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Abstract

Low likelihood-of-approval rates of new drugs constitute a major problem in clin-
ical development. Only one out of ten development programs entering the first
clinical phase succeeds in being approved by the U.S. Food and Drug Adminis-
tration (FDA) [1]. A main challenge is thereby an insufficient understanding and
prediction of drug safety and efficacy, leading to the withdrawal of new drug can-
didates [2,3]. Here, model-based assessment of drug exposure and response can
support the development process at all stages, starting from early preclinical to late
clinical phases [4,5]. Thus, the quantification of interindividual variability in clinical
outcomes and the identification of related sources of such variability are of utmost
importance e.g. for individualized dosing strategies [6–8]. Furthermore, of particular
interest are translational approaches that transfer and integrate knowledge of recent
study programs or earlier steps of drug development in order to make improved
conclusions about drug behavior in clinically-relevant populations [3,9].

In this thesis, we present a Bayesian population physiologically-based pharma-
cokinetic (PBPK) approach for assessment of interindividual variability and clinical
translation. Therein, we combine large-scale mechanistic PBPK models describ-
ing the behavior of drugs within the body with a Bayesian statistical framework
for efficient estimation of the parameter space. The parameter space consists of
clearly deconvoluted physiological- and drug-specific parameters, which facilitates
the use of large amounts of prior information about the parameters. Such prior
knowledge is updated with information extracted from experimental data by con-
sidering the Bayesian theorem and in particular performing a Markov chain Monte
Carlo (MCMC) approach. This allows to solve the inverse and strongly ill-posed
parameter estimation problem and at the same time preserve the extrapolation ca-
pabilities of PBPK models.

Our Bayesian population PBPK approach represents a specifically-designed work-
flow for whole-body PBPK models to take into account the distinct properties of
such models and guarantee a generic form for broad applicability and to support
translation of knowledge. The overall framework contains i.a. an hierarchical model
to separate individual uncertainty about the parameters from population variabil-
ity, and a covariate model to cope for systematic relationships of model parameters
to age, gender and body height. We further provide a method for estimation of
the a posteriori parameter dependency structure at the population level. A block-
wise MCMC sampling structure reduces complexity and accounts for the different
types of parameters that are estimated. Additionally, we present an adaptive sam-
pling method that combines gradient-based sampling with continuous adaptation of
the proposal scaling for a strongly improved performance of the MCMC approach
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compared to standard methods. Moreover, we establish a translational learning
workflow, where our Bayesian population PBPK approach is iteratively conducted
in several learning steps to finally predict an unsupervised scenario, e.g. the phar-
macokinetic behavior of a diseased population after administration of a new drug
candidate.

Subsequently, three application examples represent how to support different
phases of drug development by the developed workflow. In the first example we
successfully identify clinically-relevant subgroups in a cohort of individuals. These
findings can improve safety and efficacy assessment in a clinical phase I study. In the
second example we determine the interindividual variability in the pharmacokinetic
behavior and the underlying physiological parameters, and improve population simu-
lations by adding estimated information about parameter dependencies. We further
reveal the performance of our new adaptive MCMC approach. In the third example
we predict the pharmacokinetic behavior in a cohort of patients after accumulation
of available study data in three iterations of our Bayesian population PBPK ap-
proach. We here successfully demonstrate the concept of translational learning from
a phase I to a phase II study, taking into account the derived pathophysiology of
the population.

Overall, these examples indicate the capabilities of our approach in accumulation
of knowledge and extrapolation of drug behavior. Applied to drug development
programs, our method could improve clinical trial design to increase the benefit/risk
ratio of new compounds. Our model-based concept could hence give significant
support to raise approval rates of new drugs in the future.
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Zusammenfassung

Niedrige Zulassungsraten neuer Medikamente stellen ein großes Problem in der klini-
schen Entwicklung dar. Nur eines von zehn Entwicklungsprogrammen aus der klini-
schen Phase I wird erfolgreich durch die U.S. Food and Drug Administration (FDA)
zugelassen [1]. Ein Hauptproblem sind ein unzureichendes Verständnis und die un-
zureichende Vorhersage der Sicherheit und Effizienz von Medikamenten, was zum
Abbruch der Entwicklung neuer Medikamentenkandidaten führt [2,3]. Hier kann
die Beurteilung der Exposition und des Effekts von Medikamenten auf Basis von
Modellen entlang des Medikamentenentwicklungsprozesses, von der präklinischen
Entwicklung bis zu späten klinischen Phasen, helfen [4,5]. Dabei sind vor allem die
Quantifizierung der interindividuellen Variabilität des klinischen Ergebnisses und
die Identifikation der zugehörigen Auslöser der Variabilität von immenser Bedeu-
tung, zum Beispiel um individuelle Dosierungen zu entwickeln [6–8]. Von weiterem
Interesse sind translationale Ansätze, die Information aus vorhergegangen klinischen
Studien oder früheren Phasen der klinischen Entwicklung integrieren und transfe-
rieren und so verbesserte Schlussfolgerungen über das Verhalten von Medikamenten
in klinisch-relevanten Populationen ermöglichen [3,9].

In dieser Arbeit stellen wir einen Bayesschen Populations- und Physiologie-
basierten Pharmakokinetik (PBPK) Ansatz vor, der die Abschätzung interindivi-
dueller Variabilität erlaubt und die klinische Translation ermöglicht. Dabei werden
große mechanistische PBPK Modelle, welche das Verhalten von Medikamenten im
Körper beschreiben, mit einem Ansatz der Bayesschen Statistik kombiniert, um den
Parameterraum effizient identifizieren zu können. Dieser Parameterraum enthält klar
voneinander abgegrenzte physiologische und Medikamenten-spezifische Parameter,
was die Integration einer großen Menge an Vorinformation über diese Parameter er-
leichtert. Dieses initiale Wissen über die Parameter wird dann mit neuer Informati-
on aktualisiert, welche aus experimentellen Daten durch Anwendung des Bayesschen
Theorems und vor allem der Anwendung von Markov Ketten Monte Carlo (MCMC)
Methoden, extrahiert werden kann. Dieser Ansatz erlaubt dabei das entstehende
inverse schlecht gestellte Problem zu lösen und dabei trotzdem die Extrapolations-
fähigkeit von PBPK Modellen zu erhalten.

Unser Ansatz repräsentiert einen spezifisch-angepassten Workflow für Ganzkör-
per PBPK Modelle, der die ausgeprägten Eigenschaften dieser Modelle mit berück-
sichtigt und dabei durch seine generische Form für breite Anwendbarkeit sorgt sowie
den Transfer von erhaltener klinischer Information unterstützt. Die zugrundeliegen-
de Struktur beinhaltet unter anderem ein hierarchisches Modell, um Parameterun-
sicherheit auf Ebene der Individuen von Parametervariabilität auf Ebene der Popu-
lation voneinander zu trennen. Außerdem beinhaltet sie ein Kovariationsmodell, um
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systematische Abhängigkeiten von Modellparametern zu Eigenschaften wie Alter,
Geschlecht oder Körpergröße mit einzubeziehen. Weiterhin stellen wir eine Methode
bereit, mit der sich die a posteriori Abhängigkeiten der Parameter auf Populations-
ebene abschätzen lassen. Ein blockweises Sampling der Parameter im MCMC Lauf
reduziert die Komplexität und berücksichtigt die verschiedenen Parametertypen, die
identifiziert werden sollen. Zusätzlich stellen wir eine adaptive Sampling Methode
vor, welche Gradienten-basierte Ansätze mit Ansätzen kombiniert, die kontinuierlich
die Vorschlagsdichte eines MCMC Laufs anpassen. Dies führt zu einer starken Ver-
besserung der Performance der MCMC Läufe im Vergleich zu Standardmethoden.
Weiterhin etablieren wir einen Workflow für translationales Lernen, innerhalb dessen
der hier entwickelte Bayessche Populations-PBPK Ansatz iterativ angewendet wird,
um schlussendlich ein bisher nicht bekanntes Szenario, zum Beispiel das pharmako-
kinetische Verhalten einer kranken Population nach Gabe eines neuen Medikaments,
vorherzusagen.

Anschließend präsentieren wir in drei Anwendungsbeispielen, wie der vorgestellte
Workflow verschiedene Phasen des Medikamentenentwicklungsprozesses unterstüt-
zen kann. Im ersten Beispiel identifizieren wir erfolgreich klinisch-relevante Unter-
gruppen in einer Kohorte von gesunden Individuen. Solche Ergebnisse könnten die
Bewertung von Sicherheit und Effizienz in einer klinischen Phase I Studie verbessern.
Im zweiten Beispiel quantifizieren wir die interindividuelle Variabilität des pharma-
kokinetischen Verhaltens und der zugrundeliegenden physiologischen Parameter und
können durch die Abschätzung von Abhängigkeiten zwischen Parametern die Simu-
lation der Pharmakokinetik in Populationen verbessern. Außerdem evaluieren wir
die Leistungsfähigkeit unseres neuen adaptiven MCMC Ansatzes. Im dritten Bei-
spiel machen wir eine Vorhersage des pharmakokinetischen Verhaltens einer Gruppe
von Patienten nach erfolgter Akkumulation von vorhandenen Studiendaten in drei
Iterationen unseres Bayesschen Populations-PBPK Workflows. Dabei demonstrieren
wir erfolgreich das Konzept des translationalen Lernens ausgehend von einer Phase
I Studie zu einer Phase II Studie, wobei wir die abgeleitete Pathophysiologie der
Population mit einbeziehen.

Zusammenfassend zeigen diese drei Beispiele die Anwendungsmöglichkeiten un-
seres Ansatzes bezüglich Akkumulation von Information und Extrapolation des Ver-
haltens von Medikamenten im Körper auf. Angewendet auf Medikamentenentwick-
lungsprogramme könnte unsere Methode das Design klinischer Studien verbessern
um das Nutzen/Risiko Verhältnis neuer Medikamente zu erhöhen. In der Zukunft
könnte unser Modell-basiertes Konzept daher die Verbesserung der Akkzeptanzra-
ten neuer Medikamente signifikant unterstützen.
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SLCO1B1 solute carrier organic anion transporter family member 1B1
tmax time point, where maximum concentration is reached
TK toxicokinetic
UGT1A4 uridine diphosphate glucuronosyltransferase 1A4
VPC visual predictive check
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Chapter 1

Introduction

1.1 Motivation

Translational pharmacology approaches aim for an integration of data generated
from diverse research platforms during pharmaceutical development programs [3,9].
They are designed for the support of drug development, for example to increase
safety and efficacy of new drugs and to help to reduce the continuously high drug
attrition rate [1,2,15]. Thus, of particular importance is the understanding of drug
pharmacokinetics (PK), which describes the behavior of a drug characterized by its
specific absorption, distribution, metabolization and excretion (ADME) processes.
An important example for translation is to assign research findings from preclinical
research to clinical development, which could improve the design of such clinical re-
search programs. Thereby, a mechanistic translation, organization and continuous
re-evaluation of knowledge along the development path of novel drugs is promised
to overcome many of the current limitations in the pharmaceutical research process.
These are among others translation strategies between healthy volunteers and pa-
tients or the setting of objectives on the basis of previous studies and data [3]. In
addition, a better understanding of the interindividual variability of the PK outcome
in specific patient cohorts is necessary, aiming for explanation of lack of efficacy in
potential subgroups of non-responders or the occurrence of adverse events in high-
risk subgroups of patients [5,6,16]. Altogether, a clear need is formulated for possible
translation along the drug development pathway, across species or clinically-relevant
patient cohorts [17].

Generally, vast amounts of data are generated along the whole drug develop-
ment process. This and the complexity of especially the preclinical and clinical
data represents a big challenge when trying to generate an in-depth mechanistic
understanding of the processes driving ADME of drugs. Here, in silico approaches
provide a rational way to describe and analyze data determining a drugs PK [4,18].
After their validation, computational models are able to assess the effect of different
dosing schemes or a varying anthropometry or physiology in detail [10,19,20].

In recent years, systems approaches provided important mechanistic insights in
various areas of life sciences such as biology, pharmacology or medicine. Mechanistic
computational models were used to describe biological processes at a high level of
physiological detail. With regard to medicine and pharmacology, physiologically-
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based pharmacokinetic (PBPK) modeling can be expected to support translational
approaches, because the highly physiological PK description in these models fosters
a mechanistic understanding of the underlying processes. PBPK models include
specific information about the (patho-) physiology of a certain population as well
as the physicochemistry of the drug. In particular, the mechanistic formulation and
the separation of drug-specific knowledge and physiological information suits PBPK
models to extrapolate the PK behavior of new drugs in well-known patient cohorts
or in turn to forecast the PK of known drugs in new populations. These particular
properties allow to translate available knowledge about key processes governing drug
ADME [18,21–23].

PBPKmodels are large ordinary differential equation (ODE)-based compartmen-
tal models. Especially whole-body PBPK models contain more than one hundred
ODEs and several hundreds of parameters. Moreover, available PK data is sparse
and usually consists of only few samples of venous blood plasma. Therefore, param-
eter estimation of PBPK models represents an ill-posed inverse problem and the
use of standard methods for parameter estimation is strongly limited. However, a
big advantage of PBPK models is their mechanistic consideration such that each pa-
rameter has a foundation based on a biological or pharmacological function. A lot of
prior information is hence available, for example about organ volumes or blood flow
rates, that can be used to inform a lot of the parameters within PBPK models. Cur-
rent use of such models often aims for the description of a single time-concentration
profile in a mean individual. Many physiological parameters are considered as fixed
and known values and only few key parameters are estimated. This obviously ne-
glects potentially relevant individual properties and undermines the possibility of
PBPK models to create highly personalized models for individuals by integration
of the individual’s physiology [24–26]. Therefore, the assessment of individualized
PBPK models and interindividual variability in the PK behavior is of particular
interest.

A possible way to deal with the above stated issues and the ill-posedness of the
problem is to model the parameters as random values that are assigned probability
distributions. This transforms the inverse problem into a problem of statistical infer-
ence [27]. A Bayesian formulation can be considered to integrate the large amounts
of prior information and to update such information about model parameters by
including new observations in the so-called posterior distribution. Even if not all
physiological parameters are informed by a new set of experimental data, they may
be necessary for extrapolation to new scenarios. The integration of prior informa-
tion about such parameters into the estimation ensures that they are informed and
allows to include large numbers of parameters into the analyses [17]. The acquired
posterior probability distributions then contain the uncertainty of each parameter
as an additional and desired result. Since large numbers of individuals and patients
are integrated into clinical studies, one can interpret the experimental setting as
a large number of parallel situations [28]. This calls for the combination of the
Bayesian approach with a hierarchical model and nonlinear mixed-effects model-
ing (NLME) since it allows the estimation of the underlying population distribution
of each parameter, thereby separating the assessment of parameter uncertainty and
interindividual variability [17,29]. All in all, such an overall framework of generic
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PBPK models and a Bayesian statistical model may be well suited for the transla-
tional idea.

1.2 State of the Art
One of the first approaches where physiological modeling and Bayesian statistical ap-
proaches were merged was published already in 1996 by Gelman and coworkers [30].
Here, informative prior distributions of physiological parameters were integrated into
an hierarchical model approach in combination with a compartmental PK model
that described the distribution and metabolism of an environmental chemical in hu-
mans [31,32]. This work addressed the importance of quantifying the uncertainty
of model parameters and also of quantities of interest when applying the results to
risk analyses. The applied model consisted of 4 compartments representing a semi-
physiological level of detail. Beside the population parameters, six individuals were
analyzed and 17 parameters were estimated per individual. To determine the pos-
terior distribution, a Markov chain Monte Carlo (MCMC) approach was performed,
in particular the Metropolis algorithm [33].

The work from Gelman et al. [30] can be seen as a starting point for a number
of publications in the field of physiologically-based toxicokinetic (PBTK) modeling
and the risk assessment of environmental chemicals [34–37]. All these publications
focused on identification of the interindividual variability of the toxicokinetics (TK)
of chemicals in different species. A good example was published by Chui and cowork-
ers [38], who established their model in rats, mice and humans and integrated several
studies in one Bayesian population approach. The objective was an improved quan-
tification of the variability and uncertainty in the TK of an environmental chemical.
Chui et al. demonstrated how Bayesian approaches can summarize the knowledge
of several studies to achieve such issues in the field of TK, where a decrease of
uncertainty for a high quality risk assessment is of utmost importance.

One of the first applications of a Bayesian population PBPK model approach
was then published in 2006 by Gueorguieva et al. [39]. Here, a PBPK model was
used to estimate physiological parameters in rats. The posterior parameter values
of the Bayesian analysis in rats were then considered as informative priors for the
estimation of the same parameters in humans, which can be seen as the first trans-
lation of knowledge to a different species using such approaches. Data of 24 rats and
11 humans were used for this investigation. The PBPK model itself was much more
detailed than the one from Gelman et al [30]. It consisted of 14 compartments rep-
resenting the most important organs, but the organs themselves were not separated
into substructures.

Only few other approaches have been published addressing Bayesian population
modeling using mechanistic physiological models. Leil et al. [17] emphasized the
advantages of the combined use of complex PK/pharmacodynamic (PD) models
with Bayesian approaches and population approaches. In [40], Leil et al. presented
an investigation using a semi-mechanistic PK/PD model to evaluate the utility of a
possible biomarker for interactions of a metabolizing enzyme with drugs. A Bayesian
approach was shown to serve as a tool for identification of new interactions with the
enzyme and the optimization of clinical trials.
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Two very recent approaches presented applications of a Bayesian population ap-
proach within a pharmacological issue [41,42]. Both applications focused on model
building of highly specific PBPK models to address a specific issue with the created
models. In Zurlinden et al. [41], a model for acetaminophen and its metabolites was
created. Zurlinden et al. simulated the concentrations of two metabolites which
were assumed to provide additional information for dose extrapolation studies or
the impact of co-administration of other drugs. The overall objective was to assess
model parameter uncertainty and variability for subsequent predictions of relevant
pharmacological outcomes such as cofactor depletion or dose response of PK end-
points. In Tsamandouras et al. [42], an established model of simvastatin was used
e.g. to describe PK effects of a genetic polymorphism, which is important in the
risk evaluation of possible adverse events. The model consisted of 16 differential
equations. 14 model parameters were assessed, whereby informative prior distribu-
tions were defined for 10 parameters. A covariate model was also integrated a priori,
in particular two covariates, body weight and body surface area were defined. Of
further importance was a second application with the constructed model and the
Bayesian approach, where drug-drug interaction effects were successfully predicted.
They further discussed the advantages and also disadvantages of a full Bayesian
analysis of highly-detailed mechanistic models and highlighted the possibility of us-
ing assessed posterior knowledge as prior knowledge in future investigations with
the created model and new study data.

So far, the MCMC algorithms considered for estimation of the posterior distribu-
tion have not been in focus in PBPK modeling applications. In most applications,
a standard Metropolis-Hastings (MH) algorithm was used, although there are a lot
of sophisticated MCMC methods available that largely improve the performance of
the analyses [43–47]. Such methods were, however, only applied and developed in
other large biological models such as cell signaling models [47–49]. Few publica-
tions considered a comparison or combined use of MCMC and classical, frequentist
methods such as maximum likelihood estimation (MLE) [48–50]. In [50], the prob-
lems of MLE in the context of PBPK modeling were highlighted. Furthermore, [51]
performed a simulation-based comparison between parametric and nonparametric
estimation methods in PBPK models.

For more information about the developments in the field of PBPK modeling and
clinical applications, please refer to [52]. Information about population approaches
can be found in [29,53,54]. For detailed information about MCMC approaches and
their development, please refer to [55].

1.3 Objectives
As described in Section 1.2, recent work regarding combined approaches of physi-
ological modeling and Bayesian statistics was performed using specifically-defined
models for a certain case study. This allows reduction of such models for purpose,
such that final models consist of few compartments and describe the behavior of a
compound of interest with few model parameters. However, it limits the transla-
tional idea as formulated in Section 1.1. If model structures differ from one appli-
cation to another or models are even created for a specific purpose only, transfer
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of information is strongly perturbed. Moreover, lumped parameters that contain
mixed information of physiology and a drugs physicochemistry cannot be translated
to another population or another drug. For efficient translation of information about
a drug or a populations physiology, a generic mechanistic model would be necessary
which does not contain lumped parameters and describes organs and tissues in a
great level of detail. By the consideration of parameters representing an underlying
biological function such as organ volumes or blood flow rates, large amounts of prior
information would be available. Such models would then be suited to integrate data
from a lot of different clinical studies iteratively. All information gained could be
transferred to the next analysis and at the same time be collected in a physiological
database for later use, since the overall model structure does not change.

Furthermore, recent Bayesian analyses with physiological models did not focus
on the technical aspects, in particular the set up of MCMC algorithms. However,
standard approaches such as the MH algorithm are ineffective when dealing with
high dimensional parameter spaces and models with large numbers of ODEs. This
would be another advantage of a generic workflow: The MCMC algorithm could
be adapted to consider the specific properties of the model structure and thereby
increase the speed and efficacy of the parameter estimation.

The objective of this thesis is therefore the development of a Bayesian popula-
tion PBPK approach that is applicable for assessment of interindividual variability
and translational learning. An overall workflow needs to be developed that incorpo-
rates a generic, mechanistic and highly-detailed PBPK model and takes into account
the specific properties of such models, for example existing covariate relationships
or a priori independence between model parameters due to their biological inter-
pretability. The derived Bayesian population PBPK approach should facilitate and
support translational learning. Furthermore, advanced MCMC algorithms should
be considered for improved performance and efficient use of the developed workflow.

The Bayesian population PBPK approach should be then qualified in application
examples that cover different scenarios for parameter identification and translation
along the drug development process.

1.4 Outline
Chapter 2 presents the development of the Bayesian population PBPK approach.
The chapter is separated into several sections that describe the different parts of the
overall approach. These include the overall model structure, the Bayesian frame-
work, MCMC sampling and a concept for translational learning.

We apply the approach to several scenarios to demonstrate its usability. Chapters
3, 4 and 5 present application examples of the Bayesian population PBPK workflow.
Pros and cons of the approach are discussed per application example, since they arise
in the application of the developed framework. Chapter 6 gives a conclusion of the
derived results.
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Chapter 2

Bayesian population PBPK
approach

In this chapter, the development of a Bayesian population physiologically-based
pharmacokinetic (PBPK) approach is described [10–12]. The approach shall be able
to efficiently estimate the high-dimensional distribution of unknown model param-
eters of a generic mechanistic PBPK model. The resulting parameter distribution
then allows assessment of interindividual variability in clinically-relevant patient
populations and the quantification of the physiological and absorption, distribution,
metabolization and excretion (ADME)-related sources.

