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We develop a Galois theory for systems of linear difference equations with an action of

an endomorphism σ . This provides a technique to test whether solutions of such systems

satisfy σ -polynomial equations and, if yes, then characterize those. We also show how

to apply our work to study isomonodromic difference equations and difference algebraic

properties of meromorphic functions.

1 Introduction

Inspired by the numerous applications of the differential algebraic independence results

from [36], we develop a Galois theory with an action of an endomorphism σ for systems

of linear difference equations of the form φ(y) = Ay, where A∈ GLn(K) and K is a φσ -

field, that is, a field with two given commuting endomorphisms φ and σ , such as in

Example 2.1. This provides a technique to test whether solutions of such systems sat-

isfy σ -polynomial equations and, if yes, then characterize those. Galois groups, in this

approach, are groups of invertible matrices defined by σ -polynomial equations with

coefficients in the σ -field Kφ := {a∈ K | φ(a) = a}. In more technical terms, such groups

are functors from Kφ-σ -algebras to sets represented by finitely σ -generated Kφ-σ -Hopf
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algebras [23]. Also, our work is a highly nontrivial generalization of [5], where similar

problems were considered but σ was required to be of finite order (there exists n such

that σn = id).

Our main result is a construction of a σ -Picard–Vessiot (σ -PV) extension (see

Theorem 2.28), that is, a minimal φσ -extension of the base φσ -field K containing solu-

tions of φ(y) = Ay. It turns out that the standard constructions and proofs in the pre-

viously existing difference Galois theories do not work in our setting. Indeed, this is

mainly due to the reason that even if the field Kφ is σ -closed [56], consistent systems

of σ -equations (such that the equation 1 = 0 is not a σ -algebraic consequence of the

system) with coefficients in Kφ might not have a solution with coordinates in Kφ (see

more details in Remarks 2.19 and 2.22). However, our method avoids this issue. In our

approach, a σ -PV extension is built iteratively (applying σ ), by carefully choosing a suit-

able usual PV extension [58] at each step, and then “patching” them together. This is

a difficult problem and requires several preparatory steps as described in Section 2.4.

A similar approach was also taken in [62, Theorem 8] for systems of differential equa-

tions with parameters. However, our case is more subtle and, as a result, requires more

work. A Tannakian approach is taken in [49] to build a foundation that will allow several

endomorphisms by considering semigroup actions on Tannakian categories.

Galois theory of difference equations φ(y) = Ay without the action of σ was stud-

ied in [1–4, 13, 58, 63], with a nonlinear generalization considered in [31, 44], as well as

with an action of a derivation ∂ in [17–22, 33, 34, 36]. The latter works provide algebraic

methods to test whether solutions of difference equations satisfy polynomial differ-

ential equations (see also [40] for a general Tannakian approach). In particular, these

methods can be used to prove Hölder’s theorem that states that the Γ -function, which

satisfies the difference equation Γ (x + 1) = x · Γ (x), satisfies no nontrivial differential

equation over C(x). A Galois theory of differential equations ∂(y) = Ay (the matrix A does

not have to be invertible in this case) with an action of σ was also developed in [23].

Our work has numerous applications to studying difference and differen-

tial algebraic properties of functions. Isomonodromic q-difference equations, which

lead to q-difference Painlevé equations, have been recently studied in [37–39, 45]. In

Theorem 2.55, we show how this property can be detected using our σ -PV theory, which

can be combined with [48, Theorem 4.1] to study difference isomonodromy with several

parameters. On the other hand, Theorem 3.1 gives a general σ -algebraic independence

(called difference hypertranscendency in [55]) test for first-order φ-difference equations.

Theorem 3.5 translates this to a σ -algebraic dependence test over the field of mero-

morphic functions with Nevanlinna growth order < 1 (see (3.6)). It turns out that our
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methods allow us to generalize a modification (Lemma 3.4) of complex-analytic results

from [6], which is another interesting application. Theorem 3.6 combined with either

Theorems 3.1 or 3.5 can be used as computational tool. We illustrate this in Examples 3.7

and 3.8 as well as show how our work could be used to study differential algebraic

properties of functions given by power series in Example 3.9. Not only do we show

practical applications of our work, we also hope that our theory will be applied in the

future in diverse areas, such as described in [15, 52] and the papers on isomonodromic

q-difference equations mentioned above.

The paper is organized as follows. We start with the basic definitions, notation,

and review of existing results in Sections 2.1 and 2.2. We then introduce σ -PV extensions

and study their basic properties in Section 2.3. The main result, existence of σ -PV exten-

sions, is contained in Section 2.4, which starts by developing the needed technical tools.

We extend the main result in Section 2.5 to include more useful situations in which σ -PV

extensions exist. Uniqueness for σ -PV extensions is established in Section 2.6. We recall

from the appendix of [23] what difference algebraic groups are, establish the σ -Galois

correspondence, and show that the σ -dimension of the σ -Galois group coincides with the

σ -dimension of the σ -PV extension in Section 2.7. The relation between isomonodromic

difference equations and our Galois theory is given in Section 2.8. Applications to differ-

ence and differential algebraic properties of functions, including functions with a slow

Nevanlinna growth order, and illustrative examples are given in Section 3.

2 σ -PV Extensions

2.1 Basic definitions and preliminaries

We need to introduce some terminology from difference algebra. Standard references for

difference algebra are [16, 43]. All rings are assumed to be commutative. By a φ-ring, we

mean a ring R equipped with a ring endomorphism φ : R→ R. We do not require that φ

is an automorphism. If φ is an automorphism, we say that R is inversive. By a φσ -ring,

we mean a ring equipped with two commuting endomorphisms φ and σ . A morphism of

φ-rings (or φσ -rings) is a morphism of rings that commutes with the endomorphisms.

If the underlying ring is a field, we speak of φ-fields (or φσ -fields). Here are some basic

examples of φσ -fields of interest to us:

Example 2.1.

(i) The φσ -field M of meromorphic functions on C with φ( f)(z) = f(z + zφ) and

σ( f)(z) = f(z + zσ ), f ∈ M, zφ, zσ ∈ C and its φσ -subfields C(z) and M<1, the
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field of meromorphic functions on C with Nevanlinna growth order < 1 (see

Section 3.2).

(ii) The φσ -field M with φ( f)(z) = f(z · qφ) and σ( f)(z) = f(z · qσ ), f ∈ M, qφ ,

qσ ∈ C× and its subfields C(z) and M<1.

(iii) The φσ -field C(z, w) with φ( f)(z, w) = f(z + zφ, w) and σ( f)(z, w) = f(z,

w + wσ ), f ∈ C(z, w), zφ, wσ ∈ C and various other actions of φ and σ that

commute. �

Recall that:

(1) A φ-ideal in a φ-ring R is an ideal a of R such that φ(a) ⊂ a. Similarly, one

defines φσ -ideals in φσ -rings.

(2) A φ-ring is called φ-simple if the zero ideal and the whole ring are the only

φ-ideals.

(3) A φ-ideal q in a φ-ring R is called φ-prime if q is a prime ideal of R and

φ−1(q) = q.

(4) If φ is an endomorphism of a ring R, then φd is also an endomorphism of R

for every d≥ 1, and we can speak of φd-prime ideals of R.

(5) A φ-ring R is called a φ-domain if its zero ideal is φ-prime. (Equivalently, R

is an integral domain and φ : R→ R is injective.)

(6) A φ-ideal in a φ-ring R is called φ-maximal if it is a maximal element in the

set of all φ-ideals of R, not equal to R, ordered by inclusion.

The theory of difference fields does exhibit some pathologies. For example, two

extensions of the same difference field can be incompatible, see [43, Chapter 5]. As it

has been recognized in [58], the Galois theory of linear difference equations runs much

smoother if one allows certain finite products of fields instead of fields. In this context,

the following definition has turned out to be useful.

Definition 2.2. A φ-pseudo field is a φ-simple, Noetherian φ-ring K such that every

nonzero divisor of K is invertible in K. �

The concept of φ-pseudo fields (in certain variants) is also used in [2, 5, 36, 56,

57, 60, 61].

If K is a φ-pseudo field, then there exist orthogonal, idempotent elements

e1, . . . , ed of K such that

(1) K = e1 · K ⊕ · · · ⊕ ed · K;
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(2) φ(e1) = e2, φ(e2) = e3, . . . , φ(ed) = e1;

(3) ei · K is a field for i = 1, . . . , d (so, ei · K is a φd-field)

(see, e.g., [60, Proposition 1.3.2, p. 9]). The integer d is called the period of K and denoted

by period(K).

Definition 2.3. A φ-ideal p of a φ-ring R is called φ-pseudo prime if it is the kernel of a

morphism from R into some φ-pseudo field. Equivalently, p is of the form

p = q ∩ φ−1(q) ∩ · · · ∩ φ−(d−1)(q) (2.1)

for some φd-prime ideal q of R. The smallest number d such that (2.1) holds for some

φd-prime ideal q of R is called the period of p. �

Definition 2.4. By a φ-pseudo domain, we mean a φ-ring whose zero ideal is φ-pseudo

prime. If R is a φ-pseudo domain, the period of the zero ideal of R is also called the

period of R. �

Note that every φ-subring of a φ-pseudo field is a φ-pseudo domain. The total

ring of fractions of a φ-pseudo domain is a φ-ring in a natural way, indeed it is a

φ-pseudo field.

Definition 2.5. A φσ -ring R is called a φ-pseudo σ -domain if (R, φ) is a φ-pseudo

domain. �

Definition 2.6. A φσ -ring K is called a φ-pseudo σ -field if (K, φ) is a φ-pseudo field. �

Most of the employed nomenclature is self-explanatory. For example,

(1) A K-φσ -algebra is a K-algebra R equipped with the structure of a φσ -ring

such that the K-algebra structure map K → R is a morphism of φσ -rings.

(2) Constants are denoted by upper indices. For example, if R is a φ-ring, then

the φ-constants of R are

Rφ := {r ∈ R | φ(r) = r}.

If K is a φ-pseudo σ -field , then Kφ is a σ -field (as Rφ is a field for any

φ-simple φ-ring R [58, (Lemma 1.7a), p. 6].)

(3) If R is a ring, we denote the total quotient ring of R, that is, the localization

of R at the multiplicatively closed subset of all nonzero divisors, by Quot(R).
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(4) If K is a ring, R a K-algebra, and S a subset of R, then K(S) denotes the

smallest K-subalgebra of R that contains S and is closed under taking

inverses. So, explicitly

K(S) = {a/b | a∈ K[S], b ∈ K[S] ∩ R×} ⊂ R.

(5) If K is a σ -ring, R a K-σ -algebra, and S a subset of R, then K{S}σ denotes

the K-σ -subalgebra of R generated by S, that is, the K-subalgebra of R gen-

erated by all elements of the form σd(s), where s ∈ S and d≥ 0. (By definition,

σ 0 is the identity map.) If R= K{S}σ with S finite, we say that R is finitely

σ -generated over K.

(6) Let

K〈S〉σ := {a/b | a∈ K{S}σ , b ∈ K{S}σ ∩ R×} ⊂ R. (2.2)

If L|K is an extension of σ -pseudo fields, we say that L is finitely σ -

generated over K if there exists a finite subset S of L such that K〈S〉σ = L.

(7) Tensor products of difference rings are considered as difference rings in a

natural fashion. For example, if R is a φ-ring and S, T are R-φ-algebras, then

S ⊗R T becomes an R-φ-algebra by setting φ(s ⊗ t) = φ(s) ⊗ φ(t).

Finally, we record some simple and well-known lemmas that we use repeatedly

throughout the text.

Lemma 2.7 ([60, Lemma 1.1.5, p. 4]). Let R be a φ-simple φ-ring. Then,

Quot(R)φ = Rφ . �

Lemma 2.8. Let R be a φ-simple φ-ring, and D a Rφ-algebra (considered as constant

φ-ring). The map b �→ R ⊗Rφ b defines a bijection between the set of all ideals in D and

the set of all φ-ideals in R ⊗Rφ D. The inverse map is given by a �→ a ∩ D. �

Proof. In [60, Proposition 1.4.15, p. 15], this is stated for the case that R is a φ-pseudo

field. However, the proof given there only uses the assumption that R is φ-simple. �

Lemma 2.9. Let R be a φ-simple φ-ring and D a (φ-constant) field extension of Rφ . Then,

R ⊗Rφ D is φ-simple. �

Proof. This is clear from Lemma 2.8. �
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Lemma 2.10 ([60, Lemma 1.1.6, p. 4]). Let K be a φ-simple φ-ring and R a K-φ-algebra.

Then, K and Rφ are linearly disjoint over Kφ . �

Lemma 2.11. Let R be a φ-simple φσ -ring that is a φ-pseudo domain. Then, σ is injective

on R and the zero ideal of R is the finite intersection of σ -pseudo prime ideals. Moreover,

Quot(R) is naturally a φ-pseudo σ -field. �

Proof. Since φ and σ commute, the kernel of σ is a φ-ideal. Therefore, σ must be injec-

tive. Since R is a φ-pseudo domain, the zero ideal of R is a finite intersection of prime

ideals. As σ is injective, the map q �→ σ−1(q) is a permutation of the set of minimal prime

ideals of R. Every cycle in the cycle decomposition of this permutation corresponds to

a σ -pseudo prime ideal. Since R is a finite direct sum of integral domains [60, Proposi-

tion 1.1.2, p. 2], it is clear that σ and φ extend to Quot(R). �

2.2 Review of the classical PV theory

To maximize the applicability of our σ -Galois theory, we have been careful to avoid

unnecessary technical conditions on the base field:

(i) we work in arbitrary characteristic;

(ii) we do not assume that our endomorphisms are automorphisms;

(iii) we do not make any initial requirements on the constants.

