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We develop a Galois theory for systems of linear difference equations with an action of
an endomorphism o. This provides a technique to test whether solutions of such systems
satisfy o-polynomial equations and, if yes, then characterize those. We also show how
to apply our work to study isomonodromic difference equations and difference algebraic

properties of meromorphic functions.

1 Introduction

Inspired by the numerous applications of the differential algebraic independence results
from [36], we develop a Galois theory with an action of an endomorphism o for systems
of linear difference equations of the form ¢(y) = Ay, where A€ GL,(K) and K is a ¢o-
field, that is, a field with two given commuting endomorphisms ¢ and o, such as in
Example 2.1. This provides a technique to test whether solutions of such systems sat-
isfy o-polynomial equations and, if yes, then characterize those. Galois groups, in this
approach, are groups of invertible matrices defined by o-polynomial equations with
coefficients in the o-field K¢ :={ae K |¢(a) = a}. In more technical terms, such groups

are functors from K?-o-algebras to sets represented by finitely o-generated K?-o-Hopf
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algebras [23]. Also, our work is a highly nontrivial generalization of [5], where similar
problems were considered but o was required to be of finite order (there exists n such
that o™ =1d).

Our main result is a construction of a o-Picard-Vessiot (o-PV) extension (see
Theorem 2.28), that is, a minimal ¢o-extension of the base ¢o-field K containing solu-
tions of ¢(y) = Ay. It turns out that the standard constructions and proofs in the pre-
viously existing difference Galois theories do not work in our setting. Indeed, this is
mainly due to the reason that even if the field K? is o-closed [56], consistent systems
of o-equations (such that the equation 1 =0 is not a o-algebraic consequence of the
system) with coefficients in K¢ might not have a solution with coordinates in K¢ (see
more details in Remarks 2.19 and 2.22). However, our method avoids this issue. In our
approach, a o-PV extension is built iteratively (applying o), by carefully choosing a suit-
able usual PV extension [58] at each step, and then “patching” them together. This is
a difficult problem and requires several preparatory steps as described in Section 2.4.
A similar approach was also taken in [62, Theorem 8] for systems of differential equa-
tions with parameters. However, our case is more subtle and, as a result, requires more
work. A Tannakian approach is taken in [49] to build a foundation that will allow several
endomorphisms by considering semigroup actions on Tannakian categories.

Galois theory of difference equations ¢ (y) = Ay without the action of o was stud-
ied in [1-4, 13, 58, 63], with a nonlinear generalization considered in [31, 44], as well as
with an action of a derivation 9 in [17-22, 33, 34, 36]. The latter works provide algebraic
methods to test whether solutions of difference equations satisfy polynomial differ-
ential equations (see also [40] for a general Tannakian approach). In particular, these
methods can be used to prove Holder's theorem that states that the I'-function, which
satisfies the difference equation I'(x+ 1) =x- I'(x), satisfies no nontrivial differential
equation over C(x). A Galois theory of differential equations d(y) = Ay (the matrix A does
not have to be invertible in this case) with an action of ¢ was also developed in [23].

Our work has numerous applications to studying difference and differen-
tial algebraic properties of functions. Isomonodromic g-difference equations, which
lead to g-difference Painlevé equations, have been recently studied in [37-39, 45]. In
Theorem 2.55, we show how this property can be detected using our o-PV theory, which
can be combined with [48, Theorem 4.1] to study difference isomonodromy with several
parameters. On the other hand, Theorem 3.1 gives a general o-algebraic independence
(called difference hypertranscendency in [55]) test for first-order ¢-difference equations.
Theorem 3.5 translates this to a o-algebraic dependence test over the field of mero-

morphic functions with Nevanlinna growth order <1 (see (3.6)). It turns out that our
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methods allow us to generalize a modification (Lemma 3.4) of complex-analytic results
from [6], which is another interesting application. Theorem 3.6 combined with either
Theorems 3.1 or 3.5 can be used as computational tool. We illustrate this in Examples 3.7
and 3.8 as well as show how our work could be used to study differential algebraic
properties of functions given by power series in Example 3.9. Not only do we show
practical applications of our work, we also hope that our theory will be applied in the
future in diverse areas, such as described in [15, 52] and the papers on isomonodromic
g-difference equations mentioned above.

The paper is organized as follows. We start with the basic definitions, notation,
and review of existing results in Sections 2.1 and 2.2. We then introduce o -PV extensions
and study their basic properties in Section 2.3. The main result, existence of o -PV exten-
sions, is contained in Section 2.4, which starts by developing the needed technical tools.
We extend the main result in Section 2.5 to include more useful situations in which o-PV
extensions exist. Uniqueness for o-PV extensions is established in Section 2.6. We recall
from the appendix of [23] what difference algebraic groups are, establish the o-Galois
correspondence, and show that the o-dimension of the o-Galois group coincides with the
o-dimension of the o-PV extension in Section 2.7. The relation between isomonodromic
difference equations and our Galois theory is given in Section 2.8. Applications to differ-
ence and differential algebraic properties of functions, including functions with a slow

Nevanlinna growth order, and illustrative examples are given in Section 3.

2 o-PV Extensions
2.1 Basic definitions and preliminaries

We need to introduce some terminology from difference algebra. Standard references for
difference algebra are [16, 43]. All rings are assumed to be commutative. By a ¢-ring, we
mean a ring R equipped with a ring endomorphism ¢: R— R. We do not require that ¢
is an automorphism. If ¢ is an automorphism, we say that R is inversive. By a ¢o-ring,
we mean a ring equipped with two commuting endomorphisms ¢ and o. A morphism of
¢-rings (or ¢o-rings) is a morphism of rings that commutes with the endomorphisms.
If the underlying ring is a field, we speak of ¢-fields (or ¢o-fields). Here are some basic

examples of ¢o-fields of interest to us:
Example 2.1.

(i) The ¢o-field M of meromorphic functions on C with ¢( f)(2) = f(z+ z;) and
o(fH@=fz+2), feM, 24, z, € C and its ¢o-subfields C(z) and M., the



(ii)

(iii)

Recall that:

(1)

(2)

(3)

(6)

The
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field of meromorphic functions on C with Nevanlinna growth order < 1 (see
Section 3.2).

The ¢o-field M with ¢(f)(2) = f(z-qy) and o (@ = f(z-q,), feM, gy,
g, € C* and its subfields C(z) and M_;.

The ¢o-field C(z, w) with ¢(f)(z, w)= f(z+ z;, w) and o(f)(z, w) = f(z,
w+ w,), feC(z w), z5, w, € C and various other actions of ¢ and o that

commute. O

A ¢-ideal in a ¢-ring R is an ideal a of R such that ¢(a) C a. Similarly, one
defines ¢o-ideals in ¢o-rings.

A ¢-ring is called ¢-simple if the zero ideal and the whole ring are the only
¢-ideals.

A ¢-ideal q in a ¢-ring R is called ¢-prime if q is a prime ideal of R and
M) =q.

If ¢ is an endomorphism of a ring R, then ¢¢ is also an endomorphism of R
for every d> 1, and we can speak of ¢%-prime ideals of R.

A ¢-ring R is called a ¢-domain if its zero ideal is ¢-prime. (Equivalently, R
is an integral domain and ¢: R— R is injective.)

A ¢-ideal in a ¢-ring R is called ¢-maximal if it is a maximal element in the

set of all ¢-ideals of R, not equal to R, ordered by inclusion.

theory of difference fields does exhibit some pathologies. For example, two

extensions of the same difference field can be incompatible, see [43, Chapter 5]. As it

has been recognized in [58], the Galois theory of linear difference equations runs much

smoother if one allows certain finite products of fields instead of fields. In this context,

the following definition has turned out to be useful.

Definition 2.2. A ¢-pseudo field is a ¢-simple, Noetherian ¢-ring K such that every

nonzero divisor of K is invertible in K. O

The
57, 60, 61].

concept of ¢-pseudo fields (in certain variants) is also used in [2, 5, 36, 56,

If K is a ¢-pseudo field, then there exist orthogonal, idempotent elements
ey, ...,eqof K such that

(1)

K=e-K®---Deg-K;
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(2) ¢er)=ez p(er)=es3,...,p(eq) =e;
(3) e-Kisafieldfori=1,...,d(so, e - K is a ¢%-field)

(see, e.g., [60, Proposition 1.3.2, p. 9]). The integer dis called the period of K and denoted
by period(K).

Definition 2.3. A ¢-ideal p of a ¢-ring R is called ¢-pseudo prime if it is the kernel of a

morphism from R into some ¢-pseudo field. Equivalently, p is of the form
p=an¢t@n---N¢~ (g (2.1)

for some ¢%prime ideal q of R. The smallest number d such that (2.1) holds for some

¢%-prime ideal q of R is called the period of p. O

Definition 2.4. By a ¢-pseudo domain, we mean a ¢-ring whose zero ideal is ¢-pseudo
prime. If R is a ¢-pseudo domain, the period of the zero ideal of R is also called the
period of R. O

Note that every ¢-subring of a ¢-pseudo field is a ¢-pseudo domain. The total
ring of fractions of a ¢-pseudo domain is a ¢-ring in a natural way, indeed it is a
¢-pseudo field.

Definition 2.5. A ¢o-ring R is called a ¢-pseudo o-domain if (R, ¢) is a ¢-pseudo

domain. O
Definition 2.6. A ¢o-ring K is called a ¢-pseudo o-field if (K, ¢) is a ¢-pseudo field. O

Most of the employed nomenclature is self-explanatory. For example,

(1) A K-¢o-algebra is a K-algebra R equipped with the structure of a ¢o-ring
such that the K-algebra structure map K — R is a morphism of ¢o-rings.
(2) Constants are denoted by upper indices. For example, if R is a ¢-ring, then

the ¢-constants of R are
R’ :={reR|¢r) =T}

If K is a ¢-pseudo o-field , then K% is a o-field (as R? is a field for any
¢-simple ¢-ring R [58, (Lemma 1.7a), p. 6].)
(3) If Ris aring, we denote the total quotient ring of R, that is, the localization

of R at the multiplicatively closed subset of all nonzero divisors, by Quot(R).
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(4) If K is a ring, R a K-algebra, and S a subset of R, then K(S) denotes the
smallest K-subalgebra of R that contains S and is closed under taking

inverses. So, explicitly
K(S)={a/blacKI[Sl, be K[ISINR*}CR.

(5) If K is a o-ring, R a K-o-algebra, and S a subset of R, then K{S}, denotes
the K-o-subalgebra of R generated by S, that is, the K-subalgebra of R gen-
erated by all elements of the form o%(s), where s € S and d> 0. (By definition,
o0 is the identity map.) If R= K(S}, with S finite, we say that R is finitely
o-generated over K.

(6) Let
K(S), :={a/blac K{S},, be K{S}, N R*}CR. (2.2)

If L|K is an extension of o-pseudo fields, we say that L is finitely o-
generated over K if there exists a finite subset S of L such that K(S), = L.

(7) Tensor products of difference rings are considered as difference rings in a
natural fashion. For example, if Ris a ¢-ring and S, T are R-¢-algebras, then
S ®gr T becomes an R-¢-algebra by setting ¢ (s ® t) = ¢ (s) ® ¢ (t).

Finally, we record some simple and well-known lemmas that we use repeatedly
throughout the text.