In brief, the overall approach is established by the consideration of several mod-
eling concepts: A generic, highly detailed whole-body PBPK model constitutes the
model kernel and provides a mechanistic representation of human physiology [52,56].
This allows for a separated consideration of physiological parameters and substance-
specific parameters. A Bayesian framework is chosen to provide a statistical basis for
efficient use of prior information about the different types of parameters in a PBPK
model. Furthermore, the Bayesian paradigm supports a computationally intensive,
but straightforward way to estimate the parameter distributions, in particular by
Markov chain Monte Carlo (MCMC) methods [55] (Figure 2.1). Within the Bayesian
framework, a nonlinear mixed-effects model is incorporated to establish a two level
approach for the identification of population characteristics and the identification of
the underlying individual parameters [29]. A block-wise MCMC approach is used to
identify the high-dimensional parameter distribution. For an improved performance
of the MCMC runs, an adaptive method is presented that uses and tunes a combi-
nation of previously established MCMC samplers [43,57,58]. In addition, a covariate
model accounts for systematic variability that can be explained by the covariates
age, gender and body height. For population simulations using the inferred distribu-
tions, we present a framework for estimating the posterior dependency structure and
identify significant correlations of physiological parameters within the population.
Subsequently, a translational learning workflow is presented, where the developed
Bayesian population PBPK approach is iteratively used for a continuous generation
of knowledge about the physiology of a diseased population and the characteristics
of a new candidate drug to finally predict the pharmacokinetic (PK) behavior of the
candidate drug in the diseased population.

Section 2.1 introduces the various types of parameters and indices as well as
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Figure 2.1: The combination of MCMC sampling with the deconvoluted model structure
of a mechanistic PBPK model allows to identify the personalized physiology of individ-
uals on the one hand and global compound parameters on the other hand in the joint
posterior distribution. Such possible attribution of obtained knowledge enables the sepa-
rated transfer of physiological or drug-specific information to new scenarios, e.g. in a drug
development process.

basic functions that are used in several parts of this work. Section 2.2 defines the
PBPK- and the hierarchical model and introduces covariate relationships to link the
population level and the individual level and explain systematic variability of model
parameters. Section 2.3 introduces the Bayesian framework, where the full Bayesian
theorem is defined and the likelihood as well as the prior distributions are specified.
In Section 2.4, the sampling structure is presented that is used to account for the
specific types of parameters during MCMC sampling for increased performance of
the approach. The specific sampling of organ volumes due to a sum constraint is
explained further. The establishment of a specific adaptive MCMC sampling method
is introduced in Section 2.5. Section 2.6 deals with the simulation of the derived
results on the PK level. Thereby, the estimation of an a posteriori dependency
structure is explained. The development of a translational learning concept is then
illustrated in Section 2.7. Finally, the implementation of the approach is briefly
explained in Section 2.8.

2.1 Preliminaries

In this section, we define and list important parameters, indices and functions that
are used in the following sections describing the development of the Bayesian pop-
ulation PBPK approach.
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Table 2.1: List of parameters and symbols used to define the Bayesian population PBPK
model framework

parameter symbol

age A
dose D
gender G
height H
identity matrix I
population mean value M
population standard deviation S
truncated normal distribution function T
acceptance probability pAc
allometric scaling constant α
experimental data y
fix model parameter ν
fixed effects ψ
full parameter set of all variable parameters ω
Hastings ratio rH
individual characteristics ξ
intraindividual variation e
measurement error σM
PBPK model function f
population model function g
proposal density function q
random effects η
scaling variable (a,b for age-scaling, c for height-scaling) sv
simulation output ỹ
standard deviation of proposal density σP
time point t
variable model parameter θ

Parameters and indices

Generally, lower-case and upper-case letters in normal font denote single parameters,
while lower-case and upper-case letters in bold font denote parameter vectors. The
form of experimental data being available is often diverse, as for example the exper-
imental data for one individual can contain more data points than that for another
individual. The same is for different observed species such as urinary excretion or
venous plasma. This is why matrices are not considered. Such a structure can be
better specified in a vector notation.

For a better overview and for referencing, we here further list the most important
parameters and indices: Table 2.1 lists the parameters that are needed for the
description of the following approach, while Table 2.2 lists the considered indices to
describe e.g. a certain parameter or individual.
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Table 2.2: List of indices and symbols used to define the Bayesian population PBPK model
framework

index symbol

individual parameter I
global parameter G
number of individuals i = 1 . . . N
number of observed species (e.g. venous plasma) o = 1 . . . Oi

number of time points j = 1 . . . Ti,o
number of individual parameters k = 1 . . . K
number of global parameters l = 1 . . . L
number of fix parameters m = 1 . . .M
number of grid points related to age p = 1 . . . P
number of grid points related to gender q = 1 . . . Q
number of sampling blocks b = 1 . . . B
number of organ volumes v = 1 . . . V

Figure 2.2: Example for the use of truncated normal distributions. In case of known lower
(lb) and upper bounds (ub) for a random variable x ∼ N (µ, σ) based on physiological
constraints, the symmetric normal distribution with mean value µ and standard deviation
σ needs to be defined as truncated normal distribution T (Equation 2.1).
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Supporting functions

For physiological parameters often physiological constraints are known, which limit
the possible parameter space for these parameters. In such cases, the probability
density for an arbitrary random variable, that is for example normally distributed
with x ∼ N (µ, σ), needs to be defined as truncated distribution to account for
imbalances of the underlying distribution (Figure 2.2).

In this work, we need a formulation for a truncated normal distribution to define
truncated normal and lognormal distributions (due to the transformation from a
lognormally distributed variable x to a normally distributed variable y: y = ln (x))
that represent the prior distributions of physiological parameters. We here define
the probability density of the truncated normal distribution as

T (x;µ, σ, lb, ub) =
1
σ
· φ
(
x−µ
σ

)
Φ
(
ub−µ
σ

)
− Φ

(
lb−µ
σ

) , lb ≤ x ≤ ub, lb 6= ub (2.1)

and T = 0 elsewhere. φ and Φ denote the probability density and cumulative
distribution function, respectively, of the standard normal distribution, with mean
value µ and standard deviation σ. lb and ub are the lower and upper bound of
the random variable x. Notably, the truncated normal distribution is a probability
density function as it integrates to one.

In later sections, we will just refer to Equation 2.1 to simplify the representation
of some equations.

Remark. To further simplify the representation of some equations, we state: If a
function f is only defined for a specific range of values (such as a < x < b), this
will implicit automatically that for all other values of x: f(x) = 0.
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2.2 The model framework
In this section, the specific model framework is presented. The approach to describe
the population PBPK model consists of: (i) the PBPK model itself to describe the
concentration-time curve of a drug in single individuals, (ii) a proportional error
model to account for measurement uncertainty, (iii) a covariate model to integrate
known systematic relations between PK parameters and individual characteristics
and (iv) a population model to be able to describe remaining interindividual vari-
ability of the PK parameters in a population.

2.2.1 Definition of the PBPK model
Whole-body PBPK models aim for a mechanistic description of the PK behavior of
endogenous and exogenous substances in the body. Such mechanistic consideration
allows a detailed representation of all important ADME processes and the individual
physiology based on a large amount of prior information [18,22,59]. The basic idea
is to set up a compartmental structure which includes all relevant organs and tissues
as containers (Figure 2.3a). All compartments are further subdivided into smaller

Figure 2.3: Illustrations of the mechanistic PBPK model structures. (a) Generic compart-
mental structure of a whole-body PBPK model, from [60]. (b) Schematic illustration of
organ representation in PK-Sim from [56], where C are concentrations, Q flow rates, P ·SA
permeability - surface area products, pl plasma, org organ, rbc red blood cells, K partition
coefficients,Meta metabolization reactions represented by e.g. Michaelis-Menten kinetics,
Vmax,Km Michaelis-Menten kinetic parameters.

well-stirred units which describe e.g. intracellular space and extracellular space in
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more detail (Figure 2.3b). An underlying distribution model connects all compart-
ments via mass balance equations representing physiological transport such as blood
flow (between the organ compartments) or passive diffusion through cell membranes
(between for example intracellular and interstitial space) [61–63]. The assumption
of well-stirred compartments is key in the PBPK model. It allows to describe the
model as a system of linear ODEs or also nonlinear ODEs (in case that nonlinear
equations such as Michael-Menten kinetics are used to describe active processes, for
example transport across membranes) [18].

The originating system of ODEs can be solved numerically for example with
CVODE [64], which results in concentration-time curves of a certain substance in
each considered compartment and subcompartment. That allows to predict concen-
tration profiles directly at the mode of action of a certain xenobiotic, e.g. in the
intracellular space of the liver [63].

Prior anatomical and physiological information is used to parameterize PBPK
models, since all parameters are related to explicit biological functions. The phys-
iology of an individual is determined by its anthropometry, such as age, gender,
ethnicity, body height (BH) and body weight (BW). Based on these values, or-
gan volumes and blood flow rates are extracted from physiological databases. The
distribution model is parameterized by only few substance-specific parameters such
as molecular weight, lipophilicity and protein binding. Notably, lipophilicity is of-
ten expressed as logarithmic of the partition coefficient between octanol and wa-
ter (logP) and protein binding is often expressed as unbound protein fraction (fu).
These parameters are used to determine permeabilities across membranes and par-
tition coefficients between compartments [61,62,65–67]. In addition to such passive
processes, active transport-, metabolization-, and excretion processes are integrated
into the model based on the specific PK behavior of a substance. These processes
can be represented as first or second order rate kinetics, such that also nonlinearities
are considered if needed.

Beside the physiological parameters and the substance-specific parameters, im-
portant model parameters that need to be determined are ADME-related parame-
ters such as catalytic constants of active transport and metabolization or excretion
processes. Further absorption-related parameters are the intestinal permeability
or gastric emptying and intestinal transit times. For a detailed review of PBPK
modeling and its applications, please refer to [18,52].

The current state of the dynamical system ’PBPK model’ can be defined as:

ỹi = f(θIi ,θG,νi, ti, Di), (2.2)

where for individual i, ỹi =
(
ỹi,1,1, . . . , ỹi,1,Ti,1 , ỹi,2,1, . . . , ỹi,2,Ti,2 , . . . , ỹi,O,1, . . . , ỹi,O,Ti,O

)
is the vector of all model outputs ỹi,o,j of a certain simulation for the observed species
o = 1, . . . , O and time points j = 1, . . . , Ti,o. When necessary, ỹ denotes the con-
catenated vectors ỹi for all individuals i = 1, . . . , N . The underlying PBPK model
is formalized by a function f taking the following arguments:

• the individual parameters θIi =
(
θIi,1, . . . , θ

I
i,K

)
, where θIi,k with k = 1, . . . , K is

the kth individual parameter for individual i and when necessary, θI denotes
the concatenated vectors θIi for all individuals i = 1, . . . , N ,
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• the global, substance-specific parameters θG =
(
θG1 , . . . , θ

G
L

)
where θGl with

l = 1, . . . , L is the lth substance-specific parameter for individual i,

• remaining model parameters νi = (ν1, . . . , νM) where νm with m = 1, . . . ,M
is the mth parameter for individual i,

• time points ti, where ti and ti,o,j are similarly defined as ỹi,

• dose Di, which denotes the administered dose for individual i.

Thereby, individual parameters define the physiology of the individual such as organ
volumes or blood flow rates as well as individual ADME properties. Substance-
specific parameters, e.g. the lipophilicity or fu remain the same for all individuals.
Therefore, they are also called global parameters. Both, individual- and global
parameters need to be identified. In contrast, the remaining model parameters
νi are considered as fixed parameters and are not included into the identification
process. Experimental data is often obtained for several species, e.g. venous blood
plasma and urinary excretion or the concentration in plasma of the parent drug
and its metabolite(s), which requires the observation of several species in the PBPK
model.

2.2.2 Definition of the hierarchical model
Experimental data, such as e.g. concentration-time curves obtained during clini-
cal investigations, are described with individual-specific PBPK models. However,
interindividual variability in the PK outcome needs to be identified for a thor-
ough description of a population and the extrapolation of the derived results to
other investigations. To assess the interindividual variability of the population, the
description of the individuals alone is not sufficient. Especially in early clinical
phases, only a small number of individuals are integrated into the investigations,
such that a thorough extrapolation of population characteristics and the identifi-
cation of sources of variability are not well founded. Furthermore, an independent
consideration of the individuals would not account for similarities between them.
Similarities are, however, expected, since clinical studies usually are conducted in
homogeneous groups of healthy volunteers or patients to identify the PK behavior
of a drug in a controlled environment. For that, a second hierarchical level is needed
in the model which describes the relations between the individual parameters in a
functional form. Furthermore, prior information about model parameters is often
provided at a population level.

We therefore consider a hierarchical model approach (Figure 2.4) which is defined
as [11,29]:

θIi = g(ξi,ψ,ηi), ηi ∼ N (0,R), (2.3)

yi = f(θIi ,θG,νi, ti, Di) · (1 + ei),
= ỹi · (1 + ei),

ei ∼ N (0,σ2
M).

(2.4)
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Figure 2.4: Schematic illustration of the hierarchical model concept (adapted from [14])
Experimental data y is provided specifically for an individual i, observed species (such
as venous plasma) o and time points t. Such data can be described on an individual
level with individual-specific physiological parameters θI and global substance-specific
parameters θG. All individuals are linked at a population level, which is specified by
population parameters ψ. In the here presented approach, population parameters are
defined as mean values Mk and standard deviations Sk for parameter k.

Equation 2.3 represents the population level, where interindividual variability of the
individual parameters is described by function g taking the following arguments:
individual characteristics ξi such as e.g. age or BW, fixed effects ψ in the following
referred to as population parameters and individual-specific random effects ηi, which
are assumed to be multivariate normal distributed with covariance matrix R.

Equation 2.4 represents the individual level, where specific for individual i, yi is
the vector of all experimental data yi,o,j for the observed species o and time points j.
yi and also the intraindividual variation ei are similarly described as ỹi, which was
already defined in Section 2.2.1. When necessary, y denotes the concatenated vectors
yi for all individuals i = 1, . . . , N . The error model was chosen as proportional error
model, thereby taking into account only the measurement uncertainty σ2

M . This is a
common assumption as for PK applications the measurement error is usually much
larger than the true intraindividual variation and the measurement error becomes
larger when the to be measured concentration value increases [29,68]. Measurement
uncertainty σ2

M =
(
σ2
M1 , . . . σ

2
MO

)
is assumed to be normally distributed with mean

equal to zero and specific for observed species o but not for individual i.
With the hierarchical model, it is now possible to describe interindividual vari-

ability. All individuals are linked within a population model, which is specified by
the population parameters ψ. The population parameters are unknown and need to
be identified. Within the population, interindividual variability can be described by
systematic variation according to physiological covariates ξi. A distribution assump-
tion is needed to further specify remaining variation ηi, which cannot be assigned
to a specific covariate and which is referred to as unexplained variability in the
following.

Generally, there is no specific form of g and several functions can be used to de-
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scribe the relationship between a specific individual parameter θi,k and covariates like
age, gender or BW in PBPK models. Organ volumes and blood flow rates represent
typical parameters that can be derived by covariate scaling. Several approaches exist
where different types of scaling functions are considered. In particular, Willmann et
al. [8] used age, gender and BH, while Price et al. [69] employed several regression
equations to generate parameters dependent on the anthropometry of a respective
individual. In an approach by Huisinga et al. [70] scaling was presented depen-
dent on the lean body weight (LBW ), which is defined as LBW = BW − OWadi,
whereby OWadi represents the organ weight of the adipose tissue. In this thesis, the
model from Willmann et al. is considered for the definition of the covariate model
of Equation 2.3. The integration is described in detail in the following.

2.2.3 Definition of the covariate model
As mentioned above, we here describe systematic interindividual variability by co-
variate scaling with age, gender and body height (BH) from Willmann et al. [8].
For covariate scaling, we use the information from the physiological data base of the
considered PBPK modeling software tool (see Section 2.8).

Structure of the physiological database

Age- and gender-specific population distributions of individual parameters are de-
fined on a grid where the number of grid points is P ·Q and p = 1, . . . , P, q = 1, . . . , Q
[13,63]. The grid is spanned in ten year age bins from 20 to 100 years and specific for
gender [8,13,56], with A = (A1, . . . , AP ), G = (G1, . . . , GQ) and Ap, Gq represent-
ing the age and gender at grid point [p, q]. The population distribution is defined
by distribution type (normal and lognormal, respectively) and the associated mean
value and standard deviation, such that for a parameter k:

Mk =
(
Mk

A1,G1 , . . . ,M
k
AP ,G1 ,M

k
A1,GQ

, . . . ,Mk
AP ,GQ

)
,

Sk =
(
SkA1,G1 , . . . , S

k
AP ,G1 , S

k
A1,GQ

, . . . , SkAP ,GQ

)
,

(2.5)

whereMk is the vector of all population mean values Mk
Ap,Gq

for age Ap and gender
Gq and Sk is the vector of all population standard deviations SkAp,Gq

for age Ap and
gender Gq. Notably, gender is a categorical covariate and Q = (1, 2), however, we
write an index q for formal reasons. M and S are the concatenated vectors of all
Mk and Sk with k = 1, . . . , K, respectively.

Information about BH is also available, such that a reference height Href can be
defined for each grid point as:

Href =
(
Href
A1,G1 , . . . , H

ref
AP ,G1 , H

ref
A1,GQ

, . . . , Href
AP ,GQ

)
. (2.6)

Figure 2.5 depicts the age dependent distribution of liver volume for male indi-
viduals as an example. Such information was generated by accumulation of several
autopsy studies where each study was weighted with the number of individuals
studied in the respective investigation [13].
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2.2 The model framework

Figure 2.5: The covariance information for age is depicted exemplarily for liver volume in
male individuals. The mean valuesMk (grey dots) and the standard deviations Sk (black
errorbars) are illustrated for each age bin (see also Equation 2.5 for comparison).

Taking the described covariance information into account, the population model
(Equation 2.3) is parameterized with:

ξi = (Ai, Gi, Hi) ,
ψ = (M ,S) ,

(2.7)

where Ai, Gi and Hi represent the age, gender and BH of individual i, respectively.
The random effects model is simplified by assuming a priori independence be-

tween the individual paramters, such that

ηi,k ∼ N (0, 1). (2.8)

Scaling by age

For a specific individual i, age dependent scaling for a parameter k is then performed
by linear interpolation, such that

m (Ai, Gi,Mk) =Mk
Aa,Gi

· sva +Mk
Ab,Gi

· svb,
s (Ai, Gi,Sk) =SkAa,Gi

· sva + SkAb,Gi
· svb,

(2.9)

where m (Ai, Gi,Mk) is the age-scaled population parameterM and s (Ai, Gi,Sk) is
the age-scaled population parameter S. Thereby, the two scaling variables sva and
svb are defined as

sva = Ab − Ai
Ab − Aa

, svb = Ai − Aa
Ab − Aa

, (2.10)

where Ab represents the age of the nearest upper grid point where Ab > Ai and Aa
represents the age of the nearest lower grid point where Aa < Ai.

Scaling by body height

Scaling of the population parameters based on the individual body height BHi is
performed continuously using an allometric scaling function. Thereby, a reference
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Table 2.3: Values for the height scaling parameter α [8].

parameter α

bone volume 2
brain volume 0
fat volume 2

muscle volume 2
skin volume 1.6
∀ other volumes 0.75
∀ non-volumes 0

body height for individual i is determined by linear interpolation again. For linear
interpolation, the reference body heights of the age bins are considered (see Equation
2.6).

svc (Ai, Gi, BHi,Href , αk) =
 BH i

Href
Aa,Gi

· sva +Href
Ab,Gi

· svb

αk

. (2.11)

svc (Ai, Gi, BHi,Href , αk) is then the scaling variable for the population parameters
M and S based on body height. The allometric scaling constants αk are shown
in Table 2.3. They are specific for parameter k and in particular considered for
organ volumes. For all parameters not representing an organ volume scaling by
body weight is not performed, such that α = 0 for convenience [8].

Composing the population model

Finally, the different assumptions of the probability distribution of a physiological
parameter needs to be taken into account. For example, in the physiological database
liver volume is assumed to be normally distributed in a population , while fat volume
is assumed to be lognormally distributed [63].

The population model of Equation 2.3 is hence defined for a normally distributed
individual parameter θIi,k as:

θIi,k = gk ([Ai, Gi, Hi] , [Mk,Sk] , ηi,k)
=m (Ai, Gi,Mk) · svc (Ai, Gi, Hi,Href , αk)

+ s (Ai, Gi,Sk) · svc (Ai, Gi, Hi,Href , αk) · ηi,k,
(2.12)

and for a log normally distributed individual parameter as:

θIi,k = gk ([Ai, Gi, Hi] , [Mk,Sk] , ηi,k)
= exp(m (Ai, Gi,Mk) + log (svc (Ai, Gi, Hi,Href , αk))

+ s (Ai, Gi,Sk) · ηi,k),
(2.13)

By using Equations 2.12 and 2.13, the population model becomes linear and is
described by age-, gender- and height-scaled mean values and standard deviations.
Furthermore, independence is assumed a priori in the random effects ηi, since no
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2.2 The model framework

information about dependencies between parameters is available. This will be helpful
for the consideration of the population model as a prior distribution for θIi , as
described below in Section 2.3.3.

In summary, θI , θG, M , S and σ2
M are the parameter vectors which now need

to be identified in the presented model framework to be able to describe individual-
specific experimental data and assess the interindividual variability in the popula-
tion.
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2.3 The Bayesian framework
The whole model approach of Section 2.2.1 is formulated within a Bayesian frame-
work which allows for efficient integration of prior knowledge about the parameters.
Furthermore, the Bayesian model approach defines an unknown parameter as ran-
dom variable and assigns it a probability distribution such that uncertainty about
each parameter is automatically derived with the approach.

In Section 2.3.1, the full Bayesian theorem is defined given the previously de-
scribed model framework. In sections 2.3.2 and 2.3.3, the specific considerations of
the likelihood and the prior distributions according our Bayesian-PBPK approach
are presented, respectively.

2.3.1 Specification of the Bayesian theorem
The central idea in Bayesian statistics is to define a parameter as a random variable
with a probability distribution. This is in contrast to the general definition in
frequentist statistics where a parameter is considered as a fixed but unknown value
[71]. Bayesian statistics is based on Bayes’ theorem [72]

p(ω|y) = p(ω) · p(y|ω)
p(y) (2.14)

which combines the prior distribution p(ω) containing the recent “degree of belief”
about arbitrary parameters ω = (ω1, . . . , ωK) with the likelihood p(y|ω) of new ob-
served data y being described by parameters ω in the posterior distribution p(ω|y).
The unscaled form of the posterior distribution

p(ω|y) ∝ p(ω) · p(y|ω) (2.15)

can be used to determine the shape of the posterior or to identify the modes of the
posterior. Only the full scaled form of Bayes’ theorem can be used for inference.
However, the scaling factor p(y) is the full dimensional integral

p(y) =
∫
. . .
∫
p(ω|y) dω1 . . . dωK . (2.16)

Obviously, when ω becomes high-dimensional, the numerical determination of p(Y )
is not feasible, such that the exact determination of the posterior distribution is
intractable [71]. In such cases, Markov chain Monte Carlo approaches can be used
to estimate the posterior distribution as is explained in a later section.