Unfortunately, the assumptions in the standard presentations of the classical Galois

theory of linear difference equations (e.g., [58]) are somewhat more restrictive. Since,

at some points in the development of our σ -Galois theory, we need to use the classi-

cal Galois theory, we have to give the definitions and recall the results in our slightly

more general setup. This review of the classical theory will also help the reader see the

analogy between the classical Galois theory and the σ -Galois theory.

Definition 2.12. Let K be a φ-pseudo field and A∈ GLn(K). An extension L|K of φ-

pseudo fields with Lφ = Kφ is called a PV extension for φ(y) = Ay if there exists a matrix

Y ∈ GLn(L) such that φ(Y) = AY and L = K(Y) := K(Yi j| 1 ≤ i, j ≤ n).

A φ-simple K-φ-algebra R is called a PV ring for φ(y) = Ay if there exists

Y ∈ GLn(R) such that φ(Y) = AY and R= K[Y, 1/ det(Y)]. �

It is easy to describe a construction of a PV ring. Indeed, let X be the n× n-

matrix of indeterminates over K. We turn K[X, 1/ det(X)] into a K-φ-algebra by setting
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φ(X) = AX. Then,

K[X, 1/ det(X)]/m

is a PV ring for φ(y) = Ay for every φ-maximal φ-ideal m of K[X, 1/ det(X)]. Moreover,

every PV ring for φ(y) = Ay is of this form.

The existence of PV extensions is a more delicate issue, unless we assume that

Kφ is algebraically closed. The problem is that a PV ring might contain new constants.

The following lemma guarantees that the constants of a PV ring over K are an algebraic

field extension of Kφ .

Lemma 2.13. Let K be a φ-pseudo field and R a φ-simple K-φ-algebra which is finitely

generated as K-algebra. Then, Rφ is an algebraic field extension of Kφ . �

Proof. This is a slight generalization of [58, Lemma 1.8, p. 7]. It also follows from [61,

Proposition 2.11, p. 1389]. �

The following proposition explains the intimate relation between PV extensions

and PV rings.

Proposition 2.14. Let K be a φ-pseudo field and A∈ GLn(K). Let R be a K-φ-algebra

that is a φ-pseudo domain. Assume that R= K[Y, 1/ det(Y)] for some Y ∈ GLn(R) with

φ(Y) = AY. Then, R is φ-simple if and only if Quot(R)φ is algebraic over Kφ . �

Proof. It is clear from Lemmas 2.13 and 2.7 that Quot(R)φ is algebraic over Kφ if R is

φ-simple. So, we assume that Quot(R)φ is algebraic over Kφ . Indeed, we will first assume

that Quot(R)φ = Kφ . Let

R′ = K[Y′, 1/ det(Y′)]

be a PV ring for φ(y) = Ay, where Y′ ∈ GLn(R′) satisfies φ(Y′) = AY′. Note that L := Quot(R)

is a φ-pseudo field. The matrix

Z := (Y−1 ⊗ 1) · (1 ⊗ Y′) ∈ GLn(L ⊗K R′)

satisfies

φ(Z) = ((AY)−1 ⊗ 1) · (1 ⊗ AY′) = Z .
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It follows from Lemma 2.10 that

L ⊗Kφ Kφ [Z , 1/ det(Z)] = L · (K[Z , 1/ det(Z)]) = L[Z , 1/ det(Z)]

= L[Y ⊗ 1, Z , 1/ det(Y) ⊗ 1, 1/ det(Z)]

= L[1 ⊗ Y′, 1 ⊗ 1/ det(Y′)] = L ⊗K R′. (2.3)

Since Kφ [Z , 1/ det(Z)] is finitely generated as Kφ-algebra, there exists an algebraic field

extension C of Kφ and a Kφ-morphism

ψ : Kφ [Z , 1/ det(Z)] → C .

Composing the inclusion R′ → L ⊗K R′ with (2.3) and id ⊗ ψ , we obtain a K-φ-morphism

R′ → L ⊗Kφ C .

Since R′ is φ-simple, we can identify R′ with a subring of L ⊗Kφ C . The two solution

matrices Y and Y′ in GLn(L ⊗Kφ C ) only differ by multiplication by an invertible matrix

with entries in C . Therefore,

R ⊗Kφ C = K[Y, 1/ det(Y)] ⊗Kφ C = K[Y, 1/ det(Y), C ] = K[Y′, 1/ det(Y′), C ] = R′ ⊗R′φ C ,

by Lemma 2.10 again. From Lemma 2.9, we know that R′ ⊗R′φ C is φ-simple. This implies

that R is φ-simple, because a nontrivial φ-ideal of R would give rise to a nontrivial

φ-ideal of R ⊗Kφ C .

In the general case, we set

K̃ = K ⊗Kφ Lφ ⊂ L .

We claim that K̃ is a φ-pseudo field. We already know from Lemma 2.9 that K̃ is φ-simple

and, since L is a φ-pseudo domain, K̃ is also a φ-pseudo domain. Then, K̃ is a finite direct

sum of integral domains Ri [60, Proposition 1.1.2, p. 2]. Since Lφ is algebraic over Kφ , K̃

is integral over K. As K is a direct sum of fields K j, this implies that each Ri is integral

over some K j. But, since Ri is an integral domain and K j a field, Ri must be a field. So, K̃

is a finite direct sum of fields. Consequently, K̃ is a φ-pseudo field.

From the first part of the proof, it follows that K̃[Y, 1/ det(Y)] is φ-simple. We

have to show that R= K[Y, 1/ det(Y)] is φ-simple. Suppose that a ⊂ R is a nontrivial

φ-ideal of R. Since Lφ is algebraic over Kφ , K̃[Y, 1/ det(Y)] is integral over R. Therefore,
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the ideal a′ of K̃[Y, 1/ det(Y)] generated by a does not contain 1 [24, Proposition 4.15, p.

129]. As a′ is a φ-ideal, this yields a contradiction. �

Corollary 2.15. Let K be a φ-pseudo field and A∈ GLn(K). If L|K is a PV extension for

φ(y) = Ay with fundamental solution matrix Y ∈ GLn(L), then K[Y, 1/ det(Y)] is a PV ring

for φ(y) = Ay. Conversely, if R is a PV ring with Rφ = Kφ , then Quot(R) is a PV extension

for φ(y) = Ay. �

Proof. This is clear from Proposition 2.14 and Lemma 2.7. �

Theorem 2.16. Let K be a φ-pseudo field. Let R1 and R2 be two PV rings for the same

equation φ(y) = Ay, A∈ GLn(K). Then, there exists a finite algebraic field extension k̃ of

k := Kφ , containing k1 := R
φ

1 and k2 := R
φ

2 and an isomorphism

R1 ⊗k1
k̃≃ R2 ⊗k2

k̃

of K ⊗k k̃-φ-algebras. �

Proof. This is a straightforward generalization of [58, Proposition 1.9, p. 7]. �

Of course, the above result immediately gives the uniqueness (up to K-φ-

isomorphisms) of PV extensions provided that Kφ is algebraically closed.

2.3 σ -PV extensions and σ -PV rings

In this section, we define σ -PV extensions and σ -PV rings and clarify the relation

between them. Let K be a φ-pseudo σ -field. We study a linear difference equation

φ(y) = Ay, where A∈ GLn(K).

We are mainly interested in the case when K is a field. Typically, K will be one of the φσ -

fields from Example 2.1. However, for consistency reasons, we will give all definitions

over a general φ-pseudo σ -field.

If R is a K-φσ -algebra, then a matrix Y ∈ GLn(R) is called a fundamental solution

matrix for φ(y) = Ay if φ(Y) = AY.

Remark 2.17. If Y1, Y2 ∈ GLn(R) are two fundamental solution matrices for φ(y) = Ay,

then there exists a matrix C ∈ GLn(Rφ) such that Y2 = Y1C . �
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Proof. This follows from the well-known computation φ(Y−1
1 Y2) = (AY1)

−1 AY2 =

Y−1
1 Y2. �

Let L be a φ-pseudo σ -field extension of K and Y ∈ GLn(L) a fundamental solution

matrix for φ(y) = Ay. If L = K〈Y〉σ , we say that L is σ -generated by Y.

Definition 2.18. Let K be a φ-pseudo σ -field and A∈ GLn(K). A φ-pseudo σ -field exten-

sion L of K is called a σ -PV extension (or σ -parameterized PV extension in case we

need to be more precise) for φ(y) = Ay if Lφ = Kφ and L is σ -generated by a fundamental

solution matrix for φ(y) = Ay.

A K-φσ -algebra R that is a φ-pseudo σ -domain is called a σ -PV ring for φ(y) = Ay

if R is φ-simple and σ -generated by a fundamental solution matrix for φ(y) = Ay, that is,

R= K{Y, 1/ det(Y)}σ for some fundamental solution matrix Y ∈ GLn(R). �

Remark 2.19. A Noetherian φ-simple φ-ring is automatically a φ-pseudo domain [60,

Proposition 1.1.2, p. 2]. This is why the condition that R should be a φ-pseudo domain

does not appear in the definition of classical PV rings (Definition 2.12). Here, in the σ -

parameterized setting, one of the more subtle steps in the existence proof of σ -PV rings

(or extensions) is to verify the φ-pseudo domain property (cf. Corollary 2.27.) �

By a σ -PV extension L|K, we mean a φ-pseudo σ -field extension L of K that is

a σ -PV extension for some linear φ-equation φ(y) = Ay, with A∈ GLn(K). Similarly, for

σ -PV rings. The σ -field of φ-constants of a σ -PV extension L|K will usually be denoted

by k, that is,

k := Kφ = Lφ .

To clarify the relation between σ -PV extensions and σ -PV rings, we will use the

following important observation.

Lemma 2.20. Let L|K be a σ -PV extension for φ(y) = Ay with fundamental solution

matrix Y ∈ GLn(L). Set

Ld = K(Y, σ (Y), . . . , σd(Y)) ⊂ L , d≥ 0.
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Then, Ld|K is a PV extension for the φ-linear system φ(y) = Ady, where

Ad =















A 0 · · · 0

0 σ(A) · · · 0
...

. . .
...

0 · · · 0 σd(A)















∈ GLn(d+1)(K).

�

Proof. Note that K[Y, σ (Y), . . . , σd(Y)] is a φ-subring of L. Therefore,

K(Y, σ (Y), . . . , σd(Y)) is a φ-pseudo field by [60, Lemma 1.3.4, p. 9]. Applying σ i to

φ(Y) = AY for i = 0, . . . , d yields φ(σ i(Y)) = σ i(A)σ i(Y). Therefore,

Yd =















Y 0 · · · 0

0 σ(Y) · · · 0
...

. . .
...

0 · · · 0 σd(Y)















∈ GLn(d+1)(Ld)

is a fundamental solution matrix for φ(y) = Ady. Since L
φ

d ⊂ Lφ = Kφ , Ld|K is a PV exten-

sion for φ(y) = Ady. �

The following proposition is the σ -analog of Corollary 2.15.

Proposition 2.21. Let K be a φ-pseudo σ -field and A∈ GLn(K).

(i) If L|K is a σ -PV extension for φ(y) = Ay with fundamental solution matrix

Y ∈ GLn(L), then R := K{Y, 1/ det(Y)}σ ⊂ L is a σ -PV ring for φ(y) = Ay.

(ii) Conversely, if R is a σ -PV ring for φ(y) = Ay with Rφ = Kφ , then Quot(R) is a

σ -PV extension for φ(y) = Ay. �

Proof. Clearly, R := K{Y, 1/ det(Y)}σ is a φ-pseudo domain. So, we only have to show

that R is φ-simple. We know from Lemma 2.20 that

Ld := K(Y, σ (Y), . . . , σd(Y)) ⊂ L

is a PV extension of (K, φ) for every d≥ 0. It, thus, follows from Corollary 2.15 that

Rd := K[Y, σ (Y), . . . , σd(Y), 1
/

(det(Y) · . . . · det(σ d(Y)))] ⊂ R
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is a PV ring over K. So, Rd is φ-simple for every d≥ 0 and R=
⋃

d≥0 Rd. Thus, R must be

φ-simple.

Now assume that R is a σ -PV ring with Rφ = Kφ . From Lemma 2.11, we know that

Quot(R) is a φ-pseudo σ -field and, by Lemma 2.7, we have Quot(R)φ = Rφ = Kφ . �

2.4 Existence of σ -PV extensions

In this section, we will establish the existence of σ -PV rings (Theorem 2.8) and σ -PV

extensions (Corollary 2.29) for a given linear φ-equation φ(y) = Ay under rather mild

conditions on the base φσ -field K. The key idea for the existence proof is the prolon-

gation construction from [61, Lemma 2.16, p. 1392]. The differential analog of this con-

struction has also been recently used to establish the existence of ∂-parameterized PV

extensions for linear differential or difference equations provided that the constants

are algebraically closed (see [22, 62]). A more elaborate discussion of the existence of

differentially parameterized PV extensions for linear differential equations (including

the case of several differential parameters) can be found in [28].

Remark 2.22. The idea of the prolongation construction is easy to explain. Indeed, let K

be a φσ -field and A∈ GLn(K). We would like to construct a σ -PV ring or a σ -PV extension

for φ(y) = Ay. Let

S := K{X, 1/ det(X)}σ

be the generic solution ring for φ(y) = Ay. By this, we mean that X is the n× n-matrix

of σ -indeterminates, and the action of φ is determined by φ(X) = AX. Finding a σ -PV

ring for φ(y) = Ay is equivalent to finding a φσ -ideal m of S that is φ-pseudo prime and

φ-maximal. The existence of a φ-maximal ideal in S is, of course, guaranteed by Zorn’s

lemma, but it is unclear if we can find a φ-maximal ideal that is additionally a σ -ideal

and φ-pseudo prime. �

If L is a σ -PV extension for φ(y) = Ay with fundamental solution matrix

Y ∈ GLn(L), then Rd is a PV ring over K for φ(y) = Ady, as we have already seen in

Lemma 2.20 and Proposition 2.21. Thus, we should better find a φσ -ideal m of S such

that

md := m ∩ Sd, Sd := K[X, . . . , σd(X), 1/ det(X · . . . · σd(X))] ⊂ S
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is φ-maximal in Sd for every d≥ 0. Note that not every φ-maximal φ-ideal of Sd is of the

form md for some φ-maximal φσ -ideal m of S. A necessary condition is given by

σ(md ∩ Sd−1) ⊂ md.

