase space to obtain explicit poles
in 𝜀

X0
𝑖𝑗𝑘 ∝

ˆ
d𝛷𝑋𝑖𝑗𝑘

𝑋0
𝑖𝑗𝑘 . (3.64)

The antenna subtraction method can be generalized to cross section calculations at next-to-next-
to-leading order. Considering only colored particles in the final state, subtraction terms for the
double-real contribution and the real-virtual contribution have to be provided. The next-to-next-to-
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leading order cross section at leading color is written as

𝜎̂(2) =
ˆ
𝑛+2

[︁
d𝜎̂RR − d𝜎̂S,RR

]︁
+
ˆ
𝑛+2

d𝜎̂S,RR +
ˆ
𝑛+1

[︁
d𝜎̂RV − d𝜎̂S,RV

]︁
+
ˆ
𝑛+1

d𝜎̂S,RV +
ˆ
𝑛

d𝜎̂VV ,

(3.65)
which is essentially a generalization of formula (3.45). The subtraction term d𝜎̂S,RR mimics the
behavior of the double real contribution in soft and collinear limits. The double-real contribution in
leading color approximation reads

𝜎̂RR = N
∑︁
𝐼𝑛+2

ˆ
d𝛷𝑛+2 |M(0)

𝐼𝑛+2
(𝑝1, . . . ,𝑝𝑛+2)|2 F𝑛+2 . (3.66)

For the construction of appropriate subtraction terms different cases have to be distinguished:
If only one of the final state partons becomes unresolved, the antenna function of the next-to-leading
order case can be used and the contribution to the subtraction term reads

d𝜎̂S,RR,1 = N
∑︁
𝐼𝑛+2

d𝛷𝑛+2
∑︁
𝑗

𝑋0
𝑖𝑗𝑘|M

(0)
𝐼𝑛+1

(𝑝1, . . . ,𝑝𝐼 ,𝑝𝐾 , . . . ,𝑝𝑛+1)|2 F𝑛+1 . (3.67)

If two partons 𝑗 and 𝑘 become unresolved, that are adjacent in the color ordered amplitude, the
subtraction term is obtained from an antenna function that contains all double unresolved limits
of the matrix element that are color connected to parton 𝑗 and 𝑘, 𝑋0

𝑖𝑗𝑘𝑙. However, this function is
singular in limits, when only one of the partons becomes unresolved and this singularities are not
present in the matrix elements. Hence, appropriate iterated single unresolved antenna functions
have to be subtracted. This contribution to the subtraction term reads

d𝜎̂S,RR,2 =

N
∑︁
𝐼𝑛+2

d𝛷𝑛+2

⎡⎣∑︁
𝑗𝑘

(︀
𝑋0
𝑖𝑗𝑘𝑙 −𝑋0

𝑖𝑗𝑘𝑋
0
𝐼𝐾𝑙 −𝑋0

𝑗𝑘𝑙𝑋
0
𝑖𝐽𝐿

)︀
|M(0)

𝐼𝑛+1
(𝑝1, . . . ,𝑝𝐼 ,𝑝𝐿, . . . ,𝑝𝑛+1)|2 F𝑛

⎤⎦ , (3.68)

the sum inside the bracket selects only color adjacent pairs 𝑗,𝑘 and the adjacent hard momenta 𝑖,𝑙.
An integration of the antenna functions over the unresolved phase space is possible after factorizing
the phase space using an appropriate mapping [151]

d𝛷𝑛+2(𝑝1, . . . ,𝑝𝑛+2) = d𝛷𝑛(𝑝1, . . . ,𝑝𝐼 ,𝑝𝐿, . . . ,𝑝𝑛+2) · d𝛷𝑋𝑖𝑗𝑘𝑙
(𝑝𝑖,𝑝𝑗 ,𝑝𝑘,𝑝𝑙; 𝑝𝐼 + 𝑝𝐿) . (3.69)

The integral over the unresolved contribution can be performed analytically

X0
𝑖𝑗𝑘𝑙 ∝

ˆ
d𝛷𝑋𝑖𝑗𝑘𝑙

𝑋0
𝑖𝑗𝑘𝑙 . (3.70)

The next case to consider is, when the unresolved partons 𝑖 and 𝑗 are completely disconnected. The
subtraction term is obtained by independently using a next-to-leading order antenna function for
each of the disconnected triple separately [149]. The remaining case is the almost color unconnected
case. In this configuration the two unresolved partons are separated by one hard parton. Using
iteratively the next-to-leading order antenna function the appropriate subtraction term can be
constructed.
The subtraction term d𝜎̂S,RV for the real virtual contribution can be constructed in a similar way.



30 3 Precision predictions in perturbative QCD

For example, the subtraction term for the single-unresolved case of the one-loop matrix element
reads

d𝜎̂S,RV,1 =N
∑︁
𝐼𝑛+1

d𝛷𝑛+1
∑︁
𝑗

[︁
𝑋0
𝑖𝑗𝑘|M

(1)
𝐼𝑛+1

(𝑝1, . . . ,𝑝𝐼 ,𝑝𝐾 , . . . ,𝑝𝑛+1)|2F𝑛

+𝑋1
𝑖𝑗𝑘|M

(0)
𝐼𝑛+1

(𝑝1, . . . ,𝑝𝐼 ,𝑝𝐾 , . . . ,𝑝𝑛+1)|2 F𝑛
]︁
,

(3.71)

where the one-loop three parton antenna function has been introduced. The structure of the
factorization formula can be compared to the factorization formula of the full one-loop matrix
element in the soft or collinear limits given in Eqs. (3.58) and (3.59). To obtain the integrated
subtraction terms the antenna functions are analytically integrated over the three parton antenna
phase space.
The specific form of the antenna functions is given by the ratio of color ordered matrix elements.
The tree-level antenna functions are

𝑋0
𝑖𝑗𝑘 ∝

|M(0)
𝑖𝑗𝑘|

2

|M(0)
𝐼𝐾 |2

, 𝑋0
𝑖𝑗𝑘𝑙 ∝

|M(0)
𝑖𝑗𝑘𝑙|

2

|M(0)
𝐼𝐿 |2

, (3.72)

and the one-loop three parton antenna reads

𝑋1
𝑖𝑗𝑘 = 𝑆

|M(1)
𝑖𝑗𝑘|

2

|M(0)
𝐼𝐾 |2

−𝑋0
𝑖𝑗𝑘

|M(1)
𝐼𝐾 |2

|M(0)
𝐼𝐾 |2

, (3.73)

where 𝑆 is a symmetry factor. The three parton matrix elements M𝑖𝑗𝑘 implies that the partons 𝑖,𝑗,𝑘
are ordered.
It should be noted that the antenna subtraction terms are not pointwise convergent, since spin
correlations in the collinear limits are not considered. Nevertheless, a recipe to obtain stable and
integrable integrands anyhow is presented in [152]. The antenna subtraction method has been
originally introduced to calculate 𝑒+𝑒− → 3 jets at next-to-next-to-leading order [152–160]. It has
been generalized to hadrons in the initial state in [161–165]. This allowed for the calculation of the
gluonic channel for dijet production at leading color in gluon fusion [50] and the quark annihilation
channel [166]. The generalization to full color in the pure gluonic channel has been presented in [49].
The antenna formalism has been generalized to massive partons in the final state [167–171]. First
contributions to differential distributions in 𝑝𝑝 → 𝑡𝑡 in the quark annihilation channel have been
calculated [172, 173] at leading color.
Additionally, the subtraction method has been successfully applied to Higgs boson production in
association with one jet at next-to-next-to-leading order in gluon fusion [174].

3.4.3 Colorful subtraction
The colorful subtraction scheme has been worked out in several publications [144, 175–184], while
it is still limited to colorless initial states. In contrast to the antenna approach the full squared
amplitude is considered and subtraction terms are constructed using the explicit limits given in
section 3.4.1. The next-to-next-to-leading order cross section and subtraction terms are arranged
with respect to the multiplicity of the phase space integral [144]

d𝜎̂(2)
𝑛+2 =

{︁
d𝜎̂RR

𝑛+2 𝐹𝑛+2 − d𝜎̂RR,S2
𝑛+2 𝐹𝑛 −

[︁
d𝜎̂RR,S1

𝑛+1 𝐹𝑛+1 − d𝜎̂RR,S12
𝑛+2 𝐹𝑛

]︁}︁
𝜀=0

, (3.74)
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d𝜎̂(2)
𝑛+1 =

{︃[︂
d𝜎̂RV

𝑛+1 +
ˆ

1
d𝜎̂RR,S1

𝑛+2

]︂
𝐹𝑛+1 −

[︃
d𝜎̂RV,S1

𝑛+1 +
(︂ˆ

1
d𝜎̂RR,S1

𝑛+2

)︂𝑆1
]︃
𝐹𝑛

}︃
𝜀=0

, (3.75)

d𝜎̂(2)
𝑛 =

{︃
d𝜎̂VV

𝑛 +
ˆ

2

[︁
d𝜎̂RR,S2

𝑛+1 − d𝜎̂RR,S12
𝑛+2

]︁
+
ˆ

1

[︃
d𝜎̂RV,S1

𝑛+1 +
(︂ˆ

1
d𝜎̂RR,S1

𝑛+2

)︂𝑆1
]︃}︃

𝜀=0

𝐹𝑛 , (3.76)

where the measurement function is written explicitly to highlight the number of resolved particles
entering the matrix element in the related cross section. The construction is such that each
contribution is integrable and finite in four dimensions. The double-real cross section is regularized
by pointwise subtraction terms d𝜎̂RR,S2

𝑛+2 and d𝜎̂RR,S1
𝑛+1 , where the former contains all limits as two

partons are unresolved, while the latter behaves as the matrix element in the limit as one parton
becomes unresolved. The additional subtraction term d𝜎̂RR,S12

𝑛+2 regularize remaining phase space
singularities in d𝜎̂RR,S1

𝑛+1 , since one of the remaining 𝑛 + 1 partons can become soft or collinear.
The real-virtual contribution contains explicit virtual poles. These poles cancel analytically with
the integrated subtraction term

´
1 d𝜎̂RR,S1

𝑛+1 . This can be directly observed by comparison to the
next-to-leading order formula (3.45), which is recovered by setting 𝐹𝑛 = 0. In this limit, the above
calculation corresponds to a next-to-leading order calculation of a 𝑛+ 1 jet observable, where the
real-virtual cross section plays the role of the virtual contribution. The double-real contribution
plays the role of the real radiation and the subtraction term d𝜎̂RR,S1

𝑛+1 is equal to d𝜎̂S. However, at
next-to-next-to-leading order one of the 𝑛+ 1 partons in both terms in the first bracket of Eq. (3.75)
leads to phase space singularities. They are regularized respectively by the subtraction terms in
the second bracket of Eq. (3.75). The last equation contains the double-virtual contribution, which
exhibits only explicit poles. These poles cancel ultimately with all remaining integrated subtraction
terms. The first bracket in Eq. (3.76) contains the explicit integration over two unresolved partons
while the second bracket is integrated over one unresolved parton.
The subtraction terms as well as the analytic integrations have been worked out in the before
mentioned publications. The colorful subtraction scheme has been applied to the Higgs boson decay
into a 𝑏𝑏̄-pair in [185].

3.4.4 𝑞𝑇 -subtraction and 𝑞𝑇 -slicing
The 𝑞𝑇 -subtraction approach, in the form presented here, is exclusively defined for hadronic scattering
into a colorless final state 𝐹 (𝑄)

ℎ1 + ℎ2 → 𝐹 (𝑄) +𝑋 , (3.77)

where Q is the invariant mass of the final state, which in general consists of one or more particles
(leptons, Higgs bosons, vector bosons,...), with 𝑄2 = (

∑︀
𝑖 𝑞𝑖)2. The subtraction method has been

presented in [41]. The partonic initial state at leading order is either gluon fusion or quark pair
annihilation to retain a colorless final state. This subtraction scheme is equally formulated for the
next-to-leading order and next-to-next-to-leading order cross section. The basic observation used
for setting up the scheme is that at leading order the transverse momentum 𝑞𝑇 =

∑︀
𝑖 𝑞𝑇,𝑖 of the

final state 𝐹 is zero, since no partons are available that can recoil against the transverse momentum.
Contributions with 𝑞𝑇 ̸= 0 at higher orders are thence given by the lower order contribution of the
same process in association with one additional jet

d𝜎𝐹(N)NLO|𝑞𝑇 ̸=0 = d𝜎𝐹+jet
(N)LO . (3.78)
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In this kinematic configuration the infrared divergences of the next-to-next-to-leading order singu-
larities are the same as in the next-to-leading order cross section and available subtraction methods,
like the dipole subtraction formalism can be used. If 𝑞𝑇 → 0 is taken into account, additional
singularities occur on the right hand side, due to the infrared limits of the additional massless partons,
forming the jets. These singularities are regulated by subtracting a counterterm d𝜎CT

(N)LO. Since this
counterterm mimics the behaviour of the right hand side in the limit 𝑞𝑇 → 0, the phase space is
integrable. The precise form of the counterterm can be determined from transverse momentum
resummation (see [186, 187] and references therein). For a hard scattering process, as given in
(3.77), enhancements due to large logarithms of the form log𝑛

(︀
𝑄2/𝑞2

𝑇

)︀
appear in the limit 𝑞𝑇 → 0.

These logarithms can be resummed to all orders in 𝛼𝑠. Since the resummation formula provides a
description of the cross section in the low 𝑞𝑇 limit, it can be used as a subtraction term, after it is
expanded to the order needed for the fixed order calculation. Since only the limit of the counterterm
is uniquely defined, there is an arbitrariness in its explicit choice with respect to terms that do not
depend on 𝑞𝑇 . The full integrable cross section can finally be written as

d𝜎𝐹(N)NLO = H𝐹
(N)NLO ⊗ d𝜎𝐹LO +

[︁
d𝜎𝐹+jets

(N)LO − d𝜎CT
(N)LO

]︁
, (3.79)

where the hard function H𝐹 is independent of 𝑞𝑇 . After the precise form of the counterterm is fixed,
H𝐹 can be fixed such that the integral over the whole phase space returns the total cross section
at the given order. The hard function contains the physical content of the one-loop contribution
at next-to-leading order and that of the two-loop contribution at next-to-next-to-leading order.
Therefore, its precise form at next-to-next-to-leading order can be fixed if the corresponding two-loop
matrix elements are known. The cross section d𝜎𝐹+jets

NLO contains the real-virtual and double-real
contribution. Since the counterterm subtracts singularities as 𝑞𝑇 → 0, the kinematics of the
counterterm are always the kinematics of the Born contribution. However, the counterterm is
non-local, since all possible soft and collinear singularities are summarized in only one variable.
Thus, the subtraction is not pointwise.
Even though the scheme is formulated as a subtraction that can be integrated over the full phase
space, the actual implementation is rather inspired by the traditional slicing methods. The integral
over the phase space is divided in a low 𝑞𝑇 and high 𝑞𝑇 region. In the low 𝑞𝑇 region the cross
section can be replaced by the resummation formula, while in the high 𝑞𝑇 region the integration
can be performed without necessarily introducing a counterterm.
The 𝑞𝑇 -subtraction/slicing method has been applied to a multitude of processes at next-to-next-
to-leading order: First it has been used to calculate Higgs boson production in hadron collisions
[41, 45] and subsequently to single vector boson production [40]. Higgs boson in association with a
𝑊 -boson has been considered in [188] and the production of two photons is outlined in [189]. After
the two-loop matrix elements for more involved 2 → 2 processes have become available, results for
the following processes in proton proton collisions were presented: 𝑍𝛾 and 𝑊𝛾 in [51, 52], 𝑍𝑍 in
[53] and 𝑊𝑊 in [25].
The extension of the 𝑞𝑇 -subtraction method to colored final states has also be investigated. In
particular, first steps towards an all order resummation formula of the transverse momentum of a
𝑡𝑡-pair were presented in [190–192].

3.4.5 𝑁 -jettiness slicing
The 𝑞𝑇 -subtraction is built on the observation that only one kinematic parameter, the transverse
momentum of the final state 𝐹 , separates two phase space regions. In the first region, 𝑞𝑇 ̸= 0, the
next-to-next-to-leading order cross section can be calculated using a next-to-leading order calculation
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of the same process with one additional jet. The contribution of the second region, 𝑞𝑇 → 0 could be
recovered by using the behavior of the cross section in this particular limit, which is given by an all
order resummation formula.
This approach is not restricted to the transverse momentum variable, but can in principle be
generalized to each kinematic variable of the given process, that separates the phase space into a
infrared singular region and a infrared finite region. Nevertheless, the behavior of the cross section
in the infrared singular region has to be known.
Another variable, that fulfills this requirement is 𝑁 -jettiness [193] and the slicing procedure according
to this variable has been presented in [194–196]. The global event shape variable 𝑁 -jettiness is
defined as

T𝑁 =
∑︁
𝑘

min𝑖
{︂
𝑝𝑖 · 𝑞𝑘
𝑄𝑖

}︂
, (3.80)

where the sum runs over all final state momenta 𝑞𝑘. The momenta 𝑝𝑖, for 𝑖 = 𝑎,𝑏,1, . . . 𝑁 , specify
the momenta of the 𝑁 final state jets after a jet clustering algorithm has been applied. The partonic
initial state momenta are 𝑝𝑎 and 𝑝𝑏, they are denoted as beam jets. The energies 𝑄𝑖 can be chosen
to be twice the energy of the considered jet. Hence, the momenta 𝑝𝑖

𝑄𝑖
define the 𝑁 axes to which

particles are clustered in the case of 𝑁 jets. At leading order in the perturbative series, each of the 𝑛
final state partons is associated with one jet, therefore T𝑁 = 0. For higher orders in the perturbative
series more partons will be clustered into one jet and T𝑁 ≥ 0. A cut Tcut

𝑁 is introduced to split the
phase space into two regions, which allows to write the cross section schematically as

𝜎𝑋 =
ˆ Tcut

𝑁

0
dT𝑁

d𝜎𝑋
dT𝑁

+
ˆ
Tcut

𝑁

dT𝑁
d𝜎𝑋
dT𝑁

. (3.81)

The region T𝑁 ≥ Tcut
𝑁 contains an additional resolved jet. Therefore, the contribution in this region

can be obtained by a next-to-leading order calculation of the same observable with N+1 jets. If
the Tcut is small enough the first contribution can be calculated using the resummation formula
that approximates the matrix element correctly in the small 𝑁 -jettiness region. A factorization
theorem has been derived in the framework of the soft-collinear effective field theory (SCET) and a
resummation in the small jettiness limit has been performed [197]. In the factorized form the cross
section in the small 𝑁 -jettiness limit reads

𝜎sing
𝑋 (Tcut

𝑁 ) ≡
ˆ Tcut

𝑁

0
dT𝑁

d𝜎𝑋
dT𝑁

=
ˆ
𝐻 ⊗𝐵 ⊗𝐵 ⊗ 𝑆 ⊗

[︃
𝑁∏︁
𝑖=1

𝐽𝑖

]︃
+ O

(︂
Tcut
𝑁

min{𝑄𝑖}

)︂
, (3.82)

where 𝐻 is the hard function that contains the virtual contributions. The beam functions 𝐵 describe
collinear radiation along the beam axis, while the jet functions 𝐽𝑖 describe collinear radiation along
the jet directions. The formula is expanded to next-to-next-to leading order to reproduce the fixed
order contribution in the low T𝑁 regime. The hard function contains the physical contribution of the
two-loop matrix element. The jet and beam functions are known to the required accuracy [198–201].
The soft function 𝑆 describes soft radiation and can be evaluated numerically at next-to-next-to
leading order [196]. If the cut is too small the numerical evaluation of the second term in Eq. (3.81)
still suffers from infrared enhanced terms, that need to be subtracted and a final formula can be
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rewritten as

𝜎𝑋 = 𝜎sing
𝑋 (Toff

𝑁 ) +
ˆ
Tcut

𝑁

dT𝑁

[︃
d𝜎𝑋
dT𝑁

−
d𝜎sing

𝑋

dT𝑁
𝜃
(︁
T𝑁 < Toff

𝑁

)︁]︃
+ O

(︂
Tcut
𝑁

min{𝑄𝑖}

)︂
, (3.83)

where another cut Toff
𝑁 has been introduced. This formula can be directly compared to the 𝑞𝑇 -

subtraction/slicing formula in Eq. (3.79), where corresponding terms are easily identified. The
counterterm term, the second term in the square bracket, is a non-local subtraction term that
regularizes the cross section at next-to-leading order in all the infrared limits of the additional parton
in the final state. As discussed in [194] the cutoff Tcut

𝑁 can be made smaller than the numerical
precision of the final result.
A advantage with respect to 𝑞𝑇 subtraction/slicing is that the 𝑁 -jettiness slicing can be applied to
processes including colored particles in the final state. However, currently it is limited to massless
partons. An extension to massive partons in the final state is theoretically possible. The slicing
method in the form without any counterterm Eq. (3.81) has been applied to 𝑊 boson production
in association with one jet [56] and Higgs boson production in association with one jet [195].

3.4.6 Comparison of different schemes
The discussed subtraction and slicing schemes are in a certain sense process independent. This
means that they can be applied to several different processes. Only matrix elements, that depend on
the kinematics of the hard process have to be adapted. In the following discussion, the characteristics
of the subtraction scheme Stripper are anticipated and compared to the properties of the schemes
discussed previously. The verification, that the subtraction scheme has indeed these properties, will
be given in chapter 4 and chapter 5.
The discussion starts with the class of processes to which the schemes can be applied at present.
Thereby, only the conceptual possibility is discussed for the current formulation of the scheme, by
neglecting the fact that the two-loop amplitude has to be available, too. The colorful subtraction
scheme is applicable to processes with uncolored particles in the initial state. A proposal to extend
the method to colored initial states has been presented in [180], but not yet applied to a physical
process. The 𝑞𝑇 -subtraction/slicing method is currently only applicable to colorless final states, since
only for this class of processes a resummation formula in the low 𝑞𝑇 region is available. Attempts to
extend the formulation to a final state heavy quark pair exist [190–192], and would allow to apply
the scheme also to 𝑡𝑡 production in hadron collisions. The 𝑁 -jettiness slicing scheme is in principle
generally applicable to processes including colored particles in the final state. In its present version,
it is however only formulated and tested for massless partons. An extension to massive partons
should be possible and is explained in [194]. The subtraction schemes that are not restricted in the
class of processes that they can handle at next-to-next-to-leading order are antenna subtraction
and Stripper. The difference between these two schemes is that Stripper treats the full color
dependence of the process implicitly, while antenna subtraction terms for leading and subleading
color contributions have to be provided separately. The full formulation of the antenna subtraction
scheme for subleading color terms is not yet available.
Another criterion to distinguish the different subtraction approaches is the locality of the subtraction
terms. This criterion is fulfilled, if the subtraction terms are constructed in terms of the explicit limits
of the matrix elements in all infrared singular regions, which were discussed in section 3.4.1. Hence,
the colorful subtraction scheme and Stripper are local. Antenna subtraction also uses explicit
limits of the color ordered amplitudes. However, spin correlation in the case of gluon splittings are
not taken into account explicitly, which results in a non-local subtraction term. Nevertheless, the
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convergence of the numerical integral can be made pointwise, as has been explained in [152]. The 𝑞𝑇
and 𝑁 -jettiness schemes are non-local, since all infrared singular phase space points are indicated
by only one variable 𝑞𝑇 or T𝑁 . The subtraction terms, if present in the implementation, correctly
approximates the next-to-leading order cross section with one additional jet only if already some
phase space is integrated out.
The locality of the subtraction scheme has an impact on the numerical convergence of the integral.
While a local subtraction is expected to converge much faster, for a non-local subtraction much more
integration points are needed for convergence. In this sense, the calculation of only a next-to-leading
order cross section in the 𝑞𝑇 and 𝑁 -jettiness method is traded for a slower convergence of the integral.
A explicit comparison between a slicing method and a subtraction scheme regarding accuracy and
efficiency as it has been performed at next-to-leading order would be instructive.
The last criterion in order to compare the schemes is related to the cancellation of poles between
virtual and real contributions to the cross section. In all schemes, that were discussed in this section,
the poles cancel analytically. This analytic cancellation relies on the explicit analytic evaluation of
integrated subtraction terms in the antenna subtraction and the colorful subtraction scheme. The
integration of these terms beyond next-to-leading order is highly non-trivial and a multitude of
different cases has to be considered. For 𝑞𝑇 -subtraction/slicing and 𝑁 -jettiness slicing all ingredient
of the resummation formula need to be known analytically to the required order. The soft function
in Eq. (3.82) is currently not known analytically.
The subtraction scheme Stripper is constructed in such a way that also pole terms arising from real
contributions are calculated numerically, such that finally a numerical cancellation of poles between
virtual and real contributions is achieved. Since the major part of the phase space integration is
already performed using Monte-Carlo integration methods, the insistence on an analytic cancellation
is not necessary and will not change the physical prediction. The correctness of the numerical
cancellation relies on the KLN theorem and the explicit construction of the subtraction terms. The
full construction of the scheme is outlined in the next chapter.





CHAPTER 4
Sector improved residue subtraction scheme

This chapter provides a detailed explanation of the subtraction scheme Stripper. The main content
of this chapter has been published in [1]. The acronym Stripper stands for SecToR Improved
Phase sPacE for Real radiation and already summarizes the main idea behind the subtraction
scheme: The phase space for a real radiation contribution of a cross section is divided into sectors.
This allows for a straightforward generation of subtraction and integrated subtraction terms up to
next-to-next-to-leading order in QCD. Contrary to subtraction schemes discussed in section 3.4, no
analytic integration of the integrated subtraction terms is needed. All non-trivial integrations can
be done simultaneously using Monte Carlo methods.
The subtraction scheme has been firstly presented in [19] and allowed to calculate the next-to-
next-to-leading order corrections to the total top-quark pair production cross section in hadron
collisions [20, 34, 202–204]. The top-quark forward backward asymmetry at Tevatron has been
determined by means of the same framework [48]. Additionally, the subtraction scheme has proven
its applicability to next-to-next-to-leading order corrections besides top-quark pair production.
Results for the following list of processes were obtained using an independent Stripper subtraction
framework: 𝑍-boson decay into a massless lepton pair at next-to-next-to-leading order QED [205],
fully differential top-quark decays [206], inclusive semileptonic charmless b-quark decays [207],
Higgs-boson production in association with a jet [54, 55], the spin asymmetry in muon decays [208]
and single-top production in the t-channel [209].
The original idea of the subtraction scheme was to avoid complicated analytic integrations com-
pletely, since those integrations seemed to be the bottleneck of other subtraction schemes applied
at next-to-next-to-leading order. The scheme merges ideas of the subtraction scheme by Frixione,
Kunszt and Signer [17] and sector decomposition by Binoth and Heinrich [210]. It focused on the
numerical calculation of the double-real cross section in Eq. (3.20) as a Laurent-expansion in the
dimensional regulator 𝜀. Concerning the IR-structure of the phase space, this contribution is the
most complicated part, since two of the external partons can become soft and/or collinear. This
ultimately results in poles up to order 𝜀−4. The remaining contributions in Eq. (3.20) contain at most
one additional real radiated, potentially unresolved particle and were calculated with next-to-leading
order-like subtraction tools. A finite result has been obtained by summing all contributions of the
cross section. The poles canceled numerically as predicted by the KLN theorem.
In this way, the result can only be finite, when all contributions are consistently treated in 𝑑 = 4 − 2𝜀
space-time dimensions. It means that, to avoid any complications in the calculation, resolved and
unresolved particles are treated in 𝑑 dimensions, which is known as the conventional dimensional
regularization scheme (CDR). This treatment keeps the scheme safe and makes sure that the final
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result is free of IR poles. However, it is also the main weakness when formulating the scheme for
general 2 → 2 processes and beyond.
The first reason is that Born level matrix elements containing just resolved particles are needed as
an expansion in 𝜀. Even though, there are lots of automated tools that provide matrix elements
for arbitrary Standard Model processes, all of them only provide the physical coefficient at O(𝜀0).
For each new process, the matrix element has to be recalculated from the very beginning to obtain
higher orders in the 𝜀 expansion.
The second reason is even more obstructive, if cross sections of high multiplicity are concerned. The
subtraction scheme relies on a physical parameterization of particle momenta in the final state. The
beam axis is chosen to be the 𝑧-direction, which is treated as the first explicit parameterized space
dimension. Each extra particle added to the phase space effectively increases the explicit space
dimension by one. Energy-momentum conservation only constraints the momentum of one final
state particle, since it is given by the sum of all other particles. Hence, when working in CDR the
space-time dimension can grow beyond four for two and more particles in the final state at Born
level.
For example, a Born level 2 → 2 process will have at most four external particles at next-to-next-to-
leading order. This means that during a calculation five dimensions have to be treated exactly [20].
It is therefore questionable, if the subtraction scheme in the original form is applicable to processes
of even higher multiplicities.
On the other hand, it should not be necessary to treat resolved particles in more than four dimensions,
since they are observable objects. From general considerations about the full next-to-next-to-leading
order cross section [211] and the analytic properties of matrix elements it is indeed not necessary to
treat resolved particles in unphysical dimensions, as will be outlined in this chapter.
This, however, requires a reformulation of the subtraction scheme Stripper in the ’t Hooft-Veltmann
regularization (HV) scheme. In ’t Hooft-Veltman regularization only momenta and polarization
vectors of unresolved particles are 𝑑-dimensional. In Tab. 4.1 the difference between the HV and
CDR subtraction scheme is summarized. In this chapter, the theory of the four dimensional formu-

CDR ’t Hooft-Veltman

Resolved particle 𝑑-dimensions 4-dimensions

Unresolved particle 𝑑-dimensions 𝑑-dimensions

Table 4.1: Dimensions of momenta and spin degrees of freedom in ’t Hooft-Veltman dimensional regularization
scheme and the conventional dimensional regularization scheme (CDR).

lation of the sector improved residue subtraction scheme is presented. This formulation requires a
detailed study of the infrared structure of all contributions to an arbitrary next-to-next-to-leading
order cross section. Only four dimensional external momenta and polarizations for the evaluation of
matrix elements are finally required.
The factorizing behavior of matrix elements outlined in section 3.4.1 dictates the appropriate set up
of the subtraction scheme. First, the decomposition due to the singular phase space structure is
discussed in section 4.1. The phase space parameterization, outlined in section 4.2, is the essential
starting point to obtain subtraction terms using factorization properties of QCD matrix elements
in infrared singular regions. The generation of subtraction and integrated subtraction term is
discussed in section 4.3. The next step is to identify contributions that are separately finite (section
4.5). Corrections terms in the double-real subtraction contribution have to be added to render the
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final result correct. The finite contributions are subsequently reexpressed in the ’t Hooft-Veltman
regularization scheme by modifying the measurement function in such a way that it restricts resolved
momenta to four dimensions (section 4.6).
In this formulation, all matrix elements can be calculated in four dimensions and all momenta of
resolved particles are four dimensional. Unresolved momenta are still higher dimensional, but they
appear only in splitting and soft functions and not in the matrix elements themselves. It is explained
that at most six-dimensional momenta are needed for arbitrary multiplicities.
While this chapter outlines the theory of the scheme, the next chapter describes its actual imple-
mentation as a general framework to calculate next-to-next-to-leading order QCD corrections.

4.1 Phase space decomposition
In general, a QCD process at higher orders contains a multitude of massless partons that can become
potentially unresolved. However, the measurement functions 𝐹𝑛+1, in 𝜎̂R at next-to-leading order
and 𝜎̂RV at next-to-next-to-leading order, and the measurement function 𝐹𝑛+2, in 𝜎̂RR, exclude
phase space points, where more than one particle, respectively two particles, are unresolved. A
major conceptional simplification of the problem is provided by decomposing the phase space into
sectors, where only specified partons can become unresolved. This has been the main idea of the
Frixione-Kunszt-Signer next-to-leading order subtraction method [17]. It could be achieved by using
𝜃-functions and cutting the phase space into disjunct pieces. Though, hard cuts on the phase space
will artificially worsen the convergence of the phase space Monte Carlo integration. To avoid this,
smooth functions were introduced in [212] for the next-to-leading order subtraction. These selector
functions [19], should satisfy two requirements. First, summing all functions should return unity
to provide a decomposition of the phase space and second, in the collinear and soft limits of the
remaining partons, that are not selected by the functions, the function vanishes. This regulates
other singularities in a given sector.
In the case of one unresolved parton in the phase space, at most two particles are chosen to specify
the single-collinear pair: The unresolved parton 𝑖 that can become soft and a reference parton 𝑘.
The selector function has the form S𝑖,𝑘 and the sector is called a single-collinear sector.
In case of two unresolved partons, two types of sectors have to be distinguished. The triple-collinear
sector allows three partons to become collinear to each other and is described by a function S𝑖𝑗,𝑘,
where partons 𝑖 and 𝑗 are the unresolved partons that are allowed to become soft. The reference
parton 𝑘 specifies the triple-collinear direction, as will be demonstrated in section 4.2. The double-
collinear sector selects two pairs of partons to become collinear and is specified by a function
S𝑖,𝑘;𝑗,𝑙. In this case two reference partons {𝑘, 𝑙} are needed to indicate the collinear directions. The
unresolved partons {𝑖, 𝑗} can approach the soft limit.
The function S𝑖,𝑘 in the single-collinear sector can be written as

S𝑖,𝑘 = 1
𝐷1 𝑑𝑖,𝑘

,with 𝐷1 =
∑︁
𝑖𝑘

1
𝑑𝑖,𝑘

, (4.1)

where the auxiliary functions are similar to the ones given in [212]

𝑑𝑖,𝑘 =
(︂
𝐸𝑖√
𝑠

)︂𝛼
(1 − cos 𝜃𝑖𝑘)𝛽 . (4.2)
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The required properties are readily satisfied by choosing 𝛼 = 𝛾 for a gluon 𝑖 and 𝛼 = 0 for a quark 𝑖,
while 𝛽,𝛾 > 0. The decomposition of unity is easily verified∑︁

𝑖𝑘

S𝑖,𝑘 = 1 . (4.3)

The above definition can be generalized to the triple- and double-collinear sectors by introducing
another auxiliary function

𝑑𝑖𝑗,𝑘 =
(︂
𝐸𝑖√
𝑠

)︂𝛼𝑖
(︂
𝐸𝑗√
𝑠

)︂𝛼𝑗

[(1 − cos 𝜃𝑖𝑗)(1 − cos 𝜃𝑖𝑘)(1 − cos 𝜃𝑗𝑘)]𝛽 , (4.4)

where 𝛼𝑖,𝑗 = 𝛾 for gluons, 𝛼𝑖 = 𝛼𝑗 = 𝛾 for a quark anti-quark pair and 𝛼𝑖,𝑗 = 0 otherwise. The
selector functions are defined by

S𝑖𝑗,𝑘 = 1
𝐷2 𝑑𝑖𝑗,𝑘

, S𝑖,𝑘;𝑗,𝑙 = 1
𝐷2 𝑑𝑖,𝑘𝑑𝑗,𝑙

, 𝐷2 =
∑︁
𝑖𝑗

[︁∑︁
𝑘

1
𝑑𝑖𝑗,𝑘

+
∑︁
𝑘𝑙

1
𝑑𝑖,𝑘𝑑𝑗,𝑙

]︁
(4.5)

and are a decomposition of unity∑︁
𝑖𝑗

[︁∑︁
𝑘

S𝑖𝑗,𝑘 +
∑︁
𝑘𝑙

S𝑖,𝑘;𝑗,𝑙

]︁
= 1 . (4.6)

A little subtlety for S𝑖,𝑘;𝑗,𝑙 has to be taken into account to regulate all double-soft limits correctly. In
contrast to the next-to-leading order case, 𝛼 is set to 𝛾 in 𝑑𝑖,𝑘 and 𝑑𝑗,𝑙, if (𝑖,𝑗) is a quark anti-quark
pair.
In order to keep the number of sectors, that are actually computed, to a minimum, it is necessary
to investigate the set of flavors that describe the same sector. First of all, unresolved partons (𝑖,𝑗)
can only occur in the final state, while reference partons (𝑘,𝑙) are in the initial or in the final state.
Of course, all indices in all cases have to be different. A single-collinear sector, where the reference
parton 𝑖 is in the initial state the possible flavor pairs (𝑎𝑖,𝑎𝑘) are

(𝑔,𝑔), (𝑔,𝑞), (𝑔,𝑞), (𝑞,𝑔), (𝑞,𝑔), (𝑞,𝑞), (𝑞,𝑞) . (4.7)

Is the reference parton a final state particle the possible flavor structures are

(𝑔,𝑔), (𝑔,𝑞), (𝑔,𝑞), (𝑞,𝑞) . (4.8)

In the triple-collinear sector the set of flavors that lead to a triple collinear singularity are

{𝑔,𝑔,𝑔}, {𝑔,𝑔,𝑞}, {𝑔,𝑔,𝑞} {𝑔,𝑞,𝑞}, {𝑞,𝑞,𝑞(′)} , (4.9)

where all flavor assignments are chosen to be in the final state. The flavor 𝑞′ specifies a quark of
different flavor. Relying on this list, the set of possible flavor assignments (𝑎𝑖,𝑎𝑗 ,𝑎𝑘) appearing in
S𝑖,𝑗;𝑘 is

(𝑔,𝑔,𝑔), (𝑔,𝑔,𝑞), (𝑔,𝑔,𝑞), (𝑔,𝑞,𝑔), (𝑔,𝑞,𝑔), (𝑔,𝑞,𝑞), (𝑔,𝑞,𝑞), (𝑞,𝑞,𝑔), (𝑞,𝑞,𝑞′), (𝑞′,𝑞,𝑞), (𝑞′,𝑞,𝑞) , (4.10)
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if 𝑎𝑘 is in the initial state, and

(𝑔,𝑔,𝑔), (𝑔,𝑔,𝑞), (𝑔,𝑔,𝑞), (𝑔,𝑞,𝑞), (𝑞,𝑞,𝑔), (𝑞,𝑞,𝑞′) , (4.11)

if 𝑎𝑘 is in the final state.
The number of sectors that are finally computed can be reduced for multiparton amplitudes. If the
flavor assignments of two sectors is equal the contribution to the full cross section will necessarily be
equal. Thus, only one of the contributions has to be evaluated. For a multigluon amplitude, this
means that at most three sectors have to be considered.

4.2 Phase space parameterization
The decomposition of the phase space into single-collinear, double-collinear and triple-collinear
sectors in section 4.1 is followed by an appropriate parameterization of each of the sectors. The
phase space is split into a part containing the unresolved partons of momentum 𝑢𝑖 and the reference
parton with momentum 𝑟𝑖, if the reference parton is in the final state, and a part containing all
remaining final state partons of momentum 𝑞𝑖
ˆ

d𝛷𝑛+𝑛𝑢 =
ˆ

d𝛷 reference
unresolved

ˆ
d𝛷𝑛−𝑛𝑓𝑟

(𝑄) , 𝑛 ≥ 2 , 𝑛𝑢 ∈ {1,2} , 0 ≤ 𝑛𝑓𝑟 ≤ 𝑛𝑢 , (4.12)

where 𝑛 is the number of final state partons of the leading order contribution, 𝑛𝑢 is the number of
unresolved momenta, while 𝑛𝑓𝑟 is the number of reference momenta in the final state.
The formula (4.12) should not be understood as a complete factorization of the phase space into
two independent parts. The resolved part of the phase space d𝛷𝑛−𝑛𝑓𝑟

(𝑄) depends on momenta and
energies of the unresolved part d𝛷 reference

unresolved
, through 𝑄. Therefore, the order of the integrations

is important, as the integration boundaries of a given momentum integral depends in general on
the parameters of other momentum integrals. The momentum 𝑄 can be seen as the total available
momentum for the remaining final state particles

𝑄 → 𝑞1 + . . .+ 𝑞𝑛−𝑛𝑓𝑟
. (4.13)

The minimal invariant mass of 𝑄 is given by the sum of masses of final state particles

𝑄min =
𝑛∑︁
𝑖=1

𝑚𝑖 . (4.14)

The maximal energy of a final state massless parton can be derived using energy momentum
conservation and requiring that all massive states are at rest. This energy is denoted by

𝐸max =
√
𝑠

2

(︂
1 − 𝑄2

min
𝑠

)︂
, (4.15)

where
√
𝑠 is the partonic center-of-mass energy. The important guideline to choose a parameterization

in the different sectors for d𝛷 reference
unresolved

is to find parameters that indicate directly the appearance of
a soft or collinear singularities as they approach zero. A convenient set of parameters is directly
related to the energies of the unresolved partons, denoted by 𝜉𝑖, to indicate soft limits, and to the
angles between the reference particle(s) and the unresolved particles, denoted by 𝜂𝑖, to indicate
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collinear limits. The single unresolved phase space thence contains
¨ 1

0
d𝜂 d𝜉 𝜂𝑎1−𝑏1𝜀 𝜉𝑎2−𝑏2𝜀 , (4.16)

while the phase space of two unresolved partons contains
˘ 1

0
d𝜂1d𝜂2d𝜉1d𝜉2 𝜂

𝑎1−𝑏1𝜀
1 𝜂𝑎2−𝑏2𝜀

2 𝜉𝑎3−𝑏3𝜀
1 𝜉𝑎4−𝑏4𝜀

2 , (4.17)

in dimensional regularization. IR-divergences are regulated as 𝜀 < 0. Because of the selector
functions, no other divergences are present, apart form those as 𝑥 → 0, where 𝑥 ∈ {𝜂,𝜉} or
𝑥 ∈ {𝜂1,𝜂2,𝜉1,𝜉2}.
To obtain such a parameterization in each sector, the invariance under rotations of the single particle
measure can be used. The unresolved partons are thereby rotated into the frame, in which the
reference parton propagates in 𝑧-direction. This allows for a simple parameterization in 𝑑-dimensional
spherical coordinates. The notation for rotation matrices and unit vectors is fixed in appendix A.2.
All parameterizations are given as if all particles have 𝑑-dimensional momenta. The step to four
dimensions will be discussed later in this chapter.

4.2.1 Single-collinear sector parameterization
In the single-collinear sector the number of unresolved partons is 𝑛𝑢 = 1. The reference parton is
either in the initial state or in the final state. The momenta are parameterized as

𝑟𝜇 = 𝑟0 𝑟𝜇 = 𝑟0
(︂

1
𝑟

)︂
, 𝑢𝜇 = 𝑢0 𝑢̂𝜇 = 𝑢0

(︂
1
𝑢̂

)︂
, (4.18)

where unit vectors are given by

𝑟 = 𝑛̂(3−2𝜀)(𝛼1, 𝛼2, . . .) ,

𝑢̂ = 𝑅
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑛̂(3−2𝜀)(𝜃, 𝜑, 𝜌1, 𝜌2, . . .) . (4.19)

For a reference momentum in the initial state the phase space reads
ˆ

d𝛷𝑛+1 =
ˆ

d𝛷unresolved

ˆ
d𝛷𝑛(𝑧𝑝1 + 𝑝2 − 𝑢) . (4.20)

A final state reference momentum leads to the phase space parameterization
ˆ

d𝛷𝑛+1 =
(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃𝜀 ˆ
S2−2𝜀

1

d𝛺(𝛼1, 𝛼2, . . .)