By integration of the PBPK model approach from Section 2.2.1 into the Bayesian
framework, ω is defined as

ω = (θI ,θG,M ,S,σ2
M), (2.17)

and the unscaled Bayesian theorem is formulated as

p
(
θI ,θG,M ,S,σ2

M |y
)
∝ p

(
y|θI ,θG,M ,S,σ2

M

)
· p
(
θI ,θG,M ,S,σ2

M

)
(2.18)

The PBPK model structure allows to further modify this equation. First, the likeli-
hood term (the first term on the right side of Equation 2.18) is not influenced by the
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population parameters M and S, since these parameters are no direct variables of
the PBPK model. Furthermore, we assume independence between the single indi-
viduals, since the PBPK model output as well as the experimental data for a certain
individual i are not influenced by another individual. Therefore, the likelihood can
be factorized:

p
(
y|θI ,θG,M ,S,σ2

M

)
∝

N∏
i=1

p
(
yi|θIi ,θG,σ2

M

)
(2.19)

Regarding the definition of the prior, the mechanistic formulation of the PBPK
model further allows assuming independence between the individual and global,
substance-specific parameters. In addition, independence can be assumed between
the measurement error and the model parameters. The only a priori relationship
between parameters has to be considered between θI and the population parameters
which is a natural consequence of the hierarchical model formulation including the
covariate approach. However, this part of the prior can also be factorized, due to
the assumption of independence between the individuals [73].

Finally, the Bayesian theorem is defined in log space for easier computation. Due
to these assumptions, Equation 2.18 can be written as:

log
(
p
(
θI ,θG,M ,S,σ2

M |y
))
∝

N∑
i=1

log
(
p
(
yi|θIi ,θG,σ2

M

))

+
N∑
i=1

log
(
p
(
θIi |M ,S

))
+ log

(
p
(
θG
))

+ log (p (M )) + log (p (S))

+ log
(
p
(
σ2
M

))
.

(2.20)

By such consideration, the Bayesian formulation also emphasizes the separation of
the individual level model (Equation 2.4) that is included in the likelihood term (row
2 of Equation 2.20), the population level model (Equation 2.3) which is represented
in row 3 and the prior distributions (rows 4 and 5).

2.3.2 Specification of the likelihood
The likelihood function represents the link between PBPK model and Bayesian
framework, as the likelihood function evaluates how well the experimental data are
described by the PBPK model given a specific parameter vector (remember that
ỹi = f(θIi ,θG,νi, ti, Di)). In particular, the PBPK model is evaluated with the
current parameter vector to determine the residuals between simulation output ỹi
and experimental data yi. The likelihood is then obtained under consideration of the
defined error model and the assumption that the residuals are normally distributed
with mean equal to zero (Equation 2.4). Consequently, the smaller the residuals,
the larger the likelihood.

A specific form of experimental data is data below the lower limit of quan-
tification (LLOQ). In such cases, no exact experimental data point yi,o,j can be
determined. Especially when concentrations of metabolites of the given drug are
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measured or the administered dose has been small, concentrations fall below the
limit of the method of measurement and cannot be determined anymore. Never-
theless, a data point below LLOQ represents a valid and informative part of the
data and needs to be included into the determination of the likelihood. Hence, the
likelihood is defined separately for all data points larger than LLOQ and all data
points smaller than LLOQ. Here, we adapted an approach by Beal et al. [74]. For
individual i, the log-likelihood as defined in Equation 2.20 can be written as:

log
(
p
(
yi|θIi ,θG, σ2

M

))
=

O∑
o=1

J∑
j=1

log
(
p
(
yi,o,j|θIi ,θG, σ2

Mo

))
, (2.21)

with the likelihood of a specific time point j of an observed species o as

p
(
yi,o,j|θIi ,θG, σ2

Mo

)
=

1/
(√

2πσ2
Mo
· ỹi,o,y

)
· exp

(
−1

2 · r
2
i,o,j(yi,o,j)

)
1− Φ (ri,o,j(0)) (2.22)

for yi,o,j > LLOQ and

p
(
yi,o,j|θIi ,θG, σ2

Mo

)
= Φ (ri,o,j (LLOQ))− Φ (ri,o,j (0))

1− Φ (ri,o,j(0)) (2.23)

for yi,o,j < LLOQ, whereby

ri,o,j(x) = x− ỹi,o,j
σMo · ỹi,o,j

. (2.24)

Φ denotes the standard normal cumulative distribution function. For an explicit
concentration measurement yi,oj > LLOQ, Equation 2.22 determines the likelihood
that the residuals are normally distributed with zero mean and a variance propor-
tional to the simulation output ỹi,o,j. Thereby, the probability is corrected by the
assumption that concentration measurements cannot be negative to achieve higher
accuracy [74]. For a concentration measurement yi,oj ≤ LLOQ, also called censored
data point, in Equation 2.23 the cumulative probability is calculated for yi,o,j being
within the range of (0;LLOQ]. Thereby, all censored data points are also corrected
for the assumption of always being positive. The chosen way for dealing with LLOQ
data has shown to cause a smaller bias to the optimization results than setting
LLOQ values to LLOQ/2 or to zero, or even discard LLOQ data [74,75].

2.3.3 Specification of the prior distributions
The prior distributions contain all available initial information about the parameters
ω (see Equation 2.17) that need to be identified. Based on the heterogeneous amount
of information that can be found in physiological databases or publications, the
form of the prior distributions vary. Therefore, different types of distributions are
considered according to the present knowledge.

In cases where a lot of information is available for a certain parameter, such as
for the organ volumes, so-called informative prior distributions are defined. Notably,
the common assumption is that physiological values are distributed lognormally in
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a population [76–78]. In this work, normal or lognormal distributions are chosen
together with information about lower and upper bounds, because the considered
literature provides data describing both types of distributions [63] (please refer also
to Section 2.2.3).

If no information about a parameter exist, so-called uninformed prior distribu-
tions are chosen. These distributions contain only vague information about a pa-
rameter and usually only a parameter range is defined by a lower and upper bound.
Notably, the definition of upper and lower bounds for the model parameters, also
including the measurement uncertainty σ2

M , is very important. In particular, ab-
solute constraints form a major part of the prior since they define the scientifically
and physiologically reasonable range for each parameter [30]. In large models, like
PBPK models, several parameters can be weakly informed or even uninformed by
the experimental data. Such parameters are then only influenced by the prior. If
only vague information is available about the respective parameter, unphysiological
values could be obtained if no absolute constraints are set. In this work, uninformed
priors are defined for the global parameters θG and for few population parameters
M and S, since only sparse literature information is available for these parameters.

In the following, the prior definitions for the various types of parameters of the
Bayesian population PBPK approach are specified.

Global substance-specific parameters θG

Related to Equation 2.20, a continuous uniform distribution of the form

log
(
p
(
θG
))

=
L∑
l=1

log
(
p
(
θGl
))

(2.25)

and
p
(
θGl
)

= 1
θG,maxl − θG,minl

, θG,minl ≤ θGl ≤ θG,maxl (2.26)

is defined for the global substance-specific parameter θGl , where θ
G,min
l and θG,maxl

describe the lower and upper bound. Notably, independence is assumed between
the global parameters a priori.

The definition of informative prior distributions for substance-specific parameters
is challenging when performing the first investigation with a specific drug. Literature
values of parameters like lipophilicity or fu are derived only with large uncertain-
ties, since the measurements are often performed in unphysiological environments.
In particular, the logP is used to determine the lipophilicity of a drug thereby rep-
resenting the ability to dissolve in fatty liquids. In contrast, the lipophilicity in
a PBPK model defines the ability of a drug to permeate the cellular membrane.
Therefore, uninformed truncated uniform distributions are used for each θGl .

Population parameters M and S

Since population parameters M and S are also varied in the Bayesian popula-
tion PBPK approach they are assigned prior distributions, themselves. These are
called hyper priors since they define the prior distribution for a parameter of a prior
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distribution, particularly for that of an individual parameter θIi,k (Equation 2.20).
Hyperpriors are characterized by hyperparameters.

As no further information is available a priori, independence is assumed between
the K population mean values, furthermore, independence is also assumed between
the different grid points related to age and gender, such that

log (p (M )) =
K∑
k=1

log (p (Mk)) ,

log (p (Mk)) =
P∑
p=1

Q∑
q=1

log
(
p
(
Mk

Ap,Gq

))
.

(2.27)

Most population mean values Mk
Ap,Gq

are assigned informative hyper prior distribu-
tions, since for parameters such as organ volumes or blood flow rates probability
distributions are obtained from physiological databases. A truncated normal distri-
bution is defined for Mk

Ap,Gq
:

p
(
Mk

Ap,Gq

)
= T

(
Mk

Ap,Gq
, µMk

Aq,Gq
,Σ2

Mk
Aq,Gq

,Mk,min
Ap,Gq

,Mk,max
Ap,Gq

)
, (2.28)

where T is the function representing the truncated normal distribution as defined in
Equation 2.1, Mk,min

Ap,Gq
and Mk,max

Ap,Gq
denote the lower and upper bound, respectively,

for the population mean value for parameter k at grid point p, q. µMk
Ap,Gq

represents
the hyper mean value of the prior distribution for Mk

Ap,Gq
and Σ2

Mk
Ap,Gq

represents
the hyper standard deviation of the prior distribution for Mk

Ap,Gq
.

The informative hyper prior distribution for the population standard deviations
SkAp,Gq

are defined related to Equation 2.28.
Both, µMk and µSk are parameterized by the grid values in the physiologi-

cal database; however, the uncertainties Σ2
Mk and Σ2

Sk are unknown. A common
assumption is to define the coefficient of variation (CV) to lie between 20% and
100% [30,73,79]. However, this always depends on the degree of belief in the respec-
tive values. In our case, the database entries rely on measurements of large numbers
of individuals. Therefore, we trust in the given mean values such that we generally
define a CV of 20% as the uncertainty of each Mk

Ap,Gq
and a CV of 50% for each

SkAp,Gq
. If other uncertainties are chosen, these changes are stated in the application

examples below.
For uniformed Mk

Ap,Gq
the prior is defined in accordance to Equation 2.26. How-

ever, uninformed prior distributions for SkAp,Gq
are defined as inverse-gamma distri-

bution
SkAp,Gq

∼ invGamma(a, b), Sk,minAp,Gq
≤ SkAp,Gq

≤ Sk,maxAp,Gq
. (2.29)

Due to the assumption of a rather homogeneous population, we use a skewed dis-
tribution that has higher probability for small values of Sk instead of a uniform
distribution and generally parameterize the inverse gamma distribution with a = 1
and b = 0.22, leading to a CV of about 50% [79]. However, the long tail allows large
variabilities in cases of unexpected heterogeneity within the population.
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Measurement uncertainties σ2
M

The prior for the measurement uncertainties σ2
M are defined as Jeffrey’s priors.

Jeffrey’s prior is a scale-invariant prior and is a common uninformed prior for mea-
surement uncertainties [71,80]:

log(p(σ2
M)) =

O∑
o=1

log( 1
σ2
Mo

), σ2min

Mo
≤ σ2

Mo
≤ σ2max

Mo
, (2.30)

where σ2min

Mo
and σ2max

Mo
describes the lower and upper bound for the measurement

uncertainty of the observed species o.

Individual parameters θI

The prior distribution for the individual parameters θI is given by the population
model in Equation 2.12, such that:

log
(
p
(
θIi |M ,S

))
=

K∑
k=1

log
(
p
(
θIi,k|M ,S

))
(2.31)

and for a normally distributed individual parameter θIi,k:

p
(
θIi,k|M ,S

)
= T

(
θIi,k,M

k(Ai, Gi, Hi), Sk(Ai, Gi, Hi), θI,mini,k , θI,maxi,k

)
, (2.32)

where T is the function representing the truncated normal distribution as defined
in Equation 2.1, θI,mini,k and θI,maxi,k describes the lower and upper bound, respec-
tively, for individual parameter k and individual i, Mk(Ai, Gi, Hi) = m · sc and
Sk(Ai, Gi, Hi) = s · sc describe the age-, gender- and height-scaled mean values and
standard deviations, respectively, as previously defined by Equations 2.12 and 2.9.
For a log normally distributed individual parameter θIi,k, population mean value
Mk(Ai, Gi, Hi) and standard deviation Sk(Ai, Gi, Hi) are defined by Equations 2.13
and 2.9 and Equation 2.32 describes the truncated normal distribution for log

(
θIi,k

)
.

The clear demarcation of the prior distributions further highlights the effect
of the hierarchical model definition. Population variability of a parameter k is
described by Sk. The hyper priors specify the uncertainty about such variability
in the parameters b of the inverse gamma distribution in Equation 2.29 or Σ2

Sk of
the truncated normal distribution (Equation 2.28). Additionally, uncertainty of the
population mean value is defined by Σ2

Mk . Therefore, a clear separation between
variability and uncertainty is achieved [73].
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2.4 Classic Markov chain Monte Carlo sampling

As described above in section 2.3.1, the direct determination of the posterior distri-
bution is intractable for high-dimensional parameter vectors. The assessment of the
parameter space of a PBPK model leads to very high-dimensional vectors, especially
when large cohorts of individuals are included and due to the hierarchical approach.
As an example how quick the parameter space can enlarge, we can consider a first
in-man study during the drug development process, which usually includes about 10
healthy male individuals aged between 20 and 40 years. Within our PBPK model
around 40 parameters should be integrated, including e.g. organ volumes, blood flow
rates and enzyme activities. In addition, population parameters are considered for
each age bin. This example would already result in 640 parameters that have to be
identified (N individuals×K parameters+3 age bins×2 population parameters×
K parameters), even without the number of global parameters θG and measure-
ment uncertainties σ2

M that additionally need to be considered. Therefore, for the
determination of the posterior distribution, a Markov chain Monte Carlo approach
is used.

In this section, we present a blockwise Metropolis-Hastings (MH) approach to
cope best with our described model structure and the properties of our PBPK model
as well as the high dimensionality of our parameter space. First we describe the clas-
sic MH algorithm in Section 2.4.1. In Section 2.4.2 the block structure is illustrated.
In Section 2.4.3 we present how organ volume constraints need to be treated adap-
tively during the sampling procedure due to an additional sum constraint.

2.4.1 Metropolis-Hastings algorithm

Markov chain Monte Carlo (MCMC) approaches describe a growing class of sampling
algorithms that allow estimating the posterior distribution by drawing a large sample
out of it. In contrast to classical Monte Carlo sampling, MCMC methods sample
along a Markov chain that has the posterior distribution as its long-run stationary
distribution [81]. After a so-called burn-in period which is necessary to converge
from an initial parameter vector to the stationary distribution, each iteration of the
MCMC approach represents a parameter vector out of the posterior distribution.
To ensure that sampling is performed along a Markov chain that has the posterior
distribution as its stationary distribution the reversibility theorem must be satisfied

p(ω|y) · q(ω,ω′) = p(ω′|y) · q(ω′,ω) (2.33)

where q(ω, ·) is the candidate or proposal density that generates a new value ω′
given the current value ω [71].

MCMC approaches have been first developed by Metropolis et al. [33] and Hast-
ings [82], who generalized the Metropolis algorithm. This MH algorithm forms the
basis of most MCMC algorithms that have been developed so far. For more infor-
mation about the vast amount of MCMC approaches and the important concepts
such as convergence, please refer to [55].
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A sampling step of the MH algorithm is performed as follows:

1. Let ω0 be the initial parameter vector and let ω(n) be the parameter vector
after n steps.

2. Propose a candidate vector ω′ from a predefined proposal density q(ω(n), ·).

3. With the Hastings ratio

rH = p (ω′|y) · q (ω′,ω(n))
p (ω(n)|y) · q (ω(n),ω′) , (2.34)

the candidate vector ω′ is accepted with acceptance probability pAc

pAc(ω(n),ω′) = min [1, rH ] . (2.35)

4. Draw a uniform distributed random variable u ∼ U(0, 1). If u < pAc(ω(n),ω′),
then ω(n+ 1) = ω′, otherwise ω(n+ 1) = ω(n).

By including the ratios of transition probabilities, rH guarantees that the reversibil-
ity condition is always satisfied, even under consideration of asymmetric proposal
distributions [55,71].

The careful consideration of the proposal density is crucial to the performance
of the MH algorithm. If the proposal density is badly chosen, the MH algorithm
would converge very slowly to the stationary distribution of the Markov chain. The
most common proposal approach is the random-walk algorithm, where

q(ω(n), ·) = N
(
ω(n),σ2

PIK
)

(2.36)

where IK is the identity matrix of dimension K. The challenge here is to find well-
scaled variances σ2

P . If a certain σ2
Pk

is too small, the acceptance rate would be
very high, but the movements would be small such that mixing of the chain would
be bad. However, if σ2

Pk
is too large, mixing would also be very bad due to a very

low acceptance rate [55]. Roberts et al. [83] proved that the optimal acceptance
rate for dimension K →∞ is 23.4%, whereby an efficiency of about 80% would be
obtained for acceptance rates between around 15% and 50% [84]. To efficiently scale
the variances several pre-runs with different values for σ2

Pk
can be considered to find

a sufficient proposal distribution [55].

2.4.2 Blockwise sampling
Based on the formulation of the Bayesian model framework of Section 2.3, the
whole parameter vector ω of the multidimensional posterior distribution is defined
in Equation 2.17 as

ω = (θI ,θG,M ,S,σ2
M).

Due to the large number of parameters, the application of the standard MH algo-
rithm would lead to a very small acceptance rate of the Markov chain, since the
probability is small that all parameters iterate in the direction of higher probability.
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Figure 2.6: Schematic illustration of the block-wise sampling process considered for effec-
tive parameter sampling. Separate blocks are considered for all types of parameters. The
population parameters M and S are sampled related to gender G and individually for
each of K parameters. Individual parameters are sampled blockwise for each of N indi-
viduals. In each block, the full MH sampling scheme is performed. The sampling scheme
is carried out in each of niter iterations.

Therefore, we adapt the standard procedure and does not vary the full parameter
vector ω in one sampling step.

In particular, a blockwise MH approach is applied in our Bayesian popula-
tion PBPK approach [11,71]. It separates the parameter space into several blocks
b = 1, . . . , B with regard to the biological interpretation of the parameters. The
arrangement into blocks is depicted in Figure 2.6 and considered as follows: All pa-
rameter types of ω (Equation 2.17) are assumed to be independent or only slightly
dependent from each other such that they can be considered into independent sam-
pling groups. The measurement uncertainties σ2

M are added into the sampling group
of the global substance-specific parameters θG since the number of σ2

M tends to be
small and σ2

M also vary globally. The individual parameters θI are divided into
N groups such that all parameters of a certain individual are varied in a certain
block. The population parameters M and S are further divided into 2K groups,
such that all grid points for a specific parameter k and a specific gender are sam-
pled in one group. On the one hand, this should account for the assumption that
two population parameters are only little correlated on a population level and for
different genders, such that a consideration in separated block is possible. On the
other hand, a certain population parameter of a specific age bin, e.g. liver volume
at the age of 30 years, however, may be dependent to the parameters at the age bins
nearby, due to the linear interpolation approach in the covariate model (Equation
2.9). Therefore, these parameters are sampled in one group.
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2.4 Classic Markov chain Monte Carlo sampling

Sampling is performed independently for each block. In each block, the standard
MH workflow is used as described in Section 2.4.1. The Hastings ratio (Equation
2.34) is therefore defined as:

rH = p(ω′b|y,ω−b(n))
p(ωb(n)|y,ω−b(n)) ·

q (ω′b,ωb(n))
q (ωb(n),ω′b)

, (2.37)

where ωb are all parameters of block b and ω−b are all other parameters of ω. ωb(n)
is a parameter vector containing the recent parameter values of the model after n
steps. ω′b is the candidate vector after sampling from a proposal density

q = T
(
·,ωb(n),σ2

Pb
,ωminb ,ωmaxb

)
, (2.38)

where T is the function of the truncated normal distribution as defined in Equation
2.1, ωminb and ωminb are the lower and upper bound, respectively, of the parame-
ters included in ωb. The parameter constraints need to be considered during the
sampling process. As long as all µ′Pb

and µPb
(n) are far away from the defined abso-

lute constraints, the proposal distribution is approximately symmetric since usually
Σ2
Pb
<< (ωmaxb − ωminb ). However, if ω′b is close to a border the proposals become

asymmetric and must be corrected.

2.4.3 Sampling of organ volumes
A subset of the individual parameters θIi is formed by the organ volumes θI,OVi =(
θI,OVi,1 , . . . , θI,OVi,V

)
. These volumes are constrained by a special property of the

PBPK model: All organ volumes are assumed to have a density of 1 such that
organ volume equals organ mass. In addition, the sum of all organ volumes of in-
dividual i represents the individual’s BW, such that BW = ∑V

v=1 θ
I,OV
i,v [8]. Thus,

due to a number of V organ volumes the allowed parameter space reduces to a
(V − 1)-dimensional hyperplane, such that the exact sampling of all V organ vol-
umes including the sum-constraint is impossible. Instead, multivariate sampling
of the hyperplane would be possible after a transformation of the parameters and
parameter borders. To avoid complex transformations the sampling process is per-
formed under consideration of a consecutive adaption of the lower and upper bound
of a certain organ volume, conditional on the remaining proportion of BW. This is
performed as follows:

1. Sort θI,OVi in ascending order related to the difference of the parameter-specific
lower and upper bound θI,OV,maxi − θI,OV,mini and set BWrem = BW .

2. Sample a new organ volume candidate θI,OVi,v

′ according to Equation 2.38 with
θI,OV,min

∗

i,v < θI,OVi,v

′
< θI,OV,max

∗

i,v , where

θI,OV,min
∗

i,v = max
(
θI,OV,mini,v , BWrem −

∑V

v+1 θ
I,OV,max
i,v

)
,

θI,OV,max
∗

i,v = min
(
θI,OV,maxi,v , BWrem −

∑V

v+1 θ
I,OV,min
i,v

)
.

(2.39)

3. Determine the remaining BW BWrem = BW − θI,OVi,v

′.

45



2 Bayesian population PBPK approach

4. Repeat the steps 2 and 3 until v = V − 1. Then set θI,OVi,v=V
′ = BWrem.

The adaptation of lower and upper bounds allows an efficient independent sam-
pling of each organ volume θI,OVi,v . Apart from the dynamic lower and upper bounds,
the organ volumes can be treated the same way as all other individual parameters
and the transition probabilities can be easily calculated as stated in Equation 2.37,
such that the blockwise MH algorithm is unaffected by the additional sum-constraint
of the organ volumes.
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2.5 Adaptive Markov chain Monte Carlo sampling

2.5 Adaptive Markov chain Monte Carlo sampling
As mentioned above in Section 2.4.1, mixing of a Markov chain in a classical random-
walk algorithm is determined by the scaling of the proposal density. If the proposal
density is too broad the chain mixes very slow although single steps of the chain
can be large, because the acceptance rate is very slow. If the proposal density is
too narrow, mixing is also bad although the acceptance rate is high, because the
accepted steps are very small and highly correlated with each other. Especially
when a large number of parameters is sampled simultaneously, it is very difficult
to scale the proposal density such that efficient sampling and mixing is performed.
This results in slow convergence of the chain, because for full convergence of all
single parameter chains need to be converged. Overall, this prolongs the run time
of the approach, since a very large number of samples has to be drawn [55]. Even
if several pre-runs are performed to manually select a proper proposal scaling, a
sufficient density is hard to find.

