
Interactive Cutting of Finite Elements
based Deformable Objects in Virtual

Environments

Von der Fakultät für
Mathematik, Informatik und Naturwissenschaften

der Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades

einer Doktorin der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Ing.

Lenka Jeřábková
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ABSTRACT

There is a wide range of virtual reality (VR) applications that benefit from physically
based modeling, such as assembly simulation, robotics, training and teaching (e.g.,
medical, military, sports) and entertainment. The dynamics of rigid bodies is well
understood and several open source as well as commercial physics engines supporting
articulated rigid bodies and particle systems are available. On the other hand,
the simulation of deformable bodies is an objective of current research. The main
application areas of deformable objects simulation in computer graphics and VR are
the simulation of cloth and medical simulation. The challenge of VR applications is
the real time simulation requirement. The raising computational power of the last
decades allowed for adapting selected methods known from engineering sciences for
interactive simulation. The simulation of cutting is especially challenging though,
as most methods suffer from both performance and stability issues. Although a
number of approaches have been presented over the last decade, the problem has
not been solved satisfyingly, yet.

This thesis presents methods for an interactive simulation of finite elements based
deformable objects as used, e.g., in VR surgical simulators. The main objectives
of such simulators are stability and performance of the employed methods allowing
for an interactive object manipulation including topological changes in real time. A
novel method for interactive cutting of deformable objects in virtual environments
is presented. The key to this method is the usage of the extended finite elements
method (XFEM). The XFEM can effectively model discontinuities within an FEM
mesh without creating new mesh elements and thus minimizing the impact on the
performance of the simulation. The XFEM can be applied to advanced constitutive
models used for the interactive simulation of large deformations. Moreover, an
analysis of mass lumping techniques, showing that the stability of the simulation
is guaranteed even when small portions of the material are cut is presented. The



XFEM based cutting surpasses the currently most widely used remeshing methods
in both, performance and stability and is suitable for interactive VR simulation.

Further, a software architecture for physical simulation of deformable objects in VR
applications is proposed. The framework is suitable for the creation of complex VR
applications as, e.g., a virtual surgical trainer. It uses thread level task paralleliza-
tion for the concurrent execution of visualization, collision detection, haptics and
deformation. Moreover, a parallelization approach for the deformation algorithm,
which is the most computationally intensive part is proposed. The presented so-
lution based on OpenMP requires only minimal changes to the source code while
achieving a speedup comparable to the results of more sophisticated approaches.
The presented framework benefits from the current developments in the computing
industry and allows an optimal utilization of multicore CPUs.



ZUSAMMENFASSUNG

Es gibt eine breite Skala von Anwendungen der virtuellen Realität (VR), die von
Methoden der physikalisch basierten Modellierung profitieren können. Als Beispiele
können Montagesimulation, Robotik, Training und Lehre (z.B. in der Medizin, im
Militär oder im Sport) und Unterhaltung genannt werden. Die Dynamik von Fest-
körpern und Partikeln wurde in der Vergangenheit gut erforscht und wird zur Zeit
von mehreren Open Source als auch kommerziellen Softwarepaketen unterstützt.
Im Gegensatz dazu ist die Simulation deformierbarer Objekte Gegenstand aktueller
Forschung. Die Hauptanwendungsgebiete für die Simulation deformierbarer Objekte
in Computergraphik und VR ist die Stoff- und Kleidungssimulation sowie die medi-
zinischen Anwendungen. Die Echtzeit-Anforderung von VR Anwendungen stellt eine
große Herausforderung dar. Dank steigender Rechenleistung in den letzten Dekaden
ist es möglich bestehende Methoden aus den Ingenieurswissenschaften zu überneh-
men oder für interaktive Simulation zu adaptieren. Die Simulation vom Schneiden
ist dennoch besonders anspruchsvoll, da die meisten Methoden zu Performanz- oder
Stabilitätsproblemen führen. Obwohl in den letzten Jahren verschiedene Lösungs-
ansätze präsentiert wurden, wurde das Problem nicht zufriedenstellend gelöst.

Diese Arbeit präsentiert Methoden für eine interaktive Simulation deformierbarer
Objekte, basierend auf der Methode der finiten Elemente, die z.B. in einem virtuel-
len Chirurgie Simulator Verwendung finden. Die Hauptziele eines solchen Simulators
sind die Stabilität und Effizienz der eingesetzten Methoden um eine interaktive Ma-
nipulation einschließlich topologischer Veränderungen in Echtzeit zu ermöglichen. In
der vorliegenden Arbeit wird eine innovative Methode zum Schneiden deformierba-
rer Objekte in virtuellen Umgebungen präsentiert. Diese Methode basiert auf der
erweiterten Methode der finiten Elemente (engl. extended finite elements method,
XFEM). Mit Hilfe von XFEM können Diskontinuitäten in einem FE-Netz effizient,
ohne die Erzeugung neuer Elemente, modelliert werden, wodurch der Einfluss auf



Simulationsleistung minimiert wird. Die XFEM kann mit verschiedenen Materialm-
odellen kombiniert und somit auch für die interaktive Simulation großer Deforma-
tionen eingesetzt werden. Des Weiteren wird die Analyse verschiedener Methoden
der Diagonalisierung der Massenmatrix präsentiert und gezeigt, dass die Stabilität
der Simulation unabhängig von Lage und Menge des abgeschnittenen Materials ge-
währleistet ist. Die XFEM basierte Methode übertrifft die zur Zeit am häufigsten
eingesetzten remeshing Methoden sowohl in Effizienz als auch in der Stabilität und
ist somit für interaktive VR Simulation besonders geeignet.

Weiterhin wird eine Softwarearchitektur zur Simulation deformierbarer Objekte vor-
geschlagen. Das Rahmenwerk eignet sich zur Erstellung komplexer VR Anwendun-
gen wie, z.B., eines virtuellen chirurgischen Trainers. Die nebenläufige Ausführung
von Visualisierung, Kollisionserkennung, Kraftrückkopplung und Deformation wird
mittels Thread-Level Parallelisierung realisiert. Außerdem wurde ein Parallelisie-
rungsansatz für den Deformationsalgorithmus, welcher den rechenintensivsten Teil
der Anwendung darstellt, entworfen und realisiert. Die präsentierte auf OpenMP ba-
sierte Lösung erfordert minimale Änderungen des Quellcodes, während gleichzeitig
ein Speedup erreicht wird, der vergleichbar mit den Ergebnissen anspruchsvollerer
Ansätze ist. Das vorgestellte Rahmenwerk profitiert von der gegenwärtigen Entwick-
lung der Computerindustrie und ermöglicht eine optimale Ausnutzung von Multicore
CPUs.
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CHAPTER 1

INTRODUCTION

There is a wide range of virtual reality (VR) applications that benefit from physically
based modeling (PBM), such as assembly simulation, robotics, training and teaching
(e.g., medical, military, sports) and entertainment. The dynamics of rigid bodies
is well understood and several open source as well as commercial physics engines
supporting articulated rigid bodies and particle systems are available. On the other
hand, the simulation of deformable bodies is an objective of current research.

An interactive physically based simulation must be able to react on user input in
real time. Moreover, the employed methods must be robust and stable under all
circumstances. These requirements are crucial for an interactive simulation whereas
the accuracy is sacrificed to them. The raising computational power of the last
decades allowed for adapting selected methods known from engineering sciences
for interactive simulation. Performance optimization techniques including adaptive
multiresolution and parallelization have been proposed.

The main application areas of deformable objects simulation in computer graphics
(CG) and VR are the simulation of cloth and medical simulation. From the mathe-
matical point of view, both lead to similar systems of partial differential equations
and the same numerical techniques can be used. However, medical simulation in-
volves volumetric meshes (as opposed to surface meshes used by the cloth simula-
tion) that lead to generally larger equation systems. Moreover, a surgery simulation
requires advanced interaction techniques supported by force feedback.

Cutting is an essential manipulation task in surgery. The simulation of cutting is
especially challenging though, as most methods suffer from both performance and
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CHAPTER 1. INTRODUCTION

stability issues. Although a number of approaches have been presented over the last
decade, the problem has not been solved satisfyingly yet.

In this thesis I present a novel cutting approach suitable for interactive cutting of
deformable objects as used, e.g., in surgical simulation. Moreover, I introduce a
parallelization approach that benefits from the current developments in the com-
puting industry (multicore CPUs). The proposed methods have been implemented
in a framework for physically based simulation of deformable objects in virtual en-
vironments. The software design of the framework is also described in this work.

The remainder of this chapter gives an overview of the related work in physically
based modeling in VR and CG with special focus on medical simulation and cutting
and summarizes the contributions of this thesis.

1.1 Related Work: VR in Medicine

Most of today’s medical simulators only consider mechanical properties of the tissue.
[Del98] points out, that in order to achieve a realistic tissue behavior, physical and
physiological phenomena such as temperature, blood pressure, the relative water
content, the internal organ structure, the development of pathologies and contact
with other tissue have to be taken into account. For a given surgical simulation, soft
tissue deformation accuracy and computation time are the two main constraints
for the modeling of soft tissue. For scientific analysis the accuracy is far more
important than the computation time. Preoperative planning with following intra-
operative support requires a good estimation of the tissue deformation within a time
frame that is acceptable for clinical use (less than 30 minutes), since several trials
may be necessary [ZGHD00, AMS02]. Finally, for surgery training, a computation
time of the order of 0.1s is required to achieve a smooth user interaction, whereas
the accuracy of deformation is not of primary importance. [MHB+01] analyze the
effectiveness of different user interface paradigms and system designs developed and
used over the period of ten years (1991-2001) in the field of surgical planning. They
also point out the difference between surgical planning and surgical simulation (sur-
gical training). Surgical planning is an abstract process (unlike surgical simulation),
the interventions are not simulated in the same difficulty and time as doing the real
task. A surgical planning system should instead allow the surgeon to specify the
crucial steps of the intervention as quickly and efficiently as possible. Collaboration,
stereo visualization and interaction are essential.

The challenge of VR surgical trainers is in the real time simulation requirement. The
first VR simulators focused on minimal invasive surgery (MIS). MIS minimizes the
damage of healthy tissue. The relatively large cuts performed in open surgery are

4



1.1. RELATED WORK: VR IN MEDICINE

replaced by small perforation holes, serving as entry points for customized surgical
instruments and a camera (endoscope). The small extent of the tissue injury is a
major gain in the patient recovery after an operation. However, the minimal invasive
surgery requires special laparoscopic psychomotoric skills of the surgeon, which can
be gained through an extensive training. VR is an ideal solution for this problem.
Trainees can be guided through a series of tasks of progressive complexity, enabling
them to develop the skills essential for good clinical practice. [LGB+06] define a
taxonomy of didactic resources in laparoscopic VR in order to be able to specify
requirements on a VR simulator and compare different simulators with each other
or with the real world. They compare seven simulators with two scenarios using
a laparoscopic box trainer and with the real operating room. [BSHW07] present
a survey of VR based MIS trainers and compare more than twenty commercial
MIS simulators ranging from basic-skills (navigation and hand-eye coordination)
trainers to complete procedure simulators. In summary it can be said, that VR
based trainers achieve a good quality of visual realism (textures, illumination) of
the scene. However, a realistic and efficient simulation of soft tissue properties and
high fidelity haptics of both MIS and open surgery are still subjects of ongoing
scientific research.

There have been a few attempts at designing open source software toolkits meeting
the challenges of medical simulation as, e.g., GiPSi [CGTS04] or SOFA [ACF+07].
Especially the authors of SOFA emphasize the need of knowledge sharing among
research groups, validation of algorithms and standardization of the description of
medical datasets. The following sections provide an overview of methods used in
CG and VR for the simulation of deformable objects with focus on medical appli-
cations.

1.1.1 Soft Tissue Deformation

The simulation of deformable objects is an inherently interdisciplinary field combin-
ing newtonian dynamics, continuum mechanics, numerical mathematics, differential
geometry, vector calculus and computer graphics. Engineering sciences have a long
tradition in modeling and simulation of elastic and plastic deformations and other
phenomena as crack growth and fractions. The main goal of simulation in compu-
tational mechanics is its high fidelity, whereas the computation time is not a critical
factor. In interactive CG and VR applications the responsiveness of the system is
crucial and is often traded for accuracy. In contrast to simulations in mechanical
or civil engineering that mostly use very stiff materials as, e.g., concrete or steel,
in CG applications soft materials such as cloth, hair, rubber and biological tissue
are of interest. Due to the fact that the problem setting and expected simulation
behavior are different, the CG can not simply adopt methods used in engineering.
The challenge of interactive physically based simulation is in targeted modification
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of existing approaches and finding new methods satisfying the interactivity require-
ment. [NMK+05] present an outstanding overview of physically based deformable
models currently used in CG extending a previous survey [GM97].

The real time tissue deformation is an important constraint for medical virtual real-
ity systems. The choice of the simulation model is influenced by computer efficiency,
required accuracy and the types of manipulations that have to be performed. Several
methods such as the ChainMail method [GFG+97] have been developed to perform
realistic simulations of soft tissue in real time. In general, these methods are based
on geometrical constraints rather than physics and thus provide less fidelity than
physically based methods.

In the 1990’s the intuitive mass-spring method was widely used for the simulation
of soft objects. Mass-spring models consist of mass points linked by springs and
dampers. The stiffness of the springs has to be determined experimentally. The
resolution and topology of the springs is of crucial importance for the behavior of
the system. Several improvements of the mass-spring method have been proposed,
especially with regard to the dynamic behavior and volume preservation. Mass-
spring models were used for soft tissue simulation, e.g. in [KGG96, KCM99, CK00,
MBB+02]. Nowadays, the mass-spring method is used for the simulation of cloth
[MTCV+04]. In medical applications, however, it is considered out-dated and has
been replaced by methods based on the continuum mechanics, in particular the finite
elements method (FEM). [HHR+03] compared a simplified FEM approach with the
mass-spring model for surgical simulation. They show that an optimized linear FEM
model requires computation time similar to the mass-spring approach, while yielding
better results.

The simulation of deformable objects based on continuum mechanics was introduced
to the field of CG by [TPBF87], who used it for the simulation of elastic deforma-
tions. However, due to high computational costs they only performed an off-line
simulation. [Bro96] provided a detailed guide to the implementation of FEM in
interactive surgery simulation. They propose the condensation and domain decom-
position optimizations. [BW99] propose a band matrix optimization, a technique
similar to condensation. Both are only appropriate if the FEM mesh is unchanging,
such as when suturing a wound or performing just a deformation without cutting.
[CDA00] compare three different approaches to soft tissue modeling based on linear
elasticity theory. The first, quasi static precomputed linear elastic model, is compu-
tationally efficient, but does not allow for cutting. The second, called tensor-mass
model has similar complexity as spring-mass models, but it is based on a continuous
representation of the tissue. Finally, the third approach is a hybrid combination of
the previous two.