Lemma 2.7 ([60, Lemma 1.1.5, p. 4]). Let R be a ¢-simple ¢-ring. Then,
Quot(R)? = R?. O

Lemma 2.8. Let R be a ¢-simple ¢-ring, and D a R?-algebra (considered as constant
¢-ring). The map b+ R®prs b defines a bijection between the set of all ideals in D and
the set of all ¢-ideals in R®gs D. The inverse map is given by a+> a N D. O

Proof. In [60, Proposition 1.4.15, p. 15], this is stated for the case that R is a ¢-pseudo

field. However, the proof given there only uses the assumption that R is ¢-simple. |

Lemma 2.9. Let Rbe a ¢-simple ¢-ring and D a (¢-constant) field extension of R?. Then,
R®pge D is ¢-simple. O

Proof. This is clear from Lemma 2.8. [ |



3968 A. Ovchinnikov and M. Wibmer

Lemma 2.10 ([60, Lemma 1.1.6, p. 4]). Let K be a ¢-simple ¢-ring and R a K-¢-algebra.
Then, K and R? are linearly disjoint over K?. O

Lemma 2.11. Let Rbe a ¢-simple ¢o-ring that is a ¢-pseudo domain. Then, o is injective
on R and the zero ideal of Ris the finite intersection of o -pseudo prime ideals. Moreover,
Quot(R) is naturally a ¢-pseudo o-field. O

Proof. Since ¢ and o commute, the kernel of ¢ is a ¢-ideal. Therefore, o must be injec-
tive. Since R is a ¢-pseudo domain, the zero ideal of R is a finite intersection of prime
ideals. As o is injective, the map q+— o ~!(q) is a permutation of the set of minimal prime
ideals of R. Every cycle in the cycle decomposition of this permutation corresponds to
a o-pseudo prime ideal. Since R is a finite direct sum of integral domains [60, Proposi-
tion 1.1.2, p. 2], it is clear that o and ¢ extend to Quot(R). |

2.2 Review of the classical PV theory

To maximize the applicability of our o-Galois theory, we have been careful to avoid

unnecessary technical conditions on the base field:

(i) we work in arbitrary characteristic;
(ii) we do not assume that our endomorphisms are automorphisms;

(iii) we do not make any initial requirements on the constants.

Unfortunately, the assumptions in the standard presentations of the classical Galois
theory of linear difference equations (e.g., [58]) are somewhat more restrictive. Since,
at some points in the development of our o-Galois theory, we need to use the classi-
cal Galois theory, we have to give the definitions and recall the results in our slightly
more general setup. This review of the classical theory will also help the reader see the

analogy between the classical Galois theory and the o-Galois theory.

Definition 2.12. Let K be a ¢-pseudo field and A< GL,(K). An extension L|K of ¢-
pseudo fields with L? = K? is called a PV extension for ¢(y) = Ay if there exists a matrix
Y € GLy(L) such that ¢(Y) =AY and L =K(Y) :=K(¥;;| 1 <i, j<n).

A ¢-simple K-¢-algebra R is called a PV ring for ¢(y)= Ay if there exists
Y € GL,(R) such that ¢(Y) = AY and R= K[Y, 1/ det(Y)]. O

It is easy to describe a construction of a PV ring. Indeed, let X be the nx n-

matrix of indeterminates over K. We turn K[X, 1/ det(X)] into a K-¢-algebra by setting



o-Galois Theory of Linear Difference Equations 3969

¢(X) = AX. Then,

KI[X,1/det(X)]/m

is a PV ring for ¢(y) = Ay for every ¢-maximal ¢-ideal m of K[X, 1/det(X)]. Moreover,
every PV ring for ¢ (y) = Ay is of this form.

The existence of PV extensions is a more delicate issue, unless we assume that
K? is algebraically closed. The problem is that a PV ring might contain new constants.
The following lemma guarantees that the constants of a PV ring over K are an algebraic
field extension of K?.

Lemma 2.13. Let K be a ¢-pseudo field and R a ¢-simple K-¢-algebra which is finitely
generated as K-algebra. Then, R? is an algebraic field extension of K?. d

Proof. This is a slight generalization of [58, Lemma 1.8, p. 7]. It also follows from [61,
Proposition 2.11, p. 1389]. |

The following proposition explains the intimate relation between PV extensions

and PV rings.

Proposition 2.14. Let K be a ¢-pseudo field and A€ GL,(K). Let R be a K-¢-algebra
that is a ¢-pseudo domain. Assume that R= KI[Y, 1/det(Y)] for some Y € GL,(R) with
¢(Y) = AY. Then, R is ¢-simple if and only if Quot(R)? is algebraic over K?. ([l

Proof. It is clear from Lemmas 2.13 and 2.7 that Quot(R)? is algebraic over K? if R is
¢-simple. So, we assume that Quot(R)? is algebraic over K?. Indeed, we will first assume
that Quot(R)? = K?. Let

R =KIY', 1/ det(Y")]

be a PV ring for ¢ (y) = Ay, where Y’ € GL,(R') satisfies ¢(Y") = AY’'. Note that L := Quot(R)
is a ¢-pseudo field. The matrix

Z:=Y'81)-1®Y)eGLL ®k R)

satisfies

H(Z)=((AY)'®1)- (1Q AY) =Z.
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It follows from Lemma 2.10 that

L ®xe K?(Z,1/det(Z)]=L - (K[Z,1/det(Z)]) = LIZ, 1/ det(Z)]
=LIY®1,Z, 1/det(Y)®1,1/det(2)]

=L[1®Y,1®1/det(Y)]=L®x R. (2.3)

Since K?[Z, 1/ det(Z)] is finitely generated as K?-algebra, there exists an algebraic field

extension C of K¢ and a K?-morphism
V: K?Z,1/det(Z)]— C.
Composing the inclusion R — L ®g R with (2.3) and id ® ¢, we obtain a K-¢-morphism
R — L ®ks C.

Since R’ is ¢-simple, we can identify R’ with a subring of L ®g+ C. The two solution
matrices Y and Y’ in GL,(L ®g+ C) only differ by multiplication by an invertible matrix

with entries in C. Therefore,
R®gs C =KI[Y, 1/ det(V)] ®xs C = KI[Y, 1/ det(Y), Cl=KI[Y’, 1/ det(Y'), Cl=R ®gs C,

by Lemma 2.10 again. From Lemma 2.9, we know that R’ ®gs C is ¢-simple. This implies
that R is ¢-simple, because a nontrivial ¢-ideal of R would give rise to a nontrivial
¢-ideal of R®xs C.

In the general case, we set
K=KQgs L CL.

We claim that K is a ¢-pseudo field. We already know from Lemma 2.9 that K is ¢-simple
and, since L is a ¢-pseudo domain, Kisalsoa ¢-pseudo domain. Then, K is a finite direct
sum of integral domains R; [60, Proposition 1.1.2, p. 2]. Since L? is algebraic over K%, K
is integral over K. As K is a direct sum of fields K, this implies that each R; is integral
over some K. But, since R; is an integral domain and K; a field, R; must be a field. So, K
is a finite direct sum of fields. Consequently, K is a ¢-pseudo field.

From the first part of the proof, it follows that Kly, 1/ det(Y)] is ¢-simple. We
have to show that R=KI[Y,1/det(Y)] is ¢-simple. Suppose that a C R is a nontrivial
¢-ideal of R. Since L? is algebraic over K¢, KlY, 1/ det(Y)] is integral over R. Therefore,
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the ideal o’ of K[V, 1/ det(Y)] generated by a does not contain 1 [24, Proposition 4.15, p.
129]. As d’ is a ¢-ideal, this yields a contradiction. [ |

Corollary 2.15. Let K be a ¢-pseudo field and A€ GL,(K). If L|K is a PV extension for
¢ (y) = Ay with fundamental solution matrix ¥ € GL,(L), then K[Y, 1/ det(Y)] is a PV ring
for ¢ (y) = Ay. Conversely, if R is a PV ring with R? = K¢, then Quot(R) is a PV extension
for ¢ (y) = Ay. O

Proof. This is clear from Proposition 2.14 and Lemma 2.7. |

Theorem 2.16. Let K be a ¢-pseudo field. Let R, and R; be two PV rings for the same
equation ¢(y) = Ay, A€ GL,(K). Then, there exists a finite algebraic field extension k of

k:=K?, containing k; := Rf and k, := RZ’ and an isomorphism
R ®y k~R, Q, k

of K ® k-¢-algebras. O
Proof. This is a straightforward generalization of [58, Proposition 1.9, p. 7I. ]

Of course, the above result immediately gives the uniqueness (up to K-¢-

isomorphisms) of PV extensions provided that K¢ is algebraically closed.

2.3 o-PV extensions and ¢-PV rings

In this section, we define o-PV extensions and o-PV rings and clarify the relation

between them. Let K be a ¢-pseudo o-field. We study a linear difference equation
¢(y) = Ay, where AeGLy(K).

We are mainly interested in the case when K is a field. Typically, K will be one of the ¢o-
fields from Example 2.1. However, for consistency reasons, we will give all definitions
over a general ¢-pseudo o-field.

If Ris a K-¢o-algebra, then a matrix Y € GL,(R) is called a fundamental solution
matrix for ¢(y) = Ay if ¢ (Y) = AY.

Remark 2.17. If V;, ¥, € GL,(R) are two fundamental solution matrices for ¢(y) = Ay,
then there exists a matrix C € GL,(R?) such that ¥, = ¥;C. O
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Proof. This follows from the well-known computation q)(llez):(AYl)*lAYz:
Y 'y ]

Let L be a ¢-pseudo o -field extension of K and Y € GL,(L) a fundamental solution
matrix for ¢(y) = Ay. If L = K(Y),, we say that L is o-generated by Y.

Definition 2.18. Let K be a ¢-pseudo o-field and A € GL,(K). A ¢-pseudo o-field exten-
sion L of K is called a o-PV extension (or o-parameterized PV extension in case we
need to be more precise) for ¢(y) = Ay if L = K% and L is o-generated by a fundamental
solution matrix for ¢ (y) = Ay.

A K-¢o-algebra Rthat is a ¢p-pseudo o-domain is called a o-PV ring for ¢ (y) = Ay
if Ris ¢-simple and o-generated by a fundamental solution matrix for ¢ (y) = Ay, that is,
R=K{Y,1/det(Y)}, for some fundamental solution matrix ¥ € GL,(R). O

Remark 2.19. A Noetherian ¢-simple ¢-ring is automatically a ¢-pseudo domain [60,
Proposition 1.1.2, p. 2]. This is why the condition that R should be a ¢-pseudo domain
does not appear in the definition of classical PV rings (Definition 2.12). Here, in the o-
parameterized setting, one of the more subtle steps in the existence proof of o-PV rings

(or extensions) is to verify the ¢-pseudo domain property (cf. Corollary 2.27.) O

By a o-PV extension L|K, we mean a ¢-pseudo o-field extension L of K that is
a 0-PV extension for some linear ¢-equation ¢(y) = Ay, with A€ GL,(K). Similarly, for
0-PV rings. The o-field of ¢-constants of a o-PV extension L|K will usually be denoted
by k, that is,

k:=K?=1L°.

To clarify the relation between o-PV extensions and o-PV rings, we will use the

following important observation.

Lemma 2.20. Let L|K be a o-PV extension for ¢(y) = Ay with fundamental solution
matrix Y € GL,(L). Set

Li=K(Y,0(Y),....,c V) CcL, d=>0.
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Then, Lg4|K is a PV extension for the ¢-linear system ¢ (y) = Agy, where

A 0 - 0
0 o4 --- 0
Ag=1 . ) . € GLp@41)(K).
0 - 0 o4 O

Proof. Note that KI[Y,0(Y),...,0%¥)] is a ¢-subring of L. Therefore,
K(Y,0(Y),...,0%Y)) is a ¢-pseudo field by [60, Lemma 1.3.4, p. 9]. Applying ¢! to
¢(Y)=AY fori=0,..., dyields ¢(c*(Y)) = 6'(A)c'(Y). Therefore,

Yy O 0
0 o

Ya=| . € GLna+1)(La)
o --. 0 oV

is a fundamental solution matrix for ¢ (y) = Agy. Since L c L? = K?, L4|K is a PV exten-
sion for ¢ (y) = Agy. [ |

The following proposition is the o-analog of Corollary 2.15.

Proposition 2.21. Let K be a ¢-pseudo o-field and A € GL,(K).

(i) If LIK is a 0-PV extension for ¢(y) = Ay with fundamental solution matrix
Y € GL,(L), then R:=K{Y, 1/det(Y)}, C L is a o-PV ring for ¢ (y) = Ay.

(ii) Conversely, if Ris a o-PV ring for ¢ (y) = Ay with R? = K?, then Quot(R) is a
o-PV extension for ¢ (y) = Ay. O

Proof. Clearly, R:=K{Y, 1/det(Y)}, is a ¢-pseudo domain. So, we only have to show
that R is ¢-simple. We know from Lemma 2.20 that

Lg:=K(Y,0(Y),....c%(¥) CL
is a PV extension of (K, ¢) for every d> 0. It, thus, follows from Corollary 2.15 that

Ry:=KIY,0(Y),...,04Y),1/(det(V) - ... det(cX(V)))] C R
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is a PV ring over K. So, R; is ¢-simple for every d>0 and R= Udzo R,;. Thus, R must be
¢-simple.