To improve this manual process we here present a combined adaptive MCMC
sampling approach based on the manifold Metropolis-adjusted Langevin algorithm
(mMALA) from Girolami et al. [43] and the adaptive Metropolis (AM) and single-
component adaptive Metropolis (SCAM) approach, respectively, from Haario et al.
[44,58] to efficiently sample the different types of parameters in our approach. The
two basic approaches are briefly explained in Sections 2.5.2 and 2.5.1. In Section
2.5.3, our combination of the methods based on the specific structure of the PBPK
model is presented.

2.5.1 Single-component adaptive Metropolis algorithm
The finding of an optimal acceptance rate by Roberts et al. [83] led to the devel-
opment of adaptive MCMC approaches, where the proposal is scaled during the
MCMC run, such that pre-runs are no longer necessary. One of the first approaches
was the AM algorithm of Haario et al. [57,58], which has been further extended
to an adaptive Metropolis-Hastings algorithm, especially the SCAM algorithm [44].
The general idea is motivated by Gelman et al. [30] and Roberts et al. [84], who
showed that

ΣP = k ·Σ, (2.40)

where ΣP is the optimal proposal covariance, which is proportional to the covariance
of the target posterior distribution Σ, whereby the optimal proportionality factor k
is

k = 2.382

d
, (2.41)

where d is the dimension of the covariance matrix.
The AM algorithm uses such observation by step-wise adapting the proposal

covariance matrix ΣP during the MCMC run. The proposal distribution for iteration
n and parameter vector θ(n) with dimension K is defined as

qn(θ(n), ·) =
 N (θ(n),Σ0) , n ≤ neq

N
(
θ(n), 2.382

K
·ΣP (n) + εIK

)
, n > neq

(2.42)
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where neq is a short burn-in period to have a reasonable proposal covariance matrix
ΣP (n) and Σ0 is the initial covariance matrix based on prior knowledge.

ΣP (n) can be determined via simple recursion formulas, such that computa-
tion time is not an issue. A very important issue instead is the ergodicity of the
algorithm, which means that it produces samples out of a Markov chain with a
stationary distribution which is the posterior distribution. Brooks et al. [55] sum-
marize and explain the conditions, whereby the most important condition is the
vanishing adaption condition, which in words says that the difference of qn(θ(n), ·)
and qn+1(θ(n), ·) must vanish when n→∞. For more detailed explanations please
refer to [55,85,86]. This assumptions holds for the AM algorithm when adding εIK
to ΣP at each iteration, where ε > 0. This guarantees that ΣP is always non-zero.
In practical applications where it can be observed that ΣP will not collapse to zero
after few iterations, ε can be set to zero or to a really small value [57].

An adaptation of the AM algorithm is the SCAM algorithm which is not adapting
the full dimensional covariance but updates the variances one at a time, thereby
using the MH algorithm with a one-dimensional proposal. The algorithm is analog to
the AM algorithm, but samples, accepts and adapts each parameter independently,
such that only one-dimensional variances are adapted. Such representation of the
AM algorithm can be considered for high-dimensional parameter spaces, where a
determination of the full covariance and simultaneous sampling of the full parameter
vector would be very time consuming and only very small sampling steps would be
achieved [44].

2.5.2 Manifold Metropolis-adjusted Langevin algorithm
The mMALA is a sophisticated sampling algorithm which still has similarities to
the random-walk algorithm of Equation 2.36. The original Metropolis-adjusted
Langevin algorithm (MALA) has been developed by Roberts and Tweedie [87],
Roberts and Rosenthal [88] and has been further adjusted by Atchade [89].

In 2011, Girolami and Calderhead [43] published the mMALA, which is based
on the Riemann geometry and provides an efficient way to use local gradient and
curvature information to draw samples of a high-dimensional and strongly corre-
lated posterior density. Under assumption of a constant curvature, sampling of a
candidate parameter vector θ′ is defined as

θ′ = θ(n) + ε2

2 ·G
−1(θ(n)) · ∇θ(n) (L(θ(n))) + ε ·

√
G−1(θ(n)) · z(n), (2.43)

where
G−1(θ(n)) · ∇θ(n) (L(θ(n)))

is the gradient of the logarithmic posterior

L(θ(n)) = log(p(θ(n)|Y ))

under consideration of the metric tensor G(θ(n)), which is the expected Fisher
information matrix of the log likelihood plus the negative Hessian of the logarithmic
prior. The last right hand term provides a position-specific vector of independent
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2.5 Adaptive Markov chain Monte Carlo sampling

random variables z ∼ N (0, IK) based on the local metric given by
√
G−1(θ(n)).

The scaling parameter ε determines the integration step size.
In contrast to the MH algorithm, the optimal acceptance rate of the mMALA was

shown to be 57.4%, whereby a sufficient performance can be achieved for acceptance
rates between 40% and 80% [88]. To achieve such acceptance rates, scaling is advised
to be ε = K−

1
3 , where K is the dimension of the sampled parameter vector θ [43].

Since the algorithm is based on the structure of a standard MH algorithm, the
Hastings ratio rH of Equation 2.34 can be easily applied for determination of the
acceptance probability pAc(θ(n),θ′), since based on Equation 2.43

q (θ′,θ(n)) = N
(
µθ(n),ε,Σθ(n),ε

)
,

µθ(n),ε = θ(n) + ε2

2 ·G
−1(θ(n)) · ∇θ(n) (L(θ(n))) ,

Σθ(n),ε = ε2 ·G−1(θ(n)).

(2.44)

The assumption of a constant curvature does not hamper the correctness of the
sampling approach, however, it may decrease the efficacy of the approach depending
on the real geometry of the posterior density. However, the mMALA allows to omit
the pre-runs which are often necessary for classical MH approaches to tune the
proposal density as described in Section 2.4.1 [43].

This method hence provides an automated adaption of the proposal density based
on the local gradient and curvature such that the target density is explored quickly
and the resulting Markov chain converges very fast. A possible drawback of the
approach is the number of function evaluations which are needed for the numerical
determination of the first and second derivatives. These evaluations increase linearly
with the dimension of the parameter vector, such that sampling of high-dimensional
parameter vectors under consideration of complex model structures can be difficult
and very time consuming [43,55].

2.5.3 Combined mMALA and SCAM sampling
Sampling population parameters

For sampling of the population mean valuesM and population standard deviations
S we consider the mMALA approach by Girolami et al. [43]. In contrast to re-
cent applications of this approach, the application of manifold Metropolis-adjusted
Langevin algorithm (mMALA) to population parameters does not need additional
evaluations of the respective model, since the first and second derivatives do not
need to be determined numerically but can be obtained analytically due to our
defined model structure in Section 2.2.3. Changes in M or S only affect the prior
probability but not the likelihood, as described in Equation 2.20. Thus, the gradient
of the log posterior simplifies to the gradient of the log prior and the metric tensor
simplifies to the negative Hessian of the log prior. Sampling is performed for each
Mk and Sk independently (for definition of Mk and Sk please refer to Equation
2.5).

For example, a new M ′
k is therefore sampled after n steps as

M ′
k ∼ N

(
µMk(n),ε,ΣMk,ε

)
, (2.45)
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with µMk(n),ε and ΣMk,ε according to Equation 2.44 and

L (Mk(n)) = log
(

N∑
i=1

p
(
θIi,k|Mk(n),Sk(n)

))
+ log (p (Mk(n))) (2.46)

Assuming a normal distributed individual parameter k and based on the defined
prior distributions in Equations 2.32 and 2.28 as well as according to Equations
2.9-2.11, the partial derivative with respect to the affected grid point Mk

Aa,Gi
for

individual i is

∂L (Mk(n))
∂Mk

Aa,Gi
(n) =

sva ·
θIi,k(n)−

(
Mk

Aa,Gi
(n) · sva +Mk

Ab,Gi
(n) · svb

)
· svc (Ai, Gi, BH i,H , αk)(

SkAa,Gi
(n) · sva + SkAb,Gi

(n) · svb
)2
· svc (Ai, Gi, BH i,H , αk)

−
Mk

Aa,Gi
(n)− µMk

Aa,Gi

N · Σ2
Mk

Aa,Gi

,

(2.47)

while the corresponding entry of the Hessian is

∂2L (Mk(n))
∂Mk

Aa,Gi
(n)2 = − sv2

a(
SkAa,Gi

(n) · sva + SkAb,Gi
(n) · svb

)2 −
1

N · Σ2
Mk

Aa,Gi

. (2.48)

For clarity, µMk
Aa,Gi

and Σ2
Mk

Aa,Gi

denote the hyperprior of population mean value
Mk

Aa,Gi
for parameter k at grid point Aa, Gi, as defined in Equation 2.28. µ∗Mk

and
Σ∗Mk

represent mean values and covariance matrix in the mMALA sampling process
of a new vector of population mean values for parameter k.

The full gradient and Hessian matrix are obtained by determination of the first
and second derivatives with respect to all grid points ofM k and Sk, corresponding
to the example shown in Equations 2.45 - 2.48. For each parameter, the specific
prior distribution needs to be taken into account as described in Equations 2.32 -
2.29. The structure of the mMALA sampling approach allows then to calculate the
standard Metropolis-Hastings (MH) acceptance criteria as defined in Equation 2.35.

Sampling individual and global parameters

For individual parameters θI and global parameters [θG,σ2
M ], application of mMALA

as the sampling algorithm would need to determine the derivatives numerically.
Sampling of these parameters with mMALA would affect the full posterior prob-
ability and thus derivation of the full PBPK model would be necessary. A large
number of additional model evaluations would be needed for numerical derivation
which would be extremely time consuming. Instead, we consider the adapted ap-
proach by Haario et al. [44,58] (see Section 2.5.1) for the individual and global
model parameters. We consider the SCAM algorithm, which adapts, samples and
accepts one parameter at a time, but extend and apply it to the described blockwise
sampling scheme as described in Section 2.4.2.
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2.5 Adaptive Markov chain Monte Carlo sampling

Figure 2.7: Comparison of different proposal densities for adaptive MCMC methods. (a)
Markov chain for an arbitrary parameter. (b) Development of the stepwise-calculated
standard deviation of the growing chain. This standard deviation is used as proposal
density in the SCAM algorithm [44]. (c) Development of the stepwise-calculated standard
deviation of the difference of adjacent elements of the growing chain. (d) Development of
the standard deviation under consideration of the here proposed adaptive approach with
ωj0 = 450, neq = 5000 and fup = 500. For comparison, two other update frequencies fup
are shown.

In contrast to recent approaches, we here do not adapt the proposal density based
on the original sequence (ω0,ω1, . . . ,ωn) of the Markov chain, where ωn is the last
sampled full parameter vector ωn = [θI ,θG,σ2

M ]. We use the sequence of the differ-
ence of adjacent elements of the Markov chain (ω1 − ω0,ω2 − ω1, . . . ,ωn − ωn−1) for
adaptation. Such consideration reduces overestimation of the posterior variance at
the beginning of the MCMC run where the Markov chain often behaves like a Brow-
nian motion, before converging to a stable distribution (Figure 2.7a,b). However,
a continuous adaptation of the proposal density by using the standard deviation of
difference of adjacent elements of the growing chain would also lead to insufficient
results, since a very low proposal standard deviation would be used during the first
20,000 iterations (Figure 2.7c).

Therefore, the algorithm is defined as follows, whereby adaptation of the proposal
standard deviation is performed independently for each single parameter ωb,j, j =
1 . . . J of a certain block b. For simplicity, we write only ωj in the following.

Before start:
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• Define a start proposal standard deviation for each ωj

σjp0 = 2.4√
3d
· (ωj0 · 0.2) , (2.49)

where ωj0 is the start value of ωj, d is the dimension of sampling block b.

• Define the length of equilibration steps neq of the MCMC run in which σjp =
σjp0 .

• Define the update frequency fup

for n = 1 : nend

1. Perform a Metropolis-Hastings (MH) step for the full parameter block ωb as
described in Section 2.4.

2. If iteration n > neq and n is a multiple of fup, adapt the proposal standard
deviation

σjp = 2.4√
3d
·
√
var

(
ωjseq(2) − ωjseq(1) , . . . , ωjseq(n/fup) − ωjseq((n−fup)/fup)

)
+ ε,

(2.50)
where var is the variance, seq = (fup, 2 · fup, . . . , n− fup, n) is the sequence
of all iterations of the chain that are multiples of fup and ε is a very small
number to prevent σjp to collapse to zero.

Based on this algorithm, updating the standard deviation of the proposal density
only each fup steps leads to a reasonable adaptation along the growing Markov chain
(Figure 2.7d).

The literature provided variance scaling factor of 2.42

d
[30,58,83] was found to

be little too high in the case of our approach. Since we sample each parameter
independently but have a dependent parameter space smaller proposals are needed.
Therefore we use 2.42

3d .
Notably, the blockwise sampling process as described in Section 2.4.2 is in prin-

ciple unaffected by the here presented adaptive sampling framework, since both ap-
proaches are based on the structure of the MH algorithm. Instead of the presented
random walk sampling with a constant proposal density standard deviation as de-
scribed in Equation 2.38, we now consider the proposal density parameter-dependent
as described in Equation 2.45 or the adapted proposal standard deviation of Equa-
tion 2.50. Furthermore, the algorithm does not affect the ergodicity of the Markov
chain, since all relevant conditions (see Section 2.5.1 and [55,86]) are satisfied.
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2.6 Application of the posterior results
In this section we describe how the posterior results are considered to perform model
simulations for each of the integrated individuals using the individual parameter dis-
tributions in Section 2.6.1. In addition, we explain how to simulate new individuals
out of the assessed population distributions in Section 2.6.2. Thereby, we present
an approach to integrate the a posteriori dependency between the population pa-
rameters into the population simulation.

2.6.1 Individual model simulations
The application of the described Bayesian population PBPK approach generates
a large high-dimensional chain of parameter vectors for θI , θG, M , S and σ2

M .
After discarding the first part of the chain which is needed for equilibration as de-
scribed in Section 2.4.1, the rest of the chain represents a sample out of the posterior
distribution. First, a subsample out of the posterior is generated to reduce autocor-
relation of the chain and to simplify handling with the posterior distribution. For a
model simulation of individual i including parameter uncertainty, the PBPK model
is parameterized and evaluated with all parameter vectors θIi,z and θGz , successively,
where z = 1 . . . Z represents the single parameter vectors of the posterior subsample.
Subsequently, the 95% confidence interval of the simulation results is calculated.

2.6.2 Population model simulations using an a posteriori
dependency structure

To check whether the derived posterior distributions of the population parameters
correctly describe the experimental data, a population simulation is performed as
described by Willmann et al. [8]. Thus, virtual individuals are created based on the
anthropometry of the respective population. This step is necessary to generate the
fixed parameters ν (see Equation 2.2) for each individual.

Next, all variable parameters are generated, thereby taking into account the
uncertainty of the population parameters M and S, since such uncertainty is an
essential part of the full posterior distribution. To include the uncertainty of pop-
ulation parameters into the simulations, the posterior subsamples Mz and Sz are
considered together with the population model in Equation 2.12 to generate new
parameterizations for new individuals out of our assessed population.

However, we do not consider the prior assumption of independent standard nor-
mal distributed random effects ηi (see Equation 2.8) for our posterior population
simulations. Instead, we obtain the posterior random effects by inverting the popu-
lation function g (see Equation 2.12):

ηi,k,z =
θIi,k,z −Mk,z (Ai, Gi, Hi)

Sk,z (Ai, Gi, Hi)
, (2.51)

where Mk,z (Ai, Gi, Hi) and Sk,z (Ai, Gi, Hi) denote the age-, gender- and height-
scaled mean value and standard deviation for parameter k and subsample z. We
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then assume a multivariate Gaussian mixture model

p(η) =
Z∑
z=1
N (ηz,Σz) , (2.52)

where ηz =
(
η1,z, . . . , ηK,z

)
and ηk,z = 1

N

∑N
i=1 (ηi,k,z) is the mean value of the ran-

dom effects for parameter k and subsample z of all N individuals and Σz is the
covariance matrix of all random effects for subsample z, such that a new individ-
ual parameter vector θ∗i can be generated by consideration of a randomly chosen
subsample z, where

θI∗i,z = M z (Ai, Gi, Hi) + Sz (Ai, Gi, Hi) · η∗z , η∗z = N (ηz,Σz) . (2.53)

We then check whether the new individual parameters define an individual out of
our population, which means that BW and body mass index (BMI) are within the
predefined ranges. Otherwise, the individual parameterization is discarded and need
to be sampled again.

With our new obtained individual parameters the PBPK model is parameterized
and evaluated, successively, for each subsample θI∗i,z together with the substance-
specific parameters θGz . Subsequently, the 95% confidence interval of the simulation
results is calculated to represent the interindividual variability within the popula-
tion.

It is also possible to perform population simulations based on maximum posterior
estimates, thereby neglecting the derived uncertainty of the population parameters.
In such cases, the population distribution is defined by MzM

, SzM
, ηzM

and ΣzM
,

where zM is the iteration with the highest determined posterior probability.
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Figure 2.8: Single learning step of the translational learning workflow. The presented
scheme is performed in each step of the translational learning workflow (Figure 2.9). The
central element is the Bayesian population PBPK approach. Prior knowledge is updated
with new experimental data, and posterior knowledge on both the drug and population
physiology is inferred. Assessed knowledge is qualified by comparing a population simu-
lation with remaining experimental data.

2.7 Workflow for translational learning

In this section, we describe a workflow for translational learning based on our devel-
oped Bayesian population PBPK approach. The Bayesian paradigm of our method
allows to use initial information about parameters and combine it with information
extracted from new experimental data. Such an approach cannot only be used as
single investigations to estimate parameters and their uncertainty or the interindi-
vidual variability within a population. It is further ideally suited for an iterative
assessment where generated knowledge can be translated to new scenarios. In a
clinical context, the value of such translational learning is the growing amount of
initial knowledge about e.g. the physiology of a diseased population which is avail-
able before a clinical study is performed. Such knowledge can be used for improved
planning of clinical trials. For example, a profound prediction of the expected PK
profile in a diseased population can be generated before starting a clinical phase II
study based on recent applications of the Bayesian PBPK analysis with other drugs.

In particular, the translational learning workflow consists of several consecutive
learning blocks, each containing an optimization step using Bayesian population
PBPK and a qualification step, where a population simulation is performed to eval-
uate the results with additional experimental data (Figure 2.8).

After each learning block, a part of the assessed posterior distribution can be
translated to the prior distribution for the next learning step. This either allows to
accumulate derived knowledge about the properties of a drug or to learn about the
physiology of a specific-patient population. Such learning process is possible due to
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Figure 2.9: Schematic illustration of the translational learning approach. A learning step
contains a full Bayesian analysis where initial knowledge is used in combination with new
experimental data to refine and acquire knowledge about physiological and drug-specific
parameters (Figure 2.8). A translation step transfers the acquired knowledge to a new
investigation where the acquired knowledge is used as initial knowledge in a new Bayesian
analysis. In this illustration, learning starts from the healthy population treated with a
reference drug and ultimately leads to prediction of the effects of a candidate drug in a
diseased population.

the separated consideration of physiological parameters and drug-specific parameters
in the PBPK models. Finally, the gained knowledge about a drug as well as the
physiological properties of a specific population can be used for a prediction of the
PK behavior of a certain drug within a certain population.

A possible transfer of knowledge from a clinical phase I to a clinical phase II can
be obtained as follows (Figure 2.9):

In step one, the Bayesian population PBPK approach is performed for a given
reference drug in a reference cohort of healthy individuals. Thereby the posterior
distributions characterizing interindividual variability in physiological parameters
are quantified and the physicochemistry of the reference drug is established. The
results are qualified by the population simulation which is compared against further
individuals of the corresponding reference population. In the second step, a novel
candidate drug is investigated within the same healthy population as before. At
this step, posterior distributions of physiological parameters acquired in the previ-
ous step are now translated to another Bayesian analysis where they are used as
prior information. This second step hence refines the physiological characteriza-
tion of the healthy population and further infers the physicochemistry of the novel
candidate drug. Qualification of the results is again performed by a population
simulation which is compared against further individuals of the reference popula-
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Figure 2.10: Iterative administration of the translational learning workflow in the clinical
drug development process. The translational learning workflow of Figure 2.9 can be itera-
tively used across and within clinical development programs. As proof of concept example
we presented translation between two drugs and between clinical phase I and II.

tion. The third step of the translational learning approach is performed with the
reference drug again, but now experimental PK data of a diseased population are
considered. The posterior distributions acquired before in the two analyses of the
healthy reference population are now taken as initial estimate for another Bayesian
analyses in the diseased population. This third step is of particular relevance to in-
fer possible pathophysiological changes in this novel cohort of patients. After these
three preparatory Bayesian analyses, both, the posterior physiological information
of the diseased population and the posterior physicochemical information about the
candidate drug were combined and used for a de novo prediction of the PK behavior
of the candidate drug in the diseased population.

In principle, the number of learning steps is not restricted before predicting
the PK behavior of a new drug. Furthermore, such translational workflow can be
considered along the full drug development program starting from early clinical
development and ending at the prediction of large clinical phase III studies (Figure
2.10).
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2.8 Implementation
The PBPK models were created using the software tools PK-Sim® and MoBi® (Ver-
sion 5.5.3). PK-Sim and MoBi are both part of the Computational Systems Biol-
ogy Software Suite, which is a commercial software package from Bayer AG (www.
systems-biology.com). Notably, academic licenses are available free of charge.
The Software Suite further consists of R and MATLAB Toolboxes, which represent
interfaces to MoBi, such that parameterization and simulation of a PBPK model
created within PK-Sim is possible also in external software (Figure A.1) [63]. This
allows to integrate the simulation into complex workflows.

PK-Sim is a software tool for PBPK modeling. It includes a generic compartmen-
tal structure as described in Section 2.2.1. Several generic distribution models can be
selected using different methods for calculation of partition coefficients [61,62,65–67].
This allows the description of neutral compounds as well as acidic or basic com-
pounds. Based on the anthropometry of an individual, all physiological parameters
like organ volumes and blood flow rates are determined using an integrated physio-
logical database [8,56,63].

MoBi is an expert tool for mechanistic and dynamic modeling of biological pro-
cesses. A previously generated PBPK model in PK-Sim can be imported into MoBi
for further modification, parameter identification processes or population simula-
tions. MoBi offers full access to all parameters in the model and allows integration
of complex cellular reaction networks etc. Furthermore, MoBi allows to couple sev-
eral PBPK models, such that the simultaneous evaluation of a parent compound
and its metabolites is possible. PK-Sim and MoBi have both been explained in
detail before [23,56,67,90]

The full Bayesian population PBPK approach including the MCMCmethods and
the hierarchical model structure was implemented in MATLAB (version R2013b;
MathWorks®, Natick, MA). Figure 2.11 shows a schematic view of the implementa-
tion steps that are needed in MATLAB together with references to the respective
sections and equations that are described above. Priority in the implementation
process of the MCMC sampling routine must be given to the sampling process it-
self and the determination of the prior probability and the likelihood within the
blockwise sampling structure (Section 2.4.2). Thereby, the correct assignment of
the covariate scaled population parameters during determination of the prior prob-
abilities requires special consideration. Furthermore, sampling of organ volumes
(Section 2.4.3) and the number of parameters that are accepted in one step for a
certain type of parameter (population, individual, global) need to be implemented
carefully (Section 2.4.2).