×
ˆ

d𝛷unresolved

ˆ 𝑟0
max

0

d𝑟0 (𝑟0)1−2𝜀

2(2𝜋)3−2𝜀

ˆ
d𝛷𝑛−1(𝑧𝑝1 + 𝑝2 − 𝑟 − 𝑢) ,

(4.21)

where in both cases the initial state can be boosted along the beam axis. This is denoted by the
energy fraction parameter 𝑧. This will be important for the formulation of the subtraction scheme
in four dimensions, as the contribution 𝜎̂C1, that relies on the above parameterization, needs to be
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evaluated in a boosted reference frame. The maximal energy of the reference parton is given by

𝑟0
max =

2
√
𝑠
(︀
𝐸max − 𝑢0)︀−

(︀
𝑠− 2𝑝1 · 𝑢)(1 − 𝑧)

2
[︀√
𝑠− 𝑟 ·

(︀
𝑢+ 𝑝1(1 − 𝑧)

)︀]︀ . (4.22)

In the special case 𝑛 = 2 the resolved phase space is completely fixed by energy momentum
conservation and reads

ˆ 𝑟0
max

0

d𝑟0 (𝑟0)1−2𝜀

2(2𝜋)3−2𝜀

ˆ
d𝛷1(𝑧𝑝1 + 𝑝2 − 𝑟 − 𝑢) = (𝑟0

max)1−2𝜀

4(2𝜋)2−2𝜀
1√

𝑠− 𝑟 ·
(︀
𝑢+ 𝑝1(1 − 𝑧)

)︀ . (4.23)

As anticipated in (4.16), the phase space of the unresolved parton is

ˆ
d𝛷unresolved =

(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃𝜀 ˆ
S2−2𝜀

1

d𝛺(𝜃, 𝜑, 𝜌1, . . .)
ˆ 𝑢0

max

0

d𝑢0 (𝑢0)1−2𝜀

2(2𝜋)3−2𝜀 =

𝐸2
max

(2𝜋)3

(︂
𝜋𝜇2

𝑅𝑒
𝛾E

4𝐸2
max

)︂𝜀 ˆ
S1−2𝜀

1

d𝛺(𝜑, 𝜌1, . . .)
¨ 1

0
d𝜂 d𝜉 𝜂−𝜀 𝜉1−2𝜀(︀1 − 𝜂

)︀−𝜀
𝜉2−2𝜀

max . (4.24)

Energy and angular parameters are linearly related to the integration variables that indicate the
soft and collinear limit

𝑢0 = 𝐸max 𝜉 𝜉max , cos 𝜃 = 1 − 2𝜂 , 𝜉max =
1 −

√
𝑠

2𝐸max
(1 − 𝑧)

1 − 1√
𝑠
(𝑝1 · 𝑢̂)(1 − 𝑧)

. (4.25)

In the collinear factorization formula of the matrix element (3.49) the collinear limit was characterized
by a transverse momentum, leading to spin correlations in the case of a gluon splitting. In the given
parameterization the normalized transverse direction is given by

𝑢𝜇⊥ =
(︂

0
𝑢̂⊥

)︂
, 𝑢̂⊥ = lim

𝜃→0

𝑢̂ − 𝑟

‖𝑢̂ − 𝑟‖
= 𝜕𝑢̂

𝜕𝜃

⃒⃒⃒⃒
𝜃=0

= 𝑅̂
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑛̂(3−2𝜀)

(︁𝜋
2 , 𝜑, 𝜌1, 𝜌2, . . .

)︁
.

(4.26)

4.2.2 Triple-collinear sector parameterization
In this sector, two unresolved momenta have to be considered. Singular limits occur as the
unresolved momenta become collinear to each other and/or to a single reference momentum. A
suitable parameterization of the three relevant momenta is given by

𝑟𝜇 = 𝑟0 𝑟𝜇 = 𝑟0
(︂

1
𝑟

)︂
, 𝑢𝜇1 = 𝑢0

1 𝑢̂
𝜇
1 = 𝑢0

1

(︂
1

𝑢̂1

)︂
, 𝑢𝜇2 = 𝑢0

2 𝑢̂
𝜇
2 = 𝑢0

2

(︂
1

𝑢̂2

)︂
, (4.27)

where the angular vectors are parameterized as

𝑟 = 𝑛̂(3−2𝜀)(𝛼1, 𝛼2, . . .) ,

𝑢̂1 = 𝑅
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑛̂(3−2𝜀)(𝜃1, 𝜑1, 𝜌1, 𝜌2, . . .) ,

𝑢̂2 = 𝑅
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑅(3−2𝜀)

2 (𝜑1, 𝜌1, 𝜌2, . . .)𝑛̂(3−2𝜀)(𝜃2, 𝜑2, 𝜎1, 𝜎2, . . .) . (4.28)
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Figure 4.1: Parameterization of the triple-collinear sector for the reference momentum 𝑟 in the final state (left)
and the reference momentum in the initial state 𝑟 = 𝑝1 (right). 𝑄 is the momentum of all additional particles in
the final state, 𝑝1 and 𝑝2 are initial state momenta [1].

The given parameterization is essentially a generalization of the parameterization in the single-
collinear sector. The first rotation 𝑅

(3−2𝜀)
1 (𝛼1, 𝛼2, . . .), illustrated for two distinct cases in Fig. 4.1,

allows for direct parameterization of the angles between the reference momentum and the unresolved
momenta

𝑟 · 𝑢̂1 = cos 𝜃1 , 𝑟 · 𝑢̂2 = cos 𝜃2 . (4.29)

The additional rotation of the second unresolved momentum 𝑅
(3−2𝜀)
2 (𝜑1, 𝜌1, 𝜌2, . . .) ensures the

simplest parameterization of the angle between the unresolved momenta which is still possible by
rotational invariance

𝑢̂1 · 𝑢̂2 = cos(𝜃1 − 𝜃2) + (1 − cos𝜑2) sin 𝜃1 sin 𝜃2 . (4.30)

The phase space for an initial state reference momentum reads
ˆ

d𝛷𝑛+2 =
ˆ

d𝛷unresolved

ˆ
d𝛷𝑛(𝑝1 + 𝑝2 − 𝑢1 − 𝑢2) , (4.31)

whereas for 𝑟 in the final state it is
ˆ

d𝛷𝑛+2 =
(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃𝜀 ˆ
S2−2𝜀

1

d𝛺(𝛼1, 𝛼2, . . .)

×
ˆ

d𝛷unresolved

ˆ 𝑟0
max

0

d𝑟0 (𝑟0)1−2𝜀

2(2𝜋)3−2𝜀

ˆ
d𝛷𝑛−1(𝑝1 + 𝑝2 − 𝑟 − 𝑢1 − 𝑢2) .

(4.32)
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For 𝑛 = 2 the phase space can be evaluated explicitly
ˆ 𝑟0

max

0

d𝑟0 (𝑟0)1−2𝜀

2(2𝜋)3−2𝜀

ˆ
d𝛷1(𝑝1 + 𝑝2 − 𝑟 − 𝑢1 − 𝑢2) = (𝑟0

max)1−2𝜀

4(2𝜋)2−2𝜀
1√

𝑠− 𝑟 · (𝑢1 + 𝑢2)
, (4.33)

where
𝑟0

max =
√
𝑠
(︀
𝐸max − 𝑢0

1 − 𝑢0
2
)︀

+ 𝑢1 · 𝑢2√
𝑠− 𝑟 · (𝑢1 + 𝑢2)

. (4.34)

The parameters are replaced by the physical variables 𝜉1,2, 𝜂1,2 related to soft and collinear limits

𝑢0
1 = 𝐸max 𝜉1 , 𝑢0

2 = 𝐸max 𝜉2 ,

cos 𝜃1 = 1 − 2𝜂1 , cos 𝜃2 = 1 − 2𝜂2 , cos𝜑2 = 1 − 2𝜂3 − (1 − 2𝜂1)(1 − 2𝜂2)
4
√︀

(1 − 𝜂1)𝜂1(1 − 𝜂2)𝜂2
,

𝜂3 = 𝑢̂1 · 𝑢̂2
2 = 1 − cos 𝜃12

2 = (𝜂1 − 𝜂2)2

𝜂1 + 𝜂2 − 2𝜂1𝜂2 − 2(1 − 2𝜁)
√︀
𝜂1(1 − 𝜂1)𝜂2(1 − 𝜂2)

.

(4.35)

This parameterization is not yet sufficient to factorize all singular limits as two particles become
unresolved. Overlapping singularities in the double-soft, triple-collinear or soft-collinear limit can
be factorized by a method based on sector decomposition [210]. This idea was developed for two
unresolved particles in the phase space integral in [20]. A complete factorization is achieved by
splitting the phase space further to disentangle overlapping soft singularities

ˆ
d𝛷unresolved =

ˆ
d𝛷unresolved

(︁
𝜃(𝜉1 − 𝜉2) + 𝜃(𝜉2 − 𝜉1)

)︁
, (4.36)

and subsequently to disentangle overlapping collinear and soft-collinear singularities. In this way,
each of the two parts in Eq. (4.36) is further decomposed into five sectors, which is illustrated in
Fig. 4.2. The unresolved phase space measure written as a sum of the five sectors reads
ˆ

d𝛷unresolved 𝜃(𝑢0
1 − 𝑢0

2) =(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃2𝜀 ˆ
S2−2𝜀

1

d𝛺(𝜃1, 𝜑1, 𝜌1, . . .)
ˆ
S2−2𝜀

1

d𝛺(𝜃2, 𝜑2, 𝜎1, 𝜎2, . . .)

×
ˆ 𝑢0

max

0

d𝑢0
1 (𝑢0

1)1−2𝜀

2(2𝜋)3−2𝜀

ˆ 𝑢0
2 max

0

d𝑢0
2 (𝑢0

2)1−2𝜀

2(2𝜋)3−2𝜀 𝜃
(︀
𝑢0

1 − 𝑢0
2
)︀

=

𝐸4
max

(2𝜋)6

(︂
𝜋𝜇2

𝑅𝑒
𝛾E

8𝐸2
max

)︂2𝜀 ˆ
S1−2𝜀

1

d𝛺(𝜑1, 𝜌1, . . .)
ˆ
S−2𝜀

1

d𝛺(𝜎1, 𝜎2, . . .)
ˆ 1

0
d𝜁
(︁
𝜁
(︀
1 − 𝜁

)︀)︁− 1
2 −𝜀

×
˘ 1

0
d𝜂1d𝜂2d𝜉1d𝜉2

5∑︁
𝑖=1

𝜇S𝑖
,

(4.37)
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Figure 4.2: Decomposition tree of the triple-collinear sector phase space. Starting at the root with the physical
parameters 𝜂𝑖 = 𝜂𝑖, 𝜉𝑖 = 𝜉𝑖, decompositions are performed at four levels corresponding to the factorization of the
soft (I), collinear (II and III) and soft-collinear (IV) limits. The omitted right branch of the tree corresponds to a
different ordering of the energies of the unresolved partons, and can be obtained by renaming the indices of the
variables, 1 ↔ 2 [20].

where

𝜉2 max = min

⎡⎣1, 1
𝜉1

1 − 𝜉1

1 − 2𝐸max√
𝑠
𝜉1 𝜂3

⎤⎦ ,

𝜂31(𝜂1,𝜂2) = 𝜂3
𝜂1

⃒⃒⃒⃒
𝜂1=𝜂1
𝜂2=𝜂1𝜂2/2

= (2 − 𝜂2)2

2
(︁

2 + 𝜂2(1 − 2𝜂1) − 2(1 − 2𝜁)
√︀
𝜂2(1 − 𝜂1)(2 − 𝜂1𝜂2)

)︁ ,
𝜂32(𝜂1,𝜂2) = 𝜂3

𝜂1𝜂2
2

⃒⃒⃒⃒
𝜂1=𝜂1
𝜂2=𝜂1(2−𝜂2)/2

=

1
2
(︁

2 + (1 − 2𝜂1)(2 − 𝜂2) − 2(1 − 2𝜁)
√︀

(1 − 𝜂1)(2 − 𝜂2)(2 − 𝜂1(2 − 𝜂2))
)︁ .

(4.38)
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The relation between the original physical variables and the variables after sector decomposition is
given in Tab. 4.2. The sector specific part of the measure is given in Tab. 4.3.

For the single-collinear and triple-collinear factorization formula in Eqs. (3.49) and (3.53) transverse
momenta are defined. The normalized vectors read

𝑢𝜇𝑖⊥ =
(︂

0
𝑢̂𝑖⊥

)︂
, 𝑖 = 1,2,3 , (4.39)

where

𝑢̂1⊥ = lim
𝜃1→0

𝑢̂1 − 𝑟

‖𝑢̂1 − 𝑟‖
= 𝜕𝑢̂1

𝜕𝜃1

⃒⃒⃒⃒
𝜃1=0

= 𝑅̂
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑛̂(3−2𝜀)

(︁𝜋
2 , 𝜑1, 𝜌1, 𝜌2, . . .

)︁
, (4.40)

𝑢̂2⊥ = lim
𝜃2→0

𝑢̂2 − 𝑟

‖𝑢̂2 − 𝑟‖
= 𝜕𝑢̂2

𝜕𝜃2

⃒⃒⃒⃒
𝜃2=0

=

𝑅̂
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑅̂(3−2𝜀)

2 (𝜑1, 𝜌1, 𝜌2, . . .)𝑛̂(3−2𝜀)
(︁𝜋

2 , 𝜑2, 𝜎1, 𝜎2, . . .
)︁
. (4.41)

The third transverse vector 𝑢̂±
3⊥ characterizes the collinear limit of the unresolved momenta 𝑢1 and

𝑢2. This limit can only occur in sector S4, as 𝜂2 → 0, and sector S5, as 𝜂1 → 0. However, in the
triple-collinear limit, 𝜂1 → 0 in sector S4 and 𝜂2 → 0 in sector S5, the subtraction term depends on
𝑢̂±

3⊥. This vector can be defined through

𝑢̂±
3⊥ = 𝑅̂

(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑅̂(3−2𝜀)

1 (𝜃1, 𝜑1, 𝜌1, 𝜌2, . . .)𝑛̂(3−2𝜀)
(︁𝜋

2 , 𝜑
±
2 , 𝜎1, 𝜎2, . . .

)︁
, (4.42)

where an auxiliary angle 𝜑±
2 has been defined

tan𝜑±
2 (𝜃1, 𝜁) = ± sin 𝜃1 𝜕

+
𝜃2
𝜑2(𝜃1, 𝜁) , 𝜑+

2 ∈
[︁
0, 𝜋2

[︁
, 𝜑−

2 ∈
[︁𝜋

2 , 𝜋
[︁
. (4.43)

In the given parameterization, 𝜑±
2 can be explicitly derived in terms of the integration variables

𝜂1, 𝜂2, and 𝜁. In sector S4 it reads

cos𝜑−
2 = −

1 +
√︁

(1 − 1
2𝜂2)(2𝜁 − 1)√︂

2 − 1
2𝜂2 + 2

√︁
(1 − 1

2𝜂2)(2𝜁 − 1)

𝜂2→0−−−→ −
√︀
𝜁 , (4.44)

sin𝜑−
2 =

√︁
(1 − 1

2𝜂2)4𝜁(1 − 𝜁)√︂
2 − 1

2𝜂2 + 2
√︁

(1 − 1
2𝜂2)(2𝜁 − 1)

𝜂2→0−−−→
√︀

1 − 𝜁 . (4.45)

In sector S5 it is

cos𝜑+
2 =

√︁
(1 − 1

2𝜂1) + (2𝜁 − 1)√︂
2 − 1

2𝜂1 + 2
√︁

(1 − 1
2𝜂1)(2𝜁 − 1)

𝜂1→0−−−→
√︀
𝜁 , (4.46)
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S1 S2 S3 S4 S5

𝜂1 𝜂1
1
2𝜂1𝜂2

1
2𝜂1𝜂2𝜉2 𝜂1

1
2(2 − 𝜂1)𝜂2

𝜂2
1
2𝜂1𝜂2 𝜂2 𝜂2

1
2𝜂1(2 − 𝜂2) 𝜂2

𝜉1 𝜉1 𝜉1 𝜉1 𝜉1 𝜉1

𝜉2 𝜉1𝜉2𝜉2 max 𝜂1𝜉1𝜉2𝜉2 max 𝜉1𝜉2𝜉2 max 𝜉1𝜉2𝜉2 max 𝜉1𝜉2𝜉2 max

Table 4.2: The physical variables 𝜂1,𝜂2, 𝜉1, 𝜉2, expressed through the sector variables, 𝜂1, 𝜂2, 𝜉1, 𝜉2 in the five
sectors after sector decomposition, depicted in Fig. 4.2.

𝜇S𝑖

S1 𝜂1−2𝜀
1 𝜂−𝜀

2 𝜉3−4𝜀
1 𝜉1−2𝜀

2 ((1 − 𝜂1)(2 − 𝜂1𝜂2))−𝜀
(︂
𝜂31(𝜂1,𝜂2)

2 − 𝜂2

)︂1−2𝜀
𝜉 2−2𝜀

2 max

S2 𝜂2−3𝜀
1 𝜂1−2𝜀

2 𝜉3−4𝜀
1 𝜉1−2𝜀

2 ((1 − 𝜂2)(2 − 𝜂1𝜂2))−𝜀
(︂
𝜂31(𝜂2,𝜂1)

2 − 𝜂1

)︂1−2𝜀
𝜉 2−2𝜀

2 max

S3 𝜂−𝜀
1 𝜂1−2𝜀

2 𝜉3−4𝜀
1 𝜉2−3𝜀

2 ((1 − 𝜂2)(2 − 𝜂1𝜂2𝜉2))−𝜀
(︂
𝜂31(𝜂2,𝜂1𝜉2)

2 − 𝜂1𝜉2

)︂1−2𝜀
𝜉 2−2𝜀

2 max

S4 𝜂1−2𝜀
1 𝜂1−2𝜀

2 𝜉3−4𝜀
1 𝜉1−2𝜀

2 ((1 − 𝜂1)(2 − 𝜂2)(2 − 𝜂1(2 − 𝜂2)))−𝜀 𝜂1−2𝜀
32 (𝜂1,𝜂2) 𝜉 2−2𝜀

2 max

S5 𝜂1−2𝜀
1 𝜂1−2𝜀

2 𝜉3−4𝜀
1 𝜉1−2𝜀

2 ((1 − 𝜂2)(2 − 𝜂1)(2 − 𝜂2(2 − 𝜂1)))−𝜀 𝜂1−2𝜀
32 (𝜂2,𝜂1) 𝜉 2−2𝜀

2 max

Table 4.3: Integration measures, 𝜇S𝑖 as it appears in the full phase space measure (4.37).

sin𝜑+
2 =

√︀
4𝜁(1 − 𝜁)√︂

2 − 1
2𝜂1 + 2

√︁
(1 − 1

2𝜂1)(2𝜁 − 1)

𝜂1→0−−−→
√︀

1 − 𝜁 . (4.47)

4.2.3 Double-collinear sector parameterization
The parameterization of the double-collinear sector can be regarded as applying the parameterization
of the single-collinear sector to two pairs of reference and unresolved momenta (𝑟1,𝑢1) and (𝑟2,𝑢2).
This is however only possible as long as 𝑛 > 𝑛𝑓𝑟. In the case 𝑛 = 𝑛𝑢 = 𝑛𝑓𝑟 = 2, there is no
freedom of rotating the second unresolved momentum, since one reference momentum is fixed by
energy-momentum conservation. This case will be treated separately after the more general case is
discussed.

General case 𝑛 > 𝑛𝑓𝑟

The four relevant momenta read

𝑟𝜇1 = 𝑟0
1 𝑟

𝜇
1 = 𝑟0

1

(︂
1
𝑟1

)︂
, 𝑟𝜇2 = 𝑟0

2 𝑟
𝜇
2 = 𝑟0

2

(︂
1
𝑟2

)︂
,

𝑢𝜇1 = 𝑢0
1 𝑢̂

𝜇
1 = 𝑢0

1

(︂
1

𝑢̂1

)︂
, 𝑢𝜇2 = 𝑢0

2 𝑢̂
𝜇
2 = 𝑢0

2

(︂
1

𝑢̂2

)︂
,

(4.48)
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Figure 4.3: Parameterization of the double-unresolved sector with two unresolved momenta denoted by 𝑢1 and
𝑢2. The left example shows the case of two initial state reference momenta with 𝑟1 = 𝑝2 and 𝑟2 = 𝑝1. The right
picture shows a case with one final state reference momentum, 𝑟1, and one initial state reference momentum,
𝑟2 = 𝑝1 [1].

where the angular parameterizations are illustrated in Fig. 4.3

𝑟1 = 𝑛̂(3−2𝜀)(𝛼1, 𝛼2, . . .) ,

𝑟2 = 𝑛̂(3−2𝜀)(𝛽1, 𝛽2, . . .) ,

𝑢̂1 = 𝑅
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑛̂(3−2𝜀)(𝜃1, 𝜑1, 𝜌1, 𝜌2, . . .) ,

𝑢̂2 = 𝑅
(3−2𝜀)
1 (𝛽1, 𝛽2, . . .)𝑅(3−2𝜀)

4 (𝜌2, 𝜌3, . . .)𝑛̂(3−2𝜀)(𝜃2, 𝜑2, 𝜎1, 𝜎2, . . .) . (4.49)

It is important to notice the additional rotation of the second unresolved momentum
𝑅

(3−2𝜀)
4 (𝜌2, 𝜌3, . . .). It makes sure that starting at dimension six, all angles that parameterize the

direction of 𝑢2 are defined relative to the direction of 𝑢1. This limits the number of extra dimensions
that are needed for 𝑢1 to five and for 𝑢2 to six, after reformulating the subtraction scheme in the ’t
Hooft-Veltman regularization scheme (see section 4.6).
If both reference momenta are in the initial state, the phase space integral is split as

ˆ
d𝛷𝑛+2 =

ˆ
d𝛷unresolved

ˆ
d𝛷𝑛(𝑝1 + 𝑝2 − 𝑢1 − 𝑢2) . (4.50)

If 𝑟1 is in the final state and 𝑟2 in the initial state, the phase space is split accordingly
ˆ

d𝛷𝑛+2 =
(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃𝜀 ˆ
S2−2𝜀

1

d𝛺(𝛼1, 𝛼2, . . .)
ˆ

d𝛷unresolved

×
ˆ 𝑟0

max

0

d𝑟0
1 (𝑟0

1)1−2𝜀

2(2𝜋)3−2𝜀

ˆ
d𝛷𝑛−1(𝑝1 + 𝑝2 − 𝑟1 − 𝑢1 − 𝑢2) ,

(4.51)
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and Eq. (4.33) can be applied, if 𝑛 = 2. If both particles are in the final state, the phase space can
be written as

ˆ
d𝛷𝑛+2 =

(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃2𝜀 ˆ
S2−2𝜀

1

d𝛺(𝛼1, 𝛼2, . . .)
ˆ
S2−2𝜀

1

d𝛺(𝛽1, 𝛽2, . . .)
ˆ

d𝛷unresolved

×
ˆ 𝑟0

max

0

d𝑟0
1 (𝑟0

1)1−2𝜀

2(2𝜋)3−2𝜀

ˆ 𝑟0
2 max

0

d𝑟0
2 (𝑟0

2)1−2𝜀

2(2𝜋)3−2𝜀

ˆ
d𝛷𝑛−2(𝑝1 + 𝑝2 − 𝑟1 − 𝑟2 − 𝑢1 − 𝑢2) . (4.52)

The energy maximum for 𝑟2 is given by

𝑟0
2 max =

√
𝑠
(︀
𝐸max − 𝑢0

1 − 𝑢0
2 − 𝑟0

1
)︀

+ 𝑟1 · (𝑢1 + 𝑢2) + 𝑢1 · 𝑢2√
𝑠− 𝑟2 · (𝑢1 + 𝑢2 + 𝑟1)

, (4.53)

while the maximum of 𝑟1 is given in Eq. (4.34). The resolved part of the measure in Eq. (4.52) can
be completely integrated using energy-momentum conservation, if 𝑛 = 3. The result reads
ˆ 𝑟0

2 max

0

d𝑟0
2 (𝑟0

2)1−2𝜀

2(2𝜋)3−2𝜀

ˆ
d𝛷1(𝑝1 + 𝑝2 − 𝑢1 − 𝑢2) = (𝑟0

2 max)1−2𝜀

4(2𝜋)2−2𝜀
1√

𝑠− 𝑟2 · (𝑢1 + 𝑢2 + 𝑟1)
. (4.54)

In contrast to the triple-collinear sector, only overlapping soft singularities can occur in the double-
collinear sector. The unresolved part of the phase space is therefore split to disentangle those
singularities. ˆ

d𝛷unresolved =
ˆ

d𝛷unresolved

(︁
𝜃(𝑢0

1 − 𝑢0
2) + 𝜃(𝑢0

2 − 𝑢0
1)
)︁
. (4.55)

The first contribution, which is be denoted by sector S6 in the following, is given by
ˆ

d𝛷unresolved 𝜃(𝑢0
1 − 𝑢0

2) =(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃2𝜀 ˆ
S2−2𝜀

1

d𝛺(𝜃1, 𝜑1, 𝜌1, . . .)
ˆ
S2−2𝜀

1

d𝛺(𝜃2, 𝜑2, 𝜎1, 𝜎2, . . .)

×
ˆ 𝑢0

max

0

d𝑢0
1 (𝑢0

1)1−2𝜀

2(2𝜋)3−2𝜀

ˆ 𝑢0
2 max

0

d𝑢0
2 (𝑢0

2)1−2𝜀

2(2𝜋)3−2𝜀 𝜃
(︀
𝑢0

1 − 𝑢0
2
)︀

=

𝐸4
max

(2𝜋)6

(︂
𝜋𝜇2

𝑅𝑒
𝛾E

4𝐸2
max

)︂2𝜀 ˆ
S1−2𝜀

1

d𝛺(𝜑1, 𝜌1, . . .)
ˆ
S1−2𝜀

1

d𝛺(𝜑2, 𝜎1, 𝜎2, . . .)

×
˘ 1

0
d𝜂1d𝜂2d𝜉1d𝜉2 𝜂

−𝜀
1 𝜂−𝜀

2 𝜉3−4𝜀
1 𝜉1−2𝜀

2

(︁(︀
1 − 𝜂1

)︀(︀
1 − 𝜂2

)︀)︁−𝜀
𝜉2−2𝜀

2 max , (4.56)

where the physical parameters are expressed in terms of the integration variables

𝑢0
1 = 𝐸max 𝜉1 , 𝑢0

2 = 𝐸max 𝜉1𝜉2𝜉2 max , 𝜉2 max = min
[︃

1, 1
𝜉1

1 − 𝜉1

1 − 𝐸max√
𝑠
𝜉1 𝑢̂1 · 𝑢̂2

]︃
,

cos 𝜃1 = 1 − 2𝜂1 , cos 𝜃2 = 1 − 2𝜂2 .

(4.57)
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Transverse momenta for the two collinear pairs are

𝑢𝜇𝑖⊥ =
(︂

0
𝑢̂𝑖⊥

)︂
, 𝑖 = 1,2 , (4.58)

with

𝑢̂1⊥ = lim
𝜃1→0

𝑢̂1 − 𝑟1
‖𝑢̂1 − 𝑟1‖

= 𝜕𝑢̂1
𝜕𝜃1

⃒⃒⃒⃒
𝜃1=0

= 𝑅̂
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑛̂(3−2𝜀)

(︁𝜋
2 , 𝜑1, 𝜌1, 𝜌2, . . .

)︁
, (4.59)

𝑢̂2⊥ = lim
𝜃2→0

𝑢̂2 − 𝑟2
‖𝑢̂2 − 𝑟2‖

= 𝜕𝑢̂2
𝜕𝜃2

⃒⃒⃒⃒
𝜃2=0

=

𝑅̂
(3−2𝜀)
1 (𝛽1, 𝛽2, . . .)𝑅̂(3−2𝜀)

4 (𝜌2, 𝜌3, . . .)𝑛̂(3−2𝜀)
(︁𝜋

2 , 𝜑2, 𝜎1, 𝜎2, . . .
)︁
. (4.60)

Special case, 𝑛 = 𝑛𝑢 = 𝑛𝑓𝑟 = 2
This parameterization has been the main result of [213]. However, even though it is outlined there,
the explicit formulas are given here for completeness. In this case, the phase space contains only the
four final state vectors given in Eq. (4.48). The angular parameterization is shown in Fig. 4.4. It is
defined using an auxiliary vector that specifies the collinear directions

𝑟 = 𝑟0
1 𝑟1 + 𝑢0

1 𝑢̂1 = −𝑟0
2 𝑟2 − 𝑢0

2 𝑢̂2 , 𝑟 = ‖𝑟‖ , 𝑟 = 𝑟

𝑟
. (4.61)

The unresolved momenta are parameterized with respect to the auxiliary vector

𝑟 = 𝑛̂(3−2𝜀)(𝛼1, 𝛼2, . . .) ,

𝑢̂1 = 𝑅
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑛̂(3−2𝜀)(𝜃1, 𝜑1, 𝜌1, 𝜌2, . . .) ,

𝑢̂2 = −𝑅
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑅(3−2𝜀)

4 (𝜌2, 𝜌3, . . .)𝑛̂(3−2𝜀)(𝜃2, 𝜑2, 𝜎1, 𝜎2, . . .) . (4.62)

The full phase space is

ˆ
d𝛷4 =

(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃3𝜀 ˆ
S2−2𝜀

1

d𝛺(𝛼1, 𝛼2, . . .)

×
ˆ
S1−2𝜀

1

d𝛺(𝜑1, 𝜌1, . . .)
ˆ
S1−2𝜀

1

d𝛺(𝜑2, 𝜎1,𝜎2, . . .)

×
ˆ ∞

0

d𝑢0
1 (𝑢0

1)1−2𝜀

2(2𝜋)3−2𝜀

ˆ 1

−1
d cos 𝜃1

(︀
1 − cos2 𝜃1

)︀−𝜀
ˆ ∞

0

d𝑢0
2(𝑢0

2)1−2𝜀

2(2𝜋)3−2𝜀

ˆ 1

−1
d cos 𝜃2

(︀
1 − cos2 𝜃2

)︀−𝜀

×
(︂

1 − cos2 𝜃1
1 − cos2 𝜃1

)︂−𝜀(︂1 − cos2 𝜃2
1 − cos2 𝜃2

)︂−𝜀
𝑟0

1 𝑟
0
2

4 (2𝜋)2−2𝜀 𝑟1+2𝜀
⃒⃒
𝑟0

1 + 𝑟0
2 + 𝑢0

1 cos 𝜃1 + 𝑢0
2 cos 𝜃2

⃒⃒ ,
(4.63)

where the parameters are

cos 𝜃𝑖 = 𝑟0
𝑖 cos 𝜃𝑖 + 𝑢0

𝑖

𝑟
, (4.64)



52 4 Sector improved residue subtraction scheme

−r

θ1

r1

r2

u2

u1

θ̃2θ2

θ̃1

r

p1

p2

I

II

u0

2

0

cos θ2

1

−1
√

s/2

Figure 4.4: Left: Double-collinear sector parameterization for a four particle massless phase space, where the
reference momenta 𝑟1 and 𝑟2 are in the final state. The auxiliary reference vector 𝑟 = 𝑟1 + 𝑢1 is defined in order
parameterize the phase space using the angles 𝜃1 and 𝜃2.
Right: The parameters of the unresolved momentum 𝑢1 are fixed. The parameters of the momentum 𝑢2 split
the phase space in two disjunct regions [1].

𝑟0
1 =

𝑠− 2
√
𝑠
(︀
𝑢0

1 + 𝑢0
2
)︀

+ 2𝑢0
2
(︀
𝑢0

1 + 𝑢0
2
)︀

+ 2
(︁√

𝑠− 𝑢0
1 − 𝑢0

2

)︁
𝑢0

2 cos 𝜃2

2
(︁√

𝑠− 𝑢0
1 (1 − cos 𝜃1) − 𝑢0

2 (1 − cos 𝜃2)
)︁ ,

𝑟0
2 =

𝑠− 2
√
𝑠
(︀
𝑢0

1 + 𝑢0
2
)︀

+ 2𝑢0
1
(︀
𝑢0

1 + 𝑢0
2
)︀

+ 2
(︁√

𝑠− 𝑢0
1 − 𝑢0

2

)︁
𝑢0

1 cos 𝜃1

2
(︁√

𝑠− 𝑢0
1 (1 − cos 𝜃1) − 𝑢0

2 (1 − cos 𝜃2)
)︁ ,

𝑟 =
√︂(︁

𝑢0
1

)︁2
+
(︁
𝑟0

1

)︁2
+ 2𝑢0

1𝑟
0
1 cos 𝜃1 =

√︂(︁
𝑢0

2

)︁2
+
(︁
𝑟0

2

)︁2
+ 2𝑢0

2𝑟
0
2 cos 𝜃2 . (4.65)

In order to cover the full phase space using the above parameters, two integration regions are
identified as depicted in the right plot of Fig. 4.4. Region I is limited by

0 ≤ 𝑢0
2 <

𝑠− 2𝑢0
1

(︁√
𝑠− 𝑢0

1

)︁
(1 − cos 𝜃1)

2
(︁√

𝑠− 𝑢0
1 (1 − cos 𝜃1)

)︁ ,

− min

⎡⎣1,
𝑠− 2

√
𝑠
(︀
𝑢0

1 + 𝑢0
2
)︀

+ 2𝑢0
2
(︀
𝑢0

1 + 𝑢0
2
)︀

2𝑢0
2

(︁√
𝑠− 𝑢0

1 − 𝑢0
2

)︁
⎤⎦ ≤ cos 𝜃2 ≤ 1 , (4.66)

where
𝑟0

1 + 𝑟0
2 + 𝑢0

1 cos 𝜃1 + 𝑢0
2 cos 𝜃2 > 0 . (4.67)
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Region II is defined as

𝑠− 2𝑢0
1

(︁√
𝑠− 𝑢0

1

)︁
(1 − cos 𝜃1)

2
(︁√

𝑠− 𝑢0
1 (1 − cos 𝜃1)

)︁ ≤ 𝑢0
2 ≤

√
𝑠

2 ,

−1 ≤ cos 𝜃2 ≤ −
𝑠− 2

√
𝑠
(︀
𝑢0

1 + 𝑢0
2
)︀

+ 2𝑢0
2
(︀
𝑢0

1 + 𝑢0
2
)︀

2𝑢0
2

(︁√
𝑠− 𝑢0

1 − 𝑢0
2

)︁ , (4.68)

with
𝑟0

1 + 𝑟0
2 + 𝑢0

1 cos 𝜃1 + 𝑢0
2 cos 𝜃2 ≤ 0 . (4.69)

In both regions the parameters of the first momentum are unrestricted and read

0 ≤ 𝑢0
1 ≤

√
𝑠

2 , −1 ≤ cos 𝜃1 ≤ 1 . (4.70)

It is noticeable, that region II does not contain any singularities. Since it vanishes in the soft or
collinear limit. Hence, it can be integrated directly in four dimensions. The contribution in region I
is again split due to overlapping soft singularities. The whole phase space reads
ˆ

d𝛷4 =
ˆ

d𝛷4

[︁(︁
𝜃(𝑢0

1 − 𝑢0
2) + 𝜃(𝑢0

2 − 𝑢0
1)
)︁
𝜃
(︀
𝑟0

1 + 𝑟0
2 + 𝑢0

1 cos 𝜃1 + 𝑢0
2 cos 𝜃2

)︀
+ 𝜃
(︀

− 𝑟0
1 − 𝑟0

2 − 𝑢0
1 cos 𝜃1 − 𝑢0

2 cos 𝜃2
)︀]︁
, (4.71)

where the first contribution reads explicitly
ˆ

d𝛷4 𝜃(𝑢0
1 − 𝑢0

2) 𝜃
(︀
𝑟0

1 + 𝑟0
2 + 𝑢0

1 cos 𝜃1 + 𝑢0
2 cos 𝜃2

)︀
=
ˆ
S2−2𝜀

1

d𝛺(𝛼1, 𝛼2, . . .)

× 𝐸4
max

4(2𝜋)8

(︂
𝜋𝜇2

𝑅𝑒
𝛾E

𝐸2
max

)︂3𝜀 ˆ
S1−2𝜀

1

d𝛺(𝜑1, 𝜌1, . . .)
ˆ
S1−2𝜀

1

d𝛺(𝜑2, 𝜎1,𝜎2, . . .)

×
˘ 1

0
d𝜂1d𝜂2d𝜉1d𝜉2 𝜂

−𝜀
1 𝜂−𝜀

2 𝜉3−4𝜀
1 𝜉1−2𝜀

2

× 𝜂1−𝜀
2 max 𝜉

2−2𝜀
2 max

(︂
1
𝜂1

(︀
1 − cos2 𝜃1

)︀)︂−𝜀(︂ 1
𝜂2

(︀
1 − cos2 𝜃2

)︀)︂−𝜀

×
(︂
𝐸max
𝑟

)︂2𝜀 𝑟0
1 𝑟

0
2

𝑟
(︀
𝑟0

1 + 𝑟0
2 + 𝑢0

1 cos 𝜃1 + 𝑢0
2 cos 𝜃2

)︀ .

(4.72)

The physical parameters are defined as

𝑢0
1 = 𝐸max 𝜉1 , 𝑢0

2 = 𝐸max 𝜉1𝜉2𝜉2 max ,

cos 𝜃1 = 1 − 2𝜂1 , cos 𝜃2 = 1 − 2𝜂2𝜂2 max ,

𝜂2 max = min
[︃

1, 1
𝜉1

1 − 𝜉1

𝜉2𝜉2 max
(︀
2 − 𝜉1(1 + 𝜉2𝜉2 max)

)︀]︃ , 𝜉2 max = min
[︂
1, 1
𝜉1

1 − 𝜂1𝜉1(2 − 𝜉1)
1 − 𝜂1𝜉1

]︂
.

(4.73)
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Finally, the transverse vectors for this case read

𝑢𝜇𝑖⊥ =
(︂

0
𝑢̂𝑖⊥

)︂
, 𝑖 = 1,2 , (4.74)

where

𝑢̂1⊥ = lim
𝜃1→0

𝑢̂1 − 𝑟1
‖𝑢̂1 − 𝑟1‖

= 𝜕𝑢̂1

𝜕𝜃1

⃒⃒⃒⃒
𝜃1=0

= 𝑅̂
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑛̂(3−2𝜀)

(︁𝜋
2 , 𝜑1, 𝜌1, 𝜌2, . . .

)︁
, (4.75)

𝑢̂2⊥ = lim
𝜃2→0

𝑢̂2 − 𝑟2
‖𝑢̂2 − 𝑟2‖

= 𝜕𝑢̂2

𝜕𝜃2

⃒⃒⃒⃒
𝜃2=0

=

− 𝑅̂
(3−2𝜀)
1 (𝛼1, 𝛼2, . . .)𝑅̂(3−2𝜀)

4 (𝜌2, 𝜌3, . . .)𝑛̂(3−2𝜀)
(︁𝜋

2 , 𝜑2, 𝜎1, 𝜎2, . . .
)︁
.

(4.76)

4.3 Generation of subtraction terms
The parameterization given in the previous section allows for a very simple construction of subtraction
terms and an extraction of poles in 𝜀 before any integration is performed. The main purpose has
been to find integration parameters, {𝜂,𝜉} or {𝜂1,𝜂2,𝜉1,𝜉2}, that indicate unambiguously soft and
collinear limits in each sector as they approach zero.
In the single-collinear parameterization the relevant contribution to the phase space integral is (see
Eq. (4.24)) ¨ 1

0
d𝜂 d𝜉 𝜂−𝜀 𝜉1−2𝜀 . (4.77)

This parameterization is used if there is one additional parton in the phase space. The relevant
contributions are 𝜎̂R, 𝜎̂C1 and 𝜎RV . The limit 𝜂 → 0 indicates the collinear limit of 𝑢 and 𝑟. The
soft limit of the unresolved momentum is approached as 𝜉 → 0. In these limits subtraction terms for
the matrix elements are necessary, that are constructed using the singular limits of matrix elements
discussed in section 3.4.1. If the contribution that contains only tree-level matrix elements, 𝜎̂R, is
considered, the relevant limits are given in Eq. (3.49), for the collinear and soft-collinear limit, and
in Eq. (3.50), for the soft limit. The leading singular behavior of these functions can be factorized
and reads

1
𝜂

1
𝜉2 . (4.78)

The full real radiation cross section 𝜎̂R is written in the following form 1

𝜎̂R =
∑︁
𝑖𝑘

¨ 1

0

d𝜂
𝜂1+𝜀

d𝜉
𝜉1+2𝜀 𝑓𝑖,𝑘(𝜂,𝜉) , (4.79)

where the sum contains all single-collinear sectors, as discussed in section 4.1. An important
observation is that the function 𝑓𝑖,𝑘(𝜂,𝜉) is regular in the soft and collinear limit 𝑥 → 0, where

1 The collinear factorization contribution 𝜎̂C1 is treated similarly.
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𝑥 ∈ {𝜂,𝜉}. For an initial state reference momentum it reads explicitly

𝑓𝑖,𝑘(𝜂,𝜉) = 𝐸2
max

16𝜋3𝑠𝑁𝑎𝑏

(︂
𝜋𝜇2

R𝑒
𝛾E

4𝐸2
max(1 − 𝜂)

)︂𝜀
×
ˆ
S1−2𝜀

1

d𝛺(𝜑,𝜌1, . . .)
ˆ

d𝛷𝑛

(︀
𝑝1 + 𝑝2 − 𝑢

)︀
S𝑖,𝑘

[︁
𝜂 𝜉2⟨M(0)

𝑛+1|M(0)
𝑛+1⟩

]︁
F𝑛+1 ,

(4.80)

where the phase space parameterization in (4.20) and (4.24) has been used for 𝑧 = 1. At this point,
poles can be extracted by using the following formula iteratively for the two variables

1
𝑥1+𝑎𝜀 = − 1

𝑎𝜀
𝛿(𝑥) +

[︂
1

𝑥1+𝑎𝜀

]︂
+
, (4.81)

where the plus-distribution is defined by
ˆ 1

0
d𝑥
[︂

1
𝑥1+𝑎𝜀

]︂
+
𝑓(𝑥) =

ˆ 1

0
d𝑥 𝑓(𝑥) − 𝑓(0)

𝑥1+𝑎𝜀 . (4.82)

Two kinds of subtraction terms are generated in this way. Terms containing explicit poles are called
integrated subtraction terms, while endpoint subtractions are subtraction terms. Three different
limits need to be evaluated, namely 𝑓𝑖,𝑘(𝜂,0), 𝑓𝑖,𝑘(0,𝜉) and 𝑓𝑖,𝑘(0,0). For the selector function S𝑖,𝑘,
the measurement function 𝐹𝑛+1 and the remaining phase space measure it amounts to setting the
appropriate variable to zero. For the matrix element the appropriate limits of the factorization
formulas are used. The final result for the real radiation cross section can be written as a Laurent
series

𝜎̂R = 𝜎̂R,0 + 𝜎̂R,1

𝜀
+ 𝜎̂R,2

𝜀2 , (4.83)

where each coefficient is integrated using Monte Carlo methods.
The real-virtual contribution 𝜎̂RV is treated in a similar way, since again only one parton is unresolved.
The conceptual difference to the previous case is, that soft and collinear limits of one-loop matrix
elements are involved. The explicit limits are given in Eqs. (3.58) and (3.59). Each limit consists of
two terms. The collinear limit contains the tree-level splitting function and the one-loop splitting
function. Likewise, the soft limit: It contains the tree-level soft function and the one-loop soft
function. It turns out that the different terms scale differently with respect to the variables 𝜂 and 𝜉.
The two different scalings are

1
𝜂

1
𝜉2 and 1

𝜂1+𝜀
1

𝜉2+2𝜀 . (4.84)

The formula (4.81) is modified in order to account for this behavior
ˆ 1

0

d𝑥
𝑥1+𝑎𝜀 𝑓(𝑥) = − 1

𝑎𝜀
𝑓0 − 1

(𝑎+ 𝑏)𝜀𝑓𝜀 +
ˆ 1

0

d𝑥
𝑥1+𝑎𝜀

(︀
𝑓(𝑥) − 𝑓0 − 𝑥−𝑏𝜀𝑓𝜀

)︀
, (4.85)

where the function 𝑓(𝑥) behaves as

𝑓(𝑥) −−−→
𝑥→0

𝑓0 + 𝑥−𝑏𝜀𝑓𝜀 . (4.86)

Again, the formula can be applied to 𝜂 and 𝜉 independently and the limits of the one-loop matrix
elements have to be considered to obtain a Laurent expansion for the real-virtual cross section, i.e.
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subtraction and integrated subtraction terms.
The construction of subtraction and integrated subtraction terms for the double-real contribution to
the cross section 𝜎̂RR is performed in the same manner as it has been explained for 𝜎̂R previously.
At first, the cross section is decomposed into triple-collinear and double-collinear sectors as explained
in section 4.1

𝜎̂RR =
∑︁
𝑖𝑗𝑘

𝜎̂RR
𝑖𝑗,𝑘 +

∑︁
𝑖𝑗𝑘𝑙

𝜎̂RR
𝑖𝑘,𝑗𝑙 . (4.87)

Each triple-collinear sector is further decomposed into five subsectors using the appropriate parame-
terization Eq. (4.37) for the unresolved momenta

𝜎̂RR
𝑖𝑗,𝑘 =

S5∑︁
S=S1

𝜎̂RR,S
𝑖𝑗,𝑘 . (4.88)

This decomposition ensures that each term in the above sum contains a regulating measure of the
form ˘ 1

0
d𝜂1d𝜂2d𝜉1d𝜉2 𝜂

𝑎1−𝑏1𝜀
1 𝜂𝑎2−𝑏2𝜀

2 𝜉𝑎3−𝑏3𝜀
1 𝜉𝑎4−𝑏4𝜀

2 , (4.89)

where the variables 𝑎𝑖 and 𝑏𝑖 for the triple-collinear sectors can be determined from Tab. 4.3. In the
double-collinear sectors they are given by

𝑎1 = 0 , 𝑎2 = 0 , 𝑎3 = 3 , 𝑎4 = 1 ,
𝑏1 = 1 , 𝑏2 = 1 , 𝑏3 = 4 , 𝑏4 = 2 .