However, if we assume that we have already constructed a φ-maximal φ-ideal md of Sd

that satisfies this condition, we can try to construct md+1 by a choosing a φ-maximal

φ-ideal of Sd+1 that contains md and σ(md). Then, we could define m as the union of all

the md’s.

There are two obstructions to this procedure that we will have to overcome:

(i) The ideal of Sd+1 generated by md and σ(md) might contain 1. In this case,

the construction would not apply.

(ii) The union
⋃

md is a φ-maximal φσ -ideal, but, a priori, it is unclear why it

should be a φ-pseudo prime ideal.

Lemma 2.24 is the crucial ingredient to overcome the first difficulty. The second dif-

ficulty will be resolved in Lemma 2.26, which will eventually provide a bound for the

period of md.

To prove Lemma 2.24, we need an algebraic version of Chevalley’s theorem on

constructible sets (cf. [32, Theorem 1.8.4, p. 239]).

Lemma 2.23. Let K be a field and R⊂ S an inclusion of finitely generated K-algebras.

Then there exists an element r ∈ R that is not contained in any minimal prime ideal of

R and has the following property: for every prime ideal q of R with r /∈ q, there exists a

prime ideal q′ of S with q′ ∩ R= q. �

Proof. If R is an integral domain, this follows from [9, Corollaire 3, Chapitre V,

Section 3.1, p. 58]. The general case can be reduced to the case in which R is an integral

domain as follows. Let p1, . . . , pn denote the minimal prime ideals of R. By [8, Proposi-

tion 16, Chapitre II, Section 2.6, p. 96], there exist minimal prime ideals p′
1, . . . , p

′
n of S

with p′
i ∩ R= pi for i = 1, . . . , n. For i = 1, . . . , n, consider the inclusion of integral domains

R/pi →֒ S/p′
i, and let ri ∈ R be such that the image ri of ri in R/pi is nonzero and has the

property that, for every prime ideal q of R/pi with ri /∈ q, there exists a prime ideal q′ of

S/p′
i with

q′ ∩ (R/pi) = q.
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For i = 1, . . . , n, let

ei ∈ (p1 ∩ · · · ∩ pi−1 ∩ pi+1 ∩ · · · ∩ pn) � pi

and set

r = e1r1 + · · · + enrn.

Since r = eiri ∈ R/pi, we see that r does not belong to any minimal prime ideal of R. Let q

be a prime ideal of R with r /∈ q. Then, there exists an i ∈ {1, . . . , n} such that pi ⊂ q. Since

the image of q in R/pi does not contain ri ∈ R/pi, it follows from the construction of ri

that there exists a prime ideal q′ of S with q′ ∩ S = R. �

Lemma 2.24. Let K be a field and let R be a finitely generated K-algebra. For d≥ 0, let

R0, . . . , Rd+1 denote isomorphic copies of R. Let a ⊂ R0 ⊗ · · · ⊗ Rd and b ⊂ R1 ⊗ · · · ⊗ Rd+1

be ideals not containing 1. (The tensors are understood to be over K.) Assume that

a ∩ (R1 ⊗ · · · ⊗ Rd) = b ∩ (R1 ⊗ · · · ⊗ Rd). (2.4)

Then, the ideal of R0 ⊗ · · · ⊗ Rd+1 generated by a and b does not contain 1. �

Proof. Let c = a ∩ (R1 ⊗ · · · ⊗ Rd) = b ∩ (R1 ⊗ · · · ⊗ Rd) ⊂ R1 ⊗ · · · ⊗ Rd and consider the

inclusions

B := (R1 ⊗ · · · ⊗ Rd)/c →֒ (R0 ⊗ · · · ⊗ Rd)/a →֒ ((R0 ⊗ · · · ⊗ Rd)/a) ⊗ Rd+1

= (R0 ⊗ · · · ⊗ Rd+1)/(a).

By Lemma 2.23, there exists an element ra ∈ B not contained in any minimal prime ideal

of B and such that, for every prime ideal q of B with r /∈ q, there exists a prime ideal q′ of

(R0 ⊗ · · · ⊗ Rd)/(a) with q′ ∩ B = q.

Let rb ∈ B be defined similarly. Since rarb does not belong to any minimal prime

ideal of B, there exists a prime ideal q of B with ra, rb /∈ q. Then, by construction of ra and

rb, there exist prime ideals

q′
a
⊂ (R0 ⊗ · · · ⊗ Rd+1)/(a) and q′

b
⊂ (R0 ⊗ · · · ⊗ Rd+1)/(b)

such that

q′
a

∩ B = q = q′
b

∩ B.



σ -Galois Theory of Linear Difference Equations 3977

Then, q′
a

and q′
b

correspond to prime ideals qa and qb of R0 ⊗ · · · ⊗ Rd+1 with

qa ∩ (R1 ⊗ · · · ⊗ Rd) = qb ∩ (R1 ⊗ · · · ⊗ Rd) =: d.

Denoting the residue field of a prime ideal p of a ring S by k(p) = Quot(S/p), we have

k(d) ⊂ k(qa) and k(d) ⊂ k(qb). Let L be a field extension of k(d) containing k(qa) and k(qb)

and let

ψ : R0 ⊗ · · · ⊗ Rd+1 → L

be the morphism of K-algebras that extends the canonical map

R1 ⊗ · · · ⊗ Rd → k(d) ⊂ L

by sending R0 and Rd+1 to their canonical images in k(qa) and k(qb), respectively. Since

a ⊂ qa and b ⊂ qb, the kernel of ψ is a prime ideal of R0 ⊗ · · · ⊗ Rd+1, which contains a and

b. Therefore, the ideal generated by a and b does not contain 1. �

For the convenience of the readers who prefer the geometric language, we have

included a geometric proof of Lemma 2.24. This proof is more intuitive than the alge-

braic proof given above, but the algebraic proof is more accessible.

Proof. We set Xi := Spec(Ri) for i = 0, . . . , d+ 1. Let Y and Z denote the closed sub-

schemes of X0 × · · · × Xd and X1 × · · · × Xd+1 defined by a and b, respectively. Then,

the ideal a′ generated by a in R0 ⊗ · · · ⊗ Rd+1 defines the closed subscheme Y × Xd+1 ⊂

X0 × · · · × Xd+1. Similarly, the ideal b′ generated by b in R0 ⊗ · · · ⊗ Rd+1 defines the closed

subscheme X0 × Z ⊂ X0 × · · · × Xd+1. Since the sum of the ideals a′ and b′ corresponds

to the intersection of the closed subschemes Y × Xd+1 and X0 × Z , the statement of the

lemma is equivalent to

(Y × Xd+1) ∩ (X0 × Z) ⊂ X0 × · · · × Xd+1

being nonempty. Let

π1d : X0 × · · · × Xd+1 → X1 × · · · × Xd, (x0, . . . , xd+1) �→ (x1, . . . , xd)

denote the projection onto the factors “in the middle”. The ideal a ∩ (R1 ⊗ · · · ⊗ Rd) of

R1 ⊗ · · · ⊗ Rd corresponds to the Zariski closure π1d(Y × Xd+1) ⊂ X1 × · · · × Xd; similarly
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for b. Assumption (2.4), thus, means that

π1d(Y × Xd+1) = π1d(X0 × Z) =: W.

By Chevalley’s theorem, the image of a morphism of schemes of finite type over a

field contains a dense open subset of its closure. Thus, there exist open dense subsets

U, V ⊂ W with

U ⊂ π1d(Y × Xd+1) and V ⊂ π1d(X0 × Z).

Then, U ∩ V is also dense and open in W. In particular,

U ∩ V ⊂ π1d(Y × Xd+1) ∩ π1d(X0 × Z)

is nonempty. But, if x = (x0, . . . , xd+1) ∈ Y × Xd+1 and x′ = (x′
0, . . . , x′

d+1) ∈ X0 × Z satisfy

(x1, . . . , xd) = π1d(x) = π1d(x
′) = (x′

1, . . . , x′
d),

then (x0, x1, . . . , xd, x′
d+1) ∈ (Y × Xd+1) ∩ (X0 × Z). �

If R is a φ-ring, we denote the ring of its φ-periodic elements by

Rφ∞

= {r ∈ R | ∃ m ≥ 1 such that φm(r) = r}.

It is a φ-subring of R.

Remark 2.25. If K is a φ-field, then Kφ∞

is the relative algebraic closure of Kφ

in K [43, Theorem 2.1.12, p. 114]. In particular, if Kφ is algebraically closed, then

Kφ∞

= Kφ . �

Analogs of the generic solution field U in the following lemma appear in

[13, Section 4] and [50]. The relation between the periodic elements in a universal solu-

tion field and the period of a PV ring, which we shall eventually use to bound the period

of md, has been found in [13]. In the language of [13], the following lemma essentially

says that the m-invariant of the systems φ(y) = Ady is bounded (as a function of d≥ 0).
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Lemma 2.26. Let K be a φσ -field such that Kφ∞

= Kφ . Let A∈ GLn(K) and let X denote

the n× n-matrix of σ -indeterminates over K. Set

U = K〈X〉σ (= Quot(K{Xi j | 1 ≤ i, j ≤ n}σ ))

and define a φσ -structure on U by φ(σ i(X)) = σ i(A)σ i(X), i � 0. Then, Uφ∞

is a finite field

extension of Uφ . �

Proof. We have a tower of φσ -fields KUφ ⊂ KUφ∞

⊂ U . By construction, U is a finitely

σ -generated σ -field extension of KUφ . Since an intermediate σ -field of a finitely σ -

generated σ -field extension is itself finitely σ -generated [43, Theorem 4.4.1, p. 292], it

follows that KUφ∞

is finitely σ -generated over KUφ . Hence, we can find

a1, . . . , am ∈ Uφ∞

that σ -generate KUφ∞

as a σ -field extension of KUφ . We claim that

Uφ∞

= Uφ〈a1, . . . , am〉σ .

The inclusion “⊃” is clear. So, let a∈ Uφ∞

. Let (bi)i∈I be a Kφ-basis of Uφ〈a1, . . . , am〉σ . As

a∈ KUφ∞

= KUφ〈a1, . . . , am〉σ ,

we can write

a=

∑

λi · bi
∑

µi · bi

with λi, µi ∈ K. Multiplying by the denominator yields

∑

µi · a · bi =
∑

λi · bi. (2.5)

We can choose an integer e ≥ 1 such that a, bi ∈ Uφe

whenever λi or µi is nonzero.

Then, (2.5) signifies that the family

(a · bi, bj)i, j∈I in Uφe

is K-linearly dependent. Since K is linearly disjoint from Uφe

over Kφe

= Kφ

(Lemma 2.10), we can find a nontrivial relation

∑

µ′
i · a · bi =

∑

λ′
i · bi (2.6)
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with µ′
i, λ

′
i ∈ Kφ . Suppose that

∑

µ′
ibi = 0.

Then, also
∑

λ′
ibi = 0. Since the bi’s are Kφ-linearly independent, this is only possible if

relation (2.6) is trivial. Therefore, we can divide by the denominator to find that

a=

∑

λ′
i · bi

∑

µ′
i · bi

∈ Uφ〈a1, . . . , am〉σ

as desired. Now let e ≥ 1 be such that a1, . . . , am ∈ Uφe

. Then, it follows from

Uφ∞

= Uφ〈a1, . . . , am〉σ

that Uφ∞

= Uφe

=: F . Let g = φ|F and G = {g0, g, . . . , ge−1} ⊂ Aut(F |Uφ). Since F G = Uφ , we

have [F : Uφ ] = |G| [42, Chapter VI, Theorem 1.8]. Since |G| ≤ e, we, therefore, obtain

[Uφ∞

: Uφ ] ≤ e. �

Corollary 2.27. Let K be a φσ -field such that Kφ∞

= Kφ . Let A∈ GLn(K). For d≥ 0, let Rd

be a PV ring for φ(y) = Ady, where

Ad =















A 0 · · · 0

0 σ(A) · · · 0
...

. . .
...

0 · · · 0 σd(A)















∈ GLn(d+1)(K).

Then, the sequence (period(Rd))d≥0 is bounded. �

Proof. Let U = K〈X〉σ as in Lemma 2.26. We will show that, for d≥ 0,

period(Rd) ≤ [Uφ∞

: Uφ ].

Let Uφ denote an algebraic closure of Uφ , considered as a constant φ-ring. We know that

K is a regular field extension of Kφ . (By assumption, Kφ = Kφ∞

is relatively algebraically

closed in K (see Remark 2.25) and K is always separable over Kφ [60, Corollary 1.4.16,

p. 16]). Therefore, K ⊗Kφ Uφ is an integral domain. Moreover, K ⊗Kφ Uφ is φ-simple by
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Lemma 2.9. It follows that

K ′ := Quot(K ⊗Kφ Uφ)

is a φ-field with K ′φ = (K ⊗Kφ Uφ)φ = Uφ (by Lemma 2.7) algebraically closed. Indeed, let

{bj} be a basis of Uφ over Kφ and, for some m,

c =

m
∑

i=1

ai ⊗ bi ∈ (K ⊗Kφ Uφ)φ .