2.9 Discussion
For the establishment of our described Bayesian population PBPK workflow, several
model concepts have been combined and adapted. The resulting approach allows to
efficiently assess interindividual variability and at the same time generate person-
alized descriptions of the PK behavior of drugs. The underlying consideration of
mechanistic PBPK models enables a clear attribution of assessed information to a
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2.9 Discussion

Figure 2.11: Scheme for implementation of the Bayesian population PBPK approach in
MATLAB.
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biological process in a certain individual or to a physicochemical property of a drug.
During development of the approach, assumptions have been made which sig-

nificantly facilitate efficient parameter estimation and the setup of the Bayesian
framework, for example the assumption of independence of several parameters, dis-
tribution assumptions for population distributions or independence of prior distri-
butions. In particular, prior information represents the subjective current “degree
of believe” about a parameter or a set of parameters [71]. The parameters within
PBPK models all have an underlying biological equivalent due to the mechanistic
consideration, or describe physicochemical properties of the drug. Thus, a lot of
prior information about most physiological parameters is available from databases;
however, the measurements e.g. of volumes of organs are usually independent from
each other, such that no information about possible dependencies is available. Fur-
thermore, it is unlikely, that for example the protein expression of a certain enzyme
is dependent on an organ volume or the lipophilicity of a drug, which strengthens
the trust on the assumption of a priori independence. The assumption that the
different parameter types such as population parameters, individual parameters and
global parameters are independent from each other allows for the formulation of
the blockwise sampling structure as explained in Section 2.4.2. Notably, the consid-
eration of blockwise sampling would not be possible if parameters that are highly
correlated with each other are sampled in different blocks. High correlation of two
parameters sampled in different blocks would strongly decrease the acceptance rate
of the proposed samples in both blocks. Thus, the performance of the MCMC run
would clearly indicate that the classification of the parameters into the different
sampling block is not feasible.

Notably, assumptions made during definition of prior distributions can be over-
ruled in the posterior distribution, as the posterior represents the updated “degree
of believe” after integration of new information that can be extracted from new
experimental data. This also includes covariance information between parameters.
An interesting aspect is that based on the definition of Bayes’ theorem, different
prior assumptions lead to different posterior distributions, however, asymptotically
and with enough available data, the posterior is independent from the prior distri-
bution [91]. This further strengthens the concept of translational learning, where
the iterative assessment of the Bayesian population PBPK approach also increased
the impact of integrated information compared to the initial prior information.

Structural assumptions such as the definition of normal and lognormal popu-
lation distributions influence the resulting posterior distribution more strictly. For
example, no bimodal population distributions could be identified with our approach;
in such cases probably a very broad normal distribution would be obtained. There-
fore, our hierarchical model works under the assumption of a homogeneous popu-
lation. In cases where heterogeneous populations are expected, additional sublevels
could be included into the hierarchical model or a pre-run without a population
model could be used to identify possible heterogeneous subgroups, which are then
considered separately.

Another important aspect during setup our approach is the selection of the pa-
rameters to be identified. In general, there is no fix set of parameters; the choice of
parameters strongly depends on the question that should be answered in an inves-
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tigation. However, for a thorough characterization of the PK behavior of a drug all
aspects of drug ADME should be included, otherwise significant parts of interindi-
vidual variability could be explained inadequately. As described in Section 2.2.1,
the distribution model is parameterized by few drug-specific parameters, mainly
lipophilicity and molecular weight. Molecular weight can be determined precisely,
but lipophilicity is hard to determine and the measurement method is subject to
large uncertainty, such that only a vague prior can be defined. This parameter should
therefore always be identified within the Bayesian population PBPK approach; as
it has such large influence on drug distribution it is highly informed by the experi-
mental data, which results in a sharp marginal of the posterior distribution.

Parameters that characterize active processes such as transport across mem-
branes or enzymatic metabolization also need to be identified for a thorough char-
acterization of interindividual variability of the elimination behavior of drugs. The
absorption of a drug is a more complex process and strongly depends on the for-
mulation of a drug, for example as tablet, solution or small pellets. Therefore, the
choice of parameters that need to be included can vary. Solubility is important to
describe dissolution in stomach and intestine in cases where the drug is administered
orally. If the dissolution of the drug is pH-dependent, also the pKa value could be
considered.

For healthy individuals, interindividual variability of physiological parameters
such as organ volumes and blood flow rates can be assumed to be fully explained by
the covariates [36]. In such cases, these parameters do not need to be identified; how-
ever, the integration of physiological parameters into the Bayesian population PBPK
approach allows to check whether the assumed relationships to covariates can be
validated. In cases where a pathological population is physiologically characterized,
these parameters need to be considered to assess the underlying pathophysiological
alterations.

The covariate model itself also represents an assumption about structural vari-
ability and is subject to change and development. Several covariate models have
been developed so far as stated at the end of Section 2.2.2. It was shown that
other covariate models exist that explain physiological variation even better than
the one used in this thesis [70]. However, the change to another covariate model
would hamper the efficient use of the available prior information in the physiological
database of the considered software suite. Furthermore, the use of a less effective
covariate model does not lead to wrong results, but to more unexplained variability
in the population model (Equation 2.3). An interesting extension of our developed
approach in the future could be the identification of additional covariates based
on the integrated experimental data. It could be expected that, especially in dis-
eased patients, further covariates such as the diseased state could explain significant
amounts of the observed interindividual variability.

Main focus in general development of MCMC approaches is on the sampling
procedure. Large numbers of different sampling methods have developed during
recent years which have become very sophisticated and aim for specific purposes or
specific fields of applications. Thereby, the sampling methods can be divided into
two classes: gradient-free (such as classic, adaptive or multi-chain MH algorithms
[33,44,92]) and gradient-based samplers (such as Hamiltonian Monte Carlo methods
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(HMC) or MALA [43]). In several applications and technical assessments it has been
shown that gradient-based samplers are superior to gradient-free sampling methods,
showing a higher time-normalized effective sampling size (nESS) [93]. Thereby, HMC
shows a much higher nESS than MALA, however, the advantage of MALA is that it
needs almost no tuning and is computationally less expensive [93]. Therefore, MALA
is well suited for identification of our high dimensional parameter distributions.

Nevertheless, also gradient-free methods show reasonable performance when they
are tuned properly. Tuning can be performed e.g. by the consideration of adaptive
MCMC samplers or by comprehensive sensitivity analyses before starting an MCMC
run. Furthermore, they are much less computationally expensive than gradient-
based samplers, which are therefore not ideal in cases of very high dimensional
problems [55]. This is why we developed the combined mMALA/SCAM algorithm,
that combines the advantages of gradient-free and gradient-based samplers regarding
the specific parameter types in the Bayesian population PBPK approach. Such
combinations are also proposed by other workers just recently [93,94].

In summary, there is no general superior method for MCMC sampling, instead,
the algorithm should fit for purpose and should be chosen carefully. In this work,
this was done regarding our specific workflow, thereby taking into account the spe-
cific properties of mechanistic PBPK models, the consideration of large cohorts of
individuals and the resulting high dimensionality. Further discussion about per-
formance and the overall concept is only possible focusing on specific applications
with the developed Bayesian population PBPK approach and can be found in the
following chapters.
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Chapter 3

Subgroup stratification related to
identified inhomogeneities in
enzyme activity

In this chapter, we present an application example of our Bayesian PBPK approach
considering pravastatin PK [10]. Pravastatin is a cholesterol lowering drug. Its
PK behavior is characterized by a large genotype-mediated interindividual variabil-
ity [95–98]. In case of pravastatin, the arising interindividual variability can lead to
severe adverse effects. To ensure the patient’ safety it is very important to identify
patient subgroups which can manifest adverse effects as early as possible. Therefore,
the objective of this application example is to establish a thorough characterization
of the sources of interindividual variability and to generate a comprehensive under-
standing of the processes that govern the PK behavior.

Section 3.1 describes the PBPK model building and the biological and phar-
macological background of pravastatin. In Section 3.2 the specific setting of the
Bayesian PBPK approach is described, including the selection of model parameters
and the execution of MCMC runs. Section 3.3 presents the results, followed by a
discussion in Section 3.4.

3.1 Pravastatin: background, data and model
Pravastatin is a 3-hydroxy-3-methyl-glutaryl-Coenzyme A (HMG-CoA) reductase
inhibitor which lowers the cholesterol level within the body and thereby contributes
to prevention of cardiovascular diseases. Compared to other statins, it has a low
lipophilicity [97] such that pravastatin uptake is mainly distributed by active trans-
porters [96]. On the one hand, the organic anion transporting polypeptide 1B1
(OATP1B1) transports pravastatin into the intracellular space of the liver and on
the other hand the organic anion transporter 3 (OAT3) inserts pravastatin in the
intracellular space of the kidneys [96]. In the liver, pravastatin is excreted by biliary
excretion, leading to enterohepatic circulation, while tubular secretion is the main
pathway to excrete pravastatin from the kidneys [99]. Thereby, both routes of excre-
tion are also performed by an active transporter, the multidrug resistance-associated
protein 2 (MRP2) (Figure 3.1). MRP2 is also significantly expressed in the apical
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Figure 3.1: Schematic representation of the enterohepatic circulation and the key trans-
porting enzymes in pravastatin pharmacokinetics. Notably, this is only a simplified consid-
eration for a better representation of the processes that are integrated into the mechanistic
whole-body physiologically-based pharmacokinetic model.

membrane of enterocytes in the duodenum and jejunum. The bioavailability of
pravastatin is low due to an incomplete absorption in the small-intestine [96].

Notably, significant alterations in pravastatin PK are associated to three different
genotypes (SNP; c.521T→C, p.Val174Ala) of solute carrier organic anion transporter
family member 1B1 (SLCO1B1) encoding for OATP1B1 [96,100]. These genotypes
(homogeneous TT, heterogeneous TC and homogeneous CC) determine the trans-
porter activity [5]; the CC genotype has decreased activity compared to the normal
TT genotype, which leads to higher pravastatin concentrations in the body. In
contrast, no such effect is known for MRP2.

For our analyses we considered a previously established and validated PBPK
model of pravastatin [5] for an oral dose of 40 mg administered orally. In this
model, active transport processes were established in the interstitial (OATP1B1)
and the intracellular space (MRP2) of the liver as well as in the interstitial space of
the kidneys (OAT3). Additionally, MRP2-mediated transport was considered in the
gastrointestinal compartment of our model as well as the intracellular space of the
kidneys. Tissue specific enzyme activity was estimated by using gene expression data
as a proxy for protein abundance. Notably, this allows the discrimination between
organ-specific protein levels and the global catalytic rate constant (kcat) [101]. A
luminal clearance reaction in the small intestine accounted for the low bioavailability
of pravastatin.

The experimental data was provided from previously published studies [100]. Out
of the dataset of 32 individuals, 10 individuals were chosen randomly to lower com-
putational costs. It was taken into consideration that all above mentioned genotypes
are represented equal in number within the dataset. Figure 3.2 shows the chosen
individuals and their respective genotype of OATP1B1.
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Figure 3.2: Experimental data of the ten patients which were integrated into the Bayesian-
PBPK approach. The patients have been chosen out of a dataset of 32 patients provided
by Niemi et al. [100].

3.2 Statistical computation

8 individual parameters together with 4 global parameters were chosen for the
Bayesian analysis (Table 3.1), which means the variation of 84 parameters in to-
tal. These parameters have chosen such that all important ADME processes were
considered for a comprehensive description of the PK behavior and an assessment of
the interindividual variability on a parameter level. An individual model approach
is used including a proportional error model as defined in Equation 2.4. By consid-
eration of the blockwise sampling described in Section 2.4.2, individual parameters
and global parameters were sampled in separate blocks. The proposal density is cho-
sen as defined in Equation 2.38. Thereby, all parameters are sampled independently
with the mean value defined as the last sampled parameter of the Markov chain and
the standard deviation as 0.01 · (ωmaxb − ωminb ). Prior distributions were defined as
log normal distributions in case of previous information about that parameter, or
as uninformed prior. The start parameters as well as geometric mean and standard
deviation for the informative prior distributions are provided in Table 3.2.

During the separation of the parameters into different blocks, it is very important
to know if parameters are correlated, since correlated parameters have to be sampled
in one block [102]. Our block structure is driven by the clear separation between
drug and individual physiology in the PBPK model, therefore, we can assume that
all parameters of different blocks are independent and uncorrelated (see also the
discussion) and we can assure that no lumped parameters exist which depend on
physiological and drug-specific information.

With the established PBPK model, the combined Bayesian PBPK approach was
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Table 3.1: Parameters of the pravastatin model that are identified in the Bayesian-PBPK
approach

parameter unit abbreviation type

intestinal permeability cm/min intP individual
intestinal transit time min ITT individual
gastric emptying time min GET individual
luminal clearance factor µM/min CLlum individual

kcat OATP1B1 - kcatO individual
kcat MRP2 - kcatM individual

lag time of enterohepatic circulation min EHClagtime individual
measurement error - σM individual

lipophilicity - logP global
unbound protein fraction % fu global

Km OATP1B1 µM KMO
global

Km MRP2 µM KMM
global

Table 3.2: Start values and prior definition for all identified parameters

parameter start value prior type geo mean geo std

intP 0.004 informative 0.007 1.6
ITT 240 informative 240 1.6
GET 16.9 informative 30 1.4
CLlum 0.012 informative 0.013 1.4
kcatM 503.696 uninformative - -
kcatO 2242.631 uninformative - -

EHClagtime 193 uninformative - -
σM 0.35 Jeffreys - -
logP 0.749 informative 2.2 1.8
fu 0.561 uninformative - -
KMM

223 uninformative - -
KMO

11.5 uninformative - -
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processed and 300,000 iteration steps were calculated. The computation time was 3.6
s/iteration and was performed on a quad core i5 processor running under Windows
7. Although MCMC runs are in principle independent from the start parameteri-
zation regarding the identification of the correct posterior distribution, parameter
start values were optimized via a standard point optimization process for a single
individual to reduce convergence time, which increases when the MCMC run starts
in regions with very low probability (Table 3.2). During the first 150,000 steps, the
parameter vectors did not sample from the correct distribution. For this so-called
burn-in period the samples were discarded. By subsampling 200 parameter vectors
of each individual from the remaining 150,000 steps (Figure A.2), an independent
sample of the posterior distribution was drawn to derive the results presented below.

3.3 Results
As a first result, we simulated the interindividual variability of pravastatin PK in
the population. Simulations were performed for each individual by evaluating the
PBPK model for pravastatin with each of the 200 parameter vectors which were
subsampled out of the posterior distribution. Next, the 95% confidence interval (CI)
was calculated over all individuals (with all 2,000 samples) and compared against
the experimental data. The resulting range of interindividual variability is shown
in Figure 3.3a. The resulting visual predictive check shows a good agreement with
the experimental data except a little too broad interval around 3 to 5 h.

To further check that the depicted interindividual variability did not result from
large uncertainty of the single individuals, simulations were performed for three
exemplary individuals by simulating the PK of pravastatin with each of the 200
parameter vectors which were subsampled out of the posterior distribution (Figure
3.3b). The 95% CI was calculated and plotted for each individual together with the
median and compared to the experimental data. The obtained uncertainty is small
and furthermore the individuals show also good agreement with the experimental
data, whereby individual 1 shows a less good fit to the experimental data around 3
to 6 h.

To better illustrate the quality of the obtained results, a comparison of the
predicted mean values and the experimental data of all individuals was performed
and shows good agreement (Figure 3.4).

Notably, beside the PK range which is kind of a “macroscopic” result of the
posterior parameter distribution, a lot of other information can be obtained by
directly analyzing the posterior. The calculation of correlations between the 8 in-
dividual parameters provided information about dependencies between the various
parameters in the model. For example, a strong correlation between intestinal per-
meability (intP) and the enzyme activity of MRP2 (kcatM ) was observed, as depicted
in Figure 3.5.

We next asked whether our approach can also be used for the identification of
specific subgroups within a population. This is a challenging task in particular in
early phases of drug development, since only little prior knowledge may be available.
Therefore, we asked if our Bayesian PBPK approach enabled the identification of
such homogeneous groups of individuals even if no additional information was taken
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Figure 3.3: Inter-individual variability of pravastatin pharmacokinetics (venous blood
plasma). (a) Population variability is shown under consideration of simulations with
2000 parameter sets as described in the text. The variability is shown together with the
median curve and the experimental data. (b) Individual simulations are illustrated for
three exemplary individuals. The 95 % confidence interval representing uncertainty is
shown together with the median and the experimental data.

Figure 3.4: Correlation between simulated mean values and experimentally obtained
pravastatin data (venous blood plasma). Mean concentration values and standard de-
viations of the 200 simulations for each individual were monitored at the same time points
as the experimental data.
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Figure 3.5: Correlation matrix of all individual parameters. Spearman correlation co-
efficients were calculated from the overall subsample of 2000 parameter vectors for all
parameter combinations to identify structural connections. To improve the visualization
of the correlations the main diagonal was set to zero.

into account and considered the transporter activities of MRP2 and OATP1B1 as a
putative source for subgroup stratification. First, we performed a Shapiro-Wilk test
for normal distribution [103] of the logarithmic mean values of the 200 samples of
every individual, since enzyme activity has found to be log normally distributed in
homogeneous groups of individuals [78,104]. The results supported the hypothesis of
log normal distribution for MRP2 (p > 0.75) and gave a strong indication of rejection
of the hypothesis for OATP1B1 (p < 0.1). Visual inspection of the estimated kernel
densities [105] of the logarithmic mean values supported this, since two groups of
individuals were monitored for OATP1B1, but the density of MRP2 was clearly
normally distributed, as shown in Figure 3.6.

Thus, with regard to OATP1B1 the individual mean values were analyzed indi-
vidually to examine which individual can be attached to which group (Figure 3.6).
A clear separation into two groups of four and six individuals, respectively, was
found. It should be noted that this separation of the OATP1B1 transporter activity
was not an implicit property of the model structure, but emerged as a result during
the Bayesian PBPK approach.

This grouping of individuals was compared to the different OATP1B1 genotypes,
which is known to significantly influence PK. This consideration led to a clear
separation of the two homozygous genotypes, which demonstrated the capability of
the approach to give strong hints about the reasons for subgroup stratification, even
when only little experimental data of a small population was available.

3.4 Discussion
In the present application example, the combined Bayesian PBPK approach was per-
formed to assess the interindividual variability in ADME-related and drug-specific
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3 Subgroup stratification

Figure 3.6: Identification and assignment of subgroups of individuals. A density estimation
of the logarithmic mean values of the transporter activities for OATP1B1 and MRP2
supported the identification of specific subgroups of individuals. The logarithmic mean
values of the transporter activities for MRP2 and OATP1B1 were calculated from the
subsample of the posterior and the kernel densities were quantified. The density for
OATP1B1 provided the separation into two groups, such that the single values were also
plotted with symbols. Additionally, they were colored related to their specific genotype.
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parameters. Based on the resulting high dimensional posterior distribution, indi-
vidual uncertainty in PK behavior as well as an estimation of the interindividual
variability in the PK of pravastatin was provided. Furthermore, an analysis at the
parameter level revealed at least two subgroups in the population related to the
transporter activity of OATP1B1. A comparison of the logarithmic posterior esti-
mates showed that the subgroups can be approximately linked to different genetic
predispositions of the individuals.

Overall the approach demonstrated the successful identification of the interindi-
vidual PK variability of pravastatin. However, an important process in pravastatin
PK is enterohepatic circulation (Figure 3.1), which leads to a second peak in the
PK profile due to gallbladder emptying. This process was not well described in the
population, leading to a too broad PK range in the simulation (Figure 3.3a). Pos-
sible reason for this could be the small number of experimental data points, which
hampered a correct identification of the time point of gall bladder emptying, even
by visual inspection.

For the performed MCMC run, it was assumed that the population distributions
of the physiological parameters were known, such that no population level was esti-
mated in the approach. The individuals were created based on the prior knowledge
integrated into the physiological database of the considered PBPK software tool [8].
Hence, interindividual variability in physiological parameters was integrated into the
approach, however, it was assumed that unexplained interindividual variability can
be neglected and all variability is explained by the covariate relationships to age,
gender and BH. Such assumptions have also been made in other applications e.g.
in the field of TK [36]. Furthermore, physiological parameters have not been varied
at an individual level which constitutes that we assumed negligible uncertainty in
physiological parameters compared to ADME-related parameters. The presump-
tion of a known population variability was also made for definition of informed prior
probabilities as defined in Table 3.2.

As convergence analysis, visual inspection was performed. In addition, it was
checked if the results change significantly during growth of the Markov Chain. After
150,000 iterations overall results were robust such that the burn-in period was de-
fined as the first 150,000 steps. Here, a methodological convergence analysis could be
performed in future work, however, recent analyses approaches also have relatively
high probabilities to fail [106].

The integration of a population level would improve the approach concerning
its extrapolation capabilities. The consideration of the individual level allows for
an estimation of the population based on 10 individuals. However, the identifi-
cation of whole individual’s and population’s physiology and the integration of as
much experimental data as possible would result in a more reliable identification
of the population distribution. In our model this would lead to the identification
of hundreds of parameters per individual and thousands of parameters for a large
population. Due to computational restrictions we here chose only a population of
10 individuals and made the aforementioned assumptions on the populations phys-
iology. Nevertheless, the varied parameters were chosen in a way such that all the
important ADME processes were represented. Therefore, no different results would
be expected on the PK level. However, the integration of more physiological param-
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eters such as organ volumes could lead to a less clear information of parameters such
as the enzyme activities. Here, a multidimensional analysis could be necessary to
identify the subgroups, as the hepatic clearance process is described by liver volume
as well as enzymatic capacity.

A concept for reduction of computational restrictions would be the paralleliza-
tion of the individual MH blocks, which would reduce the computation time by
the number of individuals if enough computational power is available. Notably, the
presented concept is not constrained in its dimensionality, therefore also the inves-
tigation of large populations and hundreds of parameter is possible, which provides
great opportunities for the assessment of interindividual variability in clinical trials.

The several MH blocks allowed the separation between individual parameters
and global parameters and reduced the convergence time of the run, since each
block could converge faster as if all parameters would had been varied in one large
block. In following investigations, different algorithms such as adaptive approaches
[44,107,108] could be tested to be able to further reduce convergence time or improve
the mixing of the Markov chains.

Concerning the global parameters it has to be noted that such parameters have
to be chosen very carefully, since they have by definition a large effect on all obtained
individuals. In our application example, the fu was defined as a global parameter.
Since it is also determined by the composition of the blood serum it can as such also
be defined as individual parameter. However, the unbound fraction also depends
on the lipophilicity of the drug, which is varied in our approach. Therefore, both
parameters had to be sampled in the same MH block to consider the covariance
between these parameters [73,102].

Advantages of using the highly-detailed mechanistic PBPK model were demon-
strated by analyzing the example of pravastatin. Relationships between the phys-
iological parameters were provided directly from the posterior and could be easily
identified, for example a strong correlation was found between the enzyme activity
of the MRP2 transporter and the intestinal permeability of pravastatin in all indi-
viduals. This results from a contrary transport of pravastatin in the gastrointestinal
tract, because MRP2 transports pravastatin back into the intestinal lumen. There-
fore, by the analysis of the posterior, structural information about the model can
be inferred.