(4.90)

The limit of one of the variables 𝑥 → 0, where 𝑥 ∈ {𝜂1,𝜂2,𝜉1,𝜉2}, corresponds to a soft and/or
collinear limit. Single unresolved limits and double unresolved limits can be distinguished. While in
a single unresolved limit one parton vanishes, two final state partons vanish in the double unresolved
case. Table 4.4 specifies the physical limits as one of the variables 𝑥 goes to zero. It is emphasized
that the limit of a single variable 𝑥 → 0 can indicate either a single or a double unresolved limit.

𝜂1 𝜂2 𝜉1 𝜉2

S1 𝑢1||𝑢2||𝑟 (DU) 𝑢2||𝑟 (SU) 𝑢1 → 0, 𝑢2 → 0 (DU) 𝑢2 → 0 (SU)

S2 𝑢1||𝑟, 𝑢2 → 0 (DU) 𝑢1||𝑢2||𝑟 (DU) 𝑢1 → 0, 𝑢2 → 0 (DU) 𝑢2 → 0 (SU)

S3 𝑢1||𝑟 (SU) 𝑢1||𝑢2||𝑟 (DU) 𝑢1 → 0, 𝑢2 → 0 (DU) 𝑢2 → 0, 𝑢1||𝑟 (DU)

S4 𝑢1||𝑢2||𝑟 (DU) 𝑢1||𝑢2 (SU) 𝑢1 → 0, 𝑢2 → 0 (DU) 𝑢2 → 0 (SU)

S5 𝑢1||𝑢2 (SU) 𝑢1||𝑢2||𝑟 (DU) 𝑢1 → 0, 𝑢2 → 0 (DU) 𝑢2 → 0 (SU)

S6 𝑢1||𝑟1 (SU) 𝑢2||𝑟2 (SU) 𝑢1 → 0, 𝑢2 → 0 (SU) 𝑢2 → 0 (SU)

Table 4.4: The limits as indicated by the variable 𝑥 ∈ {𝜂1,𝜂2,𝜉1,𝜉2}, as 𝑥 → 0. Single-unresolved limits (SU)
descrbe the vanishing of one final state partcle, whereas double-unresolved limits (DU) describe the vanishing of
two final state particles.

Each contribution to 𝜎̂RR is recast into a form appropriate to generate subtraction and integrated
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subtraction terms ˘ 1

0

d𝜂1

𝜂1+𝑏1𝜀
1

d𝜂2

𝜂1+𝑏2𝜀
2

d𝜉1

𝜉1+𝑏3𝜀
1

d𝜉2

𝜉1+𝑏4𝜀
2

𝑓(𝜂1, 𝜂2, 𝜉1, 𝜉2) . (4.91)

The formula (4.81) can be applied iteratively in each variable. The sum of all sectors is given as a
Laurent series

𝜎̂RR = 𝜎̂R,0 + 𝜎̂RR,1

𝜀
+ 𝜎̂RR,2

𝜀2 + 𝜎̂RR,3

𝜀3 + 𝜎̂RR,4

𝜀4 . (4.92)

In each sector there are fifteen different limits for the function 𝑓(𝜂1, 𝜂2, 𝜉1, 𝜉2) to consider. This
function always contains, the selector function, either S𝑖𝑗,𝑘 or S𝑖𝑘,𝑗𝑙, the measurement function 𝐹𝑛+2,
the phase space measure and a regulated matrix element

𝜂1+𝑎1
1 𝜂1+𝑎2

2 𝜉1+𝑎3
1 𝜉1+𝑎4

2 ⟨M(0)
𝑛+2|M(0)

𝑛+2⟩ . (4.93)

The limit of the matrix element can be obtained by using all factorization formulas for tree-level
amplitudes, discussed in section 3.4.1. The pattern for choosing the correct formula for a given limit
is as follows. If only one variable vanishes, the corresponding limit can be taken from Tab. 4.4. If an
unresolved momentum is soft and collinear, in the corresponding collinear limit the soft variable 𝜉𝑖
is set to zero. For example, to construct the function 𝑓(0, 𝜂2, 0, 𝜉2) in sector S1, the triple-collinear
limit is taken, i.e. Eq. (3.53), and the variable 𝜉1 is set to zero. If two independent single-unresolved
limits are encountered, the corresponding factorization formulas are used iteratively. For example, to
construct the function 𝑓(0, 0, 𝜉1, 𝜉2) in sector S6 the formula for the collinear limit (3.49) is applied
independently to the two collinear pairs.

The procedure outlined above is in general sufficient to obtain finite results for each contribu-
tion of a next-to-next-to leading order cross section. However, the procedure has been described
completely for 𝑑-dimensional external momenta and polarization states, which also means that all
matrix elements that appear in subtraction terms are needed in 𝑑 dimensions to have a finite and
correct result. The above scheme can be improved, if the structure of the infrared-singularities of
real and virtual contributions is investigated and separately finite parts are identified.

4.4 Azimuthal average and iterated limits
In the previous section subtraction and integrated subtraction terms have been generated for collinear
and soft limits. The collinear subtraction terms contain in general spin correlated matrix elements
of the form

⟨M|
𝑢𝜇⊥𝑢

𝜈
⊥

𝑢2
⊥

|M⟩ . (4.94)

This is necessary to ensure pointwise convergence of the formula in the collinear limit. However, if an
explicit collinear pole term is considered, an integrated collinear subtraction term, spin correlations
are not necessary and may be integrated over the azimuthal directions. Additionally, virtual poles
are known to only contain color correlations, but are free of spin correlations, a cancellation of
poles between real and virtual contributions will take place among uncorrelated matrix elements. In
principle spin correlated matrix elements can be replaced directly by their averaged counterparts
using the formula[︃ˆ

S1−2𝜀
1

d𝛺 1
]︃−1 ˆ

S1−2𝜀
1

d𝛺(𝜑, 𝜌1, 𝜌2, . . .)
𝑢𝜇⊥𝑢

𝜈
⊥

𝑢2
⊥

= 1
2(1 − 𝜀)

(︂
𝑔𝜇𝜈 − 𝑟𝜇𝑟𝜈 + 𝑟𝜈𝑟𝜇

𝑟 · 𝑟

)︂
, (4.95)
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where the transverse vector 𝑢⊥ is the only object that depends on the azimuthal angles 𝜑, 𝜌1, 𝜌2, . . .,
that parameterize the direction transverse to the collinear direction. The collinear direction is
defined by the reference momenta 𝑟 and 𝑟, where 𝑟𝜇 = 𝑟𝜇. By transversality of the matrix elements
the longitudinal part, proportional to 𝑟, vanishes. The above formula is directly applicable in the
single-collinear sector, section 4.2.1, and the double-collinear sector, section 4.2.3, where 𝑢⊥ and 𝑟
have to be replaced by 𝑢⊥,𝑖 and 𝑟𝑖 accordingly. In these cases the phase space integral contains the
integration over azimuthal angles explicitly.
In the triple-collinear sector, section 4.2.2, the above formula can directly applied for a pole related
to the collinearity of 𝑢1 and 𝑟. In this case the measure exhibits the aziumuthal integration directly,
as can be seen in Eq. (4.37). In the case of 𝑢2||𝑟, in principle the same argument holds. Only the
second rotation in 𝑢⊥,2 with respect to 𝑢1, Eq. (4.41), has to be made undone, which is always
possible using the invariance of the measure under rotations. The nonlinear mapping, 𝜑2(𝜃1,𝜃2,𝜁)
does not spoil the argument, since the 𝑢⊥,2 depends correctly on the angle 𝜑2 and is therefore
correctly averaged. In the triple-collinear limit, 𝑢1||𝑢2||𝑟, the average is performed straightfowardly
using the same reasoning.
The only case that needs more investigation appears in the triple-collinear parameterization as 𝑢1||𝑢2
become collinear. Due to the parameterization in this sector the transverse vector 𝑢±

⊥,3 depends
on the azimuthal angle 𝜑±

2 (4.42), but the angle that is explicitly integrated is 𝜑2(𝜃1,𝜃2,𝜁). The
remaining azimuthal angles 𝜎1,𝜎2, . . . are correctly integrated. In order to investigate the impact on
the average, the integration measure including d𝜑2 should be compared to the measure in terms of
d𝜑2 in the collinear limit 𝜃1 ≈ 𝜃2 ̸= 0. It can be shown that in this limit the integration measure is

ˆ 𝜋

0
d𝜑2 | tan𝜑2|−2𝜀 , (4.96)

while it should be ˆ 𝜋

0
d𝜑2 sin−2𝜀 𝜑2 , (4.97)

to average the function correctly. The difference is obviously of order 𝜀. It means that the contribution
to the pole term will be averaged properly, while the finite contribution will get a correction. This
correction can be calculated by explicitly performing the integral[︃ˆ 𝜋

0
d𝜑2 | tan𝜑2|−2𝜀

ˆ
S−2𝜀

1

d𝛺 1
]︃−1 ˆ 𝜋

0
d𝜑2 | tan𝜑2|−2𝜀

ˆ
S−2𝜀

1

d𝛺(𝜎1, 𝜎2, . . .)
𝑢𝜇3⊥𝑢

𝜈
3⊥

𝑢2
3⊥

=

1
2

(︂
𝑔𝜇𝜈 − 𝑢𝜇1 𝑢̄

𝜈
1 + 𝑢𝜈1 𝑢̄

𝜇
1

𝑢1 · 𝑢̄1

)︂
− 𝜀 𝑢𝜇3⊥(𝜑2 = 0)𝑢𝜈3⊥(𝜑2 = 0) , (4.98)

The first term on the right hand side is the correct average in four dimensions, where the longitudinal
(collinear) direction in this case is set by 𝑢1, where 𝑢̄𝜇1 = 𝑢1𝜇. The second term takes into account
the error made due to the different measure in the first azimuthal angle.
The above formula is only relevant in sector S4 as a pole is taken in 𝜂2 and sector S5 as a pole is
taken in 𝜂1, as can be verified in Tab. 4.4. Spin correlations only appear in splitting functions if
the splitting particle is a gluon. Applying formula (4.98) to these cases amounts to the following
replacements

𝑃 (0)𝜇𝜈
𝑔𝑔 (𝑧,𝑢3⊥; 𝜀) −→ − 𝑔𝜇𝜈

[︂
2𝐶𝐴

(︂
𝑧

1 − 𝑧
+ 1 − 𝑧

𝑧
+ (1 − 𝜀)𝑧(1 − 𝑧)

)︂]︂
(4.99)
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+ 4𝐶𝐴𝜀(1 − 𝜀)𝑧(1 − 𝑧)𝑢𝜇3⊥(𝜑2 = 0)𝑢𝜈3⊥(𝜑2 = 0) ,

𝑃
(0)𝜇𝜈
𝑞𝑞 (𝑧,𝑢3⊥; 𝜀) −→ − 𝑔𝜇𝜈

[︁
𝑇𝐹
(︀
1 − 2𝑧(1 − 𝑧)

)︀]︁
− 4𝑇𝐹 𝜀𝑧(1 − 𝑧)𝑢𝜇3⊥(𝜑2 = 0)𝑢𝜈3⊥(𝜑2 = 0) ,

(4.100)

where the terms of order 𝜀0 are exactly the spin averaged functions in 𝑑 = 4 dimensions, given in
Eqs. (B.21) and (B.22).

Using the spin averaged splitting functions for the single unresolved collinear poles has addi-
tionally an impact on the choice of functions used for collinear subtraction terms for the same pole
term in the double-real contribution. For example, if the single-collinear pole 𝜂2 = 0 in sector S1
is considered, the pole contains a subtraction term due to the remaining collinear limit 𝜂1 = 0.
This subtraction term cannot be constructed using the triple splitting function, since it allows spin
correlations for both limits, while the first limit is described by an averaged splitting function. The
integral would not be pointwise convergent anymore. The appropriate subtraction formula is given
by the iterated collinear limit, where spin correlations only in the second limit arise. For the example
in sector S1 the limit is given by

|M(0)
𝑎𝑟,𝑎1,𝑎2,...(𝑟,𝑢1,𝑢2, . . .)|2 ≃(︀

8𝜋𝛼𝑠
)︀2

𝑠𝑟2 𝑠1𝑟2
⟨P̂(0)

𝑎𝑟𝑎2(𝑧𝑟2; 𝜀)⟩ ⟨M(0)
𝑎,...(𝑝, . . .)|P̂

(0)
𝑎1𝑎𝑟2(𝑧1𝑟2,𝑢1⊥; 𝜀)|M(0)

𝑎,...(𝑝, . . .)⟩ , (4.101)

where the invariant 𝑠𝑟2 = 2𝑟 · 𝑢2 describes the collinear limit 𝑟||𝑢2, for which the pole has been
taken. The invariant 𝑠1𝑟2 = 2𝑢1 · (𝑟 + 𝑢2) describes the subsequent collinear limit. All iterated cases
can be found in Tab. 4.4 and the construction of the subtraction term follows the given example.
If the splitting functions for the first splitting are in sector S4 and S5, where residual spin correlation
are present (Eq. (4.98)), the iterated limits are given by

|M(0)
𝑎𝑟,𝑔,𝑔,...(𝑟,𝑢1,𝑢2, . . .)|2 ≃(︀

8𝜋𝛼𝑠
)︀2

𝑠12 𝑠𝑟12

[︃
2𝐶𝐴

(︂
𝑧12

1 − 𝑧12
+ 1 − 𝑧12

𝑧12
+ (1 − 𝜀)𝑧12(1 − 𝑧12)

)︂
× ⟨M(0)

𝑎𝑟,...(𝑝, . . .)|P̂
(0)
𝑎𝑟𝑔(𝑧𝑟12,𝑢1⊥; 𝜀)|M(0)

𝑎𝑟,...(𝑝, . . .)⟩

+ 4𝐶𝐴𝜀(1 − 𝜀)𝑧12(1 − 𝑧12) ⟨M(0)
𝑎𝑟,...(𝑝, . . .)|P̂

(0)
𝑃𝑎𝑟𝑔

(︀
𝑧𝑟12,𝑢1⊥,𝑢

𝜇
3⊥(𝜑2 = 0)

)︀
|M(0)

𝑎𝑟,...(𝑝, . . .)⟩
]︃
, (4.102)

for gluons, and

|M(0)
𝑎𝑟,𝑞,𝑞,...(𝑟,𝑢1,𝑢2, . . .)|2 ≃(︀

8𝜋𝛼𝑠
)︀2

𝑠12 𝑠𝑟12

[︃
𝑇𝐹

(︁
1 − 2𝑧12(1 − 𝑧12)

)︁
⟨M(0)

𝑎𝑟,...(𝑝, . . .)|P̂
(0)
𝑞𝑞 (𝑧𝑟12,𝑢1⊥; 𝜀)|M(0)

𝑎𝑟,...(𝑝, . . .)⟩

− 4𝑇𝐹 𝜀𝑧12(1 − 𝑧12) ⟨M(0)
𝑎𝑟,...(𝑝, . . .)|P̂

(0)
𝑃𝑎𝑟𝑔

(︀
𝑧𝑟12,𝑢1⊥,𝑢

𝜇
3⊥(𝜑2 = 0)

)︀
|M(0)

𝑎𝑟,...(𝑝, . . .)⟩
]︃
, (4.103)
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for quarks. In this case, splitting functions with a polarized reference gluon are needed P̂(0)
𝑃𝑎𝑟𝑔. They

read

𝑃
(0), 𝜇𝜈
𝑃𝑔𝑔 (𝑧,𝑘⊥,𝜖

𝜇
1 ) = 2𝐶𝐴

[︂
𝑔𝜇𝜈

(𝜖1 · 𝑘⊥)2

𝑘2
⊥

(︂
1 − 𝑧

𝑧

)︂
+
(︂

𝑧

1 − 𝑧

)︂
𝜖𝜇1 𝜖

𝜈
1 − 𝑧(1 − 𝑧)

𝑘𝜇⊥𝑘
𝜈
⊥

𝑘2
⊥

]︂
, (4.104)

𝑃
(0), 𝑠𝑠′

𝑃𝑔𝑞 (𝑧,𝑘⊥,𝜖
𝜇
1 ) = 𝛿𝑠𝑠

′
𝐶𝐹

[︂
−2(𝜖1 · 𝑘⊥)2

𝑘2
⊥

(︂
1 − 𝑧

𝑧

)︂
+ 1

2𝑧
]︂
, (4.105)

where 𝜖𝜇1 is a real polarization vector of the reference gluon.

4.5 Separation of finite contributions
In this section, the infrared structure of contributions to a next-to-next-to-leading order cross section
is analyzed. In this discussion subtraction terms are included, that were obtained with the methods
discussed so far in this chapter. Thus, all contributions are in principle integrable using Monte Carlo
methods. Nevertheless, the contributions are separately divergent in the limit 𝜀 → 0, since each
part is given as a Laurent series having explicit poles up to order 𝜀−4. In order to understand how
poles cancel among different parts, the pole structure of virtual contributions has to be discussed
as well as the pole structure of integrated subtraction terms. The goal is to group contributions,
that are independently finite. This separation is the main step to confine resolved momenta to four
physical dimensions, which will be explained in section 4.6.
The infrared singular structure of a virtual renormalized amplitude factorizes into an operator acting
on a vector in color space

|M𝑛⟩ = Z(𝜀,{𝑝𝑖},{𝑚𝑖},𝜇𝑅) |F𝑛⟩ . (4.106)

The infrared renormalization constant Z contains all virtual poles in 𝜀 and is given as a expansion
in the strong coupling 𝛼𝑠 (see appendix B.1). Expanding the above equation up to next-to-next-to-
leading order accuracy, the virtual amplitudes are

|M(0)
𝑛 ⟩ = |F(0)

𝑛 ⟩ , (4.107)
|M(1)

𝑛 ⟩ = Z(1)|M(0)
𝑛 ⟩ + |F(1)

𝑛 ⟩ , (4.108)

|M(2)
𝑛 ⟩ =

(︁
Z(2) − Z(1)Z(1)

)︁
|M(0)

𝑛 ⟩ + Z(1)|M(1)
𝑛 ⟩ + |F(2)

𝑛 ⟩ , (4.109)

where the amplitudes |F(𝑖)
𝑛 ⟩ are called finite remainders, as they are regular in the limit 𝜀 → 0.

The renormalization constants are uniquely defined, if they contain only poles in 𝜀 and no finite
contribution.

The different contributions to the cross section were discussed in section 3.2 and serve as a starting
point to separate finite ingredients. The Born contribution to the cross section is finite by itself,
since neither virtual poles nor phase space singularities occur. At next-to-leading order the real and
virtual contributions are separated as

𝜎̂R = 𝜎̂R
F + 𝜎̂R

U , 𝜎̂V = 𝜎̂V
F + 𝜎̂V

U . (4.110)

The subscript “F” stands for finite and describes contributions that are finite as 𝜀 → 0. The subscript
“U” indicates unresolved contributions that contain explicit poles. The finite contribution to the
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real-radiation cross section is

𝜎̂R
F = 1

2𝑠
1
𝑁

ˆ
d𝛷𝑛+1

[︁
⟨M(0)

𝑛+1|M(0)
𝑛+1⟩ F𝑛+1 + subtraction terms

]︁
, (4.111)

where the subtraction terms are obtained as discussed previously. The integrated subtraction terms
are isolated into 𝜎̂R

U . The virtual contribution is decomposed according to expansion (4.108)

𝜎̂V
F = 1

2𝑠
1
𝑁

ˆ
d𝛷𝑛 2Re ⟨M(0)

𝑛 |F(1)
𝑛 ⟩ F𝑛 , 𝜎̂V

U = 1
2𝑠

1
𝑁

ˆ
d𝛷𝑛 2Re ⟨M(0)

𝑛 |Z(1)|M(0)
𝑛 ⟩ F𝑛 . (4.112)

Finite contributions are separated

𝜎̂R
F , 𝜎̂V

F , 𝜎̂U = 𝜎̂R
U + 𝜎̂V

U + 𝜎̂C . (4.113)

It is important to notice that the contribution 𝜎̂U only contains matrix elements with 𝑛 partons.
𝑛+ 1 parton matrix elements are only present in 𝜎̂R

F which can be readily evaluated putting 𝜀 → 0
before the integration is performed. At next-to-next-to-leading order the separation is more involved
and matrix elements of different multiplicity and analytic structure are separated. The double-virtual
contribution can be decomposed using formula (4.109)

𝜎̂VV = 𝜎̂VV
F + 𝜎̂VV

FR + 𝜎̂VV
DU , (4.114)

where

𝜎̂VV
F = 1

2𝑠
1
𝑁

ˆ
d𝛷𝑛

[︁
2Re ⟨M(0)

𝑛 |F(2)
𝑛 ⟩ + ⟨F(1)

𝑛 |F(1)
𝑛 ⟩
]︁

F𝑛 , (4.115)

𝜎̂VV
FR = 1

2𝑠
1
𝑁

ˆ
d𝛷𝑛 2Re ⟨M(0)

𝑛 |
(︁

Z(1) † + Z(1)
)︁

|F(1)
𝑛 ⟩ F𝑛 , (4.116)

𝜎̂VV
DU = 1

2𝑠
1
𝑁

ˆ
d𝛷𝑛

[︁
2Re ⟨M(0)

𝑛 |Z(2)|M(0)
𝑛 ⟩ + ⟨M(0)

𝑛 |Z(1) †Z(1)|M(0)
𝑛 ⟩
]︁

F𝑛 . (4.117)

The subscript “FR” summarizes contributions that are proportional to the real part of the one-loop
finite remainder, whereas the subscript “DU” means double-unresolved and states that poles are due
to two unresolved partons, in this case these are two virtual partons. The real-virtual contribution
is separated as follows

𝜎̂RV = 𝜎̂RV
F + 𝜎̂RV

SU + 𝜎̂RV
FR + 𝜎̂RV

DU , (4.118)

where the single contributions read

𝜎̂RV
F = 1

2𝑠
1
𝑁

ˆ
d𝛷𝑛+1

[︁
2Re ⟨M(0)

𝑛+1|F(1)
𝑛+1⟩ F𝑛+1 + subtraction terms

]︁
, (4.119)

𝜎̂RV
SU = 1

2𝑠
1
𝑁

ˆ
d𝛷𝑛+1

[︁
2Re ⟨M(0)

𝑛+1|Z(1)|M(0)
𝑛+1⟩ F𝑛+1 + subtraction terms

]︁
. (4.120)

The subscript “SU” stands for single unresolved and in this case contain only virtual poles of the
𝑛+1 amplitude. The subtraction terms for the two contributions above can be derived explicitly and
are given in appendix B.3.1 and B.3.2. Integrated subtraction terms containing real poles are merged
into 𝜎̂RV

FR and 𝜎̂RV
DU. Where in the former all contributions proportional to the 𝑛 particle one-loop

finite reminder are gathered, while in the double-unresolved part all contributions proportional to
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the 𝑛 particle tree-level amplitude are put together.
The double-real radiation contribution is separated into parts of similar origin

𝜎̂RR = 𝜎̂RR
F + 𝜎̂RR

SU + 𝜎̂RR
DU . (4.121)

The finite part just contains the 𝑛+ 2 particle matrix element and all subtraction terms

𝜎̂RR
F = 1

2𝑠
1
𝑁

ˆ
d𝛷𝑛+2

[︁
⟨M(0)

𝑛+2|M(0)
𝑛+2⟩ F𝑛+2 + subtraction terms

]︁
. (4.122)

This contribution can be evaluated in four dimensions already. The integrated subtraction terms
are arranged into two classes. The single-unresolved (SU) class contains poles that are due to limits
as one parton vanishes. It contains therefore 𝑛+ 1 particle matrix elements as well as subtraction
terms for the remaining unresolved parton. The pole terms can be read from Tab. 4.4 and are listed
in Tab. 4.5. The double unresolved contribution contains all poles terms, due to both unresolved
particles vanishing. Only 𝑛 parton matrix elements are present.
Finally, collinear subtraction contributions are decomposed according to matrix elements, that

appear in different parts of these contributions. The cross section 𝜎̂C1 in Eq. (3.24) is the convolution
of the leading order splitting function and the real radiation cross section in a next-to-leading order
cross section. Hence, it can be decomposed as shown in Eq. (4.110). The finite contribution 𝜎̂R

F
corresponds to a single unresolved contribution 𝜎̂C1

SU, since an explicit pole is already present in
the collinear factorization formula. This is interpreted as arising in the collinear limit of the first
unresolved parton. Similarly, the unresolved contribution 𝜎̂R

U containing integrated subtraction
terms leads to a double unresolved contribution 𝜎̂C1

DU. The cross section 𝜎̂C2 in (3.24) contains the
virtual contribution of the next-to-leading order cross section 𝜎̂V which can be separated into the
finite remainder contribution and the pole term. The latter is a double unresolved contribution,
taking into account the convolution with a splitting function. The other parts in 𝜎̂C2 contain only
convolutions of Born level cross sections and splitting functions, each contribution is therefore also
interpreted as double-unresolved. The decomposition of the collinear factorization is finally

𝜎̂C1 = 𝜎̂C1
SU + 𝜎̂C1

DU , 𝜎̂C2 = 𝜎̂C2
FR + 𝜎̂C2

DU . (4.123)

By merging similar parts, the following cross sections are defined

𝜎̂FR = 𝜎̂RV
FR + 𝜎̂VV

FR + 𝜎̂C2
FR , 𝜎̂SU = 𝜎̂RR

SU + 𝜎̂RV
SU + 𝜎̂C1

SU ,

𝜎̂DU = 𝜎̂RR
DU + 𝜎̂RV

DU + 𝜎̂VV
DU + 𝜎̂C1

DU + 𝜎̂C2
DU .

(4.124)

At this point it is instructive to discuss which contributions are finite separately. Obviously, 𝜎̂RR
F ,

𝜎̂RV
F and 𝜎̂VV

F are finite. By the KLN theorem, the full next-to-next-to-leading order cross section is
finite and therefore the sum 𝜎̂FR + 𝜎̂SU + 𝜎̂DU must be finite. In [211] it has been proven that 𝜎̂FR
is independently finite, which can be understood directly: The integrated subtraction terms only
contain leading order splitting and soft functions, while virtual poles are only due to Z(1). This is
the same pattern that occurs in the next-to-leading order cross section, which is certainly finite. In
conclusion, since 𝜎̂FR is finite, 𝜎̂SU + 𝜎̂DU has to be finite.
Unfortunately, this separation is not sufficient to formulate the subtraction scheme in ’t Hooft-
Veltman regularization, since in 𝜎̂SU only one parton is unresolved and in 𝜎̂DU two partons are
unresolved. Parameterizing the two contributions differently will spoil the cancellation of infrared
poles. It is thus necessary to render the two contributions separately finite, such that the full
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S1 S2 S3 S4 S5 S6

double-pole (𝜂2,𝜉2) (𝜂2,𝜉2) (𝜂1,𝜉2) (𝜂2,𝜉2)

single-pole 𝜂2,𝜉2 𝜉2 𝜂1 𝜂2,𝜉2 𝜂1,𝜉2 𝜂1,𝜂2,𝜉2

Table 4.5: Poles taken in the sector variables that contribute to 𝜎̂RR
SU . The the remaining poles contribute to

𝜎̂RR
DU.

next-to-next-to-leading order cross section contains the finite parts summarized in Tab. 4.6.

LO 𝜎̂𝐵

NLO 𝜎̂R
F , 𝜎̂V

F , 𝜎̂U = 𝜎̂R
U + 𝜎̂V

U + 𝜎̂C

NNLO 𝜎̂RR
F , 𝜎̂RV

F , 𝜎̂VV
F , 𝜎̂FR = 𝜎̂RV

FR + 𝜎̂VV
FR + 𝜎̂C2

FR ,

𝜎̂SU = 𝜎̂RR
SU + 𝜎̂RV

SU + 𝜎̂C1
SU , 𝜎̂DU = 𝜎̂RR

DU + 𝜎̂RV
DU + 𝜎̂VV

DU + 𝜎̂C1
DU + 𝜎̂C2

DU

Table 4.6: Separately finite contributions to a next-to-next-to-leading order cross section calculation. The
definitions for the contributions can be found in the main text.

4.5.1 Separation of single- and double-unresolved contributions
In order to obtain a finite result for the single-unresolved and double-unresolved contribution
independently the structure of pole cancellation has to be examined. It is sufficient to find suitable
counterterms to the single-unresolved contribution and make it finite, since the same counterterms
will provide a finite result for the double-unresolved contribution. Therefore, the three contributions
of 𝜎̂RR

SU , 𝜎̂RV
SU and 𝜎̂C1

SU are investigated. Each contribution consists of a main term that contains
the 𝑛+ 1 particle matrix element and suitable subtraction terms that provide subtractions due to
the additional parton becoming soft or collinear. If the next-to-next-to-leading order measurement
function for the observable containing 𝑛 partons in the final state is replaced by a next-to-leading
order measurement function for 𝑛 + 1 partons in each of the three contributions, only the main
term will remain. The subtraction terms vanish, since they describe two unresolved partons, which
is not allowed by the measurement function. In the sum of all contributions to 𝜎̂SU the poles will
cancel, since effectively it is a next-to-leading order calculation. The single unresolved cross section
corresponds to the unresolved cross section 𝜎̂𝑈 .
Hence, going back to the next-to-next-to-leading order case, poles among the unsubtracted term
cancel, whereas poles among subtraction terms do not cancel. This is because of the different
parameterizations used in 𝜎̂RV

SU and 𝜎̂RR
SU

1. The real-virtual contribution is given in the single-
collinear parameterization described in section 4.2.1. In general it can be written in form of the two
relevant parameters

¨ 1

0

d𝜂
𝜂1+𝑎𝜀

d𝜉
𝜉1+𝑏𝜀

(︁
𝑓(𝜂, 𝜉) − 𝑓(0, 𝜉) − 𝑓(𝜂, 0) + 𝑓(0, 0)

)︁
. (4.125)

1 The poles due to final state limits are discussed first. The discussion of initial state poles, including 𝜎̂C1
SU, will be

provided afterwards.
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The main term 𝑓(𝜂, 𝜉), which is the unsubtracted contribution, contains the operator Z(1) and
the corresponding matrix element. The remaining terms in Eq. (4.125) are subtraction terms in
the two physical variables 𝜉 and 𝜂, which are integrated over the full unit square. The double-
real contribution is either given in the triple-collinear parameterization (section 4.2.2) or the
double collinear parameterization (section 4.2.3). It contains double pole and single pole terms as
summarized in Tab. 4.5. The double pole terms are of the form

¨ 1

0

d𝜂1

𝜂1+𝑎𝜀
1

d𝜉1

𝜉1+𝑏𝜀
1

(︁
𝑔(𝜂1, 𝜉1) − 𝑔(0, 𝜉1) − 𝑔(𝜂1, 0) + 𝑔(0, 0)

)︁
. (4.126)

The sector variables 𝜂1 and 𝜉1 in this case, correspond directly to the physical variables as can be
verified in Tab. 4.2. Therefore, they correspond directly to the variables 𝜂 and 𝜉 in the real-virtual
contribution and are also integrated over the full unit square. Thus, not only the double pole in
𝑔(𝜂1,𝜉2) will cancel the double pole in 𝑓(𝜂,𝜉) but also the double poles of the subtraction terms of 𝑔
will cancel the the double poles of the subtraction terms of 𝑓 , since they are generated in the same
variables integrated over the full integration region.
The single pole contributions turn out to be the bottleneck in this discussion. In general the single
pole contribution of 𝜎̂RR

SU has the following form

˚ 1

0

d𝑦
𝑦1+𝑎𝜀

d𝑥1

𝑥1+𝑏1𝜀
1

d𝑥2

𝑥1+𝑏2𝜀
2

{︃[︃(︁
𝑔(𝑦, 𝑥1, 𝑥2) − 𝑔(𝑦, 𝑥1, 0)

)︁
−
(︁
𝑔(0, 𝑥1, 𝑥2) − 𝑔(0, 𝑥1, 0)

)︁]︃

−

[︃(︁
𝑔(𝑦, 0, 𝑥2) − 𝑔(0, 0, 𝑥2)

)︁
−
(︁
𝑔(𝑦, 0, 0) − 𝑔(0, 0, 0)

)︁]︃}︃
. (4.127)

Depending on the sector {𝑦,𝑥1,𝑥2} ⊂ {𝜂1, 𝜂2, 𝜉1, 𝜉2}, where the explicit pole has been taken in the
remaining variable {𝜂1, 𝜂2, 𝜉1, 𝜉2} ∖ {𝑦,𝑥1,𝑥2}. One of the variables can be identified with 𝜂 or 𝜉
directly. It will be denoted by 𝑦. In general there is no direct correspondence between one of the
remaining variables {𝑥1,𝑥2} and 𝑥, where 𝑥 = 𝜂, if 𝑦 = 𝜉 and vice versa. Thus, in general 𝑥 is a
functions of the two variables

𝑥 = 𝑥(𝑥1,𝑥2) . (4.128)

It is instructive to understand why the single poles do not cancel. The origin is the sector
decomposition of the triple-collinear and the double-collinear sector. The space spanned by the
physical variables {𝜂1, 𝜂2, 𝜉1, 𝜉2} would have a one-to-one correspondence to the space spanned
by {𝜂,𝜉} in the real-virtual contribution. But after introducing additional sectors the space is
spanned by sector variables {𝜂1, 𝜂2, 𝜉1, 𝜉2}. Only afterwards subtraction terms are generated, that
are minimal in the sector variables. Different sectors take into account different limits and a specific
subtraction term will in general only appear in some or only one of the given sectors. If those
terms are reexpressed in the physical variables, which correspond to {𝜂,𝜉} directly, the subtraction
term is not necessarily the minimal one in those variables. Additionally the integration range is
not necessarily the unit square anymore. To obtain a finite result, this has to be compensated by
appropriate counterterms. The derivation of these counterterms follows the same pattern. Firstly,
subtraction terms in (4.127) that need to be corrected are identified. Secondly, the integral is
reexpressed in terms of 𝑦 and 𝑥 and finally, the limit 𝑥 → 0 of the term is inspected to identify the
minimal subtraction term and the missing integration region.
The list of pole terms that have to be considered are listed in Tab. 4.7.
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Case I Case II Case III Case Initial

Sector S4 S5 S5 S2 S3 S6 S3 S6

Pole 𝜂2 𝜂1 𝜉2 𝜉2 𝜂1 𝜂1 𝜂1 𝜂1

Table 4.7: Single pole terms in 𝜎̂RR
SU for which counterterms are derived. Four cases are identified, that have to

be treated separately.

Case I
The pattern of the first case is outlined in the following. The relation between the variables is
assumed to be

𝑥 = 𝑥1
(︀
1 + 𝑐(𝑥1)𝑥2

)︀
, 𝑐′(0) = 0 , (4.129)

where c is a function. Subtraction terms in (4.127), in which 𝑥2 = 0 do not require any modifications
since 𝑥 = 𝑥1. As discussed previously the leading term

𝑔(𝑦,𝑥1,𝑥2) − 𝑔(𝑦,𝑥1,0) , (4.130)

is correct by the vanishing of the next-to-leading order cross section. Hence, the relevant term is

ℎ(𝑥2) = −
(︁
𝑔(𝑦,0,𝑥2) − 𝑔(0,0,𝑥2)

)︁
. (4.131)

If only the integrations of 𝑥1 and 𝑥2 are explicitly written, the integral is rewritten in terms of 𝑥 as

¨ 1

0

d𝑥1

𝑥1+𝑏1𝜀
1

d𝑥2

𝑥1+𝑏2𝜀
2

ℎ(𝑥2) =
ˆ 1

0

d𝑥
𝑥1+𝑏1𝜀

ˆ 𝑥2 max(𝑥)

0

d𝑥2

𝑥1+𝑏2𝜀
2

[︃
d𝑥1
d𝑥 (𝑥,𝑥2)

(︁ 𝑥

𝑥1(𝑥,𝑥2)

)︁1+𝑏1𝜀
]︃
ℎ(𝑥2) ,

(4.132)
where

𝑥2 max(0) = 1 . (4.133)

The integrand on the right hand side has to be taken in the limit 𝑥 → 0 to get the contribution that
matches the real-virtual subtraction term

lim
𝑥→0

ˆ 𝑥2 max(𝑥)

0

d𝑥2

𝑥1+𝑏2𝜀
2

[︃
d𝑥1
d𝑥 (𝑥,𝑥2)

(︁ 𝑥

𝑥1(𝑥,𝑥2)

)︁1+𝑏1𝜀
]︃
ℎ(𝑥2) =

ˆ 1

0

d𝑥2

𝑥1+𝑏2𝜀
2

(︀
1 + 𝑐(0)𝑥2

)︀𝑏1𝜀 ℎ(𝑥2) .

(4.134)
Hence, the correct counterterm is given by the difference of the term and its limit

ˆ 1

0

d𝑥
𝑥1+𝑏1𝜀

{︃ˆ 1

0

d𝑥2

𝑥1+𝑏2𝜀
2

(︀
1 + 𝑐(0)𝑥2

)︀𝑏1𝜀 ℎ(𝑥2)

−
ˆ 𝑥2 max(𝑥)

0

d𝑥2

𝑥1+𝑏2𝜀
2

[︃
d𝑥1
d𝑥 (𝑥,𝑥2)

(︁ 𝑥

𝑥1(𝑥,𝑥2)

)︁1+𝑏1𝜀
]︃
ℎ(𝑥2)

}︃
. (4.135)
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Changing the order of integration the integral over 𝑥 is performed explicitly which leads to the
counterterm ˆ 1

0

d𝑥2

𝑥1+𝑏2𝜀
2

𝛥(𝑥2)ℎ(𝑥2) , (4.136)

where restoring the original form it reads

−
¨ 1

0

d𝑦
𝑦1+𝑎𝜀

d𝑥2

𝑥1+𝑏2𝜀
2

𝛥(𝑥2)
(︀
𝑔(𝑦, 0, 𝑥2) − 𝑔(0, 0, 𝑥2)

)︀
. (4.137)

This term is added to the single unresolved contribution and subtracted from the double unresolved
contribution. The result depends in general on the scaling of the variables 𝑥1 and 𝑥2, given by 𝑏1
and 𝑏2. The scaling is directly obtained from the triple-collinear and double-collinear measures given
in Tab. 4.3 and section 4.2.3 respectively. These scalings are correct in CDR and are used for the
counterterms of the double unresolved contributions. However, if the scheme is reformulated in
the ’t Hooft-Veltman regularization, it will be different for the counterterm of the single-unresolved
contribution, since one of the resolved partons is treated in four dimensions. The exact procedure
how to obtain the correct scaling will be outlined in section 4.6. Nevertheless, the scaling for both
schemes will be given for each counterterm.