Then,

0 = φ(c) − c =

m
∑

i=1

(φ(ai) − ai) ⊗ bi,

which implies that, for all i, 1 ≤ i ≤ m, ai ∈ Kφ . It is clear from the definition of U that

KUφ(X, . . . , σd(X)) ⊂ U

is a PV extension of KUφ for the linear φ-equation φ(y) = Ady. It follows from

Corollary 2.15 that

Sd := KUφ [X, . . . , σd(X), 1/ det(X · . . . · σd(X))]

is a PV ring over KUφ . Then, S′
d := Sd ⊗Uφ Uφ is a PV ring over

KUφ ⊗Uφ Uφ = Quot(K ⊗Kφ Uφ) ⊗Uφ Uφ = Quot(K ⊗Kφ Uφ) = K ′

by Lemma 2.9. Note that Sd ⊂ U is an integral domain and that

period(S′
d) ≤ [Uφ∞

: Uφ ]

as Uφ∞

is the relative algebraic closure of Uφ in U . As Rd is a PV ring for φ(y) = Ady

over K, Rd ⊗R
φ

d
Uφ is φ-simple by Lemma 2.9. (Note that R

φ

d can be embedded in Uφ by

Proposition 2.14.) The canonical map

K ⊗Kφ Uφ → Rd ⊗R
φ

d
Uφ

is injective, because K ⊗Kφ Uφ is φ-simple. Localizing this inclusion at the nonzero divi-

sors of K ⊗Kφ Uφ , we obtain a PV ring R′
d over K ′. Since K ′φ = Uφ is algebraically closed,
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R′
d and S′

d are isomorphic. It follows that

period(Rd) ≤ period(R′
d) = period(S′

d) ≤ [Uφ∞

: Uφ ]. �

We are now prepared to establish the main existence theorem.

Theorem 2.28. Let K be a φσ -field such that Kφ∞

= Kφ , σ : Kφ → Kφ is an automor-

phism, and A∈ GLn(K). Then, there exists a σ -PV ring R for φ(y) = Ay such that Rφ is an

algebraic field extension of Kφ . �

Proof. We first assume that σ : K → K is an automorphism. Let X be the

n× n-matrix of σ -indeterminates over K. We denote the localization of the σ -

polynomial ring K{Xi j| 1 ≤ i, j ≤ n}
σ

at the multiplicatively closed subset generated by

det(X), σ (det(X)), . . . by S. This is naturally a K-σ -algebra. We define a φσ -structure on

S by setting

φ(X) = AX, φ(σ (X)) = σ(A)σ (X), φ(σ 2(X)) = σ 2(A)σ 2(X), . . .

For 0 ≤ i ≤ j, we also define the following K-φ-subalgebras of S:

Si, j = K
[

σ i(X), 1
σ i(det(X))

, . . . , σ j(X), 1
σ j(det(X))

]

= K
[

σ i(X), . . . , σ j(X), 1
det(σ i(X)·...·σ j(X))

]

⊂ S, Sj := S0, j.

We will show by induction on d≥ 0 that there exists a sequence (md)d≥0 with the follow-

ing properties:

(i) md is a φ-maximal φ-ideal of Sd;

(ii) md ∩ Sd−1 = md−1;

(iii) σ−1(md) = md−1, where σ : Sd−1 → Sd.

For d= 0, we can choose m0 to be any φ-maximal φ-ideal of S0 = K[X, 1/ det(X)]. Assume

that a sequence m0, . . . ,md with the desired properties has been already constructed. We

will construct md+1. Let a denote the ideal of Sd+1 generated by md and σ(md). The crucial

step now is to show that 1 /∈ a. For this, we would like to apply Lemma 2.24. Note that

Sd+1 is the d+ 2-fold tensor product of S0 with itself. Since σ is an automorphism on K,

σ : Sd → S1,d+1
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is an isomorphism and so σ(md) is an ideal of S1,d+1. We need to verify that

md ∩ S1,d = σ(md) ∩ S1,d.

Let f ∈ md ∩ S1,d. Then, f is of the form f = σ(g) for some g ∈ Sd−1. Since f ∈ md, we have

g ∈ σ−1(md) = md−1 ⊂ md.

Thus, f ∈ σ(md). Now let f ∈ σ(md) ∩ S1,d. Then, f is of the form f = σ(g) with

g ∈ md ∩ Sd−1 = md−1.

So f = σ(g) ∈ md. We can thus apply Lemma 2.24 to conclude that 1 /∈ a. By construction,

a is a φ-ideal of Sd+1. Let md+1 be a φ-maximal φ-ideal of Sd+1 containing a. Then,

md+1 ∩ Sd and σ−1(md+1)

are φ-ideals of Sd containing md. As md is φ-maximal in Sd, it follows that

md+1 ∩ Sd = md and σ−1(md+1) = md.

This concludes the inductive step. Now that we have constructed the sequence (md)d≥0,

we can define

m :=
⋃

d≥0

md.

This is a φσ -ideal of S =
⋃

d≥0 Sd. Since the md’s are φ-maximal, it follows that m is also

φ-maximal. The next crucial step is to show that m is φ-pseudo prime.

In general, a φ-maximal φ-ideal need not be φ-pseudo prime. However, a

φ-maximal φ-ideal that has only finitely many minimal prime ideals is φ-pseudo

prime [60, Proposition 1.1.2, p. 2]. In particular, in a Noetherian φ-ring, every φ-maximal

φ-ideal is φ-pseudo prime. So the md’s are φ-pseudo prime ideals.

For any prime ideal q ⊂ Sd that is minimal above md, there exists a prime ideal

q′ ⊂ Sd+1 that is minimal above md+1 such that q′ ∩ Sd = q by [8, Proposition 16, Section 2,

Chapter II]. Therefore, the sequence (period(md))d≥0 is nondecreasing. Since Rd := Sd/md

is a PV ring for φ(y) = Ady, it follows from Corollary 2.27 that there exists an integer b ≥ 1

such that period(md) = b for all sufficiently large d. This shows that there are precisely

b prime ideals minimal above m.
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So, m is φ-pseudo prime and R := S/m is a φ-pseudo domain. It is clear from the

construction that R is a σ -PV ring for φ(y) = Ay over K. It remains to see that Rφ is

algebraic over Kφ . But R is the union of the Rd’s and the Rd’s are PV rings over K, so

R
φ

d is algebraic over Kφ (Lemma 2.13) and, consequently, Rφ is algebraic over Kφ . This

concludes the proof for the case that σ : K → K is surjective.

Now let σ : K → K be arbitrary. We consider the inversive closure K∗ of K with

respect to σ (see [43, Definition 2.1.6, p. 109].) For every a∈ K∗, there exists an integer

l ≥ 1 such that σ l(a) ∈ K. We naturally extend φ from K to K∗ by

φ(a) = σ−l(φ(σ l(a))).

Suppose that a∈ K∗φd

. Then,

a= φd(a) = σ−l(φd(σ l(a)))

and so

σ l(a) = φd(σ l(a)),

that is, σ l(a) ∈ Kφd

= Kφ . By the hypothesis, Kφ is σ -inversive. Therefore, a∈ Kφ . It

follows that

K∗φ∞

= Kφ = K∗φ
.

By the first part of the proof, there exists a σ -PV ring R∗ over K∗ for φ(y) = Ay with R∗φ

algebraic over Kφ . Let Y ∈ GLn(R∗) denote a fundamental matrix. We claim that

R := K{Y, 1/ det(Y)}σ ⊂ R∗

is a σ -PV ring for φ(y) = Ay over K with Rφ algebraic over Kφ . As R∗φ is algebraic over

K∗φ = Kφ , Rφ is algebraic over Kφ . So it only remains to show that R is φ-simple. For

this, it suffices to show that

Rd := K[Y, 1/ det(Y), . . . , σd(Y), 1/ det (σd(Y))]

is φ-simple for every d≥ 0. Let L∗ denote the total quotient ring of R∗ and Ld the total

quotient ring of Rd. Since R∗ is φ-simple, we have L∗φ = R∗φ by Lemma 2.7. As Ld ⊂ L∗,

it follows that L
φ

d is algebraic over Kφ . By Proposition 2.14, this implies that Rd is

φ-simple. �
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Corollary 2.29 (Existence of σ -PV extensions). Let K be a φσ -field and A∈ GLn(K).

Assume that Kφ is an algebraically closed inversive σ -field. Then, there exists a σ -PV

extension for φ(y) = Ay. �

Proof. By Remark 2.25, if Kφ is algebraically closed, then Kφ∞

= Kφ . The statement now

follows from Theorem 2.28 and Proposition 2.21. �

2.5 Existence of σ -PV extensions for some specific base fields

The purpose of this section is to establish the existence of σ -PV extensions over impor-

tant φσ -fields like K = C(t, z), where

φ( f(t, z)) = f(t, z + 1) and σ( f(t, z)) = f(qt, z) or σ( f(t, z)) = f(t + α, z)

for some q, α ∈ C×. Note that the general existence result for σ -PV extensions

(Corollary 2.29) does not apply because Kφ = C(t) is not algebraically closed.

We will show quite generally that, for every linear φ-equation φ(y) = Ay over

K = k(z), there exists a σ -PV extension, where k is an arbitrary σ -field of characteris-

tic zero. Moreover, we give a very concrete recipe how σ -PV rings over such K can be

constructed inside rings of sequences; cf. [58, Proposition 4.1, p. 45].

Let k be a field. The ring Seqk of sequences in k (cf. [58, Example 1.3, p. 4]) consists

of all sequences

a= (a(0), a(1), . . .), a(0), a(1), . . . ∈ k,

and two sequences are identified if they agree starting from some index. The ring struc-

ture of Seqk is given by the componentwise addition and multiplication. By setting

φ((a(0), a(1), a(2), . . .)) = (a(1), a(2), . . .),

we turn Seqk into an inversive φ-ring. If k is a σ -field, then Seqk naturally becomes a

φσ -ring by setting

σ((a(0), a(1), . . .)) = (σ (a(0)), σ (a(1)), . . .).

Note that Seq
φ

k = k. We consider k(z), the field of rational function in one variable over k,

as φσ -field by setting

φ( f(z)) = f(z + 1), f ∈ k(z), and σ(z) = z.
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If chark= 0, we can define a φσ -embedding

k(z) → Seqk by f �→ ( f(0), f(1), . . .).

The expression f(i) is well-defined for i ≫ 0, as the denominator of f ∈ k(z) has only

finitely many zeros.

Proposition 2.30. Let k be a σ -field of characteristic zero and consider K = k(z) as a

φσ -field via

φ( f(z)) = f(z + 1) and σ(z) = z.

Let A∈ GLn(K) and i0 ≥ 0 be an integer such that A(i) is well-defined and det(A(i)) �= 0

for all i ≥ i0. Define Y ∈ GLn(Seqk) by

Y(i0) = id and Y(i) = A(i − 1)Y(i − 1), i > i0.

Then, Y is a fundamental solution matrix for φ(y) = Ay and

K{Y, 1/ det(Y)}σ ⊂ Seqk

is a σ -PV ring for φ(y) = Ay. Moreover, there exists a σ -PV extension for φ(y) = Ay. �

Proof. It is clear that Y is a fundamental solution matrix and that

R := K{Y, 1/ det(Y)}σ

is a φσ -ring. It remains to see that R is a φ-simple φ-pseudo domain. To see that R is

φ-simple, it suffices to show that

Rd := K[Y, . . . , σd(Y), 1/ det (Y · · · σd(Y))]

is φ-simple for every d≥ 0. Note that

Yd =















Y 0 · · · 0

0 σ(Y) · · · 0
...

. . .
...

0 · · · 0 σd(Y)















∈ GLn(d+1)(R)
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is a fundamental solution matrix for φ(y) = Ady (cf. Lemma 2.20). By [64, Proposition 2.4,

p. 4], there exists a PV ring Sd for φ(y) = Ady over K inside Seqk. As Seq
φ

k = k and two

fundamental solution matrices for the same equation only differ by multiplication by a

matrix with constant entries, it follows that Rd = Sd. In particular, Rd is φ-simple. As in

the proof of Theorem 2.28, it follows from Corollary 2.27 that R is a φ-pseudo domain.

As Seq
φ

k = k= Kφ , Proposition 2.21 implies that Quot(R) is a σ -PV extension for

φ(y) = Ay. �

Remark 2.31. Let Y ∈ GLn(Seqk) be defined as in Proposition 2.30. It is unclear whether

or not K〈Y〉σ ⊂ Seqk (see (2.2)) is a σ -PV extension for φ(y) = Ay. The difficulty here is to

know that a nonzero divisor of K{Y, 1/ det(Y)}σ ⊂ Seqk is a unit in Seqk. This problem

is closely related to the generalization of the Skolem–Mahler–Lech theorem to rational

function coefficients (see [64]). It follows from [64, Corollary 3.4, p. 8] that K〈Y〉σ ⊂ Seqk

is a σ -PV extension for φ(y) = Ay if A∈ GLn(k[z]). �

2.6 Uniqueness

In this section, we will establish the uniqueness of σ -PV rings and σ -PV extensions (for

a given equation φ(y) = Ay). In other words, we prove a result analogous to the classical

uniqueness theorem (Theorem 2.16). The main difficulty is to understand what the σ -

analog of the algebraic closure in the classical case is. There is a notion of a difference-

closed difference field that has been used and studied extensively by model theorists

(see, e.g., [11, 12]).

Definition 2.32. A σ -field k is called σ -closed if for every finitely σ -generated

k-σ -algebra R which is a σ -domain, there exists a k-σ -morphism R→ k. �

In contrast to differential algebra, there appears to be no satisfactory notion

of a σ -closure of a σ -field. Kolchin preferred the term “constrainedly closed” to “dif-

ferentially closed” because a differentially closed differential field can have proper dif-

ferential algebraic extensions. The following definition can be seen as an adaptation

of Kolchin’s notion of constrained extensions of differential fields ([41]) to difference

algebra.