Now assume that Ris a o-PV ring with R? = K?. From Lemma 2.11, we know that
Quot(R) is a ¢-pseudo o-field and, by Lemma 2.7, we have Quot(R)? = R? = K?. [ |

2.4 Existence of ¢-PV extensions

In this section, we will establish the existence of ¢-PV rings (Theorem 2.8) and o-PV
extensions (Corollary 2.29) for a given linear ¢-equation ¢(y) = Ay under rather mild
conditions on the base ¢o-field K. The key idea for the existence proof is the prolon-
gation construction from [61, Lemma 2.16, p. 1392]. The differential analog of this con-
struction has also been recently used to establish the existence of d-parameterized PV
extensions for linear differential or difference equations provided that the constants
are algebraically closed (see [22, 62]). A more elaborate discussion of the existence of
differentially parameterized PV extensions for linear differential equations (including

the case of several differential parameters) can be found in [28].

Remark 2.22. The idea of the prolongation construction is easy to explain. Indeed, let K
be a ¢po-field and A € GL,(K). We would like to construct a o-PV ring or a o -PV extension
for ¢ (y) = Ay. Let

S:=K{X,1/det(X)},

be the generic solution ring for ¢(y) = Ay. By this, we mean that X is the n x n-matrix
of o-indeterminates, and the action of ¢ is determined by ¢ (X) = AX. Finding a o-PV
ring for ¢ (y) = Ay is equivalent to finding a ¢o-ideal m of S that is ¢-pseudo prime and
¢-maximal. The existence of a ¢-maximal ideal in S is, of course, guaranteed by Zorn's
lemma, but it is unclear if we can find a ¢-maximal ideal that is additionally a o-ideal

and ¢-pseudo prime. O

If L is a o0-PV extension for ¢(y)= Ay with fundamental solution matrix
Y e GLy(L), then Ry is a PV ring over K for ¢(y) = Aqy, as we have already seen in
Lemma 2.20 and Proposition 2.21. Thus, we should better find a ¢o-ideal m of S such
that

mg:=mNSy Si:=KIX, ...,o04X),1/det(X-...-c4X)ICS
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is ¢-maximal in S; for every d> 0. Note that not every ¢-maximal ¢-ideal of S; is of the

form mg for some ¢-maximal ¢o-ideal m of S. A necessary condition is given by

o(mgN Sg_1) C mgy.

However, if we assume that we have already constructed a ¢-maximal ¢-ideal my of Sy
that satisfies this condition, we can try to construct mg.; by a choosing a ¢-maximal
¢-ideal of Sz, that contains mg and o (mg). Then, we could define m as the union of all
the my's.

There are two obstructions to this procedure that we will have to overcome:

(i) The ideal of S;:; generated by mg and o (mg) might contain 1. In this case,
the construction would not apply.
(ii) The union | Jmy is a ¢-maximal ¢o-ideal, but, a priori, it is unclear why it

should be a ¢-pseudo prime ideal.

Lemma 2.24 is the crucial ingredient to overcome the first difficulty. The second dif-
ficulty will be resolved in Lemma 2.26, which will eventually provide a bound for the
period of mg.

To prove Lemma 2.24, we need an algebraic version of Chevalley’s theorem on
constructible sets (cf. [32, Theorem 1.8.4, p. 239]).

Lemma 2.23. Let K be a field and RC S an inclusion of finitely generated K-algebras.
Then there exists an element r € R that is not contained in any minimal prime ideal of
R and has the following property: for every prime ideal q of R with r ¢ q, there exists a
prime ideal q' of Swith ¢ N R=gq. O

Proof. If R is an integral domain, this follows from [9, Corollaire 3, Chapitre V,
Section 3.1, p. 58]. The general case can be reduced to the case in which R is an integral
domain as follows. Let py, ..., p, denote the minimal prime ideals of R. By [8, Proposi-
tion 16, Chapitre II, Section 2.6, p. 96], there exist minimal prime ideals p},...,p;, of S
withp; " R=yp;fori=1,...,nFori=1,...,n, consider the inclusion of integral domains
R/p; — S/p;, and let r; € R be such that the image 7; of r; in R/p; is nonzero and has the
property that, for every prime ideal q of R/p; with 7; ¢ q, there exists a prime ideal g’ of
S/p; with

q' N (R/p;) =q.
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Fori=1,...,n,let

e N NP1 NP1 N Npp) NPy

and set

r=er +---+eyn.

Since ¥ =g1; € R/p;, we see that r does not belong to any minimal prime ideal of R. Let g
be a prime ideal of R with r ¢ q. Then, there exists an i € {1, ..., n} such that p; C q. Since
the image of q in R/p; does not contain 7; € R/p;, it follows from the construction of r;
that there exists a prime ideal ' of Swith ¢ N S=R. [ |

Lemma 2.24. Let K be a field and let R be a finitely generated K-algebra. For d> 0, let
Ry, ..., Rg;; denote isomorphic copies of R. LetaC Ry® --- @ Rgand bC Ry ® - -- ® Rg1
be ideals not containing 1. (The tensors are understood to be over K.) Assume that

aN(R®---®Ry) =bN (R ®@---Q Ry). (2.4)

Then, the ideal of Ry ® - - - ® Ry, generated by a and b does not contain 1. O

Proof. Let c=aN (R ® - Q®R)=bN(R R---®Ry) CR ® --® Ry and consider the

inclusions

B:=(Ri® - ®Rg)/c—>(R®---®Rg)/a—> (Ry® - ® Rg)/a) ® Ray1

=(Ro® - ® Rat1)/(a).

By Lemma 2.23, there exists an element r, € B not contained in any minimal prime ideal
of B and such that, for every prime ideal q of B with r ¢ q, there exists a prime ideal g’ of
(Ro® - ® Ra)/(a) with "N B =g.

Let r, € B be defined similarly. Since r,r, does not belong to any minimal prime
ideal of B, there exists a prime ideal q of B with ry, ¢ q. Then, by construction of r, and

1, there exist prime ideals

1, C(Ro® - ® Rg1)/(a) and g, C(Ry®:--® Ryy1)/(b)

such that
qoNB=qg=q,NB.
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Then, q; and qj, correspond to prime ideals q, and g, of Ry ® - - - ® Rgy1 with
JuNRI® - QR)Y=qgpe N(R ®---® Ry) =:0.

Denoting the residue field of a prime ideal p of a ring S by k(p) = Quot(S/p), we have
k(®) C k(q4) and k(@) C k(qp). Let L be a field extension of k(d) containing k(q,) and k(qs)
and let

Y:R® - QRgp1— L

be the morphism of K-algebras that extends the canonical map
Ri® - ®Ri—~>k(®CL

by sending Ry and Rgy; to their canonical images in k(qq,) and k(q,), respectively. Since
a C q, and b C qp, the kernel of v is a prime ideal of Ry ® - -- ® Rgy1, which contains a and

b. Therefore, the ideal generated by a and b does not contain 1. ]

For the convenience of the readers who prefer the geometric language, we have
included a geometric proof of Lemma 2.24. This proof is more intuitive than the alge-

braic proof given above, but the algebraic proof is more accessible.

Proof. We set X;:=Spec(R;) for i=0,...,d+ 1. Let Y and Z denote the closed sub-
schemes of Xy x -+ x Xg and X; x --- X X471 defined by a and b, respectively. Then,
the ideal o’ generated by a in Ry ® --- ® Ry1 defines the closed subscheme Y x X4, C
Xo x -+ x Xg.1. Similarly, the ideal b’ generated by bin Ry ® - - - ® Ry, defines the closed
subscheme Xy x Z C Xy X -+ X Xgy1. Since the sum of the ideals o' and b’ corresponds
to the intersection of the closed subschemes Y x X4,; and Xy x Z, the statement of the

lemma is equivalent to
(Y X Xgy1) N (Xo x Z) C Xog X -+ x Xaq1
being nonempty. Let
mg: Xo X+ X Xgr1 > Xg x---xXg, (X,...,%+1)—> (X1,...,X3)

denote the projection onto the factors “in the middle”. The ideal aN(R; ® --- ® Ry) of
R; ® --- ® Ry corresponds to the Zariski closure m14(Y x Xg11) C X3 X --- X Xg similarly
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for b. Assumption (2.4), thus, means that

m1d(Y X Xgy1) =ma(Xo x Z) =1 W.
By Chevalley’'s theorem, the image of a morphism of schemes of finite type over a

field contains a dense open subset of its closure. Thus, there exist open dense subsets
U,V C Wwith

UCma(Y x Xge1) and V Cma(Xo x 2).
Then, U NV is also dense and open in W. In particular,
UNVCmg(Y x Xgr1) Nm1g(Xo X Z)
is nonempty. But, if x=(xp, ..., Xg;1) € Y x Xgy1 and X' = (X, ..., X, ) € Xo x Z satisfy
(X1,...,X0) =ma(x) =max) = (X, ..., X,

then (}fo,Xl,...,Xd,}(;i+l)€(YX Xd+1)m(X0XZ). [ |

If Ris a ¢-ring, we denote the ring of its ¢-periodic elements by
R’ ={reR|3m>1 such that ¢"(r) =r}.
It is a ¢-subring of R.

Remark 2.25. If K is a ¢-field, then K?~ is the relative algebraic closure of K¢
in K [43, Theorem 2.1.12, p. 114]. In particular, if K¢ is algebraically closed, then
K?* = K?. O

Analogs of the generic solution field U in the following lemma appear in
[13, Section 4] and [50]. The relation between the periodic elements in a universal solu-
tion field and the period of a PV ring, which we shall eventually use to bound the period
of mg, has been found in [13]. In the language of [13], the following lemma essentially

says that the m-invariant of the systems ¢ (y) = Agy is bounded (as a function of d > 0).
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Lemma 2.26. Let K be a ¢o-field such that K¢~ = K?. Let Aec GL,(K) and let X denote

the n x n-matrix of o-indeterminates over K. Set
U=K(X)s(=Quot(K{X;;|1 <1, j<n}s))

and define a ¢o-structure on U by ¢ (o' (X)) =0 (A)c’(X), i > 0. Then, U®” is a finite field

extension of U?. O

Proof. We have a tower of ¢o-fields KU? C KU?” C U. By construction, U is a finitely
o-generated o-field extension of KU?. Since an intermediate o-field of a finitely o-
generated o-field extension is itself finitely o-generated [43, Theorem 4.4.1, p. 292], it
follows that KU®" is finitely o-generated over KU?. Hence, we can find

a, ..., ameU®
that o-generate KU?" as a o-field extension of KU?. We claim that
U™ =U%ay,....an),.
The inclusion “>" is clear. So, let ae U?”. Let (b;);c; be a K?-basis of U%(ay, ..., an),. As
ac KU =KU%ay,...,an),.
we can write

a— D hi-bi
S Xwi-bi

with A;, u; € K. Multiplying by the denominator yields

Zﬂi'a'bizz)‘i'bi- (2.5)

We can choose an integer e>1 such that a, b; € U¢° whenever A; or u; is nonzero.
Then, (2.5) signifies that the family

(a- b;, bj) in U

i,jel

is K-linearly dependent. Since K is linearly disjoint from U?" over K% =K?¢

(Lemma 2.10), we can find a nontrivial relation

Zug-a-bi=ZA;~-bi (2.6)
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with u}, A} € K. Suppose that
Z /,L;bi =0.