The triple-collinear sector S4 follows case I, if the collinear pole in 𝜂2 is considered. The rela-
tion between the variables is

𝑦 = 𝜂1 , 𝑥1 = 𝜉1 , 𝑥2 = 𝜉2 , (4.138)

while 𝜉 corresponds to
𝑥 = 𝑥1

(︀
1 + 𝑥2 min(1, 1/𝑥1 − 1)

)︀
. (4.139)

The counterterm can be calculated and reads

𝛥𝜂2
S4

= 1 − (1 + 𝜉2)𝑏1𝜀

𝑏1𝜀
, (4.140)

with
𝑏CDR

1 = 4 , 𝑏HV
1 = 2 . (4.141)

The single pole due to 𝜂1 in sector S5 is treated in exactly the same way, resulting in the same
counterterm

𝛥𝜂1
S5

= 𝛥𝜂2
S4
. (4.142)

The last contribution that is covered in case I is sector S5, if the pole is taken in 𝜉2. The correspondence
between the variables is

𝑦 = 𝜉1 , 𝑥1 = 𝜂2 , 𝑥2 = 𝜂1 , (4.143)

with
𝑥 = 𝑥1

(︁
1 − 𝑥2

2

)︁
. (4.144)

Following the pattern outlined for case I the counterterm can be derived and reads

𝛥𝜉2
S5

=
1 −

(︁
1 − 𝜂1

2

)︁𝑏1𝜀

𝑏1𝜀
, (4.145)
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with the scaling
𝑏CDR

1 = 2 , 𝑏HV
1 = 1 . (4.146)

Case II
The pole in 𝜉2 in sector S2 is considered. The unsubtracted contribution only contains the term
𝑔(𝑦,𝑥1,𝑥2), where the variables are identified to be

𝑦 = 𝜉1 , 𝑥1 = 𝜂1 , 𝑥2 = 𝜂2 , 𝑥 = 1
2𝑥1𝑥2 . (4.147)

It is important to notice that 𝑥(𝑥1, 𝑥2) is symmetric in its arguments. Hence, subtraction terms
that contain 𝑥1 and 𝑥2 have to be considered. The derivation can be done for one variable, say 𝑥2.
Using the symmetry the whole counterterm can be obtained. The integral can be reparameterized
in terms of 𝑥(𝑥1,𝑥2)

¨ 1

0

d𝑥1

𝑥1+𝑏1𝜀
1

d𝑥2

𝑥1+𝑏2𝜀
2

ℎ(𝑥2) =
ˆ 1/2

0

d𝑥
𝑥1+𝑏1𝜀

ˆ 1

2𝑥

d𝑥2

𝑥1+𝑏2𝜀
2

(︁𝑥2
2

)︁𝑏1𝜀
ℎ(𝑥2) , (4.148)

where ℎ(𝑥2) summarizes all 𝑥2 dependant terms in Eq. (4.127). The parameter 𝑥 is only integrated
in the range [0,1/2] and the second integral still depends on 𝑥 through the lower boundary of 𝑥2.
First, the correct behavior as 𝑥 → 0 is determined by rewriting the above equation as

ˆ 1/2

0

d𝑥
𝑥1+𝑏1𝜀

[︃ˆ 1

2𝑥

d𝑥2

𝑥1+𝑏2𝜀
2

(︁𝑥2
2

)︁𝑏1𝜀
ℎ(0) +

ˆ 1

0

d𝑥2

𝑥1+𝑏2𝜀
2

(︁𝑥2
2

)︁𝑏1𝜀 (︀
ℎ(𝑥2) − ℎ(0)

)︀
−
ˆ 2𝑥

0

d𝑥2

𝑥1+𝑏2𝜀
2

(︁𝑥2
2

)︁𝑏1𝜀 (︀
ℎ(𝑥2) − ℎ(0)

)︀]︃
. (4.149)

The first two terms have the correct scaling behavior in the limit 𝑥 → 0, but need to be integrated
in the full range 𝑥 ∈ [0,1/2]. The last term needs to be removed. Both manipulations are achieved
by one counterterm of the form

ˆ 1

1/2

d𝑥
𝑥1+𝑏1𝜀

[︃ˆ 1

2𝑥

d𝑥2

𝑥1+𝑏2𝜀
2

(︁𝑥2
2

)︁𝑏1𝜀
ℎ(0) +

ˆ 1

0

d𝑥2

𝑥1+𝑏2𝜀
2

(︁𝑥2
2

)︁𝑏1𝜀 (︀
ℎ(𝑥2) − ℎ(0)

)︀]︃

+
ˆ 1/2

0

d𝑥
𝑥1+𝑏1𝜀

ˆ 2𝑥

0

d𝑥2

𝑥1+𝑏2𝜀
2

(︁𝑥2
2

)︁𝑏1𝜀 (︀
ℎ(𝑥2) − ℎ(0)

)︀
. (4.150)

The first term can be integrated explicitly, while the rest is further simplified. Taking into account
the contribution of 𝑥1 ↔ 𝑥2 the whole counterterm reads in the original variables

− 1
𝑏1𝑏2𝜀2

(︀
2−𝑏2𝜀 − 1

)︀
𝑏1 −

(︀
2−𝑏1𝜀 − 1

)︀
𝑏2

𝑏1 − 𝑏2

ˆ 1

0

d𝜉1

𝜉1+𝑎𝜀
1

(︀
𝑔(𝜉1, 0, 0) − 𝑔(0, 0, 0)

)︀
−
¨ 1

0

d𝜉1

𝜉1+𝑎𝜀
1

d𝜂1

𝜂1+𝑏1𝜀
1

1 −
(︀𝜂1

2
)︀𝑏2𝜀

𝑏2𝜀

(︀
𝑔(𝜉1, 𝜂1, 0) − 𝑔(𝜉1, 0, 0) − 𝑔(0, 𝜂1, 0) + 𝑔(0, 0, 0)

)︀
−
¨ 1

0

d𝜉1

𝜉1+𝑎𝜀
1

d𝜂2

𝜂1+𝑏2𝜀
2

1 −
(︀𝜂2

2
)︀𝑏1𝜀

𝑏1𝜀

(︀
𝑔(𝜉1, 0, 𝜂2) − 𝑔(𝜉1, 0, 0) − 𝑔(0, 0, 𝜂2) + 𝑔(0, 0, 0)

)︀
,

(4.151)
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where the scaling is given by

𝑏CDR
1 = 3 , 𝑏CDR

2 = 2 , 𝑏HV
1 = 2 , 𝑏HV

2 = 1 . (4.152)

Case III
This case examines the pole due to 𝜂1 and in sector S3 and sector S6. The unresolved parton with
momentum 𝑢1 is collinear to the reference parton 𝑟, which is 𝑟 in the triple-collinear sector and 𝑟1
in the double-collinear sector. The variables are

𝑦 = 𝜂2 , 𝑥1 = 𝜉2 , 𝑥2 = 𝜉1 . (4.153)

In order to compare to the real-virtual contribution, the reference parton has to be the collinear
parton with momentum

𝑟′ = 𝑟 + 𝑢1 , (4.154)

since the collinear limit has been taken already. It is easier to use rescaled variables

𝑟0 = 𝐸max 𝜉𝑟 𝜉𝑟max , 𝑟′0 = 𝐸max 𝜉𝑟′ 𝜉𝑟′ max , (4.155)

where 𝜉𝑟max denotes the maximum of 𝑟0/𝐸max and 𝜉𝑟′ max the maximum of 𝑟′0/𝐸max. In this case
the reference momentum in 𝜎̂RV

SU and 𝜎̂RR
SU has to be taken into account, hence the energy integration

is taken into account explicitly

𝑔(𝑦,𝑥1,𝑥2) =
ˆ 1

0
d𝜉𝑟 ℎ(𝜉𝑟,𝑦,𝑥1,𝑥2) . (4.156)

The derivation is simplified by noticing that two subtraction terms cancel

ℎ(𝜉𝑟,𝑦,𝑥1,0) − ℎ(𝜉𝑟,𝑦,0,0) = 0 . (4.157)

Additionally, only corrections to the subtraction term ℎ(𝜉𝑟,𝑦,0,𝑥2) are considered. Corrections to
ℎ(𝜉𝑟,0,0,𝑥2) can be obtained from the first in the limit 𝑦 → 0. For 𝑥1 = 0 there is

𝜉𝑟max
⃒⃒
𝑥1=0 = 1 − 𝑥2 , 𝜉𝑟′ max

⃒⃒
𝑥1=0 = 1 . (4.158)

The relation between the double-real variables and the variables in the real-virtual contribution is
given by

𝑥 = 𝑥1𝑥2𝑥2 max(𝑥2) , 𝜉𝑟′ = 𝜉𝑟 + (1 − 𝜉𝑟)𝑥2 , (4.159)

where

𝑥2 max(𝑥2) = min
[︃

1, 1
𝑥2

1 − 𝑥2

1 − 𝐸max√
𝑠

(︀
𝑢̂1 · 𝑢̂2

)︀
𝑥2

]︃
. (4.160)

Another variable is introduced
𝑧 = 𝑥2

𝜉𝑟 + (1 − 𝜉𝑟)𝑥2
, (4.161)

which specifies the soft limit of the unresolved parton of momentum 𝑢1, as 𝑧 → 0. The scalar
product 𝑢̂1 · 𝑢̂2 in (4.160) is equal to 2𝑦 in the triple-collinear sector, while in the double-collinear
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sector it is some function of 𝑦. It is therefore convenient to define

𝑦′ = 𝐸max√
𝑠

(︀
𝑢̂1 · 𝑢̂2

)︀
∈ [0,1] , 𝑥max = 1

1 +
√

1 − 𝑦′ , (4.162)

such that

𝑥2 ∈ [0, 𝑥max] ⇒ 𝑥2 max(𝑥2) = 1 , 𝑥2 ∈ [𝑥max, 1] ⇒ 𝑥2 max(𝑥2) = 1
𝑥2

1 − 𝑥2
1 − 𝑦′𝑥2

. (4.163)

At this stage, it is possible to reparameterize the whole integral
˘ 1

0
d𝜉𝑟

d𝑦
𝑦1+𝑎𝜀

d𝑥1

𝑥1+𝑏1𝜀
1

d𝑥2

𝑥1+𝑏2𝜀
2

ℎ(𝜉𝑟,𝑦,0,𝑥2) =
˚ 1

0

d𝑦
𝑦1+𝑎𝜀 d𝜉𝑟′

d𝑧
𝑧1+(𝑏2−𝑏1)𝜀

ˆ 𝜉𝑟′𝑧 𝑥2 max(𝜉𝑟′𝑧)

0

d𝑥
𝑥1+𝑏1𝜀

𝜉
(𝑏1−𝑏2)𝜀
𝑟′

(︀
𝑥2 max(𝜉𝑟′𝑧)

)︀𝑏1𝜀

× 1
1 − 𝜉𝑟′𝑧

ℎ

(︂
𝜉𝑟′(1 − 𝑧)
1 − 𝜉𝑟′𝑧

, 𝑦, 0, 𝜉𝑟′𝑧

)︂
=

˚ 1

0

d𝑦
𝑦1+𝑎𝜀 d𝜉𝑟′

d𝑧
𝑧1+(𝑏2−𝑏1)𝜀

ˆ 𝜉𝑟′𝑧 𝑥2 max(𝜉𝑟′𝑧)

0

d𝑥
𝑥1+𝑏1𝜀

ℎ̃(𝜉𝑟′ ,𝑦,𝑧) , (4.164)

where ℎ̃ is just a shorthand notation for the integrand. The order of integration has to be as follows
ˆ

d𝑥
ˆ

d𝜉𝑟′

ˆ
d𝑧 , (4.165)

to allow for comparison with 𝜎̂RV
SU . The integration over 𝑦 can be safely neglected, since it is not

relevant for the discussion. Writing the integral in the demanded order it reads

¨ 1

0
d𝜉𝑟′

d𝑧
𝑧1+(𝑏2−𝑏1)𝜀

ˆ 𝜉𝑟′𝑧 𝑥2 max(𝜉𝑟′𝑧)

0

d𝑥
𝑥1+𝑏1𝜀

ℎ̃(𝜉𝑟′ ,𝑦,𝑧) =
ˆ 𝑥max

0

d𝑥
𝑥1+𝑏1𝜀

[︃ ˆ 1

𝑥
d𝜉𝑟′

ˆ min(1,𝑥max/𝜉𝑟′ )

𝑥/𝜉𝑟′

d𝑧
𝑧1+(𝑏2−𝑏1)𝜀

+
ˆ 1

𝑥max

d𝜉𝑟′

ˆ min
(︀

1, 1
𝜉𝑟′

1−𝑥
1−𝑦′𝑥

)︀
𝑥max/𝜉𝑟′

d𝑧
𝑧1+(𝑏2−𝑏1)𝜀

]︃
ℎ̃(𝜉𝑟′ ,𝑦,𝑧) . (4.166)

As in the previous cases the limit 𝑥 → 0 has to be examined and the integration range extended to
[0,1]. The result reads

ˆ 1

0

d𝑥
𝑥1+𝑏1𝜀

ˆ 1

0
d𝜉𝑟′

[︃ ˆ min(1,𝑥max/𝜉𝑟′ )

𝑥/𝜉𝑟′

d𝑧
𝑧1+(𝑏2−𝑏1)𝜀 ℎ̃(𝜉𝑟′ ,𝑦,0)

+
ˆ min(1,𝑥max/𝜉𝑟′ )

0

d𝑧
𝑧1+(𝑏2−𝑏1)𝜀

(︁
ℎ̃(𝜉𝑟′ ,𝑦,𝑧) − ℎ̃(𝜉𝑟′ ,𝑦,0)

)︁
+
ˆ 1

min(1,𝑥max/𝜉𝑟′ )

d𝑧
𝑧1+(𝑏2−𝑏1)𝜀 ℎ̃(𝜉𝑟′ ,𝑦,𝑧)

]︃
.

(4.167)
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The function is not singular as 𝜉𝑟′ = 0, due to a selector function present in ℎ̃. The counterterm is
the difference between (4.167) and (4.166). After some simplification and returning to the original
variables the full counterterm reads

−
¨ 1

0

d𝜂2

𝜂1+𝑎𝜀
2

d𝜉1

𝜉1+𝑏2𝜀
1

1
𝑏1𝜀

[︁(︁
1 −

(︀
𝜉1𝜉2 max(𝜉1,𝜂2)

)︀𝑏1𝜀
)︁
𝑔(𝜂2,0,𝜉1) −

(︀
1 − 𝜉𝑏1𝜀

1
)︀
𝑔(𝜂2,0,0)

−
(︁

1 −
(︀
𝜉1𝜉2 max(𝜉1,0)

)︀𝑏1𝜀
)︁
𝑔(0,0,𝜉1) +

(︀
1 − 𝜉𝑏1𝜀

1
)︀
𝑔(0,0,0)

]︁
, (4.168)

with the scaling
𝑏CDR

1 = 3 , 𝑏HV
1 = 1 (4.169)

in sector S3 and the scaling
𝑏CDR

2 = 2 , 𝑏HV
2 = 0 , (4.170)

in sector S6. Even though the general case of the double-collinear parameterization has been treated
here (see the first part of section 4.2.3), the special case in the second part of section 4.2.3 can be
obtained by the simple replacement

𝜉2 max = 1 . (4.171)

Case Initial
The last case deals with single poles due to initial state collinear singularities. In this case, the
corresponding terms in 𝜎̂RR

SU are compared to 𝜎̂C1
SU, since the pole should cancel among these two

contributions. The terms in the double real-contributions are the same as in case III: The pole
is taken in 𝜂1 in sector S3 and sector S6. In the collinear factorization the convolution with the
splitting function has to be taken into account, it reads

˚ 1

0
d𝑧 d𝜂
𝜂1+𝑎𝜀

d𝜉
𝜉1+𝑏𝜀

(︁
𝑓(𝑧, 𝜂, 𝜉) − 𝑓(𝑧, 0, 𝜉) − 𝑓(𝑧, 𝜂, 0) + 𝑓(𝑧, 0, 0)

)︁
. (4.172)

The kinematics are in general given by

𝑧𝑝1 + 𝑝2 → final state , (4.173)

and similarly if the initial state splitting is related to 𝑝2. The cross section is usually evaluated in
the center-of-mass frame of 𝑧𝑝1 + 𝑝2. In order to compare the two contributions, 𝜎̂C1

SU has to be
evaluated in a different reference frame. 1 − 𝑧 is interpreted as the energy fraction of a collinear
parton split from the initial state parton 𝑝1. The kinematics are given by

𝑝1 + 𝑝2 → (1 − 𝑧)𝑝1 + final state , (4.174)

and the cross section is evaluated in the center-of-mass frame of 𝑝1 + 𝑝2, which coincides with
the frame in which the double-real contribution is evaluated. The reference momentum 𝑟 in the
triple-collinear parameterization and 𝑟1 in the double-collinear parameterization corresponds to 𝑝1
(or 𝑝2) and the unresolved collinear momentum 𝑢1 corresponds to (1 − 𝑧)𝑝1. The contribution in
𝜎̂RR

SU reads

˚ 1

0

d𝜂2

𝜂1+𝑎𝜀
2

d𝜉1

𝜉1+𝑏1𝜀
1

d𝜉2

𝜉1+𝑏2𝜀
2

{︃[︃(︁
𝑔(𝜂2, 𝜉1, 𝜉2) − 𝑔(𝜂2, 𝜉1, 0)

)︁
−
(︁
𝑔(0, 𝜉1, 𝜉2) − 𝑔(0, 𝜉1, 0)

)︁]︃
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−

[︃(︁
𝑔(𝜂2, 0, 𝜉2) − 𝑔(0, 0, 𝜉2)

)︁
−
(︁
𝑔(𝜂2, 0, 0) − 𝑔(0, 0, 0)

)︁]︃}︃
, (4.175)

where the variables are related to 𝑧 and 𝜉

𝑧 = 1 − 2𝐸max√
𝑠
𝜉1 , 𝜉 = 𝜉2 max

𝜉′
2 max

𝜉2 , 𝜉2 max = min
[︀
1, 𝜉′

2 max
]︀
, 𝜉′

2 max = 1
𝜉1

1 − 𝜉1

1 − 𝐸max√
𝑠
𝜉1 𝑟 · 𝑢̂2

.

(4.176)
The terms that need to be considered are

𝑔(𝜂2,𝜉1,0) , 𝑔(0,𝜉1,0) , (4.177)

since as in case III
𝑔(𝜂2,0,𝜉2) − 𝑔(𝜂2,0,0) = 0 . (4.178)

The integral can be reparameterized as

¨ 1

0

d𝜉1

𝜉1+𝑏1𝜀
1

d𝜉2

𝜉1+𝑏2𝜀
2

𝑔(𝜂2, 𝜉1, 0) =
(︂

2𝐸max√
𝑠

)︂(𝑏1−𝑏2)𝜀

×
ˆ 1

1−2𝐸max/
√
𝑠

d𝑧
(1 − 𝑧)1+(𝑏1−𝑏2)𝜀

ˆ 𝜉2 max/𝜉′
2 max

0

d𝜉
𝜉1+𝑏2𝜀

(︂
𝜉2 max
𝜉′

2 max

)︂𝑏2𝜀

𝑔(𝜂2, 𝜉1(𝑧), 0) , (4.179)

where the integration over 𝜂2 is irrelevant for the discussion. It is only necessary to consider
𝑔(𝜂2,𝜉1,0), since 𝑔(0,𝜉1,0) can be obtained in the limit 𝜂2 → 0. The counterterm can be obtained by
adding the missing integration region in 𝜉 and reads(︂

2𝐸max√
𝑠

)︂(𝑏1−𝑏2)𝜀 ˆ 1

1−2𝐸max/
√
𝑠

d𝑧
(1 − 𝑧)1+(𝑏1−𝑏2)𝜀

×
ˆ 1

𝜉2 max/𝜉′
2 max

d𝜉
𝜉1+𝑏2𝜀

(︂
𝜉2 max
𝜉′

2 max

)︂𝑏2𝜀

𝑔(𝜂2, 𝜉1(𝑧), 0) =

¨ 1

0

d𝜉1

𝜉1+𝑏1𝜀
1

[︃
1
𝑏2𝜀

(︃
1 −

(︂
𝜉2 max
𝜉′

2 max

)︂𝑏2𝜀
)︃]︃

𝑔(𝜂2, 𝜉1, 0) . (4.180)

The integral has a singularity at 𝜉1 = 0, respectively 𝑧 = 1. This is an endpoint singularity which is
only present in the counterterm, but not in the original contribution to the double-real contribution
(4.179), since the integration range of 𝜉 vanishes in the limit 𝑧 = 1. The same singularity appears in
the collinear factorization contribution, where it is subtracted. In order that both contributions
match, a similar subtraction has to be applied. In practice this is done by the replacement

1
(1 − 𝑧)1+𝑐𝜀 −→

[︂
1

(1 − 𝑧)1+𝑐𝜀

]︂
+
. (4.181)

Finally, the full counterterm for the initial collinear case reads

−
˚ 1

0

d𝜂2

𝜂1+𝑎𝜀
2

d𝜉1

𝜉1+𝑏1𝜀
1

1
𝑏2𝜀

[︃(︃
1 −

(︂
𝜉2 max(𝜂2,𝜉1)
𝜉′

2 max(𝜂2,𝜉1)

)︂𝑏2𝜀
)︃
𝑔(𝜂2, 𝜉1, 0) −

(︀
1 − 𝜉𝑏2𝜀

1
)︀
𝑔(𝜂2, 0, 0)
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−

(︃
1 −

(︂
𝜉2 max(0,𝜉1)
𝜉′

2 max(0,𝜉1)

)︂𝑏2𝜀
)︃
𝑔(0, 𝜉1, 0) +

(︀
1 − 𝜉𝑏2𝜀

1
)︀
𝑔(0, 0, 0)

]︃
, (4.182)

with the scaling
𝑏CDR

2 = 3 , 𝑏HV
2 = 1 , (4.183)

in sector S3 and the scaling
𝑏CDR

2 = 2 , 𝑏HV
2 = 0 , (4.184)

in sector S6. It is important to notice, that the convolution in 𝜎̂C1
SU has to be evaluated in the boosted

frame, using the single-collinear parameterization given in section 4.2.1 with 𝑧 ̸= 1. Even though the
full contribution 𝜎̂C1

SU is Lorentz invariant, the separation into single- and double-unresolved parts is
not Lorentz invariant.

All counterterms given in this section can be added to 𝜎̂SU such that it will be finite in the
limit 𝜀 → 0. The same counterterms have to be subtracted from 𝜎̂DU and also give a finite result for
this contribution. Up to this point, all manipulations are performed in CDR. In the next section,
the step to the ’t Hooft-Veltman regularization scheme is explained.

4.6 ’t Hooft-Veltman regularization
The final step in the construction of the subtraction scheme Stripper is the restriction of resolved
momenta and polarization vectors to four dimensions. As outlined in the introduction to this
chapter this amounts to reformulating the scheme in the ’t Hooft Veltman regularization scheme as
summarized in Tab. 4.1. The procedure for each finite contribution to the cross section in Tab. 4.6
involves two steps: The first one is to replace the full expansion in 𝜀 of tree-level matrix elements
and finite remainders by the leading term in the 𝜀 expansion. This corresponds to a restriction of
polarization vectors of resolved gluons to four dimensions. Since higher orders in 𝜀 for tree-level
matrix contributions and finite remainders are only due to spin sums of external gluons. The second
step is to restrict the phase space of resolved particles to four dimensions, which means that their
respective momenta are four dimensional vectors.
The following finite contributions need no modifications, since they do not contain any pole term

𝜎̂𝐵 , 𝜎̂R
F , 𝜎̂V

F , 𝜎̂RR
F , 𝜎̂RV

F , 𝜎̂VV
F . (4.185)

In the phase space measure as well the matrix elements 𝜀 can be simply set to zero This simply
means that in those contributions all partons are resolved and dimensional regularization is not
needed. The remaining contributions contain either 𝑛 or 𝑛+ 1 resolved partons. First, the case of 𝑛
resolved partons is discussed. The relevant contributions are

𝜎̂U = 𝜎̂R
U + 𝜎̂V

U + 𝜎̂C , 𝜎̂FR = 𝜎̂RV
FR + 𝜎̂VV

FR + 𝜎̂C2
FR , 𝜎̂DU = 𝜎̂RR

DU + 𝜎̂RV
DU + 𝜎̂VV

DU + 𝜎̂C1
DU + 𝜎̂C2

DU . (4.186)

In each contribution the cancellation of poles takes place between integrated subtraction terms
containing soft and splitting functions in the real contributions, the virtual infrared poles in Z(1,2)

and explicit poles in collinear factorization contributions. This cancellation is independent of the
actual matrix element which factorizes in each term. Thus, since the terms are finite, higher orders
in 𝜀 for the 𝑛 parton tree-level matrix elements and finite remainders can be neglected right from
the beginning. The above statement is only true if azimuthal averaged splitting functions for the
integrated subtraction terms are used (see section 4.4). The phase space is restricted by modifying
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the measurement function 𝐹𝑛 which defines the infrared safe observable in all of the contributions
(4.186). The modification effectively forces the momenta to four dimensions and reads

F𝑛 −→ F𝑛

(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃−(𝑛−1)𝜀[︃ 𝑛−1∏︁
𝑖=1

(2𝜋)−2𝜀𝛿(−2𝜀)(𝑞𝑖)
]︃
, (4.187)

where 𝑞𝑖 are the final state resolved partons. It is important to notice that the 𝛿-functions only
restrict 𝑛 − 1 partons, while the last final state parton is fixed to four dimensions by energy-
momentum conservation. Since all contributions are already finite as 𝜀 → 0 the modification of the
measurement function has only impact on terms that vanish if 𝑑 = 4. The effect on the phase space
parameterizations in section 4.2 can be made explicit. If none of the resolved partons 𝑞𝑖 is related to
a reference parton, for example if the reference parton is in the initial state then the 𝛿-functions
restrict the whole resolved phase space simply to 𝑑 = 4

ˆ
d𝛷𝑛

(︁
𝑝1 + 𝑝2 →

𝑛∑︁
𝑖=1

𝑞𝑖

)︁
−→

ˆ 𝑛∏︁
𝑖=1

d3𝑞𝑖
(2𝜋)32𝑞0

𝑖

(2𝜋)4𝛿(4)
(︁ 𝑛∑︁
𝑖=1

𝑞𝑖 − 𝑝1 − 𝑝2

)︁
. (4.188)

However, if the reference parton is in the final state, the following factors appear

𝛿(−2𝜀)(𝑟 + 𝑢) = (𝑟0 + 𝑢0)2𝜀 𝛿(−2𝜀)(𝑟) for the single-collinear sector
𝛿(−2𝜀)(𝑟 + 𝑢1 + 𝑢2) = (𝑟0 + 𝑢0

1 + 𝑢0
2)2𝜀 𝛿(−2𝜀)(𝑟) for the triple-collinear sector,

𝛿(−2𝜀)(𝑟1 + 𝑢1) 𝛿(−2𝜀)(𝑟2 + 𝑢2) =[︀
(𝑟0

1 + 𝑢0
1)(𝑟0

2 + 𝑢0
2)
]︀2𝜀

𝛿(−2𝜀)(𝑟1) 𝛿(−2𝜀)(𝑟2) for the double-collinear sector,

(4.189)

since a resolved parton momentum in a collinear limit is the sum of the reference momentum and
a unresolved momenta. The delta 𝛿(−2𝜀)(𝑟) restricts the angular integration to four dimensions
while the integration for the energy is modified by an energy dependent factor. This factor
compensates the higher dimensional contribution to the phase space measure of the resolved
momentum. The unresolved momenta are still parameterized in 𝑑 = 4 − 2𝜀 dimensions. There are
at most two unresolved momenta in the contribution 𝜎̂RR

DU. Since all resolved momenta are restricted
to four dimensions, by rotational invariance the first unresolved momentum 𝑢1 can be explicitly
parameterized in five dimensions and the second unresolved momentum can be parameterized in at
most six dimensions 𝑢2. This is the upper bound on explicit dimensions needed independently of
the multiplicity of the considered process. The only function, in which the sixth dimensions arises
explicitly is the double soft function. Formulas for the explicit angular integrations beyond four
dimensions are given in appendix A.2.1.
The remaining contribution that has to be adapted to the ’t Hooft-Veltman scheme is

𝜎̂SU = 𝜎̂RR
SU + 𝜎̂RV

SU + 𝜎̂C1
SU . (4.190)

This contribution is however more complicated, since it contains matrix elements with 𝑛+ 1 partons
and matrix elements with 𝑛 partons, where 𝑛 + 1 partons are resolved and only one particle is
unresolved. First, in order to understand the structure of this contribution, the next-to-next-to-
leading order measurement function is replaced by a next-to-leading order measurement function,
this means 𝐹𝑛 = 0 and 𝐹𝑛+1 prevents 𝑛+ 1 final state partons to become soft or collinear. Then
the previous discussion can be repeated for 𝑛+ 1 resolved particles in four dimensions. Returning
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to the next-to-next-to-leading order measurement function, i.e. 𝐹𝑛 ̸= 0, one of the resolved particles
can become soft and collinear. Appropriate, subtraction terms contain soft and splitting functions.
However, since the parton has four dimensional polarization vectors, the correct limit is only obtained
if the splitting function at 𝜀 = 0 is considered. As an example, the iterated limit, that has already
been discussed in section 4.4, is considered. In sector S1 the collinear pole due to 𝜂2 is considered,
and described by the averaged splitting function. The second collinear limit 𝜂1 → 0 of the resolved
parton is described by the spin correlated splitting function in four dimensions. The limit in Eq.
(4.101) is replaced by

|M(0)
𝑎𝑟,𝑎1,𝑎2,...(𝑟,𝑢1,𝑢2, . . .)|2 ≃(︀

8𝜋𝛼𝑠
)︀2

𝑠𝑟2 𝑠1𝑟2
⟨P̂(0)

𝑎𝑟𝑎2(𝑧𝑟2; 𝜀 ̸= 0)⟩ ⟨M(0)
𝑎,...(𝑝, . . .)|P̂

(0)
𝑎1𝑎𝑟2(𝑧1𝑟2,𝑢1⊥; 𝜀 = 0)|M(0)

𝑎,...(𝑝, . . .)⟩ , (4.191)

if 𝑎𝑟2 = 𝑔. The same iterated procedure has to be applied to a soft pole and collinear subtraction
and collinear pole and soft subtraction. While the soft pole soft subtraction is not changed since
the next-to-leading order soft function does not depend on 𝜀. In this way, matrix elements are only
needed in four dimensions. The next step is to restrict the phase space of the 𝑛+ 1 resolved partons.
This can be achieved in the same way discussed for 𝑛 resolved partons. The measurement function
is modified accordingly

F𝑛+1 −→ F𝑛+1

(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃−(𝑛)𝜀[︃ 𝑛∏︁
𝑖=1

(2𝜋)−2𝜀𝛿(−2𝜀)(𝑞𝑖)
]︃
. (4.192)

The difference to the previous case is that 𝛿-functions will also restrict one of the unresolved
momenta in the triple-collinear and double-collinear parameterizations of 𝜎̂RR

SU . The list of appearing
𝛿-functions is

𝛿(−2𝜀)(𝑟 + 𝑢1) 𝛿(−2𝜀)(𝑢2) for the collinear pole in 𝜂1 in sector S3,
𝛿(−2𝜀)(𝑟 + 𝑢2) 𝛿(−2𝜀)(𝑢1) for the collinear pole in 𝜂2 in sector S1,
𝛿(−2𝜀)(𝑟) 𝛿(−2𝜀)(𝑢1 + 𝑢2) for the collinear pole in 𝜂1 in sector S5

and in 𝜂2 in sector S4,
𝛿(−2𝜀)(𝑟) 𝛿(−2𝜀)(𝑢1) for the soft pole in 𝜉2 in sectors S1, S2, S4 and S5.

𝛿(−2𝜀)(𝑟1 + 𝑢1) 𝛿(−2𝜀)(𝑟2) 𝛿(−2𝜀)(𝑢2) for the collinear pole in 𝜂1 in sector S6 ,
𝛿(−2𝜀)(𝑟2 + 𝑢2) 𝛿(−2𝜀)(𝑟1) 𝛿(−2𝜀)(𝑢1) for the collinear pole in 𝜂2 in sector S6,

𝛿(−2𝜀)(𝑟1) 𝛿(−2𝜀)(𝑟2) 𝛿(−2𝜀)(𝑢1) for the soft pole in 𝜉2 in sector S6.

(4.193)

These restrictions on 𝑢1 and 𝑢2 influence the scaling of the sector variables as has been anticipated
in section 4.5.1. To obtain the correct scaling in the ’t Hooft-Veltman regularization the 𝛿-functions
in Eq.(4.193) have to be taken into account. As an example, the collinear pole in 𝜂1 in sector S3 is
discussed. The scaling of 𝜉(−1−𝑏𝜀)

2 in CDR can be directly taken from Tab. 4.3 to be 𝑏CDR = 3. In
the ’t Hooft-Veltman scheme the 𝛿-function has to be taken into account additionally

𝛿(−2𝜀)(𝑢2) = 𝛿(−2𝜀)(𝜉1𝜉2𝜉2max𝐸max𝑢̂2) = (𝜉1𝜉2𝜉2max𝐸max)2𝜀𝛿(−2𝜀)(𝑢̂2) . (4.194)
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Hence, the correct scaling is 𝑏HV = 1, as given in Eq. (4.169).

4.7 Numerical test of the subtraction scheme in four dimensions
The correctness of the full four-dimensional formulation of the subtraction scheme, is verified for the
gluonic channel to the total cross section of 𝑡𝑡-production with up to two additional gluons in the
final state. This channel is chosen, since it has the most involved structure, if spin correlation in
collinear limits are concerned. Hence, the azimuthal averages, that have been discussed in section
4.4 are tested as well. For this test, the software, that has been used to obtain the results in [34],
has been modified. It will be shown that the modifications, that have been discussed in section 4.5.1
and section 4.6, lead to correct results independently of the regularization scheme that is used. The
test is performed for the single-unresolved and double-unresolved contributions only. Contributions
that include finite remainders of one- and two-loop amplitudes need not to be evaluated, since
they have been proven to be explicitly independent of the the regularization scheme, as has been
argued in section 4.5. The finite contribution of the subtracted double-real radiation cross section,
does not depend on the regularization scheme either, since it can readily evaluated in four dimensions.

The partonic cross section is rescaled, such that it is dimensionless and independent of the strong
coupling. It reads

𝜎̃(2) = 𝑚2
𝑡

𝛼4
𝑠

𝜎̂(2) , (4.195)

where 𝜎̂(2) is the total cross section at O(𝛼4
𝑠). The renormalization and factorization scales are fixed

𝜇𝑅 = 𝜇𝐹 = 𝑚𝑡 . (4.196)

All results were obtained for

𝛽 =
√︂

1 − 4𝑚2
𝑡

𝑠
= 0.5 . (4.197)

Tables 4.8 and 4.9 contain the separate contributions to the double-unresolved cross section. In
Tab. 4.8 the results have been obtained in the CDR scheme, the results in Tab. 4.9 are in the
HV scheme. The sum of the different contributions is given in the last row. The given errors are
due to the Monte Carlo integration. The integration error of the contributions 𝜎̃VV

DU and 𝜎̃C2
DU are

negligible, since a deterministic integration routine has been used. By applying the counterterms
discussed in section 4.5.1, the double-unresolved contribution should be finite, independently of the
the regularization scheme that is used. This is verified in the two tables. All poles cancel within one
standard deviation, except the leading pole in CDR, where a consistency with zero is below two
standard deviations. The integration has been performed with an optimization of the 𝜀0 contribution.
This is one reason for the lower quality of the leading pole. Additionally, the integrand of the leading
pole in CDR is equal to the integrand in HV. Hence, a cancellation in HV implies a cancellation
in CDR. Due to large cancellations between the different contributions, it was necessary to use a
large sample of integration points. For example, the precision of the double-real contributions has
been obtained by using nearly 1011 points. It has been observed that the convergence in the HV
regularization was noticeably better. The precision of the sum of finite parts is of the order of 1%,
while the agreement between the result in CDR and HV are at the 0.1% level.

All partial contributions presented in the tables contain only tree-level matrix elements. Their
precise definition has been discussed in section 4.5 for general partonic cross sections. In this
particular case they are:
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1/𝜀4 1/𝜀3 1/𝜀2 1/𝜀 𝜀0

𝜎̃VV
DU 0.0321959 0.135003 0.177418 0.04517 −0.1242

𝜎̃RV
DU −0.0724423(9) −0.456495(4) −1.196150(11) −1.81962(4) −2.8562(1)

𝜎̃RR
DU 0.0402448(2) 0.321486(1) 1.045064(6) 1.61821(4) 1.3065(3)

𝜎̃C1
DU −0.154649(4) −0.447655(20) 0.09385(8) 1.8313(2)

𝜎̃C2
DU 0.154650 0.421336 0.06247 −0.1878

𝜎̃CDR
DU −0.0000016(9) −0.000005(6) 0.000013(24) 0.00007(9) −0.0304(4)

Table 4.8: Double-unresolved (DU) contributions to the partonic cross section 𝑔𝑔 → 𝑡𝑡 + 𝑋, with 𝑋 consisting
of up to two gluons, evaluated in conventional dimensional regularization (CDR). The error estimates quoted in
parentheses are due to Monte Carlo integration. The definition of partial contributions is given in the text.

1/𝜀4 1/𝜀3 1/𝜀2 1/𝜀 𝜀0

𝜎̃VV
DU 0.0321959 0.086177 0.021985 −0.03200 0

𝜎̃RV
DU −0.0724415(9) −0.346630(3) −0.702124(8) −1.04640(3) −2.3910(1)

𝜎̃RR
DU 0.0402447(2) 0.260452(1) 0.706469(6) 1.06119(3) 1.8461(2)

𝜎̃C1
DU −0.154646(4) −0.283008(15) 0.08326(5) 0.5144(1)

𝜎̃C2
DU 0.154650 0.256668 −0.06603 0

𝜎̃HV
DU −0.0000009(9) 0.000003(6) −0.000010(17) 0.00002(6) −0.0304(2)

Table 4.9: Double-unresolved (DU) contributions to the partonic cross section 𝑔𝑔 → 𝑡𝑡 + 𝑋, with 𝑋 consisting
of up to two gluons, evaluated in ’t Hooft-Veltman regularization (HV). The error estimates quoted in parentheses
are due to Monte Carlo integration. The definition of partial contributions is given in the text.

𝜎̃VV
DU : Double-virtual contributions obtained by integrating the two-loop and one-loop squared

amplitudes for 𝑔𝑔 → 𝑡𝑡 without their finite remainders.
𝜎̃RV

DU : Real-virtual contributions obtained from the integrated subtraction terms of the one-loop
amplitude for 𝑔𝑔 → 𝑡𝑡+ 𝑔, without the contribution of the finite remainder of the one-loop
amplitude for 𝑔𝑔 → 𝑡𝑡.

𝜎̃RR
DU : Double-real contributions obtained from the double-unresolved integrated subtraction terms

of the Born amplitude for 𝑔𝑔 → 𝑡𝑡+ 𝑔𝑔, including corrections described in section 4.5.1, which
make the total double-unresolved contribution finite.

𝜎̃C1
DU : Factorization contributions obtained from the convolution of the leading order splitting function

with the cross section contribution of the integrated subtraction terms of the Born amplitude
for 𝑔𝑔 → 𝑡𝑡+ 𝑔.

𝜎̃C2
DU : Factorization contributions obtained from the convolution of the leading order splitting function

with the cross section contribution of the one-loop amplitude for 𝑔𝑔 → 𝑡𝑡 without its finite
remainder, and the convolution of the next-to-leading order splitting function as well as two
leading-order splitting functions with the Born cross section for 𝑔𝑔 → 𝑡𝑡.



4.7 Numerical test of the subtraction scheme in four dimensions 77

The cross sections in HV have been obtained with azimuthal averaged splitting functions as has been
outlined section 4.4. The CDR terms contain the splitting functions with full spin correlations.

1/𝜀2 1/𝜀 𝜀0

𝜎̃RR
SU 0.064772(4) 0.42742(3) 1.0623(3)

𝜎̃RV
SU −0.064780(6) −0.31419(4) −0.6044(2)

𝜎̃C1
SU −0.11329(3) −0.1999(1)

𝜎̃A
SU −0.00737(2)

𝜎̃CDR
SU −0.000008(8) −0.00006(6) 0.2506(3)

Table 4.10: Single-unresolved (SU) contributions to the partonic cross section 𝑔𝑔 → 𝑡𝑡 + 𝑋, with 𝑋 consisting
of up to two gluons, evaluated in conventional dimensional regularization (CDR). The error estimates quoted in
parentheses are due to Monte Carlo integration. The definition of partial contributions is given in the text.

1/𝜀2 1/𝜀 𝜀0

𝜎̃RR
SU 0.064780(5) 0.25429(3) 0.2584(2)

𝜎̃RV
SU −0.064770(7) −0.14096(2) 0

𝜎̃C1
SU −0.11329(2) 0

𝜎̃A
SU −0.00734(1)

𝜎̃HV
SU 0.000011(8) 0.00004(4) 0.2511(2)

Table 4.11: Single-unresolved (SU) contributions to the partonic cross section 𝑔𝑔 → 𝑡𝑡 + 𝑋, with 𝑋 consisting
of up to two gluons, evaluated in ’t Hooft-Veltman regularization (HV). The error estimates quoted in parentheses
are due to Monte Carlo integration. The definition of partial contributions is given in the text.

In Tabs. 4.10 and 4.11 the partial results for the single-unresolved contribution in the CDR and
HV scheme are displayed respectively. Equally to the double-unresolved case the cancellation of
poles is observed at the one sigma level. A slight deviation from zero for the leading pole in the HV
case beyond one sigma is encountered. The same comments as in the double-unresolved case can be
applied here. The agreement between the finite part of the single-unresolved contribution evaluated
in the CDR and the HV scheme is within the Monte-Carlo error.

The single contributions, that have been evaluated, read:

𝜎̃RR
SU : Double-real contributions obtained from the single-unresolved integrated subtraction terms

of the Born amplitude for 𝑔𝑔 → 𝑡𝑡 + 𝑔𝑔, including corrections described in section 4.5.1,
which make the total single-unresolved contribution finite. The splitting functions used in the
derivation of the integrated subtraction terms are given by the azimuthally averaged expression
Eqs. (B.21). The correct result is obtained after adding 𝜎̃A

SU.
𝜎̃RV

SU : Real-virtual contributions obtained by integrating the one-loop amplitude for 𝑔𝑔 → 𝑡𝑡 + 𝑔
together with its subtraction terms, after removal of all finite remainders.

𝜎̃C1
SU : Factorization contributions obtained from the convolution of the leading order splitting function

with the cross section contribution of the Born amplitude for 𝑔𝑔 → 𝑡𝑡+ 𝑔 together with its
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subtraction terms.
𝜎̃A

SU : Difference between the single-unresolved contributions obtained with spin-correlated and
azimuthally-averaged splitting functions in integrated subtraction terms as explained in
section 4.4.

The given numerical tests show explicitly that Stripper is independent of the regularization scheme.
On this basis, the fully general implementation of the scheme in HV regularization is explained in
the next chapter.



CHAPTER 5
Implementation of Stripper

After the subtraction scheme Stripper has been fully developed on a theoretical basis in the
previous chapter, its explicit implementation is presented in the present chapter. There are several
advantages of the four-dimensional formulation that have been taken into account. The most
important advantage is that the subtraction scheme is completely independent of the precise process
under consideration. Hence, Stripper provides a fully general framework to calculate next-to-
next-to-leading order corrections in perturbative QCD. The infrared pole structure, that has been
discussed in section 4.5, is completely independent of the precise form of the matrix elements. It
is only governed by the soft and splitting functions in subtraction terms of real contributions and
the infrared operator Z, which incorporates the infrared singular structure of the virtual contri-
butions. Additionally, the phase space decomposition into single-collinear, double-collinear and
triple-collinear sectors depends only on the number and flavor of external partons. Hence, the phase
space parameterization is uniquely defined for each sector, as outlined in section 4.2.
The subtraction scheme is implemented using the C++11 standard. The explicit implementation
follows the theoretical description in the previous chapter. Each contribution that is separately
integrable can be evaluated independently. For the evaluation of a specific process, matrix elements
are needed. However, the evaluation of matrix elements is separated from the subtraction scheme
itself. The connection between matrix elements and the subtraction framework is given through
interface classes, which can be adapted to available matrix element generators. Since tree-level
matrix elements for Standard Model processes are provided in really sophisticated software libraries,
a standard tree-level matrix element generator is already interfaced to the core implementation.
A standard library for one-loop finite remainders, is not yet included, even though several im-
plementations exist, as has been discussed in section 3.3.1. This is because the requirements on
the stability of the one-loop amplitude in the singular phase space regions are much higher in a
next-to-next-to-leading order computation in comparison to a next-to-leading order computation. It
is therefore useful to include one-loop finite remainders on a case by case basis.
The two-loop finite remainder and the one-loop finite remainder squared have to be considered
on a case by case basis as well, since only a few two-loop amplitudes have been calculated so
far (see section 3.3.2). It is again emphasized that these contributions are finite by themselves.
The implemented software is the first fully general event generator to provide fully differential
next-to-next-to-leading order predictions.
In the first part of this chapter the adaptation of the (physical) concepts behind Stripper to an
object-oriented implementation is discussed. Subsequently, specific features of the implementation
are presented that go beyond the detailed description of the subtraction scheme in the previous
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chapter. In section 5.2, color correlated and spin correlated tree-level matrix elements are discussed.
Explicit summations over spin states are replaced by Monte Carlo sums of randomly polarized
partons or a helicity sampling, in the case of the reference and the unresolved partons. Therefore,
subtraction terms for polarized matrix elements are derived and tested in section 5.3. Some special
functions that need to be provided and their implementation is discussed in section 5.4. The
effects of missed binning can be minimized. This will be explained in section 5.5. Finally, a first
application of the software is demonstrated in section 5.6: Partial results for differential distributions
in 𝑡𝑡-production at next-to-next-to-leading order in perturbative QCD are presented.