Furthermore, beside the derivation of structural information about the PBPK
model the identification of clinically-relevant subgroups within the population was
demonstrated. By investigating the logarithmic mean values of the single individuals
with a Shapiro-Wilk test the assumption of more than one homogenous group was
confirmed for OATP1B1. Additionally, the two groups of individuals were assigned
to different homozygous genotypes. This demonstrates the ability of our approach
to make physiological inferences with very little prior information and only few
individuals. The heterozygous genotype could not be assigned to an own group.
However, Niemi et al. also showed that a significant separation of the heterozygous
genotype is not possible [100]. Notably, the separation of different subgroups itself
may also be possible with smaller models. However, the use of a mechanistic PBPK
model can point out the relation between subgroup and genotype which makes
our Bayesian PBPK approach a suitable alternative to rather phenomenological
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methods [109].
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Chapter 4

Identification and characterization
of interindividual variability in
physiological-realistic parameters

In this chapter we present an application example of the presented Bayesian popu-
lation PBPK approach for the identification and characterization of interindividual
variability in physiologically realistic parameters [11]. Beside assessment of the in-
terindividual variability in theophylline PK, the objective is to compare resulting
population simulations using previous methods and our approach. We thereby infer
population distributions for ADME parameters in the model as well as physiologi-
cal parameters. Furthermore, the consideration of the dependency structure of the
high dimensional parameter space accounts for the co-variability of physiological
properties within the population.

As a second objective, we evaluate the performance and resulting posterior distri-
butions of the new adaptive MCMC sampling as described in Section 2.5.3 compared
to the MH approach.

Section 4.1 describes the background, available data and specific ADME pro-
cesses that were integrated into the model. Section 4.2 illustrates the chosen setting
of the Bayesian population PBPK approach including an overview of the selected
parameters and defined start values. Section 4.3 presents the results related to
interindividual variability. Section 4.4 describes the results after using the new
adaptive MCMC approach, followed by a discussion in Section 4.5.

4.1 Theophylline: background, data and model
We here considered the PK of theophylline, a methylxanthine drug that acts against
asthma and chronic obstructive pulmonary disease. Individual dosings are consid-
ered in theophylline therapy due to large interindividual variability. Thereby, the
sources of variability vary widely and no clear relationship to classical covariates
like age, gender or BW can be observed. In addition, a variety of other factors
influence theophylline PK such as e.g. different diseases [110–113]. A free available
theophylline dataset [114] was taken to demonstrate the abilities of our approach
(the data is accessible in the software environment “R” as “theoph” data frame).
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It consists of 11 theophylline venous blood samples for each of 12 individuals to-
gether with the administered doses and the BWs of the individuals. In addition,
one data point for the fraction of unchanged theophylline in urine after 36 hours
was considered [112]. An individual PBPK model was created for each of the 12
individuals. Since no age or height was stated in the dataset, it was assumed that
all individuals are 30 years old, but differ in BH. BH was randomly chosen such that
BMI is in normal ranges (in between 19 and 25). This assumption indicates a very
homogenous group of individuals simulating e.g. a first in man study of a new drug.
Table B.1 shows the anthropometry and related administered dose together with
appropriated BH. Two clearance processes were integrated into the model, hepatic
metabolization via cytochrome P450 1A2 and a renal excretion process [112]. For
both clearance routes a first order process was considered in the PBPK model.

4.2 Statistical computation
To identify reasonable start parameters for our investigation, a parameter identifi-
cation process was performed for a mean value model to identify a good guess for
the specific clearance rates and the intestinal permeability, which is an important
parameter defining the absorption of the drug. For the drug-specific parameters
literature information was used to define reasonable start values. The physiology
was specified using the respective entry of the integrated physiological database of
the PBPK modeling platform PK-Sim [8,56]. All in all, 40 parameters which de-
fine the individual physiological and global drug-specific parameters, respectively,
were varied in the approach (Table B.2). The full Bayesian population PBPK ap-
proach was considered as described in Chapter 2, including the individual and the
population level. Thus, each individual parameter was assigned two population pa-
rameters, the population mean and the population standard deviation, respectively.
Blockwise sampling was performed as described in Section 2.4.2. For each type of
experimental data, a measurement error was considered. Thereby, the error for the
venous blood samples was also varied, while the variance of the measurement er-
ror for urinary excretion was set to an assumed fixed value of 5%, since only one
data point was available. Due to 12 individuals considered, this resulted in 535 pa-
rameters that were identified in the approach. The proposal density was chosen as
defined in Equation 2.38, whereby independent standard deviations were considered.
Several pre-runs were performed to adapt the proposal densities which are critical
for a good performance of the MCMC approach. After each pre-run, the proposal
densities and the start values of all parameters were adapted. The start values were
defined as the last sampled parameter of the previous run. The standard deviation
of the proposal densities were defined as a proportion of the standard deviation of
the previous posterior sample chain. In our final MCMC run, a posterior sample
of about 1,000,000 iterations was created. A burn-in period of 200,000 parameter
samples was cut off since after 200,000 iterations convergence of the posterior chain
could be assumed by visual inspection and determination of Gelman and Rubin
convergence criterion (R̂) [106,115]. Since our MCMC approach consists of one long
run but the calculation of R̂ requires at least two chains, we split our chain into two
chains with equal length and calculated R̂. Table B.3 shows the obtained values for
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for important parameters. From the remaining 800,000 samples, a subsample of 500
parameter vectors was drawn to derive an independent subsample of the posterior.

4.3 Results
Individual-specific model simulations

As a qualification of the individual level model and the structural properties of the
PBPK model, individual simulations were performed out of the posterior sample and
compared to the experimental data. Figure 4.1 shows the individual PK behavior
for all individuals in linear scale, Figure A.3 depicts the individual PK behavior in
semi-log scale. The PBPK model was parameterized one after another with all of the
500 posterior subsamples and the PK was simulated. The 95% confidence interval
for the PK is shown together with the experimental data and the mean value curve.
Except for individual no. 10, the PK behavior is described well and all experimental
data points can be described by the full model including the inferred measurement
error (Equation 2.4). Individual no. 10 seems to have a much slower absorption of
the drug which can be related e.g. to a tablet which does not dissolve completely.
Such effects cannot be described by our model.

In addition, Figure 4.2 shows the mean simulation at time points of the observed
data versus the observed data for a better visual inspection of the quality of the fit.

Inference on parameter level

The Bayesian inference that is generated with the Bayesian population PBPK ap-
proach is represented by the high dimensional posterior distribution of all parame-
ters. Simulations and extrapolations on the PK level can only be performed by using
high dimensional samples of the posterior. However, the consideration of marginal
parameter distributions is an appropriate instrument to illustrate parameter infer-
ence. Figure 4.3 shows the marginal posterior population distributions based on
the posterior estimates for the population mean value and the population standard
deviation for nine exemplary parameters: the intestinal permeability (intP), the spe-
cific hepatic clearance rate (CLspec), the specific tubular secretion rate (TSspec),
the gastric emptying time (GET), the intestinal transit time (ITT) and four or-
gan volumes. The truncated distributions were generated by consideration of the
mean value of the hyper distributions for the posterior population mean value and
population standard deviation which represent the posterior estimates of the pop-
ulation distribution. Truncation was applied to account for the previously defined
physiological constraints in Table B.2.

The marginal posterior distributions were then compared to the prior distribu-
tions. The prior distributions were generated equivalent to the posterior distribu-
tions. The comparison, as also shown in Table 4.1, reveals shrinkage of the CV in
most parameters. However, the CV of intP increases significantly. GET and ITT
both increase in their mean value, indicating that the examined population has a
delayed and prolonged residence time in comparison to previous studies. It can be
further observed for GET and ITT, that the absolute physiological constraints as
defined in Table B.2 restrict the obtained population distribution. IntP, CLspec
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Figure 4.1: Individual-specific model simulations. For each of the 12 individuals the PBPK
model was parameterized and evaluated with each of 500 individual and independent
parameter vectors out of the posterior distribution. The 95 % confidence interval of all
simulations (grey area) is shown together with the mean value curve (blue dotted line)
and the experimental data (red circles). Dark grey dotted lines depict the upper and lower
bound of the 95 % confidence interval of all simulations including the inferred measurement
error under consideration of the proportional error model as described in equation 2.4.
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Figure 4.2: Comparison of observed experimental data and simulated values. Mean simu-
lated values are plotted against the observed data at the same time points for all individ-
uals.

and TSspec show a decrease in the posterior geometric mean value compared to the
prior. However, it has to be noted that for these three parameters uninformed hyper
prior distributions were considered for the population mean value and therefore the
prior value of the population mean value was set to the middle of the interval of the
hyper prior.

The uncertainty of the hyper level is often not assessed in Bayesian analyses
using hierarchical models. However, Table 4.2 demonstrates how the CVs increase
when including the uncertainty of the population mean value and the population
standard deviation instead of consideration of the prior and posterior estimates.
Especially the hyper prior distributions which were vague e.g. for intP, CLspec and
TSspec cause a large variability in the population distributions.

A correlation analysis was performed to investigate possible dependencies in the
high dimensional posterior population distribution. As described in Section 2.6.2 in
Equations 2.51 and 2.52, the random effects include possible dependencies of param-
eters within the population. Consistent with the determination of the covariance
matrices in Equation 2.52, the correlation matrix of all random effects was calcu-
lated between the individuals to estimate the dependency of individual parameters
within the population. To account for the uncertainty within this analysis, the cor-
relation matrix was calculated for each of the 500 subsamples out of the posterior
distribution. Figure 4.4 shows the distribution of correlations between exemplary
parameters. In particular, a significant mean negative correlation of about 70% (p
< 0.05, mean confidence interval [-0.85 -0.49]) between TSspec and kidney volume
can be obtained. The other three exemplary distributions do not have significant
mean correlations; however, a mean positive correlation of about 30% (p > 0.05,
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Figure 4.3: Comparison of marginal prior and posterior distributions of nine exemplary
physiological parameters. For each parameter, the marginal posterior density estimate
(red line) is compared to the corresponding prior distribution (green dotted line). Limits
on x-axis represent physiological constraints as defined in Table B.2 (except for intP where
the maximum x value was reduced by a factor of 10 for better visualization).

Table 4.1: Comparison of prior and posterior mean values and coefficients of variations for
nine exemplary physiological parameters when taking only maximum posterior estimates
into account. The uncertainty in the mean value and standard deviation of the population
distribution was therefore not considered.

parameter prior estimate posterior estimate
mean val. CV [%] mean val. CV [%]

intP [dm/min] 3.55E-06 172 1.70E-06 213
CLspec [1/min] 0.05 138 0.017 24
TSspec [1/min] 0.02 139 0.071 20
GET [min] 17.26 32 24.57 12
ITT [min] 146.22 29 185.33 16
fat vol. [L] 14.94 42 14.51 42

kidney vol. [L] 0.44 25 0.34 13
liver vol. [L] 2.36 23 2.097 23

muscle vol. [L] 32.33 10 26.2 8
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Table 4.2: Comparison of prior and posterior mean values and coefficients of variations
for nine exemplary physiological parameters taking all assessed information into account..
The population distribution is based on the prior and posterior distributions of the hyper
parameters including the assessed uncertainty in the mean value and standard deviation.

parameter prior estimate posterior estimate
mean val. CV [%] mean val. CV [%]

intP [dm/min] 3.68E-06 2843 1.76E-06 221
CLspec [1/min] 0.05 204 0.017 26
TSspec [1/min] 0.02 206 0.071 30
GET [min] 17.25 31 24.45 14
ITT [min] 146.41 28 184.57 18
fat vol. [L] 14.98 65 14.47 46

kidney vol. [L] 0.44 30 0.34 25
liver vol. [L] 2.36 28 2.1 30

muscle vol. [L] 32.099 26 26.27 11

mean confidence interval [-0.31 0.70]) can be obtained between CLspec and TSspec.
No further significant correlations could be found after performing a complete anal-
ysis of all possible individual parameter combinations (results not shown). Notably,
such correlations are derived despite the prior assumption of independent random
effects as defined in Equation 2.8. Furthermore, the distinction between individual
level and population level is important for the correct meaning of parameter cor-
relations. For population simulations, parameter correlations along individuals are
important since such correlations need to be included for the parameterization of
a new individual. For model characterization, the aforementioned correlations of
individual parameters along the samples of the Markov chain are important. For
example, a significant positive correlation of about 42% can be identified for intP
and GET (p < 0.05) along the autocorrelation-free samples. Such dependencies
denote an essential part of intraindividual uncertainty and need consideration when
simulating individual PK profiles as demonstrated in Figure 4.1.

Visual predictive check of population pharmacokinetics

Next, a visual predictive check (VPC) was performed to investigate the quality of
simulations using the posterior distribution of the population parameters [116]. The
VPC diagnoses the fixed effects as well as the random effects by calculating the CI
of the median and the 5% and 95% percentile of a large amount of simulations of the
experimental setting. This was important to interpret objectively if the simulations
with the posterior results describe the data well.

For each individual, 500 parameters sets were randomly drawn from the pos-
terior population distribution and the population simulation approach of Section
2.6.2 was applied. Thereby, no new individuals were simulated, instead, the 12 in-
tegrated individuals were recreated with the new a posteriori parameter sets. For
the VPC, all 12 individuals were then simulated and evaluated for each subsam-
ple, successively. Next, median and 5% and 95% percentiles were calculated for
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Figure 4.4: Exemplary representation of derived distributions of correlation between the
population parameters. The correlation of a pair of parameters along all individuals was
calculated for each of the 500 subsamples of the posterior distribution. For each pair of
parameters the histogram of all correlations is shown, representing the variability of the
respective correlation.
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each subsample simulation. Finally, the 95% CI is determined for the 500 curves of
medians and percentiles, quantifying the uncertainty in the predictions.

Figure 4.5a depicts the resulting 95% CIs for the median and the 5% and 95%
percentiles. For this VPC, the posterior population distribution was created from
the posterior estimates of the population mean values and the population standard
deviations (see also Table 4.1). In addition, the experimental data together with
the corresponding median and percentiles are illustrated. The CIs describe the
experimental data very well and with small uncertainty, especially in the mean value.
However, the 95% CI slightly underestimates the elimination phase compared to the
experimental data.

A second VPC was performed in Figure 4.5b, where the posterior population
simulation was estimated considering the full uncertainty of the hyper parameters
(see also Table 4.2). It can be observed that the CI of the 5% and 95% percentiles
increase, especially the 5% CI shows large uncertainty. The CI of the mean value is
in good agreement with the experimental data.

A third VPC was then performed using the population PBPK approach of Will-
mann et al [8] to compare against the VPCs using the presented Bayesian population
PBPK approach. Here, the parameter distributions which need to be considered for
the approach consist of the prior knowledge that was integrated into our population
PBPK approach. For the three uninformed parameters intP, CLspec and TSspec a
lognormal distribution with a geometric standard deviation of 1.5 was considered.
That should provide reasonable values regarding to the literature [117,118]. The
mean value was assumed to be the respective parameter value of the adjusted mean
value model. The resulting confidence intervals are shown in Figure 4.5c and show
considerably different results. Especially in the terminal phase (time > 12 h), the
confidence interval of the 95% percentile is much wider than the one in Figure 4.5a
or 4.5b. More variability can also be observed when comparing the confidence inter-
vals of the median. With regard to the experimental data, the simulated confidence
interval of the 95% percentile overestimates the 95% percentile of the experimental
data. The confidence interval of the median overestimates the data in the absorption
phase but fits the experimental data well in the elimination phase.

4.4 Improving performance by adaptive sampling
A drawback in the recent MCMC runs are bad mixing properties of the Markov chain
in some parameters. This results in large autocorrelation of the chain and prolongs
the run time of the approach, since a very large amount of parameter vectors has to
be sampled. For example, this led to sampling of 1,000,000 steps in the run presented
above. The main reason for the bad mixing properties is the defined scaling of the
proposal density in Section 4.2: After each pre-run, the proposal density for the
next run was determined from the posterior variance of the pre-run.

In order to improve this manual process we here present the results of our com-
bined adaptive MCMC sampling approach based on the mMALA [43] and the SCAM
approach, respectively [44,58]. The implementation of the approach was already de-
scribed above in Section 2.5.

With the described combined mMALA/SCAM approach of Section 2.5.3, a new
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Figure 4.5: Comparison of visual predictive checks (VPCs) of population simulations. (a)
VPC of the PK behavior using the posterior distributions based on posterior estimates of
the population parameters. (b) VPC of the PK behavior using the posterior distributions
based on the population parameters including their uncertainty. (c) VPC of the PK
behavior using the prior distributions of all parameters [8]. Each VPC is presented in
linear scale (left) and logarithmic scale (right). The VPCs were performed as described in
the text. In each VPC, the 5% and 95% percentiles (black dotted lines) and the median
(black line) of the experimental data (red dots) are compared against the 95% confidence
intervals of the 5% and 95% percentile of the simulation (light blue area) and the median
(blue area).
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MCMC run was performed and 200,000 parameter samples were generated. For
the adaptation of σjP we chose neq = 5, 000 and fup = 500. Furthermore, a new
MCMC run was performed with the standard MH proposal for comparison. Both
runs started from the identical starting condition. After discarding the first 50,000
iterations as burn-in, analyses of convergence, acceptance rate and autocorrelation
are considered to compare the performance of both runs by using a sample of 10,000
iterations out of the remaining 150,000 samples.

Table 4.3 shows the respective values for autocorrelation and convergence. Con-
vergence was determined as R̂ as described in Section 4.2 and Table B.3. The MH-
based run shows significantly larger values for R̂ compared to the mMALA/SCAM
run. At perfect convergence all values should be equal to 1. R̂ values for the
mMALA/SCAM run indicate full convergence of the run, while several parameters
are not converged in the MH run, indicating that the full run has not been reached
convergence, yet. Furthermore, autocorrelation is four times higher in the MH run,
indicating inferior mixing properties.

Figure 4.6 shows the development of the acceptance rate for both, the MH and
the mMALA/ SCAM run, for three exemplary individuals. For each iteration n,
the acceptance rate was calculated based on the sequence of 1 . . . n iterations. The
three individuals chosen out of the MH run show different acceptance rates also
after 20,000 iterations. Thereby, especially the acceptance rate of individual 3 is
around 50% which accounts for a lower efficacy of the sampling than in the other
individuals. Here, further tuning of the proposal standard deviation and restart
of the MCMC run would be necessary to obtain an equal sampling quality for all
individuals.

In contrast, the acceptance rates for the three individuals in the mMALA/SCAM
run start to adapt their proposal standard deviation after neq = 5, 000 iterations
as described above. After 20,000 iterations and 20, 000/fup = 40 updates of the
proposal standard deviations, they are already converged to an acceptance rate
around 20% which fits well in light of the optimal acceptance rate of 23.4% [84].

In contrast to an improved performance, the overall results should not differ
significantly. Figures A.4 and A.5 show the individual model predictions according
to Figure 4.1. Furthermore, Figure 4.7 compares the VPC of the MH approach using
pre-runs and fixed proposal densities per run with the new adaptive mMALA/SCAM
approach. Figure 4.7a shows the VPC of the MH run, Figure 4.7b the VPC of the
mMALA/SCAM run. It can be demonstrated, that both figures show the same
overall result.

Regarding the parameter level, a comparison of the distribution of correlations
reveal an even sharper distribution of the correlation between TSspec and kidney
volume for the mMALA/SCAM (mean negative correlation of 74%, p<0.05) run
than the distributions of the old (mean negative correlation of 70%, p<0.05) and
new MH (mean negative correlation of 62% p<0.1) runs (see Figures A.6, 4.4 and
A.7, respectively).
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Table 4.3: Performance comparison of MH and mMALA/SCAM algorithms. Analyses
have been performed for each run using the same sample of 10,000 iterations out of all
150,000 iterations which remain after discarding the first 50,000 iterations as burn-in
period.

parameter type R̂ autocorrelation
MH mMALA/ MH mMALA/

SCAM SCAM

intP individual 1.070 1.011 475 114
CLspec individual 1.060 1.001 560 324
TSspec individual 1.390 1.047 1236 581
GET individual 1.104 1.008 502 149
ITT individual 1.007 1.003 170 112

plasma protein SF individual 1.061 1.004 354 105
logP global 1.120 1.022 647 277
fu global 1.036 1.023 96 305

fat vol. individual 1.015 1.036 536 175
kidney vol. individual 1.306 1.008 1116 516
liver vol. individual 1.022 1.012 259 82

muscle vol. individual 1.016 1.029 415 175
CLspec x liver vol. individual 1.021 1.017 201 158
TSspec x kidney vol. individual 1.085 1.013 369 287

intP population 3.391 1.008 2620 111
CLspec population 1.169 1.000 2420 316
TSspec population 4.126 1.034 2373 555
GET population 1.007 1.000 397 58
ITT population 1.001 1.001 331 124

plasma protein SV population 1.014 1.000 125 69
fat vol. population 1.001 1.033 451 169

kidney vol. population 1.383 1.003 1033 508
liver vol. population 1.005 1.016 457 81

muscle vol. population 1.004 1.038 508 182
CLspec x liver vol. population 2.296 1.052 1757 542
TSspec x kidney vol. population 1.082 1.012 563 226

largest value 4.126 1.052 2620 581
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Figure 4.6: Development of acceptance rates during MH and mMALA/SCAM run for
three exemplary individuals. Left column shows MH run and right column shows
mMALA/SCAM run.

Figure 4.7: Comparison of VPCs using standard MH and the combined mMALA and
SCAM algorithm. (a) Standard MH algorithm. (b) New combined adaptive algorithm.
For further explanation of the legend please refer to Figure figure 4.5 on page 84.
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4.5 Discussion
The application example simulating theophylline PK revealed the variety of infor-
mation that can be obtained by using the Bayesian population PBPK approach. As
a first result, individual-specific simulations under consideration of assessed param-
eter uncertainty described the experimental data in good agreement and with little
uncertainty on the PK level. Such information can be considered e.g. to identify
possible heterogeneities in the population or even to identify subgroups related to
genetic or physiological differences or diseases [10], as also demonstrated within the
first application example in Chapter 3.

Furthermore, a comparison of marginal population distributions of the posterior
and the prior distributions demonstrated which information can be inferred from
the experimental data. Since the experimental data represented the PK of a very
homogeneous population with respect to their physiology, several population pa-
rameter distributions showed a decrease of their variance. Additionally, changes in
the mean values indicated a different behavior of the drug, for example in the ab-
sorption processes. In particular, theophylline seemed to be absorbed more slowly,
which was represented by prolonged GET and ITT. A possible reason could be that
the individuals have not been in fasted state during the experimental investigation.
Moreover, the posterior population distributions of the organ volumes suggested a
lower average BW of the individuals, since e.g. the mean muscle volume decreases
and BW is composed of the organ volumes in the PBPK model [8].

However, simple observation of the marginal distributions is insufficient to thor-
oughly analyze the posterior distribution. Only the investigation of the complete
high dimensional posterior distribution provides the full information, at least if the
prior assumption of independence between parameters cannot be assumed anymore.
The distributions of correlations in Figure 4.4 indicated that the assumption of in-
dependence between the parameters does not hold and information about the model
and the physiology of the population can only be described by the complete mul-
tivariate posterior. This can be seen as a natural consequence of incorporation of
a physiologically-realistic PBPK model into the Bayesian framework, since effective
parameters like a total clearance rate are divided into physiological relationships
of e.g. catalytic constants of enzymes and the corresponding volume of an organ.
However, it has to be noted though that large uncertainty could be observed on
the estimated correlations. A possible reason could be the small sample size of 12
individuals that were considered for the determination of the correlations. Here,
investigations that integrate a larger population would deliver more precise results
regarding the correlations.