Definition 2.33. Let L|K be an extension of σ -pseudo fields. We say that L is con-

strained over K if, for every finite tuple a from L, there exists a nonzero divisor b ∈ L

such that (0) is the only σ -pseudo prime ideal of K{a, 1/b}σ . �
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The basic properties of constrained extensions of σ -pseudo fields have been

established in [61, Section 2.1]. The relation to σ -closed σ -fields is given by the fact

that a σ -closed σ -field does not have proper constrained σ -field extensions. More gener-

ally, every finitely σ -generated σ -pseudo field extension of a σ -closed σ -field k is of the

form k ⊕ · · · ⊕ k (see [61, Example 2.8, p. 1388]).

The following theorem is the crucial tool from difference algebra for proving our

uniqueness result. It can be seen as a difference analog of a theorem of Chevalley. For a

prime ideal q in a σ -ring R and r ∈ R, we write

r /∈σ q

if σd(r) /∈ q for every d≥ 0.

Theorem 2.34. Let R⊂ S be an inclusion of σ -rings such that S is finitely σ -generated

over R. Assume that R is a σ -domain and (0) ⊂ S is a finite intersection of σ -pseudo

prime ideals. Then, there exist 0 �= r ∈ R and an integer l ≥ 1 such that, for every d≥ 1

and σd-prime ideal q of R with r /∈σ q, there exists a σ ld-prime ideal q′ of S with

q′ ∩ R= q. �

Proof. This is a slight generalization of [61, Theorem 1.15, p. 1384], where it is assumed

that S is a σ -domain. There exists a minimal prime ideal q̂ of S with q̂ ∩ R= (0) [8, Chap-

ter II, Section 2, Section 6, Proposition 16, p. 74]. By assumption, q̂ is a σ d̂-prime ideal

for some d̂≥ 1. We can now apply [61, Theorem 1.15, p. 1384] to the inclusion R⊂ S/q̂ of

σ d̂-domains to obtain 0 �= r ∈ R and an integer l̂ ≥ 1 such that, for every σdd̂-prime ideal

q of R with r /∈
σ d̂ q, there exists a σ l̂dd̂-prime ideal q′ of S/q̂ with q′ ∩ R= q. Set l := d̂l̂.

Observing that a σd-prime ideal is a σdd̂-prime ideal and that r /∈σ q implies r /∈
σ d̂ q yields

the claim of the theorem. �

We will need a few more preparatory results.

Lemma 2.35. Let k be an inversive σ -field and R a k-σ -algebra with σ : R→ R injective.

If (λi) is a family of k-linearly independent elements from R, then the family (σ (λi)) is

k-linearly independent as well. �

Proof. If
∑

aiσ(λi) = 0 with ai ∈ k, then, as k is inversive, we can find bi ∈ k with σ(bi) =

ai. We have σ(
∑

biλi) = 0, and this implies
∑

biλi = 0. Therefore, the bi’s and also the ai’s

are all zeroes. �
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Lemma 2.36. Let k be an inversive σ -field and R a k-σ -algebra with σ : R→ R injective.

Then, σ : R ⊗k K → R ⊗k K is injective for every σ -field extension K of k. Moreover, if a is

a reflexive σ -ideal of R (i.e., σ−1(a) = a), then a ⊗k K is a reflexive σ -ideal of R ⊗k K. �

Proof. Let (λi) be a k-basis of K and s =
∑

ri ⊗ λi ∈ R ⊗k K with σ(s) = 0. Then,
∑

σ(ri) ⊗

σ(λi) = 0 implies σ(ri) = 0, because the family (σ (λi)) is k-linearly independent by

Lemma 2.35. Since σ is injective on R, s = 0. The latter claim of the lemma follows by

applying the above result to R/a. �

Proposition 2.37. Let K be a φσ -field such that Kφ∞

= Kφ and σ : Kφ → Kφ is surjective.

Let R be a φ-simple K-φσ -algebra that is a φ-pseudo domain and finitely σ -generated

over K. Then, Rφ is a finitely σ -generated constrained σ -field extension of Kφ . �

Proof. We set k= Kφ . The assumption Kφ∞

= Kφ means that k is relatively algebraically

closed in K. We also know that K is separable over k [60, Corollary 1.4.16, p. 16]. Thus,

K is a regular field extension of k. Let c be a finite tuple with coordinates in Rφ . Then,

K{c}σ = K ⊗k k{c}σ

is an integral domain, because k{c}σ is contained in the field Rφ and K is regular over k.

Moreover, (0) ⊂ R is a finite intersection of σ -pseudo prime ideals of R by Lemma 2.11.

We can thus apply Theorem 2.34 to the inclusion K{c}σ ⊂ R to find 0 �= r ∈ K{c}σ and an

integer l ≥ 1 such that every σd-prime ideal q′ of K{c}σ with r /∈σ q′ lifts to a σ ld-prime

ideal of R. We may write

r = λ1 ⊗ a1 + · · · + λm ⊗ am ∈ K ⊗k k{c}σ = K{c}σ

with the λi’s linearly independent over k. Let b ∈ k{c}σ denote one of the nonzero ai’s. We

will show that k{c, 1/b}σ has no σ -pseudo prime ideals other than (0). Let q be a σd-prime

ideal of k{c}σ with b /∈σ q (for some d≥ 1). We have to show that q = (0).

Since K is a regular field extension of k, q′ := K ⊗ q is a prime ideal of K ⊗k k{c}σ .

It follows from Lemma 2.36 that q′ is a σd-prime ideal of K ⊗k k{c}σ . We claim that r /∈σ q′.

Suppose the contrary. Then, σn(r) ∈ q′ for some n≥ 1. By Lemma 2.35, the family (σn(λi))

is linearly independent over k. By considering the image of σn(r) in

(K ⊗k k{c}σ )/q′ = K ⊗k (k{c}σ /q),
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we see that this implies σn(b) ∈ q. This contradicts b /∈σ q. Therefore, r /∈σ q′. By the con-

struction of r, this implies the existence of a σ ld-prime ideal q′′ of R with

q′′ ∩ K{c}σ = q′.

In particular, q′′ ⊃ qR. But, since the elements of q are φ-constants, qR is a φ-ideal. Since

R is φ-simple, we must have qR= (0). So, also q = (0) as desired.

It remains to see that Rφ is finitely generated as a σ -field extension of k= Kφ .

Let q be a minimal prime ideal of R. Then, there exists d≥ 1 such that q is φd-prime

and σd-prime (Lemma 2.11). Since R is finitely generated as K-σ -algebra, we see that

R/q is finitely generated as K-σd-algebra. So, Quot(R/q) is finitely generated as σd-field

extension of K. As k= Kφd

by assumption, it follows from Lemma 2.9 that K ⊗k Rφ is

φd-simple. Therefore, the canonical map

K ⊗k Rφ = K · Rφ → Quot(R/q)

is injective, and we can think of K Rφ = Quot(K · Rφ) as a σd-subfield of Quot(R/q). By [43,

Theorem 4.4.1, p. 292], every intermediate difference field of a finitely generated dif-

ference field extension is finitely generated. Therefore, K Rφ is finitely generated as a

σd-field extension of K. A fortiori, K Rφ is finitely generated as σ -field extension of K.

We can, therefore, find a1, . . . , am ∈ Rφ such that

K Rφ = K〈a1, . . . , am〉σ .

So,

Quot(K ⊗k Rφ) = Quot(K ⊗k k〈a1, . . . , am〉σ ).

As K ⊗k Rφ and K ⊗k Kφ〈a1, . . . , am〉σ are φ-simple (Lemma 2.9), it follows from

Lemma 2.7 that

Rφ = Quot(K ⊗k Rφ)
φ

= Quot(K ⊗k k〈a1, . . . , am〉σ )φ = k〈a1, . . . , am〉σ . �

Corollary 2.38. Let K be a φσ -field and R a σ -PV ring over K with Kφ being a σ -closed

σ -field. Then Rφ = Kφ . �

Proof. Since a σ -closed σ -field is algebraically closed and inversive, the hypotheses of

Proposition 2.37 are met, and it follows that Rφ is a constrained σ -field extension of k.
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By [61, Example 2.8, p. 1388], a σ -closed σ -field cannot have a proper constrained σ -field

extension. �

Lemma 2.39. Let K be a φσ -field and R, R′ σ -PV rings over K. Then, there exists a

σ -pseudo prime ideal in R ⊗K R′. �

Proof. We begin the proof with a general observation on φ-pseudo σ -fields. Let L be a

φ-pseudo σ -field. Then, L need not be a σ -pseudo field. However, if we write

L = e1 · L ⊕ · · · ⊕ et · L

as after Definition 2.2, then σ -permutes the ei’s and it follows that L is a finite direct sum

(or product) of σ -pseudo fields (cf. Lemma 2.11.) In other words, there are idempotent

elements f1, . . . , fm ∈ L such that

L = f1 · L ⊕ · · · ⊕ fm · L ,

with the fi · L’s σ -pseudo fields. Set L = Quot(R) and L ′ := Quot(R′). It suffices to show

that there exists a σ -pseudo prime ideal in L ⊗K L ′, because a σ -pseudo prime ideal of

L ⊗K L ′ contracts to a σ -pseudo prime ideal of R ⊗K R′. As above, we can write

L = f1 · L ⊕ · · · ⊕ fm · L and L ′ = f ′
1 · L ′ ⊕ · · · ⊕ f ′

m′ · L ′

with the fi · L’s and f ′
j · L ′’s σ -pseudo fields. Then,

L ⊗K L ′ =
⊕

i, j

fi · L ⊗K f ′
j · L ′.

Note that the fi · L’s are finitely σ -generated as σ -pseudo field extensions of K. Indeed, if

Y ∈ GLn(L) is a suitable fundamental solution matrix, then fi · L = K〈 fi · Y〉σ . Since f1 · L

is finitely σ -generated over K, it follows from [61, Theorem 1.2, p. 1375] that there exists

a σ -pseudo prime ideal p in f1 · L ⊗K f ′
1 · L ′. Then,

p̃ := p
⊕

i, j
(i, j)�=(1,1)

fi · L ⊗K f ′
j · L ′

is a σ -pseudo prime ideal of L ⊗K L ′. �

Finally, we are prepared to prove our main uniqueness theorem.
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Theorem 2.40 (Uniqueness of σ -PV rings). Let K be a φσ -field such that Kφ = Kφ∞

and

σ : Kφ → Kφ is surjective. Let R1 and R2 be two σ -PV rings over K for the same equation

φ(y) = Ay, A∈ GLn(K). Then, there exists a finitely σ -generated constrained σ -pseudo

field extension k′ of k := Kφ containing k1 := R
φ

1 and k2 := R
φ

2 and an isomorphism of K ⊗k

k′-φσ -algebras between R1 ⊗k1
k′ and R2 ⊗k2

k′. �

Proof. We know from Proposition 2.37 that k1 and k2 are finitely σ -generated

constrained σ -field extensions of k. Let Y1 ∈ GLn(R1) and Y2 ∈ GLn(R2) be fundamental

solution matrices for φ(y) = Ay. Set

Z = (Y1 ⊗ 1)−1(1 ⊗ Y2) ∈ GLn(R1 ⊗K R2).

As noted in Remark 2.17, we have

Z ∈ GLn((R1 ⊗K R2)
φ).

Since 1 ⊗ Y2 = (Y1 ⊗ 1) · Z , the entries of 1 ⊗ Y2 lie in

R1 · SZ , SZ := k1{Z , 1/ det(Z)}σ ⊂ R1 ⊗K R2.

Using Lemma 2.10, it follows that

R1 ⊗K R2 = R1 · SZ = R1 ⊗k1
SZ .

Our next goal is to find a k1-σ -morphism ψ : SZ → k′ for some finitely σ -generated con-

strained σ -pseudo field extension k′ of k1. We know from Lemma 2.39 that there exists

a σ -pseudo prime ideal in R1 ⊗K R2. This σ -pseudo prime ideal contracts to a σ -pseudo

prime ideal of SZ . We can thus apply [61, Proposition 2.12, p. 1390] to find a maximal

element p in the set of all σ -pseudo prime ideals of SZ ordered by inclusion. By [61,

Proposition 2.9, p. 1389], the residue σ -pseudo field

k′ := Quot(SZ/p)

is a constrained σ -pseudo field extension of k. Moreover, we have a natural

k1-σ -morphism ψ : SZ → k′. Then,

ϕ : R2 → R1 ⊗K R2 = R1 ⊗k1
SZ

id⊗ψ
−−−→ R1 ⊗k1

k′
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is a morphism of K-φσ -algebras. Since (R1 ⊗k1
k′)φ = k′, this yields an embedding of k2

into k′, and we can extend ϕ to a K ⊗k k′-φσ -morphism

ϕ : R2 ⊗k2
k′ → R1 ⊗k1

k′.

As ϕ(Y2) and Y1 are fundamental solution matrices in R1 ⊗k1
k′ for φ(y) = Ay, there exists

C ∈ GLn(k
′) such that

Y1 = ϕ(Y2)C = ϕ(Y2C ).

Since R1 is σ -generated by Y1, this shows that ϕ is surjective. Now R2 ⊗k2
k′ need not be

φ-simple. However, by Lemma 2.8, every φ-ideal of R2 ⊗k2
k′ is of the form R2 ⊗k2

b for

some ideal b of k′. Since the kernel of ϕ is a φ-ideal, this implies that ϕ is injective. �

Lemma 2.41. Let K be a φ-pseudo σ -field and R a σ -PV ring over K with Rφ = Kφ =: k.