5.1 Overview
In this section, the general structure of the software is presented. The full subtraction scheme is
realized in a object-oriented implementation of a Monte Carlo event generator. The main idea is
that each (physical) concept that is needed in order evaluate the cross section for specific observables
is related to an object of specific properties. In the following, the different classes are presented. In
this section, words written in italic letters refer to classes of the C++ implementation or a specific
instance of the class. A rough overview of the class dependencies is depicted in Fig. 5.1.

Generator
The software provides a Monte-Carlo event generator for the hadronic cross section given in Eq.
(3.9). This is realized by the class Generator. The specific instance of Generator is defined by
an initial state, the list of renormalization and factorization scales 𝜇2

R and 𝜇2
F at which the cross

section should be evaluated and the measurement functions that specify infrared save observables.
Different contributions for the partonic subprocesses can be separately included into the generator.
All contributions that are separately integrable can be or have to be included separately. The full
list of possible contributions and the parameters to identify them are given in Tab. 5.1. The order
in 𝛼𝑠 is specified for each contribution. Then the number of final state unresolved partons has to be
identified 𝑛𝑢 ≤ 2. This number defines how the phase space is divided into sectors using selector
functions. In order to distinguish single-unresolved and double-unresolved cases, the number of
resolved partons 𝑛𝑟 out of the unresolved ones has to be provided. The number of loops 𝑛𝐿 specifies,
if the tree-level matrix elements, the one-loop finite remainder or the two-loop finite and the squared
one-loop finite remainder remainder have to be evaluated for the specific contribution. Finally, the
presence of convolutions for initial state collinear factorization contributions uniquely defines a single
cross section. For a full next-to-next-to-leading order computation, all contributions have to be
included into the generator.
Generator contains explicitly the implementation of all subtraction and integrated subtraction terms,
that are constructed as explained in section 4.3. Explicit formulas for the splitting and soft functions,
that appear in the collinear and soft limits of the matrix elements are implemented, see sections
3.4.1 and 4.4 and appendix B.2. Additionally, the splitting functions for the initial state collinear
factorization formulas in Eqs.(3.19) and (3.24) are implemented. Separate formulas for the five
triple-collinear sectors, the double-collinear sector and the single-unresolved sector are provided.
This is necessary in order to factorize the singular part of the collinear and soft limits from a regular
piece, which is finite as one or several of the sector variables {𝜉1,𝜉2,𝜂1,𝜂2} vanish. Furthermore, the
complete set of tree-level polarized subtraction terms is implemented. The infrared singular part of
virtual contributions is given by the color space operator Z as discussed in section 4.5. The explicit
formula, given in appendix B.1, is implemented up to second order in 𝛼𝑠.
All matrix elements, that appear in the different contributions in Tab. 5.1, are evaluated externally
and are called using the interface classes Born, OneLoop and TwoLoop.
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contribution finite order in 𝛼𝑠 𝑛𝑢 𝑛𝑟 𝑛𝐿 convolution
𝜎B √

LO 0 0 0
𝜎V

F
√

NLO 0 0 1
𝜎V

U NLO 0 0 0
𝜎R

F
√

NLO 1 1 0
𝜎R

U
√

NLO 1 0 0
𝜎C NLO 0 0 0

√

𝜎VV
F

√
NNLO 0 0 2

𝜎VV
FR NNLO 0 0 1
𝜎VV

DU NNLO 0 0 0
𝜎RV

F
√

NNLO 1 1 1
𝜎RV

FR
√

NNLO 1 0 1
𝜎RV

SU NNLO 1 1 0
𝜎RV

DU
√

NNLO 1 0 0
𝜎RR

F
√

NNLO 2 2 0
𝜎RR

SU
√

NNLO 2 1 0
𝜎RR

DU
√

NNLO 2 0 0
𝜎C1

SU NNLO 1 1 0
√

𝜎C1
DU

√
NNLO 1 0 0

√

𝜎C2
FR NNLO 0 0 1

√

𝜎C2
DU NNLO 0 0 0

√

Table 5.1: List of contributions of a next-to-next-to-leading order cross section that can be included separately
into the Monte Carlo integrator of Stripper. The second column tells, whether the contribution contains a finite
contribution. The third column notifies to which order in perturbation theory the contribution belongs. The
number of unresolved partons 𝑛𝑢 is given in column four, while 𝑛𝑟 specifies the number of resolved partons out of
the unresolved ones. This is necessary in order to distinguish single- and double-unresolved contributions. 𝑛𝐿 is
the number of loops of the finite remainder in the contribution. To identify the contribution unambiguously, the
final column designates, whether a convolution with initial state splitting functions needs to be evaluated.

The Monte Carlo integration is controlled by the instance of Generator itself. An one-dimensional
version of Parni [214, 215] provides an implementation of importance sampling in order to generate
probability density grids for the generation of random points. It is possible to separate the Monte
Carlo integration into an optimization phase, in which grids are generated, and an integration phase,
in which the actual integration is performed and the previously generated grids are used. A Monte
Carlo sum is performed over all possible sectors that are defined in the class Selector. The choice of
a specific sector for a single event defines unambiguously the kinematics of all external particles and
the phase space measure. The kinematics and the phase space measures are implemented in the
class PhaseSpace. In particular, the kinematics of the reference and unresolved partons are fixed as
explained in section 4.2.
The summation over polarization of all particles, except the reference and the unresolved particles
can be performed using random polarization for tree-level matrix elements. The summation over
polarization states of the unresolved and the reference parton can be performed by a helicity Monte



82 5 Implementation of Stripper

Carlo. Both concepts will be explained in detail in section 5.3.

Scales
In order to provide the theoretical error estimate, the calculation has to be performed at different
renormalization and factorization scales 𝜇2

R and 𝜇2
F. The class Scales provides the possibility to

evaluate the cross section for different scale choices, where the scales can be either fixed or depend
on the phase space point. A computation for different scales can be performed simultaneously.

InitialState
An initial state is an instance of the class InitialState and is defined by the initial state particles.
Since Stripper is equally well defined for decays, the number of initial state particles is either two or
one. If the number of initial state particles is two, the center-of-mass energy

√
𝑠 has to be provided.

A convolution with PDFs is necessary if one or two of the initial state particles are hadrons, where
for now only protons and anti-protons are relevant. The list of PDFs that are considered during an
evaluation can be specified. In this form, it is possible to evaluate the cross section for different PDF
sets simultaneously. Different PDF sets are interfaced through the newest version of the LHAPDF
interpolator, that allows to use all relevant PDF sets, e.g [10–13].

Particle
A particle is an instance of the class Particle. A particle is identified by a name. The nomenclature
is the same as in MadGraph [14]. The class provides default values for the mass, width, number of
helicity states and the anti-particle for all Standard Model particles as well as the proton and the
anti-proton. All quarks are massless, except the top quark. A function to include new particles is
provided. The properties of a particle can in general be changed, although the masses and widths
of the gluon, the photon and the proton are fixed. The class provides special functions to identify
partons, since they play a special role in Stripper.

Measurement
The measurement function given in Eq. (3.11) is implemented into a class Measurement. The
measurement function controls the output of the calculation, which means each simulated event.
It is defined by cuts and a jet-algorithm. By default, no cuts and jet algorithm is applied. The
instance of Measurement manages the accumulation of generated weights into histogram bins for
different observables of the class Observable. Error estimates are provided for each bin. Starting at
next-to-leading order a meaningful error estimate for a bin is only obtained, if a weight of an event
and the appropriate subtraction term weight are first summed and subsequently squared. Multiple
kinematic observables can be included into a measurement.

Cuts
A instance of the class Cuts decides if a kinematic configuration of the final state is accepted or
not in order to preserve infrared safety. The decision is made on the basis of the particle clusters
constructed by the jet-algorithm.

JetAlgorithm
The class JetAlgorithm provides, currently, two different implementations of jet algorithms presented
in [216]. The instance of a jet algorithm defines clusters of final state particles on basis of their
momenta and the parameters that define the jet.
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Cluster
A cluster, as an instance of Cluster, has two attributes. The list of particles in the cluster an its
total momentum. A cluster is either a single particle or a jet.

Observable
The class Observable provides an interface for kinematic observables in order to compute differential
cross sections. The list of observables should be included into the measurement function, as described
before. The following observables are already defined. The InvariantMass can be specified by the
list of clusters for which the invariant mass should be defined. The Rapidity for the set of clusters
and the TransverseMomentum for a set of particle clusters.

Histogram
An object of the class Histogram is defined by the number of bins and a vector that defines the left
and right bound of each bin. The number and size of histogram bins can be specified individually,
where one as well as two dimensional histograms are possible. A smearing parameter can be specified
in order to reduce the effects of missed binning. This will be explained in detail in section 5.5. The
set up allows to evaluate different differential cross sections in one run. The measurement class
manages the accumulation of the weights and errors to each bin.

Process
The Process class implements a general process which is defined by the initial and final state particles.

Selector
The number of unresolved partons and the partonic process defines a instance of the Selector class.
This is the explicit realization of selector functions that were discussed in section 4.1. Based on
the specific process it determines the number of independent single-collinear, double-collinear and
triple-collinear sectors, where each triple-collinear sector is divided in five subsectors S1 to S5 as
explained in section 4.2. A Monte-Carlo sum over all sectors is realized in the class Generator.

PhaseSpace
The parameterizations of the phase space are implemented in a class PhaseSpace. It is sufficient
to provide the partonic center-of-mass energy and a current sector of the Selector instance. This
defines the unresolved and the reference particle, which are parameterized according to section 4.2.
The momenta of the remaining partons in d𝛷𝑛−𝑛𝑓𝑟

(𝑄), see Eq. (4.12), are evaluated independently
in the center-of-mass frame of 𝑄 and then boosted back to the partonic center-of-mass frame. The
class provides methods to adapt the kinematics as one or more sector variables go to zero, which
are {𝜉1,𝜉2,𝜂1,𝜂2} in the double- and triple-collinear sectors or {𝜉,𝜂} in the single-collinear sector.
This is necessary in order to obtain the correct kinematics in subtraction terms. Resolved particles
are always four-dimensional by applying 𝛿-functions as explained in section 4.6. The class provides
also the weight of the measure of the phase space, including the explicit weight due to the selector
function.

Born
This interface class provides all tree-level matrix elements that are needed in Stripper. The full
list reads

⟨M(0)
𝑛 |M(0)

𝑛 ⟩ , ⟨M(0)
𝑛 |T𝑖 · T𝑗 |M(0)

𝑛 ⟩ , ⟨M(0)
𝑛 |𝜆𝑖⟩⟨𝜆′

𝑖|M(0)
𝑛 ⟩ ,

⟨M(0)
𝑛 |
{︀

T𝑖 · T𝑗 ,T𝑘 · T𝑙

}︀
|M(0)

𝑛 ⟩ , ⟨M(0)
𝑛 |𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |M(0)

𝑛 ⟩ , ⟨M(0)
𝑛 |T𝑖 · T𝑗 |𝜆𝑘⟩⟨𝜆′

𝑘|M(0)
𝑛 ⟩ ,
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⟨M(0)
𝑛 |𝜆𝑖𝜆𝑗⟩⟨𝜆′

𝑖𝜆
′
𝑗 |M(0)

𝑛 ⟩ , ⟨M(0)
𝑛+1|M(0)

𝑛+1⟩ , ⟨M(0)
𝑛+1|T𝑖 · T𝑗 |M(0)

𝑛+1⟩ ,

⟨M(0)
𝑛+1|𝜆𝑖⟩⟨𝜆′

𝑖|M
(0)
𝑛+1⟩ , ⟨M(0)

𝑛+2|M(0)
𝑛+2⟩ ,

where in principle different matrix element libraries can be interfaced. By default the matrix elements
are provided by [214, 215] and most of the Standard Model matrix elements can be evaluated. The
implementation of color correlators is outlined in section 5.2.1. The class provides matrix elements
for specific helicities or spin summed amplitudes. Additionally, randomly polarized external states
are supported. In order to implement spin correlations and polarized subtraction terms access to
the polarization vectors of gluons is provided. Spin correlations, denoted by |𝜆𝑖⟩⟨𝜆′

𝑖|, are explained
in section 5.2.2.

OneLoop
This interface class provides the necessary one-loop amplitudes at a specific renormalization scale
𝜇2

R, which read

2Re⟨M(0)
𝑛 |F(1)

𝑛 ⟩ , 2Re⟨M(0)
𝑛 |T𝑖 · T𝑗 |F(1)

𝑛 ⟩ , 2Re⟨M(0)
𝑛 |𝜆𝑖⟩⟨𝜆′

𝑖|F(1)
𝑛 ⟩ , 2Re⟨M(0)

𝑛+1|F(1)
𝑛+1⟩ .

The one-loop four point functions including spin and color correlations for 𝑡𝑡 are already provided.
The one-loop five-point functions for 𝑡𝑡-production at next-to-next-to-leading order are already
provided using the software of [217, 218] that has been used for 𝑡𝑡 production plus an additional jet
at next-to-leading order.

TwoLoop
This interface class provides the two-loop contribution for a specific renormalization scale 𝜇2

R, which
read

2Re⟨M(0)
𝑛 |F(2)

𝑛 ⟩ + ⟨F(1)
𝑛 |F(1)

𝑛 ⟩ .

The first two-loop contributions that will be provided are the ones for 𝑡𝑡-production, that have been
used to calculate the total cross section at next-to-next-to-leading order [34].
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Figure 5.1: Diagrammatic representation of the class dependencies. Each concept in Stripper is implemented
in a C++-class. A short description of the classes is given in the main text.

5.2 Tree-level matrix elements
Tree-level matrix elements are evaluated using the Fortran software library [214, 215]. The library
provides amplitude in the color-flow basis (see Appendix A.1) for a specific helicity configuration of
external particles

⟨𝜆1 . . . 𝜆𝑛|M(0)
𝑛 ⟩ =

∑︁
𝐼=𝑃 (2,...𝑛)

𝛿𝑖1𝑗𝜎𝐼 (1)
𝛿𝑖2𝑗𝜎𝐼 (2)

. . . 𝛿𝑖𝑛𝑗𝜎𝐼 (𝑛)
M

(0)
𝐼 (𝜆1 . . . 𝜆𝑛) . (5.1)

5.2.1 Color correlations
Since |M(0)

𝑛 ⟩ is a vector in color and spin space, the left hand side of Eq. (5.1) is still a vector in
color space, where 𝑛 is the number of external partons. The squared matrix element summed over
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helicities and colors of external particles reads

|M|2 =
∑︁
𝜆1...𝜆𝑛

⟨M(0)
𝑛 |𝜆1 . . . 𝜆𝑛⟩⟨𝜆1 . . . 𝜆𝑛|M(0)

𝑛 ⟩

=
∑︁
𝜆1...𝜆𝑛

∑︁
𝐼,𝐽

M
(0),†
𝐼 (𝜆1 . . . 𝜆𝑛)M(0)

𝐽 (𝜆1 . . . 𝜆𝑛) ×

× 𝛿
𝑘𝜎𝐼 (1)
𝑘1

. . . 𝛿
𝑘𝜎𝐼 (𝑛)
𝑘𝑛

[︂
O
𝑘1...𝑘𝑛;𝑗̄𝜎𝐽 (1)...𝑗̄𝜎𝐽 (𝑛)

𝑘𝜎𝐼 (1)...𝑘𝜎𝐼 (𝑛);𝑗1...𝑗𝑛

]︂
𝛿𝑗1
𝑗̄𝜎𝐽 (1)

. . . 𝛿𝑗𝑛
𝑗̄𝜎𝐽 (𝑛)

,

(5.2)

where a summation over equal indices is understood. Each operator in color space O in the color
flow representation can be written in terms of Kronecker deltas connecting open color indices of
the amplitude with open color indices of the complex conjugate amplitude. If there are no color
correlations the operator connects each quark color index with the corresponding antiquark color
index of the complex conjugate amplitude 1, which effectively just sums then number of colors of
external particles. Explicitly the operator reads

O ≡ 1 = 𝛿𝑘1
𝑗1
𝛿
𝑗̄𝜎𝐽 (1)

𝑘𝜎𝐼 (1)
. . . 𝛿𝑘𝑛

𝑗𝑛
𝛿
𝑗̄𝜎𝐽 (𝑛)

𝑘𝜎𝐼 (𝑛)
= 𝛿1

1𝛿
𝜎1
𝜎1 . . . 𝛿

𝑛
𝑛𝛿

𝜎𝑛
𝜎𝑛
, (5.3)

where on the right hand side, a short hand notation for the indices has been introduced

𝑘𝑖 → 𝑖 , 𝑗𝑖 → 𝑖 , 𝑘𝜎𝐼(𝑖) → 𝜎𝑖 , 𝑗̄𝜎𝐽 (𝑖) → 𝜎𝑖 .

In this form a distinction between upper and lower indices as they appear in Eq. (5.2) is necessary
in order to identify contractions with the amplitude or its complex conjugate.
Color correlations can be implemented on the same footing by writing the color charge operator of
parton 𝑖, T𝑖, in the color flow representation

T𝑖;q = (𝑡𝑎)𝑖𝑖 𝛿𝜎𝑖
𝜎𝑖
,

T𝑖;q̄ = (−𝑡𝑎)𝜎𝑖
𝜎𝑖
𝛿𝑖𝑖 ,

T𝑖;g = (𝑡𝑎)𝑖𝑖 𝛿𝜎𝑖
𝜎𝑖

− (𝑡𝑎)𝜎𝑖
𝜎𝑖
𝛿𝑖𝑖 .

(5.4)

It should be emphasized, that in the context of color flows, the indices i,j,... always belong to a
quark-anti-quark pair. In contrast to the previous chapter, where each parton is labeled by its
own index. The objects that actual appear in the color correlated matrix elements T𝑖 · T𝑗 can be
determined by using the identity

(𝑡𝑎)𝑖𝑗(𝑡𝑎)𝑘𝑙 = 1
2

(︂
𝛿𝑖𝑙 𝛿

𝑘
𝑗 − 1

𝑁𝑐
𝛿𝑖𝑗 𝛿

𝑘
𝑙

)︂
. (5.5)

The correlation operators for 𝑖 = 𝑗 read

T𝑖;q · T𝑖;q = T𝑖;q̄ · T𝑖;q̄ = 𝐶𝐹 1 ,
T𝑖;g · T𝑖;g = 𝐶𝐴 1 ,

T𝑖;q · T𝑖;q̄ = −1
2

(︂
𝛿𝑖𝜎𝑖

𝛿𝜎𝑖
𝑖 − 1

𝑁𝑐
𝛿𝑖𝑖 𝛿

𝜎𝑖
𝜎𝑖

)︂
,

(5.6)

1 The gluon has a quark and antiquark index. See: A.1
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whereas for different indices 𝑖 ̸= 𝑗 they read

T𝑖;g · T𝑗;g = 1
2

(︁
−𝛿𝑖𝜎𝑗

𝛿𝑗𝑗 𝛿
𝜎𝑖
𝜎𝑖
𝛿
𝜎𝑗

𝑖 − 𝛿𝑖𝑖 𝛿
𝑗
𝜎𝑖
𝛿𝜎𝑖
𝑗 𝛿

𝜎𝑗
𝜎𝑗 + 𝛿𝑖𝑖 𝛿

𝑗
𝑗 𝛿

𝜎𝑖
𝜎𝑗
𝛿
𝜎𝑗
𝜎𝑖 + 𝛿𝑖𝑗 𝛿

𝑗
𝑖 𝛿

𝜎𝑖
𝜎𝑖
𝛿
𝜎𝑗
𝜎𝑗

)︁
,

T𝑖;g · T𝑗;q = 1
2

(︁
−𝛿𝑖𝑖 𝛿𝑗𝜎𝑖

𝛿𝜎𝑖
𝑗 𝛿

𝜎𝑗
𝜎𝑗 + 𝛿𝑖𝑗 𝛿

𝑗
𝑖 𝛿

𝜎𝑖
𝜎𝑖
𝛿
𝜎𝑗
𝜎𝑗

)︁
,

T𝑖;g · T𝑗;q̄ = 1
2

(︁
−𝛿𝑖𝜎𝑗

𝛿𝑗𝑗 𝛿
𝜎𝑖
𝜎𝑖
𝛿
𝜎𝑗

𝑖 + 𝛿𝑖𝑖 𝛿
𝑗
𝑗 𝛿

𝜎𝑖
𝜎𝑗
𝛿
𝜎𝑗
𝜎𝑖

)︁
,

T𝑖;q · T𝑗;q = 1
2

(︂
𝛿𝑖𝑗 𝛿

𝑗
𝑖 − 1

𝑁𝑐
𝛿𝑖𝑖 𝛿

𝑗
𝑗

)︂
𝛿𝜎𝑖
𝜎𝑖
𝛿
𝜎𝑗
𝜎𝑗 ,

T𝑖;q̄ · T𝑗;q̄ = 1
2𝛿

𝑖
𝑖 𝛿
𝑗
𝑗

(︂
𝛿𝜎𝑖
𝜎𝑗
𝛿
𝜎𝑗

𝑗 − 1
𝑁𝑐
𝛿𝜎𝑖
𝜎𝑖
𝛿
𝜎𝑗
𝜎𝑗

)︂
,

T𝑖;q · T𝑗;q̄ = 1
2

(︂
−𝛿𝑖𝜎𝑗

𝛿𝑗𝑗𝛿
𝜎𝑖
𝜎𝑖
𝛿
𝜎𝑗

𝑖 + 1
𝑁𝑐
𝛿𝑖𝑖 𝛿

𝑗
𝑗𝛿
𝜎𝑖
𝜎𝑖
𝛿
𝜎𝑗
𝜎𝑗

)︂
,

where an operator 1 for the remaining uncorrelated color flows is always understood.
In Stripper two functions are implemented that calculate the double and quadruple correlation
operators. They are subsequently contracted with the matrix elements in the color flow basis.
The remaining triple color correlator

⟨M(0)
𝑛 |𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |M(0)

𝑛 ⟩ , (5.7)

can be obtained using the quadruple correlator and the identity

𝑖𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇
𝑏
𝑗 𝑇

𝑐
𝑘 = [T𝑖 · T𝑗 ,T𝑖 · T𝑘,] . (5.8)

It is important to notice that the triple color correlator always vanishes, if matrix elements are
summed over color and spin and do not contain any complex parameters. This has been shown in
[219] using the following argument. The matrix element can be expanded in an arbitrary color basis

|M(0)⟩ =
∑︁
𝛼

|M(0)
𝛼 ⟩ × |𝑐𝛼⟩ , (5.9)

where the basis vectors |𝑐𝛼⟩ are made of the generators in the fundamental representation of SU(3) 𝑡𝑐𝑎𝑏
or the adjoint representation 𝑖𝑓𝑎𝑏𝑐. The argument holds equally for any kind of basis representation.
The triple color correlator is evaluated as follows

⟨M(0)
𝑛 |𝑖𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |M(0)

𝑛 ⟩ =
∑︁
𝛼𝛽

⟨M(0)
𝛼 |M(0)

𝛽 ⟩⟨𝑐𝛼|𝑖𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |𝑐𝛽⟩ . (5.10)

The color charge operators are hermitian and commute with each other, as all parton indices 𝑖,𝑗,𝑘
are different. Therefore, the color contribution is

⟨𝑐𝛼|𝑖𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |𝑐𝛽⟩ = −⟨𝑐𝛽|𝑖𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |𝑐𝛼⟩ , (5.11)
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as the contribution is always real. Hence, the color contribution is antisymmetric under the exchange
of 𝛼 and 𝛽. The whole correlator 5.10 is thus

⟨M(0)
𝑛 |𝑖𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |M(0)

𝑛 ⟩ = 1
2
∑︁
𝛼𝛽

(︁
⟨M(0)

𝛼 |M(0)
𝛽 ⟩ − ⟨M(0)

𝛽 |M(0)
𝛼 ⟩
)︁

⟨𝑐𝛼|𝑖𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |𝑐𝛽⟩ . (5.12)

If ⟨M(0)
𝛼 |M(0)

𝛽 ⟩ is real, the correlator vanishes. This is the case, if the amplitude is summed over
polarizations of the external particles and if there are no other complex parameters, e.g. masses or
coupling constants, in the matrix element.
For a squared amplitude of a given polarization the correlator does not vanish in general, because

⟨M(0)
𝛼 |𝜆1 . . . 𝜆𝑛⟩⟨𝜆1 . . . 𝜆𝑛|M(0)

𝛽 ⟩* ̸= ⟨M(0)
𝛽 |𝜆1 . . . 𝜆𝑛⟩⟨𝜆1 . . . 𝜆𝑛|M(0)

𝛼 ⟩ . (5.13)

5.2.2 Spin correlations
Collinear limits of matrix elements are described by splitting functions 𝑃 (0) 𝑠𝑠′

𝑞𝑔 , if the splitting
particle is a quark and 𝑃 (0), 𝜇𝜈 , if the splitting particle is a gluon. In the latter case, the collinear
subtraction term contains single spin correlated matrix elements indicated by

|𝜆𝑖⟩⟨𝜆′
𝑖| , (5.14)

or double spin correlations indicated by

|𝜆𝑖𝜆𝑗⟩⟨𝜆′
𝑖𝜆

′
𝑗 | , (5.15)

where in the first case the polarization of gluon 𝑖 is fixed to be 𝜆′
𝑖 in the matrix element and 𝜆𝑖 in the

complex conjugated matrix element. Correspondingly, in the second case two polarizations of two
gluons are fixed in the matrix element and its complex conjugated counterpart. A spin correlated
matrix element can then be calculated using the identity

⟨M𝑛|𝑘𝜇𝑖

⊥ 𝑘
𝜈𝑖
⊥ |M𝑛⟩ =

∑︁
𝜆𝑖𝜆′

𝑖

𝜀*(𝑝𝑖,𝜆′
𝑖) · 𝑘⊥𝜀(𝑝𝑖,𝜆𝑖) · 𝑘⊥⟨M(0)

𝑛 |𝜆𝑖⟩⟨𝜆′
𝑖|M(0)

𝑛 ⟩ , (5.16)

where 𝜀(𝑝𝑖,𝜆′
𝑖) is the polarization vector of gluon with momentum 𝑝𝑖. Another possibility is to

replace the polarization vector of the gluon in the matrix element, directly by the transverse vector
𝑘⊥, if this is possible.

5.3 Random polarization and polarized subtraction terms
The complexity of higher order calculation has two origins. On the one hand there is the conceptual
complexity to find appropriate methods and techniques to calculate next-to-next-to-leading order
corrections to a given process. This has been discussed at length in the preceding chapters of this
work.
On the other hand, calculations become challenging from a computational point of view. In practical
scattering problems, unpolarized results are needed and therefore a summation/average over external
polarization states has to be performed during the calculation. The number of summations that
have to be performed is in principle 2𝑛23𝑛3 , where 𝑛2 is the number of external particles with two
polarization states and 𝑛3 the number of external particles with three polarization states. From this
perspective the computationally complexity increases rapidly as the number of external particles
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rises. For a next-to-leading order calculation the real radiation contribution 𝜎̂𝑅𝐹 with one additional
parton in the final state is therefore the bottleneck. At next-to-next-to-leading order the double-real
radiation contribution 𝜎̂𝑅𝑅𝐹 is the most complex one in this sense, since it contains two additional
partons in the final state.
A replacement of the deterministic summation over helicity states by Monte Carlo methods will
speed up the calculation basically up to a factor of 2𝑛23𝑛3 . There are two general methods, how
replace the summation by a Monte Carlo sampling. Here, only particles with two polarization states
are discussed, namely massless gauge bosons and fermions. The first method is to sample over
discrete helicity configurations of the external partons. This has however the disadvantage that
different polarization contributions can differ by orders of magnitude. If a uniform distribution for
the sampling is used, a large number of points have to be evaluated to get a reliable error estimate
of the final result.
The second method is to replace the helicity summation by an integral that can be evaluated using
Monte Carlo integration. A naive way is to write

ˆ
d𝛷𝑛⟨M(0)

𝑛 |M(0)
𝑛 ⟩ =

ˆ
[0,1]

d𝑛+2𝑙

ˆ
d𝛷𝑛⟨M(0)

𝑛 |𝜆1(𝑙1) . . .⟩⟨𝜆1(𝑙1) . . . |M(0)
𝑛 ⟩ , (5.17)

where

𝜆𝑖(𝑙𝑖) =
{︃

+1 for 0 ≤ 𝑙 < 1
2

−1 for 1
2 ≤ 𝑙 < 1

. (5.18)

However, this is essentially the helicity sampling method explained above, since the strength of
the discontinuity at 𝑙𝑖 = 1

2 reflects the difference between the different helicity configurations. It is
possible to bypass this problem using random polarizations [220]. The summation over gluon (or
photon) polarization states is replaced by

∑︁
𝜆=±

𝜀𝜆*
𝜇 𝜀

𝜆
𝜈 = 1

2𝜋

2𝜋ˆ

0

d𝜑 𝜀*
𝜇(𝜑)𝜀𝜈(𝜑) , (5.19)

where the randomly polarized vectors are

𝜀𝜇(𝜑) = 𝑒𝑖𝜑𝜀+
𝜇 + 𝑒−𝑖𝜑𝜀−

𝜇 . (5.20)

The method can be straightforwardly extended to fermions using the replacements

𝑢(𝜑) = 𝑒−𝑖𝜑𝑢+ + 𝑒𝑖𝜑𝑢− , 𝑢̄(𝜑) = 𝑒𝑖𝜑𝑢̄+ + 𝑒−𝑖𝜑𝑢̄− ,

𝑣(𝜑) = 𝑒−𝑖𝜑𝑣+ + 𝑒𝑖𝜑𝑣− , 𝑣(𝜑) = 𝑒𝑖𝜑𝑣+ + 𝑒−𝑖𝜑𝑣− .
(5.21)

The spin summation becomes

∑︁
𝜆=±

𝑢𝜆𝑢̄𝜆 = 1
2𝜋

2𝜋ˆ

0

d𝜑𝑢(𝜑)𝑢̄(𝜑) ,
∑︁
𝜆=±

𝑣𝜆𝑣𝜆 = 1
2𝜋

2𝜋ˆ

0

d𝜑 𝑣(𝜑)𝑣(𝜑) . (5.22)

The phase space integral and the polarization integral is now performed over a continuous integrand,
contributions for different polarization angles {𝜑𝑖} will be of similar size and no spoiling of the
Monte Carlo convergence is expected.
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The random polarization method can be readily used for evaluation of contributions that are finite
without subtraction terms. Contributions that do need subtraction are not finite anymore, since
the subtraction terms are summed over polarizations configurations, as discussed in section 3.4.1.
The locality of the subtraction terms will be lost. At next-to-leading order this problem has been
solved by introducing randomly polarized subtraction terms for the real radiation contribution in
the Catani-Seymour dipole subtraction formalism [221].
Another approach is to use a hybrid scheme of helicity sampling and random polarization [222]. In
this context, subtraction terms for matrix elements of fixed polarization have been derived for the
real radiation contribution at next-to-leading order in the dipole formalism. The splitting and soft
partons have therefore fixed helicity states, while all other particles in the process are randomly
polarized.
For the implementation of Stripper one of the above methods had to be chosen and extended to
next-to-next-to-leading order subtractions. As it is not clear how to extend the former method to
obtain randomly polarized subtraction terms as two particles become unresolved, the latter method
has been chosen.
In the parameterization of Stripper it means that the reference partons 𝑟 or 𝑟1 and 𝑟2 and the
unresolved partons 𝑢 or 𝑢1 and 𝑢2 have definite helicities and a sample over different helicity
configurations is performed. The remaining particles in the process are randomly polarized. In
the next sections, we explain how polarized subtraction terms are obtained as one or two particles
become unresolved.

5.3.1 Soft polarized limits
A matrix element for a given polarization 𝜆 of one soft gluon with momentum 𝑞 → 0 factorizes into
a reduced matrix element and the eikonal current [138]

⟨𝑐;𝜆|M𝑔,𝑎1,...,𝑎𝑛⟩ = 𝑔𝑠 𝜀𝜇(𝑞,𝜆)𝐽𝑐,𝜇(𝑞)|M𝑎1,...,𝑎2⟩, (5.23)

where the eikonal current is given by

J𝜇 =
𝑛∑︁
𝑖=1

T𝑖
𝑝𝜇𝑖
𝑝𝑖 · 𝑞

. (5.24)

It is important to notice that this factorization formula is independent of the polarizations of the
remaining hard partons. It can be easily shown that no modifications of the spin summed subtraction
term is necessary [222]. The squared matrix element contains the factor

J𝑐,𝜇 †J𝑐,𝜈𝜀𝜇(𝑞,𝜆)𝜀*
𝜈(𝑞,𝜆) = J𝑐,𝜇 †J𝑐,𝜈𝜀𝜇(𝑞,− 𝜆)𝜀*

𝜈(𝑞,− 𝜆) = 1
2J𝑐,𝜇 †J𝑐𝜇 . (5.25)

The equality is obtained by using the relation between positive and negative helicity polarization
vectors

𝜀*
𝜇(𝑝,𝜆) = 𝑒𝑖𝜓𝜀𝜇(𝑝,− 𝜆) , (5.26)

where 𝜓 is an arbitrary phase, and the hermiticity of the eikonal current has been used. Equation
(5.25) proves that the polarized single soft subtraction term is just half the subtraction term of the
related spin summed limit.
At next-to-next-to-leading order we consider the limit of two soft particles with momentum 𝑞1 → 0
and momentum 𝑞2 → 0. We consider the limit of a soft quark anti-quark pair with given helicity 𝜆1
and 𝜆2. The soft singularity is only present, if the quark pair is produced by a single gluon. In this



5.3 Random polarization and polarized subtraction terms 91

way a soft current can be derived by using the soft gluon insertion rules as in the single soft case
[138]. The soft limit can be written as

⟨𝜆1𝜆2|M𝑞,𝑞,𝑎1,...,𝑎𝑛⟩ ≃ (4𝜋𝛼𝑠)
𝑡𝑐𝑐1𝑐2√
2⟨𝑞1𝑞2⟩

𝜀𝜇(𝑞1,𝑞2;𝜆1,𝜆2) J𝑐,𝜇(𝑞1 + 𝑞2)|M𝑎1,...,𝑎𝑛⟩ , (5.27)

where the polarization vector 𝜀𝜇(𝑞1 + 𝑞2;𝜆1,𝜆2) in terms of the polarizations of the quark and
anti-quark can be explicitly calculated using Feynman rules in the Spinor-Helicity formalism (see
appendix A.3)

𝜀𝜇(𝑞1,𝑞2; +1,− 1) = [𝑞1|𝛾𝜇|𝑞2⟩√
2[𝑞2𝑞1]

,

𝜀𝜇(𝑞1,𝑞2; −1,+ 1) = ⟨𝑞1|𝛾𝜇|𝑞2]√
2[𝑞2𝑞1]

.

(5.28)

By helicity conservation, the two quarks have opposite helicity. As in the case of a single soft gluon
there exist a simple relation between the polarization vector and its complex conjugate

𝜀*
𝜇(𝑞1,𝑞2; +1,− 1) = 𝑒𝑖𝜓𝜀𝜇(𝑞1,𝑞2; −1,+ 1) . (5.29)

We square the limit of the amplitude and sum colors of the outgoing quark and anti-quark pair 𝑐1
and 𝑐2. Using the hermiticity of the soft current we obtain the factorization formula

⟨M𝑞,𝑞,𝑎1,...,𝑎𝑛(𝑞1,𝑞2, . . .)|𝜆1𝜆2⟩⟨𝜆1𝜆2|M𝑞,𝑞,𝑎1,...,𝑎𝑛(𝑞1,𝑞2, . . .)⟩ ≃
1
2 (4𝜋𝛼𝑠)2 𝑇𝐹

∑︁
𝑖𝑗

I𝑖𝑗(𝑞1,𝑞2) ⟨M(0)
𝑎1,...(𝑝1, . . .)|T𝑖 · T𝑗 |M(0)

𝑎1,...(𝑝1, . . .)⟩ , (5.30)

if 𝜆1 = +1 and 𝜆2 = −1 or 𝜆1 = −1 and 𝜆2 = +1. The right hand side is just half the soft limit of
the matrix elements summed over helicities of the quark anti-quark pair. Again we remark that the
soft limit is independent of the polarization of the remaining hard partons.
The soft limit of two gluons is described by the two-gluon eikonal current

⟨𝜆1𝜆2|M𝑔,𝑔,𝑎1,...,𝑎𝑛(𝑞1,𝑞2,𝑝1, . . .)⟩ ≃ (4𝜋𝛼𝑠) 𝜀𝜇*(𝑞1,𝜆1)𝜀𝜈*(𝑞2,𝜆2) J𝑐1,𝑐2
𝜇𝜈 (𝑞1,𝑞2)|M(𝑝1, . . .)⟩ , (5.31)

where 𝑞𝑖 → 0 are the momenta of the soft gluons and 𝜀𝜇(𝑞𝑖,𝜆𝑖) their polarization vectors, with
𝑖 = 1,2. The explicit form of the two-gluon current can be derived by taking into account all singular
insertions of two soft gluons [20, 138]

J𝑐1𝑐2(𝑞1,𝑞2,𝜆1,𝜆2) ≡ 𝜀𝜇*
1 𝜀𝜈*

2 J𝑐1𝑐2
𝜇𝜈 (𝑞1,𝑞2) =

1
2
∑︁
𝑖,𝑗

{T𝑐1
𝑖 ,T

𝑐2
𝑗 }𝐽1,𝑖𝑗(𝑞1,𝑞2;𝜆1,𝜆2) + 𝑖𝑓 𝑐1𝑐2𝑐3

∑︁
𝑖

T𝑐3
𝑖 𝐽2,𝑖(𝑞1,𝑞2,𝜆1,𝜆2) , (5.32)

where the abbreviations 𝜀𝜇𝑖 ≡ 𝜀𝜇(𝑞𝑖,𝜆𝑖), were introduced. The two auxiliary soft functions are given
by

𝐽1,𝑖𝑗(𝑞1,𝑞2;𝜆1,𝜆2) = 𝑝𝑖 · 𝜀*
1 𝑝𝑗 · 𝜀*

2
𝑝𝑖 · 𝑞1 𝑝𝑗 · 𝑞2

, (5.33)
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and

𝐽2,𝑖(𝑞1,𝑞2;𝜆1,𝜆2) = 𝑝𝑖 · 𝜀*
1 𝑞1 · 𝜀*

2 − 𝑝𝑖 · 𝜀*
2 𝑞2 · 𝜀*

1
(𝑞1 · 𝑞2) [𝑝𝑖 · (𝑞1 + 𝑞2)] − 𝑝𝑖 · (𝑞1 − 𝑞2)

2 [𝑝𝑖 · (𝑞1 + 𝑞2)]

[︂
𝑝𝑖 · 𝜀*

1 𝑝𝑖 · 𝜀*
2

(𝑝𝑖 · 𝑞1)(𝑝𝑖 · 𝑞2) + 𝜀*
1 · 𝜀*

2
𝑞1 · 𝑞2

]︂
.

(5.34)
In the following the arguments of the functions 𝐽1,𝑖𝑗 and 𝐽2,𝑖 are dropped for simplicity. The
factorization formula squared provides the limit of the matrix element for a fixed helicity configuration
of the soft gluons

J𝑐1𝑐2 †(𝑞1,𝑞2,𝜆1,𝜆2)J𝑐1𝑐2(𝑞1,𝑞2,𝜆1,𝜆2) =
1
4
∑︁
𝑖,𝑗,𝑘,𝑙

𝐽1,𝑖𝑗𝐽
*
1,𝑘𝑙{T𝑐1

𝑘 ,T
𝑐2
𝑙 }{T𝑐1

𝑖 ,T
𝑐2
𝑗 }

+ 1
2
∑︁
𝑖,𝑗,𝑘

𝑖𝑓 𝑐1𝑐2𝑐3(𝐽*
1,𝑖𝑗𝐽2,𝑘{T𝑐1

𝑖 ,T
𝑐2
𝑗 }T𝑐3

𝑘 − 𝐽1,𝑖𝑗𝐽
*
2,𝑘T

𝑐3
𝑘 {T𝑐1

𝑖 ,T
𝑐2
𝑗 })

+ 𝐶𝐴
∑︁
𝑖,𝑗

𝐽*
2,𝑖𝐽2,𝑗T𝑖 · T𝑗 ,

(5.35)

where a summation over the color indices is understood. The color algebra is simplified using the
identities

𝑖𝑓 𝑐1𝑐2𝑐3T𝑐3
𝑘 {T𝑐1

𝑖 ,T
𝑐2
𝑗 } = 2𝑖𝑓 𝑐1𝑐2𝑐3T𝑐3

𝑘 T𝑐1
𝑖 T𝑐2

𝑗 (1 − 𝛿𝑖𝑘)(1 − 𝛿𝑖𝑗)(1 − 𝛿𝑗𝑘) −𝐶𝐴T𝑖 · T𝑗(𝛿𝑖𝑘 − 𝛿𝑗𝑘) , (5.36)

and

{T𝑐1
𝑖 ,T

𝑐2
𝑗 }{T𝑐1

𝑘 ,T
𝑐2
𝑙 } = 2{T𝑖 · T𝑘,T𝑗 · T𝑙} + 𝐶𝐴[𝛿𝑖𝑗𝛿𝑘𝑙T𝑖 · T𝑘 + 2𝛿𝑖𝑙𝛿𝑗𝑘T𝑖 · T𝑗

− 𝛿𝑖𝑗𝛿𝑖𝑘T𝑖 · T𝑙 − 𝛿𝑖𝑗𝛿𝑖𝑙T𝑖 · T𝑘 − 𝛿𝑖𝑙𝛿𝑖𝑘T𝑖 · T𝑗 − 𝛿𝑗𝑙𝛿𝑗𝑘T𝑖 · T𝑗 ]
+ 2𝑖𝑓 𝑐1𝑐2𝑐3T𝑐1

𝑖 T𝑐2
𝑙 T𝑐3

𝑘 𝛿𝑗𝑘(1 − 𝛿𝑖𝑙)(1 − 𝛿𝑖𝑘)(1 − 𝛿𝑘𝑙)
+ 2𝑖𝑓 𝑐1𝑐2𝑐3T𝑐1

𝑘 T𝑐2
𝑗 T𝑐3

𝑖 𝛿𝑖𝑙(1 − 𝛿𝑖𝑘)(1 − 𝛿𝑗𝑘)(1 − 𝛿𝑖𝑗) .