The findings of a dependent multivariate posterior distribution were further sup-
ported by the VPCs (Figure 4.5). The use of independent prior information of the
parameters led to a too large interindividual variability and would provide vague in-
formation about the PK behavior of theophylline in a homogeneous population. The
Bayesian population PBPK approach provided a smaller interindividual variability
especially in the mean value, and the shape of the intervals was in better agreement
with the experimental data. Hence, the VPC also served as a validation for the
estimated high dimensional posterior distribution of the population parameters.

The comparison of a VPC based on the maximum posterior estimate and the
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VPC based on the full posterior information revealed the influence of parameter un-
certainty at the population level. Due to the small population that was investigated
in our application, large uncertainty is expected in the identified distributions of pop-
ulation parameters. Such uncertainty should also be taken into account in model
extrapolations; otherwise the extrapolations would underestimate the interindivid-
ual variability. Nevertheless, for validation of our approach, the maximum posterior
estimate appropriately demonstrates the successful estimation of the population dis-
tributions.

Notably, the assumption of a multivariate normal distribution for the estima-
tion of the dependency structure of the random effects could also be crosschecked
against other dependency structures, such as copulas [119]. However, we do not ex-
pect large variations in the effect of different dependency structures, since only one
significant correlation was identified and all correlations were subject to large un-
certainty. Nevertheless, the analyses revealed the existence of correlations between
population parameters.

In classical population pharmacokinetics approaches (PopPK), various additional
covariates are tested during model identification, such as BW or creatinine clearance
[54,120]. In this work we used an approach by Willmann et al. [8], where age,
gender and height were chosen as covariates to create a large physiological database.
We used this database for definition of our prior distributions and to implement
the covariate approach. This is in line with de la Grandmaison et al. [121], who
demonstrated that the organ weights were better correlated with body height than
with BMI or BW. However, other approaches show contrary results and could be
tested in future studies to use e.g. lean body mass as covariates [70]. For the
theophylline dataset used in our approach, in a PopPK approach Tornøe et al. [110]
showed that BW is no significant covariate, however, BW has also been shown to be
a covariate of e.g. clearance of theophylline in markedly obese patients [122,123].

The use of a standard MH proposal density with a fixed standard deviation led to
a poor performance of the MCMC run. A sample of 800,000 iterations was needed
to create an independent sample of the posterior and convergence was achieved
only after 200,00 iterations. Furthermore, the acceptance rates of individual and
population parameters were bad, such that the mixing of the Markov chain was
insufficient, especially for the population parameters. However, poor performance
of the MCMC run does not mean a bad identification of the parameter space and
the interindividual variability of the PK behavior. Robustness of the results could
be assumed since several checks of the posterior results after e.g. 400,000 or 600,000
iterations showed similar results as the ones illustrated above (results not shown).
Nevertheless, the long computation time and the efficiency of the MCMC sampler
should be improved for faster convergence, better mixing and more reliable results
on the parameter level, especially for the application of the approach to later clinical
studies of phase II or III, where up to thousands of patients would be included.

Therefore, other MCMC samplers were considered to improve the performance
of the Bayesian population PBPK approach. Thereby, a possible approach should
be efficient in time and should be able to cope with the PBPK model structure.
One of the most efficient sampling methods is the mMALA approach as described
in Section 2.5.2. However, in case of numerical determination of the derivatives,
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it can become inefficient due to increasing computation times. Therefore, we con-
sidered a combined approach of mMALA sampling and the SCAM approach. One
advantage of our approach is that no further proof of successful convergence to the
stationary distribution is needed anymore, since the basic approaches are already
well established. However, the combination of both approaches and the application
to the population level are new.

Notably, the PBPK structure and the different types of parameters in the hierar-
chical model were well suited for the consideration of different adaptive approaches.
The acceptance criterion for parameter sampling at the population level is only de-
pendent on the prior distribution and does not need a calculation of the likelihood.
Hence, for application of the mMALA approach, analytic derivations of the prior
distributions could be considered. Haario et al. [44] showed that SCAM can be easily
applied in very high dimensional examples, such that this approach was chosen for
the individual and global parameters. In particular, we used SCAM within our spec-
ified block structure, such that acceptance of sampled parameters was performed for
each block and not for each parameter, separately. However, the adaption step was
performed for each parameter itself. Although SCAM ignores the adaptation of an
underlying dependency structure in contrast to other approaches such as the AM
from Haario et al. [58], we decided to consider SCAM, since the posterior depen-
dency structure could be estimated from the posterior distribution as described in
Section 2.6.2.

Few assumptions were integrated into the overall computation, such as adaption
of only the diagonal entries of the covariance or using mMALA with constant curva-
ture. Notably, these assumptions affect only the performance of the approach such
that it is possible to use such simplifications for better applicability with large and
complex model structures and large numbers of parameters [43].

The obtained results of the adaptive mMALA/SCAM approach showed a largely
improved performance compared to the standard MH approach. The comparison
run with standard MH was clearly not yet converged, such that more iterations
would be needed or probably more tuning steps should be performed to manually
adapt the proposal standard deviations.

The comparison of posterior results such as the VPC or the correlations demon-
strated that the new adaptive mMALA/SCAM approach provided the same findings
as the standard MH before. The VPC of mMALA/SCAM showed less uncertainty in
the interindividual variability, which is, however, also the case for the new standard
MH run. This is therefore no effect of the new algorithm, but is due to different
starting conditions and sharper prior distributions for the population parameters.
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Chapter 5

Prediction of drug
pharmacokinetics in
clinically-relevant populations
using a translational learning
approach

In this chapter, the objective is to apply translational learning as described in Section
2.7 to predict drug PK in a specific patient population based on physiological and
physicochemical information acquired before in several applications of the Bayesian
population PBPK analysis [12]. The approach is applied on clinical data from
a specifically-designed study program [124]. In brief, Midazolam PK in healthy
individuals and obese patients as well as torsemide PK in healthy individuals is
used to identify physicochemical and physiological distributions of PBPK model
parameters. The acquired information is then used to predict torsemide PK in a
population of obese patients.

In Section 5.1, results of the clinical study are presented, Section 5.2 describes
background and model building of the two considered compounds midazolam and
torsemide. Section 5.3 introduces the chosen prior distributions and parameters of
the Bayesian population PBPK approaches and Section 5.4 presents the achieved
results, followed by a discussion in Section 5.5

5.1 Clinical study
The translational learning approach was applied to a clinical study in healthy volun-
teers on the one hand and obese to morbidly obese patients on the other hand. Both
cohorts were administered a cocktail of six marketed drugs (midazolam, torsemide,
talinolol, pravastatin, codeine and caffeine) at sub-therapeutic doses [124]. The
drugs in the cocktail were selected because each of them is dominantly cleared by
a single enzyme or transporter-mediated pathway thereby excluding the occurrence
of drug-drug-interactions. In our analysis, we focused on midazolam and torsemide
since the metabolization scheme of these two compounds has a comparable com-
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Table 5.1: Anthropometric information of both the cohort of healthy individuals and the
cohort of diseased individuals

n male
[%]

age
[years]

body
weight
[kg]

body
height
[cm]

body
mass
index

median [min
max]

median [min
max]

median [min
max]

median [min
max]

healthy 103 52.4 28 [18
56]

74.5 [48.5
113]

174 [154
194]

23.5 [18.8
32.3]

diseased 79 41.8 45 [20
77]

138 [52
206]

175 [156
192]

47.3 [19.7
67.1]

Table 5.2: Summary of weight normalized PK parameters of midazolam and torsemide
data

healthy diseased p-val
geo.
mean

CV
[%]

geo.
mean

CV
[%]

midazolam cmax [µmol/l/kg] 0.00017 50 0.00011 76 <1e-5
torsemide cmax [µmol/l/kg] 0.0011 33 0.00045 62 <1e-21
midazolam AUC [µmol*min/l/kg] 0.018 77 0.012 93 <1e-5
torsemide AUC [µmol*min/l/kg] 0.13 62 0.049 78 <1e-21

plexity. In the clinical study, plasma samples from 103 healthy individuals and 79
obese to morbidly obese patients were taken and analyzed. The anthropometry of
the individuals and patients are summarized in Table 5.1. The main difference be-
tween the two cohorts is BW, where the median is 74.5 kg and 138 kg, respectively.
Summary statistics of important PK parameters are shown in Table 5.2. While
non-normalized PK parameters are apparently similar for both healthy volunteers
and patients (data not shown), analysis of maximum concentration (Cmax) and area
under curve (AUC) revealed a significant negative correlation of PK parameters
with respect to BW (Figure 5.1a). Due to this dependency on BW, the PK analyses
of Table 5.2 were performed weight-normalized. Significant differences between the
healthy and the diseased PK data were obtained for both midazolam and torsemide
for Cmax and AUC, respectively, as also illustrated in Figure 5.1b. Further anal-
yses of the diseased population revealed significant correlations between BW and
fatty degeneration of the liver. A positive correlation was also revealed between the
nonalcoholic steatohepatitis (NASH) score and BW, which showed that BW is a
strong indicator for pathophysiological conditions (Figure 5.1c). The NASH score
sums up the grade of fatty degeneration, inflammation and fibrosis. An analyses
of the fractions of individuals that show strong fatty degeneration or a high NASH
score (Figure 5.1d and e) revealed that although only 7% of the patients have high
fatty degeneration, 25% show a NASH score larger than 3, indicating that many
individuals have other diseases than fatty liver alone.
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5.1 Clinical study

Figure 5.1: Results of the clinical study regarding patient properties and experimental
data of midazolam and torsemide in healthy and diseased individuals [124]. (a) Corre-
lation analyses regarding weight of individuals. Scatter plots together with the linear
regression line are shown comparing the Cmax (left panel) and the AUC (right panel) of
the experimental data for midazolam (mida) in diseased individuals versus body weight.
Correlation coefficients ρ are shown above both subfigures together with the corresponding
p-values. (b) Boxplots of Cmax (left panel) and AUC (right panel) from healthy individ-
uals and midazolam (mh), diseased individuals and midazolam (md), healthy individuals
and torsemide (th) and diseased individuals and torsemide (td) are compared against each
other. Black line represents the median, the edges of the box are the 25th and 75th per-
centiles, the whiskers extend to the most extreme data not considered outliers, and outliers
are plotted individually. (c) Correlation analyses regarding the diseased state of the pa-
tients compared to body weight. Scatter plots together with the linear regression line are
shown comparing the fatty degeneration of the liver (liver adiposis) and the NASH score
of the experimental data for each individual with the respective body weight. Correlation
coefficient ρ together with the corresponding p-value are depicted above both subfigures.
(d) Pie chart representing the fractions of individuals with liver adiposis below 30%, be-
tween 30% and 60% and above 60%. Color code is present in the legend in the figure. (e)
Pie chart representing the fractions of individuals with different NASH scores between 0
and 6. Color code is present in the legend in the figure.
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5.2 Model building
Midazolam

Midazolam is a benzodiazepine derivative which is mainly used as sedative. It is al-
most exclusively metabolized via cytochrome P450 3A4 (CYP3A4). Metabolization
takes place in the liver as well as in the intestine. The main metabolite is 1’-
hydroxymidazolam (OH-midazolam), which is also pharmacologically active. Two
other metabolites are formed via CYP3A4 and cytochrome P450 3A5 (CYP3A5),
but only in small fractions (3% and 1%, respectively). Oral bioavailability of mida-
zolam is extremely variable and due to first pass metabolism in the intestinal tract,
formation rate of OH-midazolam is higher after oral administration of the drug
compared to intravenous administration. Parent drug and metabolite are both glu-
coronidated via uridine diphosphate glucuronosyltransferase 1A4 (UGT1A4). About
75% of the administered dose is renally excreted as glucoronidated OH-midazolam.
The fraction of unchanged midazolam is negligible [125–127].

The fu in the blood plasma is about 3% [128], and the lipophilicity is calculated
as 3.89 [128], other sources provide values of between 2.9 [129] and 3.93 [130]. For
OH-midazolam, lipophilicity is determined as 3.13 [130].

A combined PBPK model for midazolam and OH-midazolam was created with
the PBPK modeling software PK-Sim and MoBi, considering literature information.
Three active processes are integrated into the model, metabolization of midazolam to
OH-midazolam via CYP3A4, glucuronidation of OH-midazolam via UGT1A4 and
active transport of midazolam via P-glycoprotein (Pgp). The relative expression
of the enzymes for each organ is obtained via the expression database integrated
into the software [101]. CYP3A4 is mainly expressed in the liver and the intestinal
compartments, UGT1A4 is mainly expressed in the kidneys, liver and small intestine
and Pgp is also especially expressed in these organs. Glucoronidation of midazolam
is neglected, as well as metabolization into minor metabolites via CYP3A4 and
CYP3A5. All three processes are described via Michaelis-Menten kinetics to account
for possible nonlinearities.

Torsemide

Torsemide is a loop diuretic acting against chronic heart failure, chronic renal failure
and hypertension [131]. It leads to an increase of urinary excretion and reduces blood
pressure by reducing blood volume. Renal plasma flow or the glomerular filtration
rate are not affected [128]. In comparison to other loop diuretics like furosemide,
torsemide possesses a large bioavailability of about 80 to 90% [132], which also in-
dicates only very little first-pass metabolism [133]. Torsemide undergoes hepatic
metabolism via cytochrome P450 2C9 (CYP2C9), forming three main metabolites
M1, M3 and M5. M5, in the following named as OH-torsemide, is formed by oxida-
tion of M1 [131,132,134]. In addition, torsemide is also metabolized by cytochrome
P450 2C8 (CYP2C8) although the intrinsic clearance (Vmax/Km) of CYP2C9 is
about an order of magnitude higher for CYP2C9 [135,136]. The fu of torsemide in
blood plasma is smaller than 1% such that glomerular filtration can be neglected
as a route for renal excretion. Active secretion is therefore the main route of re-
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nal elimination [137]. About 75 to 80% of torsemide are metabolized in the liver,
only 20 to 25% remain unchanged in urine. In addition, 11%, 3% and 44% of the
administered dose can be found as M1, M3 and M5, respectively, in urine [132].

Based on the described information and the available experimental data, a com-
bined PBPK model for torsemide and metabolite M1 was created with PK-Sim and
MoBi. CYP2C9 was integrated as active second order Michaelis-Menten process for
metabolization of torsemide to M1 and of M1 to M5, using the expression database
from PK-Sim to obtain the relative expression profile of the enzyme for each organ.
Notably, two independent kinetics were created since the dissociation constant Km

and also vmax are not the same for both metabolization steps. For simplification
and due to the lack of experimental data, metabolization of torsemide to M3 was
neglected. Two renal clearance processes were also integrated into the model, one
for each of the considered compounds. Michaelis-Menten kinetics were chosen for a
possible description of nonlinearities.

5.3 Statistical computation
The established Bayesian population PBPK approach of Chapter 2 was used for
the single steps of the presented translational learning approach. We considered the
combined mMALA/SCAM algorithm as described in Section 2.5.3 as the sampling
algorithm. For each of the three applications of the Bayesian population PBPK
approach, one long MCMC run was performed by drawing 150,000 samples out of
the posterior. The first 50,000 iterations were defined as burn-in and were dis-
carded from the chain. R̂ was considered as convergence criterion [106,115]. To
determine R̂ the remaining 100,000 samples were split into two chains, whereby the
first chain contained iterations 50,001:100,000 and the second chain contained it-
erations 100,001:150,000. An independent subsample of 500 parameter vectors out
of the chain was used for the presented analyses and population simulations. For
each individual, all organ volumes and blood flow rates were varied in the approach
together with gastric emptying time (GET) and intestinal transit time (ITT), as
already described in Section 4.2 and Table B.2. In addition, the specific ADME-
related parameters and drug-specific parameters were varied as stated in Tables 5.3
and 5.4. The prior distributions were chosen as described in Section 2.3.3. The
parameterization of the priors for each compound and MCMC run can be found
below.

5.4 Results
Characterization of compound specific-parameters and pathophysiology

Having established the PBPK model for midazolam and torsemide, the described
translational learning approach was applied for the characterization of healthy and
diseased cohorts of individuals and for the identification of their interindividual
variability. 20 individuals were randomly chosen out of the two cohorts consisting
of either healthy volunteers or obese to morbidly obese patients. The remaining
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individuals were then used for validation of each step of the translational approach
by comparison with the population simulation (Figure 2.8).

In the first step of our translational learning approach we performed the Bayesian
population PBPK approach in the healthy population and the PK of midazolam and
OH-midazolam. Following the quantitative assessment of inter-individual variabil-
ity, the identified distributions of parameters were subsequently used for a popu-
lation simulation, as described in Section 2.6.2. Figure 5.2a shows the resulting
population simulation for midazolam and OH-midazolam together with the remain-
ing experimental data of the 83 healthy individuals at their original time points.
Both simulations are in good agreement with the experimental data, however, the
confidence interval is broader than the range of the experimental data.

Table 5.3 shows the integrated prior distributions for important parameters and
the resulting posterior distributions after the application of the Bayesian population
PBPK approach. A large difference can be observed between the prior and posterior
of the ADME parameters for midazolam in the healthy individuals. In contrast, the
posterior distributions of exemplary physiological parameters differ only slightly
from the prior distributions. The drug-specific parameters do not have a population
distribution; the depicted CV describes the uncertainty and not the variability in
these parameters. It can be observed that besides the uncertainty of the fu for OH-
midazolam, all drug-specific parameters were identified with very high probability.

In the next step we performed the Bayesian population PBPK approach for
torsemide in the healthy population. As experimental data, the same 20 randomly
chosen individuals of the first run considering midazolam and OH-midazolam PK
were integrated. Figure 5.2b shows the resulting population simulation of torsemide
and OH-torsemide in comparison with the remaining experimental data of the 83
healthy individuals at their original time points. In the absorption phase, the simu-
lation of torsemide PK slightly underestimates the interindividual variability of the
data; however, the interindividual variability of the distribution phase and the elim-
ination phase is in good agreement with the experimental data. The PK behavior
of OH-torsemide is not very well described regarding the shape of the experimental
data over time.

Table 5.4 shows the integrated priors and the resulting posterior of the torsemide
investigation. Inferred uncertainty of the drug-specific parameters is also small, as
obtained before in the midazolam run. The difference between prior and posterior
distributions for the physiological parameters is negligible as before for midazolam
in healthy individuals. This indicates that no new information about the physiology
of a healthy population could be extracted from the experimental data.

The third step in our translational workflow (Figure 2.9) accounted for mida-
zolam PK in a diseased population. Here, experimental data of midazolam and
OH-midazolam for 20 randomly chosen patients from the cohort of obese to mor-
bidly obese patients were considered for the analyses. Table 5.3 shows the integrated
priors and the resulting posterior. Notably, the inferred posterior information of the
ADME parameters of the healthy population was used as prior information for the
run, assuming that no better information existed for the diseased population. The
drug-specific parameters were fixed at their maximum posterior values from the first
run with healthy individuals (Table 5.3). This accounts for the assumption, that
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5.4 Results

Figure 5.2: Population simulations for validation of the first three steps of the translational
learning workflow. (a) Midazolam and OH-midazolam PK in the healthy population
(b) Torsemide and OH-Torsemide in the healthy population. (c) Midazolam and OH-
midazolam in the diseased population.
95 % confidence intervals (blue area) are shown together with the mean value curve (black
line) and the experimental data (red dots with dark grey dashed lines). The parent
compound is depicted on the left, the metabolites are depicted on the right.
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drug-specific information was completely inferred in the application with healthy
data.

Again, after the MCMC run, a population simulation was performed with the
posterior parameter distributions and compared to the 56 remaining patients of the
study. Figure 5.2c depicts the resulting simulation. In the absorption phase and
the distribution phase, the PK behavior of midazolam in the diseased individuals
is well described. However, in the terminal phase, the simulation underpredicts
the experimental data slightly, and the confidence interval overestimates the lower
bound of the PK range. In contrast, the PK behavior of the metabolite is in good
agreement with the experimental data over the whole time period, even though the
confidence interval again overestimates the lower bound of the PK range in the
terminal phase.

On a parameter level, the comparison between the healthy and the diseased
cohort revealed large differences. The geometric mean of the enzyme activities of
CYP3A4 and UGT1A4 decreased by 10% and 45%, respectively. In contrast activity
of Pgp as well as muscle and fat volume showed a large increase. Furthermore,
parameters like GET, ITT or the specific blood flow rate of fat increased partly
noticeably more than 5%.

For further validation of the three examinations, the PK outcome of the simula-
tion parameterized with the parameter vectors that showed the largest probability
in the MCMC runs was compared to the experimental data. This was done for all
three scenarios. Figure 5.3. shows the result for all 20 individuals that were included
into the investigations. Notably, the PK outcome of midazolam was created with
the 20 individuals of the healthy populations and the 20 individuals of the diseased
population. Figure A.8 illustrates the simulations of the metabolites. The obtained
results show a very good agreement with the experimental data. In addition, the
comparison of the metabolites OH-midazolam and OH-torsemide demonstrates a
good agreement with the study data, hence the Bayesian analyses provided reliable
results for the individuals as well as the population.

Prediction of torsemide PK in a diseased population

The final step of the described translational learning approach was then the pre-
diction of torsemide PK in diseased individuals. Notably, no previous MCMC run
was performed to infer additional knowledge of new experimental data. Instead,
the respective population distributions on the parameter level were translated from
the previous runs, as depicted in Table 5.4. The drug-specific parameters includ-
ing enzyme activities of the respective enzymes regarding torsemide metabolism
were included from the posterior distributions of the torsemide run considering the
healthy population. The physiological parameters were included from the poste-
rior distribution of the midazolam run considering the diseased population. Mea-
surement uncertainty was taken from the torsemide MCMC run investigating the
healthy population. Figure 5.4 shows the resulting prediction of torsemide PK in the
diseased population. The overall data can be well described within the simulated
95% confidence interval. However, it seems like the absorption phase is slightly
underestimated while the terminal phase is overpredicted by the simulation. For
OH-torsemide, the population simulation underpredicts the absorption phase, but
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Figure 5.3: Individual model simulations of the parent compounds midazolam and
torsemide. The simulation of the parameter vector with maximum posterior probabil-
ity is shown for midazolam in the healthy individuals (blue line and circles), torsemide in
healthy individuals (green line and squares) and midazolam in the diseased individuals
(red line and triangles)

.
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Figure 5.4: Prediction of the PK behavior of (a) torsemide and (b) OH-torsemide in a
diseased population.
95 % confidence intervals (blue area) are shown together with the mean value curve (black
line) and the experimental data (red dots with dark grey dashed lines)

.

the terminal phase is in good agreement with the experimental data.
To better compare the quality of the prediction, a comparison of PK parameters

was performed. The distributions of Cmax, time point, where maximum concen-
tration is reached (tmax) and AUC of torsemide PK were compared between the
experimental and simulated data. Figure 8 shows the obtained results for torsemide
and OH-torsemide. A significant difference between healthy and diseased data and
also between the simulations can be observed for the Cmax values of torsemide. Pre-
dicted and observed Cmax of the diseased population are in very good agreement,
while Cmax of the healthy population overestimates the data. The comparison of
the AUCs shows similar results. The predicted AUCs in the healthy and diseased
population are significantly different. Furthermore, predicted and AUCs from the
experimental data are in very good agreement for the healthy population and the
diseased population, respectively. A comparison of tmax reveals also significant dif-
ferences between the simulations of healthy and diseased individuals. However, the
agreement between predicted and observed tmax for healthy and diseased population,
respectively, is not as good as for Cmax and AUC.