Then,

R ⊗K R= R ⊗k (R ⊗K R)φ . �

Proof. This follows as in the beginning of the proof of Theorem 2.40 (with

R1 = R2 = R). �

Corollary 2.42 (Uniqueness of σ -PV extensions). Let K be a φσ -field and let L1, L2 be

two σ -PV extensions for the same equation φ(y) = Ay, A∈ GLn(K). Assume that Kφ is

σ -closed. Then, there exists an integer l ≥ 1 and an isomorphism of K-φσ l-algebras

between L1 and L2. �

Proof. Let R1 ⊂ L1 and R2 ⊂ L2 denote the corresponding σ -PV rings. As usual, we set

k := Kφ . We have R
φ

1 = k and R
φ

2 = k. By Theorem 2.40, there exists a finitely σ -generated

constrained σ -pseudo field extension k′ of k and an isomorphism

ϕ : R1 ⊗k k′ → R2 ⊗k k′

of K ⊗k k′-φσ -algebras. But, by [61, Example 2.8, p. 1388], every finitely σ -generated con-

strained σ -pseudo field extension of a σ -closed σ -field is trivial. This means that there
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exists an integer l ≥ 1 such that k′ is of the form

k′ = k ⊕ · · · ⊕ k

with σ given by

σ(a1 ⊕ · · · ⊕ al) = σ(al) ⊕ σ(a1) ⊕ · · · ⊕ σ(al−1).

Let a be a maximal ideal of k′. Then, a is a σ l-ideal with k′/a = k as σ l-rings. For i = 1, 2,

the ideal Ri ⊗k a is a φσ l-ideal of Ri ⊗k k′, and ϕ is mapping R1 ⊗k a bijectively onto

R2 ⊗k a. Passing to the quotient, we obtain an isomorphism

ϕ̄ : (R1 ⊗k k′)/(R1 ⊗k a) → (R2 ⊗k k′)/(R2 ⊗k a)

of φσ l-rings. But

Ri → Ri ⊗k k′ → (Ri ⊗k k′)/(Ri ⊗k a) = Ri ⊗k (k′/a) = Ri

identifies Ri with (Ri ⊗k k′)/(Ri ⊗k a) as φσ l-ring. So, we have constructed a K-φσ l-

isomorphism between R1 and R2. Finally, this isomorphism extends to the total quotient

rings, that is, to the σ -PV extensions. �

Let K be a φσ -field and A∈ GLn(K). Even if, in all generality, a σ -PV extension

for φ(y) = Ay need not be unique, the following remark shows that, in some situations,

it is possible to make a more or less canonical choice. For example, if K = k(z) as in

Section 2.5, then the σ -PV ring for φ(y) = Ay inside Seqk is unique (as a subring of Seqk).

Remark 2.43. Let K be a φσ -field and A∈ GLn(K). Let S be a K-φσ -algebra with Sφ = Kφ .

If there exists a σ -PV ring R for φ(y) = Ay in S, then R is unique in the sense that any

other σ -PV ring for φ(y) = Ay in S equals R. �

Proof. Let R′ be another σ -PV ring for φ(y) = Ay inside S. As R and R′ are σ -generated

by appropriate fundamental solution matrices, it follows from Remark 2.17 and the fact

that Sφ ⊂ K that R′ = R. �

2.7 σ -Galois group and Galois correspondence

In this section, we will define the σ -Galois group of φ(y) = Ay (Definition 2.50), show

that it is a σ -algebraic group (Lemma 2.51), establish the Galois correspondence
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(Theorem 2.52), and finish by showing that the σ -dimension, introduced in [23], of

the σ -Galois group coincides with the σ -dimension of a σ -PV ring of the equation

(Lemma 2.53), which we will further use in our applications, Theorems 3.1 and 3.5.

For this, we first recall what a σ -algebraic group is using the language of σ -Hopf alge-

bras (and representable functors). See the appendix of [23] for a brief introduction to

σ -algebraic groups.

Throughout Sections 2.7 and 2.8, we will make the following assumptions. Let K

be a φ-pseudo σ -field and k := Kφ its σ -field of φ-constants. Assume that there exists

a σ -PV ring R for the linear φ-equation φ(y) = Ay, A∈ GLn(K), with Rφ = k, and let

L = Quot(R) be the corresponding σ -PV extension (cf. Proposition 2.21). The category

of k-σ -algebras is denoted by Algk-σ .

Definition 2.44. A k-σ -Hopf algebra is a Hopf algebra over k in which the comultiplica-

tion ∆, antipode S, and counit ε are k-σ -algebra homomorphisms. �

Definition 2.45. A k-σ -algebraic group is a functor G : Algk-σ → Sets represented by a

k-σ -Hopf algebra H , which is finitely σ -generated over k. That is, for every B ∈ Algk-σ ,

G(B) = Homk-σ (H, B).

For simplicity, we say that H represents G. �

In other words, a k-σ -algebraic group is a group object in the category of

σ -algebraic k-σ -schemes (in the sense of [23, Definition A.1]).

Definition 2.46 ([23, Definition A.37]). A k-σ -algebraic group G ′ is called a k-σ -subgroup

of a k-σ -algebraic group G if G ′(B) is a subgroup of G(B) for every k-σ -algebra B. �

Proposition 2.47 ([23, Remark A.38]). For every k-σ -algebraic subgroup G ′ of a

k-σ -algebraic group G represented by H , there exists a σ -Hopf ideal I in H such that

G ′ is represented by H/I and vice versa. �

The multiplicative k-σ -algebraic group Gm is the k-σ -algebraic group repre-

sented by k{x, 1/x}σ with ∆(x) = x ⊗ x, S(x) = 1/x, and ε(x) = 1.

Proposition 2.48 ([23, Lemma A.40]). For every σ -Hopf ideal I of H := k{x, 1/x}σ with the

above Hopf algebra structure, there exists a multiplicative function ϕ = xn0 · σ(x)n1 · . . . ·

σ t(x)nt ∈ H such that I contains ϕ − 1. �
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Lemma 2.49. The k-σ -algebra

H := (R ⊗K R)φ

is a k-σ -Hopf algebra via the φσ -R-bimodule structure on C := R ⊗K R (see [3, (1.5,1.6)]):

∆ : C → C ⊗R C , ∆(a ⊗ b) = a ⊗ 1 ⊗ b ∈ R ⊗K R ⊗K R∼= R ⊗K R ⊗R R ⊗K R,

ε : C → R, ε(a ⊗ b) = ab,

and the K-φσ -linear flip homomorphism τ : C → C , τ(a ⊗ b) = b ⊗ a. Moreover,

µ : R ⊗k H → R ⊗K R, r ⊗ h �→ (r ⊗ 1) · h (2.7)

is an isomorphisms of K-φσ -algebras. �

Proof. The proof is a modification of the proof of [3, Proposition 1.7] and [2, Proposi-

tion 3.4]. We already noted in Lemma 2.41 that (2.7) is an isomorphism. It follows that

the K-φσ -algebra homomorphism

R ⊗k H ⊗k H
µ⊗id

−−−−→ R ⊗K R ⊗k H
id⊗µ

−−−−→ R ⊗K R ⊗K R

is an isomorphism. By taking φ-constants, we, therefore, obtain a k-σ -algebra

isomorphism

H ⊗k H → (R ⊗K R ⊗K R)φ . (2.8)

To show that, given the above, H becomes a k-σ -Hopf algebra, one proceeds as in the

proof of [3, Proposition 1.7]. �

Definition 2.50. Let R and L be as above. Then, the σ -Galois group of L over K is defined

as the functor

Galσ (L|K) : Algk-σ → Sets, B �→ Galσ (L|K)(B) := Autφσ (R ⊗k B|K ⊗k B),

where φ acts as the identity on B. �

Lemma 2.51. Let R, L, and H be as above. Then, G := Galσ (L|K) is a k-σ -algebraic group

represented by H . �
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Proof. As in the proof of [3, Lemma 1.9], R is an H-comodule via

θ : R→ R ⊗k H, r �→ µ−1(1 ⊗ r),

which is a K-φσ -algebra homomorphism, where µ is defined in (2.7). For every

k-σ -algebra B and g ∈ Homk-σ (H, B), we have a K-φσ -algebra homomorphism

Φg : R ⊗k B
θ⊗idB

−−−−→ R ⊗k H ⊗k B
idR⊗g⊗idB
−−−−−−→ R ⊗k B ⊗k B

idR⊗m
−−−−→ R ⊗k B,

which is an automorphism by [59, Theorem 3.2]. Moreover, by [59, Theorem 3.2] as well,

the map g �→ Φg is a group homomorphism. For the reverse direction, let Y ∈ GLn(R) be a

fundamental solution matrix of φ(y) = Ay and Z = (Y ⊗ 1)−1(1 ⊗ Y) ∈ GLn(R ⊗K R). Then,

H = k{Z , 1/ det(Z)}σ and it follows from Remark 2.17 that, for any

ϕ ∈ Autφσ (R ⊗k B|K ⊗k B),

there exists Cϕ ∈ GLn(B) such that ϕ(Y) = Y · Cϕ . We define a k-σ -algebra homomorphism

H → B by sending Z to Cϕ . �

Theorem 2.52. There is a one-to-one correspondence between k-σ -algebraic subgroups

in G and intermediate φ-pseudo σ -fields in L|K given by

M = LG ′

:= {a/b ∈ L | θ ′(a) · b = a · θ ′(b), a, b ∈ R} ←→ G ′ := Galσ (L|M), (2.9)

or, alternatively,

M = LG ′

:= {x ∈ L | for all B ∈ Algk-σ , g ∈ G ′(B), g(x ⊗ 1) = x ⊗ 1} ←→ G ′ := Galσ (L|M),

(2.10)

where θ ′ : R→ R ⊗k H ′, and H ′ represents G ′. �

Proof. We will show that there is a one-to-one correspondence between the σ -Hopf

ideals in H and intermediate φ-pseudo σ -fields in L|K given by

M = {x ∈ L | 1 ⊗ x − x ⊗ 1 ∈ I · (L ⊗K L)} ←→ I = H ∩ ker(L ⊗K L → L ⊗M L).

The proof below is partly an adaptation of [3, Proposition 2.3]. It follows from [60,

Theorem 3.1.17] that there is a one-to-one correspondence between the intermediate
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φ-pseudo σ -fields in L|K and φσ -coideals of L ⊗K L given by

M = {x ∈ L | 1 ⊗ x − x ⊗ 1 ∈ J ⊂ L ⊗K L} ←→ J = ker(L ⊗K L → L ⊗M L).

By Lemma 2.8, there is a one-to-one correspondence between φσ -ideals of L ⊗k H and

σ -ideals of H given by

b = a ∩ H ←→ a = L ⊗k b. (2.11)

By localizing (2.7), we obtain K-φσ -algebra isomorphisms

ϕ1 : L ⊗k H → L ⊗K R and ϕ2 : L ⊗k H → R ⊗K L . (2.12)

Therefore, we have a one-to-one correspondence between σ -ideals of H and φσ -ideals

of L ⊗K L given by composing (2.12) and (2.11) and using the fact that the set of ideals

of the localization L ⊗K L consists of the intersection of the set of ideals in the smaller

localizations L ⊗K R and R ⊗K L inside the set of ideals in R ⊗K R.

We will now show that, under the above correspondence and in the above nota-

tion, (L ⊗K L) · a is a φσ -coideal of L ⊗K L if and only if b is a σ -Hopf ideal of H . For this,

note that, similarly to the above, we have a one-to-one correspondence between ideals

in H ⊗k H and φ-ideals in L ⊗K L ⊗K L. Indeed, by Lemma 2.8 and isomorphisms (2.8)

and (2.12), there is a one-to-one correspondence between φσ -ideals of L ⊗K R ⊗K R (as

well as those in R ⊗K L ⊗K R and R ⊗K R ⊗K L) and σ -ideals of H ⊗k H with

H ⊗k b ←→ a = L ⊗K b and b ⊗k H ←→ a = b ⊗K L ,

therefore,

b1 := H ⊗k b + b ⊗k H ←→ ida1 := L ⊗K a + a ⊗K L

under the correspondence a ⊂ L ⊗K L ↔ b ⊂ H from the preceding paragraph. Therefore,

∆(a) ⊂ a1, ε(a) = 0 ⇐⇒ ∆(b) ⊂ b1, ε(b) = 0.

By [47, Theorem 1(iv)], b is a Hopf ideal of H if and only if b is a coideal of H , which

finishes the proof. To show correspondence (2.9), note that, by Lemma 2.51, Galσ (L|M) is
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represented by

H/H ∩ ker(L ⊗K L → L ⊗M L).

Therefore, it remains to show that

L1 := {x ∈ L | 1 ⊗ x − x ⊗ 1 ∈ ker(L ⊗K L → L ⊗M L)}

= L2 := {a/b ∈ L | θ ′(a) · b = a · θ ′(b), a, b ∈ R} =

= L3 := {x ∈ L | for all B ∈ Algk-σ , g ∈ G ′(B), g(x ⊗ 1) = x ⊗ 1}.

For every x = a/b ∈ L2, B ∈ Algk-σ , and g ∈ G ′(B), we have

g(a/b ⊗ 1) = (θ ′(a) · b ⊗ 1)(g)/(θ ′(b) · b ⊗ 1)(g) = (θ ′(b) · a ⊗ 1)(g)/(θ ′(b) · b ⊗ 1)(g) = a/b ⊗ 1.

Hence, x ∈ L3. Now, for all x = a/b ∈ L3, we have θ ′(a) · b = a · θ ′(b) by taking B := H and

g := idH . Therefore, L2 = L3. For L1 = L3, see the proof of [60, Lemma 3.1.11]. �

For σ -dimension, see [23, Section A.7]. Let K be a φσ -field and R, L, and H be as

above.

Lemma 2.53. We have

σ - dimK R= σ - dimk H. �

Proof. Let Y ∈ GLn(R) be a fundamental solution matrix of φ(y) = Ay and Z = (Y ⊗ 1)−1

(1 ⊗ Y) ∈ GLn(R ⊗K R). Then,

R= K{Y, 1/ det(Y)}σ and H = k{Z , 1/ det(Z)}σ .