Then, also Y A}b; = 0. Since the b;'s are K?-linearly independent, this is only possible if

relation (2.6) is trivial. Therefore, we can divide by the denominator to find that

2 - bi
a=="t 2 cU%a, ...,
ZM; . bi ( 1 a’m)o
as desired. Now let e> 1 be such that a, ..., a, € U*". Then, it follows from

U =U%a.....an),

that U¢” =U% =:F. Let g=¢|r and G={¢°, g, ..., g% '} C Aut(F|U?). Since F® = U?, we
have [F:U?1=|G| [42, Chapter VI, Theorem 1.8]. Since |G| <e, we, therefore, obtain
[U*”: U% <e. [ |

Corollary 2.27. Let K be a ¢o-field such that K¢~ = K?. Let Ae GL,(K). For d> 0, let Ry
be a PV ring for ¢ (y) = Aqy, where

A 0 . 0
0 o(4) --- 0
Ag=| . ) . € GLya1 1y (K).
0 -~ 0 o%4
Then, the sequence (period(Ry)) 4 is bounded. O

Proof. Let U =K(X), as in Lemma 2.26. We will show that, for d> 0,
period(Ry) < [U?": U?].

Let U? denote an algebraic closure of U?, considered as a constant ¢-ring. We know that
K is a regular field extension of K. (By assumption, K¢ = K¢" is relatively algebraically
closed in K (see Remark 2.25) and K is always separable over K? [60, Corollary 1.4.16,
p- 16]). Therefore, K ®xs U? is an integral domain. Moreover, K Qx« U? is ¢-simple by
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Lemma 2.9. It follows that

K':=Quot(K Qg U?)

is a ¢-field with K'Y = (K Qs U%)? = U (by Lemma 2.7) algebraically closed. Indeed, let

{bj} be a basis of U?% over K¢ and, for some m,

m
c=)Y a®b; e (K ®gs U?)’.

i=1
Then,

0=¢( —c=) (@) —a)®b;

i=1

which implies that, for all i, 1 <i <m, a; € K?. It is clear from the definition of U that
KU*(X,...,c¥ X)) cU

is a PV extension of KU? for the linear ¢-equation ¢(y)= Agy. It follows from
Corollary 2.15 that

Si:=KU?IX,...,04X),1/det(X - ... o4 X))]
is a PV ring over KU?. Then, S, := S; Qe U? is a PV ring over
KU? @ps U% = Quot(K Qg+ U?) @ys U? = Quot(K ®@xs U%) = K’

by Lemma 2.9. Note that S; C U is an integral domain and that

period(S)) < [U?": U?]
as U?” is the relative algebraic closure of U? in U. As Ry is a PV ring for ¢(y) = Agy
over K, Ry g U? is ¢-simple by Lemma 2.9. (Note that Rf; can be embedded in U by
Proposition 2.14.) The canonical map

KQge U? - Ry ® R g

is injective, because K Qs U? is ¢-simple. Localizing this inclusion at the nonzero divi-

sors of K ®gs U?, we obtain a PV ring R, over K'. Since K% = U is algebraically closed,
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R}, and S are isomorphic. It follows that

period(Ry) < period(R)) = period(S)) < [U?": U?]. [ ]

We are now prepared to establish the main existence theorem.

Theorem 2.28. Let K be a ¢o-field such that K =K%, o: K¢ — K? is an automor-
phism, and A € GL,(K). Then, there exists a o-PV ring R for ¢(y) = Ay such that R? is an
algebraic field extension of K?. O

Proof. We first assume that o: K— K is an automorphism. Let X be the
n x n-matrix of o-indeterminates over K. We denote the localization of the o-
polynomial ring K{X;;| 1 <i, j <n}_ at the multiplicatively closed subset generated by
det(X), o(det(X)), ... by S. This is naturally a K-o-algebra. We define a ¢o-structure on
S by setting

P(X)=AX, ¢((X)=0(Ao(X), ¢*X) =0c*(A)r*(X),

For 0 <i < j, we also define the following K-¢-subalgebras of S:

o i 1 j 1
Si.j _K[U X), @y -0 0 (X, aJ(det(X))]
' ' 1 .
:KI:O’I(X),...,U](X),m]CS, SJZSO’J

We will show by induction on d> 0 that there exists a sequence (mg)4-¢ with the follow-

ing properties:

(i) mgis a ¢p-maximal ¢-ideal of Sg;
(i) mgN Sg_1 =mg_1;

(iii) o~ '(mg) =mg 1, whereo: S;_; — Sa.

For d=0, we can choose mg to be any ¢-maximal ¢-ideal of Sy = K[X, 1/ det(X)]. Assume
that a sequence my, ..., mg with the desired properties has been already constructed. We
will construct mg,;. Let a denote the ideal of Sy, generated by mg and o (mg). The crucial
step now is to show that 1 ¢ a. For this, we would like to apply Lemma 2.24. Note that

Sa+1 1s the d + 2-fold tensor product of Sy with itself. Since ¢ is an automorphism on K,

0:Sq— S1.d+1
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is an isomorphism and so o (mg) is an ideal of S; 4;. We need to verify that
mgN Sy .g=0(mg) NS 4.
Let femgN Sy g. Then, fis of the form f=o0(g) for some g€ Sz_;. Since f e mgy, we have
geo l(mg) =mg_; Cmg.
Thus, feo(mg). Now let f€o(mg) N Sy 4. Then, fis of the form f=o0(g) with
gemgNSg1=mg 1.

So f=o0(g) € myg. We can thus apply Lemma 2.24 to conclude that 1 ¢ a. By construction,

ais a ¢-ideal of Sy, ;. Let mgy; be a ¢-maximal ¢-ideal of Sz;; containing a. Then,
mg1 NSy and o' (mgy1)
are ¢-ideals of S; containing mg. As mq is ¢-maximal in Sy, it follows that
may1 NSa=mg and o '(mgy) =mg.

This concludes the inductive step. Now that we have constructed the sequence (mg)g-q,
we can define

m::Umd.

da=0

This is a ¢o-ideal of S={J 4, Sa- Since the my's are ¢-maximal, it follows that m is also
¢-maximal. The next crucial step is to show that m is ¢-pseudo prime.

In general, a ¢-maximal ¢-ideal need not be ¢-pseudo prime. However, a
¢-maximal ¢-ideal that has only finitely many minimal prime ideals is ¢-pseudo
prime [60, Proposition 1.1.2, p. 2]. In particular, in a Noetherian ¢-ring, every ¢-maximal
¢-ideal is ¢-pseudo prime. So the my's are ¢p-pseudo prime ideals.

For any prime ideal q C Sy that is minimal above mg, there exists a prime ideal
q’ C Sg.1 that is minimal above mg,; such that q' N S;=q by [8, Proposition 16, Section 2,
Chapter II]. Therefore, the sequence (period(mg)),., is nondecreasing. Since Ry:= Sz/mgq
is a PV ring for ¢ (y) = Agy, it follows from Corollary 2.27 that there exists an integer b > 1
such that period(mg) = b for all sufficiently large d. This shows that there are precisely

b prime ideals minimal above m.
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So, m is ¢-pseudo prime and R:=S/m is a ¢-pseudo domain. It is clear from the
construction that R is a o-PV ring for ¢(y) = Ay over K. It remains to see that R? is
algebraic over K?. But R is the union of the R4's and the Ry's are PV rings over K, so
RZ is algebraic over K (Lemma 2.13) and, consequently, R? is algebraic over K?. This
concludes the proof for the case that o: K — K is surjective.

Now let 0: K — K be arbitrary. We consider the inversive closure K* of K with
respect to o (see [43, Definition 2.1.6, p. 109].) For every a € K*, there exists an integer
1> 1 such that o!(a) € K. We naturally extend ¢ from K to K* by

p(@ ="' (0! @)).
Suppose that a € K**°. Then,
a=g¢4@) =o' ¢ @)
and so
ol(@) =9%o' (@),

that is, ol(a) € K" = K?. By the hypothesis, K® is o-inversive. Therefore, ac K¢. It
follows that

K" =K?=K*’.

By the first part of the proof, there exists a o-PV ring R* over K* for ¢(y) = Ay with R*?

algebraic over K?. Let Y € GL,(R*) denote a fundamental matrix. We claim that
R:=K{Y, 1/det(Y)}, C R*

is a o-PV ring for ¢(y) = Ay over K with R? algebraic over K?. As R*? is algebraic over
K** =K?, R’ is algebraic over K?. So it only remains to show that R is ¢-simple. For
this, it suffices to show that

Rq:=KIY,1/det(Y),...,oc V), 1/ det (c}(V))]

is ¢-simple for every d > 0. Let L* denote the total quotient ring of R* and L, the total
quotient ring of Ry. Since R* is ¢-simple, we have L** = R** by Lemma 2.7. As Ly C L*,
it follows that L‘Z is algebraic over K¢. By Proposition 2.14, this implies that Ry is
¢-simple. |
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Corollary 2.29 (Existence of o-PV extensions). Let K be a ¢o-field and Ae GL,(K).
Assume that K¢ is an algebraically closed inversive o-field. Then, there exists a o-PV

extension for ¢ (y) = Ay. O

Proof. By Remark 2.25, if K? is algebraically closed, then K¢~ = K?. The statement now

follows from Theorem 2.28 and Proposition 2.21. ]

2.5 Existence of o-PV extensions for some specific base fields

The purpose of this section is to establish the existence of o-PV extensions over impor-
tant ¢o-fields like K = C(t, z), where

¢(f(t.2)=f(@t z+1) and o(f(t 2)= f(qt.2) oro(f(t 2)=f(t+a, 2

for some g,a€C*. Note that the general existence result for o-PV extensions
(Corollary 2.29) does not apply because K? = C(t) is not algebraically closed.

We will show quite generally that, for every linear ¢-equation ¢(y) = Ay over
K =k(2), there exists a o-PV extension, where k is an arbitrary o-field of characteris-
tic zero. Moreover, we give a very concrete recipe how o-PV rings over such K can be
constructed inside rings of sequences; cf. [68, Proposition 4.1, p. 45].

Let kbe a field. The ring Seqy of sequences in k (cf. [58, Example 1.3, p. 4]) consists

of all sequences

a=(a(0),a(l),..), a(0),a),...€k,

and two sequences are identified if they agree starting from some index. The ring struc-

ture of Seqy is given by the componentwise addition and multiplication. By setting

¢((a(0), a(1), a(2), ...)) = (a(l), a(2), .. .),

we turn Seq; into an inversive ¢-ring. If k is a o-field, then Seq; naturally becomes a

¢o -ring by setting
o((a(0), a(l),...)) = (c(a(0)), o(a(l)),...).

Note that Seqﬁ = k. We consider k(z2), the field of rational function in one variable over k,

as ¢o-field by setting

¢(f(2)=f(z+1). fek@. and o(z=z
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If chark =0, we can define a ¢po-embedding

k(z) > Seq, by fr (f(0). f(D)...)).

The expression f(i) is well-defined for i 3> 0, as the denominator of f e k(2) has only

finitely many zeros.

Proposition 2.30. Let k be a o-field of characteristic zero and consider K =k(z) as a
¢o-field via

¢(f(2)=f(z+1) and o(z==z

Let Ae GLy(K) and ip > 0 be an integer such that A(i) is well-defined and det(A(i)) #0
for all i > iy. Define Y € GL,(Seqy) by

Y(ly)=id and Y@ =AGC-1Y@G@-1), i>ip.
Then, Y is a fundamental solution matrix for ¢(y) = Ay and
K{(Y. 1/ det(Y)}, C Seq

is a 0-PV ring for ¢ (y) = Ay. Moreover, there exists a o-PV extension for ¢ (y) = Ay. O

Proof. Itis clear that Y is a fundamental solution matrix and that
R:=K(Y, 1/ det(V)},

is a ¢o-ring. It remains to see that R is a ¢-simple ¢-pseudo domain. To see that R is

¢-simple, it suffices to show that
Ry:=KlY,...,0%Y), 1/det(Y---o%¥))]
is ¢-simple for every d> 0. Note that

Y 0 - 0
0 oY)

Yy= € GLyay1)(R)

o ... 0 oY)
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is a fundamental solution matrix for ¢ (y) = Agy (cf. Lemma 2.20). By [64, Proposition 2.4,
p- 4], there exists a PV ring Sy for ¢(y) = Aqy over K inside Seq;. As Seqﬁ =k and two
fundamental solution matrices for the same equation only differ by multiplication by a
matrix with constant entries, it follows that R;= S;. In particular, Ry is ¢-simple. As in
the proof of Theorem 2.28, it follows from Corollary 2.27 that R is a ¢-pseudo domain.
As Seq};5 =k=K?, Proposition 2.21 implies that Quot(R) is a ¢-PV extension for

o (y) = Ay. [ ]

Remark 2.31. Let Y € GL,(Seqy) be defined as in Proposition 2.30. It is unclear whether
or not K(Y), C Seqy (see (2.2)) is a 0-PV extension for ¢ (y) = Ay. The difficulty here is to
know that a nonzero divisor of K{Y, 1/det(Y)}, C Seq; is a unit in Seqy. This problem
is closely related to the generalization of the Skolem-Mahler-Lech theorem to rational
function coefficients (see [64]). It follows from [64, Corollary 3.4, p. 8] that K(Y), C Seqy
is a 0-PV extension for ¢ (y) = Ay if A € GLy(klz2]). O

2.6 Uniqueness

In this section, we will establish the uniqueness of ¢-PV rings and o-PV extensions (for
a given equation ¢ (y) = Ay). In other words, we prove a result analogous to the classical
uniqueness theorem (Theorem 2.16). The main difficulty is to understand what the o-
analog of the algebraic closure in the classical case is. There is a notion of a difference-
closed difference field that has been used and studied extensively by model theorists
(see, e.g., [11, 12]).