(5.37)

We recast the result into terms proportional to different color correlated matrix elements. The final
form of the factorization formula in the double soft limit of two gluons reads

⟨M𝑔,𝑔,𝑎1,...,𝑎𝑛(𝑞1,𝑞2, . . .)|𝜆1𝜆2⟩⟨𝜆1𝜆2|M𝑔,𝑔,𝑎1,...,𝑎𝑛(𝑞1,𝑞2, . . .)⟩ ≃

(4𝜋𝛼𝑠)2
[︁1

2
∑︁
𝑖,𝑗,𝑘,𝑙

𝐽*
1,𝑖𝑗𝐽1,𝑘𝑙⟨M(0)

𝑎1,...,𝑎𝑛
|
{︀

T𝑖 · T𝑗 ,T𝑘 · T𝑙

}︀
|M(0)

𝑎1,...,𝑎𝑛
⟩

−
∑︁

(𝑖,𝑗,𝑘)

(︁
2Im(𝐽*

1,𝑖𝑗𝐽2,𝑘) + Im(𝐽*
1,𝑘𝑗𝐽1,𝑖𝑘))

)︁
⟨M(0)

𝑎1,...,𝑎𝑛
|𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |M(0)

𝑎1,...,𝑎𝑛
⟩

− 𝐶𝐴
∑︁
𝑖,𝑗

S̃𝑖,𝑗(𝑞1,𝑞2,𝜆1,𝜆2)⟨M(0)
𝑎1,...,𝑎𝑛

|T𝑖 · T𝑗 |M(0)
𝑎1,...,𝑎𝑛

⟩
]︁
,

(5.38)

where the polarized two-gluon soft function is

S̃𝑖,𝑗(𝑞1,𝑞2,𝜆1,𝜆2) = 1
4(𝐽1,𝑖𝑖(𝐽*

1,𝑖𝑗 + 𝐽*
1,𝑗𝑖 − 𝐽*

1,𝑗𝑗) + 𝐽1,𝑗𝑖𝐽
*
1,𝑗𝑗 − 2𝐽*

1,𝑖𝑗𝐽2,𝑖 + 2𝐽*
1,𝑖𝑗𝐽2,𝑗

− 4𝐽2,𝑖𝐽
*
2,𝑗 − 𝐽1,𝑖𝑗(2𝐽*

1,𝑗𝑖 − 𝐽*
1,𝑗𝑗 + 2𝐽*

2,𝑖 − 2𝐽*
2,𝑗)) . (5.39)
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The triple color correlator only vanishes after summing over the polarizations of the soft gluons.

5.3.2 Polarized splitting functions
In section 3.4.1 the factorization of the unpolarized squared matrix element in the collinear limit of
two or three partons has been discussed. Factorization remains valid, if the collinear partons are
polarized. While for the 1 → 2 splitting the polarized splitting functions for the squared amplitude
are still manageable [222], the splitting functions for the polarized 1 → 3 splittings are cumbersome.
It turns out to be simpler to consider the collinear limit of the matrix element itself before squaring
it.
The collinear limit of two final state partons with momentum 𝑝1 and 𝑝2 can be defined using the
Sudakov parametrization (3.48) in the limit 𝑘2

⊥ → 0. The factorization formula for the matrix
element reads [139, 223, 224]

⟨𝜆1𝜆2|M𝑎1,𝑎2,...(𝑝1,𝑝2, . . .)⟩ ≃
∑︁
𝜆

Split𝑎→𝑎1𝑎2
𝜆 (𝑝𝜆1

1 ,𝑝𝜆2
2 )⟨𝜆|M𝑎,...(𝑝, . . .)⟩ , (5.40)

where the collinear factors depend on the helicity 𝜆 of the splitting particle, which is chosen to be in
the final state and the polarization of the collinear partons 𝜆1 and 𝜆2. Explicit formulas are given
in the mentioned references. It is common to define a splitting matrix for the squared amplitude

P𝑎→𝑎1𝑎2(𝑝𝜆1
1 ,𝑝𝜆2

2 ) =
(︂
𝑃 𝑎→𝑎1𝑎2

++ (𝑝𝜆1
1 ,𝑝𝜆2

2 ) 𝑃 𝑎→𝑎1𝑎2
+− (𝑝𝜆1

1 ,𝑝𝜆2
2 )

𝑃 𝑎→𝑎1𝑎2
−+ (𝑝𝜆1

1 ,𝑝𝜆2
2 ) 𝑃 𝑎→𝑎1𝑎2

−− (𝑝𝜆1
1 ,𝑝𝜆2

2 )

)︂
, (5.41)

where the entries are defined by

𝑃 𝑎→𝑎1𝑎2
𝜆′𝜆 (𝑝𝜆1

1 ,𝑝𝜆2
2 ) = [Split𝑎→𝑎1𝑎2

𝜆′ (𝑝𝜆1
1 ,𝑝𝜆2

2 )]†Split𝑎→𝑎1𝑎2
𝜆 (𝑝𝜆1

1 ,𝑝𝜆2
2 ) . (5.42)

The summation of open color indices is always understood. The polarized subtraction term for the
squared matrix element is finally written as a matrix-vector multiplication in helicity space

⟨M(0)
𝑎1,𝑎2,...(𝑝1,𝑝2, . . .)|𝜆1𝜆2⟩⟨𝜆1𝜆2|M(0)

𝑎1,𝑎2,...(𝑝1,𝑝2, . . .)⟩ ≃

(⟨M𝑎,...(𝑝, . . .)|+⟩ ⟨M𝑎,...(𝑝, . . .)|−⟩) P𝑎→𝑎1𝑎2(𝑝𝜆1
1 ,𝑝𝜆2

2 )
(︂

⟨+|M𝑎,...(𝑝, . . .)⟩
⟨−|M𝑎,...(𝑝, . . .)⟩

)︂
. (5.43)

The unpolarized splitting functions are recovered by summing over the polarizations of the collinear
partons.
The same reasoning can be generalized to the more involved case of the triple-collinear limit. It
is parameterized using the Sudakov parametrization for three final state partons of momentum 𝑝𝑖,
Eq. (3.52), where again 𝑝2 = 𝑛2 = 𝑝 · 𝑘⊥𝑖 = 𝑛 · 𝑘⊥𝑖 = 0. The matrix element factorizes in the limit
𝑘⊥𝑖 → 0 [138, 225]

⟨𝜆1𝜆2𝜆3|M𝑎1,𝑎2,𝑎3,...(𝑝1,𝑝2,𝑝3 . . .)⟩ ≃
∑︁
𝜆

Split𝑎→𝑎1𝑎2𝑎3
𝜆 (𝑝𝜆1

1 ,𝑝𝜆2
2 ,𝑝𝜆3

3 )⟨𝜆|M𝑎,...(𝑝, . . .)⟩ , (5.44)

where the triple splitting functions have been rederived for the implementation in Stripper. They
are given in appendix B.4 and have been firstly calculated in [224]. A general recipe is discussed in
the following how they can be obtained using the spinor helicity formalism (see A.3).
First, the diagrams contributing to given 𝑎 → 𝑎1𝑎2𝑎3 process are generated. This has been done
using the Mathematica packages FeynArts and FormCalc [226, 227]. Some modifications have to
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be applied, since the Feynman amplitude has to be given in an axial gauge, which is not available a
priori in FeynArts. There are five different processes that have to be taken into account

𝑞 → 𝑞𝑞′𝑞′ ,

𝑞 → 𝑞𝑞𝑞 ,

𝑞 → 𝑞𝑔𝑔 ,

𝑔 → 𝑔𝑞𝑞 ,

𝑔 → 𝑔𝑔𝑔 .

(5.45)

Each contribution is expressed in terms of helicity spinors for a given polarization of the four involved
partons, where spinors and polarization vectors are replaced as discussed in A.3. The spinor of the
parton 𝑎 which is either |𝑝⟩ or |𝑝] is then replaced by

/𝑝 = /𝑝1 + /𝑝2 + /𝑝3 , (5.46)

using energy-momentum conservation. The slashed contributions are reexpressed in terms of helicity
spinors

/𝑝𝑖 = |𝑝𝑖⟩[𝑝𝑖| + |𝑝𝑖]⟨𝑝𝑖| . (5.47)

They connect the splitting function and the actual matrix element. By simple power counting
arguments, the spinor connected to the matrix element can be expanded to leading order in 𝑘⊥

|𝑝𝑖⟩ ≃
√
𝑧𝑖|𝑝⟩ . (5.48)

The factor √
𝑧𝑖 is kept in in the splitting function, while the spinor provides the full factorization of

the matrix element. Apart from color factors and constants the splitting function only depends on
Spinor invariants, if invariants 𝑠𝑖𝑗 are appropriately replaced by [𝑝𝑖𝑝𝑗 ]⟨𝑝𝑗𝑝𝑖⟩. The list of possible
invariants is

{[𝑝𝑖𝑝𝑗 ], [𝑘𝑖𝑝𝑗 ], [𝑘𝑖𝑘𝑗 ], ⟨𝑝𝑖𝑝𝑗⟩, ⟨𝑘𝑖𝑝𝑗⟩, ⟨𝑘𝑖𝑘𝑗⟩}, (5.49)

where 𝑘𝑖, 𝑖 = 0,1,2,3, are reference momenta of the external gluons 𝑎𝑖 and the axial gauge vector 𝑘0,
which is also the reference vector of a splitting gluon, 𝑎 = 𝑔 in the axial gauge.
In order to obtain the collinear limit of the splitting function just the leading terms in the collinear
limit 𝑘⊥ → 0 are retained. In practice this amounts to keep [𝑝𝑖𝑝𝑗 ] and ⟨𝑝𝑖𝑝𝑗⟩, which scale as

[𝑝𝑖𝑝𝑗 ] =
√︀

2𝑝𝑖 · 𝑝𝑗𝑒𝑖𝜓 ∼
√︁

−𝑘2
⊥ , ⟨𝑝𝑖𝑝𝑗⟩ =

√︀
2𝑝𝑖 · 𝑝𝑗𝑒−𝑖𝜓 ∼

√︁
−𝑘2

⊥ , (5.50)

while all remaining spinor products are expanded to leading order using (5.48). 𝜓 is a yet unspecified
phase which is irrelevant for the discussion. The leading collinear behavior does not depend on the
reference momenta 𝑘𝑖 anymore. The obtained functions are the splitting functions Split𝑎→𝑎1𝑎2𝑎3 .
Similar to the collinear limit of two partons, a splitting matrix can be defined for the triple-collinear
limit

P𝑎→𝑎1𝑎2𝑎3(𝑝𝜆1
1 ,𝑝𝜆2

2 ,𝑝𝜆3
3 ) =

(︂
𝑃 𝑎→𝑎1𝑎2𝑎3

++ (𝑝𝜆1
1 ,𝑝𝜆2

2 ,𝑝𝜆3
3 ) 𝑃 𝑎→𝑎1𝑎2𝑎3

+− (𝑝𝜆1
1 ,𝑝𝜆2

2 ,𝑝𝜆3
3 )

𝑃 𝑎→𝑎1𝑎2𝑎3
−+ (𝑝𝜆1

1 ,𝑝𝜆2
2 ,𝑝𝜆3

3 ) 𝑃 𝑎→𝑎1𝑎2𝑎3
−− (𝑝𝜆1

1 ,𝑝𝜆2
2 ,𝑝𝜆3

3 )

)︂
, (5.51)

where the definition of the entries can be easily adapted from (5.42).
The entries of the splitting matrices P for all possible flavor and helicity configurations are imple-
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mented in Stripper and serve as collinear and soft-collinear subtraction terms. Initial state collinear
limits are obtained by the crossing relations outlined in appendix B.5. For the implementation,
the parameterization in the spinor helicity framework has to be related to the parameterization
of resolved and unresolved particles given in section 4.2. Therefore, the flavor of the reference
momentum 𝑟 has to be fixed to obtain all possible subtraction terms. For the 1 → 2 splitting the
list of possible splitting matrices is

{𝑔 → 𝑞𝑞, 𝑞 → 𝑞𝑔, 𝑞 → 𝑔𝑞, 𝑔 → 𝑔𝑔} , (5.52)

providing subtraction terms for single collinear limits in 𝜎̂𝐹R and 𝜎̂𝐹RR. The list of splitting matrices
for the 1 → 3 splittings is

{𝑞 → 𝑞′𝑞′𝑞, 𝑞 → 𝑞′𝑞𝑞′, 𝑞 → 𝑞𝑞′𝑞′, 𝑞 → 𝑞𝑞𝑞, 𝑞 → 𝑞𝑞𝑞, 𝑞 → 𝑞𝑞𝑞, 𝑞 → 𝑔𝑔𝑞,

𝑞 → 𝑞𝑔𝑔, 𝑞 → 𝑔𝑞𝑔, 𝑔 → 𝑞𝑞𝑔, 𝑔 → 𝑔𝑞𝑞, 𝑔 → 𝑞𝑔𝑞, 𝑔 → 𝑔𝑔𝑔} ,
(5.53)

providing subtraction terms for the five triple-collinear sectors in 𝜎̂𝐹RR. The momentum assignments
in the given lists are ordered like 𝑎 → 𝑎1(𝑢)𝑎2(𝑟) and 𝑎 → 𝑎1(𝑢1)𝑎2(𝑢2)𝑎3(𝑟) respectively. Each of
the five triple collinear sectors contains 13 · 8 = 104 polarized splitting matrices. The related spinor
invariants are converted to the momentum parameterizations available in Stripper. Here, only the
parameterization of triple-collinear splitting functions is discussed, the single-collinear functions are
obtained as a special case.
The set of spinor invariants that appear in the splitting functions are

{[𝑢1𝑢2], [𝑟𝑢1], [𝑟𝑢2], ⟨𝑢1𝑢2⟩, ⟨𝑟𝑢1⟩, ⟨𝑟𝑢2⟩}. (5.54)

Beforehand, it is useful to recognize that only two of the three are linearly independent

⟨𝑢1𝑢2⟩ =
√
𝑧1⟨𝑟𝑢2⟩ − √

𝑧2⟨𝑟𝑢1⟩
√
𝑧𝑟

+ O((𝑘⊥)2) . (5.55)

Given the sector parameterizations, it is useful to choose ⟨𝑟𝑢2⟩ and ⟨𝑟𝑢1⟩ as the minimal set in
sectors S1 − S3. Due to the fact that 𝑟 points already towards the triple-collinear direction, the
invariants are directly related to the momenta and vectors in Stripper

⟨𝑟𝑢1⟩ =
√

2 𝑟 · 𝑢1(
√

2𝑢1⊥ · 𝜀*(𝑟,+ 1)) , ⟨𝑟𝑢2⟩ =
√

2 𝑟 · 𝑢2(
√

2𝑢2⊥ · 𝜀*(𝑟,+ 1)) , (5.56)

where 𝜀(𝑟,𝜆) is the polarization vector of a gluon in the collinear direction 𝑟. It is worth to recognize
that the term in the brackets are pure phases.
In sectors S4 and S5 it is however more appropriate to choose ⟨𝑟𝑢1⟩ and ⟨𝑢1𝑢2⟩ as the minimal set
of invariants, where

⟨𝑢1𝑢2⟩ =
√

2 𝑟 · 𝑢1(
√

2𝑢3⊥ · 𝜀*(𝑟,+ 1)) . (5.57)

The choice of independent spinor invariants, depends on the allowed single-collinear limit within a
triple-collinear sector. In sector S1 this is the limit 𝑟||𝑢2, in sector S2 and S3 it is the limit 𝑟||𝑢1,
whereas in sector S4 and S5 it is 𝑢1||𝑢2, as can be read off in Tab. 4.2.

5.3.3 Numerical tests
The implementation of the soft and collinear limits has been tested. Here, the tests for the triple-
collinear limit and the double soft limits are explained. The correctness of the remaining cases, that
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are not outlined here, has been verified in a similar way.
The triple-collinear limits of the matrix elements are implemented independently for each of the
five triple-collinear sectors. The number of possible flavor assignments of the collinear partons has
been counted in (5.53) to be 13. The total number of splitting functions, that provide collinear
subtraction terms for amplitudes of a fixed helicity, is about 8 × 13 = 104 for each sector, where 8
is the number of possible helicity configurations of the reference and the two unresolved partons.
Some of the limits are not possible by helicity conservation. The convergence of the matrix elements
and their subtraction terms can be tested numerically. This test provides an important verification,
whether the helicity subtraction terms are correct. It is useful to introduce the relative deviation of
the integrand in the double-real radiation cross section for a specific sector S

𝛿S(𝑥) =
⃒⃒⃒⃒
d𝜎̂RR(𝑥) − d𝜎̂RR,Limit(𝑥)

d𝜎̂RR(𝑥)

⃒⃒⃒⃒
. (5.58)

The partonic cross section d𝜎̂RR(𝑥) contains the full 𝑛+2 parton matrix element, where the helicities
of the reference parton and the unresolved partons (𝜆𝑢1 ,𝜆𝑢2 ,𝜆𝑟) are fixed. The remaining partons
are randomly polarized. The cross section d𝜎̂RR,Limit(𝑥) represents the limit of d𝜎̂RR(𝑥). The 𝑛+ 2
parton matrix element is replaced by the appropriate splitting matrix and reduced matrix elements.
The variable 𝑥 is equal to 𝜂1 in sector S1 and S4 and 𝜂2 in sector S2, S3 and S5. In the triple-collinear
limit, i.e. 𝑥 → 0, the quantity 𝛿S(𝑥) → 0. This behavior has been tested numerically for each
possible configuration of flavor and helicity. It is important to test the collinear limits in the initial
and final state to exclude possible errors related to the crossing of splitting functions.
The Figs. 5.2, 5.3, 5.4 and 5.5 display a selection of tests. All integration parameters have been
fixed randomly. The function 𝛿S(𝑥) has been evaluated at 1000 points 𝑥 between 10−6 and 10−10

in double precision. It has been observed that this region provide numerical stable results for all
functions. Each plot contains all possible helicity configurations of the collinear partons, which
are represented using different colors: orange: (+,+ ,+), pink: (+,+ ,−), black: (+,− ,+), brown:
(−, + ,+), purple: (+, − ,−), green: (−, + ,−), blue: (−, − ,+) and red: (−, − ,−). Especially, if
only massless partons are considered in the partonic matrix element, different helicity configurations
return the same matrix element. Hence, only a subset of the 8 curves is present in general. The
displayed plots, verify the correct behavior in different sectors for different splitting functions.
The soft limit of two polarized gluons can be tested similarly using the function 𝛿(𝑥) in Eq. (5.58).
The cross section d𝜎̂RR,Limit(𝑥) contains the polarized double soft limit of the 𝑛+ 2 matrix element,
which has been calculated in (5.38). In this case, 𝑥 is equal to 𝜉2 in all sectors and indicates the
double soft limit. It is important to notice that these numerical tests not only demonstrate the
correctness of the soft and splitting functions, but also confirm the correctness of all color correlated
tree-level matrix elements. The numerical test for two different partonic processes is shown in
Fig. 5.6. The left plot shows the behavior in the soft limit including massive partons. In this
case, all possible helicity configurations of the two gluons are different. In the purely massless
case the matrix element in the double soft limit for the helicity configuration (+,+) coincides with
the matrix element of the helicity configuration (−,−) and the configuration (+,−) coincides with
the configuration (−,+). In the very low 𝑥 region the linear behavior is spoiled due to numerical
instabilities in evaluating the 𝑛+ 2 parton matrix element in double precision.
The tests nicely reflect the behavior of the regularized matrix elements in the soft and collinear
limits. In the triple-collinear limit 𝛿(𝑥) behaves as

√
𝑥, while in the double-soft limit it behaves as 𝑥.
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Figure 5.2: Numerical test of the triple-collinear limit in sector S1, where the three collinear partons with
momentum 𝑢1 ,𝑢2 and 𝑟 are in the final state. All 8 different helicities for the collinear partons are tested.
Depending on the flavor assignment, some of them vanish or are identical. In the latter case the lines in the plot
overlap. The assignment of different colors is explained in the main text.
Left: The partonic process is 𝑢𝑔 → 𝑢𝑔𝑔𝑔, where 𝑎𝑟 = 𝑔, 𝑎𝑢1 = 𝑔 and 𝑎𝑢2 = 𝑔.
Middle: The partonic process is 𝑢𝑔 → 𝑢𝑔𝑑𝑑, where 𝑎𝑟 = 𝑔, 𝑎𝑢1 = 𝑑 and 𝑎𝑢2 = 𝑑
Right: The partonic process is 𝑢𝑢̄ → 𝑢𝑢̄𝑢𝑢̄, where 𝑎𝑟 = 𝑢̄, 𝑎𝑢1 = 𝑢 and 𝑎𝑢2 = 𝑢̄ .
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Figure 5.3: Numerical test of the triple-collinear limit in sector S5, where the three collinear partons with
momentum 𝑢1 ,𝑢2 and 𝑟 are in the final state. All 8 different helicities for the collinear partons are tested.
Depending on the flavor assignment, some of them vanish or are identical. In the latter case the lines in the plot
overlap. The assignment of different colors is explained in the main text.
Left: The partonic process is 𝑢𝑔 → 𝑢𝑔𝑔𝑔, where 𝑎𝑟 = 𝑢, 𝑎𝑢1 = 𝑔 and 𝑎𝑢2 = 𝑔.
Middle: The partonic process is 𝑢𝑔 → 𝑢𝑔𝑑𝑑, where 𝑎𝑟 = 𝑢, 𝑎𝑢1 = 𝑑 and 𝑎𝑢2 = 𝑑
Right: The partonic process is 𝑢̄𝑔 → 𝑢̄𝑔𝑔𝑔, where 𝑎𝑟 = 𝑢̄, 𝑎𝑢1 = 𝑔 and 𝑎𝑢2 = 𝑔 .
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Figure 5.4: Numerical test of the triple-collinear limit in sector S2, where the reference parton 𝑟 is in the initial
state. All 8 different helicities for the collinear partons are tested. Depending on the flavor assignment, some of
them vanish or are identical. In the latter case the lines in the plot overlap. The assignment of different colors is
explained in the main text.
Left: The partonic process is 𝑢𝑢̄ → 𝑔𝑔𝑡𝑡, where 𝑎𝑟 = 𝑢̄, 𝑎𝑢1 = 𝑔 and 𝑎𝑢2 = 𝑔
Middle: The partonic process is 𝑢𝑔 → 𝑢𝑔𝑡𝑡, where 𝑎𝑟 = 𝑔, 𝑎𝑢1 = 𝑢 and 𝑎𝑢2 = 𝑔
Right: The partonic process is 𝑔𝑔 → 𝑔𝑔𝑡𝑡, where 𝑎𝑟 = 𝑔, 𝑎𝑢1 = 𝑔 and 𝑎𝑢2 = 𝑔.
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Figure 5.5: Numerical test of the triple-collinear limit in sector S4, where the reference parton 𝑟 is in the initial
state. All 8 different helicities for the collinear partons are tested. Depending on the flavor assignment, some of
them vanish or are identical. In the latter case the lines in the plot overlap. The assignment of different colors is
explained in the main text.
Left: The partonic process is 𝑢𝑢̄ → 𝑢𝑢̄𝑑𝑑, where 𝑎𝑟 = 𝑢̄, 𝑎𝑢1 = 𝑢 and 𝑎𝑢2 = 𝑢̄.
Middle: The partonic process is 𝑢𝑑 → 𝑢𝑑𝑡𝑡, where 𝑎𝑟 = 𝑑, 𝑎𝑢1 = 𝑑 and 𝑎𝑢2 = 𝑢̄
Right: The partonic process is 𝑢̄𝑔 → 𝑢̄𝑔𝑡𝑡, where 𝑎𝑟 = 𝑔, 𝑎𝑢1 = 𝑢̄ and 𝑎𝑢2 = 𝑔
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Figure 5.6: Numerical test of the soft limit of two polarized gluons in sector S1. The four possible helicity
assignments for the unresolved gluons are displayed: purple: (+,+), green: (+,−), blue: (−,+) and red: (−,−).
In the purely massless case respectively two helicity states coincide.
Left: The partonic process is 𝑔𝑔 → 𝑡𝑡𝑔𝑔
Right: The partonic process is 𝑔𝑔 → 𝑑𝑑𝑔𝑔
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5.4 Special functions
The limits of one-loop matrix elements elements contain special functions that have to be evaluated
for every point of the Monte Carlo integration. These functions are implemented efficiently in
Stripper as will be outlined in this section.

5.4.1 Polylogarithms
Setting up the subtraction scheme at next-to-next-to-leading order, the evaluation of harmonic
polylogarithms up to weight four is needed. Polylogarithms in the context of multi-loop calculations
have been extensively studied and libraries exist to evaluate the real and imaginary part of these
functions for arbitrary, complex arguments [228]. For the present application to physical cross
sections only real parts of harmonic polylogarithms of real arguments are needed. Consequently, a
independent implementation is useful. The polylogarithms are defined recursively as

Li𝑛(𝑥) = −
ˆ 𝑥

0

d𝑡
𝑡

Li𝑛−1(𝑡) , with𝑥 ∈ (−∞,1) , (5.59)

where
Li1(𝑥) = log(1 − 𝑥) . (5.60)

For the numerical evaluation of the functions for 𝑛 ∈ {2,3,4}, Eq. (5.59) is expanded in a Taylor-series
in the Bernoulli variable 𝑢, which is defined as [228]

𝑥 = 1 − 𝑒−𝑢 , 𝑢 = − log (1 − 𝑥) . (5.61)

This change of variables improves the convergence of the series significantly. This expansion is used
in the range

[︀
−1,12

]︀
. A sufficient precision is obtained, if 7 terms for Li2, 13 terms for Li3 and 13

terms for Li4 are kept, if a Chebychev economization of the series is performed. The range
(︀1

2 ,1
)︀

is
obtained by using the transformation properties of the polylogarithms under the transformation
𝑥 → 1 − 𝑥

Li2(1 − 𝑥) = −Li2(𝑥) − log(𝑥) log(1 − 𝑥) + 𝜁2 ,

Li3(1 − 𝑥) = −𝑆1,2(𝑥) + log(1 − 𝑥)
(︂

Li2(1 − 𝑥) + 1
2 log(𝑥) log(1 − 𝑥)

)︂
+ 𝜁3 ,

Li4(1 − 𝑥) = −𝑆1,3(𝑥) + 𝜁4

− log(1 − 𝑥)
(︂
𝑆1,2(𝑥) − 1

2 log(1 − 𝑥)
(︂
𝜁2 − Li2(𝑥) − 1

3 log(𝑥) log(1 − 𝑥)
)︂

− 𝜁3

)︂
,

where 𝜁𝑛 is the Riemann 𝜁-function. The Nielsen polylogarithms 𝑆1,𝑝(𝑥) are defined by

𝑆1,𝑝(𝑥) = (−1)𝑝
𝑝!

ˆ 1

0

d𝑡
𝑡

log𝑝(1 − 𝑥𝑡) . (5.62)

They are only needed in the range
[︀
0,12
]︀

and are evaluated using an optimized series expansion as
well. For 𝑆1,2(𝑥) 6 coefficients are needed, while for 𝑆1,3(𝑥) 7 coefficients are kept.
The evaluation of Li𝑛 in the range (−∞,− 1) is done using identities of the functions for the
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transformation 𝑥 → 1/𝑥. They read

Li2( 1
𝑥

) = −Li2(𝑥) − 1
2 log2(−𝑥) − 𝜁2,

Li3( 1
𝑥

) = Li3(𝑥) + log(−𝑥)
(︂
𝜁2 + 1

6 log2(−𝑥)
)︂
,

Li4( 1
𝑥

) = −Li4(𝑥) − 1
2 log2(−𝑥)

(︂
𝜁2 + 1

12 log2(−𝑥)
)︂

− 7
4𝜁4.

The relative precision of the numerical implementation has been tested and is depicted in Fig. 5.7.
It is described by the function

𝛿𝑖 = (Liexact
𝑖 (𝑥) − Linum

𝑖 (𝑥))
Liexact
𝑖 (𝑥)

, (5.63)

where the superscript num refers to the numerically evaluated function in double precision and the
superscript exact refers to an arbitrary precision evaluation in Mathematica. A overall precision
of better than 10−15 is achieved.
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Figure 5.7: Relative precision of the numerical evaluation of Li2(𝑥), Li3(𝑥) and Li4(𝑥) in the range [−200,1].
The overall relative precision is better than 10−15

5.4.2 One-loop soft function
The soft limit of a one-loop matrix element, which has been discussed in Eq. (3.59), contains the
function 𝑅𝑖𝑗 which can be found in [146]. The explicit form of this function depends on whether the
hard partons 𝑖 and 𝑗 are massless or massive. In the case that both partons are massive, 𝑖 = 𝐼 and
𝑗 = 𝐽 , 𝑅𝐼𝐽 contains the following function

𝐹𝑐(𝑥1,𝑥2) =
ˆ 1

0
d𝑡

ln(1 − 𝑡) ln(1 − 𝑡𝑥2
𝑥1

)
1
𝑥2

− 𝑡
, (5.64)

where the arguments are defined by the momenta of the massive partons 𝑝𝐼 and 𝑝𝐽 and the
momentum of the soft parton 𝑞. They read

𝑥1 = 𝛼𝐽
𝛼𝐽 − 𝑣 + 1 , 𝑥2 = 𝛼𝐽

𝛼𝐽 + 𝑣 + 1 , (5.65)
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where

𝑣 =

√︃
1 −

𝑚2
𝐼𝑚

2
𝐽

(𝑝𝐼 · 𝑝𝐽)2 , 𝛼𝐽 = 𝑚2
𝐽(𝑝𝐽 · 𝑞)

(𝑝𝐽 · 𝑞)(𝑝𝐼 · 𝑝𝐽) . (5.66)

The physical domain of the function is easily obtained by replacing the first variable

𝑥̃1(𝑥1,𝑥2) = 𝑥2
𝑥1
. (5.67)

The function reads
𝐹𝑐(𝑥1,𝑥2) = 𝑥2

ˆ 1

0
d𝑡 ln(1 − 𝑡) ln(1 − 𝑡 𝑥̃1(𝑥1,𝑥2))

1 − 𝑥2𝑡
. (5.68)

The kinematic parameters 𝑣 and 𝛼𝐽 are Lorentz invariant and can be written in the rest frame of 𝑝𝐽

𝑣 = |𝑝𝐼 |
𝐸𝐼

→ 𝑣 ∈ [0,1) ,

𝛼𝐽 = 1 − |𝑝𝐼 |
𝐸𝐼

cos 𝜃 → 𝛼𝐽 ∈ (0,2) ,
(5.69)

where 𝜃 is the angle between the soft particle and 𝑝𝐼 in the chosen frame. After rewriting the two
variables 𝑥̃1 and 𝑥2, the domain of the function is obtained

𝑥̃1 = 2 − 𝑣(1 + cos 𝜃)
2 + 𝑣(1 − cos 𝜃) ∈ (0,1] ,

𝑥2 = 1 − 𝑣 cos 𝜃
2 + 𝑣(1 − cos 𝜃) ∈

(︂
0,12

]︂
.

(5.70)

For the numerical evaluation, the function is expanded in a two-dimensional Taylor series around
zero. The convergence can be improved substantially by using the Bernoulli change of variables, Eq.
(5.61), in both variables. This expansion is only valid as 𝑥2 and 𝑥̃1 are small. For 𝑥̃1 ∼ 1 it breaks
down, since the Bernoulli change of variable is not defined anymore. The integration domain is split
into two regions. The first region is

𝑥̃1 ∈
(︂

0,12

]︂
𝑥2 ∈

(︂
0,12

]︂
. (5.71)

In this region the expansion can be used and the aimed precision is achieved, if 17 × 16 = 272
coefficients are kept. The second region is defined by

𝑥̃1 ∈
(︂

1
2 ,1
]︂

𝑥2 ∈
(︂

0,12

]︂
. (5.72)

A expansion in 𝑢2 = − log(1 − 𝑥2) is still convergent and reads

𝐹𝑐(𝑥̃1,𝑥2) ≃
𝑛∑︁
𝑖=0

𝑓𝑖(𝑥̃1)𝑢𝑖2 , (5.73)
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where 𝑛 = 20 terms are kept. The coefficients 𝑓𝑖(𝑥1) are integrated analytically and can be written
in the following form

𝑓𝑖(𝑥̃1) =
𝑖∑︁

𝑗=0

[︂
𝑎𝑖𝑗 + 1 − 𝑥̃1

𝑥̃1
log(1 − 𝑥̃1)𝑏𝑖𝑗 + 1 − 𝑥̃1

𝑥̃1
Li2
(︂

𝑥̃1
𝑥̃1 − 1

)︂
𝑐𝑖𝑗

]︂
· 𝑥̃−𝑗

1 , (5.74)

where it should be recognized that the coefficient matrices 𝑎𝑖𝑗 , 𝑏𝑖𝑗 and 𝑐𝑖𝑗 are triangular. The relative
precision of the numerical evaluation of the function has been verified and is depicted in Fig. 5.8,
where

𝛿(𝑥̃1,𝑥2) =
⃒⃒⃒⃒
𝐹 exact
𝑐 (𝑥̃1,𝑥2) − 𝐹 num

𝑐 (𝑥̃1,𝑥2)
𝐹 exact
𝑐 (𝑥̃1,𝑥2)

⃒⃒⃒⃒
. (5.75)

The exact evaluation of the function has been performed using Mathematica.

Figure 5.8: . Comparison of the numerical implementation of the function 𝐹𝑐(𝑥̃1,𝑥2) with an arbitrary precision
evaluation in Mathematica. A grid of 80 × 80 points is used. The relative precision in all points is better than
10−13.

5.5 Missed binning
Differential cross section calculations suffer from missed binning effects starting at next-to-leading
order. These effects occur if additional partons in the phase space become unresolved. At next-to-
leading order this would be the finite real contribution 𝜎̂R

F . The kinematics of the 𝑛+ 1 parton phase
space contribution could correspond to a different histogram bin than the corresponding kinematics
of the 𝑛 parton subtraction term. If this configuration occurs close to a singular point of the 𝑛+ 1
parton phase space, the subtraction term does not provide a regularization of the integrand. The
same phenomenon occurs not only at the edge of histogram bins, but also if cuts are applied. The
𝑛+ 1 contribution can be accepted by the cut, while the subtraction term could be dismissed. In
both cases, the Monte Carlo integration error is enhanced and more evaluations of the integrand are
needed in order to keep the error acceptable. At next-to-next-to-leading order the effect of missed
binning is expected to be larger, since more possibilities of singular limits are possible, for example
in the double-real contribution 𝜎̂RR

FF .
An approach to diminish the effects of missed binning is bin smearing. The fixed boundaries of a
bin (or the position of the cut) are replaced by a Gaussian distribution around some mean position
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𝜇 and the standard deviation 𝜎

𝑃 (𝑥) = 1
𝜎

√
2𝜋
𝑒− (𝑥−𝜇)2

2𝜎2 . (5.76)

The probability that the event at 𝑥 is distributed into the left bin is given by

𝑠(𝑥) ≡
ˆ ∞

𝑥
d𝑥′𝑃 (𝑥′) = 1

2erfc
(︂

(𝑥− 𝜇)√
2𝜎

)︂
, (5.77)

which is the probability that the bin edge is to the right of 𝑥. The weight of the event 𝑤(𝑥) is
distributed into the left and the right bin, where the modified weights are given by 𝑠(𝑥)𝑤(𝑥) and
(1 − 𝑠(𝑥))𝑤(𝑥) respectively. The distribution of a given event between two neighboring bins is called
smearing. Smearing reduces the statistical error, but it also changes the edges of the bins. It should
therefore only be applied to cases which contribute little to the cross section, such that the effect on
the bins is small.
The effects of missed binning at next-to-leading order using Stripper are depicted in Figs. 5.9
and 5.10. The hadronic differential cross-sections d𝜎̂R

F for 𝑝𝑝 → 𝑡𝑡 + 𝑋 in the rapidity 𝑦𝑡 of the
top quark are shown. Each plot shows the same contribution for a different smearing parameter 𝑠,
which defines the width of the Gaussian distribution

𝜎 = 𝑠𝛥bin , (5.78)

where 𝛥bin is the width of a single bin. The error band is due to the statistical error of the
Monte-Carlo integration. In each plot of Fig. 5.9 1 million events are evaluated. If no smearing
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Figure 5.9: The effects of bin smearing on the statistical error of differential hadronic cross section d𝜎̂R
F , for 1

million integration points. The center-of-mass energy is 8 TeV. The differential distributions are taken in the
rapidity of the top quark 𝑦𝑡 for different values of the smearing parameter 𝑠, which is defined in the text.

is applied, 𝑠 = 0, the contribution has a huge statistical uncertainty in each bin, which is due to
missed binning. The error decreases significantly, if a smearing is applied 𝑠 = 0.05. The difference
between 𝑠 = 0.05 and 𝑠 = 0.1 is not significant. Hence, already for 𝑠 = 0.05 the main part of missed
binning effects that spoil the convergence of the integration are regularized by the smearing. In
Fig. 5.10 the same integration has been performed, only the statistics have been increased by a
factor 10. This increase already reduces the impact of missed binning effects considerably. Including
bin smearing 𝑠 = 0.05 and 𝑠 = 0.1 reduces the effects further. The contribution of d𝜎̂R

F to the full
next-to-leading order cross section is rather small. In the given example case it amounts of less than
10%, such that smearing uncertainties are negligible.
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Figure 5.10: The effects of bin smearing on the statistical error of differential hadronic cross section d𝜎̂R
F , for

10 million integration points. The center-of-mass energy is 8 TeV. The differential distributions are taken in the
rapidity of the top quark 𝑦𝑡 for different values of the smearing parameter 𝑠, which is defined in the text.

5.5.1 Missed binning in integrated subtraction terms
Integrated subtraction terms suffer from missed binning in the same way as the finite subtracted
contributions discussed previously. In principle, the same treatment can be applied to minimize its
effect on the distribution. The difference to the finite subtracted contributions 𝜎̂R

F and 𝜎̂RR
F is that

in the unresolved contributions the pole term and the subtraction term contain the same resolved
and unresolved partons. However, the kinematics in the collinear and the soft-collinear limit are
different due to the specific parameterization. This leads to missed binning. A mapping of the
kinematics in the collinear limit to the kinematics in the soft-collinear limit is however possible and
this treatment avoids effects of missed binning completely. There are several cases to distinguish.
One parton can become soft and collinear to an initial or final state parton, which occurs in the
single-collinear sector. Two partons can become collinear to an initial or final state parton, where
either both or only one can become soft. This occurs in the triple-collinear sector. Finally, two
partons can become collinear to two different partons, which can be both in the final state, both in
the initial state or one in the final state and one in the initial state. Either both unresolved partons
can become soft or only one of them. This configuration occurs in the double-collinear sector.

Single-collinear sector
In this section the reparameterization of the collinear pole term in 𝜎̂R

U and 𝜎̂RV
DU. The case of an

initial-state collinear limit is discussed first. Including the convolution with the parton distribution
function the collinear configuration is

ˆ 1

0
d𝜉
ˆ 1

𝑥min

d𝑥 𝑓(𝑥)𝜎(𝑥,𝜉) , (5.79)

where 𝑓(𝑥) is the parton distribution function, given in Eq. (3.9). The variable 𝑥 is the convolution
parameter 𝑥1, if the reference momentum is 𝑝1, or 𝑥2, if the reference momentum is 𝑝2. The soft
variable of the collinear parton is 𝜉. The minimal value 𝑥min = (𝑄min/

√
𝑠)2 is related to the sum of

external masses and is given in Eq. (4.14). The resolved particle entering the matrix element in the
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collinear limit has energy
1
2𝐸cms(𝑥) − 𝐸max(𝑥)𝜉 , (5.80)

where the partonic center-of-mass energy 𝐸cms(𝑥) is obtained from the hadronic center-of-mass
energy

√
𝑠 by

1
2𝐸cms(𝑥) =

√
𝑥𝑠 . (5.81)

The unresolved parton energy is rescaled as in Eq. (4.25), where the maximal energy depends on
the momentum fraction 𝑥

𝐸max(𝑥) = 𝐸cms(𝑥)
2

(︃
1 −

(︂
𝑄min
𝐸cms(𝑥)

)︂2
)︃
. (5.82)

By a change of the convolution variable 𝑥 → 𝑥′ it is possible to change the energy of the collinear
parton, such that the center-of-mass energy is the same as in the soft-collinear limit, where 𝜉 → 0.
This requirement reads

2
(︂

1
2𝐸cms(𝑥) − 𝐸max(𝑥)𝜉

)︂
𝐸cms(𝑥) = 𝐸2

cms(𝑥′) , (5.83)

which leads to the transformation rule

𝑧(𝑥′) ≡ 𝑥′

𝑥
= 1 − 𝜉

1 −
(︁

𝑄min
𝐸cms(𝑥′)

)︁2
𝜉
. (5.84)

The integral is rewritten in terms of the new convolution variable
ˆ 1

0
d𝜉
ˆ 1

𝑥min

d𝑥 𝑓(𝑥)𝜎(𝑥,𝜉) =
ˆ 1

0
d𝜉 d𝑥′

1 − 𝜉
𝜃(𝑧(𝑥′) − 𝑥′)𝑓

(︂
𝑥′

𝑧(𝑥′)

)︂
𝜎( 𝑥′

𝑧(𝑥′) ,𝜉) . (5.85)

The kinematics entering the matrix element in 𝜎 are as if 𝜉 = 0. The transformation 𝑥 → 𝑥′ is
nothing but a boost along the beam axis.
If the reference particle is in the final state, the same reasoning can be applied. The reference energy
is rescaled by its maximal energy 𝑟0

max, given in Eq. (4.22) with 𝑧 = 1, in the collinear limit it reads

𝑟0 = 𝐸max(1 − 𝜉)𝜉𝑟 . (5.86)

The energy of the parton that enters the matrix element in the collinear limit is the sum of the
energy of the reference parton and the unresolved parton. A transformation of the energy variable
𝜉𝑟 → 𝜉𝑟′ can be determined, such that the kinematics in the collinear limit are the same as the
kinematics in the soft-collinear limit. The requirement reads

𝐸max(1 − 𝜉)𝜉𝑟 + 𝐸max𝜉 = 𝐸max𝜉𝑟′ , (5.87)

which is rewritten as
𝜉𝑟 = 𝜉𝑟′ − 𝜉

1 − 𝜉
. (5.88)
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The transformation of the relevant integral is finally given by
ˆ 1

0
d𝜉
ˆ 1

0
d𝜉𝑟𝜎(𝜉𝑟,𝜉) =

ˆ 1

0
d𝜉
ˆ 1

0

d𝜉𝑟′

1 − 𝜉
𝜃(𝜉𝑟′ − 𝜉)𝜎

(︂
𝜉𝑟′ − 𝜉

1 − 𝜉
,𝜉

)︂
. (5.89)

Single-collinear sector in a boosted reference frame
There is yet another situation that has to be taken into account for a single-collinear sector. The
collinear renormalization contribution 𝜎̂C1, as given in Eq. (3.24) contains a convolution of 𝜎̂R with
a splitting function. The reference and the unresolved parton are defined in the center-of-mass frame
of 𝑝1 + 𝑝2, while the contribution is evaluated for a boosted initial state momentum 𝑧𝑝1 + 𝑝2. The
case 𝑝1 + 𝑧𝑝2 is obtained by symmetry. Missed binning is related to the different kinematics of the
case 𝑧 = 1 and 𝑧 ≠ 1. It can be avoided by changing the convolution variable 𝑥1 → 𝑥1/𝑧, if 𝑧 ≠ 1.
The center-of-mass energy is as if 𝑧 = 1, since effectively the partonic momentum 𝑝1 is replaced by
𝑝1/𝑧. This is effectively a boost along the beam axis, where the corresponding rapidity is

𝑦 = 1
2 log 𝑧 . (5.90)

Unfortunately, the reference momentum and the unresolved momentum in 𝜎̂R are now defined in
the center-of-mass frame of 𝑝1/𝑧 + 𝑝2. In order to match the kinematics at 𝑧 = 1 they have to
be boosted to the center-of-mass frame of 𝑝1 + 𝑝2, by a boost in 𝑧-direction of rapidity 𝑦. The
corresponding Lorentz-matrix for the transformation of the energy and the 𝑧-component reads

𝛬(𝑧) = 1
2
√
𝑧

(︂
1 + 𝑧 𝑧 − 1
𝑧 − 1 1 + 𝑧

)︂
. (5.91)

Since, the unresolved parton is parameterized with respect to the resolved parton, as explained in
section 4.2.1, only the angle of the reference momentum with respect to the 𝑧-axis, 𝛼1, is effected by
the boost. In this particular case the rescaled energy parameters 𝜉𝑟 and 𝜉 do not change, as they
describe the same energy fraction in both frames. The transformation of the cosine of the angle
reads

cos𝛼1 −→ (1 + 𝑧) cos𝛼1 − (1 − 𝑧)
(1 + 𝑧) − (1 − 𝑧) cos𝛼1

. (5.92)

Triple-collinear sector
The triple-collinear contribution to 𝜎̂RR

DU is considered. The energy of the collinear parton entering
the matrix element is given by the sum of the reference parton and the unresolved partons

𝑟0 + 𝑢0
1 + 𝑢0

2 , (5.93)

where the parameterization in terms of sector variables is given in Eq. (4.35) and Tab. 4.2. A
transformation of the integration variable in the collinear limit should either reproduce the triple-
collinear double soft kinematics, if both unresolved partons can become soft or the triple-collinear
single soft kinematics, if only one of the partons can become soft. The former case corresponds to a
mapping of 𝑟0 +𝑢0

1 +𝑢0
2 → 𝑟0, while the latter corresponds to a mapping 𝑟0 +𝑢0

1 +𝑢0
2 → 𝑟0 +𝑢0

1. The
mappings given in Tab. 4.2 allow that either both partons are soft or 𝑢2 is soft. Another possible
case is, when 𝑢2 is already soft. Then the mapping should be 𝑟0 +𝑢0

1 → 𝑟0. As in the single-collinear
case the reference parton can be in the initial state or in the final state. If the reference parton is in
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the initial state the condition Eq. (5.83) can be generalized and reads

2
(︂

1
2𝐸cms(𝑥) − 𝐸max(𝑥)𝜉

)︂
𝐸cms(𝑥) = 2

(︂
1
2𝐸cms(𝑥′) − 𝐸max(𝑥′)𝜉′

)︂
𝐸cms(𝑥′) , (5.94)

where depending on the mapping the variables 𝜉 and 𝜉′ are given in Tab. 5.2. The solution is easily
obtained

𝑧(𝑥′) ≡ 𝑥′

𝑥
= 1 − 𝜉

1 − 𝜉′ −
(︁

𝑄min
𝐸cms(𝑥′)

)︁2
(𝜉 − 𝜉′)

. (5.95)

The integral reads
ˆ 1

𝑥min

d𝑥 𝑓(𝑥)𝜎(𝑥,𝜉) = d𝑥′ 1 − 𝜉′

1 − 𝜉
𝜃(𝑧(𝑥′) − 𝑥′)𝑓

(︂
𝑥′

𝑧(𝑥′)

)︂
𝜎

(︂
𝑥′

𝑧(𝑥′) ,𝜉
)︂
. (5.96)

If the reference momentum is in the final state, the reasoning of the single-collinear case can be
easily generalized, see Eq. (5.97). The condition that the kinematics of the triple-collinear limit are
the same as in the soft triple-collinear limit is given by

𝐸max(1 − 𝜉)𝜉𝑟 + 𝐸max𝜉 = 𝐸max(1 − 𝜉′)𝜉𝑟′ + 𝐸max𝜉
′ . (5.97)

The transformation rule is
𝜉𝑟 = 𝜉𝑟′(1 − 𝜉′) − (𝜉 − 𝜉′)

1 − 𝜉
, (5.98)

and the transformed integral reads
ˆ 1

0
d𝜉𝑟𝜎(𝜉𝑟) =

ˆ 1

0
d𝜉
ˆ 1

0
d𝜉𝑟′

1 − 𝜉′

1 − 𝜉
𝜃(𝜉𝑟′(1 − 𝜉′) − (𝜉 − 𝜉′))𝜎

(︂
𝜉𝑟′(1 − 𝜉′) − (𝜉 − 𝜉′)

1 − 𝜉

)︂
. (5.99)

The relation of the variables 𝜉 and 𝜉′ to the sector variables for the different mapping. is given in
Tab. 5.2.

mapping 𝜉 𝜉′

𝑟0 + 𝑢0
1+ → 𝑟0 𝜉1 0

𝑟0 + 𝑢0
1 + 𝑢0

2 → 𝑟0 𝜉1 + 𝜉′
2min[𝜉1,1 − 𝜉1] 0

𝑟0 + 𝑢0
1 → 𝑟0 + 𝑢0

1 𝜉1 + 𝜉′
2min[𝜉1,1 − 𝜉1] 𝜉1

Table 5.2: Identification of the auxiliary variable 𝜉 and 𝜉′ with the sector variables of the two unresolved partons
in the triple-collinear sector. The variable 𝜉′

2 = 𝜉2 in all sectors but sector S2, where it is 𝜉′
2 = 𝜂1𝜉2. The remappings

are performed in the triple-collinear limit of the three partons, where the function 𝜉2max = min
[︁
1, 1−𝜉1

𝜉1

]︁
.