The claim now follows from [23, Definition A.25], Lemma 2.20, and [58, Theorem 1.13]. �

2.8 Isomonodromic difference equations

In this section, we develop a σ -Galois treatment for isomonodromic difference equa-

tions. In particular, in Theorem 2.55, not assuming that the field k= Kφ is difference

closed, we give a criterion, which says that φ(y) = Ay is isomonodromic if and only if

the matrices in its σ -Galois group all satisfy an equation of a special form (2.14). This
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result is a difference analog of the corresponding results for isomonodromic differen-

tial equations, [10, Proposition 3.9; 30, Theorem 6.6], and can be combined with [48,

Theorem 4.1] to study difference isomonodromy of linear difference equations with sev-

eral parameters. We further illustrate this by considering a q-hypergeometric equation

in Example 2.56.

Definition 2.54. The system φ(y) = Ay is called isomonodromic if there exists

B ∈ GLn(K) such that

φ(B)AB−1 = σ(A). (2.13)

�

Theorem 2.55. The equation φ(y) = Ay is isomonodromic if and only if there exists D ∈

GLn(k) such that the following equation is in the defining ideal of the σ -Galois group G:

σ(xi j) = D−1(xi j)D. (2.14)

Moreover, if (2.14) is in the defining ideal of G, then there exists a finitely generated

σ -field extension F of k and C ∈ GLn(F ) such that

σ(C −1(xi j)C ) = C −1(xi j)C (2.15)

is in the defining ideal of G, that is, G is conjugate over F to a group of matrices with

σ -constant entries. �

Proof. Let Y ∈ GLn(R) be a fundamental solution matrix. Let B ∈ GLn(K) be such

that (2.13) is satisfied. We have

φ(σ(Y)−1 BY) = σ(φ(Y))−1φ(B)φ(Y) = σ(AY)−1σ(A)B A−1 AY = σ(Y)−1 BY.

Therefore, there exists D ∈ GLn(k) such that σ(Y) = BYD. For every k-σ -algebra S and

g ∈ G(S), let Cg ∈ GLn(S) be such that g(Y) = YCg. Then, on the one hand,

g(σ (Y)) = g(BYD) = BYCgD.

On the other hand,

g(σ (Y)) = σ(g(Y)) = σ(YCg) = σ(Y)σ (Cg) = BYDσ(Cg).
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Therefore, for all g ∈ G(S), we have

σ(Cg) = D−1CgD,

showing (2.14). To show (2.15), let F be a σ -field generated over k by the entries of an

invertible matrix C satisfying σ(C ) = D−1C . Then,

σ(C −1CgC ) = σ(C )−1σ(Cg)σ (C ) = C −1 DD−1CgDD−1C = C −1CgC .

Suppose now that, for all k-σ -algebras S and g ∈ G(S), we have σ(Cg) = D−1CgD,

where Cg := Y−1g(Y). Let B := σ(Y)D−1Y−1. Then, for all g ∈ G,

g(B) = σ(YCg)D−1(YCg)
−1 = σ(Y)D−1CgDD−1C −1

g Y−1 = B.

By Theorem 2.52, B ∈ GLn(K). We, moreover, have

φ(B) = φ(σ(Y))D−1φ(Y)−1 = σ(AY)D−1(AY)−1 = σ(A)σ (Y)D−1Y−1 A−1 = σ(A)B A−1,

showing (2.13). �

Example 2.56. Consider a q-hypergeometric equation

y(q2x) −
2ax − 2

a2x − 1
y(qx) +

x − 1

a2x − 1
y(x) = 0. (2.16)

It is shown in [51] that, over C(x), if a /∈ qZ, then, if a2 /∈ qZ, then the difference Galois

group of (2.16) is GL2(C), otherwise it is SL2(C). Equation (2.16) has been also stud-

ied from the differential-parametric viewpoint in [36, Example 3.14]. Let now C be any

field such that (2.16) has a σ -PV extension over C(x, a), with a being transcendental over

C(x, a), φ and σ acting as id on C, and

φ(x) = qx, φ(a) = a, σ (x) = x, σ (a) = qa.

The existence can be shown as in Proposition 2.30. A calculation in MAPLE, sim-

ilar to the one given in [35], but using the procedure RationalSolution in the

QDifferenceEquations package, shows that (2.16), once transformed into the matrix



4002 A. Ovchinnikov and M. Wibmer

form, is isomonodromic over C(x, a) with

B =













1

a2x − 1
−

2a

(a + 1)(a2x − 1)

2a(x − 1)

(a + 1)(a2x − 1)(a2qx − 1)

3a − 1 + (a3 − 3a2)x

(a + 1)(a2x − 1)(a2qx − 1)













.

Therefore, (2.13) is in the defining ideal of the σ -PV group G of (2.16) by Theorem 2.55.

It follows from [4, Corollary 3.3.2.1; 51, Theorem 10] that the (non-σ -parametric) PV

group of (2.16) over C(x, a) is GL2. Similarly to [36, Proposition 6.21], it follows from

Theorem 2.52 that G is Zariski dense in GL2. It follows from Theorem 2.55 that, G is con-

jugate to GL2(C) over a (proper, as RationalSolution shows) finitely generated σ -field

extension of C(a), where GL2(C) is defined by GL2(C)(B) = {g ∈ GL2(B) | σ(g) = g} for every

C(a)-σ -algebra B. �

3 Applications and examples

In this section, we will illustrate how our Galois theory can be used to study differ-

ence and differential algebraic properties of functions. We start by showing a general

σ -independence criterion in Theorem 3.1 (see also [5, Theorem 4.1]). In Section 3.1,

we show a σ -independence criterion over the field of meromorphic function with

Nevanlinna growth order <1 (Theorem 3.5). For this, we need some preparatory work,

Lemmas 3.2 and 3.4, which are interesting on their own, as they generalize a natural

modification of a classical result in complex analysis [6]. We then show how to apply

our results in practice in Theorem 3.6, which is followed by illustrative examples in

Section 3.4.

3.1 General result

Theorem 3.1. Let F be a φσ -field containing the field C(z) with

φ(z) = a1z + a2, σ (z) = b1z + b2, a1, a2, b1, b2 ∈ C, a1b1 �= 0,

φσ = σφ, φn �= id, n∈ N, (3.1)

and k := F φ . Let 0 �= f ∈ F and 0 �= a∈ C(z) be such that f is a solution of

φ(y) = ay. (3.2)
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Then, f is σ -algebraically dependent over the field k(z) if and only if

ϕ(a) = φ(b)/b (3.3)

for some 0 �= b ∈ C(z) and ϕ(x) ∈ Q{x, 1/x}σ , 1 �= ϕ(x) = xn0σ(x)n1 · . . . · σ t−1(x)
nt−1 . �

Proof. If (3.3) holds, then

φ(ϕ( f)/b) = ϕ(φ( f))/φ(b) = ϕ(af)/φ(b) = ϕ(a)ϕ( f)/φ(b) = ϕ( f)/b.

Therefore, ϕ( f)/b = c ∈ F φ = k. Thus, ϕ( f) = c · b ∈ k(z), which gives a σ -algebraic depen-

dence for f over k(z).

Assume now that f is σ -algebraically dependent over k(z). Let L be the small-

est φσ -subfield in F containing k(z) and f . Since k ⊂ Lφ ⊂ F φ = k, the φσ -field L is

a σ -PV extension over k(z) for Equation (3.2). It follows from Lemma 2.53 that f is

σ -algebraically dependent over k(z) if and only if the σ -Galois group G of L|K is a

proper σ -algebraic subgroup of Gm. Then, by Proposition 2.48, there exists a multiplica-

tive ϕ ∈ k{x, 1/x}σ such that the ideal of G contains the equation ϕ(x) = 1. Therefore, for

every k-σ -algebra B and g ∈ G(B), we have

g(ϕ( f)) = ϕ(g( f)) = ϕ(cg · f) = ϕ(cg) · ϕ( f) = 1 · ϕ( f) = ϕ( f).

Hence, by Theorem 2.52, we have b := ϕ( f) ∈ k(z). Since f �= 0 and ϕ is multiplicative,

ϕ( f) �= 0. Therefore,

ϕ(a) = ϕ(φ( f)/ f) = φ(ϕ( f))/ϕ( f) = φ(b)/b. (3.4)

We will show now that b can be chosen from C(z) satisfying (3.3). For this, first

note that z is transcendental over k. Indeed, for all n∈ N and a0, . . . , an ∈ k,

anzn + · · · + a1z + a0 = 0

implies that, for all q ∈ N,

an(φ
q(z))n + . . . + a1(φ

q(z)) + a0 = 0.

This implies that there exists r ∈ N such that z= φr(z), which contradicts (3.1). Now,

we have the equalities a= ā/c and b = b̄/d, where ā, c ∈ C[z] and b̄, d∈ k[z]. Consider the
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coefficients of b̄ and d with respect to z as new indeterminates. Equation (3.4) is equiva-

lent to

ϕ(ā/c) = φ(b̄/d)/(b̄/d).

So, we have

ϕ(ā) · φ(d) · b̄ − ϕ(c) · φ(b̄) · d= 0. (3.5)

The left-hand side of Equation (3.5) is a polynomial in z. Hence, Equation (3.4) can be

considered as a system of polynomial equations given by the equalities for all coeffi-

cients. Since the field C is algebraically closed, existence of b̄ and d with coefficients in

k implies existence of b̄ and d with coefficients in C. �

3.2 Meromorphic functions and Nevanlinna property

Let M be the φσ -field of meromorphic functions on the plane with

φ( f)(z) := f(z + 1), σ ( f)(z) := f(z + aσ ), f ∈ M, z, aσ ∈ C.

Also, let k := Mφ , which is the field of 1-periodic meromorphic functions. For f ∈ M,

the standard Nevanlinna characteristics m(r, f), N(r, f), and T(r, f) were introduced in

[46, pp. 6, 12] (see also [6, 14, 29]). Let

M<1 := {g ∈ M | T(r, g) = o(r), r → +∞}, (3.6)

which is a φσ -field as well [6, 8. Proposition]. Note that

C(z) � M<1. (3.7)

The proof of the following result, which we need to prove Theorem 3.5, was sug-

gested by D. Drasin and S. Merenkov, to whom the authors are highly grateful, as a

modification of [6, 7. Lemma (c)].

Lemma 3.2. Let f ∈ M and there exist R∈ C(z) such that, for all z∈ C,

f(z + 1) = R(z) · f(z). (3.8)

If f ∈ M<1, then f ∈ C(z). �
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Proof. Let L > 0 be a real number such that all finite poles and zeroes of R lie in

D(L) := {c ∈ C | |c| < L}.

Similarly to the proof of [6, 7. Lemma (c)], one shows that (3.8) and (3.6) imply that all

finite poles and zeroes of f lie in D(L). This implies that there exists a rational function h

such that g := hf is an entire function with no zeroes. Since M<1 is a field and h∈ M<1, we

have g = hf ∈ M<1. Hence, it follows from [29, Lemma I.6.2] that g is constant. Therefore,

f = g/h is rational. �

Corollary 3.3. We have

k ∩ M<1 = C. �

We will need one more complex-analytic result (which has an algebraic proof) to

prove Theorem 3.5 as well.

Lemma 3.4. Let a∈ C(z) � {0}. Assume that there exists a nonzero b ∈ k M<1 such that

φ(b) = ab. Then,

(i) there also exists a nonzero b′ ∈ M<1 with φ(b′) = ab′;

(ii) b ∈ k(z). �

Proof. We know from Corollary 3.3 that M
φ

<1 = C, and it follows from Lemma 2.10 that

M<1 is linearly disjoint from k over C. Hence,

k M<1 = Quot(M<1 ⊗C k). (3.9)

Moreover, M<1 ⊗C k is φ-simple by Lemma 2.9. We will first show that b must lie in

M<1 ⊗C k. Set

a = { f ∈ M<1 ⊗C k | f · b ∈ M<1 ⊗C k}.

It follows from (3.9) that a is a nonzero ideal of M<1 ⊗C k. For all f ∈ a, we have

φ( fb) ∈ M<1 ⊗C k and, therefore,

φ( fb) = φ( f) · ab ∈ M<1 ⊗C k.

Since a∈ C(z) ⊂ M<1, this implies

φ( f) · b ∈ M<1 ⊗C k,
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that is, φ( f) ∈ a. So, a is a φ-ideal. Since M<1 ⊗C k is φ-simple, we must have 1 ∈ a. So,

b ∈ M<1 ⊗C k.

Choose a C-basis (ci) of k and write b =
∑

i bi ⊗ ci with bi ∈ M<1. Then,

∑

i

φ(bi) ⊗ ci = φ(b) = ab =
∑

i

abi ⊗ ci.

Hence, for all i, we have φ(bi) = abi. By Lemma 3.2, we conclude that, for all i, bi ∈ C(z),

which implies that b ∈ k(z), showing (ii). Moreover, since b �= 0, there exists i such that

bi �= 0, showing (i). �

Theorem 3.5. Let f ∈ M and 0 �= a∈ C(z) be such that f is a nonzero solution of

φ(y) = ay. (3.10)

Then, f is σ -algebraically dependent over M<1 if and only if

ϕ(a) = φ(b)/b (3.11)

for some 0 �= b ∈ C(z) and 1 �= ϕ(x) = xn0σ(x)n1 · . . . · σ t−1(x)
nt−1 . �

Proof. The converse follows as in Theorem 3.1, noting (3.7), and Corollary 3.1. Let now

f be σ -algebraically dependent over M<1. As in the proof of Theorem 3.1, we will show

that there exists b ∈ M<1 and multiplicative ϕ such that

ϕ(a) = φ(b)/b.