Definition 2.32. A o-field k is called o-closed if for every finitely o-generated

k-o-algebra R which is a o-domain, there exists a k-o-morphism R — k. ]

In contrast to differential algebra, there appears to be no satisfactory notion
of a o-closure of a o-field. Kolchin preferred the term “constrainedly closed” to “dif-
ferentially closed” because a differentially closed differential field can have proper dif-
ferential algebraic extensions. The following definition can be seen as an adaptation
of Kolchin’s notion of constrained extensions of differential fields ([41]) to difference

algebra.

Definition 2.33. Let L|K be an extension of o-pseudo fields. We say that L is con-
strained over K if, for every finite tuple a from L, there exists a nonzero divisor be L
such that (0) is the only o-pseudo prime ideal of K{a, 1/b},. (]
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The basic properties of constrained extensions of o-pseudo fields have been
established in [61, Section 2.1]. The relation to o-closed o-fields is given by the fact
that a o-closed o-field does not have proper constrained o-field extensions. More gener-
ally, every finitely o-generated o-pseudo field extension of a o-closed o-field k is of the
formk® --- @ k (see [61, Example 2.8, p. 1388]).

The following theorem is the crucial tool from difference algebra for proving our
uniqueness result. It can be seen as a difference analog of a theorem of Chevalley. For a

prime ideal q in a o-ring R and r € R, we write

réoq
if 0%(r) ¢ q for every d> 0.

Theorem 2.34. Let RC S be an inclusion of o-rings such that S is finitely o-generated
over R. Assume that R is a o-domain and (0) C S is a finite intersection of o-pseudo
prime ideals. Then, there exist 0 #r € R and an integer [ > 1 such that, for every d>1
and o%prime ideal q of R with r¢, q, there exists a ¢'4prime ideal ¢ of S with
g NR=q. O

Proof. This is a slight generalization of [61, Theorem 1.15, p. 1384], where it is assumed
that S is a o-domain. There exists a minimal prime ideal q of S with g N R=(0) [8, Chap-
ter II, Section 2, Section 6, Proposition 16, p. 74]. By assumption, q is a aa-prime ideal
for some d> 1. We can now apply [61, Theorem 1.15, p. 1384] to the inclusion R cC S/§ of
o%domains to obtain 0 #r € R and an integer [ > 1 such that, for every od‘z—prime ideal
q of R with r¢_.q, there exists a aid&—prime ideal q' of S/q with ¢ N R=q. Set [ := dl.
Observing that a 0%-prime ideal is a ada—prime ideal and that r ¢, q implies r ¢ 4 q yields

the claim of the theorem. |

We will need a few more preparatory results.

Lemma 2.35. Let k be an inversive o-field and R a k-o-algebra with o: R— R injective.
If (A;) is a family of k-linearly independent elements from R, then the family (o (%)) is

k-linearly independent as well. O

Proof. If Y ao(A;) =0 with g; € k, then, as k is inversive, we can find b; € k with o (b;) =
a;. We have o (}_ b;A;) =0, and this implies ) b;A; = 0. Therefore, the b;'s and also the ;s

are all zeroes. [ |



o-Galois Theory of Linear Difference Equations 3989

Lemma 2.36. Let k be an inversive o-field and R a k-o-algebra with o: R — R injective.
Then, 0: R®; K — R ®y K is injective for every o-field extension K of k. Moreover, if a is

a reflexive o-ideal of R (i.e., 0 ~!(a) = a), then a ®; K is a reflexive o-ideal of R®; K. ([

Proof. Let (A;) beak-basisof Kands=) r ® ;€ R® K witho(s)=0.Then, > o(r;) ®
o(A;) =0 implies o(r;) =0, because the family (o(X;)) is k-linearly independent by
Lemma 2.35. Since o is injective on R, s =0. The latter claim of the lemma follows by

applying the above result to R/a. ]

Proposition 2.37. Let K be a ¢o-field such that K¢~ = K¢ and o : K? — K? is surjective.
Let R be a ¢-simple K-¢o-algebra that is a ¢-pseudo domain and finitely o-generated

over K. Then, R? is a finitely o-generated constrained o-field extension of K. O

Proof. We set k= K?. The assumption K¢ = K¢ means that k is relatively algebraically
closed in K. We also know that K is separable over k [60, Corollary 1.4.16, p. 16]. Thus,

K is a regular field extension of k. Let ¢ be a finite tuple with coordinates in R?. Then,
K{c}, = K ®« kicl,

is an integral domain, because k{c}, is contained in the field R? and K is regular over k.
Moreover, (0) C R is a finite intersection of o-pseudo prime ideals of R by Lemma 2.11.
We can thus apply Theorem 2.34 to the inclusion K{c}, C R to find 0 #r € K{c}, and an
integer [ > 1 such that every o%prime ideal q' of K{c}, with r ¢, ¢ lifts to a o'4prime

ideal of R. We may write
r=rx®a+-+in ®an € K Qkicl, = K{c},

with the A;'s linearly independent over k. Let b € k{c}, denote one of the nonzero g;'s. We
will show that k{c, 1/b}, has no o-pseudo prime ideals other than (0). Let q be a 0% prime
ideal of k{c}, with b ¢, q (for some d > 1). We have to show that q= (0).

Since K is a regular field extension of k, ¢’ := K ® q is a prime ideal of K ® k{c},.
It follows from Lemma 2.36 that ¢’ is a 0%-prime ideal of K ®y k{c},. We claim thatr ¢, q'.
Suppose the contrary. Then, o"(r) € ¢’ for some n> 1. By Lemma 2.35, the family (6"(%;))

is linearly independent over k. By considering the image of ¢™(r) in

(K ®r kic}s)/q = K ®x (k{c)s/q),
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we see that this implies o™(b) € q. This contradicts b ¢, q. Therefore, r ¢, q'. By the con-

struction of r, this implies the existence of a o!%prime ideal q” of R with
9’ NK{cl, =9’

In particular, q” D qR. But, since the elements of q are ¢-constants, qR is a ¢-ideal. Since
R is ¢-simple, we must have qR = (0). So, also q = (0) as desired.

It remains to see that R? is finitely generated as a o-field extension of k= K?.
Let q be a minimal prime ideal of R. Then, there exists d> 1 such that q is ¢%prime
and o%prime (Lemma 2.11). Since R is finitely generated as K-o-algebra, we see that
R/q is finitely generated as K-o%algebra. So, Quot(R/q) is finitely generated as o%field
extension of K. As k= K*" by assumption, it follows from Lemma 2.9 that K ®; R? is

¢%-simple. Therefore, the canonical map
K ®r R? =K - R’ - Quot(R/q)

is injective, and we can think of KR? = Quot(K - R?) as a o%-subfield of Quot(R/q). By [43,
Theorem 4.4.1, p. 292], every intermediate difference field of a finitely generated dif-
ference field extension is finitely generated. Therefore, KR? is finitely generated as a
o%field extension of K. A fortiori, KR? is finitely generated as o-field extension of K.

We can, therefore, find ai, ..., a, € R? such that
KR’ =K(a,...,an)s.

So,
Quot(K ®; R?) = Quot(K Qi klai, ..., Gm)s).

As K®yR? and K Qi K%a,...,an), are ¢-simple (Lemma 2.9), it follows from
Lemma 2.7 that

R? = Quot(K ® R*)” = Quot(K @ k(ay, . .., am)s)® =klai, ..., Gm)e. [ |

Corollary 2.38. Let K be a ¢o-field and R a o-PV ring over K with K? being a o-closed
o-field. Then R’ = K. O

Proof. Since a o-closed o-field is algebraically closed and inversive, the hypotheses of

Proposition 2.37 are met, and it follows that R? is a constrained o-field extension of k.
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By [61, Example 2.8, p. 1388], a o-closed o-field cannot have a proper constrained o-field
extension. |

Lemma 2.39. Let K be a ¢o-field and R, R o-PV rings over K. Then, there exists a
o-pseudo prime ideal in R®x R'. O

Proof. We begin the proof with a general observation on ¢-pseudo o-fields. Let L be a

¢-pseudo o-field. Then, L need not be a o-pseudo field. However, if we write
L:el.L@...eaet.L

as after Definition 2.2, then o -permutes the ¢;'s and it follows that L is a finite direct sum
(or product) of o-pseudo fields (cf. Lemma 2.11.) In other words, there are idempotent
elements fi, ..., fi, € L such that

Lzﬁ'L@"'@fm-L,

with the f; - L's o-pseudo fields. Set L = Quot(R) and L’ := Quot(R'). It suffices to show
that there exists a o-pseudo prime ideal in L ®x L', because a o-pseudo prime ideal of

L ®x L’ contracts to a o-pseudo prime ideal of R®x R'. As above, we can write
L=f1'L€B"‘€Bfm'L and L’:ﬂ.L’@...@fr’n/.L’
with the fi - L's and f} - L"'s o-pseudo fields. Then,

LexLl' =@ fi-Lex f;- L

iJ
Note that the f; - L's are finitely o -generated as o-pseudo field extensions of K. Indeed, if
Y € GL,(L) is a suitable fundamental solution matrix, then f; - L = K(f; - Y),. Since fi - L
is finitely o-generated over K, it follows from [61, Theorem 1.2, p. 1375] that there exists
a o-pseudo prime ideal pin fi - L ®x f{ - L'. Then,

P=p P filexfl
iJj
@A)

is a o-pseudo prime ideal of L ®x L. [ ]

Finally, we are prepared to prove our main uniqueness theorem.
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Theorem 2.40 (Uniqueness of o-PV rings). Let K be a ¢o-field such that K¢ = K¢~ and
o: K? — K? is surjective. Let R, and R, be two o-PV rings over K for the same equation
¢(y) = Ay, Ae GL,(K). Then, there exists a finitely o-generated constrained o-pseudo
field extension k' of k:= K? containing k; := R‘I” and k; := R‘Qz’ and an isomorphism of K ®
kK'-¢po-algebras between R; ®, k' and R, ®y, k. O

Proof. We know from Proposition 2.37 that k; and k, are finitely o-generated
constrained o-field extensions of k. Let ¥; € GL,(R;) and Y, € GL,(R;) be fundamental
solution matrices for ¢ (y) = Ay. Set

Z=(%®1)'(1® ¥) € GLy(R ®x Ry).
As noted in Remark 2.17, we have
Z € GLy((Ri ®x Rp)?).
Sincel @ Y,=(Y1®1)-Z, the entries of 1 ® ¥, lie in
R -Sz;. Sz;:=k{Z,1/det(2)}, C R ®xk R;.
Using Lemma 2.10, it follows that
R ®x Ry=R,-Sz=R; Q, Sz.