The FEM-based methods used in surgical simulation in the 1990’s have in common,
that the stiffness matrix of the elements remains constant during the simulation.
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1.1. RELATED WORK: VR IN MEDICINE

This approach is only suitable for small deformations, as the main problem with
the linear strain measure is that it is not invariant to rigid movements of the fi-
nite elements. Therefore, [MDM+02, Hau04] and [ITF04] propose similar methods
treating the rigid rotation and the deformation of the elements separately. More-
over, the method proposed by [ITF04] can handle meshes with degenerated and
inverted elements. The simulation of large deformations based on a nonlinear strain
measure were brought back to CG applications by [OH99], who simulate fracture.
In interactive medical simulation, the nonlinear FEM was used by [DDCB01] and
[WDGT01].

Another group of methods based on continuum mechanics are the meshless methods
introduced by [BYG94]. The simulated object is represented by a set of particles
without a fixed neighborhood relationship. Although the meshless methods allow the
simulation of deformable objects [DKS01, GQ05] including topological changes and
large deformations [PKA+05, Kei06], they are computationally more expensive than
the FEM and are therefore mainly used for an animation of physical phenomena,
where the existence of a fixed mesh is prohibitive (e.g., melting or combination of
fluids and solids) [Kei06].

1.1.2 Performance Optimizations

Interactivity and stability of the simulation are necessary conditions. The attempts
to achieve a higher simulation performance can be divided into multiresolution ap-
proaches and parallelization. Most approaches in deformable modeling use a fixed
space discretization. The basic idea of adaptive multiresolution approaches is to
provide a high accuracy by using fine meshes at areas with large gradients in the
fields of interest (e.g. stress field) and to achieve a high performance by using coarser
level of detail in other regions. In a surgical simulation the regions of interest are
determined by the instrument-tissue interaction and therefore they are not known
a priori. [DDBC99] use a hierarchical particle representation. An octree struc-
ture is used to store the uniform space samples at each level. Similar techniques
were presented by [JKWP04, NFP06]. [DDCB00] discuss a Level of Detail (LOD)
technique, which uses independently defined meshes representing the quasi-uniform
sampling of the simulated object at a different resolution. Different regions of the
deformable body can be simulated using a different LOD. The different LOD meshes
slightly overlap at their interfaces and the overlapping nodes transmit displacement
information between the meshes. [WDGT01] propose a dynamic extension of the
progressive mesh concept introduced by [Hop96]. The dynamic progressive meshes
allow selective online refinement at the area of interest. Geometric and finite ele-
ment parameters are precalculated offline for each level of the hierarchy. The update
of material properties during refinement only requires local changes in the lumped
stiffness matrix and consequently requires minimal computation. [WSH03], [KRS03]
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and [FBD04] describe hybrid techniques that use different computational models for
the area of interest and for the remaining parts. [WSH03] explicitly divide the object
in an operation and a non-operation parts. The condensation technique is applied to
the non-operation part. [KRS03] and [FBD04] determine the area of interest online,
[KRS03] use the combination of the finite spheres method for the area of interest and
the boundary elements method for the rest, [FBD04] use explicit FEM for the region
close to the contact point and consider the remaining part of the object in a static
configuration. [GKS02] describe an adaptive refinement approach using hierarchi-
cal base functions as opposed to a hierarchy of finite elements. The method yields
equivalent adapted approximation spaces wherever the traditional mesh refinement
is applicable. The main challenges of the adaptive multiresolution approaches are
the automatic determination of the required resolution and an efficient refinement
operation suitable for real time simulation.

Parallelization approaches using distributed memory architectures (e.g., PC-clusters)
were presented by [RBST99, ZFV02, KB04, TB06]. [RBST99] describe tools and
methods for partitioning and scheduling as well as design of parallel hardware and al-
gorithms for interactive FEM computations in a surgery simulator, whereas [ZFV02,
KB04, TB06] simulate cloth. The main problem is an efficient data partitioning of
the irregular structures that appear in real world problems. [AR06] present a frame-
work for coupling multiple distributed simulations in one complex VR application.
Several solutions utilizing special hardware including GPUs [OLG+05, GEW05], the
IBM Cell Broadband Engine [DMB+06] and the AGEIA PhysX processor [Phy06]
for the performance optimization of the physical simulation of rigid or deformable
objects have been proposed recently. However, in order to use the hardware ac-
celeration, both the simulation code and data structures have to be substantially
redesigned in order to map to the specific hardware, which is a nontrivial task
requiring special and deep knowledge of the hardware architecture used. More-
over, the end users have to purchase a specific hardware in order to be able to use
the optimizations. Another promising strategy is the employment of general pur-
pose multicore architectures [OH05, SL05] as, e.g., the AMD Opteron or the Intel
Xeon dualcore processors allowing for parallel processing of multiple tasks. [TPB07]
present a parallelization approach for cloth simulation on an AMD Opteron machine
with two dualcore processors. They use the same parallelization techniques (domain
decomposition followed by a matrix restructuring) as on a PC cluster [TB06]. They
designed an own multithreaded parallel programming model. The OpenMP API
[Boa05] provides a declarative shared model parallelization model for the C/C++
and Fortran programming languages, while permitting portability. The OpenMP
directives extend the programming languages with SIMD constructs, work-sharing
constructs, and synchronization constructs, and they provide support for the shar-
ing and privatization of data. Compared to lower-level parallelization approaches
as, e.g., Posix-Threads, OpenMP requires the least design changes of an existing
serial code while achieving competitive results [JKT+07].
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1.1.3 Cutting

This section presents a short overview of the previous FEM-based approaches re-
lated to the simulation of cutting, cracks and fracture in CG and VR. [BSMM02]
presents a survey of interactive cutting techniques in virtual surgery until 2002. The
described techniques are categorized according to how the solutions address the fol-
lowing issues: definition of the cut path, primitive removal and remeshing, number
of new primitives created, when remeshing is performed and the representation of
the cutting tool. A state of the art cutting simulation enables an interactive move-
ment of the cutting tool through the mesh and thus defining the cutting path in a
natural way. The cut is created and visualized immediately or with a short delay
while the tool is moving (progressive cutting) as opposed to waiting until the tool
no longer intersects the tissue. The cutting tool is represented by a single point,
single edge or triangle, allowing for simple intersection tests. At the same time, a
more complex model is used for rendering. In the following, the most representative
approaches are summarized.

The main difficulty a cutting simulator has to deal with is the primitive remeshing.
Here, the visual primitives (triangles) have to be distinguished from the simulation
primitives (e.g., springs or finite elements). Both kinds of primitives are arranged
in meshes, that have to be cut in a consistent way. However, to avoid consistency
problems and interpolation between both meshes, many authors use the boundary of
the (volumetric) simulation mesh for visualization. The most methods for surgical
cutting published so far require the FEM elements to be aligned with the cut. This
can be achieved either by constraining the cut to the borders of existing elements,
or by splitting the elements along the cut, or by snapping of the elements’ borders
to the cut, or by combination of these methods.

[CDA00] remove the tetrahedra touched by the cutting tool thus forming a gap
in the mesh. No new elements are created, therefore the stability of the simula-
tion is not harmed. However, the method violates the mass conservation law and
the created cut contains unpleasing visual artifacts. A number of authors use the
tetrahedra subdivision method. [BMG99, VHML99, GCMS00] subdivide the tetra-
hedra according to predefined templates. [BGTG03] presents a state machine that
tracks the topology of the intersections in the tetrahedral mesh to ensure consistent
remeshing of neighboring tetrahedra. The original tetrahedron is replaced by up
to seventeen new tetrahedra. [MK00] generate a minimal set of new elements to
replace the cut tetrahedron. The main drawback of this group of methods is the
creation of small ill-shaped elements (slivers) causing numerical instability of the
simulation. To avoid the drawback of the previous two methods, [NvdS01] snap
the nodes of the existing elements to the trajectory of the cut. Although no new
elements are created, this method can still lead to degenerated elements. They are
detected and removed. Moreover, if the snapping distance is large, the parameters
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of the mesh have to be updated. [SHGS06] use a combination of snapping and
subdivision. However, they only support nonprogressive cutting. [WBG07] use an
approach based on arbitrary convex finite elements. They remesh the FE mesh after
a cut, however, the newly created elements are not subdivided into tetrahedra, thus
avoiding the potential creation of many ill-conditioned elements. However, slivers
cannot be avoided completely.

As for the approaches used in the computer animation of cracks and fracture, [OH99]
constrains the beginning of the cut to go through an existing node and uses tetrahe-
dra subdivision or snapping during the crack propagation. [MBF04] introduced the
virtual node algorithm. In contrast to the previous methods, the crack does not have
to be aligned to the elements’ boundary. Instead of subdividing an element, one or
more replicas of the cracked element are created. The graphical representation of
the material within the original element is fragmented, and the portions are assigned
to the particular replicas. In order to avoid instabilities, each element replica du-
plicates the material of the original element instead of splitting it along the crack,
which would be physically correct, but would lead to instabilities in case of material
slivers. In the original virtual nodes algorithm the number of cuts per element is
limited in that each fragment has to contain at least one node of the original FE
mesh. These limitations were resolved by [SDF07], thus allowing for arbitrary cuts
of tetrahedral elements. However, [SDF07] do not mention how the masses are up-
dated. All, [OH99], [MBF04] and [SDF07] consider an offline simulation rather than
an interactive cutting or breaking of objects.

Meshless methods avoid the existence of an explicit mesh. However, in case of topo-
logical changes, additional structures are required to identify topologically separated
particles. Moreover, a nontrivial dynamic resampling has to be performed in the
vicinity of newly created incisions [PKA+05, SOG06]. In all above approaches the
cut or crack is represented by a piecewise linear path.

The approach presented in this thesis is based on the extended finite elements method
(XFEM) as proposed by [BB99]. The XFEM method introduces a local enrichment
in subregions with discontinuities. The enrichment is based on the partition of unity
method (PUM) [MB96, BM98]. The XFEM method was first developed for two-
dimensional linear elastic fracture mechanics in civil engineering. A single crack
was considered. Subsequently, it has been extended to many applications, such as
material interfaces in solids and fluids [BZXC03, SCMB01, CBM03], crack growth
[MDB99], or arbitrary branched and intersecting cracks and holes [DMD+00]. In
classical structural mechanics the focus is laid on the accuracy of the simulation
rather than the speed of computation. Moreover, only very stiff materials (such
as concrete) undergoing small deformations in a static or quasi static setup were
considered [SP03]. [VVW04] were the first to use the XFEM in a medical context.
However, only a static simulation in 2D (MRI images) and small deformations were
considered. The simulated cut consisted of a single line segment. The suitability of
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XFEM for a dynamic simulation in 3D and especially the interactive cutting of soft
objects as used, e.g., in virtual surgery simulation was not analyzed before. More-
over, in all previous publications the XFEM is used in the context of linear FEM,
which is only suitable for small deformations. The XFEM can effectively model
discontinuity regions within an FEM mesh. An important advantage of the XFEM
compared to remeshing based methods is its accuracy and the reduced requirements
on the simulation mesh. As no new elements are created during a cut, the impact
on performance of the simulation is minimized [JJCK06, JJCK07]. Moreover, this
method is very well suited to the structure of existing finite element codes. The
remeshing based methods suffer from stability problems when small parts of the
tissue are separated. The reasons for the instability are twofold. First, ill-shaped
elements are created, and second, the masses of the new elements can be very low.
In the XFEM no ill-shaped elements are created. The choice of an appropriate en-
richment and a mass lumping technique is the key to a stable dynamic simulation
using XFEM.

1.2 Contributions and Outline

This thesis presents methods for an interactive simulation of finite elements based
deformable objects as used, e.g., in VR surgical simulators. The main objectives of
such simulators are stability and performance of the employed methods allowing for
an interactive object manipulation including topological changes in real time. The
main contributions are:

• simulation of interactive cutting without remeshing. I prove the suit-
ability of XFEM for interactive cutting of deformable objects in virtual envi-
ronments. Furthermore, I discuss the stability issues of the dynamic simulation
and analyze different mass lumping approaches in order to guarantee the sta-
bility of the simulation regardless of the location of the cut. Finally, I analyze
the impact of cutting with this approach on the simulation performance. The
XFEM approach is described in chapter 3.

• the combination of XFEM and large deformations. I show how XFEM
can be applied to the corotational and geometrically nonlinear constitutive
models, which are the most commonly used methods for the simulation of
large deformations in CG. This is described in chapter 3 as well.

• framework for physically based simulation of deformable objects.
I propose a software architecture that structures the simulation layer of in-
teractive VR applications, e.g., in the field of surgical simulation. As a proof
of concept, I implemented the proposed methods and integrated them into a
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software framework. Based on this framework, I developed a prototype of an
open surgery simulator as well as other testing applications. The structure
and main features of this framework are discussed in chapter 4.

• parallelization on multicore CPUs. I present a parallelization approach
for the above mentioned framework that benefits from the current develop-
ments in the computing industry (chip level parallelism). The proposed solu-
tion based on OpenMP requires only minimal changes to the source code while
achieving a significant speedup of the simulation on commodity hardware. The
parallelization approach is described in detail in chapter 5.

Chapter 2 is an overview of the principles of continuum mechanics, FEM and numer-
ical mathematics needed for a better understanding of the remainder sections.

12



CHAPTER 2

THE L INEAR ELASTIC MATERIAL MODEL

The linear elastic model is the best-known of the elastic models. Systems derived
from the linear elastic model are easy to solve compared to other elastic models and
are therefore used in interactive simulations even though the linearity assumption
is only valid for infinitesimal displacements of real materials. Robert Hooke first
formulated linear elastic behavior in 1676. He observed that under small loads and
deformations, deflection of many materials is linearly proportional to the applied
load (Hooke’s Law). For a linear spring the Hooke’s law reads

f = ku, (2.1)

where f is the applied force load, k is the spring constant and u is the spring
elongation.

Figure 2.1: Tonti diagram for the external and internal mechanical quantities.