Double-collinear sector
The transformations for the double-collinear sector are obtained in a similar way and are mixed
cases of the ones, that have been discussed already. In the double-collinear limit the hard momenta
that enter the matrix elements are 𝑟1 + 𝑢1 and 𝑟2 + 𝑢2. The possible mappings have to reproduce
the kinematics as additionally, 𝑢0

2 = 0 or 𝑢0
1 = 0 and 𝑢0

2 = 0. The list of possible mappings is

{𝑟0
1 + 𝑢0

1, 𝑟
0
2 + 𝑢0

2} → {𝑟0
1 + 𝑢0

1, 𝑟
0
2} ,
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{𝑟0
1 + 𝑢0

1, 𝑟
0
2 + 𝑢0

2} → {𝑟0
1, 𝑟

0
2} .

These mappings can be related to the mappings in the single-collinear case. Similar remappings are
applied iteratively to the collinear pairs. Additionally, if at least one of the reference momentum is
in the initial state and a mapping as in Eq. (5.84) is applied, the second collinear parton pair is
effectively boosted by 𝑧(𝑥′). A boost as in Eq. (5.91) has to be applied to the second pair in order
to match the kinematics.

The presented mappings improve the convergence of the Monte Carlo integration and completely
avoid missed binning.

5.6 Functionality of the software
In this section, the functionality of the software is presented and first histograms are obtained. A
full phenomenological study of processes is beyond the scope of this work and will be presented
elsewhere.
In order to verify the concept of the implementation first differential distributions for different
observables are presented. Since the one-loop matrix elements for 𝑝𝑝 → 𝑡𝑡 are already interfaced,
first tests can be performed for this process. Differential distributions at leading order and next-
to-leading order are shown in Figs. 5.11 and 5.12 respectively. The center-of-mass energy is fixed
to

√
𝑠 = 8TeV. The left plot shows the rapidity distribution of the top quark, while the right

plot shows the distribution in the transverse momentum 𝑝𝑡 of the top quark. The theoretical
uncertainty is obtained by varying the factorization and renormalization scale independently in the
range 𝑚𝑡/2 ≤ 𝜇F,R ≤ 2𝑚𝑡, where 1/4 < 𝜇F/𝜇R < 4. The modular structure of the software allows
to evaluate the cross section for different scales in one integration run. Different scale choices are
organized by the class Scales. For the presented example, the evaluation has been performed at seven
different combinations of scales, where the depicted error band is given for the largest difference
between two choices. The central value is evaluated at the scales 𝜇R = 𝜇F = 𝑚𝑡. The rapidity
distribution is shown for the CT10 PDF sets and the 𝑝𝑡-distribution for the MSTW2008(nn)lo68cl
PDF sets are depicted. The evaluation of the different contributions has been performed for four
different PDF sets at the same time. As explained in section 5.1 the management of the different
sets is controlled by the class InitialState. Another important feature of the implementation is that
the output is completely managed by the Measurement class, where different observables can be
defined simultaneously. Therefore, both plots in the shown figures have been obtained in the course
of one evaluation.
First partial contributions to the differential distributions at next-to-next-to-leading order are
presented in Fig. 5.13. The previously given comments apply to this differential distributions as
well. The cross section is denoted by 𝜎nnLO in order to highlight that it contains only partially
contributions to the next-to-next-to-leading order cross section. It is therefore phenomenologically
not relevant yet. On top of the full next-to-leading order contribution it contains the following
parts. The finite part of the real-virtual contribution 𝜎RV

F is included. This contribution includes
the 𝑛+ 1-parton one-loop finite remainder and is finite due to the appropriate subtraction terms,
that include the infrared limits of the one-loop finite remainder. In general high statistics are
required to obtain a reliable result. In the present case 2 × 108 points have been evaluated for this
contribution, which took about 8 hours on cluster of 800 cores. In addition, the finite part of the
double-real contribution 𝜎RR

F is included, where in the presented plots only the partonic contributions
𝑔𝑔 → 𝑡𝑡𝑔𝑔 and 𝑔𝑔 → 𝑡𝑡𝑢𝑢̄ are considered. The summation over spin states has been performed by a
deterministic summation for all external particles except the reference and unresolved partons. The
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sum over polarization states of the reference and the unresolved partons has been performed by a
helicity Monte Carlo, as explained in section 5.3. Hence, the convergence of the calculation provides
another important test of the polarized subtraction terms in a more realistic context. Additionally,
a smearing has been applied in order to reduce the effects of missed binning. The evaluation of
2 × 109 integration points in the presented set up, requires 2 hours on a 800 core cluster. These
two contributions are the most costly parts in terms of computation time, since they are the only
contributions that contain the one-loop 𝑛+ 1 parton finite remainder and the 𝑛+ 2 parton tree-level
matrix element respectively. Finally, the full contribution that contains the 𝑛 particle one-loop finite
remainder 𝜎FR is included in both plots in Fig. 5.13
The given examples show already the main functionality of the software. Differential distributions
for cross sections that are relevant at the LHC will be available on a short computational time scale,
while the observable can be tailored individually to a multitude of experimental setups.
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Figure 5.11: Differential distributions for top-pair production at hadron collisions at leading order obtained
with Stripper. The error band is due to the variation of the renormalization and factorization scales in the range
𝑚𝑡/2 ≤ 𝜇F,R ≤ 2𝑚𝑡. The central value is given at 𝜇F,R = 𝑚𝑡. The total cross section is 172.2 ± 66.7(scale) ±
44.4(PDF) pb.
Left: Differential distribution in the rapidity 𝑦𝑡 of the 𝑡-quark. The PDF set is CT10.
Right: Differential distribution in the transverse momentum 𝑝𝑡 of the 𝑡-quark. The PDF set is MSTW2008lo68cl.
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Figure 5.12: Differential distributions for top-pair production at hadron collisions at next-to-leading order
obtained with Stripper. The error band is due to the variation of the renormalization and factorization
scales in the range 𝑚𝑡/2 ≤ 𝜇F,R ≤ 2𝑚𝑡. The central value is given at 𝜇F,R = 𝑚𝑡. The total cross section is
226.2 ± 27.8(scale) ± 29.6(PDF) pb.
Left: Differential distribution in the rapidity 𝑦𝑡 of the 𝑡-quark. The PDF set is CT10NLO.
Right: Differential distribution in the transverse momentum 𝑝𝑡 of the 𝑡-quark. The PDF set is MSTW2008nlo68cl.
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Figure 5.13: Differential distributions for top-pair production at hadron collisions at next-to-leading order and
parts of the next-to-next-to-leading order contributions obtained with Stripper. In addition to the next-to-leading
order cross section the contributions 𝜎RV

F , 𝜎FR and 𝜎RR
F are included, where in the last case only the partonic

channels 𝑔𝑔 → 𝑡𝑡𝑔𝑔 and 𝑔𝑔 → 𝑡𝑡𝑢𝑢̄ are included. The error band is due to the variation of the renormalization
and factorization scales in the range 𝑚𝑡/2 ≤ 𝜇F,R ≤ 2𝑚𝑡. The central value is given at 𝜇F,R = 𝑚𝑡.
Left: Differential distribution in the rapidity 𝑦𝑡 of the 𝑡-quark. The PDF set is CT10NNLO.
Right: Differential distribution in the transverse momentum 𝑝𝑡 of the 𝑡-quark. The PDF set is
MSTW2008nnlo68cl.



CHAPTER 6
Summary and Outlook

The main result of this work is a complete general construction of the sector improved residue
subtraction scheme Stripper, which has been outlined in chapter 4. Stripper provides a subtraction
framework that allows to compute fully differential next-to-next-to-leading order corrections in
perturbative QCD to arbitrary processes and in particular to processes that are relevant for the
interpretation of data at the LHC.
The main features of the scheme are summarized in the following:

• The cross section is separated into several finite and integrable pieces by providing all necessary
subtraction terms.

• A numerical cancellation of pole contributions between virtual and real corrections is ensured
by the explicit construction of the scheme.

• Subtraction terms are local, which allows a numerically stable efficient Monte-Carlo integration.
• The subtraction scheme is formulated in such a way that only four-dimensional matrix elements

are needed. Hence, it can be interfaced to available matrix element generators.
• The subtraction scheme is process independent due to universal factorization properties of

matrix elements in soft and collinear limits.
• The full color information is treated directly and no additional approximations are made.

The explicit implementation of the scheme has been discussed in chapter 5. The structure of the
software reflects the fact that the subtraction scheme is process independent. This means that the
implementation of the subtractions scheme is completely decoupled from the evaluation of single
matrix elements. General features of the implementation that improve efficiency and stability of
a numerical evaluation have been outlined. In particular, deterministic sums over polarization
states of external particles in the most time consuming contributions are replaced by Monte Carlo
sums over randomly polarized particles for all particles but the reference and unresolved partons.
For the reference and the unresolved partons the deterministic sum is replaced by a Monte Carlo
sampling over helicity states. Therefore complete polarized subtraction terms have been derived
and implemented.
In addition to the full subtraction scheme, the software includes already all necessary tree-level
amplitudes for first Standard Model applications. One-loop and two-loop amplitudes have to be
provided additionally. A standardized interface exists that can be adapted to existing one-loop
matrix element generators. Currently, all one-loop matrix elements for 𝑡𝑡 production at next-to-
next-to-leading order are included. Available two-loop matrix elements can be readily interfaced
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to the subtraction scheme. The functionality of the software has been shown for a specific, non-
trivial example. Fully differential distributions for 𝑡𝑡 production at next-to-leading order have been
presented. Partial results for the same distributions at next-to-next-to-leading order have been
presented as well.
Stripper represents the first next-to-next-to-leading order event generator that can be modularly
extended to new processes, if the corresponding two-loop matrix elements are available.

Outlook
Following the first partial application to 𝑡𝑡-production, the next step is to include all missing
contributions at next-to-next-to-leading order. In particularly the two-loop finite-remainder will
be included, which has been calculated in [103, 104]. This allows to present fully differential
next-to-next-to-leading order predictions for 𝑡𝑡-production in hadron collisions.
An important additional verification of the subtraction scheme and its implementation would be an
application to further processes of phenomenological relevance. The modular implementation of
Stripper allows, in principle, a straightforward inclusion of further processes, if the two-loop matrix
elements are available. An application of physical interest would be therefore dijet production in
hadron collisions at next-to-next-to-leading order. Currently, a computation of the purely gluonic
contribution exists [49, 50]. A full computation would allow to include dijet data from proton-proton
collisions in the determination of PDF sets at next-to-next-to-leading order.
In the future, it would be interesting to apply the software to processes with 3 final state particles.
Observing the rapid progress in the computation of two-loop matrix elements in the past few years,
first results for two-loop matrix elements with five external states are expected within a few years.
There are several extensions to the current implementation that can be thought of in the near future.
For example, the inclusion of decays of final state unstable particles is important in order to match
the measured quantities precisely.
Finally, the event generator will be made publicly available, after first benchmark processes are
successfully calculated.

Stripper is an important step towards fully automated next-to-next-to-leading order compu-
tations, which are necessary to understand measurements at the LHC in context of the Standard
Model, especially in the light of Run II.
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APPENDIX A
Notation and conventions

The spacetime dimension is continued to the complex plane and denoted by

𝑑 = 4 − 2𝜀 , (A.1)

where 𝜀 → 0 lead to a finite result for physical quantities.
The relation between the bare and the renormalized strong coupling constant is given by

𝛼0
𝑠 =

(︂
𝜇2

R𝑒
𝛾E

4𝜋

)︂𝜀
𝑍𝛼𝑠𝜁𝛼𝑠𝛼𝑠 , (A.2)

with
𝜇𝑅 − renormalization scale ,
𝑍𝛼𝑠 − MS renormalization constant ,
𝜁𝛼𝑠 − heavy-quark decoupling constant [66] .

(A.3)

Matrix elements are given as vectors in color- and spin space

M𝑐1,...,𝑐𝑛;𝑠1,...,𝑠𝑛
𝑎1,...,𝑎𝑛

(𝑝1, . . . ,𝑝𝑛) =
(︁

⟨𝑐1, . . . ,𝑐𝑛| ⊗ ⟨𝑠1, . . . ,𝑠𝑛|
)︁

|M𝑎1,...,𝑎𝑛 (𝑝1, . . . ,𝑝𝑛)⟩ , (A.4)

|M𝑛⟩ = |M𝑎1,...,𝑎𝑛 (𝑝1, . . . ,𝑝𝑛)⟩ ,
∑︁
color
spin

|M𝑛|2 = ⟨M𝑛|M𝑛⟩ , (A.5)

|M𝑛⟩ =
(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃−𝑙𝜀(︁
|M(0)

𝑛 ⟩ + |M(1)
𝑛 ⟩ + |M(2)

𝑛 ⟩ + . . .
)︁
. (A.6)

𝑐𝑖 − color of parton 𝑖, 𝑎𝑖 − flavor of parton 𝑖,
𝑠𝑖 − spin of parton 𝑖, 𝑝𝑖 − momentum of parton 𝑖,
|𝑐1, . . . ,𝑐𝑛⟩ − color basis vectors, |𝑠1, . . . ,𝑠𝑛⟩ − spin basis vectors,
𝑙 − 𝛼𝑠 power of Born approximation.
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Phase space integrals over 𝑛 final state particles are

ˆ
d𝛷𝑛

(︁
𝑝1 + 𝑝2 →

𝑛∑︁
𝑖=1

𝑞𝑖

)︁
=
(︃
𝜇2
𝑅𝑒

𝛾E

4𝜋

)︃(𝑛−1)𝜀 ˆ 𝑛∏︁
𝑖=1

d𝑑−1𝑞𝑖
(2𝜋)𝑑−12𝑞0

𝑖

(2𝜋)𝑑𝛿(𝑑)
(︁ 𝑛∑︁
𝑖=1

𝑞𝑖 − 𝑝1 − 𝑝2

)︁
. (A.7)

Sums over massive, massless and arbitrary partons are distinguished∑︁
𝑖𝑗...

− sum over all indices 𝑖,𝑗, . . . ,
∑︁

(𝑖,𝑗,...)

− sum over distinct indices 𝑖,𝑗, . . . .

𝑖,𝑗,𝑘, . . .− indices for arbitrary partons, both massless and massive,
𝑖0,𝑗0,𝑘0, . . .− indices for massless partons,
𝐼,𝐽,𝐾, . . .− indices for massive partons.

(A.8)

The following kinematic invariants are used in several places of the text

𝑝2
𝐼 = 𝑚2

𝐼 , (A.9)
𝑣𝐼 = 𝑝𝐼/𝑚𝐼 , (A.10)

𝑣𝐼𝐽 =

√︃
1 −

𝑚2
𝐼𝑚

2
𝐽

(𝑝𝐼𝑝𝐽)2 , (A.11)

𝑠𝑖𝑗 = 2𝜎𝑖𝑗𝑝𝑖 · 𝑝𝑗 + 𝑖0+ , (A.12)

where 𝜎𝑖𝑗 = +1 if the momenta 𝑝𝑖 and 𝑝𝑗 are both incoming or outgoing and 𝜎𝑖𝑗 = −1 otherwise.

𝜎𝑖𝑗 = +1 − if the momenta 𝑝𝑖 and 𝑝𝑗 are both incoming or outgoing , 𝜎𝑖𝑗 = −1 − otherwise.

A.1 Color decomposition and color algebra
Matrix elements are given as vectors in color space. Operators in this space are the color charge
operators that are defined by [16]

⟨𝑐1, . . . ,𝑐𝑖, . . . ,𝑐𝑛,𝑐|T𝑖|𝑏1, . . . ,𝑏𝑖, . . . ,𝑏𝑛⟩ = ⟨𝑐1, . . . ,𝑐𝑖, . . . ,𝑐𝑛|𝑇 𝑐𝑖 |𝑏1, . . . ,𝑏𝑖, . . . ,𝑏𝑛⟩
= 𝛿𝑐1𝑏1 . . . 𝑇

𝑐
𝑐𝑖𝑏𝑖

. . . 𝛿𝑐𝑛𝑏𝑛 . (A.13)∑︁
𝑖

T𝑖|M𝑛⟩ = 0 , 𝑇 𝑐𝑖 𝑇
𝑐
𝑗 = T𝑖 · T𝑗 = T𝑗 · T𝑖, T𝑖 · T𝑖 = T2

𝑖 = 𝐶𝑖 = 𝐶𝑎𝑖 , (A.14)

𝐶𝑔 = 𝐶𝐴 , 𝐶𝑞 = 𝐶𝑞 = 𝐶𝐹 . (A.15)

𝑇 𝑐𝑐1𝑐2 = 𝑖𝑓 𝑐1𝑐𝑐2 − emitter is a gluon , (A.16)
𝑇 𝑐𝑐1𝑐2 = 𝑡𝑐𝑐1𝑐2(= −𝑡𝑐𝑐2𝑐1) − emitter is an outgoing quark (anti-quark) , (A.17)
𝑇 𝑐𝑐1𝑐2 = −𝑡𝑐𝑐2𝑐1(= 𝑡𝑐𝑐1𝑐2) − emitter is an ingoing quark (anti-quark) . (A.18)

(A.19)

Tr
[︁
𝑡𝑎𝑡𝑏
]︁

= 𝑇𝐹 𝛿
𝑎𝑏 = 1

2𝛿
𝑎𝑏 . (A.20)
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The above treatment assumes that the gluon is treated as a eight dimensional vector in the adjoint
representation of 𝑆𝑈(3), while the quarks are in the three-dimensional fundamental representation
of 𝑆𝑈(3), where the number of colors is 𝑁𝑐 = 3.
Another basis, which is also used in this work, is the color flow representation of matrix elements
[229, 230]. The single gluon index 𝑐 (𝑐 = 1, . . . ,𝑁2

𝑐 − 1) is traded for two indices in the fundamental
representation and the complex conjugate fundamental representation. On a Langrangian level this
can be achieved by replacing the gluon field by

𝐴𝑐𝜇 → 1√
2
𝐴𝑐𝜇(𝑡𝑐)𝑖𝑗 , (A.21)

where upper indices are in the fundamental representation and lower indices in the conjugate
fundamental representation. The indices of the color flow basis should not be confused with the
indices labeling the partons introduced in Eq. (A.8). Each matrix element, that contains 𝑛 external
partons can be decomposed according to its color structure as

|M(0)
𝑛 ⟩ =

∑︁
𝐼=𝑃 (2,...𝑛)

𝛿𝑖1𝑗𝜎𝐼 (1)
𝛿𝑖2𝑗𝜎𝐼 (2)

. . . 𝛿𝑖𝑛𝑗𝜎𝐼 (𝑛)
M

(0)
𝐼 (𝑝1 . . . 𝑝𝑛) ≡ 𝐷𝐼M

(0)
𝐼 (𝑝1 . . . 𝑝𝑛) , (A.22)

where M
(0)
𝐼 is the color ordered amplitude. The summation runs over all (𝑛− 1)! permutations 𝜎𝐼

of (2, . . . ,𝑛). The 𝑘-th external gluon is labeled by the double index (𝑖𝑘,𝑗𝜎𝐼(𝑘)), while the 𝑘-th quark
is labeled by (𝑖𝑘,0) and the 𝑘-th antiquark by (0,𝑗𝜎𝐼(𝑘)). Squaring the amplitude and summing over
all colors the color matrix is given by

𝐶𝐼𝐽 =
∑︁
color

𝐷𝐼𝐷
†
𝐽 = 𝑁𝑚(𝜎𝐼 ,𝜎𝐽 )

𝑐 . (A.23)

The function 1 ≤ 𝑚(𝜎𝐼 ,𝜎𝐽) ≤ 𝑁 counts the number of closed delta contractions, where 𝑁 is the
number of gluons and 𝑞𝑞-pairs. In the leading color approximation (LC), only diagonal terms 𝐼 = 𝐽
are kept, with 𝑚(𝜎𝐼 ,𝜎𝐽) = 𝑁 . The squared matrix element reads

⟨M(0)
𝑛 |M(0)

𝑛 ⟩ = 𝑁𝑁
𝑐

∑︁
𝐼

|M(0)
𝐼 (𝑝1 . . . 𝑝𝑛) |2 + O(𝑁𝑁−2

𝑐 ) . (A.24)

Even though here the color flow representation is only given for tree-level amplitudes it can be
generalized to amplitudes containing loops.

A.2 Spherical coordinates in 𝑑-dimensions
The parameterization of momenta for the subtraction scheme STRIPPER relies on spherical
coordinates in 𝑑-dimensions. It is therefore useful to have a consistent notation for vectors and
integration measures in those coordinates.
The notation has been established in [1].

Let d𝑑𝑟 be the Euclidean integration measure in R𝑑. It is decomposed into a radial and an angular
part with the help of a 𝛿-function insertion, if the 𝑟 vector is rescaled as 𝑟 = 𝑟 𝑛̂

ˆ
R𝑑

d𝑑𝑟 =
ˆ ∞

0
d𝑟 𝑟𝑑−1

ˆ
R𝑑

d𝑑𝑛̂ 𝛿(1 − ‖𝑛̂‖) =
ˆ ∞

0
d𝑟 𝑟𝑑−1

ˆ
S𝑑−1

1

d𝛺 . (A.25)
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This defines a rotationally invariant measure, d𝛺, on the unit (𝑑− 1)-sphere, S𝑑−1
1 . The versors 𝑛̂

are always further specified by their dimensionality and are recursively defined in terms of angles

𝑛̂(𝑑)(𝜃1, 𝜃2, . . . , 𝜃𝑑−1) =

⎛⎝cos 𝜃1

sin 𝜃1 𝑛̂(𝑑−1)(𝜃2, . . . , 𝜃𝑑−1)

⎞⎠ , 𝑛̂(1) = 1 , (A.26)

where
𝜃1, . . . , 𝜃𝑑−2 ∈ [0, 𝜋] , 𝜃𝑑−1 ∈ [0, 2𝜋] . (A.27)

An important property of this parameterization is

𝑛̂(𝑑)(𝜃1, . . . , 𝜃𝑛−1, 0, 𝜃𝑛+1, . . . , 𝜃𝑑−1) = 𝑛̂(𝑑)(𝜃1, . . . , 𝜃𝑛−1, 0, 0, . . .) ,
𝑛̂(𝑑)(𝜃1, . . . , 𝜃𝑛−1, 𝜋, 𝜃𝑛+1, . . . , 𝜃𝑑−1) = 𝑛̂(𝑑)(𝜃1, . . . , 𝜃𝑛−1, 𝜋, 0, 0, . . .) .

The recursive definition of the versor can be implemented in the integration measure
ˆ
S𝑑−1

1

d𝛺(𝜃1, 𝜃2, . . . , 𝜃𝑑−1) =
ˆ 𝜋

0
d𝜃1 sin𝑑−2 𝜃1

ˆ
S𝑑−2

1

d𝛺(𝜃2, . . . , 𝜃𝑑−1) . (A.28)

The volume of the unit (𝑑− 1)-sphere is
ˆ
S𝑑−1

1

d𝛺 1 = 2𝜋 𝑑
2

𝛤
(︀
𝑑
2
)︀ . (A.29)

The following formular is essential for the four dimensional formulation of STRIPPER and is used
in section 4.6ˆ

S𝑑−1
1

d𝛺 𝛿(𝑑)
(︁
𝛼𝑛̂(𝑑)

)︁
= 𝛼1−𝑑

ˆ
R𝑑

d𝑑
(︁
𝛼𝑛̂(𝑑)

)︁
𝛿
(︁
𝛼−

⃦⃦⃦
𝛼𝑛̂(𝑑)

⃦⃦⃦)︁
𝛿(𝑑)

(︁
𝛼𝑛̂(𝑑)

)︁
= 1
𝛼𝑑−1 𝛿(𝛼) , (A.30)

as it takes care of the correct reduction of the dimensionality of space
ˆ
S𝑑−1

1

d𝛺 𝛿(𝑑−𝑛)
(︁

𝑛̂(𝑑)
)︁

=
ˆ
S𝑛−1

1

d𝛺 , (A.31)

In the context of STRIPPER, unit vectors are defined through rotations of a single basis vector
pointing along the 𝑧-direction

𝑛̂
(𝑑)
0 =

⎛⎜⎜⎜⎝
1
0
0
...

⎞⎟⎟⎟⎠ , (A.32)
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where 𝑑× 𝑑 rotation matrices transforming the coordinates 𝑖 and 𝑗 are defined by

𝑅
(𝑑)
𝑖𝑗 (𝜃) =

𝑖 𝑗⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
. . .

1
cos 𝜃 sin 𝜃 𝑖

1
. . .

1
− sin 𝜃 cos 𝜃 𝑗

1
. . .

1

, (A.33)

The unspecified entries vanish. If rotations act in different planes, then the respective rotation
matrices commute

{𝑖, 𝑗} ∩ {𝑘, 𝑙} = ∅ =⇒
[︁
𝑅

(𝑑)
𝑖𝑗 (𝜃1), 𝑅

(𝑑)
𝑘𝑙 (𝜃2)

]︁
= 0 . (A.34)

The versor parameterization can be expressed through rotations as

𝑛̂(𝑑)(𝜃1, . . . , 𝜃𝑑−1) = 𝑅
(𝑑)
1 (𝜃1, . . . , 𝜃𝑑−1)𝑛̂(𝑑)

0 , (A.35)

where useful shorthand notation is given by

𝑅(𝑑)
𝑛 (𝜃1, . . . , 𝜃𝑑−𝑛) = 𝑅

(𝑑)
𝑑,𝑑−1(𝜃𝑑−𝑛). . .𝑅(𝑑)

𝑛+1,𝑛(𝜃1) . (A.36)

Due to the commutation properties of the rotation matrices, there is[︁
𝑅

(𝑑)
1 (𝜃1, . . . , 𝜃𝑛−1, 0, 0, . . .), 𝑅

(𝑑)
𝑛+1(𝜃𝑛+1, . . . , 𝜃𝑑−1)

]︁
= 0 . (A.37)

A.2.1 Angular integration beyond four dimensions

The subtraction scheme STRIPPER presented in chapter 4 relies on a parametrization of momenta
in angles and energies in 𝑑 = 4−2𝜀. The formulation of the scheme in ’t Hooft-Veltman regularization
however restricts resolved momenta to 𝑑 = 4 dimensions. The unresolved momenta are explicitly
integrated beyond four dimensions, where the relevant dimensions are restricted to five for the
first unresolved momentum and to six for the second unresolved momentum in the worst case of
the double soft limit. Here the angular integration measure is explicitly given, if four, five or six
dimensions need to be integrated explicitly.
If the integrand only depends on four dimensional parameters the remaining angular space can be
analytically integrated using ˆ

S−2𝜀
1

d𝛺 1 = 2(4𝜋)−𝜀𝛤 (1 − 𝜀)
𝛤 (1 − 2𝜀) . (A.38)
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If there is only one unresolved momentum five dimensions need to be integrated explicitly. The
corresponding angular integration is [20]
ˆ
S−2𝜀

1

d𝛺(𝜌1, . . .) = (4𝜋)−𝜀𝛤 (1 − 𝜀)
𝛤 (1 − 2𝜀)

×
ˆ +1

−1
d cos 𝜌1

(︂
𝛿(1 − cos 𝜌1) + 𝛿(1 + cos 𝜌1) − 2𝜀 4𝜀𝛤 (1 − 2𝜀)

𝛤 2(1 − 𝜀)

[︂
1

(1 − cos2 𝜌1)1+𝜀

]︂
+

)︂
. (A.39)

In the worst case scenario two unresolved momenta are present in the integrand and six dimensions
have to be integrated explicitly for the second unresolved parton. The corresponding formula reads
ˆ
S−2𝜀

1

d𝛺(𝜎1, 𝜎2, . . .) = (4𝜋)−𝜀𝛤 (1 − 𝜀)
2𝛤 (1 − 2𝜀)

×
ˆ +1

−1
d cos𝜎1

ˆ +1

−1
d cos𝜎2

(︃(︀
𝛿(1 − cos𝜎1) + 𝛿(1 + cos𝜎1)

)︀(︀
𝛿(1 − cos𝜎2) + 𝛿(1 + cos𝜎2)

)︀
− 2𝜀 4𝜀𝛤 (1 − 2𝜀)

𝛤 2(1 − 𝜀)

[︂
1

(1 − cos2 𝜎1)1+𝜀

]︂
+

(︀
𝛿(1 − cos𝜎2) + 𝛿(1 + cos𝜎2)

)︀
− 2 + 4𝜀

𝜋

[︂
1

(1 − cos2 𝜎1)1+𝜀

]︂
+

[︃
1

(1 − cos2 𝜎2) 3
2 +𝜀

]︃
+

)︃
.

(A.40)

The distributions present in the given formulas are defined by
ˆ +1

−1
d cos 𝜌

[︂
1

(1 − cos2 𝜌)𝛼

]︂
+
𝑓(cos 𝜌) =

ˆ 0

−1
d cos 𝜌 𝑓(cos 𝜌) − 𝑓(−1)

(1 − cos2 𝜌)𝛼

+
ˆ +1

0
d cos 𝜌 𝑓(cos 𝜌) − 𝑓(+1)

(1 − cos2 𝜌)𝛼 .

(A.41)

A.3 Spinor helicity formalism
Matrix elements for a fixed polarization can be described in a compact way using the Spinor-Helicty
formalism. Massless Dirac spinors are separated into right- and left-handed Weyl spinors

𝑢(𝑝𝑖) =
(︂
𝑢𝐿(𝑝𝑖)
𝑢𝑅(𝑝𝑖)

)︂
, 𝑣(𝑝𝑖) =

(︂
𝑣𝐿(𝑝𝑖)
𝑢𝑅(𝑝𝑖)

)︂
. (A.42)

The left and right-handed spinors are represented using a bra-ket notation:

𝑢+ = 𝑢𝑅(𝑝) = 𝑃+𝑢(𝑝) = 𝑃+𝑣(𝑝) = |𝑝⟩ , 𝑢− = 𝑢𝐿(𝑝) = 𝑃−𝑢(𝑝) = 𝑃−𝑣(𝑝) = |𝑝] , (A.43)
𝑢̄(𝑝)𝑃− = 𝑣(𝑝)𝑃− = [𝑝| , 𝑢̄(𝑝)𝑃+ = 𝑣(𝑝)𝑃+ = ⟨𝑝| . (A.44)

In Tab. A.1 the corresponding spinors for a fixed helicity of outgoing and incoming massless fermions
are given. The following identities are fulfilled by the spinor representation

⟨𝑝𝑖𝑝𝑗⟩ = −⟨𝑝𝑗𝑝𝑖⟩ , (A.45)
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particle type helicity spinor

outgoing particle −1 ⟨𝑝|

+1 [𝑝|

incoming particle −1 |𝑝]

+1 |𝑝⟩

outgoing antiparticle −1 |𝑝⟩

+1 |𝑝]

incoming antiparticle −1 [𝑝|

+1 ⟨𝑝|

Table A.1: Identification of left and right handed massless spinors with fermions of definite helicity.

[𝑝𝑖𝑝𝑗 ] = −[𝑝𝑗𝑝𝑖] , (A.46)
⟨𝑝𝑖𝑝𝑗⟩* = sign(𝑝0

𝑖 𝑝
0
𝑗 )[𝑝𝑗𝑝𝑖] , (A.47)

⟨𝑝𝑖𝑝𝑗⟩[𝑝𝑗𝑝𝑖] = 2𝑝𝑖 · 𝑝𝑗 , (A.48)

where incoming momenta are treated as outgoing with negative energy component 𝑝0. Polarization
vectors up to a term proportional to the direction of the gluon as eigenstates of the helicity operator
with eigenvalues ±1

𝜀𝜇(𝑝𝑧,+ 1) = 1√
2

⎛⎜⎜⎝
0

−𝑖
1
0

⎞⎟⎟⎠ , 𝜀𝜇(𝑝𝑧,− 1) = 1√
2

⎛⎜⎜⎝
0
𝑖
1
0

⎞⎟⎟⎠ , with 𝑝𝑧 =

⎛⎜⎜⎝
𝐸
0
0
𝐸

⎞⎟⎟⎠ . (A.49)

The polarization vectors can be expressed using helicity spinors, an additional reference momentum
𝑘 has to be introduced

𝜀𝜇−(𝑝,𝑘) ≡ 𝜀𝜇(𝑝,− 1,𝑘) = ⟨𝑘|𝛾𝜇|𝑝]√
2⟨𝑝𝑘⟩

, 𝜀𝜇+ ≡ 𝜀𝜇(𝑝,+ 1,𝑘) = ⟨𝑝|𝛾𝜇|𝑘]√
2[𝑘𝑝]

. (A.50)

This representation is equivalent to the axial gauge, which is reflected by the following properties

𝜀𝜇*
± (𝑝,𝑘) = 𝜀𝜇∓(𝑝,𝑘) , (A.51)

𝑝 · 𝜀±(𝑝,𝑘) = 𝑘 · 𝜀±(𝑝,𝑘) = 0 , (A.52)∑︁
𝜆=±

𝜀𝜇𝜆(𝑝,𝑘)𝜀𝜈*
𝜆 (𝑝,𝑘) = −𝑔𝜇𝜈 + 𝑝𝜇𝑘𝜈 + 𝑝𝜈𝑘𝜇

2𝑝 · 𝑘
. (A.53)





APPENDIX B
Infrared limits

B.1 Infrared divergences of virtual amplitudes
The IR renormalization constant Z(𝜀,{𝑝𝑖},{𝑚𝑖},𝜇𝑅) introduced in section 4.5 satisfies the renormal-
ization group equation

d
d ln𝜇𝑅

Z(𝜀,{𝑝𝑖},{𝑚𝑖},𝜇𝑅) = −𝛤 ({𝑝𝑖},{𝑚𝑖},𝜇𝑅) Z(𝜀,{𝑝𝑖},{𝑚𝑖},𝜇𝑅) , (B.1)

where the anomalous dimension operator Γ is given by [231–236]

𝛤 ({𝑝𝑖},{𝑚𝑖},𝜇𝑅) =
∑︁

(𝑖0,𝑗0)

T𝑖0 · T𝑗0

2 𝛾cusp(𝛼𝑠) ln
(︂

𝜇2
𝑅

−𝑠𝑖0𝑗0

)︂
+
∑︁
𝑖0

𝛾𝑖0(𝛼𝑠)

−
∑︁
(𝐼,𝐽)

T𝐼 · T𝐽

2 𝛾cusp(𝑣𝐼𝐽 ,𝛼𝑠) +
∑︁
𝐼

𝛾𝐼(𝛼𝑠) +
∑︁
𝐼,𝑗0

T𝐼 · T𝑗0 𝛾cusp(𝛼𝑠) ln
(︂
𝑚𝐼 𝜇𝑅
−𝑠𝐼𝑗0

)︂
+
∑︁

(𝐼,𝐽,𝐾)

𝑖 𝑓𝑎𝑏𝑐 𝑇 𝑎𝐼 𝑇
𝑏
𝐽 𝑇

𝑐
𝐾 𝐹1(𝑣𝐼𝐽 ,𝑣𝐽𝐾 ,𝑣𝐾𝐼)

+
∑︁
(𝐼,𝐽)

∑︁
𝑘0

𝑖 𝑓𝑎𝑏𝑐 𝑇 𝑎𝐼 𝑇
𝑏
𝐽 𝑇

𝑐
𝑘0 𝑓2

(︂
𝑣𝐼𝐽 , ln

(︂
−𝜎𝐽𝑘0 𝑣𝐽 · 𝑝𝑘0

−𝜎𝐼𝑘0 𝑣𝐼 · 𝑝𝑘0

)︂)︂
+ O(𝛼3

𝑠) .