Our next goal is to find a k;-o-morphism ¢ : S; — k' for some finitely o-generated con-
strained o-pseudo field extension k' of k;. We know from Lemma 2.39 that there exists
a o-pseudo prime ideal in R; ®x R,. This o-pseudo prime ideal contracts to a o-pseudo
prime ideal of S;. We can thus apply [61, Proposition 2.12, p. 1390] to find a maximal
element p in the set of all o-pseudo prime ideals of Sz ordered by inclusion. By [61,

Proposition 2.9, p. 1389], the residue o-pseudo field
kK :=Quot(Sz/p)

is a constrained o-pseudo field extension of k. Moreover, we have a natural

ki-o-morphism v : S; — k'. Then,

idey
(7 R2—>R1 ®KR2=R1 ®k1 Szl—>R1 ®k1 ]d
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is a morphism of K-¢o-algebras. Since (R; ®, k)? =k, this yields an embedding of k;,

into k', and we can extend ¢ to a K ®g k'-¢po-morphism
(7 RZ ®k2 k/—> R1 ®k1 Id

As ¢(Y;) and Y7 are fundamental solution matrices in R; Qx, k' for ¢ (y) = Ay, there exists
C € GLy(kK) such that

Y1 =¢(¥2)C = o(Y20).

Since R, is o-generated by Y;, this shows that ¢ is surjective. Now R, ®x, k' need not be
¢-simple. However, by Lemma 2.8, every ¢-ideal of R; ®x, k' is of the form R; ®y, b for

some ideal b of k. Since the kernel of ¢ is a ¢-ideal, this implies that ¢ is injective. |

Lemma 2.41. Let K be a ¢-pseudo o-field and R a o-PV ring over K with R = K¢ =: k.
Then,

R®x R=RQ®; (R®x R)?’. O

Proof. This follows as in the beginning of the proof of Theorem 2.40 (with
R =R, =R). [

Corollary 2.42 (Uniqueness of o-PV extensions). Let K be a ¢o-field and let L,, L, be
two o-PV extensions for the same equation ¢(y) = Ay, A€ GL,(K). Assume that K¢ is
o-closed. Then, there exists an integer [ >1 and an isomorphism of K-¢o!-algebras
between L; and L,. O

Proof. Let Ry C L; and R, C L, denote the corresponding o-PV rings. As usual, we set
k:= K?. We have R‘f =kand Rg = k. By Theorem 2.40, there exists a finitely o-generated

constrained o-pseudo field extension k' of k and an isomorphism
¢: R Qrkl = Ry @i K

of K ® k'-¢o-algebras. But, by [61, Example 2.8, p. 1388], every finitely o -generated con-

strained o-pseudo field extension of a o-closed o-field is trivial. This means that there
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exists an integer [ > 1 such that k' is of the form
K=k - -0k

with o given by
cam® - dag)=c(@@oc(@)®--do(qg-1).

Let a be a maximal ideal of k. Then, a is a o!-ideal with ¥ /a =k as ¢'-rings. Fori =1, 2,
the ideal R; ®xa is a ¢o'-ideal of R; ®; K, and ¢ is mapping R; ® a bijectively onto

R; ®g a. Passing to the quotient, we obtain an isomorphism
@: (R ®rKk)/(Ri ®ra) — (Re ®rk)/(Re ® a)
of ¢po!-rings. But
Ri— Ri ®kk — (R ®ck)/(Ri ®a) =R ® (k'/a) = R;

identifies R; with (R; ® k)/(R; ®,a) as ¢ol-ring. So, we have constructed a K-¢o'-
isomorphism between R; and R;. Finally, this isomorphism extends to the total quotient

rings, that is, to the o-PV extensions. [ |

Let K be a ¢o-field and A e GL,(K). Even if, in all generality, a o-PV extension
for ¢ (y) = Ay need not be unique, the following remark shows that, in some situations,
it is possible to make a more or less canonical choice. For example, if K =k(z) as in

Section 2.5, then the ¢-PV ring for ¢ (y) = Ay inside Seq, is unique (as a subring of Seqy).

Remark 2.43. Let K be a ¢po-field and A € GL,(K). Let Sbe a K-¢o-algebra with S? = K9.
If there exists a 0-PV ring R for ¢(y) = Ay in S, then R is unique in the sense that any
other o-PV ring for ¢ (y) = Ay in S equals R. O

Proof. Let R be another o-PV ring for ¢(y) = Ay inside S. As R and R’ are o-generated
by appropriate fundamental solution matrices, it follows from Remark 2.17 and the fact
that S C K that R = R. [

2.7 o-Galois group and Galois correspondence

In this section, we will define the o-Galois group of ¢(y) = Ay (Definition 2.50), show

that it is a o-algebraic group (Lemma 2.51), establish the Galois correspondence
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(Theorem 2.52), and finish by showing that the o-dimension, introduced in [23], of
the o-Galois group coincides with the o-dimension of a ¢-PV ring of the equation
(Lemma 2.53), which we will further use in our applications, Theorems 3.1 and 3.5.
For this, we first recall what a o-algebraic group is using the language of o-Hopf alge-
bras (and representable functors). See the appendix of [23] for a brief introduction to
o-algebraic groups.

Throughout Sections 2.7 and 2.8, we will make the following assumptions. Let K
be a ¢-pseudo o-field and k:= K? its o-field of ¢-constants. Assume that there exists
a 0-PV ring R for the linear ¢-equation ¢(y) = Ay, A< GL,(K), with R? =k, and let
L =Quot(R) be the corresponding ¢-PV extension (cf. Proposition 2.21). The category
of k-o-algebras is denoted by Alg, .

Definition 2.44. A k-o-Hopf algebra is a Hopf algebra over k in which the comultiplica-

tion A, antipode S, and counit ¢ are k-o-algebra homomorphisms. O

Definition 2.45. A k-o-algebraic group is a functor G :Alg; , — Sets represented by a
k-o-Hopf algebra H, which is finitely o-generated over k. That is, for every B € Alg,__,

G(B) =Homy,(H, B).
For simplicity, we say that H represents G. O

In other words, a k-o-algebraic group is a group object in the category of

o-algebraic k-o-schemes (in the sense of [23, Definition A.1]).

Definition 2.46 ([23, Definition A.37]). A k-o-algebraic group G’ is called a k-o-subgroup
of a k-o-algebraic group G if G'(B) is a subgroup of G(B) for every k-o-algebra B. O

Proposition 2.47 ([23, Remark A.38]). For every k-o-algebraic subgroup G’ of a
k-o-algebraic group G represented by H, there exists a o-Hopf ideal I in H such that

G’ is represented by H/I and vice versa. O

The multiplicative k-o-algebraic group Gy, is the k-o-algebraic group repre-
sented by k{x, 1/x}, with A(x) =x® x, S(x) =1/x, and ¢(x) = 1.

Proposition 2.48 ([23, Lemma A.40]). For every o-Hopf ideal I of H :=k{x, 1/x}, with the
above Hopf algebra structure, there exists a multiplicative function ¢ = x™ - o (x)™ -
o'(x)™ € H such that I contains ¢ — 1. O
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Lemma 2.49. The k-o-algebra
H:=(R®k R’

is a k-o-Hopf algebra via the ¢o-R-bimodule structure on C := R ®x R (see [3, (1.5,1.6)]):

A:C—>CQ®rC, Aa®b)=a®13bcRxr RQx R=ER®x R®r R®x R,
¢:C—> R, ¢(a®b)=ab,
and the K-¢o-linear flip homomorphism 7 :C — C, t(a ® b) = b ® a. Moreover,
W:R®H— RQx R, rQh—>(r®1l)-h (2.7)

is an isomorphisms of K-¢o-algebras. O

Proof. The proof is a modification of the proof of [3, Proposition 1.7] and [2, Proposi-
tion 3.4]. We already noted in Lemma 2.41 that (2.7) is an isomorphism. It follows that

the K-¢o-algebra homomorphism

ReovHerH 42% Rex RorH 2 Rex R®x R

is an isomorphism. By taking ¢-constants, we, therefore, obtain a k-o-algebra

isomorphism

H®iH— (R®x R®x R)?. (2.8)

To show that, given the above, H becomes a k-o-Hopf algebra, one proceeds as in the

proof of [3, Proposition 1.7]. |

Definition 2.50. Let Rand L be as above. Then, the 0-Galois group of L over K is defined

as the functor
Gal’(L|K) : Alg, , — Sets, B> Gal’(L|K)(B) :=Auty, (R ®k B|K ® B),
where ¢ acts as the identity on B. O

Lemma 2.51. Let R, L, and H be as above. Then, G := Gal° (L|K) is a k-o-algebraic group
represented by H. O



o-Galois Theory of Linear Difference Equations 3997

Proof. As in the proof of [3, Lemma 1.9], Ris an H-comodule via
0:R—>RQrH, r—u'1er),

which is a K-¢o-algebra homomorphism, where p is defined in (2.7). For every

k-o-algebra B and g € Homy., (H, B), we have a K-¢o-algebra homomorphism

‘ - .
@, Rx B ~28, ReyH@rB 2% ReB@rB 2% R@y B,

which is an automorphism by [59, Theorem 3.2]. Moreover, by [59, Theorem 3.2] as well,
the map g+ @, is a group homomorphism. For the reverse direction, let Y € GL,(R) be a
fundamental solution matrix of ¢(y) = Ayand Z=(Y® 1)"!(1 ® Y) € GL,(R ®x R). Then,
H=k{Z,1/det(Z)}, and it follows from Remark 2.17 that, for any

¢ € Auty, (R®y B|K ® B),

there exists C, € GL,(B) such that ¢(Y) =Y - C,. We define a k-0 -algebra homomorphism
H — B by sending Z to C,,. |

Theorem 2.52. There is a one-to-one correspondence between k-o-algebraic subgroups

in G and intermediate ¢-pseudo o-fields in L|K given by
M=L% :={a/beL|6'(@)-b=a-0'(b), a,be R} <> G :=Gal°(L|M), (2.9)
or, alternatively,
M=L%:={xelL|forall BeAlg,,, geG'(B), gx®1)=x®1} < G :=Gal”(L|M),

(2.10)
where 0': R— RQ®y H', and H' represents G'. O

Proof. We will show that there is a one-to-one correspondence between the o-Hopf

ideals in H and intermediate ¢-pseudo o-fields in L|K given by
M={xecL|l1®x—xQ®1cl-(LQ®xL)} «— I=HNnker(L®xL—LQuL).

The proof below is partly an adaptation of [3, Proposition 2.3]. It follows from [60,

Theorem 3.1.17] that there is a one-to-one correspondence between the intermediate
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¢-pseudo o-fields in L|K and ¢o-coideals of L ®x L given by

M={xeL|l1x—x@1eJCLQ®xL} «— J=ker(L®x L — L QyuL).

By Lemma 2.8, there is a one-to-one correspondence between ¢o-ideals of L ® H and

o-ideals of H given by

b=aNH «— a=LQb. (2.11)

By localizing (2.7), we obtain K-¢o-algebra isomorphisms

01: LR H—>L®x R and ¢::LQ®xH—> RQg L. (2.12)

Therefore, we have a one-to-one correspondence between o-ideals of H and ¢o-ideals
of L ®x L given by composing (2.12) and (2.11) and using the fact that the set of ideals
of the localization L ®x L consists of the intersection of the set of ideals in the smaller
localizations L ®x R and R ®x L inside the set of ideals in R ®x R.

We will now show that, under the above correspondence and in the above nota-
tion, (L ®x L) - ais a ¢po-coideal of L ®k L if and only if b is a o-Hopf ideal of H. For this,
note that, similarly to the above, we have a one-to-one correspondence between ideals
in H ®; H and ¢-ideals in L Qx L ®k L. Indeed, by Lemma 2.8 and isomorphisms (2.8)
and (2.12), there is a one-to-one correspondence between ¢o-ideals of L ® x R®x R (as
well as thosein R®x L ®x Rand R®x R ®x L) and o-ideals of H ®; H with

H®b «— a=LQ®xb and bR®H «— a=bQ®x L,

therefore,

by :=HRrb+b@H «— ida; =L Qg a+a®@x L

under the correspondence a C L ®x L <> b C H from the preceding paragraph. Therefore,

A(a) Cap, e(a)=0 < A(b) Cb;, ¢(b)=0.