For more complicated cases than a linear spring the stiffness equation cannot be
expressed in such a simple way. Therefore, internal quantities are introduced to the
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CHAPTER 2. THE LINEAR ELASTIC MATERIAL MODEL

mathematical model. The behavior of materials can be described by the relationship
between the four physical fields: displacement, strain, stress and force (cp. Fig. 2.1).
The displacement, which corresponds to the movement of particles in the elastic
continuum, is linked to the internal displacement measure (strain) by kinematic
compatibility conditions. The internal force measure (stress) is linked to strain by
constitutive (material) laws, and finally, the stress is linked to the external load
by the equilibrium equations. Forces and displacements can be seen as external
factors that can be observed and measured. Moreover, forces and displacements
can be prescribed by defining boundary conditions (BC), corresponding, e.g., to
fixing of an object part or an application of an interaction force. Strain and stress
are internal mathematical tools to measure the effects of displacements and forces
respectively. The relationship between stress and strain is what determines the
actual physical behavior of the continuum. Different continuum models are used
to describe different material behavior (elasticity, plasticity, viscosity). For more
details on the continuum mechanics see, e.g., [Mal69].

2.1 Strain

Strain is a measure of a body’s deformation. For a one dimensional spring, strain
can be defined as the ratio of elongation with respect to the original length. For a
3D body, strain can be expressed as a matrix.

ǫ =







ǫxx ǫxy ǫxz

ǫyx ǫyy ǫyz

ǫzx ǫzy ǫzz







(2.2)

with

ǫij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

+
3∑

k=1

∂uk

∂xi

·
∂uk

∂xj

)

(2.3)

called the Green’s strain tensor. u is the displacement vector, x is a coordinate, and
the indices i, j range over the three coordinates in three dimensional space. The
Green’s strain tensor is an objective measure of the deformation, i.e. it is invariant
under rigid body translations and rotations. The nonlinear equation (2.3) has to
be used for deformations in which the displacement gradients are large. For small
deformations, the linearized Cauchy’s tensor is often used.

ǫij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

(2.4)

The nonlinearity of the equation 2.3 is called geometrical nonlinearity as opposed
to material nonlinearity meaning a nonlinear stress-strain relation.
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2.2 Stress

Stress is a measure of the inner forces within a solid that balance a given set of
external forces and body forces. The stress or traction vector is a force vector
per unit area. By defining a set of internal planes perpendicular to the Cartesian
coordinate axes the stress state at an arbitrary internal point can be described
relative to x, y, and z coordinate directions. Stress can be expressed in terms of
three traction vectors acting on three perpendicular planes. Each of these vectors can
be decomposed into three mutually orthogonal components. The subscript notation
used for the nine stress components have the following meaning: σij - stress on
the i-th plane along the j-th direction (Fig. 2.2). Nine stress components from

Figure 2.2: Stress components at an internal point represented by in an infinites-
imal cube.

three planes are needed to describe the stress state. These nine components can be
organized into a matrix.

σ =







σxx σxy σxz

σyx σyy σyz

σzx σzy σzz







(2.5)

This grouping of the nine stress components is known as the stress tensor. The
diagonal components are normal to the reference surfaces and represent the normal
stress. The off-diagonal components are tangential to the reference surfaces and
represent shear stresses. Normal stress tends to change the volume of the material
whereas the shear stress tends to deform the material without changing its volume.
The off-diagonal shear stresses are symmetrical (σxy = σyx, σxz = σzx, σzy = σyz).

The equilibrium equations have the form

fi =
3∑

j=1

∂σji

∂xj

(2.6)
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which is equavalent to

f = ∇ · σ (2.7)

where ∇ is the divergence operator (∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
).

2.3 The Constitutive Law

The constant of proportionality between applied tensile stress and resulting strain
for linear elastic materials was defined by Thomas Young and is known as the Young
modulus of elasticity.

E =
σtensile

ǫtensile

(2.8)

When a linear elastic material is loaded axially in tension in the xx direction the
material contracts laterally in the yy and the zz directions. The ratio between the
lateral and axial deformation is known as the Poisson’s ratio ν and it’s range is
[0, 0.5].

ν = −
ǫlateral

ǫaxial

(2.9)

For isotropic materials loaded axially in the xx direction:

ν = −
ǫyy

ǫxx

= −
ǫzz

ǫxx

(2.10)

The Lamé material constants (λ, µ) are sometimes used instead of (E, ν) for 3-D
analysis of isotropic linear elastic materials because the elastic constitutive relations
can be written more concisely. The drawback to the Lamé material constants is that
they cannot be as easily measured as (E, ν).

λ =
Eν

(1 + ν)(1 − 2ν)
(2.11)

µ =
E

2(1 + ν)
(2.12)

The relation between stress and strain is given by a constitutive equation. For
elastic materials, the local stress depends only on the local instantaneous value of
the strain. In general, the stress-strain relation can be expressed by a fourth order
tensor of elastic constants, which has 34 = 81 components. However, it can be
shown that for an anisotropic material only 21 components are independent. For an
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isotropic material only two constants are needed. These are the Lamé constants λ
and µ. The constitutive law then reads

σ = λtr(ǫ)I + 2µǫ (2.13)

where tr() denotes the trace of a matrix (i.e., the sum of all diagonal elements
of a matrix) and I is an [3 × 3] identity matrix. Equation (2.13) is often written
in a matrix form, where ǫ and σ are rearranged as a 6-component vectors and C

is a material matrix, also known as rigidity, or constitutive matrix, cp. equation
(2.14).

σ =















σx

σy

σz

τyz

τzx

τxy















=















λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





























ǫx

ǫy

ǫz

γyz

γzx

γxy















= Cǫ (2.14)

γyz = ǫyz + ǫzy = 2ǫyz γzx = ǫzx + ǫxz = 2ǫzx γxy = ǫxy + ǫyx = 2ǫxy

ǫx = ǫxx ǫy = ǫyy ǫz = ǫzz

2.4 The Finite Elements Method

The Finite Elements Method is a numerical technique for solving boundary value
problems. In its application, the object or system is represented by a geometrically
similar model consisting of multiple, linked, simplified representations of discrete
regions called finite elements (FE). Laws of continuum mechanics are applied to
each element, and a system of simultaneous equations is constructed. The system
of equations is solved for unknown values using the techniques of linear algebra or
nonlinear numerical schemes, as appropriate. While being an approximate method,
the accuracy of the FEM method can be improved by refining the mesh in the model
using more elements and nodes. This chapter presents a strongly simplified view of
the FEM, which is sufficient to understand this thesis. More details can be found,
e.g., in [Bat86], [ZTZ05] and numerous other FEM books.

2.4.1 The Principle of Virtual Work

The equilibrium equation (2.7) together with the boundary conditions is called strong
form of the boundary value problem. The FEM is based on a different formulation
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called the weak form or the principle of virtual work or the principle of virtual dis-
placement, which is mathematically a variational method. According to the principle
of virtual work, for a body in equilibrium the work done by internal stresses cancel
out, and the internal virtual work done reduces to the work done by the applied
external forces.

W̃I = W̃E. (2.15)

The external virtual work of the force f passing through the virtual node displace-
ment ũ is

W̃E = ũTf. (2.16)

The virtual node displacements ũ cause virtual strain ǫ̃. The internal virtual work
associated with this load is

W̃I =

∫

V

ǫ̃TσdV . (2.17)

When the strain-displacement equations are expressed as ǫ = Bu, then after inserting
equations (2.16, 2.17, 2.14), equation (2.15) leads to

ũTf = ũT

(∫

V

B
T
CB dV

)

u (2.18)

and thus the governing equation of linear elasticity becomes

f =

(∫

V

B
T
CB dV

)

u (2.19)

where the term
∫

V
BT CB dV corresponds to stiffness.

2.4.2 The Discretization and the Shape Functions

In the FEM, the continuum is approximated using a mesh of finite elements (e.g., tri-
angles, tetrahedra or hexahedra) connected at nodes. The forces and displacements
are only evaluated at the nodes. Any external forces have to be expressed as node
forces with an equivalent impact. The element internal forces and displacements
are interpolated from the nodal forces and displacements using a set of functions,
typically referred to as shape, basis or interpolation functions. The displacement of
an arbitrary point can be computed as

u(x) =
n∑

i=1

Φi(x)ui (2.20)

18



2.4. THE FINITE ELEMENTS METHOD

Figure 2.3: In the FEM, the nodal displacements ui are interpolated using the
shape functions Φi in order to get a continuous displacement u(x) within an element.

where n is the number of element nodes, Φi are the element shape functions and
ui are the nodal displacements. The shape functions fulfill the Kronecker delta
property, meaning that the value of Φi is 1 in the node i and 0 in all other nodes.
Consequently, u(xi) = ui. For a linear triangle and tetrahedron, the shape functions
are identical to the barycentric coordinates (cp. Fig. 2.3).

Equation (2.19) can be written in terms of discrete vectors f and u.

fi =
n∑

j=1

∫

V

B
T
i CBj dV uj =

n∑

j=1

Kijuj (2.21)

K is a stiffness matrix. For 3D mechanical problems, the K matrix of a finite element
is a positive definite symmetrical matrix with the size of [3n × 3n], where n is the
number of element nodes.

2.4.3 FEM Assembly

In order to obtain a deformation of the whole system, the elements have to be put to-
gether while satisfying the conditions of displacement compatibility and equilibrium
[ZTZ05]. The condition of displacement compatibility means that the displacement
of all elements meeting at the same node must be the same, whereas according to
the equilibrium condition, the sum of forces exerted by all elements meeting at a
node must balance the external force at that node. If a single node a is considered,
the elements’ forces contributions can be expressed as

∑

i

f i
a =

∑

i

K
i
au = fa (2.22)

19



CHAPTER 2. THE LINEAR ELASTIC MATERIAL MODEL

where the summation only concerns elements contributing to node a and Ki
a is the

a-th row of the stiffness matrix of the i-th element. The displacement vector u

is common to all elements. The global stiffness matrix can be thus assembled by
simply adding the contributions of the element stiffness matrices while considering
the global node numbering. This assembly process is a fundamental feature of the
direct stiffness method. The resulting global stiffness matrix is a sparse symmetric
positive definite matrix of the size [3n× 3n], where n is the number of nodes in the
whole system and the sparsity pattern corresponds to the elements’ connectivity.

2.5 Small Displacements

When the simulated displacement gradients are small, the linear Cauchy’s strain
(cp. equation (2.4)) can be used. The strain-displacement matrix B is defined as

[

B1 . . . Bn

]

(2.23)

where Bi are matrices containing the partial derivations of the shape functions (cp.
equations (2.4) and (2.20)).

Bi =
















∂Φi

∂x
0 0

0 ∂Φi

∂y
0

0 0 ∂Φi

∂z

∂Φi

∂y
∂Φi

∂x
0

∂Φi

∂z
0 ∂Φi

∂x

0 ∂Φi

∂z
∂Φi

∂y
















(2.24)

The [3 × 3] components of the element stiffness matrix are defined as

Kij =

∫

V

B
T
i CBj dV (2.25)

where i and j are the indices of the element nodes. For a linear tetrahedron (using
linear shape functions) with linear elastic material both the strain-displacement
matrix B and the material matrix C are constant. Once the object discretization
has been determined, the element stiffness matrix K can be computed.

The linearization of the Green’s strain (cp. equation (2.3)) known as the Cauchy’s
strain (cp. equation (2.4)) results in a constant stiffness matrix, that has to be initial-
ized once at the beginning of the simulation as opposed to being recomputed in each
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simulation step. The better computational efficiency is traded for accuracy, which
becomes noticeable when large deformations occur. In particular, the Cauchy’s
strain tensor is not invariant to rigid body rotations. It produces ghost forces,
which cause the deformed object to blow up unnaturally. Therefore, more advanced
methods have to be used for the simulation of large displacements. The corotational
method treats the rigid rotation and the deformation of the elements separately
while using the linear Cauchy’s strain. Alternatively, the nonlinear Green’s strain
can be used. Fig. 2.4 shows the comparison of the three methods.

Figure 2.4: A tube bended under gravity with the left side fixed simulated using
the linear (red), corotational (green) and geometrically nonlinear (blue) methods.

2.6 The Corotational Method

The corotational method was introduced to the CG community by [MDM+02] and
was improved by [HS04] and [MG04]. It is based on the linear FEM with Cauchy’s
strain, however, the elements are aligned with their reference configuration prior to
the force computation. The deformation forces computed for the aligned configu-
ration are then rotated back to the current configuration. Thus, the deformation
forces are computed as

fi = R

n∑

j=1

Kij

(
R

Tpj − p0j

)
(2.26)

where R is the rotation matrix needed for the alignment of the current and initial
configurations, Kij is the corresponding submatrix of the linear stiffness matrix
defined in equation (2.25), p are the positions of the element nodes in the current
deformed configuration and p0 are the initial positions of the element nodes. Note
that p = p0 + u.
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[MDM+02] and [HS04] propose different techniques for the estimation of the rota-
tion matrix. The time efficiency and robustness of this step strongly influence the
quality of the simulation. [MDM+02] determines an orthonormal base in both, the
initial and the deformed configurations. The transformation matrix between these
two bases contains the sought rotation matrix. The translational part of the trans-
formation is omitted and as the bases are orthonormal, the transformation matrix
does not contain any scaling or shearing factors. As an alternative to this approach,
[HS04] uses polar decomposition of the deformation gradient.

2.7 Geometrically Nonlinear FEM

The nonlinear FEM can be derived with the help of the deformation gradient and
Piola-Kirchhoff stress tensors rather than in terms of a stiffness matrix. For a finite
element, the deformation gradient F can be expressed using the shape functions and
the nodal displacements.

F =
∂u

∂x
+ I =

n∑

i=1

∂Φi

∂x
ui + I =

n∑

i=1

βiui + I (2.27)

where βi = ∂Φi

∂x
and I is an identity matrix. In a three dimensional space, the

deformation gradient is a [3 × 3] matrix as both u and x are 3D vectors. The
Green’s strain tensor can be expressed as (cp. equation (2.3))

ǫ =
1

2

(
F

T
F − I

)
(2.28)

The second Piola-Kirchhoff stress tensor is defined as

Sij = λ

3∑

k=1

ǫkkδij + 2µǫij (2.29)

where λ and µ are Lamé material constants and δij is Kronecker delta. The defor-
mation force can be computed as (cp. equation (2.7))

f =

∫

V

∇ ·
(
SF

T
)
dV or fi = βi

∫

V

(
SF

T
)
dV (2.30)

where the term SFT corresponds to the first Piola-Kirchhoff stress tensor. For a lin-
ear element, the deformation gradient and the derived strain and stress are constant
over the element as the partial derivatives of the shape functions are constant.
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2.8 Dynamic FEM Simulation

The deformation of the object is given by the displacement of the nodes according
to the acting external and internal forces. In an interactive simulation the applied
forces change in time and the virtual objects have to react to them in real time.
Therefore, the FEM has to be simulated dynamically. Mass and damping factors
are added to the static deformation forces (cp. equations (2.21, 2.26, 2.30)), in order
to account for inertia and energy dissipation. The dynamic deformation is described
by the following formula.