Lemma 3.2 implies that b ∈ C(z). To do the above, let L be the smallest φσ -subfield in

M containing k, M<1, and f . Since k ⊂ Lφ ⊂ Mφ = k, the φσ -field L is a σ -PV extension

over k M<1 for Equation (3.2). It follows from Lemma 2.53 and Proposition 2.48 that f is

σ -algebraically dependent over k M<1 if and only the σ -Galois group G of Equation (3.2)

is a proper σ -algebraic subgroup of Gm. Then, by Proposition 2.48, there exists a multi-

plicative ϕ ∈ k{x, 1/x}σ such that the ideal of G contains the equation ϕ(x) = 1. Therefore,

for every k-σ -algebra B and g ∈ G(B), we have

g(ϕ( f)) = ϕ(g( f)) = ϕ(cg · f) = ϕ(cg) · ϕ( f) = 1 · ϕ( f) = ϕ( f).
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Hence, by Theorem 2.52, we have b := ϕ( f) ∈ k M<1. Since f �= 0 and ϕ is multiplicative,

ϕ( f) �= 0. Therefore,

ϕ(a) = ϕ(φ( f)/ f) = φ(ϕ( f))/ϕ( f) = φ(b)/b.

By Lemma 3.4, there exists b′ ∈ M<1 such that ϕ(a) = φ(b′)/b′, which finishes the proof. �

3.3 How to use the above results in practice

Let a∈ C(z)× and w0, z0 ∈ C× and φ and σ act on C(z) as follows:

φ( f)(z) = f(z + w0) and σ( f)(z) = f(z + z0), f ∈ C(z).

Then, for some N ≥ 0, a can be represented as follows:

a= λ ·

t−1
∏

k=0

N
∏

d=−N−1

R
∏

i=1

(z − k · z0 − d · w0 − ri)
sk,d,i ,

where λ, ri ∈ C and the ri’s are distinct in C
/

w0 · Z + z0 · Z. For all i and k, 1 ≤ i ≤ R,

0 ≤ k≤ t − 1, let

ai,k =

N
∑

d=−N−1

sk,d,i. (3.12)

The following result combined with Theorems 3.1 and 3.5 provides a complete charac-

terization of all equations (3.2) whose solutions are σ -algebraically independent.

Theorem 3.6. Let a∈ C(z) be as above and z0/w0 /∈ Q. Then,

(i) If λ is a root of unity, then there exist b ∈ C(z) and a multiplicative function

ϕ(x) = xn0 · (σ (x))n1 · . . . · (σ A(x))
nA

�= 1

such that ϕ(a) = φ(b)/b if and only if, for all i, 1 ≤ i ≤ R,

ai,0 = . . . = ai,t−1 = 0.

(ii) If λ is not a root of unity, then there exist b ∈ C(z) and a multiplicative

function

ϕ(x) = xn0 · (σ (x))n1 · . . . · (σ A(x))
nA

�= 1
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such that ϕ(a) = φ(b)/b if and only if, for all i, 1 ≤ i ≤ R,

ai,0 = . . . = ai,t−1 = 0 and t ≥ 2. �

Proof. We will write ϕ and b with undetermined coefficients and exponents. Suppose

that

b = µ ·

B
∏

k=−B

N
∏

d=−N

R
∏

i=1

(z − k · z0 − d · w0 − ri)
lk,d,i and ϕ(x) = xn0 · (σ (x))n1 · . . . · (σ A(x))

nA

are such that ϕ(a) = φ(b)/b and A, B ≥ 0. Let us calculate the right- and left-hand sides

of this equality. We see that

φ(b) = µ ·

B
∏

k=−B

N
∏

d=−N

R
∏

i=1

(z − k · z0 − (d− 1) · w0 − ri)
lk,d,i .

Hence,

φ(b)

b
=

B
∏

k=−B

N−1
∏

d=−N−1

R
∏

i=1

(z − k · z0 − d · w0 − ri)
lk,d+1,i ·

B
∏

k=−B

N
∏

d=−N

R
∏

i=1

(z − k · z0 − d · w0 − ri)
−lk,d,i

=

B
∏

k=−B

R
∏

i=1

[

(z − k · z0 + (N + 1) · w0 − ri)
lk,−N,i

N−1
∏

d=−N

(z − k · z0 − d · w0 − ri)
lk,d+1,i−lk,d,i (z − k · z0 − N · w0 − ri)

−lk,N,i

]

.

Now, we calculate the left-hand side. We see that, for all r ≥ 0,

σ r(a)nr = λnr ·

t−1
∏

k=0

N
∏

d=−N−1

R
∏

i=1

(z − (k − r) · z0 − d · w0 − ri)
nrsk,d,i

= λnr ·

t−1−r
∏

k=−r

N
∏

d=−N−1

R
∏

i=1

(z − k · z0 − d · w0 − ri)
nrsr+k,d,i .

Hence,

ϕ(a) = λ
∑A

r=0 nr ·

t−1
∏

k=−A

N
∏

d=−N−1

R
∏

i=1

(z − k · z0 − d · w0 − ri)

∑

0≤r≤A
0≤r+k≤t−1

nrsr+k,d,i

.
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Now, the equation ϕ(a) = φ(b)/b gives A= B = t − 1 and the following system of linear

equations:

































































































∑

0≤r, r+k≤t−1

sr+k,−N−1,i · nr = lk,−N,i,

∑

0≤r, r+k≤t−1

sr+k,d,i · nr = lk,d+1,i − lk,d,i, −N � d� N − 1, 1 ≤ i ≤ R, 1 − t ≤ k≤ t − 1,

∑

0≤r, r+k≤t−1

sr+k,N,i · nr = −lk,N,i,

λ
∑t−1

r=0 nr = 1.

The first subsystem, for all i and k, 1 ≤ i ≤ R, can be rewritten as follows:

























































































































































































































































s0,−N−1,i

s0,−N,i

...

s0,N,i



















(

nt−1

)

=



















lk,−N,i

lk,−N+1,i − lk,−N,i

...

−lk,N,i



















, k= 1 − t,



















s0,−N−1,i s1,−N−1,i

s0,−N,i s1,−N,i

...
...

s0,N,i s1,N,i























nt−2

nt−1



 =



















lk,−N,i

lk,−N+1,i − lk,−N,i

...

−lk,N,i



















, k= 2 − t,

...


















s0,−N−1,i s1,−N−1,i . . . st−1,−N−1,i

s0,−N,i s1,−N,i . . . st−1,−N,i

...
...

. . .
...

s0,N,i s1,N,i . . . st−1,N,i





































n0

n1

...

nt−1



















=



















lk,−N,i

lk,−N+1,i − lk,−N,i

...

−lk,N,i



















, k= 0,

...


















st−1,−N−1,i

st−1,−N,i

...

st−1,N,i



















(

n0

)

=



















lk,−N,i

lk,−N+1,i − lk,−N,i

...

−lk,N,i



















, k= t − 1.
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Each subsystem has a solution in lk,d,i if and only if the sum of all equations is zero.

Thus, we can replace this system with the following:



































































































nt−1 ·

N
∑

d=−N−1

s0,d,i = 0,

nt−2 ·

N
∑

d=−N−1

s0,d,i + nt−1 ·

N
∑

d=−N−1

s1,d,i = 0,

...

n0 ·

N
∑

d=−N−1

s0,d,i + n1 ·

N
∑

d=−N−1

s1,d,i + · · · + nt−1 ·

N
∑

d=−N−1

st−1,d,i = 0,

...

n0 ·

N
∑

d=−N−1

st−1,d,i = 0.

Using (3.12), we obtain the following system:

































0 0 . . . 0 ai,0

0 0 . . . ai,0 ai,1

...
...

...
...

...

ai,0 ai,1 . . . ai,t−2 ai,t−1

...
...

...
...

...

ai,t−2 ai,t−1 . . . 0 0

ai,t−1 0 . . . 0 0















































n0

n1

...

nt−1















=









0
...

0









. (3.13)

Thus, for some integers γk,d,i, j, we have





































































































































0 0 . . . 0 ai,0

0 0 . . . ai,0 ai,1

...
...

...
...

...

ai,0 ai,1 . . . ai,t−2 ai,t−1

...
...

...
...

...

ai,t−2 ai,t−1 . . . 0 0

ai,t−1 0 . . . 0 0





















































n0

n1

...

nt−1



















=













0

...

0













,

λ
∑t−1

r=0 nr = 1,

lk,d,i =

t−1
∑

r=0

γk,d,i,r · nr.
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Consider the first case: λ is a root of unity. Then, for some u∈ Z \ {0}, we have

λu = 1. In this situation, if nr, lk,d,i is a solution of all equations except for the second

one, then

u · nr, u · lk,d,i

is a solution of the whole system. Therefore, in this case, the existence of ϕ and b is

equivalent to (3.13) having a nontrivial common solution.

Consider the second case: λ is not a root of unity. Then, the second equation gives
∑t−1

r=0 nr = 0. Thus, in this case, we need to show the existence of a nontrivial solution of

the system




































0 0 . . . 0 ai,0

0 0 . . . ai,0 ai,1

...
...

...
...

...

ai,0 ai,1 . . . ai,t−2 ai,t−1

...
...

...
...

...

ai,t−2 ai,t−1 . . . 0 0

ai,t−1 0 . . . 0 0

1 1 . . . 1 1



















































n0

n1

...

nt−1















=









0
...

0









. (3.14)

Since all the coefficients in (3.13) and (3.14) are integers, there is a nontrivial solution

with integral coefficients if and only if there is a nontrivial solution with complex coef-

ficients.

In the first case, the rank is < t if and only if

ai,0 = . . . = ai,t−1 = 0.

In the second case, the rank is < t if and only if

ai,0 = · · · = ai,t−1 = 0 and t ≥ 2. �

3.4 Examples

We will now illustrate Theorems 3.1, 3.5, and 3.6.

Example 3.7. The gamma function Γ satisfying

Γ (z + 1) = z · Γ (z)
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does not satisfy any polynomial difference equation over M<1 (see (3.6)) for any shift

by z0 /∈ Q as, in the notation of Theorem 3.6, N = 0, t = 1, R= 1, and 1 = s0,0,1 = a1,0 �= 0.

A differential algebraic independence statement over M<1 for Γ was shown in [6] using

analytic techniques. Also, [14, Theorem 1] gives difference algebraic independence of the

Riemann zeta function ζ over M<1. Note the following relation between ζ and Γ :

ζ(1 − s) = 21−s · π−s · cos(π · s/2) · Γ (s) · ζ(s). �

Example 3.8. For f ∈ K := C(z, α), let

φ( f)(z, α) = f(z, α + 1) and σ( f)(z, α) = f(z + z0, α).

Let F be a φσ -field over K that contains a nonzero solution of

φ(y) = z · y,

which we denote by zα. Let ϕ be as in the statement of Theorem 3.1. If zα were σ -algebraic

dependent over C(z, α), then, by the proof of Theorem 3.1, there would exist 0 �= b ∈ F φ

(note that C(z) ⊂ F φ in our case) such that

1 = φ(b)/b = ϕ(z).

Since σ is a shift, ϕ = 1, which is a contradiction. This proves the difference algebraic

independence of zα over C(z, α) with respect to shifts of z (see [7, 27] for a related state-

ment, in which α takes values in Q). �

Example 3.9. Let K be a field. Consider SeqK as a σ -ring with σ acting as the shift. Let

L be a σ -subfield of SeqK . Consider SeqLas a φσ -ring with φ acting as the shift and σ

acting coordinate-wise. Let F be a φσ -subfield of SeqL and {S(m, α)} ∈ F satisfy a first-

order φ-difference equation

S(m, α + 1) = f(m, α) · S(m, α), { f(m, α)} ∈ M,

where M is a φσ -subfield of F, which contains L. Then, it follows from the proof of

Theorem 3.1, [23, Lemma A.40; 25, Proposition 1.1] that, if {S(m, α)} satisfies a linear
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σ -difference equation, then there exists {b(m, α)} ∈ M and n� 1 such that, for all m and α,

S(m + n, α) = b(m, α) · S(m, α). (3.15)

In particular, we can take M to be the image of L(z) in SeqL , as in Section 2.5. Let

y(x, α) :=
∑

m�0

S(m, α) · xm.

By [54, Theorem 1.5], the function y(x, α) satisfies a linear differential equation in x if

and only if S(m, α) satisfies a homogeneous linear difference equation in m (see also [26,

App. B.4] and the reference given there). Suppose it is known that S(m, α) satisfies a first-

order homogeneous linear difference equation with respect to α, and one wants to know

whether y(x, α) satisfies a linear differential equation in x. The above method helps find

difference equations in m if they are hard to find otherwise, as such equations are all of

the form (3.15). Just to illustrate the process (but not the difficulty), consider the Bessel

functions of the first kind, which are given by

Jα(x) =
∑

m�0

(−1)m

m! · Γ (m + α + 1)
(x/2)2m+α,

where α is an integer. It is a solution of the following differential equation:

x2y′′ + xy′ + (x2 − α2) · y= 0, (3.16)

where ′ stands for d
dx

. Let

S(m, α) =
(−1)m

m! · Γ (m + α + 1)
and Iα(x) =

∑

m�0

S(m, α)xm.

Then, Jα(x) = (x/2)α · Iα(x2/4). We have

(m + α + 1) · S(m, α + 1) = S(m, α).

Moreover, we have

(m + 1)(m + α + 1) · S(m + 1, α) + S(m, α) = 0.
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Therefore, by a calculation using the Gfun package in MAPLE [53], Iα(x) satisfies the

second-order linear differential equation

xy′′ + y′ + y= 0 (3.17)

(see also the proof of [54, Theorem 1.5]). One now obtains (3.16) by substituting the

expression of Iα in terms of Jα into (3.17). �
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Mathematica 144, no. 3 (2008) 565–81. URL http://dx.doi.org/10.1112/S0010437X07003430.

[35] Hardouin, C. and M. Singer. “Differential independence of solutions of a class of

q-hypergeometric difference equations.” Maple worksheet, 2007. URL http://www4.

ncsu.edu/∼singer/ms papers.html.

[36] Hardouin, C. and M. F. Singer. “Differential Galois theory of linear difference equations.”

Mathematische Annalen 342, no. 2 (2008): 333–77. URL http://dx.doi.org/10.1007/s00208-

008-0238-z.

[37] Hay, M., J. Hietarinta, N. Joshi, and F. Nijhoff. “A Lax pair for a lattice modified KdV
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