By [47, Theorem 1(iv)], b is a Hopf ideal of H if and only if b is a coideal of H, which
finishes the proof. To show correspondence (2.9), note that, by Lemma 2.51, Gal’ (L|M) is
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represented by

H/HNker(L ®x L — L ®y L).
Therefore, it remains to show that

Li:={xeL|1®x—x®1ecker(L®x L— L L)}
=Ly:={a/beL |8 (a)-b=a-6'(b), a,bc R} =
=L3:={xeL|forall BeAlg,  , geG'(B), g(x®1)=x® 1}.

For every x=a/be L;, B € Alg, ., and g € G'(B), we have

9(a/b®1)=(®"(a) - b®1)(g)/(O'(D) - b 1)(9)=(©'(D) -a® 1)(9)/(0'(b) - bR 1)(9) =a/b® 1.

Hence, x € L. Now, for all x=a/be L3, we have 6'(a) - b=a- 6’(b) by taking B := H and
g:=1idg. Therefore, L, = L3. For L; = L3, see the proof of [60, Lemma 3.1.11]. [ |

For o-dimension, see [23, Section A.7]. Let K be a ¢o-field and R, L, and H be as
above.

Lemma 2.53. We have

o-dimg R=o0c-dimy H. O

Proof. Let Y e GL,(R) be a fundamental solution matrix of ¢(y) = Ayand Z=(Y ® 1)~!
(1®Y)eGL(R®x R). Then,

R=K{Y,1/det(Y)}, and H=k{Z,1/det(2)},.

The claim now follows from [23, Definition A.25], Lemma 2.20, and [58, Theorem 1.13]. &

2.8 Isomonodromic difference equations

In this section, we develop a o-Galois treatment for isomonodromic difference equa-
tions. In particular, in Theorem 2.55, not assuming that the field k= K¢ is difference
closed, we give a criterion, which says that ¢(y) = Ay is isomonodromic if and only if

the matrices in its o-Galois group all satisfy an equation of a special form (2.14). This
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result is a difference analog of the corresponding results for isomonodromic differen-
tial equations, [10, Proposition 3.9; 30, Theorem 6.6], and can be combined with [48,
Theorem 4.1] to study difference isomonodromy of linear difference equations with sev-
eral parameters. We further illustrate this by considering a g-hypergeometric equation
in Example 2.56.

Definition 2.54. The system ¢(y) = Ay is called isomonodromic if there exists
B € GL,(K) such that

#»(B)AB™! =0 (A). (2.13)
O

Theorem 2.55. The equation ¢(y) = Ay is isomonodromic if and only if there exists D e

GL,(k) such that the following equation is in the defining ideal of the o-Galois group G:
o(xj) = D' (x;)D. (2.14)

Moreover, if (2.14) is in the defining ideal of G, then there exists a finitely generated
o-field extension F of k and C € GL,,(F) such that

o(C™ ' (x;)C) =C " (x;5)C (2.15)

is in the defining ideal of G, that is, G is conjugate over F to a group of matrices with

o-constant entries. U

Proof. Let Y e GL,(R) be a fundamental solution matrix. Let B € GL,(K) be such
that (2.13) is satisfied. We have

¢ (0 (Y) 'BY) =0 (¢(Y) '¢p(B)p(Y) =0(AY) '0(ABA'AY =0 (Y) 'BY.

Therefore, there exists D € GL,(k) such that o(Y)=BYD. For every k-o-algebra S and
ge G(S), let C4 € GL4(S) be such that g(¥) = YCy4. Then, on the one hand,

9(o(Y)) =g(BYD) =BYC4D.
On the other hand,

90 (¥)) =0(g(¥)) =0(¥YCy) =0(Y)o(Cy) =BYDa (Cy).
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Therefore, for all g € G(S), we have
0(Cgy)=D"'CyD,

showing (2.14). To show (2.15), let F be a o-field generated over k by the entries of an
invertible matrix C satisfying ¢ (C) = D~!C. Then,

o(C'CyC)=0(C) o (Cyla(C)=C'DD'CcyDD'C=C""CyC.

Suppose now that, for all k-o-algebras S and g € G(S), we have 6(Cg) = D'C4D
where Cg:=Y 'g(Y). Let B:=0(Y)D~'Y~'. Then, forall g€ G,

9g(B)=0(YCy)D 1 (YCy) ! :o(Y)D‘ICgDD_ICg_lY_l =B.
By Theorem 2.52, B € GL,(K). We, moreover, have
¢(B)=¢(c(V)D'¢p(¥) ' =0(AY)D 1 (AY) ' =0 (Ao (Y)D 'Y AT =0 (AHBA",

showing (2.13). |

Example 2.56. Consider a g-hypergeometric equation

yigPx) — X2 V@0 + v = (2.16)
a’x —

It is shown in [51] that, over C(x), if a ¢ g%, then, if a? ¢ g%, then the difference Galois

group of (2.16) is GL,(C), otherwise it is SL,(C). Equation (2.16) has been also stud-

ied from the differential-parametric viewpoint in [36, Example 3.14]. Let now C be any

field such that (2.16) has a o-PV extension over C(x, a), with a being transcendental over

C(x,a), ¢ and o acting as id on C, and
¢p(x) =qgx, ¢(@=a, oxX=x, o(@=
The existence can be shown as in Proposition 2.30. A calculation in MAPLE, sim-

ilar to the one given in [35], but using the procedure RationalSolution in the

QDifferenceEquations package, shows that (2.16), once transformed into the matrix
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form, is isomonodromic over C(x, a) with

1 2a
B_ a?x — 1 C(a+ D(a2x—1)
2a(x—1) 3a— 1+ (a® —3a®)x

(a+1)(a?x—1)(a2gx—1) (a+ 1)(a?x—1)(a’gx—1)

Therefore, (2.13) is in the defining ideal of the o-PV group G of (2.16) by Theorem 2.55.
It follows from [4, Corollary 3.3.2.1; 51, Theorem 10] that the (non-o-parametric) PV
group of (2.16) over C(x, a) is GL,. Similarly to [36, Proposition 6.21], it follows from
Theorem 2.52 that G is Zariski dense in GL,. It follows from Theorem 2.55 that, G is con-
jugate to GLy(C) over a (proper, as RationalSolution shows) finitely generated o-field
extension of C(a), where GL,(C) is defined by GL,(C)(B) = {g € GL,(B) | 06 (g) = g} for every
C(a)-o-algebra B. O

3 Applications and examples

In this section, we will illustrate how our Galois theory can be used to study differ-
ence and differential algebraic properties of functions. We start by showing a general
o-independence criterion in Theorem 3.1 (see also [5, Theorem 4.1]). In Section 3.1,
we show a o-independence criterion over the field of meromorphic function with
Nevanlinna growth order <1 (Theorem 3.5). For this, we need some preparatory work,
Lemmas 3.2 and 3.4, which are interesting on their own, as they generalize a natural
modification of a classical result in complex analysis [6]. We then show how to apply
our results in practice in Theorem 3.6, which is followed by illustrative examples in
Section 3.4.

3.1 General result
Theorem 3.1. Let F be a ¢o-field containing the field C(z) with

p@=mz+a, o@=bz+by, ai,a2,b,byeC, ab #0,

po=0¢, ¢"#id, neN, (8.1)
and k:=F?. Let 0# fe F and 0+# a e C(2) be such that fis a solution of

¢ (y) =ay. (3.2)
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Then, fis o-algebraically dependent over the field k(2) if and only if
p(a)=¢(()/b (3.3)

for some 0% b e C(2) and ¢(x) € Q{x, 1/x}, 1 #p(x) =xP0 ()™ -... o1 (x)"". O
Proof. If (3.3) holds, then

& (/b)) =0@ (/P D) =p(af) /o) =p@e(f)/db) =e(f)/b.

Therefore, ¢(f)/b=ce F? =Kk. Thus, ¢(f) =c- bek(z), which gives a o-algebraic depen-
dence for f over k(z).

Assume now that f is o-algebraically dependent over k(z). Let L be the small-
est ¢o-subfield in F containing k(z) and f. Since kC L? C F? =k, the ¢o-field L is
a o-PV extension over k(z) for Equation (3.2). It follows from Lemma 2.53 that f is
o-algebraically dependent over k(z) if and only if the o-Galois group G of L|K is a
proper o-algebraic subgroup of Gy,. Then, by Proposition 2.48, there exists a multiplica-
tive ¢ € k{x, 1/x}, such that the ideal of G contains the equation ¢(x) = 1. Therefore, for

every k-o-algebra B and g € G(B), we have

g =0@(N) =9y HH=e(cy -o(H=1-0(f)=0(f).

Hence, by Theorem 2.52, we have b:=¢(f) € k(2). Since f#0 and ¢ is multiplicative,
¢(f) #0. Therefore,

9@ =9@(N)/f)=¢@()/e(f)=pb)/b. (3.4)

We will show now that b can be chosen from C(z) satisfying (3.3). For this, first

note that zis transcendental over k. Indeed, for all ne Nand ayp, ..., a, €k,
@z + -+ mz+a=0
implies that, for all g e N,
an(@1(2)" + ... + a1(¢p%(2)) + a =0.

This implies that there exists r € N such that z=¢"(2), which contradicts (3.1). Now,
we have the equalities a=a/c and b= E/d, where @, ce Clz] and b, d € k[z]. Consider the
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coefficients of b and d with respect to z as new indeterminates. Equation (3.4) is equiva-

lent to

p(a/c)=¢(b/d)/(b/d).

So, we have

@@ - ¢(d) -b—g(c) - ¢®b)-d=0. (3.5)

The left-hand side of Equation (3.5) is a polynomial in z. Hence, Equation (3.4) can be
considered as a system of polynomial equations given by the equalities for all coeffi-
cients. Since the field C is algebraically closed, existence of b and d with coefficients in

k implies existence of b and d with coefficients in C. |

3.2 Meromorphic functions and Nevanlinna property

Let M be the ¢o-field of meromorphic functions on the plane with

¢(N2):=flz+ 1), o(H@:=[fz+a), [feM, za,eC.

Also, let k:= M?, which is the field of 1-periodic meromorphic functions. For fe M,
the standard Nevanlinna characteristics m(r, f), N(r, f), and T(r, f) were introduced in
[46, pp. 6, 12] (see also [6, 14, 29]). Let

M., :={ge M|T(r,g) =o0(r), r — +00}, (3.6)
which is a ¢o-field as well [6, 8. Proposition]. Note that
C(z) C M_;. (3.7)

The proof of the following result, which we need to prove Theorem 3.5, was sug-
gested by D. Drasin and S. Merenkov, to whom the authors are highly grateful, as a

modification of [6, 7. Lemma (c)].
Lemma 3.2. Let f e M and there exist R € C(z) such that, for all ze C,
fz+1)=R(2) - f(2). (3.8)

If fe M., then feC(2). O
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Proof. Let L >0 be a real number such that all finite poles and zeroes of R lie in
D(L):={ceC||c < L}.

Similarly to the proof of [6, 7. Lemma (c)], one shows that (3.8) and (3.6) imply that all
finite poles and zeroes of fliein D(L). This implies that there exists a rational function h
such that g := hf is an entire function with no zeroes. Since M., is a field and he M.,, we
have g=hf € M.,. Hence, it follows from [29, Lemma I1.6.2] that g is constant. Therefore,
f=g/his rational. |

Corollary 3.3. We have
kn M<1 =C. U

We will need one more complex-analytic result (which has an algebraic proof) to

prove Theorem 3.5 as well.

Lemma 3.4. Let ae C(2) \ {0}. Assume that there exists a nonzero b € k M_; such that
¢ (b) = ab. Then,

(i) there also exists a nonzero b’ € M., with ¢ (b") =ab’;
(i) bek(2). O

Proof. We know from Corollary 3.3 that M?, = C, and it follows from Lemma 2.10 that

M_, is linearly disjoint from k over C. Hence,
k M_; = Quot(M.; ®c k). (3.9

Moreover, M.; ®c k is ¢-simple by Lemma 2.9. We will first show that b must lie in
M_; ®c k. Set
a={feM.; ck|f -be M., ®ck}.