Mü + Du̇ + Ku = fext (2.31)

M is the mass matrix, D is the damping matrix, K is the global stiffness matrix,
u is the vector of nodal displacements and fext is the external load. For simplicity
the notation of a linear FEM is used here. In case of the corotational or nonlinear
methods, the term Ku is replaced by the expression for the respective deformation
forces (cp. equations (2.26, 2.30)).

Equation (2.31) is an initial boundary value problem. Finding its solutions means
finding such a displacement vector u, that the external forces are balanced by the
internal forces. The acceleration of the elements’ nodes is given by the difference
of the external load and the internal forces consisting of the deformation forces and
damping.

a = ü = M
−1 (fext − Du̇ − Ku) = M

−1F (2.32)

If the external forces are balanced by the body’s internal forces, the resulting force
F acting on the body is zero and consequently, the body acceleration is zero. If the
forces are not balanced, the body or its parts undergo nonzero acceleration. The
consistent mass matrix is defined as

Mij = ρ

∫

V

ΦiΦj dV (2.33)

where ρ is the material density. In oder to evaluate equation (2.32) the inverse of the
mass matrix is required. Therefore the mass matrix is usually diagonalized using
a technique called mass lumping. The most widely used form of a lumped mass
matrix is the row summation

M̄ii = ρ
∑

j

∫

V

ΦiΦj dV = ρ

∫

V

Φi dV (2.34)

as the sum of all Φj is one.

For the damping matrix, the Rayleigh formula (2.35) is mostly used [Bat86].

Dii = αMii + βKii (2.35)
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α and β are scaling factors.

The acceleration of the nodes caused by the unbalanced external and internal body
forces is a key to the object deformation. The nodal acceleration can be integrated
in time to obtain the velocities of the nodes, which can be integrated in time again
to obtain the nodal displacements. The velocity is defined as

v = u̇ (2.36)

In order to perform the numerical integration of the acceleration and velocity, the
simulation time t is discretized into time steps ∆t. The acceleration at a given time t
can be evaluated using equation (2.32). The initial conditions at the beginning of the
simulation (t = 0), are set to zero nodal displacements u(0) = 0 and zero velocities
v(0) = 0. Solving the equation (2.31) numerically means finding the velocities
and displacements in time steps t = ∆t, t = 2∆t, . . . Theoretically, any numerical
method for solving the initial value problem of ordinary differential equations (ODE)
can be used. Practically, for interactive applications, the applied method has to be
fast enough to enable for real time simulation.

2.8.1 Explicit Time Integration

Explicit methods are generally easy to implement, as in each step only the informa-
tion from previous steps is used [PFTV92]. When applied to the equation (2.31),
the explicit Euler method leads to

∆u = ∆t · vt (2.37)

∆v = ∆t · at (2.38)

The new displacement is obtained using the current velocity. The current acceler-
ation is evaluated using the current displacement and velocity, then it is used to
obtain the new velocity.

The main drawback of explicit methods is, that they are limited by a critical simu-
lation time step, above which they become unstable. The critical time step of the
simulated system is given by

∆tc =
2

ωmax

(2.39)

where ωmax is the maximum eigenfrequency, also called natural vibration frequency,
of the system. The eigenfrequencies can be determined as eigenvalues of the following
problem

Kx = ω2
Mx (2.40)
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where ω2 are the eigenvalues, ω are the eigenfrequencies and x are the correspond-
ing eigenmodes (eigenvectors). For a real time simulation, ∆t must be larger than
the time needed to compute the new values of acceleration, velocity and displace-
ment. Therefore, if ∆t becomes too small (for the sake of stability), even a method
with a simple single step can become too computationally expensive for real time
applications.

2.8.2 Implicit Time Integration

Implicit methods are theoretically unconditionally stable, but they require the eval-
uation of partial derivatives of the deformation forces and the solution of a large,
possibly nonlinear, system of equations [PFTV92]. The implicit Euler method leads
to

∆u = ∆t · vt+∆t (2.41)

∆v = ∆t · at+∆t (2.42)

Equation (2.42) uses the acceleration at time t + ∆t to obtain the velocity at time
t+∆t. However, the velocity and displacement at time t+∆t are needed to evaluate
the acceleration at time t+ ∆t. The Newton-Raphson method can be used to solve
the system of equations. Let bu and bv be

bu = ∆u − ∆t · vt+∆t (2.43)

bv = M · ∆v − ∆t · Ft+∆t (2.44)

The equations are solved if bu and bv are equal to zero. The unknowns are ut+∆t

and vt+∆t. The Newton-Raphson method evaluates bu and bv for some starting
values of ut+∆t and vt+∆t. Then it approximates bu and bv with the derivatives at
the starting point and computes the values of ut+∆t and vt+∆t as the point where
the derivative becomes zero. The new estimates of ut+∆t and vt+∆t are used in the
next iteration. The difference between the new and old values of ut+∆t and vt+∆t is
the iteration step su and sv respectively.

The Newton-Raphson method iterates until the iteration step is below a given
threshold. The main drawback of the Newton-Raphson method is the need for
the derivative of the forces. If the derivative changes in time, it has to be computed
in each simulation time step, which is quite time consuming. However, if the stiffness
matrix is constant, the force derivative is constant as well and has to be computed
only once at the beginning of the simulation.
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CHAPTER 3

CUTTING WITH THE XFEM

An interactive cutting simulation is an essential feature of a surgery trainer. How-
ever, the interactive progressive cutting of a deformable FEM mesh is a challenging
problem. The simulation of irreversible destructive phenomena such as cracks or
fracture plays an important role in mechanical and civil engineering. The simula-
tion can complement or replace experiments with rare, expensive or unsafe materials
(e.g., explosives). The goal is to allow an arbitrary element dissection without suf-
fering from the restrictions imposed by small sliver elements.

The number and quality of the FEM elements have a direct impact on the simula-
tion performance and stability. From the technical point of view, the simulation of
a surgical cut and the simulation of crack or fracture are similar and have to deal
with the same stability issues. Although a number of different approaches have been
presented recently, the problems have not been solved satisfyingly. In this chapter
I prove the suitability of XFEM for interactive cutting of deformable objects in vir-
tual environments. I will show how XFEM can be applied to the linear, corotational
and geometrically nonlinear constitutive models, which are the most commonly used
methods for the simulation of deformations in CG. Then the stability issues of a dy-
namic simulation are discussed and different mass lumping approaches are analyzed
in order to guarantee the stability of the simulation regardless of the location of the
cut. Finally the impact of cutting on the simulation performance is analyzed.
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3.1 Modeling Discontinuities using XFEM

In the FEM the displacement within an element is interpolated using equation (2.20).
When a discontinuity (e.g., a cut or crack) has to be added, the surrounding mesh
nodes are enriched by an additional global discontinuous enrichment function multi-
plied by shape functions with a local support, thereby leading to a local discontinu-
ous enrichment (cp. Fig. 2.3 and 3.1). The corresponding number of nodal degrees
of freedom (DOF) is added.

u(x) =
n∑

i=1

Φi(x)ui +
n∑

j=1

Φ∗

j(x)ψj(x)aj (3.1)

where ψ(x)j are the discontinuous enrichment functions and aj are the added nodal
DOF. The shape functions of the added DOF Φ∗

j(x) are not necessarily identical
to the shape functions of the corresponding nodes. For example, it is possible
to use higher order shape functions Φi(x) together with linear enrichment shape
functions Φ∗

j(x). In the following, Φ∗

j(x) = Φi(x) is considered. The XFEM is

Figure 3.1: The discontinuous enrichment functions Ψi lead to a discontinuous
displacement field u(x).

based on the partition of unity concept [MB96, BM98]. The functions Φ∗

i (x) build a
partition of unity in local parts of the domain. The enrichment function can be any
arbitrary discontinuous function provided that it is discontinuous over the crack or
cut domain. The simplest and the most widely used ψ(x) is a generalized Heaviside
function [BB99] also known as the sign() function

Ψ(x) = H(x) =







+1 above the crack

−1 below the crack
(3.2)
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Figure 3.2: The comparison of two different enrichment approaches. On the left,
the enrichment function ψ(x) = H(x) is used, whereas on the right, the shifted
enrichment function ψi(x) = 1

2
(H(x) −Hi) is used.
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The enrichment of the nodes impacts all elements sharing the enriched nodes, i.e.,
the one ring of neighbors of the element containing the cut. Due to the additional
enrichment term of equation (3.1) the shape functions together with the local en-
richment functions Φ∗

i (x)ψi(x) do not have the Kronecker delta property in general
(cp. to chapter 2.4.2). Consequently, the displacement of the enriched nodes has to
be computed as a sum of the components ui + Ψiai. This fact also complicates the
treatment of boundary conditions. Shifted enrichment functions, that are zero at all
nodes, can be used instead [ZB03].

ψi(x) =
H(x) −Hi

2
(3.3)

where Hi is the value of H(x) at the i-th node. The division by 2 ensures the
Kronecker delta property. The effect of shifting is that the enrichment contributions
only appear within the element that has been cut and vanish at its border and
outside the element (cp. Fig. 3.2), which leads to an enormous simplification of the
implementation.

Figure 3.3 shows how the choice of the enrichment function influences the physi-
cal meaning of the original and the added DOF. When the generalized Heaviside
function is used for enrichment, the ui loose their physical meaning of nodal dis-
placement. On the other hand, when the shifted enrichment is used, the nodal
displacements of non-enriched and enriched nodes are stored directly in ui, the con-
tributions of ai are only needed to determine the displacement within an enriched
element.

The added enrichment functions and nodal DOF in fact double the element and allow
for the decoupling of the dissected parts. The same effect can be reached by the
replacement of the original continuous shape functions by discontinuous functions
(cp. Fig. 3.4) corresponding to a linear combination of the original shape functions
and the XFEM enrichment. For an enrichment using the generalized Heaviside
function, the substitution is defined as

Φ′

i(x) =
1

2
(Φi(x) + Φi(x)Ψi(x)) (3.4)

Φ′′

i (x) = −
1

2
(Φi(x) − Φi(x)Ψi(x)) (3.5)

The scale by ±1

2
ensures the Kronecker delta property. The effect is, that Φ′

i = Φi

and Φ′′

i = 0 above the cut and Φ′

i = 0 and Φ′′

i = Φi below the cut. The corresponding
nodal DOF u′

i and u′′

i have the physical meaning of displacement and substitute
the original DOF as

u′

i = ui + ai (3.6)

u′′

i = ui − ai (3.7)
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(a) generalized Heaviside function ψ(x) = H(x)

(b) shifted enrichment function ψi(x) = H(x) −Hi

Figure 3.3: Physical meaning of the nodal DOF depending on the enrichment
function used.
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Figure 3.4: DOF substitution.

For a linear tetrahedron this case is identical to the virtual node algorithm [MBF04],
where the virtual nodes correspond to the DOF in each element’s part without
material, i.e., nodes u′′

1,u
′

2,u
′

3 in Figure 3.4. A similar duality of additional or
substitutional shape functions can be found in the context of multiresolution tech-
niques [GKS02, KGS03], where it is called true hierarchical and quasi-hierarchical
refinement.

It has to be noted, that all above mentioned versions of XFEM enrichment are
physically equivalent, i.e., they will all lead to the same displacements. However, as
already mentioned, the choice of the enrichment influences the ’straight-forwardness’
of the implementation, and, as will be shown later (cp. chapter 3.2), also the
numerical stability of the simulation.

The principle of enrichment functions is general and thus can be used with any type
of finite elements such as shells, volumetric elements and even springs and any type of
constitutive model. It allows not only the simulation of strong discontinuities, such
as cuts or cracks, where parts of material are separated, but also the simulation of
weak discontinuities, such as material interfaces in solids and fluids or the interface
between solid and fluid. In a weak discontinuity, the displacements are continuous,
however, they contain a kink, and thus the displacement gradient is discontinuous.
For more details on the simulation of weak discontinuities using XFEM, I refer to
[BZXC03, SCMB01, CBM03]. In this thesis, strong discontinuities are considered.
Although the XFEM principles throughout this thesis are demonstrated on a sin-
gle cut per element, the extension to multiple cuts is straight forward and will be
described in the following section.
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3.1.1 Multiple Cuts

When an element is cut through, two independent components exist, and the number
of DOF with corresponding shape functions is doubled. Each of the components
can be cut again, creating a cut branch (cp. Fig. 3.5). Every new cut leads to
a new independent component and a new set of DOF and enrichment functions.
An important principle is that the support of the enrichment covers a previously
existing element component and not necessarily the whole element. In the situation

Figure 3.5: Multiple cuts per element. Each new cut leads to a new independent
component.

of Fig. 3.5, cut I has been created first, followed by cut II. Cut I was enriched
using the function HI , whereas the enrichment function HII corresponds to cut II.
At the end, three independent components exist, with 9 nodal DOF in total. The
displacement within an element can be computed as follows

u(x) =
n∑

i=1

Φi(x)ui +
n∑

j=1

Φ∗

j(x)ψ
I
j (x)a

I
j +

n∑

j=1

Φ∗

j(x)ψ
II
j (x)aII

j

=
n∑

i=1

Φi(x)ui +
m∑

j=1

Φ∗

j(x)ψj(x)aj (3.8)

where m is the number of added DOF. Equation (3.8) is a generalization of equation
(3.1), where j runs over all added DOF. The enrichment functions Ψj(x) are con-
sidered to be global as are the functions HI and HII . The local nodal enrichment
is realized by the multiplication of Ψj(x) by Φ∗

j(x) with local support. Note that
function HII is zero on the left side of cut I. Thus, the DOF added with cut II will
not influence the left side of cut I.

For a more complex crack branching, a hierarchical structure of the components as
shown in Fig. 3.6 is useful. The group nodes contain the enrichment data of a given
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Figure 3.6: Multiple cuts per element - a hierarchical cut structure

cut, whereas the leaf nodes represent the resulting independent components. The
area (volume) of each component is defined by a sequence of cuts from the root node
of the hierarchy to the corresponding leaf.

The following sections describe the enrichment of three most commonly used con-
stitutive models in CG: a physically and geometrically linear element based on
Cauchy’s strain, a corotational element and St. Venant-Kirchhoff element based
on Green’s strain.

3.1.2 The Linear XFEM

When a discontinuity has to be added, new DOF are appended to the displacement
and force vectors u and f respectively.

uX =
[

u1 . . . un a1 . . . an

]T

(3.9)

fX =
[

f1 . . . fn fa
1 . . . fa

n

]T

(3.10)
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The the components of the enriched stiffness matrix are computed as (cp. equation
(2.25)).