A retrospective analysis using the Bayesian population PBPK approach was
performed to quantify the quality of the obtained prediction of the PK behavior for
torsemide. Therefore, the experimental data for torsemide in the diseased popula-
tion were used. After the Bayesian analysis, a population simulation was performed
similar to the first three steps of the translational learning approach. In addition to
the predicted population simulation and the one based on the retrospective Bayesian
run, a third population simulation based only on prior knowledge was assessed as a
reference point. The normalized root-mean-square-error (NRMSE) was considered
as a measure for the quality of the population simulations. The root-mean-square-
error (RMSE) was obtained by comparison of the median of the 500 simulations and
the median of the 79 experimental data sets at the time points of the experimen-
tal data. For the parent compound torsemide and the metabolite OH-torsemide,
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Figure 5.5: Analysis of PK parameters of the prediction of torsemide and OH-torsemide.
Cmax, AUC and tmax are compared between the prediction (d.pred) and the data (d.data)
of the diseased individuals for torsemide (left) and OH-torsemide (right) as well as between
the simulation (h.) and the experimental data (h.data) of the healthy individuals.
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Table 5.5: Comparison of NRMSE to quantify the quality of the population simulations
using: only prior knowledge; the results of the systems pharmacology approach for the
prediction of the PK behavior; and the results of the retrospective analysis of torsemide
in diseased individuals using the Bayesian population PBPK approach.

NRMSE
prior prediction retrospective

torsemide 1 0.544 0.536
OH-torsemide 1 0.898 0.579

respectively, the RMSE was normalized with the maximum RMSE of all three sce-
narios, which was the population simulation using only prior knowledge for both
cases. Table 5 shows the obtained values for the normalized root-mean-square-
error (NRMSE).

The NRMSE of the prediction of the PK behavior of torsemide shows an im-
provement of 45.6% compared to the simulation that was created by using prior
information. A slight improvement of the simulation could be further observed in
the retrospective analysis. However, a visual inspection of the shape of the median
simulation curve reveals a significantly better shaped median curve for the retro-
spective simulation, in addition (Figure A.9). For OH-torsemide, an improvement
of about 11% can be observed in the prediction compared to the simulations using
only prior information. Furthermore, the NRMSE of the retrospective analysis is
about 35% better than the predicted one.

5.5 Discussion
In this chapter, we performed a systems-pharmacology approach to translate phys-
iological information between different patient cohorts to ultimately predict the
population PK of specific drugs in novel patient subgroups. The approach consisted
of four steps. In the first three steps, new experimental data was used in combina-
tion with a Bayesian population PBPK approach to update prior information about
physiological parameters and drug-specific parameters to assess the interindividual
variability of drug pharmacokinetics in a population and infer posterior knowledge
about all integrated parameters. The three applications described the PK of mida-
zolam and torsemide in a healthy population and the PK of midazolam in a diseased
population. The results on the parameter level were validated by performing a pop-
ulation simulation for each of the three applications and comparing the 95% confi-
dence interval to new unsupervised experimental data. The last step consisted of
a prediction of the PK of torsemide in the diseased population based on the derived
knowledge of the three assessments before. The derived drug-specific knowledge of
torsemide in a healthy population was combined with the derived pathophysiology
of the diseased population to perform a population simulation. The simulation was
compared to experimental data and showed a quite reasonable accordance to the
experimental data.

The key idea of the presented approach was the iterative translation of drug-
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specific information from investigations considering the same drug and the iterative
translation of physiological information from the investigation in healthy volunteers
to that in patients. That allowed to start the first investigations with very little in-
formation about the physicochemistry and the ADME-related parameters of the two
compounds midazolam and torsemide and to assess information about the param-
eter uncertainty and variability from the experimental data in healthy individuals.
This knowledge could be then transferred to assess the interindividual variability in
the PK of midazolam in diseased individuals. Since the uncertainty of the param-
eters describing the physicochemistry of the compound such as lipophilicity and fu
was very small, it was assumed that these parameters need not to be assessed fur-
ther. Instead, all changes between the healthy and the diseased population should
be explainable with changes in the physiology and the ADME-related parameters.

The PBPK model structure that was considered for the systems pharmacology
approach was a generic mechanistic model structure that consisted of all important
organs and tissues of the human body. Therefore, it was possible to integrate all
organ volumes and blood flow rates into the analyses, whereby informative prior dis-
tributions about each parameter were provided by a large physiological data base.
Starting with a cohort of healthy individuals, the analyses demonstrated that no
new information could be extracted about the physiology from the experimental
data, since the posterior distributions were very similar to the prior distributions.
The meaning of such result is ambiguous, on the one hand the data could be unin-
formative related to the physiological parameters, on the other hand the information
extracted from the data confirms the prior distributions that were integrated. This
cannot be completely differentiated with our approach. However, the integration of
these uninformed parameters into the investigation allows in principle the extraction
of information from the experimental data and further enables the translation and
extrapolation to new scenarios [17].

Such translation was performed for the assessment of midazolam PK in a diseased
population, in which the posterior distributions of all physiological parameters were
considered as prior information. The results demonstrated large changes in ADME
related parameters, in organ volumes such as fat and muscle volume and also in sev-
eral blood flow rates, characterizing the pathophysiology of the patients, reflecting
the changes on a parameter level. Thereby, the sparse data and especially the fact
that only plasma data were available led to a characterization of the pathophysiology
on a functional level. That means, that the validity of a certain change of a param-
eter cannot be ensured, but e.g. a decrease in the liver volume or in the specific
vmax of CYP3A4 both reflects a decrease of liver function. Such localization to a
functional representation of biological meaning is only possible by the consideration
of a whole-body PBPK model.

The results of the three applications of the Bayesian population PBPK approach
were qualified by population simulations as well as individual simulations of the
PK behavior, which in principle all showed good agreement with the experimental
data. Several population simulations were too broad compared to the range of the
experimental data. A possible reason for this could be the relatively small number
of 20 individuals that have been used for the application of the Bayesian population
PBPK approach. The integration of a larger number of individuals could provide
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better estimations, however, in early clinical studies usually small cohorts of about 10
to 50 individuals are considered. Another reason could be an insufficient estimation
of the dependency structure of the population parameters, such that effects are
added up on the PK level and lead to too large variability. However, it has to
be noted that all remaining unsupervised individuals that were compared with the
simulations (Figure 5.2) lie within the simulated confidence interval, such that from
a clinical perspective these results would not lead to any additional safety issues,
which would be the case if a small number of individuals lead to too narrow ranges
of estimated interindividual variability.

For torsemide in the diseased population, successful translation of information
and following prediction of population PK was demonstrated: on the one hand of
drug-specific parameters of torsemide from the healthy to the diseased population
and on the other hand the physiology of the diseased individuals from midazolam to
torsemide. Thereby, the quality of the PK prediction was further quantified and re-
vealed a very good agreement of observed and predicted PK of the parent compound,
but not of the metabolite. Visual inspection and analyses of the posterior distri-
bution of the retrospective analysis concluded that especially the metabolization of
torsemide via CYP2C9 is increased in the diseased individuals, since an improved
shape could be observed in the population of the retrospective analysis, especially
in the terminal phase of torsemide. This increased metabolization of torsemide led
to an increased Cmax of OH-torsemide thus increasing the quality of the population
simulation of OH-torsemide.

106



Chapter 6

Conclusion

In conclusion, this work makes three main contributions to the literature. The first is
the development of the comprehensive generic Bayesian population PBPK approach
for an improved understanding of interindividual variability and the establishment
of a translational learning concept. We aimed for an elaborated estimation of the pa-
rameters’ uncertainty and variability and constructed a specifically-designed model
framework including a nonlinear-mixed effects model, a covariate model and a pro-
portional error model within the Bayesian framework. The second is the adaptation
and tuning of the considered approaches to best suite the demands of whole-body
PBPK models and translational systems pharmacology, the idea of acquisition and
translation of physiological and physicochemical properties. Thereby, to the best of
our knowledge, we for the first time paid particular attention to tune performance
of MCMC approaches in the area of life science applications, be it the setup of the
sampling or the sampling approach itself. As the third main contribution we consid-
ered several application examples that cover a wide range of issues occurring in the
drug development process and demonstrate the usability of the developed Bayesian
population PBPK approach.

In particular, the contributions of this work related to the overall workflow are:

• reduction of model complexity by taking into account the natural independence
of model parameters that base upon a biological origin [10,11],

• integration of a covariate model that allows to infer the distribution of physi-
ological parameters over the full age range [11],

• a specifically-designed blockwise sampling structure of the MCMC algorithm,
taking into account the mechanistic deconvolution of physiological and drug-
specific parameters in the PBPK model [10,11],

• definition of prior distributions in consideration of the structure and properties
of a physiological database that is part of the generic PBPK modeling platform
[10,11].

To improve the performance compared to recent approaches and for evaluation
of the derived results as well as to facilitate translation, we:

• developed and adapted a sophisticated MCMC sampling algorithm that was
designed to best suit the specific properties of the different types of parameters
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that are identified by the Bayesian population PBPK approach and were able
to show a clear improvement of the performance by our method compared to
the conventional MH approach (Chapter 4, [12]),

• developed a retrospective estimation of the a posteriori dependency structure
to take all derived information of a Bayesian analyses into account [11],

• established a framework for translational learning, where several iterations of
the Bayesian population PBPK approach informed a de-novo prediction of an
unsupervised phase of a clinical drug development program [12].

For qualification of the Bayesian population PBPK approach and for demonstra-
tion of its usability we:

• demonstrated in a pravastatin example how to use the approach to identify
clinically-relevant subgroups within a cohort of individuals in an unsupervised
approach. Thereby, considering our approach we were able to identify a bi-
modal distribution characterizing a specific biological process. We hence were
able to point out the biological fundamental of the underlying stratification,
in this case the enzyme activity of a key transport protein, the OATP1B1 in
the liver [10].

• assessed the interindividual variability of the PK behavior of theophylline in
a cohort of healthy individuals. A comparison was performed between the re-
sults of our Bayesian population PBPK approach and a conventional approach
that is based more on prior knowledge and independence of parameters. Fur-
thermore, the results generated with our new sampling method were compared
against the mainly used sampling method and a clear improvement of the per-
formance was obtained [11].

• made the translational capabilities of our approach evident. The Bayesian pop-
ulation PBPK approach was embedded into an iterative translational systems
pharmacology approach. First, the interindividual variability of the physiology
of a healthy population was assessed together with the physicochemistry of the
drug midazolam; second, the physicochemical properties of the drug torsemide
were identified. Third, the inferred drug-specific properties of midazolam were
translated into an investigation to assess the pathophysiology of obese pa-
tients. Finally, the generated knowledge was considered for the prediction of
the PK behavior of torsemide in obese patients. Thus, it was demonstrated
how a translation of knowledge from early clinical phases in healthy volunteers
and other previously performed studies in the patient group can successfully
support the development of a new drug candidate by providing predictions of
its PK behavior, which can then be considered during planning clinical trials
and dosing strategies [12].

The presented thesis has envisaged to close the above mentioned limitations of
previous approaches, that had been amongst others lack of a generic and systematic
workflow for continuous evaluation and transfer of knowledge in clinical develop-
ment programs and missing considerations of efficient MCMC sampling. To both,
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the presented work could significantly contribute by providing the presented work-
flow for estimation and translation. Outstanding issues, that need to be tackled
and could be integrated into the approach, are for example missing identification of
the full covariance relationships during MCMC sampling. So far, parameters have
been estimated under assumption of independence and dependencies of population
parameters were subsequently identified from the posterior distribution. These de-
pendencies were integrated and considered for improved population distributions.
However, a continuous adaptation of the covariances could further increase accu-
racy. Furthermore, no concepts exist for use of the full covariance information for
translational learning so far. Although this is beyond the scope of this work, the de-
velopment of accurate methods to conserve and adapt such information over several
learning steps proves to be very interesting for future investigations.

Another issue is that several parameters of the considered models were defined
as fixed parameters, such as volume fractions or surface areas. In principle, these
parameters could also be integrated in the estimation in the future, since they poten-
tially provide additional information about pathophysiological conditions. However,
it is unlikely that these parameters are informed by plasma PK data, such that addi-
tional data would be needed. Moreover, especially when parameters are expected to
be uninformed by the experimental data, extensive prior information must be avail-
able. This is, so far, not the case for several parameters in our considered PBPK
models, such that these parameters were set as fixed.

An important objective in Bayesian applications is to decrease the obtained
parameter uncertainty as this increases the reliability on estimated population vari-
ability or individual parameter estimates. With mechanistic PBPK models this can
be achieved by a better understanding of the actual biological processes but also by
optimization of the underlying experimental design [73]. In the field of PK, exper-
imental design means for example to optimize the number of samples to take, the
actual time points where a sample should be taken or the number of individuals to
participate in an experiment. Thereby, Bayesian optimal design could help to over-
come a major critics of optimal design, that is the need to rely on a certain model and
parameter point estimates [138]. So far, Bayesian optimal design has been applied
e.g. in the field of toxicokinetics to optimize uncertainty of key parameters of small
two-compartment TK models [139]. Recent approaches have been also performed in
the field of population PK, but not PBPK [140–142]. The prospective application of
our Bayesian population PBPK approach for optimal experimental design could be
even advantageous due to its extrapolation capabilities. As an example, related to
the presented application in Chapter 5, the prediction of torsemide in the diseased
population could now be used for optimal experimental design of the following phase
II study, thereby taking into account assessed knowledge about pathophysiological
alterations and estimated population variability as well as uncertainty.

All in all, our developed workflow strongly improves previous work regarding
combination of physiological models and Bayesian statistics and provides a frame-
work for continuous integration, assessment and transfer of knowledge along the the
drug development process. In the future, our approach could facilitate the stream-
lining of clinical studies, since a lot of information could be already available before
e.g. a clinical phase II trial. This could reduce costs without increasing possible
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6 Conclusion

safety issues. Thinking ahead, a systematic application in systems pharmacology
would foster the establishment of a large knowledge database. This database would
allow the collection of physiological and pathophysiological information about spe-
cific populations where only sparse data is available, leading to a continuous increase
of safety and efficacy in the development of new drugs and furthermore strengthens
confidence in personalized medicine efforts.
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Appendix A

Figures

A.1 Figures according to chapter 2

Figure A.1: Overview of the Bayer AG Computational Systems Biology Software Suite
(adapted from [90]).
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A Figures

A.2 Figures according to chapter 3

Figure A.2: Exemplary representation of a subsample of the posterior distribution. After
a burn-in period of 150000 steps, a subsample of 200 parameter vectors was drawn for
each individual. The figure shows the traces for all eight individual parameters for all
individuals as well as the four global parameters which were the same for all individuals.
The limits on the y-axis represent the physiological constraints (θmin, θmax).
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A.3 Figures according to chapter 4

A.3 Figures according to chapter 4

Figure A.3: Individual-specific model simulations of theophylline venous plasma concen-
trations. The figure shows the same results as depicted in Figure 4.1, but in semi-log
scale. For each of the 12 individuals the PBPK model was subsequently parameterized
and simulated with each of 500 individual and independent parameter vectors out of the
posterior distribution. The 95 % confidence interval of all simulations (grey area) is shown
together with the mean value curve (blue dotted line) and the experimental data (red cir-
cles). Dark grey dotted lines depict the upper and lower bound of the 95 % confidence
interval of all simulations including the inferred measurement error under consideration of
the proportional error model as described in equation 2.4.
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A Figures

Figure A.4: Individual-specific model simulations of theophylline venous plasma concen-
trations for the new MH run as described in section 4.4. For each of the 12 individuals the
PBPK model was subsequently parameterized and simulated with each of 500 individual
and independent parameter vectors out of the posterior distribution. The 95 % confidence
interval of all simulations (grey area) is shown together with the mean value curve (blue
dotted line) and the experimental data (red circles). Dark grey dotted lines depict the
upper and lower bound of the 95 % confidence interval of all simulations including the in-
ferred measurement error under consideration of the proportional error model as described
in equation 2.4.
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A.3 Figures according to chapter 4

Figure A.5: Individual-specific model simulations of theophylline venous plasma concen-
trations for the new mMALA/SCAM run as described in section 4.4. For each of the 12
individuals the PBPK model was subsequently parameterized and simulated with each of
500 individual and independent parameter vectors out of the posterior distribution. The
95 % confidence interval of all simulations (grey area) is shown together with the mean
value curve (blue dotted line) and the experimental data (red circles). Dark grey dotted
lines depict the upper and lower bound of the 95 % confidence interval of all simulations
including the inferred measurement error under consideration of the proportional error
model as described in equation 2.4.

127



A Figures

Figure A.6: Exemplary representation of derived distributions of correlation between the
population parameters for the new mMALA/SCAM run as described in section 4.4. The
correlation of a pair of parameters along all individuals was calculated for each of the 500
subsamples of the posterior distribution. For each pair of parameters the histogram of all
correlations is shown, representing the variability of the respective correlation.
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A.3 Figures according to chapter 4

Figure A.7: Exemplary representation of derived distributions of correlation between the
population parameters for the new MH run as described in section 4.4. The correlation of
a pair of parameters along all individuals was calculated for each of the 500 subsamples of
the posterior distribution. For each pair of parameters the histogram of all correlations is
shown, representing the variability of the respective correlation.
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A Figures

A.4 Figures according to chapter 5

Figure A.8: Individual model simulations of the metabolites OH-midazolam and OH-
torsemide.. The simulation of the parameter vector with maximum posterior probability
is shown for OH-midazolam in the healthy individuals (blue line and circles), OH-torsemide
in healthy individuals (green line and squares) and OH-midazolam in the diseased indi-
viduals (red line and triangles)

.
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A.4 Figures according to chapter 5

Figure A.9: Quantitative assessment of simulations of PK behavior for torsemide in dis-
eased individuals. Comparison of the experimental data for torsemide in diseased indi-
viduals (red dots with grey dotted lines) and the median curve of the population simu-
lation (black line): using a prediction based on prior information (left); the prediction of
torsemide based on the results of the systems pharmacology approach (middle); and the
retrospective analysis with the Bayesian population PBPK approach under consideration
of the experimental data for torsemide in the diseased population (right). The correspond-
ing normalized root-mean-square-error (NRMSE) is provided as figure title. (a) Results
for torsemide, (b) results for OH-torsemide.
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Tables

B.1 Tables according to chapter 4
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B Tables

Table B.2: Varied ind. parameters together with start value and borders of the final
MCMC run. Start values are exemplary for ind. 1, start values for the other ind.s differ
slightly.

name type unit start value min. value max. value

intP ind. dm/min 1.32E-06 3.57E-08 3.57E-04
CLspec ind. 1/min 9.31E-03 5.00E-03 5.00E-01
TSspec ind. 1/min 3.17E-02 2.00E-03 2.00E-01
GET ind. min 29.333 10 30
ITT ind. min 199.07 90 240

plasma protein SV ind. - 0.844 0.7 1.3
venous blood vol. ind. L 1.02 0.763 1.174
arterial blood vol. ind. L 0.462 0.332 0.51

bone Qspec ind. L/min/kg org. 0.026 0.023 0.032
bone vol. ind. L 12.675 9.443 14.23
brain vol. ind. L 1.687 1.282 1.735

brain Qspec ind. L/min/kg org. 0.566 0.439 0.594
fat vol. ind. L 22.422 3.641 58.48

fat Qspec ind. L/min/kg org. 0.02 0.019 0.025
gonads vol. ind. L 0.04 0.032 0.049

gonads Qspec ind. L/min/kg org. 0.074 0.069 0.093
heart vol. ind. L 0.341 0.165 0.696

heart Qspec ind. L/min/kg org. 0.594 0.53 0.717
kidney vol. ind. L 0.425 0.106 0.806

kidney Qspec ind. L/min/kg org. 2.897 2.573 3.481
stomach vol. ind. L 0.153 0.086 0.259

stomach Qspec ind. L/min/kg org. 0.366 0.328 0.444
small intestine vol. ind. L 0.622 0.438 1.036

small intestine Qspec ind. L/min/kg org. 0.849 0.763 1.032
large intestine vol. ind. L 0.445 0.159 0.693

large intestine Qspec ind. L/min/kg org. 0.592 0.536 0.725
liver vol. ind. L 0.837 0.655 4.249

liver Qspec ind. L/min/kg org. 0.171 0.152 0.206
lung vol. ind. L 1.166 0.549 3.012

muscle vol. ind. L 31.096 20.08 50.163
muscle Qspec ind. L/min/kg org. 0.038 0.029 0.039
pancreas vol. ind. L 0.184 0.034 0.364

pancreas Qspec ind. L/min/kg org. 0.351 0.291 0.393
portal vein vol. ind. L 1.079 0.821 1.263

skin vol. ind. L 4.578 2.745 4.889
skin Qspec ind. L/min/kg org. 0.079 0.073 0.099
spleen vol. ind. L 0.37 0.067 0.87

spleen Qspec ind. L/min/kg org. 0.74 0.681 0.921
logP global - 1.38 -1 1.5
fu global - 0.355 0.33 0.5
σM global - 0.137 0.01 1
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B.1 Tables according to chapter 4

Table B.3: Gelman and Rubin convergence criterion (R̂) of the theophylline run. R̂ was
determined after splitting the Markov chain into two chains with the same length.R̂ for
individual parameters represents the mean value of all 12 individuals. Overall mean value
for R̂ is 1.14, when taking all 535 parameters into account. For parameters with a high R̂,
convergence was calculated in addition for the Markov chain representing the functional
relationship (see hepatic clearance x liver volume and kidney clearance x kidney volume).

parameter parameter type R̂

Intestinal permeability individual 1
Hepatic clearance constant individual 1.17
Renal clearance constant individual 1.74

Stomach gastric emptying time individual 1
Small intestinal transit time individual 1
Plasma protein scale factor individual 1.01

Fat volume individual 1.03
Kidney volume individual 1.98
Liver volume individual 1.22
Muscle volume individual 1.02

Hepatic clearance constant x liver volume individual 1.11
Renal clearance constant x kidney volume individual 1.01

Lipophilicity global 1.02
Unbound protein fraction global 1.03
Intestinal permeability population 1.63

Hepatic clearance constant population 3.84
Renal clearance constant population 2.18

Stomach gastric emptying time population 1
Small intestinal transit time population 1.01
Plasma protein scale factor population 1.01

Fat volume population 1.02
Kidney volume population 2.33
Liver volume population 1.54
Muscle volume population 1.04

Hepatic clearance constant x liver volume population 1.03
Renal clearance constant x kidney volume population 1.05
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