It follows from (3.9) that a is a nonzero ideal of M.; ®c k. For all fea, we have
¢(fb) € M., ®c k and, therefore,

¢(fb)=¢(f)-abe M., ®c k.
Since a € C(z) C M., this implies

¢(f)-be M @ck,
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that is, ¢(f) € a. So, ais a ¢-ideal. Since M.; ®c k is ¢-simple, we must have 1 € a. So,
be M, ®ck.
Choose a C-basis (¢;) of k and write b=); b; ® ¢; with b; € M.;. Then,

Y s ®c=¢b)=ab=) ab®a.

Hence, for all i, we have ¢ (b;) = ab;. By Lemma 3.2, we conclude that, for all i, b; € C(2),
which implies that b € k(z), showing (ii). Moreover, since b # 0, there exists i such that
b; # 0, showing (i). [ |

Theorem 3.5. Let f€ M and 0# a € C(2) be such that fis a nonzero solution of

¢ (y) =ay. (3.10)

Then, fis o-algebraically dependent over M., if and only if
p(a)=¢(b)/b (3.11)

for some 0 #£b e C(z) and 1 # ¢(x) =x%0 (x)™ - ... ot 1 (x)"". O

Proof. The converse follows as in Theorem 3.1, noting (3.7), and Corollary 3.1. Let now
f be o-algebraically dependent over M_;. As in the proof of Theorem 3.1, we will show

that there exists b € M_; and multiplicative ¢ such that
p(@ =¢(b)/b.

Lemma 3.2 implies that b€ C(z). To do the above, let L be the smallest ¢o-subfield in
M containing k, M.,, and f. Since k C L? c M? =k, the ¢o-field L is a o-PV extension
over k M_; for Equation (3.2). It follows from Lemma 2.53 and Proposition 2.48 that fis
o -algebraically dependent over k M_; if and only the o-Galois group G of Equation (3.2)
is a proper o-algebraic subgroup of Gy,. Then, by Proposition 2.48, there exists a multi-
plicative ¢ € k{x, 1/x}, such that the ideal of G contains the equation ¢(x) = 1. Therefore,
for every k-o-algebra B and g € G(B), we have

9@ =e@(N) =9y NH=9C) -9(H=1-9(f)=e(f).
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Hence, by Theorem 2.52, we have b:=¢(f) e k M_;. Since f#0 and ¢ is multiplicative,
¢(f) #0. Therefore,

@ =p@(N/H=b())/e(f)=¢(Db)/b.

By Lemma 3.4, there exists b’ € M.; such that ¢(a) = ¢(b')/b’, which finishes the proof. B

3.3 How to use the above results in practice

Let ae C(2)* and wy, zy € C* and ¢ and o act on C(z) as follows:

o(N)(2 = f(z+wo) and o(f)(2=flz+2), [feC(2.

Then, for some N > 0, a can be represented as follows:
t—1 N R
a=3T1 T1 Tl k20— d-u—re
k=0d=—N-1i=1

where A, r; € C and the r;'s are distinct in (C/wo -Z+2y-7Z. For all i and k, 1 <i <R,
O0<k<t-—1,let

N
a; k= Z Sk,d,i- (3.12)
d=—N-1

The following result combined with Theorems 3.1 and 3.5 provides a complete charac-

terization of all equations (3.2) whose solutions are o-algebraically independent.

Theorem 3.6. Let a< C(z) be as above and z,/wg ¢ Q. Then,

(i) If 1 is a root of unity, then there exist b € C(z) and a multiplicative function
P =X" - (0@ ... (4" #1
such that ¢(a) = ¢ (b)/b if and only if, for alli, 1 <i <R,
Gio=...=0a1=0.

(ii) If A is not a root of unity, then there exist b e C(z) and a multiplicative
function

() =x" - () ... - (4@ #1
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such that ¢(a) = ¢ (b)/b if and only if, foralli, 1 <i <R,

ai,OZ"'Zai,t—IZO and tZZ O

Proof. We will write ¢ and b with undetermined coefficients and exponents. Suppose
that

B N R
b=u-[| [][le—k 2—dwo—r and ¢G=x" @G)"-...- @)™
k=—B d=—N i=1
are such that ¢(a) = ¢(b)/b and A, B > 0. Let us calculate the right- and left-hand sides
of this equality. We see that

¢(b) = 1_[ 1_[ H(Z—k Zp—(d—-1)- wo_r)lkdz

—Bd=—Ni=1

N-1

R B N R
l_[(Z— k-zg—d-wy—ry)lkdri . H 1_[ l_[(z— k-zg—d-wo—r;) i

li=1 k=—B d=-N i=1

—N-—
B R
=1 l_[[(z—k 20+ (N +1) - wo — 1)’

k=—Bi=1

l_[ (z—k- 29— d-wy —ry)lkeniTlai(z — k. zp — N - wg — ri)l"'N~i:| .
d=-N

Now, we calculate the left-hand side. We see that, for all r >0,

t—1 N R

o'(a)" =17 1_[ 1_[ H(z_ (k=71) 29— d- wo — 1;)"Sedi

k=0d=—-N-1i=1

t—1-r N R

=" (z—k- 29— d- wy — 1;)"r5edi,
IT I TI

k=—r d=—N-1i=1

Hence,

=1 o > 0<r<A "WSrikdi
p@) = PO l_[ 1_[ n(z—kzo d-wo—1;) Osr+k=t-1

k=—Ad=-N-1i=1
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Now, the equation ¢(a) =¢(b)/b gives A= B =t — 1 and the following system of linear

equations:

Z Srk—N-1,i - e =l _n 1,
o<r, r+k<t—1

Z Srtkdi M =lkar1i —lkdi. —N<d<N-1, 1<i<R, 1—-t<k<t-1,

0<r, r+k<t—1

Z Srqin,i - = =l i,
0<r, r+k<t—1

AXiom = 1.

The first subsystem, for all i and k, 1 <i < R, can be rewritten as follows:

S0,—N-1.i lk,—N.i
S0,-N,i lk,7N+1.,i — b —wi
(mes) = k=1
So,N.i —lewi
S0,—-N—-1,i S1,-N-1,i lk,—N,i
S0,—N,i S1,-N,i 2 bo—ni1i — le—wi
= , k=2-—1t,
1 :
So,N,i S1,N,i —lw
So,-N-1,i S1,-N-1, --- St—1,-N-1, No lk,fw,i
S0,—N.i SL—N,i -+  St—1,-Ni n le—n1i — lo—ni
= , =0,
So,.i SLNG .- S—1Ni 1 —lwi
St—1,-N-1,i lk,—N,i
St—1,-Ni le—ni1i — le—wi
(o) - ket
Se-1.m.i —lewi
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N
Z So,d,i =0,

d=—N-1

N N
Z So.di t+ M1 - Z S1.di =0,

N-1

S1.di+

d=—N-1 d=—

N N

o Z So.di+ M - Z
d=—N-1 d=—N-1

mo- Y si1.4i=0.
d=—N-1

0 0
a;o a; 1
Qit—2 Q-1

G t—1 0

Thus, for some integers yx 4, j, we have

0
a;.0 a;,1
Gt—2 Gt
@11 0
-1
i =) Ykdir-Mr
r=0

Using (3.12), we obtain the following system:

0
a0

a; t—2

a2

Thus, we can replace this system with the following:

a;o
a1

a;t—1

a;o
a; 1

a;t—1

N
+ny- Z St-1,d4i =0,

d=—N-1
o
0
m
0
1
Np
0
n
0
.y

Each subsystem has a solution in Iy 4; if and only if the sum of all equations is zero.

(3.13)
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Consider the first case: A is a root of unity. Then, for some ueZ\ {0}, we have
A¥=1. In this situation, if n,,lx4; is a solution of all equations except for the second

one, then

u-ne, uU-lgq;

is a solution of the whole system. Therefore, in this case, the existence of ¢ and b is
equivalent to (3.13) having a nontrivial common solution.
Consider the second case: A is not a root of unity. Then, the second equation gives

> -t n=0. Thus, in this case, we need to show the existence of a nontrivial solution of

the system
0 o ... O Gio
a;o a; 1
o 0
S | R (3.14)
0
G2 @1 ... 0 0 N1
Qi t—1 0 - 0
1 1 e 1

Since all the coefficients in (3.13) and (3.14) are integers, there is a nontrivial solution
with integral coefficients if and only if there is a nontrivial solution with complex coef-
ficients.

In the first case, the rank is < t if and only if

Gio=...=a;1=0.
In the second case, the rank is < t if and only if
Go=--=a+1=0 andt>2. ]
3.4 Examples
We will now illustrate Theorems 3.1, 3.5, and 3.6.
Example 3.7. The gamma function I" satisfying

rz+1)=z-I'(2
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does not satisfy any polynomial difference equation over M_.; (see (3.6)) for any shift
by z, ¢ Q as, in the notation of Theorem 3.6, N=0, t=1, R=1, and 1 =501 =a.07#0.
A differential algebraic independence statement over M.; for I" was shown in [6] using
analytic techniques. Also, [14, Theorem 1] gives difference algebraic independence of the

Riemann zeta function ¢ over M_;. Note the following relation between ¢ and I":
(1 —s)=2"5.775.cos(w -5/2) - I'(s) - £(s). O
Example 3.8. For fe K:=C(z a), let
¢(NHz )= flzza+1) and o(f)(z )= f(z+ 2, ).
Let F be a ¢o-field over K that contains a nonzero solution of
¢p(y)=2-y
which we denote by z°. Let ¢ be as in the statement of Theorem 3.1. If z* were o -algebraic

dependent over C(z, «), then, by the proof of Theorem 3.1, there would exist 0#£b e F?¢
(note that C(z) ¢ F? in our case) such that

1=¢(b)/b=¢(2).

Since o is a shift, ¢ =1, which is a contradiction. This proves the difference algebraic
independence of 2% over C(z, o) with respect to shifts of z (see [7, 27] for a related state-

ment, in which o takes values in Q). O

Example 3.9. Let K be a field. Consider Seqy as a o-ring with ¢ acting as the shift. Let
L be a o-subfield of Seq,. Consider Seq;as a ¢o-ring with ¢ acting as the shift and o
acting coordinate-wise. Let F be a ¢o-subfield of Seq; and {S(m, @)} € F satisfy a first-

order ¢-difference equation

Sm,a+1)= f(m,a) - S(m, ), {f(m,a)}e M,

where M is a ¢o-subfield of F, which contains L. Then, it follows from the proof of
Theorem 3.1, [23, Lemma A.40; 25, Proposition 1.1] that, if {S(m, «)} satisfies a linear
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o-difference equation, then there exists {b(m, @)} € M and n> 1 such that, for all m and «,
Sm+n,a)=b(m,a) - S(m, a). (3.15)
In particular, we can take M to be the image of L(2) in Seq;, as in Section 2.5. Let

y(x, o) = Z S(m,a) - x™.

m=>=0

By [54, Theorem 1.5], the function y(x, «) satisfies a linear differential equation in x if
and only if S(m, «) satisfies a homogeneous linear difference equation in m (see also [26,
App. B.4] and the reference given there). Suppose it is known that S(m, «) satisfies a first-
order homogeneous linear difference equation with respect to «, and one wants to know
whether y(x, «) satisfies a linear differential equation in x. The above method helps find
difference equations in m if they are hard to find otherwise, as such equations are all of
the form (3.15). Just to illustrate the process (but not the difficulty), consider the Bessel

functions of the first kind, which are given by

_ (_1)m 2m+a
J"‘(X)_W;)m! Tmtarn P

where « is an integer. It is a solution of the following differential equation:

Xy +xy + 2 —a?) - y=0, (3.16)
where ' stands for C%( Let
S _ =" B m
(m, o) = and I,(x) = Z S(m, a)x™.

ml-I'm+aoa+1) =
Then, J,(x) = (x/2)* - I,(x*/4). We have
m+a+1)-S(m,a+1)=S(m, a).

Moreover, we have

m+1Dm+a+1)-Sm+1,a)+ S(m, a) =0.
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Therefore, by a calculation using the Gfun package in MAPLE [53], I,(x) satisfies the

second-order linear differential equation
xy'+y+y=0 (3.17)

(see also the proof of [54, Theorem 1.5]). One now obtains (3.16) by substituting the

expression of I, in terms of J, into (3.17). O
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