K
X
ij =

∫

V

B
XT
i CB

X
j dV (3.11)

The enriched strain matrix has the form

B
X =

[

B1 . . . Bn ψ1B1 . . . ψnBn

]

(3.12)

The enrichment function ψi(x) takes on constant values over the domain above (Va)
and below (Vb) the cut plane and only changes value from one to another. Thus,
the volume integral in equation (3.11) can be split into two parts

K
X
ij =

∫

Va

B
XT
i CB

X
j dV

︸ ︷︷ ︸

above

+

∫

Vb

B
XT
i CB

X
j dV

︸ ︷︷ ︸

below

(3.13)

The enriched stiffness matrix can be divided into four parts

K
X =

[

Kuu Kua

Kau Kaa

]

(3.14)

where Kuu corresponds to the original DOF, whereas Kua, Kau and Kaa correspond
to the added DOF. After inserting equation (3.12) into equation (3.13) and assuming
constant matrix B, the stiffness matrix components become

K
uu
ij = Kij (3.15)

K
ua
ij =

(
Va

V
Ψaj +

Vb

V
Ψbj

)

Kij (3.16)

K
au
ij =

(
Va

V
Ψai +

Vb

V
Ψbi

)

Kij (3.17)

K
aa
ij =

(
Va

V
ΨaiΨaj +

Vb

V
ΨbiΨbj

)

Kij (3.18)

Kuu is identical to the original stiffness matrix of the non-enriched element, whereas
for Kua, Kau and Kaa the original stiffness matrix is multiplied by constant factors
depending on the size of the dissected volumes and the cut side of the given node
(above or below). Ψai denotes the value of the function Ψi(x) above the cut plane,
whereas Ψbi is its value below the cut plane. When the shifted enrichment is used
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(cp. equation (3.3)), the components of the stiffness matrix result in

K
uu
ij = Kij (3.19)

K
ua
ij =







−Vb

V
Kij if Hj = +1

Va

V
Kij if Hj = −1

(3.20)

K
au
ij =







−Vb

V
Kij if Hi = +1

Va

V
Kij if Hi = −1

(3.21)

K
aa
ij =







Vb

V
Kij if Hi = Hj = +1

Va

V
Kij if Hi = Hj = −1

0 if Hi 6= Hj

(3.22)

The linear FEM is the most simple FE model as the stiffness matrix remains constant
during the simulation. However, it is well known that the linear FEM is only suitable
for the simulation of small displacements. In particular, the underlying Cauchy’s
strain measure is not rotationally invariant and leads to disturbing artifacts when
the elements are rotated. Fig. 3.7 illustrates this phenomenon. It shows three
simulation time steps of a slice that has been cut of a cube and is falling down
under gravity and rotating at the same time. In the simulation on the left, the
Cauchy’s strain has been used, whereas the the Green’s strain has been used for the
simulation on the right. The linear XFEM might be sufficient for the simulation of
cracks or partial cuts in a stiff material, when the created opening is not very wide.
In cases when the dissected parts undergo a large deformation or the simulated
object falls apart, advanced methods have to be used.

3.1.3 The Corotational XFEM

When the element is cut, the aligning rotation is different for the dissected parts
(cp. Fig. 3.8). Thus, the deformation forces in an enriched element are computed
as follows (cp. equations (2.26) and (3.13))

fX
i =

n∑

j=1

Ra

∫

Va

B
XT
i CB

X
j dV

(
R

T
a pX

j − pX
0j

)

︸ ︷︷ ︸

above

+
n∑

j=1

Rb

∫

Vb

B
XT
i CB

X
j dV

(
R

T
b pX

j − pX
0j

)

︸ ︷︷ ︸

below

(3.23)
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(a) Cauchy’s strain. (b) Green’s strain.

Figure 3.7: Three simulation time steps of a falling dissected slice. Cauchy’s strain
measure leads to disturbing artifacts when the object is rotated.

Figure 3.8: The dissected parts Va, Vb of an element undergo generally different
rotations Ra, Rb and deformations Fa, Fb. The displacement of an arbitrary point
within an element can be determined using equation (3.1). Especially, all points
that are above or below the cut in the (non-deformed) reference configuration will
remain on the same side of the cut in the deformed state.
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where Ra and Rb are the rotations of the element parts above and below the cut
respectively. Note that pX = pX

0 + uX . After inserting equation (3.2) into equa-
tion (3.23), the deformation force corresponding to a standard DOF (0 ≤ i ≤ n)
becomes

fi =
Va

V
Ra

n∑

j=1

Kij

(
R

T
a paj − p0j

)
+
Vb

V
Rb

n∑

j=1

Kij

(
R

T
b pbj − p0j

)
(3.24)

where

paj = p0j + uj + Ψajaj (3.25)

pbj = p0j + uj + Ψbjaj (3.26)

For the added DOF, equation (3.23) results in

fa
i =

Va

V
RaΨai

n∑

j=1

Kij

(
R

T
a paj − p0j

)
+
Vb

V
RbΨbi

n∑

j=1

Kij

(
R

T
b pbj − p0j

)
(3.27)

If the shifted enrichment function (cp. equation (3.3)) is used, equations (3.25) -
(3.27) result in

paj =







p0j + uj if Hj = +1

p0j + uj + aj if Hj = −1

(3.28)

pbj =







p0j + uj − aj if Hj = +1

p0j + uj if Hj = −1

(3.29)

fa
i =

n∑

j=1







−Vb

V
RbKij

(
RT

b pbj − p0j

)
if Hi = +1

Va

V
RaKij

(
RT

a paj − p0j

)
if Hi = −1

(3.30)

3.1.4 The Nonlinear XFEM

When the element is cut, the deformation gradient, strain and stress have to be
determined for each part separately (cp. Fig. 3.8). The deformation force can then
be computed as (cp. equation (2.30))

fX
i =

∫

Va

βX
i SaF

T
a dV

︸ ︷︷ ︸

above

+

∫

Vb

βX
i SbF

T
b dV

︸ ︷︷ ︸

below

(3.31)
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where Fa, Sa, Fb, Sb are the deformation gradient and the second Piola-Kirchhoff
stress above and below the cut respectively, and βX is defined as

βX =
[

β1 . . . βn ψ1β1 . . . ψnβn

]

(3.32)

with βi = ∂Φi

∂x
. Note, that βX depends on the discontinuous enrichment functions

and is therefore discontinuous as well. However, it is constant over the domains
above and below the cut respectively. The discontinuous deformation gradient of an
enriched element can be computed as (cp. equation(2.27))

F =
∂u

∂x
+ I =

n∑

i=1

βiui +
n∑

i=1

Ψiβiai + I = βX · uX + I (3.33)

where βX ·uX is a dot product of the vectors βX and uX . The corresponding second
Piola-Kirchhoff stress tensor can be computed using equations (2.3) and (2.29).

For the deformation force corresponding to a standard DOF (0 ≤ i ≤ n), equation
(3.31) results in

fi = βi

(
VaSaF

T
a + VbSbF

T
b

)
(3.34)

whereas for the DOF appended after the cut we get

fa
i = βi

(
ΨaiVaSaF

T
a + ΨbiVbSbF

T
b

)
(3.35)

If the shifted enrichment function (cp. equation (3.3)) is used, equation (3.35) results
in

fa
i =







−βiVbSbF
T
b if Hi = +1

βiVaSaF
T
a if Hi = −1

(3.36)

3.2 Dynamic Simulation

Sliver elements as shown, e.g., in Fig. 3.9, have negative impact on the numerical
accuracy and stability of both, explicit and implicit methods. The stability of the
simulation can be influenced by the choice of the enrichment function and a mass
lumping technique. Depending on the mass matrix and the position of the cut, the
ωmax given by equation (2.40) can become very high (possibly infinite), pushing the
critical timestep ∆tc towards zero. Generally, if M and K are positive definite, all
ω2 are real and positive and thus all eigenfrequencies are positive. The non enriched
stiffness matrix is symmetric positive definite and the non enriched mass matrix
is diagonal with positive values and thus also symmetric positive definite. In this
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(a) Dissection of a small volume.

(b) Approximately 50% of finite elements are cut in a way that Va or Vb

are nearly zero.

Figure 3.9: Dissections of a cube leading to small material slivers. The upper face
of a deformable cube is fixed, the dissected volume is falling down under gravity
(left and middle). The underlying finite elements (usually invisible to the user) are
visualized on the right. The enriched elements are stretching between both dissected
parts.
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section I will analyze the stability criteria for an enriched element using the shifted
enrichment function (cp. equation (3.3)) depending on mass lumping techniques.

Similarly to the enriched stiffness matrix, the enriched mass matrix has the form

M
X =

[

Muu Mua

Mau Maa

]

(3.37)

The components of the consistent mass matrix of an enriched element are defined
as

M
uu
ij = ρ

∫

V

ΦiΦj dV (3.38)

M
ua
ij = ρ

∫

V

ΦiΦjΨj dV (3.39)

M
au
ij = ρ

∫

V

ΨiΦiΦj dV (3.40)

M
aa
ij = ρ

∫

V

ΨiΦiΦjΨj dV (3.41)

The lumped submatrices Mua
ij and Mau

ij are zero, whereas the submatrices Muu
ij and

Maa
ij can be diagonalized using row summation (cp. equation (2.34))

M̄
uu
ii =

∑

j

M
uu
ij (3.42)

M̄
aa
ii =

∑

j

M
aa
ij (3.43)

or weighted diagonal technique

M̄
uu
ii = m

Muu
ii

∑

j Muu
ij

(3.44)

M̄
aa
ii = m

Maa
ii

∑

j Maa
ij

(3.45)

[MRCB06] propose a third mass lumping technique specific to XFEM.

M̄
uu
ii =

m

n
(3.46)

M̄
aa
ii =

ρ

n

∫

V

ψ2
i dV =

(
Va

V
Ψ2

ai +
Vb

V
Ψ2

bi

)

M̄
uu
ii (3.47)

where m is the element total mass and n is the number of element nodes. They
show that for the enrichment function in form of a Heaviside function (0 or 1) or
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(a) generalized Heaviside function
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(b) shifted enrichment function

Figure 3.10: The stability analysis of a dissected 1D element simulated by XFEM.
The horizontal axis c denotes the position of the cut relative to the total element
length.
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Figure 3.11: The stability analysis of a dissected 1D element simulated using DOF
substitution. The horizontal axis c denotes the position of the cut relative to the
total element length.

a generalized Heaviside function (-1 or +1) their mass lumping is superior to the
previous two as the critical time step never becomes zero, regardless of the position
of the cut.

I analyzed the stability criterion for a one dimensional element enriched by the
generalized Heaviside function (cp. equation (3.2)), the shifted enrichment function
(cp. equation(3.3)) and the DOF substitution (cp. equation (3.5)) with the cut
position as a parameter. Figures 3.10 and 3.11 show the analysis results. The
vertical axis is the ratio of the critical time step of an enriched element ∆tc and a
standard element with row summation mass lumping ∆t0c . The values of this ratio
are expected to be in the range [0,1], where 0 means instability (i.e., ω = ∞). On
the horizontal axis is the position of the cut relative to the total length. I compare
the enriched consistent matrix and the three mass lumping techniques.

The consistent matrix will lead to instability when the cut is close to an element node
(element sliver). In case of the generalized Heaviside function (cp. Fig. 3.10(a)) all
three mass lumping techniques lead to the same diagonal mass matrix. The critical
time step of the cut element is between 0.7 and 1.0 of the critical time step of the
nonenriched element with the lowest values at both ends of the element. For the
shifted enrichment function (cp. Fig. 3.10(b)) the different mass lumping techniques
lead to different matrices. The critical time steps reached are higher than 0.75 of
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the critical time step of the nonenriched element. In this case the weighted diagonal
technique gains slightly better results than the other two lumping techniques.

The critical timestep of an element enriched by the generalized Heaviside function
or the shifted enrichment function not only never drops down to zero, but it is of the
same order of magnitude as the critical timestep of a standard element regardless of
the cut location. The situation is different when the DOF substitution is used (cp.
Fig. 3.11). The row summation and weighted diagonal mass lumping techniques
both lead to instability for a cut near the element nodes. The enrichment lumping
cannot be applied here.

enrichment lumping

v
0 0.2 0.4 0.6 0.8 1.0

Dtc/∆t0
c

0

0.2

0.4

0.6

0.8

1.0

Figure 3.12: The stability analysis of a dissected tetrahedron simulated by XFEM
using shifted enrichment function and a XFEM specific mass lumping. The horizon-
tal axis v denotes the volume below the cut relative to the total element volume.

For tetrahedra in 3D space the general analysis becomes far more complex as the
size of the involved matrices grows from [4 × 4] in 1D case to [24 × 24] in 3D
case. Moreover, the cut position has to be parametrized using three independent
parameters. For the consistent matrix and the first two mass lumping approaches a
volume integral of the shape functions above and below the cut has to be evaluated
first. Then the mass lumping is applied and the resulting matrix is inverted. This
leads to a nontrivial dependency of the eigenvalues on the cut parameters making a
generic numerical analysis too difficult for a state of the art mathematical software.
In case of the enrichment lumping (cp. equation (3.47)) the values of the mass
matrix only depend on the volume ratios above and below the cut and thus only one
parameter defining the cut position is sufficient. Fig. 3.12 shows the result of the
eigenvalue analysis for a tetrahedron enriched by the shifted enrichment function.
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The vertical axis is the ratio of the critical time step of an enriched element and
a standard element with row summation mass lumping. On the horizontal axis v
is the volume below the cut relative to the total volume of the element. As in 1D
case, also in 3D case the critical time step of an enriched element is of the same
order of magnitude as the critical time step of a nonenriched element regardless of
the location of the cut. Consequently, situations as displayed in Fig. 3.9 can be
simulated without problems.

3.3 Complexity Analysis

The linear, corotational and geometrically nonlinear methods described above are
suitable for a real time simulation of deformable objects in virtual environments. In
this section, the impact of cutting on the simulation performance is analyzed. The
deformation forces and their derivatives can be evaluated for each element separately.
I analyze the computational overhead of an enriched element over a standard ele-
ment. For the linear constitutive model the stiffness matrix is precomputed at the
beginning of the simulation, and the enriched stiffness matrix is computed once the
position of the discontinuity is known. The nodal deformation force corresponding
to a standard DOF of an enriched element (0 ≤ i ≤ n) is computed as

fi =
n∑

j=1

K
uu
ij uj +

n∑

j=1

K
ua
ij aj (3.48)

The nodal deformation force corresponding to an added DOF is computed as

fa
i =

n∑

j=1

K
au
ij uj +

n∑

j=1

K
aa
ij aj (3.49)

It can easily be seen that the force evaluation of an enriched element requires ap-
proximately four times more floating point operations than a standard element. The
forces Jacobian components

J
X
ij =

∂fX
i

∂uX
j

(3.50)

are identical to the stiffness matrix components and thus remain constant during
the simulation.