(B.2)

The explicit solution of the RGE (B.1) can be found in [237], and reads up to order 𝛼2
𝑠

Z = 1 + 𝛼𝑠
4𝜋

(︂
𝛤 ′

0
4𝜀2 + 𝛤0

2𝜀

)︂
+
(︁𝛼𝑠

4𝜋

)︁2
[︂

(𝛤 ′
0)2

32𝜀4 + 𝛤 ′
0

8𝜀3

(︂
𝛤0 − 3

2 𝛽0

)︂
+ 𝛤0

8𝜀2 (𝛤0 − 2𝛽0) + 𝛤 ′
1

16𝜀2 + 𝛤1
4𝜀

]︂
+ O(𝛼3

𝑠) , (B.3)

where the lading contribution to the beta-function is

𝛽0 = 11
3 𝐶𝐴 − 4

3𝑇𝐹𝑛𝑙 , (B.4)

123
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with 𝑛𝑙 the number of massless quark flavors. The expression contains the anomalous dimension 𝛤
and its derivative

𝛤 ′(𝛼𝑠) = 𝜕

𝜕 ln𝜇𝑅
𝛤 ({𝑝𝑖},𝜇𝑅,𝛼𝑠) , (B.5)

expanded according to

𝛤 =
∞∑︁
𝑛=0

𝛤𝑛

(︁𝛼𝑠
4𝜋

)︁𝑛+1
, 𝛤 ′ =

∞∑︁
𝑛=0

𝛤 ′
𝑛

(︁𝛼𝑠
4𝜋

)︁𝑛+1
. (B.6)

𝛤 is given in terms of the anomalous dimensions 𝛾cusp, 𝛾𝑞, 𝛾𝑄, 𝛾𝑔, and two functions 𝐹1 and 𝑓2.
The explicit formulae for the coefficients of the expansion in 𝛼𝑠 read

𝛾(𝛼𝑠) =
∞∑︁
𝑛=0

𝛾𝑛

(︁𝛼𝑠
4𝜋

)︁𝑛+1
, (B.7)

which are taken literally from [232, 237]. The massless cusp anomalous dimension is

𝛾cusp
0 = 4 ,

𝛾cusp
1 =

(︂
268
9 − 4𝜋2

3

)︂
𝐶𝐴 − 80

9 𝑇𝐹𝑛𝑙 . (B.8)

In the massive case the cusp anomalous dimension can be written as

𝛾cusp(𝑣,𝛼𝑠) = 𝛾cusp(𝛼𝑠)
1
𝑣

[︂
1
2 ln

(︂
1 + 𝑣

1 − 𝑣

)︂
− 𝑖𝜋

]︂
+ 8𝐶𝐴

(︁𝛼𝑠
4𝜋

)︁2
{︃
𝜁3 − 5𝜋2

6 + 1
4 ln2

(︂
1 + 𝑣

1 − 𝑣

)︂
+ 1
𝑣2

[︂
1
24 ln3

(︂
1 + 𝑣

1 − 𝑣

)︂
+ ln

(︂
1 + 𝑣

1 − 𝑣

)︂(︂
1
2Li2

(︂
1 − 𝑣

1 + 𝑣

)︂
− 5𝜋2

12

)︂
+ Li3

(︂
1 − 𝑣

1 + 𝑣

)︂
− 𝜁3

]︂
+ 1
𝑣

[︂
5𝜋2

6 + 5𝜋2

12 ln
(︂

1 + 𝑣

1 − 𝑣

)︂
− ln

(︂
2𝑣

1 + 𝑣

)︂
ln
(︂

1 + 𝑣

1 − 𝑣

)︂
−1

4 ln2
(︂

1 + 𝑣

1 − 𝑣

)︂
− 1

24 ln3
(︂

1 + 𝑣

1 − 𝑣

)︂
+ Li2

(︂
1 − 𝑣

1 + 𝑣

)︂]︂
+ 𝑖𝜋

{︂
1
𝑣2

[︂
𝜋2

6 − 1
4 ln2

(︂
1 + 𝑣

1 − 𝑣

)︂
− Li2

(︂
1 − 𝑣

1 + 𝑣

)︂]︂
+1
𝑣

[︂
−𝜋2

6 + 2 ln
(︂

2𝑣
1 + 𝑣

)︂
+ ln

(︂
1 + 𝑣

1 − 𝑣

)︂
+ 1

4 ln2
(︂

1 + 𝑣

1 − 𝑣

)︂]︂
− ln

(︂
1 + 𝑣

1 − 𝑣

)︂}︂}︃
,

(B.9)

where 𝑣 = 𝑣𝐼 for the massive parton 𝐼. For massless quarks (anti-quarks)

𝛾𝑞0 = −3𝐶𝐹 ,
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𝛾𝑞1 = 𝐶2
𝐹

(︂
−3

2 + 2𝜋2 − 24𝜁3

)︂
+ 𝐶𝐹𝐶𝐴

(︂
−961

54 − 11𝜋2

6 + 26𝜁3

)︂
+ 𝐶𝐹𝑇𝐹𝑛𝑙

(︂
130
27 + 2𝜋2

3

)︂
, (B.10)

whereas the massive quark (anti quark) anomalous dimension is

𝛾𝑄0 = −2𝐶𝐹 ,

𝛾𝑄1 = 𝐶𝐹𝐶𝐴

(︂
2𝜋2

3 − 98
9 − 4𝜁3

)︂
+ 40

9 𝐶𝐹𝑇𝐹𝑛𝑙 .
(B.11)

The anomalous dimension for gluons reads

𝛾𝑔0 = −𝛽0 = −11
3 𝐶𝐴 + 4

3 𝑇𝐹𝑛𝑙 ,

𝛾𝑔1 = 𝐶2
𝐴

(︂
−692

27 + 11𝜋2

18 + 2𝜁3

)︂
+ 𝐶𝐴𝑇𝐹𝑛𝑙

(︂
256
27 − 2𝜋2

9

)︂
+ 4𝐶𝐹𝑇𝐹𝑛𝑙 . (B.12)

Finally, the functions 𝐹1 and 𝑓2 are [235]

𝐹1(𝑣12,𝑣23,𝑣31) = 1
3

3∑︁
𝐼,𝐽,𝐾=1

𝜀𝐼𝐽𝐾
𝛼𝑠
4𝜋 𝑔(𝑣𝐼𝐽) 𝛾cusp(𝑣𝐾𝐼 ,𝛼𝑠) ,

𝑓2

(︁
𝑣12, ln

−𝜎23 𝑣2 · 𝑝3
−𝜎13 𝑣1 · 𝑝3

)︁
= −𝛼𝑠

4𝜋 𝑔(𝑣12) 𝛾cusp(𝛼𝑠) ln
(︂

−𝜎23 𝑣2 · 𝑝3
−𝜎13 𝑣1 · 𝑝3

)︂
,

(B.13)

where

𝑔(𝑣) = 5𝜋2

6 − 1
4 ln2

(︂
1 + 𝑣

1 − 𝑣

)︂
+ 1
𝑣

[︂
−5𝜋2

6 + ln
(︂

2𝑣
1 + 𝑣

)︂
ln
(︂

1 + 𝑣

1 − 𝑣

)︂
+ 1

4 ln2
(︂

1 + 𝑣

1 − 𝑣

)︂
− Li2

(︂
1 − 𝑣

1 + 𝑣

)︂]︂
+ 𝑖𝜋

{︂
ln
(︂

1 + 𝑣

1 − 𝑣

)︂
− 1
𝑣

[︂
2 ln

(︂
2𝑣

1 + 𝑣

)︂
+ ln

(︂
1 + 𝑣

1 − 𝑣

)︂]︂}︂
.

(B.14)

B.2 Soft and collinear limits of tree-level matrix elements
Soft- and collinear limits of tree-level matrix elements as discussed in section 3.4.1. Here, some
explicit expressions for soft and splitting functions are summarized.

B.2.1 Splitting functions

The collinear limit of two partons is described in Eq. (3.48), while the factorization formula is given
in Eq. (3.49). The possible splitting functions are defined as operators in spin space that act on the
spin of parton 𝑎

⟨𝑠|P̂(0)
𝑎1𝑎2 |𝑠′⟩ = 𝑃 (0), 𝑠𝑠′

𝑎1𝑎2 . (B.15)

The splitting functions are

𝑃 (0), 𝜇𝜈
𝑔𝑔 (𝑧,𝑘⊥; 𝜀) = 2𝐶𝐴

[︂
−𝑔𝜇𝜈

(︂
𝑧

1 − 𝑧
+ 1 − 𝑧

𝑧

)︂
− 2(1 − 𝜀)𝑧(1 − 𝑧)

𝑘𝜇⊥𝑘
𝜈
⊥

𝑘2
⊥

]︂
, (B.16)
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𝑃
(0), 𝜇𝜈
𝑞𝑞 (𝑧,𝑘⊥; 𝜀) = 𝑃

(0), 𝜇𝜈
𝑞𝑞 (𝑧,𝑘⊥; 𝜀) = 𝑇𝐹

[︂
−𝑔𝜇𝜈 + 4𝑧(1 − 𝑧)

𝑘𝜇⊥𝑘
𝜈
⊥

𝑘2
⊥

]︂
, (B.17)

𝑃 (0), 𝑠𝑠′
𝑞𝑔 (𝑧,𝑘⊥; 𝜀) = 𝑃

(0), 𝑠𝑠′

𝑞𝑔 (𝑧,𝑘⊥; 𝜀) = 𝛿𝑠𝑠
′
𝐶𝐹

[︂
1 + 𝑧2

1 − 𝑧
− 𝜀(1 − 𝑧)

]︂
, (B.18)

𝑃 (0), 𝑠𝑠′
𝑔𝑞 (𝑧,𝑘⊥; 𝜀) = 𝑃

(0), 𝑠𝑠′

𝑔𝑞 (𝑧,𝑘⊥; 𝜀) = 𝑃 (0), 𝑠𝑠′
𝑞𝑔 (1 − 𝑧,𝑘⊥; 𝜀) , (B.19)

while averaging over the transverse direction leads to the factorization formula

|M(0)
𝑎1,𝑎2,...(𝑝1,𝑝2, . . .)|2 ≃ 4𝜋𝛼𝑠

2
𝑠12

⟨P̂(0)
𝑎1𝑎2(𝑧; 𝜀)⟩ |M(0)

𝑎,...(𝑝, . . .)|2 , (B.20)

where the averaged splitting functions read

⟨P̂(0)
𝑔𝑔 (𝑧; 𝜀)⟩ = 2𝐶𝐴

[︂
𝑧

1 − 𝑧
+ 1 − 𝑧

𝑧
+ 𝑧(1 − 𝑧)

]︂
, (B.21)

⟨P̂(0)
𝑞𝑞 (𝑧; 𝜀)⟩ = ⟨P̂(0)

𝑞𝑞 (𝑧; 𝜀)⟩ = 𝑇𝐹

[︂
1 − 2𝑧(1 − 𝑧)

1 − 𝜀

]︂
, (B.22)

⟨P̂(0)
𝑞𝑔 (𝑧; 𝜀)⟩ = ⟨P̂(0)

𝑞𝑔 (𝑧; 𝜀)⟩ = 𝐶𝐹

[︂
1 + 𝑧2

1 − 𝑧
− 𝜀(1 − 𝑧)

]︂
, (B.23)

⟨P̂(0)
𝑔𝑞 (𝑧; 𝜀)⟩ = ⟨P̂(0)

𝑔𝑞 (𝑧; 𝜀)⟩ = ⟨P̂(0)
𝑞𝑔 (1 − 𝑧; 𝜀)⟩ . (B.24)

The triple collinear limit is defined in Eq. (3.52) and the factorization formula is given in (3.53).
Possible splitting functions are

⟨P̂𝑞′
1𝑞

′
2𝑞3⟩ , ⟨P̂𝑞1𝑞2𝑞3⟩ , ⟨P̂𝑔1𝑔2𝑞3⟩ ,

𝑃𝜇𝜈𝑔1𝑞2𝑞3 , 𝑃𝜇𝜈𝑔1𝑔2𝑔3 ,
(B.25)

where in the case of a quark splitting spin correlations are absent and only averaged functions are
needed. Explicit formulas can be found in [1, 138].

B.2.2 Soft functions

The soft limit of a 𝑞𝑞-pair (3.55) is described by the soft function

I𝑖𝑗(𝑞1,𝑞2) = (𝑝𝑖 · 𝑞1) (𝑝𝑗 · 𝑞2) + (𝑝𝑗 · 𝑞1) (𝑝𝑖 · 𝑞2) − (𝑝𝑖 · 𝑝𝑗) (𝑞1 · 𝑞2)
(𝑞1 · 𝑞2)2 [𝑝𝑖 · (𝑞1 + 𝑞2)] [𝑝𝑗 · (𝑞1 + 𝑞2)] . (B.26)

The soft limit of two gluons is described by the soft function

S𝑖𝑗(𝑞1,𝑞2) = S𝑚=0
𝑖𝑗 (𝑞1,𝑞2) +

(︁
𝑚2
𝑖 S

𝑚 ̸=0
𝑖𝑗 (𝑞1,𝑞2) +𝑚2

𝑗 S
𝑚̸=0
𝑗𝑖 (𝑞1,𝑞2)

)︁
, (B.27)
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where [138]

S𝑚=0
𝑖𝑗 (𝑞1,𝑞2) = (1 − 𝜀)

(𝑞1 · 𝑞2)2
𝑝𝑖 · 𝑞1 𝑝𝑗 · 𝑞2 + 𝑝𝑖 · 𝑞2 𝑝𝑗 · 𝑞1
𝑝𝑖 · (𝑞1 + 𝑞2) 𝑝𝑗 · (𝑞1 + 𝑞2)

− (𝑝𝑖 · 𝑝𝑗)2

2 𝑝𝑖 · 𝑞1 𝑝𝑗 · 𝑞2 𝑝𝑖 · 𝑞2 𝑝𝑗 · 𝑞1

[︂
2 − 𝑝𝑖 · 𝑞1 𝑝𝑗 · 𝑞2 + 𝑝𝑖 · 𝑞2 𝑝𝑗 · 𝑞1

𝑝𝑖 · (𝑞1 + 𝑞2) 𝑝𝑗 · (𝑞1 + 𝑞2)

]︂

+ 𝑝𝑖 · 𝑝𝑗
2 𝑞1 · 𝑞2

[︂
2

𝑝𝑖 · 𝑞1 𝑝𝑗 · 𝑞2
+ 2
𝑝𝑗 · 𝑞1 𝑝𝑖 · 𝑞2

− 1
𝑝𝑖 · (𝑞1 + 𝑞2) 𝑝𝑗 · (𝑞1 + 𝑞2)

×
(︂

4 + (𝑝𝑖 · 𝑞1 𝑝𝑗 · 𝑞2 + 𝑝𝑖 · 𝑞2 𝑝𝑗 · 𝑞1)2

𝑝𝑖 · 𝑞1 𝑝𝑗 · 𝑞2 𝑝𝑖 · 𝑞2 𝑝𝑗 · 𝑞1

)︂]︂
,

(B.28)

and [20]

S
𝑚 ̸=0
𝑖𝑗 (𝑞1,𝑞2) = − 1

4 𝑞1 · 𝑞2 𝑝𝑖 · 𝑞1 𝑝𝑖 · 𝑞2
+ 𝑝𝑖 · 𝑝𝑗 𝑝𝑗 · (𝑞1 + 𝑞2)

2 𝑝𝑖 · 𝑞1 𝑝𝑗 · 𝑞2 𝑝𝑖 · 𝑞2 𝑝𝑗 · 𝑞1 𝑝𝑖 · (𝑞1 + 𝑞2)

− 1
2 𝑞1 · 𝑞2 𝑝𝑖 · (𝑞1 + 𝑞2) 𝑝𝑗 · (𝑞1 + 𝑞2)

(︂
(𝑝𝑗 · 𝑞1)2

𝑝𝑖 · 𝑞1 𝑝𝑗 · 𝑞2
+ (𝑝𝑗 · 𝑞2)2

𝑝𝑖 · 𝑞2 𝑝𝑗 · 𝑞1

)︂
.

(B.29)

B.3 Soft and collinear limits of one-loop matrix elements
The soft and collinear limits of the one-loop matrix elements are described in Eq. (3.58) and (3.59),
where explicit formulas can be found in [1, 139–146]. However, for the construction of separately
finite contributions in section 4.5 the one-loop matrix elements is split as

2Re ⟨M(0)
𝑛+1|M(1)

𝑛+1⟩ = 2Re ⟨M(0)
𝑛+1|Z(1)|M(0)

𝑛+1⟩ + 2Re ⟨M(0)
𝑛+1|F(1)

𝑛+1⟩ . (B.30)

The collinear and soft limits for both contributions on the right hand side are needed.
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B.3.1 Limits of matrix elements of Z(1)

The matrix element of the Z(1) operator can be obtained from Eq. (B.3)

2Re ⟨M(0)
𝑛+1|Z(1)|M(0)

𝑛+1⟩ =

𝛼𝑠
4𝜋

1
𝜀

[︃(︂
−2
𝜀

∑︁
𝑖0

𝐶𝑖0 +
∑︁
𝑖

𝛾𝑖0

)︂
|M(0)

𝑛+1|2

+ 2
∑︁

(𝑖0,𝑗0)

ln
⃒⃒⃒⃒
𝜇2
𝑅

𝑠𝑖0𝑗0

⃒⃒⃒⃒
⟨M(0)

𝑛+1|T𝑖0 · T𝑗0 |M(0)
𝑛+1⟩

−
∑︁
(𝐼,𝐽)

1
𝑣𝐼𝐽

ln
(︂

1 + 𝑣𝐼𝐽
1 − 𝑣𝐼𝐽

)︂
⟨M(0)

𝑛+1|T𝐼 · T𝐽 |M(0)
𝑛+1⟩

+ 4
∑︁
𝐼,𝑗0

ln
⃒⃒⃒⃒
𝑚𝐼𝜇𝑅
𝑠𝐼𝑗0

⃒⃒⃒⃒
⟨M(0)

𝑛+1|T𝐼 · T𝑗0 |M(0)
𝑛+1⟩

]︃
.

(B.31)

The factorization of Eq. (B.31) in the collinear limit, Eq. (3.48), reads

2Re ⟨M(0)
𝑎1,𝑎2,...(𝑝1,𝑝2, . . .)|Z(1)|M(0)

𝑎1,𝑎2,...(𝑝1,𝑝2, . . .)⟩ ≃

4𝜋𝛼𝑠
2
𝑠12

{︃
2Re ⟨M(0)

𝑎,...(𝑝, . . .)|P̂
(0)
𝑎1𝑎2(𝑧,𝑘⊥; 𝜀) Z(1)|M(0)

𝑎,...(𝑝, . . .)⟩

+ 𝛼𝑠
4𝜋

1
𝜀

[︃
2 (𝐶𝑎 − 𝐶𝑎1 − 𝐶𝑎2)

(︃
1
𝜀

+ ln
⃒⃒⃒⃒
𝜇2
𝑅

𝑠12

⃒⃒⃒⃒)︃
− (𝛾𝑎0 − 𝛾𝑎1

0 − 𝛾𝑎2
0 )

+ 2𝐶𝑎 ln
⃒⃒
𝑧(1 − 𝑧)

⃒⃒
+ 2 (𝐶𝑎1 − 𝐶𝑎2) ln

⃒⃒⃒⃒
𝑧

1 − 𝑧

⃒⃒⃒⃒ ]︃

× ⟨M(0)
𝑎,...(𝑝, . . .)|P̂

(0)
𝑎1𝑎2(𝑧,𝑘⊥; 𝜀)|M(0)

𝑎,...(𝑝, . . .)⟩
}︃
.

(B.32)
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This expression is valid for both final- and initial state collinear limits, if the signflip by crossing of
a fermion is taken into account. The factorization of Eq. (B.31) in the soft limit, 𝑞 → 0, reads

2Re ⟨M(0)
𝑔,𝑎1,...(𝑞,𝑝1, . . .)|Z(1)|M(0)

𝑔,𝑎1,...(𝑞,𝑝1, . . .)⟩ ≃

−4𝜋𝛼𝑠

{︃∑︁
(𝑖,𝑗)

(︂
S𝑖𝑗(𝑞) − S𝑖𝑖(𝑞)

)︂
2Re ⟨M(0)

𝑎1,...(𝑝1, . . .)|T𝑖 · T𝑗 Z(1)|M(0)
𝑎1,...(𝑝1, . . .)⟩

+ 𝛼𝑠
4𝜋

1
𝜀

[︃∑︁
(𝑖,𝑗)

(︂
S𝑖𝑗(𝑞) − S𝑖𝑖(𝑞)

)︂(︂
−2𝐶𝐴

(︂
1
𝜀

+ ln
(︀1

2𝜇
2
𝑅S𝑖𝑗(𝑞)

)︀)︂
+ 𝛾𝑔0

)︂
× ⟨M(0)

𝑎1,...(𝑝1, . . .)|T𝑖 · T𝑗 |M(0)
𝑎1,...(𝑝1, . . .)⟩

− 𝐶𝐴
∑︁
(𝐼,𝐽)

(︂
S𝐼𝐽(𝑞) − S𝐼𝐼(𝑞)

)︂(︂
1
𝑣𝐼𝐽

ln
(︂

1 + 𝑣𝐼𝐽
1 − 𝑣𝐼𝐽

)︂
+ 2 ln

(︂
𝑚𝐼𝑚𝐽

𝑠𝐼𝐽

)︂)︂
× ⟨M(0)

𝑎1,...(𝑝1, . . .)|T𝐼 · T𝐽 |M(0)
𝑎1,...(𝑝1, . . .)⟩

− 4𝜋
∑︁

(𝑖,𝑗,𝑘)

S𝑖𝑘(𝑞)
(︂

1
𝑣𝑖𝑗
𝜃(𝜎𝑖𝑗) − 𝜃(𝜎𝑖𝑞) − 𝜃(𝜎𝑗𝑞)

)︂

× ⟨M(0)
𝑎1,...(𝑝1, . . .)|𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |M(0)

𝑎1,...(𝑝1, . . .)⟩
]︃}︃

.

(B.33)

B.3.2 Limits of the one-loop finite remainder

The factorization of the finite remainder in the collinear limit, 3.48, reads

2Re ⟨M(0)
𝑎1,𝑎2,...(𝑝1,𝑝2, . . .)|F(1)

𝑎1,𝑎2,...(𝑝1,𝑝2, . . .)⟩ ≃

4𝜋𝛼𝑠
2
𝑠12

[︃
2Re ⟨M(0)

𝑎,...(𝑝, . . .)|P̂
(0)
𝑎1𝑎2(𝑧,𝑘⊥; 𝜀 = 0)|F(1)

𝑎,...(𝑝, . . .)⟩

+ 𝛼𝑠
4𝜋 ⟨M(0)

𝑎,...(𝑝, . . .)|P̂
(1)
𝐹𝑎1𝑎2(𝑧,𝑘⊥)|M(0)

𝑎,...(𝑝, . . .)⟩
]︃
.

(B.34)

The finite one-loop splitting functions, P̂(1)
𝐹𝑎1𝑎2(𝑧,𝑘⊥), are operators in spin space

⟨𝑠|P̂(1)
𝐹𝑎1𝑎2(𝑧,𝑘⊥)|𝑠′⟩ = 𝑃

(1), 𝑠𝑠′

𝐹𝑎1𝑎2
(𝑧,𝑘⊥) , (B.35)

with

𝑃
(1), 𝜇𝜈
𝐹𝑔𝑔 (𝑧,𝑘⊥) = 𝑟𝑔𝑔𝑆𝐹 (𝑧)𝑃 (0),𝜇𝜈

𝑔𝑔 (𝑧,𝑘⊥; 𝜀 = 0) − 4
3𝐶𝐴

(︀
𝐶𝐴 − 2𝑇𝐹𝑛𝑙

)︀𝑘𝜇⊥𝑘𝜈⊥
𝑘2

⊥
,

𝑃
(1), 𝜇𝜈
𝐹𝑞𝑞 (𝑧,𝑘⊥) = 𝑃

(1), 𝜇𝜈
𝐹𝑞𝑞 (𝑧,𝑘⊥) = 𝑟𝑞𝑞𝑆𝐹 (𝑧)𝑃 (0),𝜇𝜈

𝑞𝑞 (𝑧,𝑘⊥; 𝜀 = 0) ,

𝑃
(1), 𝑠𝑠′

𝐹𝑞𝑔 (𝑧,𝑘⊥) = 𝑃
(1), 𝑠𝑠′

𝐹𝑞𝑔 (𝑧,𝑘⊥) = 𝑟𝑞𝑔𝑆𝐹 (𝑧)𝑃 (0),𝑠𝑠′
𝑞𝑔 (𝑧,𝑘⊥; 𝜀 = 0) + 2𝐶𝐹

(︀
𝐶𝐴 − 𝐶𝐹

)︀
𝛿𝑠𝑠

′
,

𝑃
(1), 𝑠𝑠′

𝐹𝑔𝑞 (𝑧,𝑘⊥) = 𝑃
(1), 𝑠𝑠′

𝐹𝑔𝑞 (𝑧,𝑘⊥) = 𝑃
(1), 𝑠𝑠′

𝐹𝑞𝑔 (1 − 𝑧,𝑘⊥) .

(B.36)
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The finite coefficients 𝑟𝑎1𝑎2
𝑆𝐹 (𝑧) are given by

𝑟𝑔𝑔𝑆𝐹 (𝑧) = 𝐶𝐴

(︂
5𝜋2

6 − ln2
⃒⃒⃒⃒

𝑧

1 − 𝑧

⃒⃒⃒⃒
+ 2 ln

⃒⃒
𝑧(1 − 𝑧)

⃒⃒
ln
⃒⃒⃒⃒
𝜇2
𝑅

𝑠12

⃒⃒⃒⃒
− ln2

⃒⃒⃒⃒
𝜇2
𝑅

𝑠12

⃒⃒⃒⃒)︂
, (B.37)

𝑟𝑞𝑞𝑆𝐹 (𝑧) = 𝐶𝐴

(︂
152
9 − 3𝜋2

2

)︂
+ 𝐶𝐹

(︂
7𝜋2

3 − 16
)︂

− 40
9 𝑇𝐹𝑛𝑙 − 𝐶𝐴 ln2

⃒⃒⃒⃒
𝑧

1 − 𝑧

⃒⃒⃒⃒
+ 2

(︁
𝛽0 − 3𝐶𝐹 + 𝐶𝐴 ln

⃒⃒
𝑧(1 − 𝑧)

⃒⃒)︁
ln
⃒⃒⃒⃒
𝜇2
𝑅

𝑠12

⃒⃒⃒⃒
+
(︀
𝐶𝐴 − 2𝐶𝐹

)︀
ln2
⃒⃒⃒⃒
𝜇2
𝑅

𝑠12

⃒⃒⃒⃒
(B.38)

+ 2
(︀
𝐶𝐴 − 𝐶𝐹

)︀
𝜋2 𝜃(−𝑠12) , (B.39)

𝑟𝑞𝑔𝑆𝐹 (𝑧) = 5𝜋2

6 𝐶𝐴 + 4𝐶𝐹 ln |𝑧| ln
⃒⃒⃒⃒
𝜇2
𝑅

𝑠12

⃒⃒⃒⃒
− 𝐶𝐴

(︃
ln
⃒⃒⃒⃒

𝑧

1 − 𝑧

⃒⃒⃒⃒
+ ln

⃒⃒⃒⃒
𝜇2
𝑅

𝑠12

⃒⃒⃒⃒)︃2

(B.40)

+ 4
(︀
𝐶𝐹 − 𝐶𝐴

)︀
Re Li2

(︂
−1 − 𝑧

𝑧

)︂
. (B.41)

These expressions are valid for both final- and initial state collinear limits, if the crossing relation is
taken into account in the initial state case.
The factorization of the finite remainder in the soft limit, 𝑞 → 0, reads

2Re ⟨M(0)
𝑔,𝑎1,...(𝑞,𝑝1, . . .)|F(1)

𝑔,𝑎1,...(𝑞,𝑝1, . . .)⟩ ≃

−4𝜋𝛼𝑠

⎧⎨⎩∑︁
(𝑖,𝑗)

(︁
S𝑖𝑗(𝑞) − S𝑖𝑖(𝑞)

)︁
2Re ⟨M(0)

𝑎1,...(𝑝1, . . .)|T𝑖 · T𝑗 |F(1)
𝑎1,...(𝑝1, . . .)⟩

+𝛼𝑠
4𝜋

⎡⎣∑︁
(𝑖,𝑗)

(S𝑖𝑗(𝑞) − S𝑖𝑖(𝑞)) 𝑅𝐹𝑖𝑗 ⟨M(0)
𝑎1,...(𝑝1, . . .)|T𝑖 · T𝑗 |M(0)

𝑎1,...(𝑝1, . . .)⟩

−4𝜋
∑︁

(𝑖,𝑗,𝑘)

S𝑖𝑘(𝑞) 𝐼𝐹𝑖𝑗 ⟨M(0)
𝑎1,...(𝑝1, . . .)|𝑓𝑎𝑏𝑐𝑇 𝑎𝑖 𝑇 𝑏𝑗 𝑇 𝑐𝑘 |M(0)

𝑎1,...(𝑝1, . . .)⟩

⎤⎦⎫⎬⎭ ,

(B.42)

where the functions 𝑅𝐹𝑖𝑗 and 𝐼𝐹𝑖𝑗 are the O(𝜀0) coefficients of the one-loop soft functions given in
[146] after expanding in 𝜀.

𝑅𝐹𝑖𝑗 = 4𝐶𝐴
(︁
𝑅

(0)
𝑖𝑗 +𝑅

(−1)
𝑖𝑗 ln

(︁
1
2𝜇

2
𝑅S𝑖𝑗(𝑞)

)︁
+ 1

2𝑅
(−2)
𝑖𝑗 ln2

(︁
1
2𝜇

2
𝑅S𝑖𝑗(𝑞)

)︁)︁
,

𝐼𝐹𝑖𝑗 = 2
(︁
𝐼

(0)
𝑖𝑗 + 𝐼

(−1)
𝑖𝑗 ln

(︁
1
2𝜇

2
𝑅S𝑖𝑗(𝑞)

)︁)︁
. (B.43)

B.4 Helicity splitting functions
The limit of matrix elements as external polarized partons become collinear is described by the
function Split𝑎→𝑎1𝑎2

𝜆 (𝑝𝜆1
1 ,𝑝𝜆2

2 ) in Eq. (5.40) and by Split𝑎→𝑎1𝑎2𝑎3
𝜆 (𝑝𝜆1

1 ,𝑝𝜆2
2 ,𝑝𝜆3

3 ) in Eq. (5.44). The
explicit form for all possible flavor assignments has been given in [224]. However, they have been
rederived for the Implementation of Stripper, due to some inconsistencies in the formulas in the
literature. For completeness all formulas for the triple splitting functions are listed in the following.
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In contrast to [224] the helicity of the splitting particle is treated, as if it is outgoing.
The purely gluonic case is considered first

Split𝑔→𝑔𝑔𝑔
𝜆 (𝑝𝜆1

1 ,𝑝𝜆2
2 ,𝑝𝜆3

3 ) = (4𝜋𝛼𝑠)
∑︁
𝜎∈𝑆2

(︀
−𝑓 𝑐𝑐𝜎1𝑐𝑓 𝑐𝑐𝜎1𝑐3

)︀
split𝑔→𝑔𝑔𝑔

𝜆 (𝑝𝜆𝜎1
𝜎1 ,𝑝

𝜆𝜎2
𝜎2 ,𝑝𝜆3

3 ) , (B.44)

where the sum over repeated color indices is always understood. The summation runs over the two
permutations 𝑆2 of {1,2}. The color stripped functions read

split𝑔→𝑔𝑔𝑔
+ (𝑝+

1 ,𝑝
+
2 ,𝑝

+
3 ) = 2 1

√
𝑧1𝑧3

1
⟨𝑝1𝑝2⟩⟨𝑝2𝑝3⟩

,

split𝑔→𝑔𝑔𝑔
− (𝑝−

1 ,𝑝
+
2 ,𝑝

+
3 ) = 2 𝑧2

1√
𝑧1𝑧3

1
⟨𝑝1𝑝2⟩⟨𝑝2𝑝3⟩

,

split𝑔→𝑔𝑔𝑔
− (𝑝+

1 ,𝑝
−
2 ,𝑝

+
3 ) = 2 𝑧2

2√
𝑧1𝑧3

1
⟨𝑝1𝑝2⟩⟨𝑝2𝑝3⟩

,

split𝑔→𝑔𝑔𝑔
− (𝑝+

1 ,𝑝
+
2 ,𝑝

−
3 ) = 2 𝑧2

3√
𝑧1𝑧3

1
⟨𝑝1𝑝2⟩⟨𝑝2𝑝3⟩

,

split𝑔→𝑔𝑔𝑔
+ (𝑝+

1 ,𝑝
+
2 ,𝑝

−
3 ) = 2

𝑠12𝑠23

[︂
𝑠12𝑧2

(1 − 𝑧1) + 𝛿2(𝑝1,𝑝2,𝑝3)
𝑠123

+
√︂

𝑧2
𝑧1𝑧3

(1 − 𝑧3)𝛿(𝑝1,𝑝2,𝑝3)
]︂
,

split𝑔→𝑔𝑔𝑔
+ (𝑝−

1 ,𝑝
+
2 ,𝑝

+
3 ) = split𝑔→𝑔𝑔𝑔

+ (𝑝+
3 ,𝑝

+
2 ,𝑝

−
1 ) ,

split𝑔→𝑔𝑔𝑔
+ (𝑝+

1 ,𝑝
−
2 ,𝑝

+
3 ) = −split𝑔→𝑔𝑔𝑔

+ (𝑝−
2 ,𝑝

+
1 ,𝑝

+
3 ) − split𝑔→𝑔𝑔𝑔

+ (𝑝+
1 ,𝑝

+
3 ,𝑝

−
2 ) ,

(B.45)

where
𝛿(𝑝1,𝑝2,𝑝3) = [𝑝1𝑝2] (√𝑧1⟨𝑝1𝑝3⟩ + √

𝑧2⟨𝑝2𝑝3⟩) . (B.46)

The splitting of a gluon into a gluon and a 𝑞𝑞 pair can be expanded in its color structures

Split𝑔→𝑔𝑞𝑞
𝜆 (𝑝𝜆1

1 ,𝑝𝜆2
2 ,𝑝−𝜆2

3 ) =

(4𝜋𝛼𝑠)
[︁
(𝑡𝑐𝑡𝑐1)𝑐3𝑐2

split𝑔→𝑔𝑞𝑞
𝜆 (𝑝𝜆1

1 ,𝑝𝜆2
2 ,𝑝−𝜆2

3 ) + (𝑡𝑐1𝑡𝑐)𝑐3𝑐2
split𝑔→𝑔𝑞𝑞

𝜆 (𝑝𝜆1
1 ,𝑝−𝜆2

3 ,𝑝𝜆2
2 )
]︁
.

(B.47)
The color stripped functions read

split𝑔→𝑔𝑞𝑞
− (𝑝+

1 ,𝑝
−
2 ,𝑝

+
3 ) = 2

√
𝑧1𝑠12𝑠23𝑠123

𝑧2

(︁√
𝑧3[𝑝1𝑝3][𝑝2𝑝3]𝑠12

+ [𝑝1𝑝2]
(︁√

𝑧1[𝑝1𝑝3]𝑠23 + √
𝑧2[𝑝2𝑝3](𝑠12 + 𝑠23)

)︁)︁
,

split𝑔→𝑔𝑞𝑞
− (𝑝+

1 ,𝑝
+
2 ,𝑝

−
3 ) = − 2

√
𝑧1𝑠12𝑠23𝑠123

𝑧3

(︁√
𝑧3[𝑝1𝑝3][𝑝2𝑝3]𝑠12

+ [𝑝1𝑝2]
(︁√

𝑧1[𝑝1𝑝3]𝑠23 + √
𝑧2[𝑝2𝑝3](𝑠12 + 𝑠23)

)︁)︁
,

split𝑔→𝑔𝑞𝑞
+ (𝑝+

1 ,𝑝
−
2 ,𝑝

+
3 ) = − 2

√
𝑧1(𝑧2 + 𝑧3)𝑠12𝑠23𝑠123

(︁
− [𝑝1𝑝2](𝑠12 + 𝑠23)

(︁√
𝑧2𝑧3(𝑧2 + 𝑧3)⟨𝑝2𝑝3⟩

−
(︁√︁

𝑧1𝑧3
2𝑧3 +

√︁
𝑧1𝑧2𝑧3

3

)︁
⟨𝑝1𝑝2⟩

)︁
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+ [𝑝1𝑝3]𝑠12

(︁
(𝑧2 + 𝑧3)

(︁√
𝑧1(𝑧1 + 2𝑧3)⟨𝑝1𝑝2⟩ − 𝑧

3/2
3 ⟨𝑝2𝑝3⟩

)︁
−
(︁√︁

𝑧1𝑧3
2𝑧3 +

√︁
𝑧1𝑧2𝑧3

3

)︁
⟨𝑝1𝑝3⟩

)︁
+
(︁√︁

𝑧3
1𝑧2𝑧3 +

√︁
𝑧1𝑧3

2𝑧3 +
√︁
𝑧1𝑧2𝑧3

3

)︁
𝑠12(𝑠12 + 𝑠13 + 𝑠23)

)︁
,

split𝑔→𝑔𝑞𝑞
+ (𝑝+

1 ,𝑝
+
2 ,𝑝

−
3 ) = − 2

√
𝑧1(𝑧2 + 𝑧3)𝑠12𝑠23𝑠123

(︁
[𝑝1𝑝2]

(︁√
𝑧2(𝑧2 + 𝑧3)⟨𝑝2𝑝3⟩(𝑧2𝑠12 + (𝑧1 + 𝑧2)𝑠23)

+ √
𝑧1(𝑧2 + 𝑧3)⟨𝑝1𝑝3⟩((𝑧1 + 𝑧2)𝑠23 + (𝑧1 + 2𝑧2)𝑠12)

−
(︁√︁

𝑧1𝑧3
2𝑧3 +

√︁
𝑧1𝑧2𝑧3

3

)︁
⟨𝑝1𝑝2⟩𝑠12

)︁
+ 𝑠12

(︁
[𝑝1𝑝3]

(︁√
𝑧2

√
𝑧2𝑧3(𝑧2 + 𝑧3)⟨𝑝2𝑝3⟩ +

(︁√︁
𝑧1𝑧3

2𝑧3 +
√︁
𝑧1𝑧2𝑧3

3

)︁
⟨𝑝1𝑝3⟩

)︁
+
(︁√︁

𝑧3
1𝑧2𝑧3 +

√︁
𝑧1𝑧3

2𝑧3 +
√︁
𝑧1𝑧2𝑧3

3

)︁
(𝑠12 + 𝑠13 + 𝑠23)

)︁)︁
. (B.48)

The splitting for 𝑞 → 𝑞𝑔𝑔 can be decomposed according to its color structures as

Split𝑞→𝑞𝑔𝑔
𝜆1

(𝑝𝜆1
1 ,𝑝𝜆2

2 ,𝑝𝜆3
3 ) = (4𝜋𝛼𝑠)

∑︁
𝜎∈𝑆2

(𝑡𝑐𝜎2 𝑡𝑐𝜎3 )𝑐1𝑐
split𝑞→𝑞𝑔𝑔

𝜆1
(𝑝𝜆1

1 ,𝑝
𝜆𝜎2
𝜎2 ,𝑝

𝜆𝜎3
𝜎3 ) , (B.49)

where 𝑆2 denotes the permutations of {2,3}. The color stripped functions read

split𝑞→𝑞𝑔𝑔
+ (𝑝+

1 ,𝑝
+
2 ,𝑝

+
3 ) = − 2𝑖

√
𝑧2

√
𝑧3𝑠12𝑠23𝑠123

(︁√
𝑧3[𝑝1𝑝3][𝑝2𝑝3]𝑠12

+ [𝑝1𝑝2]
(︁√

𝑧1[𝑝1𝑝3]𝑠23 + √
𝑧2[𝑝2𝑝3](𝑠12 + 𝑠23)

)︁)︁
,

split𝑞→𝑞𝑔𝑔
− (𝑝−

1 ,𝑝
+
2 ,𝑝

+
3 ) = − 2𝑖

√
𝑧2

√
𝑧3𝑠12𝑠23𝑠123

𝑧1

(︁√
𝑧3[𝑝1𝑝3][𝑝2𝑝3]𝑠12

+ [𝑝1𝑝2]
(︁√

𝑧1[𝑝1𝑝3]𝑠23 + √
𝑧2[𝑝2𝑝3](𝑠12 + 𝑠23)

)︁)︁
,

split𝑞→𝑞𝑔𝑔
− (𝑝+

1 ,𝑝
−
2 ,𝑝

+
3 ) = 2𝑖

√
𝑧2

√
𝑧3(𝑧2 + 𝑧3)𝑠12𝑠23𝑠123

(︁√
𝑧2

(︁
𝑧1(𝑧2 + 𝑧3)[𝑝2𝑝3]⟨𝑝1𝑝2⟩𝑠12

+ √
𝑧3

(︁
𝑧

3/2
3 (−[𝑝1𝑝2])⟨𝑝2𝑝3⟩𝑠12 −

√
𝑧1𝑧3

(︁
𝑠2

12 − 𝑠23𝑠12 + 𝑠13𝑠23

)︁
+ √

𝑧1𝑧2(𝑠12(𝑠13 + 𝑠23) − 𝑠13𝑠23)
)︁)︁

+ [𝑝1𝑝3]
(︁√

𝑧1(𝑧1 + 𝑧2)(𝑧2 + 𝑧3)⟨𝑝1𝑝2⟩𝑠23 + √
𝑧3⟨𝑝2𝑝3⟩((𝑧1(𝑧2 + 𝑧3)

+ 𝑧3(2𝑧2 + 𝑧3))𝑠12 − 𝑧1(𝑧2 + 𝑧3)𝑠23)
)︁)︁

,

split𝑞→𝑞𝑔𝑔
+ (𝑝+

1 ,𝑝
+
2 ,𝑝

−
3 ) = 2𝑖

√
𝑧2

√
𝑧3(𝑧2 + 𝑧3)𝑠12𝑠23𝑠123

(︁
[𝑝1𝑝2]

(︁√
𝑧1(𝑧1 + 𝑧2)(𝑧2 + 𝑧3)⟨𝑝1𝑝3⟩𝑠23

+ √
𝑧2⟨𝑝2𝑝3⟩((𝑧1 + 𝑧2)(𝑧2 + 𝑧3)𝑠23 + (𝑧2(𝑧1 + 𝑧2) + (𝑧1 + 2𝑧2)𝑧3)𝑠12)

)︁
−

√
𝑧3𝑠12

(︁√
𝑧2

(︁
𝑧

3/2
2 [𝑝1𝑝3]⟨𝑝2𝑝3⟩ + √

𝑧1𝑧2(𝑠23 − 𝑠13) + √
𝑧1𝑧3(𝑠12 + 𝑠23)

)︁
− 𝑧1(𝑧2 + 𝑧3)[𝑝2𝑝3]⟨𝑝1𝑝3⟩

)︁)︁
.
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Finally, the splitting for the purely quark case reads

Split𝑞→𝑞𝑞′𝑞′

𝜆1
(𝑝𝜆1

1 ,𝑝𝜆2
2 ,𝑝𝜆3

3 ) = (8𝜋𝛼𝑠)
[︁
𝑡𝑐𝑐1𝑐𝑡

𝑐
𝑐3𝑐2 split𝑞→𝑞𝑞′𝑞′

𝜆1
(𝑝𝜆1

1 ,𝑝𝜆2
2 ,𝑝𝜆3

3 )

− 𝛿𝑞𝑞′𝑡𝑐𝑐3𝑐𝑡
𝑐
𝑐1𝑐2 split𝑞→𝑞𝑞′𝑞′

𝜆1
(𝑝𝜆3

3 ,𝑝𝜆2
2 ,𝑝𝜆1

1 )
]︁
,

(B.50)

where the color stripped functions read

split𝑞→𝑞𝑞′𝑞′

+ (𝑝+
1 ,𝑝

−
2 ,𝑝

+
3 ) = 𝑖

𝑠23

(︂√
𝑧1𝑧2𝑧3

1 − 𝑧1
+ 𝛿(𝑝1,𝑝2,𝑝3)

𝑠123

)︂
,

split𝑞→𝑞𝑞′𝑞′

− (𝑝−
1 ,𝑝

−
2 ,𝑝

+
3 ) = split𝑞→𝑞𝑞′𝑞′

+ (𝑝+
1 ,𝑝

−
3 ,𝑝

+
2 ) . (B.51)

The remaining splitting functions, Split𝑎→𝑎1𝑎2𝑎3
−𝜆 (𝑝−𝜆1

1 ,𝑝−𝜆2
2 ,𝑝−𝜆3

3 ), are obtained from
Split𝑎→𝑎1𝑎2𝑎3

𝜆 (𝑝𝜆1
1 ,𝑝𝜆2

2 ,𝑝𝜆3
3 ) by replacing ⟨𝑝𝑖𝑝𝑗⟩ with [𝑝𝑗𝑝𝑖] and vice versa. A factor (−1) has to be

multiplied, if the splitting function contains a 𝑞𝑞-pair in the final state.

B.5 Crossing

a(p1 + p2)
a1(p1)

a2(p2)a2(p2)

a2(p2)

a1(p1)

a(p1 + p2)

Figure B.1: Final state collinear splitting configuration (left) and initial state collinear splitting configuration
(right).

All formulas presented in the previous sections have been given for final state collinear particles. If
however, one of the particle is in the initial state the correct formulas are obtained by crossing. If
the particle with momentum 𝑝1 and flavour 𝑎1 is crossed to the initial state,as depicted in Fig. B.1,
the splitting functions obtain a sign for each fermion that is crossed

P̂ −→
(︀

−
)︀2𝑠𝑎+2𝑠𝑎1 P̂ , (B.52)

where 𝑠𝑎 and 𝑠𝑎1 are the spins of partons 𝑎 and 𝑎1 respectively. The splitting variable 𝑧 can be
obtained in the collinear limit from the energies of the involved partons. The crossing amounts to
the replacement

𝑧 = 𝑝0
1

𝑝0
1 + 𝑝0

2
∈ [0,1] −→ 𝑧 = 𝑝0

1
𝑝0

1 − 𝑝0
2

∈ [1,+∞[ , (B.53)

and similarly for the triple splitting functions

𝑧 = 𝑝0
1

𝑝0
1 + 𝑝0

2 + 𝑝0
3

∈ [0,1] −→ 𝑧 = 𝑝0
1

𝑝0
1 − 𝑝0

2 − 𝑝0
3

∈ [1,+∞[ . (B.54)
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