For the enriched corotational elements the two rotation matrices Ra and Rb for
the parts above and below the cut have to be determined. The nodal deformation
forces are computed according to equations (3.24) and (3.27). Unlike the linear
case, the forces Jacobian is not constant. However, during the computation of the
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deformation forces some terms can be reused and can also be used in the Jacobian
computation. The force evaluation of an enriched element requires approximately
2.6 times as many floating point operations as the nonenriched corotational element.
The forces Jacobian is computed as (cp. equation (3.23))
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resulting in

J
X =

[

Juu Jua

Jau Jaa

]

(3.52)
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The nodal deformation forces of a geometrically nonlinear enriched element are
computed using equations (3.34) and (3.35). The deformation gradient, strain and
stress are determined only once per simulation time step for each dissected part and
reused in the computation of all nodal forces. Thus, the force evaluation of an en-
riched element requires approximately 2.2 times more floating point operations than
a nonenriched nonlinear element. The rows of the forces Jacobian corresponding to
the standard DOF (0 ≤ i ≤ n) are computed as
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whereas the rows corresponding to the added DOF are computed as
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Although the partial derivatives
∂(SaFT

a )
∂uX

j

and
∂(SbFT

b )
∂uX

j

are only computed once and

reused for each i, their dimension is twice the dimension of
∂(SFT )

∂uj
of a standard

element. Thus, compared to the forces Jacobian of a standard nonlinear element,
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the update of the enriched element forces Jacobian requires approximately four times
more floating point operations.

Remeshing based methods (e.g., [MK00]) replace a cut tetrahedron with 5.2 new
elements in average. These methods suffer from serious stability problems caused
by small tetrahedra. Therefore, a very small simulation time step has to be chosen
when the elements are cut. As can be seen above, the computational costs of an
enriched element in XFEM are 2.2 to 4 times the costs of the corresponding stan-
dard element depending on the applied constitutive model and integration scheme
(explicit schemes do not require the computation of the forces Jacobian). The sim-
ulation time step is not influenced by cutting in any way. In summary, XFEM can
efficiently model discontinuities within an FEM mesh and is suitable for a real time
simulation of cutting as used, e.g., in virtual surgery.
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CHAPTER 4

THE SIMULATION FRAMEWORK

The methods presented in this thesis are part of a framework for interactive phys-
ically based modeling of deformable objects in virtual environments. The PBM
framework is based on the VR toolkit ViSTA (Virtual Reality for Scientific and
Technical Applications) developed in the VR-Group of the RWTH Aachen Univer-
sity and should enable the integration of PBM into a broad variety of VR applica-
tions. Therefore, the simulation API was designed to be general and independent
of specific simulation methods. It provides state of the art algorithms for elastic
deformation, numerical solvers, collision detection and supporting utilities.

Figure 4.1: The layered structure of a VR application with physically based simu-
lation. The basic ViSTA modules (gray) provide general VR infrastructure whereas
the PBM modules (orange) provide methods of collision detection and physical sim-
ulation.

The structure of a VR application with physically based simulation is shown in
Fig. 4.1. ViSTAKernel manages the objects in a scene using a scene graph API.
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Moreover, it provides access to display configurations ranging from desktop to cluster
based visualization in CAVE-like environments. ViSTA supports various I/O devices
as motion trackers, navigation devices and the Phantom haptic device. Modules
VistaMath, VistaTools, VistaIPC provide basic functionality that can be
accessed by VistaKernel as well as by the application. The above mentioned
modules provide a general infrastructure for the creation of virtual environments.
Special functionality can be provided by additional modules. The PBM modules
will be explained in the following sections.

4.1 The Application Backbone

The VistaSoftSim module creates a bridge between the application and the
VistaCD and VistaPhysics modules. The purpose of VistaSoftSim is the
simplification of the use of PBM methods by providing utilities and patterns needed
by the application.

An interactive physically based simulation involves the execution and synchroniza-
tion of the following tasks: visualization, deformation, collision detection and force
feedback. Each of these tasks requires different data structures and different update
rates. The visualization renders the polygonal approximation of the surface of the
simulated object within a graphical scene. The graphical representation of the in-
teraction tools is visualized as well. A sufficient update rate for a smooth animation
is about 20 Hz. A higher frame rate is desirable though when head tracking is used.
The deformation process uses a mesh of finite elements approximating the volumet-
ric object. Depending on the material parameters and the numerical method used,
it has to be run up to several thousand times per second. The deformation process
is the most computationally expensive task in the system. The collision detection is
used to approximate the tested surface and to quickly identify parts of the surface
that the tool collides with. The interaction tools can be approximated using one or
more line segments. The collision detection should be processed about two hundred
times per second. The force feedback process is usually run on a dedicated computer
with a force feedback device attached to it. Here, a simplified local model of the
simulated object is created. The force is proportional to the penetration depth and
has to be updated about thousand times per second in order to provide smooth
feedback without vibrations. Fig. 4.2 displays a structure of an interactive soft
tissue simulator.

The different object representations have to be kept consistent as the object under-
goes deformation and topological changes. As the user perceives the system visually
and haptically, it is crucial to provide the visual and haptical output at the specified
rates. The collision data are provided to the haptics process immediately at the rate
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Figure 4.2: The structure of an interactive soft tissue simulator. Each task uses a
dedicated representation of the simulated object and surgical tool.

of the collision detection. The data between the visualization, deformation and col-
lision detection are synchronized at a lower rate given by the world time step, which
is a multiple of the simulation time step used by the deformation process. The world
time step must not be smaller than 50 ms, which corresponds to an update rate of
20 Hz. Any user interaction detected between two synchronization steps is queued
and processed simultaneously before the resulting changes are visualized.

Fig. 4.3 displays the synchronization mechanism. The crucial part is to realize
the data exchange fluently and without too much friction between the submodules.
E.g., the frame rate for the visualization must remain constant in order to realize a
smooth projection update for the user’s head position. For that purpose I propose a
synchronization protocol that is described as follows. The visualization and collision
detection threads run in a loop that can be paused by a synchronization event sent
by another thread. A time out (t.o.) is used to control the update rate of these
threads. The synchronization is controlled by the deformation thread, which sends
a synchronization event to the visualization thread every time a world time step
has been simulated. Once the deformation and visualization thread pass the B1
barrier, a synchronization event is sent to the collision detection thread. After the
B2 barrier has been passed, all threads are paused and the synchronization can be
executed. While the visualization thread controls the data exchange, the collision
detection and the deformation threads are waiting to be released at barriers B3 and
B4 respectively.
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Figure 4.3: The synchronization mechanism.

4.1.1 Mesh Generation

In addition to the synchronization of the crucial simulation tasks, the VistaSoft-
Sim module provides algorithms for the mesh generation and (de-)serialization.
A FE mesh can be generated for an arbitrary geometry using hexahedral or tetra-
hedral volumetric elements or springs. The volumetric mesh generation in Vista-
SoftSim is similar to [THMG04] and [SWT06]. The resolution of the FE mesh is in-
dependent of the resolution of the geometry surface. Practical experience shows, that
the visualization mesh has to be of a high resolution in order to achieve an appealing
result, whereas an FE mesh of much lower resolution provides a sufficient amount
of information to animate a detailed surface mesh [MG04, MBF04, JKWP04]. This
leads to two coupled representations of the simulated object. The resolution of the
FE mesh can be chosen depending on the application requirements and the com-
putational power available for the simulation. In the FEM, the deformation field
is given by an interpolation of the nodal displacements within the elements using
shape functions. For a linear tetrahedron, this corresponds to the linear interpola-
tion using barycentric coordinates. Each vertex of the detailed geometry surface is
assigned to a tetrahedron and the barycentric coordinates of the vertex are computed
in the non-deformed state. The barycentric coordinates remain constant during the
simulation and as the FEM mesh deforms, the positions of the geometry vertices
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are interpolated accordingly (cp. Fig. 4.4). The resulting mesh and the mapping
between its elements and the original geometry can be used in the application or
saved in a file for later use.

Figure 4.4: The deformation mesh (red wireframe) can use a significantly lower
resolution than the visualized geometry (yellow) while achieving acceptable results.

In case of medical data, both the FE mesh and the geometry surface are generated
from patient data in a time demanding preprocessing involving the following steps
[BOW+00]:

• Obtain medical images and texture maps. Medical images include MRI, CT
or ultrasound scans.

• Extract tissue structure contours (segmentation). Although there are some
software packages for semiautomatic segmentation, this step still requires a
high amount of manual manipulation.

• Generate a 3D mesh from the tissue structure contours. The tissue contours
are converted into implicit solids. A closed boundary surface is generated for
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Figure 4.5: Data preprocessing.

each tissue structure. Each surface is filled with equally distributed nodes.
Finally, the Delaunay triangulation is used to create a tetrahedral mesh.

[MT03] present an approach to volumetric mesh generation suitable for real-
time physically based medical simulations. In both [MT03] and [BOW+00]
approaches the geometry surface used for visualization is identical to the
boundary of the tetrahedral mesh. All vertices of the geometry are placed
at corresponding FEM mesh nodes.

In my approach the resolutions are independent (cp. Fig. 4.5) allowing for
smooth surface generation and efficient simulation at the same time. More-
over, a hierarchical Octree-based FE mesh can be generated as described in
[JKWP04].

• Altering mesh based on simulation objectives. In this step the FE mesh can
be tailored to the application needs, for example a wound or a cancerous tissue
can be created.

• Assign material properties, fix boundary nodes in space and assign texture
maps.

4.1.2 Multiresolution Deformation

A realistic tissue deformation at the area of intervention is of high importance for
a surgery training system. At the same time, a real time response to user actions
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in an interactive virtual environment is crucial. Organizing the finite elements in
a hierarchical structure enables an adaptive refinement of the mesh at the area of
interest. The simulation starts at a default resolution level. Once the user interacts
with the object, the mesh is gradually refined using a fine resolution at the area of
interaction and coarse resolutions at distant areas. Further refinement criteria such
as the velocity of the FEM nodes or a local deformation error can be specified.

I proposed an octree based approach in [JKWP04]. When an FEM element is
refined, it is replaced by 8 elements with a half edge length of the original element
and new FEM nodes are added as well. The octree contains the topological structure
of the FEM elements. Figure 4.6 shows a deformation of a bar using three element
levels. There are three types of nodes. The red colored nodes are fixed, the green
colored nodes can be updated by a standard FEM computation at a certain level.
The yellow colored nodes were added to the mesh during a refinement procedure,
but can not be updated using the fine level stiffness matrix values, because some of
their adjacent elements and thus neighboring nodes on the fine level are still missing.
These nodes always lie on an edge between two coarse level nodes or in the middle
of a coarse level cube face. Their position is interpolated using the shape functions
of the coarser mesh level. In order to preserve the conformity of the mesh [ZTZ05],
the level of neighboring FEM elements has to be the same or different by one.

Figure 4.6: The deformation of a bar using three different FEM element sizes.
A force acts at the center of the top side of the bar (red arrow), the left and the
right sides are fixed.

Related approaches were presented by [GKS02] and [NFP06]. [GKS02] define the
hierarchy in terms of hierarchical shape functions. Fine resolution levels are added by
activating shape functions belonging to the corresponding level. For cube elements
the results are the same as using the octree data structure. However, the shape
functions refinement can be also applied to other element types. This concept offers
a strong potential especially in the combination with the XFEM used for cutting
(see chapter 3).
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4.1.3 Geometry Update during Cutting

The continuous deformation field is given by equation (2.20). For a linear tetra-
hedron, this corresponds to the linear interpolation using barycentric coordinates.
Each vertex of the detailed geometry surface is assigned to a tetrahedron and the
barycentric coordinates of the vertex are computed in the non deformed state. The
barycentric coordinates remain constant during the simulation and as the FEM mesh
deforms, the positions of the geometry vertices are interpolated accordingly.

When a cut is created, the deformation field contains a discontinuity. The disconti-
nuity has to be modeled in the surface mesh as well. This can be achieved either by
subdividing the triangles intersected by the cut or by snapping the existing vertices
to the cut. The first method is more suitable for simulating fractures with small
material slivers (e.g., [MBF04]). For surgery simulation we prefer the latter method
as it does not generate unnecessary faces along the cut. Both methods lead to tri-
angles, that are either completely above or completely below the discontinuity. The
vertices on the cut can be doubled and assigned to the respective side in order to
create the opening.

(a) (b) (c)

Figure 4.7: Creating the visual representation of an incision. (a) the triangu-
lar mesh of the object surface (blue) with the desired cutting path (red line) and
the vertices to be snapped to the cut (red points), (b) the situation with the cut
completed, (c) the tool penetration depth is used to model the depth of the wound.

The marked vertices (cp. Fig. 4.7 a) are projected orthogonally on the cut and their
new barycentric coordinates are computed. The first and last vertex are snapped ex-
actly to the start and end positions of the cut respectively, instead of being projected
orthogonally. At this stage, the geometry contains a sequence of edges between the
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first and last marked vertices, that have to be doubled in order to create the desired
topological opening in the geometry. The split interior vertices are still on the same
positions as the originals, the created hole is opened by the physical simulation (cp.
Fig. 4.7 b).

If surfaces (e.g. cloth) or thin shells were simulated, the cutting procedure would
finish at this step. In surgery simulation, however, volumetric objects are simulated.
Therefore, the hole in the surface has to be closed properly by modeling a wound.
The collision detection routine provides not only the collision points, but also the
tool penetration depth at these points. In order to generate forces leading to the
deformation or cut of the simulated object, the tool tip has to penetrate the object.
The interaction forces are proportional to the penetration depth. The penetration
is not displayed visually, the visual representation of the tool remains on the object
surface giving the user the feeling of a resistant surface. As the cut path on the
surface and its depth below the surface is known, the wound can be modeled by
moving a copy of the surface vertices involved in the cut according to the penetration
depth. New faces are created between the vertices on the surface and below the
surface (cp. Fig. 4.7 c).

The described technique is suitable for semi-progressive cutting, in the sense that
the cut is processed during the interaction as soon as the cutting tool leaves an
FEM element. Fully progressive cutting, where the cut is created immediately up
to the current tool position requires a significant computational overhead [MK00].
Semi-progressive cutting is a generally accepted alternative. This method has been
integrated into a surgical simulator (cp. Fig. 4.8) [JK07]. Incisions can be created
interactively with force feedback, which helps the user to control the incision depth.
Once an incision has been created, it can be manipulated (e.g., opened) in order to
perform a specific surgical procedure (cp. Fig. 4.8 b).

4.2 Collision Detection

Collision detection (CD) is used to support interaction of virtual objects with each
other and user manipulation tasks. The often used methods for speeding up the colli-
sion detection are all kinds of Bounding Volumes (BV), e.g., oriented bounding boxes
(OBB) [GLM96], axis aligned bounding boxes (AABB) [vdB97], bounding spheres
(BS) [Hub96], binary space partitioning (BSP) trees [BV91] or Octrees [FP02]. All
these methods were originally developed for collision detection of rigid bodies. De-
formable objects complicate the problem, as the objects and thus the collision data
structures have to be updated frequently during the simulation as opposed to ini-
tializing them once in a preprocessing step. Furthermore, rigid body simulations
often neglect self-collisions and multiple contacts, which have to be considered in
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(a) Interactive cutting is enhanced by force
feedback.

(b) The incision can be manipulated in or-
der to perform a specific surgical procedure.

Figure 4.8: Creating an incision in a virtual surgery simulator.

order to simulate the interaction with deformable objects realistically. A realistic
collision response requires appropriate information. It is not sufficient to just detect
the interference of the objects. More precise information such as penetration depth
is desired.

[TKH+04] summarize recent research in the area of deformable CD. Various ap-
proaches based on BV hierarchies, distance fields, spatial partitioning, image space
techniques and stochastic methods are discussed. [THM+03] propose an approach
to collision and self collision detection of dynamically deforming objects that consist
of tetrahedrons. The proposed algorithm employs a hash function for compressing a
potentially infinite regular spatial grid. Although the hash function does not always
provide a unique mapping of grid cells, it can be generated very efficiently and does
not require complex data structures, such as trees. Although the algorithm works
with tetrahedral meshes, it can be easily adapted to other object primitives, such
as triangles.

As the CD research offers many state of the art algorithms, VistaCD module was
designed to make them available in a common interface. The following collision
detection methods are provided: Octree, AABB hierarchy, BS hierarchy, spatial
hashing. During a contact between the simulated object and a tool, the CD de-
termines discrete points of contact and the tool penetration depth at these points.
This data is used by the haptics in order to give the user the feeling of a resistant
surface. Moreover, the collision data is used to generate interaction forces leading
to a local deformation of the simulated object.
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4.3 Deformation Core

From the point of view of this thesis, VistaPhysics is the most relevant module.
The VistaPhysics module is independent of other modules and does not provide
any visualization or interaction methods. It contains the implementation of state
of the art methods for the simulation of elastic deformation, optimized vector and
matrix data structures and the required numerical methods. Fig. 4.9, 4.10, 4.11
display the class diagrams of the most relevant components of the VistaPhysics
module. The classes in figure 4.9 refer to the deformable object as a whole.

CVistaPhysicsWorld CVistaDeformableBody

CVistaFEM

CVistaFEMLinear CVistaFEMCorotational CVistaFEMNonlinear

<<interface>>

IVistaDeformableSystem

CVistaFEMMaterial

CVistaXFEM

1 0..*

1

1

CVistaForce

1
1..*

11..*

CVistaConstraint

1

1..*

CVistaFEMElement

1 1..*

CVistaIntegrator

1 1

Figure 4.9: VistaPhysics class diagram I: the deformable body level.

The CVistaPhysicsWorld can contain one or more deformable bodies. More-
over, it defines global world parameters such as gravity or the world time step. From
the application point of view, the deformable body is represented by a surface mesh.
The application programmer specifies a method that has to be used to compute the
body deformation without the need of a deeper knowledge of the chosen method.
Typically, the deformation methods use another mesh (of volumetric elements or
springs) representing the same object. The CVistaDeformableBody defines the
mapping between the two representations. The application only knows the surface
mesh, whereas the classes implementing the IVistaDeformableSystem interface
only know their own internal representation. The IVistaDeformableSystem de-
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fines the generic interface of a deformation method. The CVistaFEM is an example
of a specific deformation method. It stores the lists of external forces and constraints
that have to be applied to the simulated object. Moreover, it maintains the object’s
material table and holds a reference to a CVistaIntegrator for the purpose of
dynamic simulation. The FEM represents the deformable object using finite ele-
ments, therefore the CVistaFEM object stores the mesh of CVistaFEMElements,
the global state vector (nodal displacements and velocities), the global forces vector
and (optionally) the global stiffness matrix. Various alternatives of the FEM exist.
They mainly differ in the way the element internal forces are computed whereas
the mesh assembly principle remains the same. The specifications of the abstract
CVistaFEM class are responsible for creating the appropriate element type.

CVistaFEMElement

CVistaFEMElement1D CVistaFEMElement3D

CVistaFEMCubeCVistaFEMTetrahedron

CVistaFEMLinearTetrahedron CVistaFEMCorotationalTetrahedron

CVistaFEMNonlinearTetrahedron CVistaXFEMTetrahedron

Figure 4.10: VistaPhysics class diagram II: the finite elements level.

Fig. 4.10 shows the different finite element types. Each element derived from
the CVistaFEMElement stores the global IDs of its nodes, material parame-
ters and the element stiffness matrix. The CVistaFEMElement1D corresponds
to a simple elastic string connecting two mesh nodes. As for volumetric elements,
VistaPhysics implements hexahedral and tetrahedral elements corresponding to
different FEM approaches. Each element must be able to evaluate the deforma-
tion forces corresponding to the current element state and their partial derivatives
with respect to nodal displacement and velocity. Moreover, each element is able to
interpolate the value of displacement anywhere within itself.
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The dynamic simulation requires numerical integration. CVistaIntegrator is
an abstract class providing a generic integrator interface consisting of a single
method Integrate(const State& currentS, State& newS). A variety
of numerical integration schemes implementing this interface is provided (cp. Fig.
4.11 only displays some of them).

The state of a deformable object is described by a vector of its nodal displace-
ments and velocities. These vectors contain n entries, where n is the number of
the object’s nodes and each entry is a 3D vector. The vectors of global internal
and external forces have the same structure as well. Similarly, the stiffness matrix
has the dimensions n × n, where n is the number of element’s nodes in case of an
element stiffness matrix or the number of the object’s nodes in case of the global
stiffness matrix. Each entry is a 3×3 matrix. The element stiffness matrix is dense,
whereas the global stiffness matrix is a sparse symmetric matrix. VistaPhysics
contains classes covering the described vector and matrix cases (cp. Fig. 4.11) and
the corresponding mathematical operations. The CVistaLASolver collects meth-
ods of linear algebra, such as the conjugate gradients (CG) solver, a generic matrix
inversion and other utilities.

CVistaIntegrator

CVistaVerletIntegratorCVistaRK4Integrator

CVistaPhysicsMatrix3x3

CVistaLASolverCVistaPhysicsMatrix

CVistaExplicitEulerIntegrator CVistaImplicitEulerIntegrator

1
1..*

CVistaPhysicsVector3

CVistaPhysicsVector

1
1..*

CVistaSparseMatrix

CVistaSparseSymmetricMatrix

CVistaPhysicsSparseSymmetricMatrix

Figure 4.11: VistaPhysics class diagram III: math classes.
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The VistaPhysics module, as well as other ViSTA modules, aims to be platform
independent. Therefore, the dependency on external libraries has to be considered
carefully. Even though a number of optimized math libraries is available, they are
seldomly platform independent and they mostly concentrate on one group of nu-
merical algorithms, e.g., linear algebra with dense matrices, specialized methods
for sparse matrices, differential equation solvers, nonlinear solvers providing an ex-
hausting amount of sophisticated methods. VistaPhysics requires a mixture of
methods from different areas of numerical mathematics, though, it only requires a
small fraction of them, most of them being easy to understand and to implement.
Moreover, some algorithms as, e.g., the Newton-Raphson or CG must be slightly
modified in order to account for physical constraints (see [AB03] for more details).
For these reasons, the dependency on external math libraries has been avoided.

All data structures and operations use single precision float, except for the CG
algorithm, which uses double precision for the residual in order to achieve both
high precision and high performance. The targeted application of double precision
for critical operations of single precision algorithms was proposed and exploited by
[LLL+06].

4.4 The Simulation Loop

The thread body of the deformation thread (cp. Fig. 4.3) simulates one world
time step. It consists of a (repeated) numerical integration of the object state (cp.
Fig. 4.12).

Figure 4.12: The thread body of the deformation thread.

The different integration schemes are expressed in terms of the following function
calls.
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DerivStateExplicit(currState, stateDeriv), which assigns the time
derivation of currState at the current time to stateDeriv

DerivStateImplicit(currState, stateDeriv, timeStep), which assigns
the time derivation of currState at the end of the specified time step to
stateDeriv

AccumState(currState, stateDeriv, newState, timeStep), which as-
signs newState = currState + timeStep * stateDeriv

The Euler integration schemes consist of one DerivState and one AccumState
call, where the timeStep equals to the objectTimeStep. Other integrators
(e.g., Midpoint, Runge-Kutta) evaluate the derivations multiple times within an
objectTimeStep and thus multiple calls of DerivState and AccumState with
different states and different time steps are needed. The integrators are indepen-
dent of the definition of the State and the deformation method. The numerical
integration can be applied to any class providing the above interface and a subclass
called State.

Figure 4.13: Pseudo code for DerivStateExplicit

Fig. 4.13 shows the CVistaFEM implementation of the DerivStateExplicit
function. It corresponds to equations (2.36) and (2.32). The evaluated derivations
of displacement and velocity vt and at are used in equations (2.37) and (2.38), whose
implementation is the AccumState function. The major amount of the simulation
time is spent for the evaluation of forces. The function ApplyForces adds the
external (e.g., gravity or user interaction) and internal (deformation) forces to the
global force vector. The internal forces are assembled from contributions of all finite
elements. Thus, the assembly of the global stiffness matrix can be avoided, saving
computational time in particular when the stiffness matrix is changing during the
simulation (e.g., due to nonlinearity or topological changes).

Implicit integration schemes use the DerivStateImplicit function. Fig. 4.14
shows its implementation in CVistaFEM. The DerivStateImplicit has to eval-
uate the derivations of displacement and velocity vt+∆t and at+∆t to be used in
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Figure 4.14: Pseudo code for DerivStateImplicit

equations (2.41) and (2.42). In order to do that, the DerivStateImplicit uses
the Newton-Raphson method as described in chapter 2.8.2.

The derivative J of the equation system (2.43, 2.44) is

J =

[
∂bu

∂u

∂bu

∂v

∂bv

∂u

∂bv

∂v

]

=

[

1 0

0 M

]

− ∆t

[

0 1
∂F

∂u

∂F

∂v

]

(4.1)

The iteration steps su and sv for ut+∆t and vt+∆t respectively can be computed by
solving a linear system of equations.

J

[

su

sv

]

=

[

bu

bv

]

(4.2)

The size of the linear system to be solved can be halved by exploiting the depen-
dencies of the equations.

su − ∆t · sv = bu (4.3)

M · sv − ∆t ·
∂F

∂u
· su − ∆t ·

∂F

∂v
· sv = bv (4.4)

su can be expressed from the first equation and inserted into the second equation,
which then has only one unknown sv. Thus, the linear system of equations to be
solved is

[

M − ∆t ·
∂F

∂v
− (∆t)2

·
∂F

∂u

]

︸ ︷︷ ︸

A

·sv = bv + ∆t ·
∂F

∂u
· bu

︸ ︷︷ ︸

b

(4.5)
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The conjugate gradients (CG) method can be used to solve this system of equations
in each simulation step (cp. Fig. 4.15). Once the sv has been computed, su can be
obtained using equation (4.3). The values of ut+∆t and vt+∆t are then updated as

ui+1

t+∆t = ui
t+∆t − su (4.6)

vi+1

t+∆t = vi
t+∆t − sv (4.7)

The linear system of equations to be solved has the size of 3n, where n is the number
of nodal DOF. The CG method takes an advantage of the sparsity of the system.
The sparsity pattern corresponds to the connectivity of the FE mesh. As the number
of neighboring nodes is approximately constant over the mesh, the CG algorithm
has linear complexity O(n).

Figure 4.15: Pseudo code for ModifiedCG

Both the Newton-Raphson and the CG algorithms slightly differ from the well known
methods (see, e.g., [PFTV92]) in that they account for constraints. The results of
the standard methods were only valid in an unconstrained space. However, when
parts of the simulated object are fixed or interacting with an obstacle (e.g., lying
on the floor) it has to be considered in the computation as it strongly impacts
the results. The constraints are stored in a vector S that is used to project the
unconstrained solution to the constrained space in each iteration of both methods.
This method was introduced by [BW98] and improved by [AB03].
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Assuming constant external forces within a time step, the partial derivation of forces
with respect to displacement corresponds to tangential stiffness. When the stiffness
matrix can be considered constant (within a time step), then ∂F

∂u
= K and the

whole system is linear and only one Newton-Raphson iteration is needed. The ∂F
∂v

corresponds to the damping matrix D, which is then constant as well (cp. equation
(2.35)). Moreover, the expressions for bu and b are simplified as in the first iteration
is newState=state.

Up to this point, the numerical algorithms were considered to run on a single proces-
sor. Chapter 5 provides a performance analysis of the deformation process and
presents a parallelization approach for shared memory architectures as used, e.g., in
modern PCs with multicore CPUs.
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CHAPTER 5

SHARED MEMORY PARALLELIZATION

In the computing industry, performance increase due to higher clock speed is taper-
ing off. Instead, the computational power is increased by replicating processing units
on a single chip (multicore architectures), making parallel programing a necessity
for all performance demanding applications.

In order to profit from recent developments in the computing industry (chip level
parallelism) and to allow for larger datasets to be handled in real time, I analyzed the
runtime behavior of the linear FEM and the corotational approach (cp. sec. 2.5, 2.6).
I propose a parallelization based on OpenMP and analyze the scalability of these
methods. The presented approach uses several processors or cores in one computer
that share the same memory. As will be described in the following, the presented
solution requires only minimal changes to the source code and the algorithms do
not need to be modified at all. Nonetheless, significant improvements on commodity
architectures can be realized.

5.1 Multicore Architectures

The parallelized algorithms were evaluated on two commodity dualcore architectures
that basically differ in how they share the on-chip L2 cache. In addition, a prototype
of a system with Intel’s quad-core architecture was used.

a) AMD Opteron 875 dualcore processors (cp. Fig. 5.1), 2.2 GHz, four of which
are grouped in one Sun Fire V40z server. Each core has a 1 MB L2 cache, which
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Figure 5.1: The AMD dualcore Opteron system

is not accessible by the other cores. This machine has a ccNUMA architecture
where the memory access time depends on the location relative to a processor.
On such a system locality is important in order to achieve high performance.
The Sun Studio Express C++ compiler under Solaris was employed.

b) Intel Xeon 5160 dualcore processors (codename Woodcrest, cp. Fig. 5.2a),
3 GHz, two of which are grouped in one Dell Power Edge 1950 server. Each
processor has a 4 MB L2 cache shared by its cores. This machine has a flat
memory model. The Intel 9.1 C++ compiler under Linux was used here.

c) Intel Xeon 5354 quadcore processor (codename Clovertown, cp. Fig. 5.2b),
2.4 GHz, two of which are grouped in a server. Every two cores on one chip
share 4 MB of L2 cache. It has to be noted, that I tested on a preproduction
version of the processor and the chipset, which might not achieve the full
performance of the final version. The Intel 9.1 C++ compiler under Linux
was employed here.

High optimization level (-O3) and multifile optimization (-ipo) were used on all
systems.

5.2 Test Cases

Two benchmark datasets were created. The Hippo dataset (cp. Fig. 5.3) consists of
20,870 tetrahedral elements and 5,550 nodes. The material density is ρ = 1000 kg

m3 ,
with an elastic modulus E = 0.1MPa and a Poisson’s ratio ν = 0.33. The object
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(a) The dualcore Xeon (Woodcrest) sys-
tem

(b) The quadcore Xeon (Clovertown) sys-
tem

Figure 5.2: The Intel multicore architectures used for testing.

(a) (b)

Figure 5.3: The test case Hippo. The simulation mesh consists of 20,870 finite
elements (a).
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is falling to the floor without any other constraints. The stiffness matrix remains
constant during the simulation and thus the linear FE approach is used.

(a) (b)

Figure 5.4: The test case Bar. The simulation mesh consists of 12,800 finite
elements (a).

The second benchmark, the Bar (cp. Fig. 5.4), consists of 12,800 tetrahedral ele-
ments and 3,321 nodes. The material density is ρ = 100 kg

m3 with an elastic modulus
E = 0.1MPa and a Poisson’s ratio ν = 0.33. The left side of the object is fixed and
the bar is bending under gravity. This is an example of a large deformation, where
the stiffness matrix depends on the current deformation state. The corotational
FEM is employed to simulate this test case.

Compared to problem sizes that typically require parallelization to be solved in
reasonable time, both test cases are rather small, but are still challenging for real
time simulation. Depending on the CPU architecture, the matrix and the associated
vectors of the Hippo dataset may fit into the on-chip L2 cache. The global stiffness
matrix K has 5550×5550 elements, thereof 63,526 are non-zero (sparse matrix with
0.2% fill rate). Each element of the matrix is a dense 3× 3 matrix. The compressed
row storage scheme and single floating point precision is used to store the stiffness
matrix. As the matrix is symmetric, only the upper triangular matrix is stored. The
memory footprint of the global stiffness matrix is approximately 1.3 MB.

Although the global stiffness matrix for the Bar dataset is not built explicitly, for
neighbored mesh elements or localized force vectors, it is possible to profit from
locality, as will be described later. Thus, the corotational FEM algorithm has a
high cache efficiency as well.
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5.3 Implementation

This section describes the parallelization of the dynamic FE simulation. First of
all, performance analysis experiments were carried out in order to retrieve the run-
time profile of both benchmarks without parallelization. An iteration time step
of ∆t = 40 ms was used and a total time of 5 s was simulated. Thus, 125 im-
plicit Euler (IE) steps were performed. In each IE step, 10 CG iterations were
performed. Table 5.1 shows the portions of total simulation time spent in the most
time consuming functions. The major part of simulation time is spent in only two

Hippo Bar

total runtime 7 s 36.4 s

ApplyInternalForces 58 % 11 %

ModifiedCG 30 % 88 %

Table 5.1: Runtime profiles of the Hippo and Bar benchmarks. The largest amount
of total simulation time is spent in the ApplyInternalForces and ModifiedCG
functions.

functions. The ApplyInternalForces function evaluates the internal forces by
adding the contributions of all elements to the global force vector (cp. equation
(2.32)). The time spent in the ModifiedCG function (cp. Fig. 4.15) is dominated
by the multiplication of the sparse matrix A by a vector. For the Hippo, the ma-
trix A (cp. equation (4.5)) is constant and can be precomputed. It has the same
size and sparsity pattern as the global stiffness matrix. However, the matrix-vector
multiplication still takes about 60 % of the time spent in ModifiedCG. For the
Bar, the stiffness matrix (and thus also the matrix A) depends on the current de-
formation state. The orientation of each element is updated every 200 ms within
the ApplyInternalForces function. Instead of storing the global stiffness ma-
trix explicitly, the required matrix-vector product is computed on the fly from the
contributions from all elements. In this case, the time spent in the matrix-vector
multiplication takes about 98 % of the time spent in ModifiedCG.

The above analysis shows that the largest benefit can be achieved by the paralleliza-
tion of both the ApplyInternalForces and the ModifiedCG methods. The
former function contains a loop over all elements summing the forces’ contributions
into a global vector. The contribution of each element only depends on the current
state of the element itself. Typically, this can be done efficiently using a reduction
operation. The current version of the OpenMP specification does not allow for re-
ductions on high level data types [TaM06], therefore a private force vector is created
for each thread and at the end, all private vectors are summed within a critical
section into a shared force vector. This technique is cache efficient, as all updates
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Figure 5.5: ApplyInternalForces - parallelized C++ code.

during the loop are written to a local vector that is not distributed among several
cores.

Figure 5.5 shows the parallelized code of the ApplyInternalForces function.
The OpenMP directives are printed in blue bold. The #pragma omp parallel
construct declares a parallel section. When the program encounters this construct,
a team of threads is created to execute the parallel region. The number of OpenMP
threads can be either specified as a parameter of this command or in an environment
variable OMP_NUM_THREADS. The parallel region is executed by all threads unless
special directives are used. The shared attribute lists variables that are shared by
all threads within the parallel region. The #pragma omp for construct declares
a loop whose iterations will be executed in parallel. The iterations of the loop are
distributed among the OpenMP threads that already exist in the parallel region. The
for loop must have a canonical form. In particular, the number of loop iterations
must be known on entry to the loop. The binding between the threads and the loop
iterations is controlled by the schedule attribute. When schedule(runtime)
is specified, the scheduling is controlled by an environment variable. The nowait
clause avoids a synchronization barrier at the end of the for loop. The #pragma
omp critical construct restricts execution of the associated region to a single
thread at a time. Within the ApplyInternalForces function the critical section
is used to avoid concurrent writing when adding the results of each thread stored
in a private priv_forces vector to the shared forces vector. More detailed
description of OpenMP directives can be found in [Boa05].

In the ModifiedCG algorithm (cp. Fig. 5.6), it is not possible to parallelize the
iteration loop, as each iteration depends on the previous one. Each iteration consists
of several vector operations, e.g., Scale, Add, Dot, MultiplyComponents and
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a matrix vector multiplication Multiply. Most of these operations can be paral-
lelized in a trivial way. However, a trivial parallelization of the vector operations
would lead to a synchronization barrier at the end of each operation. Usually, a

Figure 5.6: ModifiedCG - parallelized C++ code. The Dot and Multiply
functions contain an implicit or explicit synchronization barrier (red bold).

CG-type method is parallelized in OpenMP by extending the parallel region over the
iteration loop including the system setup. Then the work inside the vector opera-
tions can be shared among the threads by using orphaning, which allows for placing
the worksharing directives in a different scope (e.g., a subroutine) than the enclos-
ing parallel region. Placing orphaned worksharing directives in the subroutines is
problematic if these are used in a serial part of the program as well. Therefore,
an orphaned version of each vector math subroutine has to be created (cp. Fig.
5.7). The implicit barrier at the end of each for loop can be avoided by using the
nowait clause. However, it is only applicable if the parallelized vector operations
ensure that a certain thread is accessing the same indices of the vectors across all
such operations. This can be done by using static scheduling of fixed chunk size
N.
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Figure 5.7: Orphaned vector operations. These functions must be called from a
parallel region.

Four synchronization barriers per ModifiedCG iteration are needed. The Dot
function contains an implicit barrier because of reduction. The Dot function is
called two times per ModifiedCG iteration. The Multiply function contains
an explicit barrier at its beginning ensuring that the input data are ready and an
reduction barrier at its end.

5.4 Results

Figure 5.8 shows the results for the Hippo dataset. The simulation scales up to
three threads. A speedup of only 1.5-2 can be achieved. The poor scalability is
caused by the low computational cost of all parallelized routines compared to the
synchronization time. The Sun Analyzer was used to measure the time distribution
in the compute kernel and the OpenMP library separately and found the overhead
for creating a parallel region and for explicit barriers increasing in the same rate
as the compute time decreases. These results were verified by comparing with the
EPCC benchmark suite [BO01]. However, the real time limit is reached for over
20,000 elements on one or two cores on all platforms. As the complexity of the
algorithm is linear in the number of elements, it is possible to simulate a FE mesh
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(a) Runtime in seconds for 5 seconds simulation time (red line).

(b) Speedup

Figure 5.8: Results for the Hippo test case. The deformation is computed using
the linear FEM.
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(a) Runtime in seconds for 5 seconds simulation time (red line).

(b) Speedup

Figure 5.9: Results for the Bar test case. The deformation is computed using the
corotational FEM.
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with up to approx. 40,000 elements on three Woodcrest or Clovertown cores in real
time. For the Clovertown, the required number of cores will already be available in
a commodity single socket system.

For the Bar benchmark, the computational costs in both the ApplyInternal-
Forces and the ModifiedCG functions are higher and, therefore, a better scala-
bility can be expected. Figure 5.9 shows the results for the Bar dataset. A speedup
of up to 6.5 was reached on eight Clovertown cores and 3.4 on four cores on all
platforms. However, the real time limit for nearly 13,000 elements has only been
reached on the Clovertown platform. As the complexity of the algorithm is linear
in the number of elements, it is possible to simulate up to 10,500 elements on four
Woodcrest cores in real time. This is a noticeable improvement, compared to the
approx. 3,000 elements that can be simulated in real time by a serial algorithm.

As can be seen from the results presented above, the computationally most inten-
sive part of an interactive VR application with deformable objects, the FEM based
deformation, significantly profits from multicore architectures. The OpenMP API
[Boa05] provides a declarative shared model parallelization model while permitting
portability. The OpenMP directives extend the C/C++ and Fortran programming
languages with SIMD constructs, work-sharing constructs, and synchronization con-
structs, and they provide support for the sharing and privatization of data. Com-
pared to lower-level parallelization approaches as, e.g., Posix-Threads, OpenMP
requires the least design changes of an existing serial code and allows the user to
concentrate on the parallelization itself, whereas the implementation of thread cre-
ation, management and synchronization is provided by the compiler. The structure
of the presented problem, consisting of a number of mutually independent computa-
tions of approximately the same runtime meets the abilities of the OpenMP concept.
Consequently, the parallelization of the serial algorithms using OpenMP is straight
forward, no principal changes to the software design are necessary.

Although the data locality is not managed explicitly, the achieved speedup is com-
parable to the values achieved by advanced parallelization techniques as domain
decomposition and matrix rearrangement (cp. [TPB07]). Moreover, in case of topo-
logical changes, the explicit domain decomposition would have to be recomputed,
which is a time consuming operation. The main reason why the simple OpenMP
approach performs that well, is the small memory footprint of the problem to be
solved. As the data needed by each core fits into its cache, rearranging the data
with respect to spatial locality does not bring any benefit. The data locality is im-
portant for large problems. However, as the speedup grows slower than the number
of threads, and in fact, is saturated at certain number of threads, the problem size
is limited by the real time requirement.

77



CHAPTER 5. SHARED MEMORY PARALLELIZATION

78



CHAPTER 6

CONCLUSION

In this thesis I present methods for an interactive simulation of finite elements
based deformable objects including topological changes. I present a novel method
for interactive cutting of deformable objects in virtual environments. The key to
this method is the usage of the extended finite elements method (XFEM). The
XFEM can effectively model discontinuities within an FEM mesh without creating
new mesh elements and thus minimizing the impact on the performance of the
simulation. I show how XFEM is applied to the most common constitutive models
used for the interactive simulation of large deformations. Moreover, I present an
analysis of mass lumping techniques, showing that the stability of the simulation
is guaranteed even when small portions of the material are cut. The XFEM based
cutting surpasses the remeshing methods in both, performance and stability and
is suitable for interactive VR simulation. The principle of enrichment functions is
general and thus can be used with any type of finite elements for creating of a variety
of applications involving cutting, cracking or breaking objects.

Further, I designed a software architecture for physical simulation of deformable ob-
jects in VR applications. I implemented this architecture and integrated the above
cutting method. The framework is suitable for the creation of complex VR appli-
cations as, e.g., a surgical simulator. It uses thread level task parallelization for
the concurrent execution of visualization, collision detection, haptics and deforma-
tion. Moreover, I propose a parallelization approach for the deformation algorithm,
which is the most computationally intensive part. The presented solution based
on OpenMP requires only minimal changes to the source code while achieving a
speedup comparable to the results of more sophisticated approaches. The presented
framework benefits from the current developments in the computing industry and
allows an optimal utilization of multicore CPUs.
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Based on the above framework, I developed a prototype of a surgical trainer and
several small testing applications that I used to demonstrate various phenomena
throughout this thesis. The current implementation only allows certain cut shapes,
an implementation of arbitrary cuts including the extension of an existing cut is
desirable. The XFEM is suitable for modeling arbitrary discontinuities, the main
challenge here is a consistent remeshing of the geometry surface.

The main differences between minimal invasive and open surgery are the size of the
working area and the way the surgeon interacts with the tissue. Generally speaking,
the minimal invasive surgery is suitable for smaller interventions, the manipulations
with the tissue are simpler, the variability of operating tools is rather limited. In
order to create a realistic VR simulation of open surgery, large deformable objects
have to be simulated at a reasonable accuracy. A further exploiting of adaptive
multiresolution methods in combination with cutting would probably be the good
solution to this problem.

In my opinion, the most challenging task is the realistic simulation of open surgery
interventions. The surgeons are used to precise bimanual working using a variety of
instruments and even their hands and fingertips. The sense of haptics plays a crucial
role during an operation. With the current state of both the haptics software and
hardware the variety of tools and interventions that can be simulated satisfyingly is
strongly limited.
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